Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * This file is part of UBIFS.
  4 *
  5 * Copyright (C) 2006-2008 Nokia Corporation.
  6 *
 
 
 
 
 
 
 
 
 
 
 
 
 
  7 * Authors: Adrian Hunter
  8 *          Artem Bityutskiy (Битюцкий Артём)
  9 */
 10
 11/*
 12 * This file contains miscelanious TNC-related functions shared betweend
 13 * different files. This file does not form any logically separate TNC
 14 * sub-system. The file was created because there is a lot of TNC code and
 15 * putting it all in one file would make that file too big and unreadable.
 16 */
 17
 18#include "ubifs.h"
 19
 20/**
 21 * ubifs_tnc_levelorder_next - next TNC tree element in levelorder traversal.
 22 * @c: UBIFS file-system description object
 23 * @zr: root of the subtree to traverse
 24 * @znode: previous znode
 25 *
 26 * This function implements levelorder TNC traversal. The LNC is ignored.
 27 * Returns the next element or %NULL if @znode is already the last one.
 28 */
 29struct ubifs_znode *ubifs_tnc_levelorder_next(const struct ubifs_info *c,
 30					      struct ubifs_znode *zr,
 31					      struct ubifs_znode *znode)
 32{
 33	int level, iip, level_search = 0;
 34	struct ubifs_znode *zn;
 35
 36	ubifs_assert(c, zr);
 37
 38	if (unlikely(!znode))
 39		return zr;
 40
 41	if (unlikely(znode == zr)) {
 42		if (znode->level == 0)
 43			return NULL;
 44		return ubifs_tnc_find_child(zr, 0);
 45	}
 46
 47	level = znode->level;
 48
 49	iip = znode->iip;
 50	while (1) {
 51		ubifs_assert(c, znode->level <= zr->level);
 52
 53		/*
 54		 * First walk up until there is a znode with next branch to
 55		 * look at.
 56		 */
 57		while (znode->parent != zr && iip >= znode->parent->child_cnt) {
 58			znode = znode->parent;
 59			iip = znode->iip;
 60		}
 61
 62		if (unlikely(znode->parent == zr &&
 63			     iip >= znode->parent->child_cnt)) {
 64			/* This level is done, switch to the lower one */
 65			level -= 1;
 66			if (level_search || level < 0)
 67				/*
 68				 * We were already looking for znode at lower
 69				 * level ('level_search'). As we are here
 70				 * again, it just does not exist. Or all levels
 71				 * were finished ('level < 0').
 72				 */
 73				return NULL;
 74
 75			level_search = 1;
 76			iip = -1;
 77			znode = ubifs_tnc_find_child(zr, 0);
 78			ubifs_assert(c, znode);
 79		}
 80
 81		/* Switch to the next index */
 82		zn = ubifs_tnc_find_child(znode->parent, iip + 1);
 83		if (!zn) {
 84			/* No more children to look at, we have walk up */
 85			iip = znode->parent->child_cnt;
 86			continue;
 87		}
 88
 89		/* Walk back down to the level we came from ('level') */
 90		while (zn->level != level) {
 91			znode = zn;
 92			zn = ubifs_tnc_find_child(zn, 0);
 93			if (!zn) {
 94				/*
 95				 * This path is not too deep so it does not
 96				 * reach 'level'. Try next path.
 97				 */
 98				iip = znode->iip;
 99				break;
100			}
101		}
102
103		if (zn) {
104			ubifs_assert(c, zn->level >= 0);
105			return zn;
106		}
107	}
108}
109
110/**
111 * ubifs_search_zbranch - search znode branch.
112 * @c: UBIFS file-system description object
113 * @znode: znode to search in
114 * @key: key to search for
115 * @n: znode branch slot number is returned here
116 *
117 * This is a helper function which search branch with key @key in @znode using
118 * binary search. The result of the search may be:
119 *   o exact match, then %1 is returned, and the slot number of the branch is
120 *     stored in @n;
121 *   o no exact match, then %0 is returned and the slot number of the left
122 *     closest branch is returned in @n; the slot if all keys in this znode are
