Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11/*
12 * This file implements VFS file and inode operations for regular files, device
13 * nodes and symlinks as well as address space operations.
14 *
15 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
16 * the page is dirty and is used for optimization purposes - dirty pages are
17 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
18 * the budget for this page. The @PG_checked flag is set if full budgeting is
19 * required for the page e.g., when it corresponds to a file hole or it is
20 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
21 * it is OK to fail in this function, and the budget is released in
22 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
23 * information about how the page was budgeted, to make it possible to release
24 * the budget properly.
25 *
26 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
27 * implement. However, this is not true for 'ubifs_writepage()', which may be
28 * called with @i_mutex unlocked. For example, when flusher thread is doing
29 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
30 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
31 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
32 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
33 *
34 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
35 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
36 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
37 * set as well. However, UBIFS disables readahead.
38 */
39
40#include "ubifs.h"
41#include <linux/mount.h>
42#include <linux/slab.h>
43#include <linux/migrate.h>
44
45static int read_block(struct inode *inode, void *addr, unsigned int block,
46 struct ubifs_data_node *dn)
47{
48 struct ubifs_info *c = inode->i_sb->s_fs_info;
49 int err, len, out_len;
50 union ubifs_key key;
51 unsigned int dlen;
52
53 data_key_init(c, &key, inode->i_ino, block);
54 err = ubifs_tnc_lookup(c, &key, dn);
55 if (err) {
56 if (err == -ENOENT)
57 /* Not found, so it must be a hole */
58 memset(addr, 0, UBIFS_BLOCK_SIZE);
59 return err;
60 }
61
62 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
63 ubifs_inode(inode)->creat_sqnum);
64 len = le32_to_cpu(dn->size);
65 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
66 goto dump;
67
68 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
69
70 if (ubifs_crypt_is_encrypted(inode)) {
71 err = ubifs_decrypt(inode, dn, &dlen, block);
72 if (err)
73 goto dump;
74 }
75
76 out_len = UBIFS_BLOCK_SIZE;
77 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
78 le16_to_cpu(dn->compr_type));
79 if (err || len != out_len)
80 goto dump;
81
82 /*
83 * Data length can be less than a full block, even for blocks that are
84 * not the last in the file (e.g., as a result of making a hole and
85 * appending data). Ensure that the remainder is zeroed out.
86 */
87 if (len < UBIFS_BLOCK_SIZE)
88 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
89
90 return 0;
91
92dump:
93 ubifs_err(c, "bad data node (block %u, inode %lu)",
94 block, inode->i_ino);
95 ubifs_dump_node(c, dn);
96 return -EINVAL;
97}
98
99static int do_readpage(struct page *page)
100{
101 void *addr;
102 int err = 0, i;
103 unsigned int block, beyond;
104 struct ubifs_data_node *dn;
105 struct inode *inode = page->mapping->host;
106 struct ubifs_info *c = inode->i_sb->s_fs_info;
107 loff_t i_size = i_size_read(inode);
108
109 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
110 inode->i_ino, page->index, i_size, page->flags);
111 ubifs_assert(c, !PageChecked(page));
112 ubifs_assert(c, !PagePrivate(page));
113
114 addr = kmap(page);
115
116 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
117 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
118 if (block >= beyond) {
119 /* Reading beyond inode */
120 SetPageChecked(page);
121 memset(addr, 0, PAGE_SIZE);
122 goto out;
123 }
124
125 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
126 if (!dn) {
127 err = -ENOMEM;
128 goto error;
129 }
130
131 i = 0;
132 while (1) {
133 int ret;
134
135 if (block >= beyond) {
136 /* Reading beyond inode */
137 err = -ENOENT;
138 memset(addr, 0, UBIFS_BLOCK_SIZE);
139 } else {
140 ret = read_block(inode, addr, block, dn);
141 if (ret) {
142 err = ret;
143 if (err != -ENOENT)
144 break;
145 } else if (block + 1 == beyond) {
146 int dlen = le32_to_cpu(dn->size);
147 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
148
149 if (ilen && ilen < dlen)
150 memset(addr + ilen, 0, dlen - ilen);
151 }
152 }
153 if (++i >= UBIFS_BLOCKS_PER_PAGE)
154 break;
155 block += 1;
156 addr += UBIFS_BLOCK_SIZE;
157 }
158 if (err) {
159 struct ubifs_info *c = inode->i_sb->s_fs_info;
160 if (err == -ENOENT) {
161 /* Not found, so it must be a hole */
162 SetPageChecked(page);
163 dbg_gen("hole");
164 goto out_free;
165 }
166 ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
167 page->index, inode->i_ino, err);
168 goto error;
169 }
170
171out_free:
172 kfree(dn);
173out:
174 SetPageUptodate(page);
175 ClearPageError(page);
176 flush_dcache_page(page);
177 kunmap(page);
178 return 0;
179
180error:
181 kfree(dn);
182 ClearPageUptodate(page);
183 SetPageError(page);
184 flush_dcache_page(page);
185 kunmap(page);
186 return err;
187}
188
189/**
190 * release_new_page_budget - release budget of a new page.
191 * @c: UBIFS file-system description object
192 *
193 * This is a helper function which releases budget corresponding to the budget
194 * of one new page of data.
195 */
196static void release_new_page_budget(struct ubifs_info *c)
197{
198 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
199
200 ubifs_release_budget(c, &req);
201}
202
203/**
204 * release_existing_page_budget - release budget of an existing page.
205 * @c: UBIFS file-system description object
206 *
207 * This is a helper function which releases budget corresponding to the budget
208 * of changing one one page of data which already exists on the flash media.
209 */
210static void release_existing_page_budget(struct ubifs_info *c)
211{
212 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
213
214 ubifs_release_budget(c, &req);
215}
216
217static int write_begin_slow(struct address_space *mapping,
218 loff_t pos, unsigned len, struct page **pagep,
219 unsigned flags)
220{
221 struct inode *inode = mapping->host;
222 struct ubifs_info *c = inode->i_sb->s_fs_info;
223 pgoff_t index = pos >> PAGE_SHIFT;
224 struct ubifs_budget_req req = { .new_page = 1 };
225 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
226 struct page *page;
227
228 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
229 inode->i_ino, pos, len, inode->i_size);
230
231 /*
232 * At the slow path we have to budget before locking the page, because
233 * budgeting may force write-back, which would wait on locked pages and
234 * deadlock if we had the page locked. At this point we do not know
235 * anything about the page, so assume that this is a new page which is
236 * written to a hole. This corresponds to largest budget. Later the
237 * budget will be amended if this is not true.
238 */
239 if (appending)
240 /* We are appending data, budget for inode change */
241 req.dirtied_ino = 1;
242
243 err = ubifs_budget_space(c, &req);
244 if (unlikely(err))
245 return err;
246
247 page = grab_cache_page_write_begin(mapping, index, flags);
248 if (unlikely(!page)) {
249 ubifs_release_budget(c, &req);
250 return -ENOMEM;
251 }
252
253 if (!PageUptodate(page)) {
254 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE)
255 SetPageChecked(page);
256 else {
257 err = do_readpage(page);
258 if (err) {
259 unlock_page(page);
260 put_page(page);
261 ubifs_release_budget(c, &req);
262 return err;
263 }
264 }
265
266 SetPageUptodate(page);
267 ClearPageError(page);
268 }
269
270 if (PagePrivate(page))
271 /*
272 * The page is dirty, which means it was budgeted twice:
273 * o first time the budget was allocated by the task which
274 * made the page dirty and set the PG_private flag;
275 * o and then we budgeted for it for the second time at the
276 * very beginning of this function.
277 *
278 * So what we have to do is to release the page budget we
279 * allocated.
280 */
281 release_new_page_budget(c);
282 else if (!PageChecked(page))
283 /*
284 * We are changing a page which already exists on the media.
285 * This means that changing the page does not make the amount
286 * of indexing information larger, and this part of the budget
287 * which we have already acquired may be released.
288 */
289 ubifs_convert_page_budget(c);
290
291 if (appending) {
292 struct ubifs_inode *ui = ubifs_inode(inode);
293
294 /*
295 * 'ubifs_write_end()' is optimized from the fast-path part of
296 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
297 * if data is appended.
298 */
299 mutex_lock(&ui->ui_mutex);
300 if (ui->dirty)
301 /*
302 * The inode is dirty already, so we may free the
303 * budget we allocated.
304 */
305 ubifs_release_dirty_inode_budget(c, ui);
306 }
307
308 *pagep = page;
309 return 0;
310}
311
312/**
313 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
314 * @c: UBIFS file-system description object
315 * @page: page to allocate budget for
316 * @ui: UBIFS inode object the page belongs to
317 * @appending: non-zero if the page is appended
318 *
319 * This is a helper function for 'ubifs_write_begin()' which allocates budget
320 * for the operation. The budget is allocated differently depending on whether
321 * this is appending, whether the page is dirty or not, and so on. This
322 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
323 * in case of success and %-ENOSPC in case of failure.