123 *     greater than @key, then %-1 is returned in @n.
124 */
125int ubifs_search_zbranch(const struct ubifs_info *c,
126			 const struct ubifs_znode *znode,
127			 const union ubifs_key *key, int *n)
128{
129	int beg = 0, end = znode->child_cnt, uninitialized_var(mid);
130	int uninitialized_var(cmp);
131	const struct ubifs_zbranch *zbr = &znode->zbranch[0];
132
133	ubifs_assert(c, end > beg);
134
135	while (end > beg) {
136		mid = (beg + end) >> 1;
137		cmp = keys_cmp(c, key, &zbr[mid].key);
138		if (cmp > 0)
139			beg = mid + 1;
140		else if (cmp < 0)
141			end = mid;
142		else {
143			*n = mid;
144			return 1;
145		}
146	}
147
148	*n = end - 1;
149
150	/* The insert point is after *n */
151	ubifs_assert(c, *n >= -1 && *n < znode->child_cnt);
152	if (*n == -1)
153		ubifs_assert(c, keys_cmp(c, key, &zbr[0].key) < 0);
154	else
155		ubifs_assert(c, keys_cmp(c, key, &zbr[*n].key) > 0);
156	if (*n + 1 < znode->child_cnt)
157		ubifs_assert(c, keys_cmp(c, key, &zbr[*n + 1].key) < 0);
158
159	return 0;
160}
161
162/**
163 * ubifs_tnc_postorder_first - find first znode to do postorder tree traversal.
164 * @znode: znode to start at (root of the sub-tree to traverse)
165 *
166 * Find the lowest leftmost znode in a subtree of the TNC tree. The LNC is
167 * ignored.
168 */
169struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode)
170{
171	if (unlikely(!znode))
172		return NULL;
173
174	while (znode->level > 0) {
175		struct ubifs_znode *child;
176
177		child = ubifs_tnc_find_child(znode, 0);
178		if (!child)
179			return znode;
180		znode = child;
181	}
182
183	return znode;
184}
185
186/**
187 * ubifs_tnc_postorder_next - next TNC tree element in postorder traversal.
188 * @c: UBIFS file-system description object
189 * @znode: previous znode
190 *
191 * This function implements postorder TNC traversal. The LNC is ignored.
192 * Returns the next element or %NULL if @znode is already the last one.
193 */
194struct ubifs_znode *ubifs_tnc_postorder_next(const struct ubifs_info *c,
195					     struct ubifs_znode *znode)
196{
197	struct ubifs_znode *zn;
198
199	ubifs_assert(c, znode);
200	if (unlikely(!znode->parent))
201		return NULL;
202
203	/* Switch to the next index in the parent */
204	zn = ubifs_tnc_find_child(znode->parent, znode->iip + 1);
205	if (!zn)
206		/* This is in fact the last child, return parent */
207		return znode->parent;
208
209	/* Go to the first znode in this new subtree */
210	return ubifs_tnc_postorder_first(zn);
211}
212
213/**
214 * ubifs_destroy_tnc_subtree - destroy all znodes connected to a subtree.
215 * @c: UBIFS file-system description object
216 * @znode: znode defining subtree to destroy
217 *
218 * This function destroys subtree of the TNC tree. Returns number of clean
219 * znodes in the subtree.
220 */
221long ubifs_destroy_tnc_subtree(const struct ubifs_info *c,
222			       struct ubifs_znode *znode)
223{
224	struct ubifs_znode *zn = ubifs_tnc_postorder_first(znode);
225	long clean_freed = 0;
226	int n;
227
228	ubifs_assert(c, zn);
229	while (1) {
230		for (n = 0; n < zn->child_cnt; n++) {
231			if (!zn->zbranch[n].znode)
232				continue;
233
234			if (zn->level > 0 &&
235			    !ubifs_zn_dirty(zn->zbranch[n].znode))
236				clean_freed += 1;
237
238			cond_resched();
239			kfree(zn->zbranch[n].znode);
240		}
241
242		if (zn == znode) {
243			if (!ubifs_zn_dirty(zn))
244				clean_freed += 1;
245			kfree(zn);
246			return clean_freed;
247		}
248
249		zn = ubifs_tnc_postorder_next(c, zn);
250	}
251}
252
253/**
254 * read_znode - read an indexing node from flash and fill znode.
255 * @c: UBIFS file-system description object
256 * @zzbr: the zbranch describing the node to read
 
 
257 * @znode: znode to read to
258 *
259 * This function reads an indexing node from the flash media and fills znode
260 * with the read data. Returns zero in case of success and a negative error
261 * code in case of failure. The read indexing node is validated and if anything
262 * is wrong with it, this function prints complaint messages and returns
263 * %-EINVAL.
264 */
265static int read_znode(struct ubifs_info *c, struct ubifs_zbranch *zzbr,
266		      struct ubifs_znode *znode)
267{
268	int lnum = zzbr->lnum;
269	int offs = zzbr->offs;
270	int len = zzbr->len;
271	int i, err, type, cmp;
272	struct ubifs_idx_node *idx;
273
274	idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
275	if (!idx)
276		return -ENOMEM;
277
278	err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
279	if (err < 0) {
280		kfree(idx);
281		return err;
282	}
283
284	err = ubifs_node_check_hash(c, idx, zzbr->hash);
285	if (err) {
286		ubifs_bad_hash(c, idx, zzbr->hash, lnum, offs);
287		kfree(idx);
288		return err;
289	}
290
291	znode->child_cnt = le16_to_cpu(idx->child_cnt);
292	znode->level = le16_to_cpu(idx->level);
293
294	dbg_tnc("LEB %d:%d, level %d, %d branch",
295		lnum, offs, znode->level, znode->child_cnt);
296
297	if (znode->child_cnt > c->fanout || znode->level > UBIFS_MAX_LEVELS) {
298		ubifs_err(c, "current fanout %d, branch count %d",
299			  c->fanout, znode->child_cnt);
300		ubifs_err(c, "max levels %d, znode level %d",
301			  UBIFS_MAX_LEVELS, znode->level);
302		err = 1;
303		goto out_dump;
304	}
305
306	for (i = 0; i < znode->child_cnt; i++) {
307		struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
308		struct ubifs_zbranch *zbr = &znode->zbranch[i];
309
310		key_read(c, &br->key, &zbr->key);
311		zbr->lnum = le32_to_cpu(br->lnum);
312		zbr->offs = le32_to_cpu(br->offs);
313		zbr->len  = le32_to_cpu(br->len);
314		ubifs_copy_hash(c, ubifs_branch_hash(c, br), zbr->hash);
315		zbr->znode = NULL;
316
317		/* Validate branch */
318
319		if (zbr->lnum < c->main_first ||
320		    zbr->lnum >= c->leb_cnt || zbr->offs < 0 ||
321		    zbr->offs + zbr->len > c->leb_size || zbr->offs & 7) {
322			ubifs_err(c, "bad branch %d", i);
323			err = 2;
324			goto out_dump;
325		}
326
327		switch (key_type(c, &zbr->key)) {
328		case UBIFS_INO_KEY:
329		case UBIFS_DATA_KEY:
330		case UBIFS_DENT_KEY:
331		case UBIFS_XENT_KEY:
332			break;
333		default:
334			ubifs_err(c, "bad key type at slot %d: %d",
335				  i, key_type(c, &zbr->key));
336			err = 3;
337			goto out_dump;
338		}
339
340		if (znode->level)
341			continue;
342
343		type = key_type(c, &zbr->key);
344		if (c->ranges[type].max_len == 0) {
345			if (zbr->len != c->ranges[type].len) {
346				ubifs_err(c, "bad target node (type %d) length (%d)",
347					  type, zbr->len);
348				ubifs_err(c, "have to be %d", c->ranges[type].len);
349				err = 4;
350				goto out_dump;
351			}
352		} else if (zbr->len < c->ranges[type].min_len ||
353			   zbr->len > c->ranges[type].max_len) {
354			ubifs_err(c, "bad target node (type %d) length (%d)",
355				  type, zbr->len);
356			ubifs_err(c, "have to be in range of %d-%d",
357				  c->ranges[type].min_len,
358				  c->ranges[type].max_len);
359			err = 5;
360			goto out_dump;
361		}
362	}
363
364	/*
365	 * Ensure that the next key is greater or equivalent to the
366	 * previous one.
367	 */
368	for (i = 0; i < znode->child_cnt - 1; i++) {
369		const union ubifs_key *key1, *key2;
370
371		key1 = &znode->zbranch[i].key;
372		key2 = &znode->zbranch[i + 1].key;
373
374		cmp = keys_cmp(c, key1, key2);
375		if (cmp > 0) {
376			ubifs_err(c, "bad key order (keys %d and %d)", i, i + 1);