324 */
325static int allocate_budget(struct ubifs_info *c, struct page *page,
326 struct ubifs_inode *ui, int appending)
327{
328 struct ubifs_budget_req req = { .fast = 1 };
329
330 if (PagePrivate(page)) {
331 if (!appending)
332 /*
333 * The page is dirty and we are not appending, which
334 * means no budget is needed at all.
335 */
336 return 0;
337
338 mutex_lock(&ui->ui_mutex);
339 if (ui->dirty)
340 /*
341 * The page is dirty and we are appending, so the inode
342 * has to be marked as dirty. However, it is already
343 * dirty, so we do not need any budget. We may return,
344 * but @ui->ui_mutex hast to be left locked because we
345 * should prevent write-back from flushing the inode
346 * and freeing the budget. The lock will be released in
347 * 'ubifs_write_end()'.
348 */
349 return 0;
350
351 /*
352 * The page is dirty, we are appending, the inode is clean, so
353 * we need to budget the inode change.
354 */
355 req.dirtied_ino = 1;
356 } else {
357 if (PageChecked(page))
358 /*
359 * The page corresponds to a hole and does not
360 * exist on the media. So changing it makes
361 * make the amount of indexing information
362 * larger, and we have to budget for a new
363 * page.
364 */
365 req.new_page = 1;
366 else
367 /*
368 * Not a hole, the change will not add any new
369 * indexing information, budget for page
370 * change.
371 */
372 req.dirtied_page = 1;
373
374 if (appending) {
375 mutex_lock(&ui->ui_mutex);
376 if (!ui->dirty)
377 /*
378 * The inode is clean but we will have to mark
379 * it as dirty because we are appending. This
380 * needs a budget.
381 */
382 req.dirtied_ino = 1;
383 }
384 }
385
386 return ubifs_budget_space(c, &req);
387}
388
389/*
390 * This function is called when a page of data is going to be written. Since
391 * the page of data will not necessarily go to the flash straight away, UBIFS
392 * has to reserve space on the media for it, which is done by means of
393 * budgeting.
394 *
395 * This is the hot-path of the file-system and we are trying to optimize it as
396 * much as possible. For this reasons it is split on 2 parts - slow and fast.
397 *
398 * There many budgeting cases:
399 * o a new page is appended - we have to budget for a new page and for
400 * changing the inode; however, if the inode is already dirty, there is
401 * no need to budget for it;
402 * o an existing clean page is changed - we have budget for it; if the page
403 * does not exist on the media (a hole), we have to budget for a new
404 * page; otherwise, we may budget for changing an existing page; the
405 * difference between these cases is that changing an existing page does
406 * not introduce anything new to the FS indexing information, so it does
407 * not grow, and smaller budget is acquired in this case;
408 * o an existing dirty page is changed - no need to budget at all, because
409 * the page budget has been acquired by earlier, when the page has been
410 * marked dirty.
411 *
412 * UBIFS budgeting sub-system may force write-back if it thinks there is no
413 * space to reserve. This imposes some locking restrictions and makes it
414 * impossible to take into account the above cases, and makes it impossible to
415 * optimize budgeting.
416 *
417 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
418 * there is a plenty of flash space and the budget will be acquired quickly,
419 * without forcing write-back. The slow path does not make this assumption.
420 */
421static int ubifs_write_begin(struct file *file, struct address_space *mapping,
422 loff_t pos, unsigned len, unsigned flags,
423 struct page **pagep, void **fsdata)
424{
425 struct inode *inode = mapping->host;
426 struct ubifs_info *c = inode->i_sb->s_fs_info;
427 struct ubifs_inode *ui = ubifs_inode(inode);
428 pgoff_t index = pos >> PAGE_SHIFT;
429 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
430 int skipped_read = 0;
431 struct page *page;
432
433 ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size);
434 ubifs_assert(c, !c->ro_media && !c->ro_mount);
435
436 if (unlikely(c->ro_error))
437 return -EROFS;
438
439 /* Try out the fast-path part first */
440 page = grab_cache_page_write_begin(mapping, index, flags);
441 if (unlikely(!page))
442 return -ENOMEM;
443
444 if (!PageUptodate(page)) {
445 /* The page is not loaded from the flash */
446 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) {
447 /*
448 * We change whole page so no need to load it. But we
449 * do not know whether this page exists on the media or
450 * not, so we assume the latter because it requires
451 * larger budget. The assumption is that it is better
452 * to budget a bit more than to read the page from the
453 * media. Thus, we are setting the @PG_checked flag
454 * here.
455 */
456 SetPageChecked(page);
457 skipped_read = 1;
458 } else {
459 err = do_readpage(page);
460 if (err) {
461 unlock_page(page);
462 put_page(page);
463 return err;
464 }
465 }
466
467 SetPageUptodate(page);
468 ClearPageError(page);
469 }
470
471 err = allocate_budget(c, page, ui, appending);
472 if (unlikely(err)) {
473 ubifs_assert(c, err == -ENOSPC);
474 /*
475 * If we skipped reading the page because we were going to
476 * write all of it, then it is not up to date.
477 */
478 if (skipped_read) {
479 ClearPageChecked(page);
480 ClearPageUptodate(page);
481 }
482 /*
483 * Budgeting failed which means it would have to force
484 * write-back but didn't, because we set the @fast flag in the
485 * request. Write-back cannot be done now, while we have the
486 * page locked, because it would deadlock. Unlock and free
487 * everything and fall-back to slow-path.
488 */
489 if (appending) {
490 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
491 mutex_unlock(&ui->ui_mutex);
492 }
493 unlock_page(page);
494 put_page(page);
495
496 return write_begin_slow(mapping, pos, len, pagep, flags);
497 }
498
499 /*
500 * Whee, we acquired budgeting quickly - without involving
501 * garbage-collection, committing or forcing write-back. We return
502 * with @ui->ui_mutex locked if we are appending pages, and unlocked
503 * otherwise. This is an optimization (slightly hacky though).
504 */
505 *pagep = page;
506 return 0;
507
508}
509
510/**
511 * cancel_budget - cancel budget.
512 * @c: UBIFS file-system description object
513 * @page: page to cancel budget for
514 * @ui: UBIFS inode object the page belongs to
515 * @appending: non-zero if the page is appended
516 *
517 * This is a helper function for a page write operation. It unlocks the
518 * @ui->ui_mutex in case of appending.
519 */
520static void cancel_budget(struct ubifs_info *c, struct page *page,
521 struct ubifs_inode *ui, int appending)
522{
523 if (appending) {
524 if (!ui->dirty)
525 ubifs_release_dirty_inode_budget(c, ui);
526 mutex_unlock(&ui->ui_mutex);
527 }
528 if (!PagePrivate(page)) {
529 if (PageChecked(page))
530 release_new_page_budget(c);
531 else
532 release_existing_page_budget(c);
533 }
534}
535
536static int ubifs_write_end(struct file *file, struct address_space *mapping,
537 loff_t pos, unsigned len, unsigned copied,
538 struct page *page, void *fsdata)
539{
540 struct inode *inode = mapping->host;
541 struct ubifs_inode *ui = ubifs_inode(inode);
542 struct ubifs_info *c = inode->i_sb->s_fs_info;
543 loff_t end_pos = pos + len;
544 int appending = !!(end_pos > inode->i_size);
545
546 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
547 inode->i_ino, pos, page->index, len, copied, inode->i_size);
548
549 if (unlikely(copied < len && len == PAGE_SIZE)) {
550 /*
551 * VFS copied less data to the page that it intended and
552 * declared in its '->write_begin()' call via the @len
553 * argument. If the page was not up-to-date, and @len was
554 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
555 * not load it from the media (for optimization reasons). This
556 * means that part of the page contains garbage. So read the
557 * page now.
558 */
559 dbg_gen("copied %d instead of %d, read page and repeat",
560 copied, len);
561 cancel_budget(c, page, ui, appending);
562 ClearPageChecked(page);
563
564 /*
565 * Return 0 to force VFS to repeat the whole operation, or the
566 * error code if 'do_readpage()' fails.
567 */
568 copied = do_readpage(page);
569 goto out;
570 }
571
572 if (!PagePrivate(page)) {
573 SetPagePrivate(page);
574 atomic_long_inc(&c->dirty_pg_cnt);
575 __set_page_dirty_nobuffers(page);
576 }
577
578 if (appending) {
579 i_size_write(inode, end_pos);
580 ui->ui_size = end_pos;
581 /*
582 * Note, we do not set @I_DIRTY_PAGES (which means that the
583 * inode has dirty pages), this has been done in
584 * '__set_page_dirty_nobuffers()'.