377			err = 6;
378			goto out_dump;
379		} else if (cmp == 0 && !is_hash_key(c, key1)) {
380			/* These can only be keys with colliding hash */
381			ubifs_err(c, "keys %d and %d are not hashed but equivalent",
382				  i, i + 1);
383			err = 7;
384			goto out_dump;
385		}
386	}
387
388	kfree(idx);
389	return 0;
390
391out_dump:
392	ubifs_err(c, "bad indexing node at LEB %d:%d, error %d", lnum, offs, err);
393	ubifs_dump_node(c, idx);
394	kfree(idx);
395	return -EINVAL;
396}
397
398/**
399 * ubifs_load_znode - load znode to TNC cache.
400 * @c: UBIFS file-system description object
401 * @zbr: znode branch
402 * @parent: znode's parent
403 * @iip: index in parent
404 *
405 * This function loads znode pointed to by @zbr into the TNC cache and
406 * returns pointer to it in case of success and a negative error code in case
407 * of failure.
408 */
409struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c,
410				     struct ubifs_zbranch *zbr,
411				     struct ubifs_znode *parent, int iip)
412{
413	int err;
414	struct ubifs_znode *znode;
415
416	ubifs_assert(c, !zbr->znode);
417	/*
418	 * A slab cache is not presently used for znodes because the znode size
419	 * depends on the fanout which is stored in the superblock.
420	 */
421	znode = kzalloc(c->max_znode_sz, GFP_NOFS);
422	if (!znode)
423		return ERR_PTR(-ENOMEM);
424
425	err = read_znode(c, zbr, znode);
426	if (err)
427		goto out;
428
429	atomic_long_inc(&c->clean_zn_cnt);
430
431	/*
432	 * Increment the global clean znode counter as well. It is OK that
433	 * global and per-FS clean znode counters may be inconsistent for some
434	 * short time (because we might be preempted at this point), the global
435	 * one is only used in shrinker.
436	 */
437	atomic_long_inc(&ubifs_clean_zn_cnt);
438
439	zbr->znode = znode;
440	znode->parent = parent;
441	znode->time = ktime_get_seconds();
442	znode->iip = iip;
443
444	return znode;
445
446out:
447	kfree(znode);
448	return ERR_PTR(err);
449}
450
451/**
452 * ubifs_tnc_read_node - read a leaf node from the flash media.
453 * @c: UBIFS file-system description object
454 * @zbr: key and position of the node
455 * @node: node is returned here
456 *
457 * This function reads a node defined by @zbr from the flash media. Returns
458 * zero in case of success or a negative negative error code in case of
459 * failure.
460 */
461int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
462			void *node)
463{
464	union ubifs_key key1, *key = &zbr->key;
465	int err, type = key_type(c, key);
466	struct ubifs_wbuf *wbuf;
467
468	/*
469	 * 'zbr' has to point to on-flash node. The node may sit in a bud and
470	 * may even be in a write buffer, so we have to take care about this.
471	 */
472	wbuf = ubifs_get_wbuf(c, zbr->lnum);
473	if (wbuf)
474		err = ubifs_read_node_wbuf(wbuf, node, type, zbr->len,
475					   zbr->lnum, zbr->offs);
476	else
477		err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum,
478				      zbr->offs);
479
480	if (err) {
481		dbg_tnck(key, "key ");
482		return err;
483	}
484
485	/* Make sure the key of the read node is correct */
486	key_read(c, node + UBIFS_KEY_OFFSET, &key1);
487	if (!keys_eq(c, key, &key1)) {
488		ubifs_err(c, "bad key in node at LEB %d:%d",
489			  zbr->lnum, zbr->offs);
490		dbg_tnck(key, "looked for key ");
491		dbg_tnck(&key1, "but found node's key ");
492		ubifs_dump_node(c, node);
493		return -EINVAL;
494	}
495
496	err = ubifs_node_check_hash(c, node, zbr->hash);
497	if (err) {
498		ubifs_bad_hash(c, node, zbr->hash, zbr->lnum, zbr->offs);
499		return err;
500	}
501
502	return 0;
503}
v4.17
 
  1/*
  2 * This file is part of UBIFS.
  3 *
  4 * Copyright (C) 2006-2008 Nokia Corporation.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License version 2 as published by
  8 * the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope that it will be useful, but WITHOUT
 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13 * more details.
 14 *
 15 * You should have received a copy of the GNU General Public License along with
 16 * this program; if not, write to the Free Software Foundation, Inc., 51
 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 18 *
 19 * Authors: Adrian Hunter
 20 *          Artem Bityutskiy (Битюцкий Артём)
 21 */
 22
 23/*
 24 * This file contains miscelanious TNC-related functions shared betweend
 25 * different files. This file does not form any logically separate TNC
 26 * sub-system. The file was created because there is a lot of TNC code and
 27 * putting it all in one file would make that file too big and unreadable.
 28 */
 29
 30#include "ubifs.h"
 31
 32/**
 33 * ubifs_tnc_levelorder_next - next TNC tree element in levelorder traversal.
 
 34 * @zr: root of the subtree to traverse
 35 * @znode: previous znode
 36 *
 37 * This function implements levelorder TNC traversal. The LNC is ignored.
 38 * Returns the next element or %NULL if @znode is already the last one.
 39 */
 40struct ubifs_znode *ubifs_tnc_levelorder_next(struct ubifs_znode *zr,
 
 41					      struct ubifs_znode *znode)
 42{
 43	int level, iip, level_search = 0;
 44	struct ubifs_znode *zn;
 45
 46	ubifs_assert(zr);
 47
 48	if (unlikely(!znode))
 49		return zr;
 50
 51	if (unlikely(znode == zr)) {
 52		if (znode->level == 0)
 53			return NULL;
 54		return ubifs_tnc_find_child(zr, 0);
 55	}
 56
 57	level = znode->level;
 58
 59	iip = znode->iip;
 60	while (1) {
 61		ubifs_assert(znode->level <= zr->level);
 62
 63		/*
 64		 * First walk up until there is a znode with next branch to
 65		 * look at.
 66		 */
 67		while (znode->parent != zr && iip >= znode->parent->child_cnt) {
 68			znode = znode->parent;
 69			iip = znode->iip;
 70		}
 71
 72		if (unlikely(znode->parent == zr &&
 73			     iip >= znode->parent->child_cnt)) {
 74			/* This level is done, switch to the lower one */
 75			level -= 1;
 76			if (level_search || level < 0)
 77				/*
 78				 * We were already looking for znode at lower
 79				 * level ('level_search'). As we are here
 80				 * again, it just does not exist. Or all levels
 81				 * were finished ('level < 0').
 82				 */
 83				return NULL;
 84
 85			level_search = 1;
 86			iip = -1;
 87			znode = ubifs_tnc_find_child(zr, 0);
 88			ubifs_assert(znode);
 89		}
 90
 91		/* Switch to the next index */
 92		zn = ubifs_tnc_find_child(znode->parent, iip + 1);
 93		if (!zn) {
 94			/* No more children to look at, we have walk up */