585 */
586 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
587 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
588 mutex_unlock(&ui->ui_mutex);
589 }
590
591out:
592 unlock_page(page);
593 put_page(page);
594 return copied;
595}
596
597/**
598 * populate_page - copy data nodes into a page for bulk-read.
599 * @c: UBIFS file-system description object
600 * @page: page
601 * @bu: bulk-read information
602 * @n: next zbranch slot
603 *
604 * This function returns %0 on success and a negative error code on failure.
605 */
606static int populate_page(struct ubifs_info *c, struct page *page,
607 struct bu_info *bu, int *n)
608{
609 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
610 struct inode *inode = page->mapping->host;
611 loff_t i_size = i_size_read(inode);
612 unsigned int page_block;
613 void *addr, *zaddr;
614 pgoff_t end_index;
615
616 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
617 inode->i_ino, page->index, i_size, page->flags);
618
619 addr = zaddr = kmap(page);
620
621 end_index = (i_size - 1) >> PAGE_SHIFT;
622 if (!i_size || page->index > end_index) {
623 hole = 1;
624 memset(addr, 0, PAGE_SIZE);
625 goto out_hole;
626 }
627
628 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
629 while (1) {
630 int err, len, out_len, dlen;
631
632 if (nn >= bu->cnt) {
633 hole = 1;
634 memset(addr, 0, UBIFS_BLOCK_SIZE);
635 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
636 struct ubifs_data_node *dn;
637
638 dn = bu->buf + (bu->zbranch[nn].offs - offs);
639
640 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
641 ubifs_inode(inode)->creat_sqnum);
642
643 len = le32_to_cpu(dn->size);
644 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
645 goto out_err;
646
647 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
648 out_len = UBIFS_BLOCK_SIZE;
649
650 if (ubifs_crypt_is_encrypted(inode)) {
651 err = ubifs_decrypt(inode, dn, &dlen, page_block);
652 if (err)
653 goto out_err;
654 }
655
656 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
657 le16_to_cpu(dn->compr_type));
658 if (err || len != out_len)
659 goto out_err;
660
661 if (len < UBIFS_BLOCK_SIZE)
662 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
663
664 nn += 1;
665 read = (i << UBIFS_BLOCK_SHIFT) + len;
666 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
667 nn += 1;
668 continue;
669 } else {
670 hole = 1;
671 memset(addr, 0, UBIFS_BLOCK_SIZE);
672 }
673 if (++i >= UBIFS_BLOCKS_PER_PAGE)
674 break;
675 addr += UBIFS_BLOCK_SIZE;
676 page_block += 1;
677 }
678
679 if (end_index == page->index) {
680 int len = i_size & (PAGE_SIZE - 1);
681
682 if (len && len < read)
683 memset(zaddr + len, 0, read - len);
684 }
685
686out_hole:
687 if (hole) {
688 SetPageChecked(page);
689 dbg_gen("hole");
690 }
691
692 SetPageUptodate(page);
693 ClearPageError(page);
694 flush_dcache_page(page);
695 kunmap(page);
696 *n = nn;
697 return 0;
698
699out_err:
700 ClearPageUptodate(page);
701 SetPageError(page);
702 flush_dcache_page(page);
703 kunmap(page);
704 ubifs_err(c, "bad data node (block %u, inode %lu)",
705 page_block, inode->i_ino);
706 return -EINVAL;
707}
708
709/**
710 * ubifs_do_bulk_read - do bulk-read.
711 * @c: UBIFS file-system description object
712 * @bu: bulk-read information
713 * @page1: first page to read
714 *
715 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
716 */
717static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
718 struct page *page1)
719{
720 pgoff_t offset = page1->index, end_index;
721 struct address_space *mapping = page1->mapping;
722 struct inode *inode = mapping->host;
723 struct ubifs_inode *ui = ubifs_inode(inode);
724 int err, page_idx, page_cnt, ret = 0, n = 0;
725 int allocate = bu->buf ? 0 : 1;
726 loff_t isize;
727 gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
728
729 err = ubifs_tnc_get_bu_keys(c, bu);
730 if (err)
731 goto out_warn;
732
733 if (bu->eof) {
734 /* Turn off bulk-read at the end of the file */
735 ui->read_in_a_row = 1;
736 ui->bulk_read = 0;
737 }
738
739 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
740 if (!page_cnt) {
741 /*
742 * This happens when there are multiple blocks per page and the
743 * blocks for the first page we are looking for, are not
744 * together. If all the pages were like this, bulk-read would
745 * reduce performance, so we turn it off for a while.
746 */
747 goto out_bu_off;
748 }
749
750 if (bu->cnt) {
751 if (allocate) {
752 /*
753 * Allocate bulk-read buffer depending on how many data
754 * nodes we are going to read.
755 */
756 bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
757 bu->zbranch[bu->cnt - 1].len -
758 bu->zbranch[0].offs;
759 ubifs_assert(c, bu->buf_len > 0);
760 ubifs_assert(c, bu->buf_len <= c->leb_size);
761 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
762 if (!bu->buf)
763 goto out_bu_off;
764 }
765
766 err = ubifs_tnc_bulk_read(c, bu);
767 if (err)
768 goto out_warn;
769 }
770
771 err = populate_page(c, page1, bu, &n);
772 if (err)
773 goto out_warn;
774
775 unlock_page(page1);
776 ret = 1;
777
778 isize = i_size_read(inode);
779 if (isize == 0)
780 goto out_free;
781 end_index = ((isize - 1) >> PAGE_SHIFT);
782
783 for (page_idx = 1; page_idx < page_cnt; page_idx++) {
784 pgoff_t page_offset = offset + page_idx;
785 struct page *page;
786
787 if (page_offset > end_index)
788 break;
789 page = find_or_create_page(mapping, page_offset, ra_gfp_mask);
790 if (!page)
791 break;
792 if (!PageUptodate(page))
793 err = populate_page(c, page, bu, &n);
794 unlock_page(page);
795 put_page(page);
796 if (err)
797 break;
798 }
799
800 ui->last_page_read = offset + page_idx - 1;
801
802out_free:
803 if (allocate)
804 kfree(bu->buf);
805 return ret;
806
807out_warn:
808 ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
809 goto out_free;
810
811out_bu_off:
812 ui->read_in_a_row = ui->bulk_read = 0;
813 goto out_free;
814}
815
816/**
817 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
818 * @page: page from which to start bulk-read.
819 *
820 * Some flash media are capable of reading sequentially at faster rates. UBIFS
821 * bulk-read facility is designed to take advantage of that, by reading in one
822 * go consecutive data nodes that are also located consecutively in the same
823 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
824 */
825static int ubifs_bulk_read(struct page *page)
826{
827 struct inode *inode = page->mapping->host;
828 struct ubifs_info *c = inode->i_sb->s_fs_info;
829 struct ubifs_inode *ui = ubifs_inode(inode);
830 pgoff_t index = page->index, last_page_read = ui->last_page_read;
831 struct bu_info *bu;
832 int err = 0, allocated = 0;
833
834 ui->last_page_read = index;
835 if (!c->bulk_read)
836 return 0;
837
838 /*
839 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
840 * so don't bother if we cannot lock the mutex.
841 */
842 if (!mutex_trylock(&ui->ui_mutex))
843 return 0;
844
845 if (index != last_page_read + 1) {
846 /* Turn off bulk-read if we stop reading sequentially */
847 ui->read_in_a_row = 1;
848 if (ui->bulk_read)
849 ui->bulk_read = 0;
850 goto out_unlock;
851 }
852
853 if (!ui->bulk_read) {
854 ui->read_in_a_row += 1;
855 if (ui->read_in_a_row < 3)
856 goto out_unlock;
857 /* Three reads in a row, so switch on bulk-read */
858 ui->bulk_read = 1;
859 }
860
861 /*
862 * If possible, try to use pre-allocated bulk-read information, which
863 * is protected by @c->bu_mutex.