 95			iip = znode->parent->child_cnt;
 96			continue;
 97		}
 98
 99		/* Walk back down to the level we came from ('level') */
100		while (zn->level != level) {
101			znode = zn;
102			zn = ubifs_tnc_find_child(zn, 0);
103			if (!zn) {
104				/*
105				 * This path is not too deep so it does not
106				 * reach 'level'. Try next path.
107				 */
108				iip = znode->iip;
109				break;
110			}
111		}
112
113		if (zn) {
114			ubifs_assert(zn->level >= 0);
115			return zn;
116		}
117	}
118}
119
120/**
121 * ubifs_search_zbranch - search znode branch.
122 * @c: UBIFS file-system description object
123 * @znode: znode to search in
124 * @key: key to search for
125 * @n: znode branch slot number is returned here
126 *
127 * This is a helper function which search branch with key @key in @znode using
128 * binary search. The result of the search may be:
129 *   o exact match, then %1 is returned, and the slot number of the branch is
130 *     stored in @n;
131 *   o no exact match, then %0 is returned and the slot number of the left
132 *     closest branch is returned in @n; the slot if all keys in this znode are
133 *     greater than @key, then %-1 is returned in @n.
134 */
135int ubifs_search_zbranch(const struct ubifs_info *c,
136			 const struct ubifs_znode *znode,
137			 const union ubifs_key *key, int *n)
138{
139	int beg = 0, end = znode->child_cnt, uninitialized_var(mid);
140	int uninitialized_var(cmp);
141	const struct ubifs_zbranch *zbr = &znode->zbranch[0];
142
143	ubifs_assert(end > beg);
144
145	while (end > beg) {
146		mid = (beg + end) >> 1;
147		cmp = keys_cmp(c, key, &zbr[mid].key);
148		if (cmp > 0)
149			beg = mid + 1;
150		else if (cmp < 0)
151			end = mid;
152		else {
153			*n = mid;
154			return 1;
155		}
156	}
157
158	*n = end - 1;
159
160	/* The insert point is after *n */
161	ubifs_assert(*n >= -1 && *n < znode->child_cnt);
162	if (*n == -1)
163		ubifs_assert(keys_cmp(c, key, &zbr[0].key) < 0);
164	else
165		ubifs_assert(keys_cmp(c, key, &zbr[*n].key) > 0);
166	if (*n + 1 < znode->child_cnt)
167		ubifs_assert(keys_cmp(c, key, &zbr[*n + 1].key) < 0);
168
169	return 0;
170}
171
172/**
173 * ubifs_tnc_postorder_first - find first znode to do postorder tree traversal.
174 * @znode: znode to start at (root of the sub-tree to traverse)
175 *
176 * Find the lowest leftmost znode in a subtree of the TNC tree. The LNC is
177 * ignored.
178 */
179struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode)
180{
181	if (unlikely(!znode))
182		return NULL;
183
184	while (znode->level > 0) {
185		struct ubifs_znode *child;
186
187		child = ubifs_tnc_find_child(znode, 0);
188		if (!child)
189			return znode;
190		znode = child;
191	}
192
193	return znode;
194}
195
196/**
197 * ubifs_tnc_postorder_next - next TNC tree element in postorder traversal.
 