864 */
865 if (mutex_trylock(&c->bu_mutex))
866 bu = &c->bu;
867 else {
868 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
869 if (!bu)
870 goto out_unlock;
871
872 bu->buf = NULL;
873 allocated = 1;
874 }
875
876 bu->buf_len = c->max_bu_buf_len;
877 data_key_init(c, &bu->key, inode->i_ino,
878 page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
879 err = ubifs_do_bulk_read(c, bu, page);
880
881 if (!allocated)
882 mutex_unlock(&c->bu_mutex);
883 else
884 kfree(bu);
885
886out_unlock:
887 mutex_unlock(&ui->ui_mutex);
888 return err;
889}
890
891static int ubifs_readpage(struct file *file, struct page *page)
892{
893 if (ubifs_bulk_read(page))
894 return 0;
895 do_readpage(page);
896 unlock_page(page);
897 return 0;
898}
899
900static int do_writepage(struct page *page, int len)
901{
902 int err = 0, i, blen;
903 unsigned int block;
904 void *addr;
905 union ubifs_key key;
906 struct inode *inode = page->mapping->host;
907 struct ubifs_info *c = inode->i_sb->s_fs_info;
908
909#ifdef UBIFS_DEBUG
910 struct ubifs_inode *ui = ubifs_inode(inode);
911 spin_lock(&ui->ui_lock);
912 ubifs_assert(c, page->index <= ui->synced_i_size >> PAGE_SHIFT);
913 spin_unlock(&ui->ui_lock);
914#endif
915
916 /* Update radix tree tags */
917 set_page_writeback(page);
918
919 addr = kmap(page);
920 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
921 i = 0;
922 while (len) {
923 blen = min_t(int, len, UBIFS_BLOCK_SIZE);
924 data_key_init(c, &key, inode->i_ino, block);
925 err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
926 if (err)
927 break;
928 if (++i >= UBIFS_BLOCKS_PER_PAGE)
929 break;
930 block += 1;
931 addr += blen;
932 len -= blen;
933 }
934 if (err) {
935 SetPageError(page);
936 ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
937 page->index, inode->i_ino, err);
938 ubifs_ro_mode(c, err);
939 }
940
941 ubifs_assert(c, PagePrivate(page));
942 if (PageChecked(page))
943 release_new_page_budget(c);
944 else
945 release_existing_page_budget(c);
946
947 atomic_long_dec(&c->dirty_pg_cnt);
948 ClearPagePrivate(page);
949 ClearPageChecked(page);
950
951 kunmap(page);
952 unlock_page(page);
953 end_page_writeback(page);
954 return err;
955}
956
957/*
958 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
959 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
960 * situation when a we have an inode with size 0, then a megabyte of data is
961 * appended to the inode, then write-back starts and flushes some amount of the
962 * dirty pages, the journal becomes full, commit happens and finishes, and then
963 * an unclean reboot happens. When the file system is mounted next time, the
964 * inode size would still be 0, but there would be many pages which are beyond
965 * the inode size, they would be indexed and consume flash space. Because the
966 * journal has been committed, the replay would not be able to detect this
967 * situation and correct the inode size. This means UBIFS would have to scan
968 * whole index and correct all inode sizes, which is long an unacceptable.
969 *
970 * To prevent situations like this, UBIFS writes pages back only if they are
971 * within the last synchronized inode size, i.e. the size which has been
972 * written to the flash media last time. Otherwise, UBIFS forces inode
973 * write-back, thus making sure the on-flash inode contains current inode size,
974 * and then keeps writing pages back.
975 *
976 * Some locking issues explanation. 'ubifs_writepage()' first is called with
977 * the page locked, and it locks @ui_mutex. However, write-back does take inode
978 * @i_mutex, which means other VFS operations may be run on this inode at the
979 * same time. And the problematic one is truncation to smaller size, from where
980 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
981 * then drops the truncated pages. And while dropping the pages, it takes the
982 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
983 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
984 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
985 *
986 * XXX(truncate): with the new truncate sequence this is not true anymore,
987 * and the calls to truncate_setsize can be move around freely. They should
988 * be moved to the very end of the truncate sequence.
989 *
990 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
991 * inode size. How do we do this if @inode->i_size may became smaller while we
992 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
993 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
994 * internally and updates it under @ui_mutex.
995 *
996 * Q: why we do not worry that if we race with truncation, we may end up with a
997 * situation when the inode is truncated while we are in the middle of
998 * 'do_writepage()', so we do write beyond inode size?
999 * A: If we are in the middle of 'do_writepage()', truncation would be locked
1000 * on the page lock and it would not write the truncated inode node to the
1001 * journal before we have finished.
1002 */
1003static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1004{
1005 struct inode *inode = page->mapping->host;
1006 struct ubifs_info *c = inode->i_sb->s_fs_info;
1007 struct ubifs_inode *ui = ubifs_inode(inode);
1008 loff_t i_size = i_size_read(inode), synced_i_size;
1009 pgoff_t end_index = i_size >> PAGE_SHIFT;
1010 int err, len = i_size & (PAGE_SIZE - 1);
1011 void *kaddr;
1012
1013 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1014 inode->i_ino, page->index, page->flags);
1015 ubifs_assert(c, PagePrivate(page));
1016
1017 /* Is the page fully outside @i_size? (truncate in progress) */
1018 if (page->index > end_index || (page->index == end_index && !len)) {
1019 err = 0;
1020 goto out_unlock;
1021 }
1022
1023 spin_lock(&ui->ui_lock);
1024 synced_i_size = ui->synced_i_size;
1025 spin_unlock(&ui->ui_lock);
1026
1027 /* Is the page fully inside @i_size? */
1028 if (page->index < end_index) {
1029 if (page->index >= synced_i_size >> PAGE_SHIFT) {
1030 err = inode->i_sb->s_op->write_inode(inode, NULL);
1031 if (err)
1032 goto out_unlock;
1033 /*
1034 * The inode has been written, but the write-buffer has
1035 * not been synchronized, so in case of an unclean
1036 * reboot we may end up with some pages beyond inode
1037 * size, but they would be in the journal (because
1038 * commit flushes write buffers) and recovery would deal
1039 * with this.
1040 */
1041 }
1042 return do_writepage(page, PAGE_SIZE);
1043 }
1044
1045 /*
1046 * The page straddles @i_size. It must be zeroed out on each and every
1047 * writepage invocation because it may be mmapped. "A file is mapped
1048 * in multiples of the page size. For a file that is not a multiple of
1049 * the page size, the remaining memory is zeroed when mapped, and
1050 * writes to that region are not written out to the file."
1051 */
1052 kaddr = kmap_atomic(page);
1053 memset(kaddr + len, 0, PAGE_SIZE - len);
1054 flush_dcache_page(page);
1055 kunmap_atomic(kaddr);
1056
1057 if (i_size > synced_i_size) {
1058 err = inode->i_sb->s_op->write_inode(inode, NULL);
1059 if (err)
1060 goto out_unlock;
1061 }
1062
1063 return do_writepage(page, len);
1064
1065out_unlock:
1066 unlock_page(page);
1067 return err;
1068}
1069
1070/**
1071 * do_attr_changes - change inode attributes.
1072 * @inode: inode to change attributes for
1073 * @attr: describes attributes to change
1074 */
1075static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1076{
1077 if (attr->ia_valid & ATTR_UID)
1078 inode->i_uid = attr->ia_uid;
1079 if (attr->ia_valid & ATTR_GID)
1080 inode->i_gid = attr->ia_gid;
1081 if (attr->ia_valid & ATTR_ATIME) {
1082 inode->i_atime = timestamp_truncate(attr->ia_atime,
1083 inode);
1084 }
1085 if (attr->ia_valid & ATTR_MTIME) {
1086 inode->i_mtime = timestamp_truncate(attr->ia_mtime,
1087 inode);
1088 }
1089 if (attr->ia_valid & ATTR_CTIME) {
1090 inode->i_ctime = timestamp_truncate(attr->ia_ctime,
1091 inode);
1092 }
1093 if (attr->ia_valid & ATTR_MODE) {
1094 umode_t mode = attr->ia_mode;
1095
1096 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1097 mode &= ~S_ISGID;
1098 inode->i_mode = mode;
1099 }
1100}
1101
1102/**
1103 * do_truncation - truncate an inode.
1104 * @c: UBIFS file-system description object
1105 * @inode: inode to truncate
1106 * @attr: inode attribute changes description
1107 *
1108 * This function implements VFS '->setattr()' call when the inode is truncated
1109 * to a smaller size. Returns zero in case of success and a negative error code
1110 * in case of failure.
1111 */
1112static int do_truncation(struct ubifs_info *c, struct inode *inode,
1113 const struct iattr *attr)
1114{
1115 int err;
1116 struct ubifs_budget_req req;
1117 loff_t old_size = inode->i_size, new_size = attr->ia_size;
1118 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1119 struct ubifs_inode *ui = ubifs_inode(inode);
1120
1121 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1122 memset(&req, 0, sizeof(struct ubifs_budget_req));
1123
1124 /*
1125 * If this is truncation to a smaller size, and we do not truncate on a
1126 * block boundary, budget for changing one data block, because the last
1127 * block will be re-written.