198 * @znode: previous znode
199 *
200 * This function implements postorder TNC traversal. The LNC is ignored.
201 * Returns the next element or %NULL if @znode is already the last one.
202 */
203struct ubifs_znode *ubifs_tnc_postorder_next(struct ubifs_znode *znode)
 
204{
205	struct ubifs_znode *zn;
206
207	ubifs_assert(znode);
208	if (unlikely(!znode->parent))
209		return NULL;
210
211	/* Switch to the next index in the parent */
212	zn = ubifs_tnc_find_child(znode->parent, znode->iip + 1);
213	if (!zn)
214		/* This is in fact the last child, return parent */
215		return znode->parent;
216
217	/* Go to the first znode in this new subtree */
218	return ubifs_tnc_postorder_first(zn);
219}
220
221/**
222 * ubifs_destroy_tnc_subtree - destroy all znodes connected to a subtree.
 
223 * @znode: znode defining subtree to destroy
224 *
225 * This function destroys subtree of the TNC tree. Returns number of clean
226 * znodes in the subtree.
227 */
228long ubifs_destroy_tnc_subtree(struct ubifs_znode *znode)
 
229{
230	struct ubifs_znode *zn = ubifs_tnc_postorder_first(znode);
231	long clean_freed = 0;
232	int n;
233
234	ubifs_assert(zn);
235	while (1) {
236		for (n = 0; n < zn->child_cnt; n++) {
237			if (!zn->zbranch[n].znode)
238				continue;
239
240			if (zn->level > 0 &&
241			    !ubifs_zn_dirty(zn->zbranch[n].znode))
242				clean_freed += 1;
243
244			cond_resched();
245			kfree(zn->zbranch[n].znode);
246		}
247
248		if (zn == znode) {
249			if (!ubifs_zn_dirty(zn))
250				clean_freed += 1;
251			kfree(zn);
252			return clean_freed;
253		}
254
255		zn = ubifs_tnc_postorder_next(zn);
256	}
257}
258
259/**
260 * read_znode - read an indexing node from flash and fill znode.
261 * @c: UBIFS file-system description object
262 * @lnum: LEB of the indexing node to read
263 * @offs: node offset
264 * @len: node length
265 * @znode: znode to read to
266 *
267 * This function reads an indexing node from the flash media and fills znode
268 * with the read data. Returns zero in case of success and a negative error
269 * code in case of failure. The read indexing node is validated and if anything
270 * is wrong with it, this function prints complaint messages and returns
271 * %-EINVAL.
272 */
273static int read_znode(struct ubifs_info *c, int lnum, int offs, int len,
274		      struct ubifs_znode *znode)
275{
 
 
 
276	int i, err, type, cmp;
277	struct ubifs_idx_node *idx;
278
279	idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
280	if (!idx)
281		return -ENOMEM;
282
283	err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
284	if (err < 0) {
285		kfree(idx);
286		return err;
287	}
288
 
 
 
 
 
 
 
289	znode->child_cnt = le16_to_cpu(idx->child_cnt);
290	znode->level = le16_to_cpu(idx->level);
291
292	dbg_tnc("LEB %d:%d, level %d, %d branch",
293		lnum, offs, znode->level, znode->child_cnt);
294
295	if (znode->child_cnt > c->fanout || znode->level > UBIFS_MAX_LEVELS) {
296		ubifs_err(c, "current fanout %d, branch count %d",
297			  c->fanout, znode->child_cnt);
298		ubifs_err(c, "max levels %d, znode level %d",
299			  UBIFS_MAX_LEVELS, znode->level);
300		err = 1;
301		goto out_dump;
302	}
303
304	for (i = 0; i < znode->child_cnt; i++) {
305		const struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
306		struct ubifs_zbranch *zbr = &znode->zbranch[i];
307
308		key_read(c, &br->key, &zbr->key);
309		zbr->lnum = le32_to_cpu(br->lnum);
310		zbr->offs = le32_to_cpu(br->offs);
311		zbr->len  = le32_to_cpu(br->len);
 