1128 */
1129 if (new_size & (UBIFS_BLOCK_SIZE - 1))
1130 req.dirtied_page = 1;
1131
1132 req.dirtied_ino = 1;
1133 /* A funny way to budget for truncation node */
1134 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1135 err = ubifs_budget_space(c, &req);
1136 if (err) {
1137 /*
1138 * Treat truncations to zero as deletion and always allow them,
1139 * just like we do for '->unlink()'.
1140 */
1141 if (new_size || err != -ENOSPC)
1142 return err;
1143 budgeted = 0;
1144 }
1145
1146 truncate_setsize(inode, new_size);
1147
1148 if (offset) {
1149 pgoff_t index = new_size >> PAGE_SHIFT;
1150 struct page *page;
1151
1152 page = find_lock_page(inode->i_mapping, index);
1153 if (page) {
1154 if (PageDirty(page)) {
1155 /*
1156 * 'ubifs_jnl_truncate()' will try to truncate
1157 * the last data node, but it contains
1158 * out-of-date data because the page is dirty.
1159 * Write the page now, so that
1160 * 'ubifs_jnl_truncate()' will see an already
1161 * truncated (and up to date) data node.
1162 */
1163 ubifs_assert(c, PagePrivate(page));
1164
1165 clear_page_dirty_for_io(page);
1166 if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1167 offset = new_size &
1168 (PAGE_SIZE - 1);
1169 err = do_writepage(page, offset);
1170 put_page(page);
1171 if (err)
1172 goto out_budg;
1173 /*
1174 * We could now tell 'ubifs_jnl_truncate()' not
1175 * to read the last block.
1176 */
1177 } else {
1178 /*
1179 * We could 'kmap()' the page and pass the data
1180 * to 'ubifs_jnl_truncate()' to save it from
1181 * having to read it.
1182 */
1183 unlock_page(page);
1184 put_page(page);
1185 }
1186 }
1187 }
1188
1189 mutex_lock(&ui->ui_mutex);
1190 ui->ui_size = inode->i_size;
1191 /* Truncation changes inode [mc]time */
1192 inode->i_mtime = inode->i_ctime = current_time(inode);
1193 /* Other attributes may be changed at the same time as well */
1194 do_attr_changes(inode, attr);
1195 err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1196 mutex_unlock(&ui->ui_mutex);
1197
1198out_budg:
1199 if (budgeted)
1200 ubifs_release_budget(c, &req);
1201 else {
1202 c->bi.nospace = c->bi.nospace_rp = 0;
1203 smp_wmb();
1204 }
1205 return err;
1206}
1207
1208/**
1209 * do_setattr - change inode attributes.
1210 * @c: UBIFS file-system description object
1211 * @inode: inode to change attributes for
1212 * @attr: inode attribute changes description
1213 *
1214 * This function implements VFS '->setattr()' call for all cases except
1215 * truncations to smaller size. Returns zero in case of success and a negative
1216 * error code in case of failure.
1217 */
1218static int do_setattr(struct ubifs_info *c, struct inode *inode,
1219 const struct iattr *attr)
1220{
1221 int err, release;
1222 loff_t new_size = attr->ia_size;
1223 struct ubifs_inode *ui = ubifs_inode(inode);
1224 struct ubifs_budget_req req = { .dirtied_ino = 1,
1225 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1226
1227 err = ubifs_budget_space(c, &req);
1228 if (err)
1229 return err;
1230
1231 if (attr->ia_valid & ATTR_SIZE) {
1232 dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1233 truncate_setsize(inode, new_size);
1234 }
1235
1236 mutex_lock(&ui->ui_mutex);
1237 if (attr->ia_valid & ATTR_SIZE) {
1238 /* Truncation changes inode [mc]time */
1239 inode->i_mtime = inode->i_ctime = current_time(inode);
1240 /* 'truncate_setsize()' changed @i_size, update @ui_size */
1241 ui->ui_size = inode->i_size;
1242 }
1243
1244 do_attr_changes(inode, attr);
1245
1246 release = ui->dirty;
1247 if (attr->ia_valid & ATTR_SIZE)
1248 /*
1249 * Inode length changed, so we have to make sure
1250 * @I_DIRTY_DATASYNC is set.
1251 */
1252 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1253 else
1254 mark_inode_dirty_sync(inode);
1255 mutex_unlock(&ui->ui_mutex);
1256
1257 if (release)
1258 ubifs_release_budget(c, &req);
1259 if (IS_SYNC(inode))
1260 err = inode->i_sb->s_op->write_inode(inode, NULL);
1261 return err;
1262}
1263
1264int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1265{
1266 int err;
1267 struct inode *inode = d_inode(dentry);
1268 struct ubifs_info *c = inode->i_sb->s_fs_info;
1269
1270 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1271 inode->i_ino, inode->i_mode, attr->ia_valid);
1272 err = setattr_prepare(dentry, attr);
1273 if (err)
1274 return err;
1275
1276 err = dbg_check_synced_i_size(c, inode);
1277 if (err)
1278 return err;
1279
1280 err = fscrypt_prepare_setattr(dentry, attr);
1281 if (err)
1282 return err;
1283
1284 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1285 /* Truncation to a smaller size */
1286 err = do_truncation(c, inode, attr);
1287 else
1288 err = do_setattr(c, inode, attr);
1289
1290 return err;
1291}
1292
1293static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1294 unsigned int length)
1295{
1296 struct inode *inode = page->mapping->host;
1297 struct ubifs_info *c = inode->i_sb->s_fs_info;
1298
1299 ubifs_assert(c, PagePrivate(page));
1300 if (offset || length < PAGE_SIZE)
1301 /* Partial page remains dirty */
1302 return;
1303
1304 if (PageChecked(page))
1305 release_new_page_budget(c);
1306 else
1307 release_existing_page_budget(c);
1308
1309 atomic_long_dec(&c->dirty_pg_cnt);
1310 ClearPagePrivate(page);
1311 ClearPageChecked(page);
1312}
1313
1314int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1315{
1316 struct inode *inode = file->f_mapping->host;
1317 struct ubifs_info *c = inode->i_sb->s_fs_info;
1318 int err;
1319
1320 dbg_gen("syncing inode %lu", inode->i_ino);
1321
1322 if (c->ro_mount)
1323 /*
1324 * For some really strange reasons VFS does not filter out
1325 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1326 */
1327 return 0;
1328
1329 err = file_write_and_wait_range(file, start, end);
1330 if (err)
1331 return err;
1332 inode_lock(inode);
1333
1334 /* Synchronize the inode unless this is a 'datasync()' call. */
1335 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1336 err = inode->i_sb->s_op->write_inode(inode, NULL);
1337 if (err)
1338 goto out;
1339 }
1340
1341 /*
1342 * Nodes related to this inode may still sit in a write-buffer. Flush
1343 * them.
1344 */
1345 err = ubifs_sync_wbufs_by_inode(c, inode);
1346out:
1347 inode_unlock(inode);
1348 return err;
1349}
1350
1351/**
1352 * mctime_update_needed - check if mtime or ctime update is needed.
1353 * @inode: the inode to do the check for
1354 * @now: current time
1355 *
1356 * This helper function checks if the inode mtime/ctime should be updated or
1357 * not. If current values of the time-stamps are within the UBIFS inode time
1358 * granularity, they are not updated. This is an optimization.
1359 */
1360static inline int mctime_update_needed(const struct inode *inode,
1361 const struct timespec64 *now)
1362{
1363 if (!timespec64_equal(&inode->i_mtime, now) ||
1364 !timespec64_equal(&inode->i_ctime, now))
1365 return 1;
1366 return 0;
1367}
1368
1369/**
1370 * ubifs_update_time - update time of inode.
1371 * @inode: inode to update
1372 *
1373 * This function updates time of the inode.
1374 */
1375int ubifs_update_time(struct inode *inode, struct timespec64 *time,
1376 int flags)
1377{
1378 struct ubifs_inode *ui = ubifs_inode(inode);
1379 struct ubifs_info *c = inode->i_sb->s_fs_info;
1380 struct ubifs_budget_req req = { .dirtied_ino = 1,
1381 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1382 int iflags = I_DIRTY_TIME;
1383 int err, release;
1384
1385 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1386 return generic_update_time(inode, time, flags);
1387
1388 err = ubifs_budget_space(c, &req);
1389 if (err)
1390 return err;
1391
1392 mutex_lock(&ui->ui_mutex);
1393 if (flags & S_ATIME)
1394 inode->i_atime = *time;
1395 if (flags & S_CTIME)
1396 inode->i_ctime = *time;
1397 if (flags & S_MTIME)
1398 inode->i_mtime = *time;
1399
1400 if (!(inode->i_sb->s_flags & SB_LAZYTIME))
1401 iflags |= I_DIRTY_SYNC;
1402
1403 release = ui->dirty;
1404 __mark_inode_dirty(inode, iflags);
1405 mutex_unlock(&ui->ui_mutex);
1406 if (release)
1407 ubifs_release_budget(c, &req);
1408 return 0;
1409}
1410
1411/**
1412 * update_mctime - update mtime and ctime of an inode.
1413 * @inode: inode to update
1414 *
1415 * This function updates mtime and ctime of the inode if it is not equivalent to
1416 * current time. Returns zero in case of success and a negative error code in
1417 * case of failure.
1418 */
1419static int update_mctime(struct inode *inode)
1420{
1421 struct timespec64 now = current_time(inode);
1422 struct ubifs_inode *ui = ubifs_inode(inode);
1423 struct ubifs_info *c = inode->i_sb->s_fs_info;
1424
1425 if (mctime_update_needed(inode, &now)) {
1426 int err, release;
1427 struct ubifs_budget_req req = { .dirtied_ino = 1,
1428 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1429
1430 err = ubifs_budget_space(c, &req);
1431 if (err)
1432 return err;
1433
1434 mutex_lock(&ui->ui_mutex);
1435 inode->i_mtime = inode->i_ctime = current_time(inode);
1436 release = ui->dirty;
1437 mark_inode_dirty_sync(inode);
1438 mutex_unlock(&ui->ui_mutex);
1439 if (release)
1440 ubifs_release_budget(c, &req);
1441 }
1442
1443 return 0;
1444}
1445
1446static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1447{
1448 int err = update_mctime(file_inode(iocb->ki_filp));
1449 if (err)
1450 return err;
1451
1452 return generic_file_write_iter(iocb, from);
1453}
1454
1455static int ubifs_set_page_dirty(struct page *page)
1456{
1457 int ret;
1458 struct inode *inode = page->mapping->host;
1459 struct ubifs_info *c = inode->i_sb->s_fs_info;
1460
1461 ret = __set_page_dirty_nobuffers(page);
1462 /*
1463 * An attempt to dirty a page without budgeting for it - should not
1464 * happen.
1465 */
1466 ubifs_assert(c, ret == 0);
1467 return ret;
1468}
1469
1470#ifdef CONFIG_MIGRATION
1471static int ubifs_migrate_page(struct address_space *mapping,
1472 struct page *newpage, struct page *page, enum migrate_mode mode)
1473{
1474 int rc;
1475
1476 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
1477 if (rc != MIGRATEPAGE_SUCCESS)
1478 return rc;
1479
1480 if (PagePrivate(page)) {
1481 ClearPagePrivate(page);
1482 SetPagePrivate(newpage);
1483 }
1484
1485 if (mode != MIGRATE_SYNC_NO_COPY)
1486 migrate_page_copy(newpage, page);
1487 else
1488 migrate_page_states(newpage, page);
1489 return MIGRATEPAGE_SUCCESS;
1490}
1491#endif
1492
1493static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1494{
1495 struct inode *inode = page->mapping->host;
1496 struct ubifs_info *c = inode->i_sb->s_fs_info;
1497
1498 /*
1499 * An attempt to release a dirty page without budgeting for it - should
1500 * not happen.
1501 */
1502 if (PageWriteback(page))
1503 return 0;
1504 ubifs_assert(c, PagePrivate(page));
1505 ubifs_assert(c, 0);
1506 ClearPagePrivate(page);
1507 ClearPageChecked(page);
1508 return 1;
1509}
1510
1511/*
1512 * mmap()d file has taken write protection fault and is being made writable.
1513 * UBIFS must ensure page is budgeted for.
1514 */
1515static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1516{
1517 struct page *page = vmf->page;
1518 struct inode *inode = file_inode(vmf->vma->vm_file);
1519 struct ubifs_info *c = inode->i_sb->s_fs_info;
1520 struct timespec64 now = current_time(inode);
1521 struct ubifs_budget_req req = { .new_page = 1 };
1522 int err, update_time;
1523
1524 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
1525 i_size_read(inode));
1526 ubifs_assert(c, !c->ro_media && !c->ro_mount);
1527
1528 if (unlikely(c->ro_error))
1529 return VM_FAULT_SIGBUS; /* -EROFS */
1530
1531 /*
1532 * We have not locked @page so far so we may budget for changing the
1533 * page. Note, we cannot do this after we locked the page, because
1534 * budgeting may cause write-back which would cause deadlock.
1535 *
1536 * At the moment we do not know whether the page is dirty or not, so we
1537 * assume that it is not and budget for a new page. We could look at
1538 * the @PG_private flag and figure this out, but we may race with write
1539 * back and the page state may change by the time we lock it, so this
1540 * would need additional care. We do not bother with this at the
1541 * moment, although it might be good idea to do. Instead, we allocate
1542 * budget for a new page and amend it later on if the page was in fact
1543 * dirty.
1544 *
1545 * The budgeting-related logic of this function is similar to what we
1546 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1547 * for more comments.
1548 */
1549 update_time = mctime_update_needed(inode, &now);
1550 if (update_time)
1551 /*
1552 * We have to change inode time stamp which requires extra
1553 * budgeting.
1554 */
1555 req.dirtied_ino = 1;
1556
1557 err = ubifs_budget_space(c, &req);
1558 if (unlikely(err)) {
1559 if (err == -ENOSPC)
1560 ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1561 inode->i_ino);
1562 return VM_FAULT_SIGBUS;
1563 }
1564
1565 lock_page(page);
1566 if (unlikely(page->mapping != inode->i_mapping ||
1567 page_offset(page) > i_size_read(inode))) {
1568 /* Page got truncated out from underneath us */
1569 goto sigbus;
1570 }
1571
1572 if (PagePrivate(page))
1573 release_new_page_budget(c);
1574 else {
1575 if (!PageChecked(page))
1576 ubifs_convert_page_budget(c);
1577 SetPagePrivate(page);
1578 atomic_long_inc(&c->dirty_pg_cnt);
1579 __set_page_dirty_nobuffers(page);
1580 }
1581
1582 if (update_time) {
1583 int release;
1584 struct ubifs_inode *ui = ubifs_inode(inode);
1585
1586 mutex_lock(&ui->ui_mutex);
1587 inode->i_mtime = inode->i_ctime = current_time(inode);
1588 release = ui->dirty;
1589 mark_inode_dirty_sync(inode);
1590 mutex_unlock(&ui->ui_mutex);
1591 if (release)
1592 ubifs_release_dirty_inode_budget(c, ui);
1593 }
1594
1595 wait_for_stable_page(page);
1596 return VM_FAULT_LOCKED;
1597
1598sigbus:
1599 unlock_page(page);
1600 ubifs_release_budget(c, &req);
1601 return VM_FAULT_SIGBUS;
1602}
1603
1604static const struct vm_operations_struct ubifs_file_vm_ops = {
1605 .fault = filemap_fault,
1606 .map_pages = filemap_map_pages,
1607 .page_mkwrite = ubifs_vm_page_mkwrite,
1608};
1609
1610static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1611{
1612 int err;
1613
1614 err = generic_file_mmap(file, vma);
1615 if (err)
1616 return err;
1617 vma->vm_ops = &ubifs_file_vm_ops;
1618
1619 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1620 file_accessed(file);
1621
1622 return 0;
1623}
1624
1625static const char *ubifs_get_link(struct dentry *dentry,
1626 struct inode *inode,
1627 struct delayed_call *done)
1628{
1629 struct ubifs_inode *ui = ubifs_inode(inode);
1630
1631 if (!IS_ENCRYPTED(inode))
1632 return ui->data;
1633
1634 if (!dentry)
1635 return ERR_PTR(-ECHILD);
1636
1637 return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
1638}
1639
1640const struct address_space_operations ubifs_file_address_operations = {
1641 .readpage = ubifs_readpage,
1642 .writepage = ubifs_writepage,
1643 .write_begin = ubifs_write_begin,
1644 .write_end = ubifs_write_end,
1645 .invalidatepage = ubifs_invalidatepage,
1646 .set_page_dirty = ubifs_set_page_dirty,
1647#ifdef CONFIG_MIGRATION
1648 .migratepage = ubifs_migrate_page,
1649#endif
1650 .releasepage = ubifs_releasepage,
1651};
1652
1653const struct inode_operations ubifs_file_inode_operations = {
1654 .setattr = ubifs_setattr,
1655 .getattr = ubifs_getattr,
1656#ifdef CONFIG_UBIFS_FS_XATTR
1657 .listxattr = ubifs_listxattr,
1658#endif
1659 .update_time = ubifs_update_time,
1660};
1661
1662const struct inode_operations ubifs_symlink_inode_operations = {
1663 .get_link = ubifs_get_link,
1664 .setattr = ubifs_setattr,
1665 .getattr = ubifs_getattr,
1666#ifdef CONFIG_UBIFS_FS_XATTR
1667 .listxattr = ubifs_listxattr,
1668#endif
1669 .update_time = ubifs_update_time,
1670};
1671
1672const struct file_operations ubifs_file_operations = {
1673 .llseek = generic_file_llseek,
1674 .read_iter = generic_file_read_iter,
1675 .write_iter = ubifs_write_iter,
1676 .mmap = ubifs_file_mmap,
1677 .fsync = ubifs_fsync,
1678 .unlocked_ioctl = ubifs_ioctl,
1679 .splice_read = generic_file_splice_read,
1680 .splice_write = iter_file_splice_write,
1681 .open = fscrypt_file_open,
1682#ifdef CONFIG_COMPAT
1683 .compat_ioctl = ubifs_compat_ioctl,
1684#endif
1685};
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements VFS file and inode operations for regular files, device
25 * nodes and symlinks as well as address space operations.