312		zbr->znode = NULL;
313
314		/* Validate branch */
315
316		if (zbr->lnum < c->main_first ||
317		    zbr->lnum >= c->leb_cnt || zbr->offs < 0 ||
318		    zbr->offs + zbr->len > c->leb_size || zbr->offs & 7) {
319			ubifs_err(c, "bad branch %d", i);
320			err = 2;
321			goto out_dump;
322		}
323
324		switch (key_type(c, &zbr->key)) {
325		case UBIFS_INO_KEY:
326		case UBIFS_DATA_KEY:
327		case UBIFS_DENT_KEY:
328		case UBIFS_XENT_KEY:
329			break;
330		default:
331			ubifs_err(c, "bad key type at slot %d: %d",
332				  i, key_type(c, &zbr->key));
333			err = 3;
334			goto out_dump;
335		}
336
337		if (znode->level)
338			continue;
339
340		type = key_type(c, &zbr->key);
341		if (c->ranges[type].max_len == 0) {
342			if (zbr->len != c->ranges[type].len) {
343				ubifs_err(c, "bad target node (type %d) length (%d)",
344					  type, zbr->len);
345				ubifs_err(c, "have to be %d", c->ranges[type].len);
346				err = 4;
347				goto out_dump;
348			}
349		} else if (zbr->len < c->ranges[type].min_len ||
350			   zbr->len > c->ranges[type].max_len) {
351			ubifs_err(c, "bad target node (type %d) length (%d)",
352				  type, zbr->len);
353			ubifs_err(c, "have to be in range of %d-%d",
354				  c->ranges[type].min_len,
355				  c->ranges[type].max_len);
356			err = 5;
357			goto out_dump;
358		}
359	}
360
361	/*
362	 * Ensure that the next key is greater or equivalent to the
363	 * previous one.
364	 */
365	for (i = 0; i < znode->child_cnt - 1; i++) {
366		const union ubifs_key *key1, *key2;
367
368		key1 = &znode->zbranch[i].key;
369		key2 = &znode->zbranch[i + 1].key;
370
371		cmp = keys_cmp(c, key1, key2);
372		if (cmp > 0) {
373			ubifs_err(c, "bad key order (keys %d and %d)", i, i + 1);
374			err = 6;
375			goto out_dump;
376		} else if (cmp == 0 && !is_hash_key(c, key1)) {
377			/* These can only be keys with colliding hash */
378			ubifs_err(c, "keys %d and %d are not hashed but equivalent",
379				  i, i + 1);
380			err = 7;
381			goto out_dump;
382		}
383	}
384
385	kfree(idx);
386	return 0;
387
388out_dump:
389	ubifs_err(c, "bad indexing node at LEB %d:%d, error %d", lnum, offs, err);
390	ubifs_dump_node(c, idx);
391	kfree(idx);
392	return -EINVAL;
393}
394
395/**
396 * ubifs_load_znode - load znode to TNC cache.
397 * @c: UBIFS file-system description object
398 * @zbr: znode branch
399 * @parent: znode's parent
400 * @iip: index in parent
401 *
402 * This function loads znode pointed to by @zbr into the TNC cache and
403 * returns pointer to it in case of success and a negative error code in case
404 * of failure.
405 */
406struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c,
407				     struct ubifs_zbranch *zbr,
408				     struct ubifs_znode *parent, int iip)
409{
410	int err;
411	struct ubifs_znode *znode;
412
413	ubifs_assert(!zbr->znode);
414	/*
415	 * A slab cache is not presently used for znodes because the znode size
416	 * depends on the fanout which is stored in the superblock.
417	 */
418	znode = kzalloc(c->max_znode_sz, GFP_NOFS);
419	if (!znode)
420		return ERR_PTR(-ENOMEM);
421
422	err = read_znode(c, zbr->lnum, zbr->offs, zbr->len, znode);
423	if (err)
424		goto out;
425
426	atomic_long_inc(&c->clean_zn_cnt);
427
428	/*
429	 * Increment the global clean znode counter as well. It is OK that
430	 * global and per-FS clean znode counters may be inconsistent for some
431	 * short time (because we might be preempted at this point), the global
432	 * one is only used in shrinker.
433	 */
434	atomic_long_inc(&ubifs_clean_zn_cnt);
435
436	zbr->znode = znode;
437	znode->parent = parent;
438	znode->time = get_seconds();
439	znode->iip = iip;
440
441	return znode;
442
443out:
444	kfree(znode);
445	return ERR_PTR(err);
446}
447
448/**
449 * ubifs_tnc_read_node - read a leaf node from the flash media.
450 * @c: UBIFS file-system description object
451 * @zbr: key and position of the node
452 * @node: node is returned here
453 *
454 * This function reads a node defined by @zbr from the flash media. Returns
455 * zero in case of success or a negative negative error code in case of
456 * failure.
457 */
458int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
459			void *node)
460{
461	union ubifs_key key1, *key = &zbr->key;
462	int err, type = key_type(c, key);
463	struct ubifs_wbuf *wbuf;
464
465	/*
466	 * 'zbr' has to point to on-flash node. The node may sit in a bud and
467	 * may even be in a write buffer, so we have to take care about this.
468	 */
469	wbuf = ubifs_get_wbuf(c, zbr->lnum);
470	if (wbuf)
471		err = ubifs_read_node_wbuf(wbuf, node, type, zbr->len,
472					   zbr->lnum, zbr->offs);
473	else
474		err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum,
475				      zbr->offs);
476
477	if (err) {
478		dbg_tnck(key, "key ");
479		return err;
480	}
481
482	/* Make sure the key of the read node is correct */
483	key_read(c, node + UBIFS_KEY_OFFSET, &key1);
484	if (!keys_eq(c, key, &key1)) {
485		ubifs_err(c, "bad key in node at LEB %d:%d",
486			  zbr->lnum, zbr->offs);
487		dbg_tnck(key, "looked for key ");
488		dbg_tnck(&key1, "but found node's key ");
489		ubifs_dump_node(c, node);
490		return -EINVAL;
 
 
 
 
 
 
491	}
492
493	return 0;
494}