26 *
27 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
28 * the page is dirty and is used for optimization purposes - dirty pages are
29 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
30 * the budget for this page. The @PG_checked flag is set if full budgeting is
31 * required for the page e.g., when it corresponds to a file hole or it is
32 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
33 * it is OK to fail in this function, and the budget is released in
34 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
35 * information about how the page was budgeted, to make it possible to release
36 * the budget properly.
37 *
38 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
39 * implement. However, this is not true for 'ubifs_writepage()', which may be
40 * called with @i_mutex unlocked. For example, when flusher thread is doing
41 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
42 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
43 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
44 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
45 *
46 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
47 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
48 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
49 * set as well. However, UBIFS disables readahead.
50 */
51
52#include "ubifs.h"
53#include <linux/mount.h>
54#include <linux/slab.h>
55#include <linux/migrate.h>
56
57static int read_block(struct inode *inode, void *addr, unsigned int block,
58 struct ubifs_data_node *dn)
59{
60 struct ubifs_info *c = inode->i_sb->s_fs_info;
61 int err, len, out_len;
62 union ubifs_key key;
63 unsigned int dlen;
64
65 data_key_init(c, &key, inode->i_ino, block);
66 err = ubifs_tnc_lookup(c, &key, dn);
67 if (err) {
68 if (err == -ENOENT)
69 /* Not found, so it must be a hole */
70 memset(addr, 0, UBIFS_BLOCK_SIZE);
71 return err;
72 }
73
74 ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
75 ubifs_inode(inode)->creat_sqnum);
76 len = le32_to_cpu(dn->size);
77 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
78 goto dump;
79
80 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
81
82 if (ubifs_crypt_is_encrypted(inode)) {
83 err = ubifs_decrypt(inode, dn, &dlen, block);
84 if (err)
85 goto dump;
86 }
87
88 out_len = UBIFS_BLOCK_SIZE;
89 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
90 le16_to_cpu(dn->compr_type));
91 if (err || len != out_len)
92 goto dump;
93
94 /*
95 * Data length can be less than a full block, even for blocks that are
96 * not the last in the file (e.g., as a result of making a hole and
97 * appending data). Ensure that the remainder is zeroed out.
98 */
99 if (len < UBIFS_BLOCK_SIZE)
100 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
101
102 return 0;
103
104dump:
105 ubifs_err(c, "bad data node (block %u, inode %lu)",
106 block, inode->i_ino);
107 ubifs_dump_node(c, dn);
108 return -EINVAL;
109}
110
111static int do_readpage(struct page *page)
112{
113 void *addr;
114 int err = 0, i;
115 unsigned int block, beyond;
116 struct ubifs_data_node *dn;
117 struct inode *inode = page->mapping->host;
118 loff_t i_size = i_size_read(inode);
119
120 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
121 inode->i_ino, page->index, i_size, page->flags);
122 ubifs_assert(!PageChecked(page));
123 ubifs_assert(!PagePrivate(page));
124
125 addr = kmap(page);
126
127 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
128 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
129 if (block >= beyond) {
130 /* Reading beyond inode */
131 SetPageChecked(page);
132 memset(addr, 0, PAGE_SIZE);
133 goto out;
134 }
135
136 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
137 if (!dn) {
138 err = -ENOMEM;
139 goto error;
140 }
141
142 i = 0;
143 while (1) {
144 int ret;
145
146 if (block >= beyond) {
147 /* Reading beyond inode */
148 err = -ENOENT;
149 memset(addr, 0, UBIFS_BLOCK_SIZE);
150 } else {
151 ret = read_block(inode, addr, block, dn);
152 if (ret) {
153 err = ret;
154 if (err != -ENOENT)
155 break;
156 } else if (block + 1 == beyond) {
157 int dlen = le32_to_cpu(dn->size);
158 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
159
160 if (ilen && ilen < dlen)
161 memset(addr + ilen, 0, dlen - ilen);
162 }
163 }
164 if (++i >= UBIFS_BLOCKS_PER_PAGE)
165 break;
166 block += 1;
167 addr += UBIFS_BLOCK_SIZE;
168 }
169 if (err) {
170 struct ubifs_info *c = inode->i_sb->s_fs_info;
171 if (err == -ENOENT) {
172 /* Not found, so it must be a hole */
173 SetPageChecked(page);
174 dbg_gen("hole");
175 goto out_free;
176 }
177 ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
178 page->index, inode->i_ino, err);
179 goto error;
180 }
181
182out_free:
183 kfree(dn);
184out:
185 SetPageUptodate(page);
186 ClearPageError(page);
187 flush_dcache_page(page);
188 kunmap(page);
189 return 0;
190
191error:
192 kfree(dn);
193 ClearPageUptodate(page);
194 SetPageError(page);
195 flush_dcache_page(page);
196 kunmap(page);
197 return err;
198}
199
200/**
201 * release_new_page_budget - release budget of a new page.
202 * @c: UBIFS file-system description object
203 *
204 * This is a helper function which releases budget corresponding to the budget
205 * of one new page of data.
206 */
207static void release_new_page_budget(struct ubifs_info *c)
208{
209 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
210
211 ubifs_release_budget(c, &req);
212}
213
214/**
215 * release_existing_page_budget - release budget of an existing page.
216 * @c: UBIFS file-system description object
217 *
218 * This is a helper function which releases budget corresponding to the budget
219 * of changing one one page of data which already exists on the flash media.
220 */
221static void release_existing_page_budget(struct ubifs_info *c)
222{
223 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
224
225 ubifs_release_budget(c, &req);
226}
227
228static int write_begin_slow(struct address_space *mapping,
229 loff_t pos, unsigned len, struct page **pagep,
230 unsigned flags)
231{
232 struct inode *inode = mapping->host;
233 struct ubifs_info *c = inode->i_sb->s_fs_info;
234 pgoff_t index = pos >> PAGE_SHIFT;
235 struct ubifs_budget_req req = { .new_page = 1 };
236 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
237 struct page *page;
238
239 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
240 inode->i_ino, pos, len, inode->i_size);
241
242 /*
243 * At the slow path we have to budget before locking the page, because
244 * budgeting may force write-back, which would wait on locked pages and
245 * deadlock if we had the page locked. At this point we do not know
246 * anything about the page, so assume that this is a new page which is
247 * written to a hole. This corresponds to largest budget. Later the
248 * budget will be amended if this is not true.
249 */
250 if (appending)
251 /* We are appending data, budget for inode change */
252 req.dirtied_ino = 1;
253
254 err = ubifs_budget_space(c, &req);
255 if (unlikely(err))
256 return err;
257
258 page = grab_cache_page_write_begin(mapping, index, flags);
259 if (unlikely(!page)) {
260 ubifs_release_budget(c, &req);
261 return -ENOMEM;
262 }
263
264 if (!PageUptodate(page)) {
265 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE)
266 SetPageChecked(page);
267 else {
268 err = do_readpage(page);
269 if (err) {
270 unlock_page(page);
271 put_page(page);
272 ubifs_release_budget(c, &req);
273 return err;
274 }
275 }
276
277 SetPageUptodate(page);
278 ClearPageError(page);
279 }
280
281 if (PagePrivate(page))
282 /*
283 * The page is dirty, which means it was budgeted twice:
284 * o first time the budget was allocated by the task which
285 * made the page dirty and set the PG_private flag;
286 * o and then we budgeted for it for the second time at the
287 * very beginning of this function.
288 *
289 * So what we have to do is to release the page budget we
290 * allocated.
291 */
292 release_new_page_budget(c);
293 else if (!PageChecked(page))
294 /*
295 * We are changing a page which already exists on the media.
296 * This means that changing the page does not make the amount
297 * of indexing information larger, and this part of the budget
298 * which we have already acquired may be released.
299 */
300 ubifs_convert_page_budget(c);
301
302 if (appending) {
303 struct ubifs_inode *ui = ubifs_inode(inode);
304
305 /*
306 * 'ubifs_write_end()' is optimized from the fast-path part of
307 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
308 * if data is appended.
309 */
310 mutex_lock(&ui->ui_mutex);
311 if (ui->dirty)
312 /*
313 * The inode is dirty already, so we may free the
314 * budget we allocated.
315 */
316 ubifs_release_dirty_inode_budget(c, ui);
317 }
318
319 *pagep = page;
320 return 0;
321}
322
323/**
324 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
325 * @c: UBIFS file-system description object
326 * @page: page to allocate budget for
327 * @ui: UBIFS inode object the page belongs to
328 * @appending: non-zero if the page is appended
329 *
330 * This is a helper function for 'ubifs_write_begin()' which allocates budget
331 * for the operation. The budget is allocated differently depending on whether
332 * this is appending, whether the page is dirty or not, and so on. This
333 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
334 * in case of success and %-ENOSPC in case of failure.
335 */
336static int allocate_budget(struct ubifs_info *c, struct page *page,
337 struct ubifs_inode *ui, int appending)
338{
339 struct ubifs_budget_req req = { .fast = 1 };
340
341 if (PagePrivate(page)) {
342 if (!appending)
343 /*
344 * The page is dirty and we are not appending, which
345 * means no budget is needed at all.
346 */
347 return 0;
348
349 mutex_lock(&ui->ui_mutex);
350 if (ui->dirty)
351 /*
352 * The page is dirty and we are appending, so the inode
353 * has to be marked as dirty. However, it is already
354 * dirty, so we do not need any budget. We may return,
355 * but @ui->ui_mutex hast to be left locked because we
356 * should prevent write-back from flushing the inode
357 * and freeing the budget. The lock will be released in
358 * 'ubifs_write_end()'.
359 */
360 return 0;
361
362 /*
363 * The page is dirty, we are appending, the inode is clean, so
364 * we need to budget the inode change.
365 */
366 req.dirtied_ino = 1;
367 } else {
368 if (PageChecked(page))
369 /*
370 * The page corresponds to a hole and does not
371 * exist on the media. So changing it makes
372 * make the amount of indexing information
373 * larger, and we have to budget for a new
374 * page.
375 */
376 req.new_page = 1;
377 else
378 /*
379 * Not a hole, the change will not add any new
380 * indexing information, budget for page
381 * change.
382 */
383 req.dirtied_page = 1;
384
385 if (appending) {
386 mutex_lock(&ui->ui_mutex);
387 if (!ui->dirty)
388 /*
389 * The inode is clean but we will have to mark
390 * it as dirty because we are appending. This
391 * needs a budget.
392 */
393 req.dirtied_ino = 1;
394 }
395 }
396
397 return ubifs_budget_space(c, &req);
398}
399
400/*
401 * This function is called when a page of data is going to be written. Since
402 * the page of data will not necessarily go to the flash straight away, UBIFS
403 * has to reserve space on the media for it, which is done by means of
404 * budgeting.
405 *
406 * This is the hot-path of the file-system and we are trying to optimize it as
407 * much as possible. For this reasons it is split on 2 parts - slow and fast.
408 *
409 * There many budgeting cases:
410 * o a new page is appended - we have to budget for a new page and for
411 * changing the inode; however, if the inode is already dirty, there is
412 * no need to budget for it;
413 * o an existing clean page is changed - we have budget for it; if the page
414 * does not exist on the media (a hole), we have to budget for a new
415 * page; otherwise, we may budget for changing an existing page; the
416 * difference between these cases is that changing an existing page does
417 * not introduce anything new to the FS indexing information, so it does
418 * not grow, and smaller budget is acquired in this case;
419 * o an existing dirty page is changed - no need to budget at all, because
420 * the page budget has been acquired by earlier, when the page has been
421 * marked dirty.
422 *
423 * UBIFS budgeting sub-system may force write-back if it thinks there is no
424 * space to reserve. This imposes some locking restrictions and makes it
425 * impossible to take into account the above cases, and makes it impossible to
426 * optimize budgeting.
427 *
428 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
429 * there is a plenty of flash space and the budget will be acquired quickly,
430 * without forcing write-back. The slow path does not make this assumption.
431 */
432static int ubifs_write_begin(struct file *file, struct address_space *mapping,
433 loff_t pos, unsigned len, unsigned flags,
434 struct page **pagep, void **fsdata)
435{
436 struct inode *inode = mapping->host;
437 struct ubifs_info *c = inode->i_sb->s_fs_info;
438 struct ubifs_inode *ui = ubifs_inode(inode);
439 pgoff_t index = pos >> PAGE_SHIFT;
440 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
441 int skipped_read = 0;
442 struct page *page;
443
444 ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
445 ubifs_assert(!c->ro_media && !c->ro_mount);
446
447 if (unlikely(c->ro_error))
448 return -EROFS;
449
450 /* Try out the fast-path part first */
451 page = grab_cache_page_write_begin(mapping, index, flags);
452 if (unlikely(!page))
453 return -ENOMEM;
454
455 if (!PageUptodate(page)) {
456 /* The page is not loaded from the flash */
457 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) {
458 /*
459 * We change whole page so no need to load it. But we
460 * do not know whether this page exists on the media or
461 * not, so we assume the latter because it requires
462 * larger budget. The assumption is that it is better
463 * to budget a bit more than to read the page from the
464 * media. Thus, we are setting the @PG_checked flag
465 * here.
466 */
467 SetPageChecked(page);
468 skipped_read = 1;
469 } else {
470 err = do_readpage(page);
471 if (err) {
472 unlock_page(page);
473 put_page(page);
474 return err;
475 }
476 }
477
478 SetPageUptodate(page);
479 ClearPageError(page);
480 }
481
482 err = allocate_budget(c, page, ui, appending);
483 if (unlikely(err)) {
484 ubifs_assert(err == -ENOSPC);
485 /*
486 * If we skipped reading the page because we were going to
487 * write all of it, then it is not up to date.
488 */
489 if (skipped_read) {
490 ClearPageChecked(page);
491 ClearPageUptodate(page);
492 }
493 /*
494 * Budgeting failed which means it would have to force
495 * write-back but didn't, because we set the @fast flag in the
496 * request. Write-back cannot be done now, while we have the
497 * page locked, because it would deadlock. Unlock and free
498 * everything and fall-back to slow-path.
499 */
500 if (appending) {
501 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
502 mutex_unlock(&ui->ui_mutex);
503 }
504 unlock_page(page);
505 put_page(page);
506
507 return write_begin_slow(mapping, pos, len, pagep, flags);
508 }
509
510 /*
511 * Whee, we acquired budgeting quickly - without involving
512 * garbage-collection, committing or forcing write-back. We return
513 * with @ui->ui_mutex locked if we are appending pages, and unlocked
514 * otherwise. This is an optimization (slightly hacky though).
515 */
516 *pagep = page;
517 return 0;
518
519}
520
521/**
522 * cancel_budget - cancel budget.
523 * @c: UBIFS file-system description object
524 * @page: page to cancel budget for
525 * @ui: UBIFS inode object the page belongs to
526 * @appending: non-zero if the page is appended
527 *
528 * This is a helper function for a page write operation. It unlocks the
529 * @ui->ui_mutex in case of appending.
530 */
531static void cancel_budget(struct ubifs_info *c, struct page *page,
532 struct ubifs_inode *ui, int appending)
533{
534 if (appending) {
535 if (!ui->dirty)
536 ubifs_release_dirty_inode_budget(c, ui);
537 mutex_unlock(&ui->ui_mutex);
538 }
539 if (!PagePrivate(page)) {
540 if (PageChecked(page))
541 release_new_page_budget(c);
542 else
543 release_existing_page_budget(c);
544 }
545}
546
547static int ubifs_write_end(struct file *file, struct address_space *mapping,
548 loff_t pos, unsigned len, unsigned copied,
549 struct page *page, void *fsdata)
550{
551 struct inode *inode = mapping->host;
552 struct ubifs_inode *ui = ubifs_inode(inode);
553 struct ubifs_info *c = inode->i_sb->s_fs_info;
554 loff_t end_pos = pos + len;
555 int appending = !!(end_pos > inode->i_size);
556
557 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
558 inode->i_ino, pos, page->index, len, copied, inode->i_size);
559
560 if (unlikely(copied < len && len == PAGE_SIZE)) {
561 /*
562 * VFS copied less data to the page that it intended and
563 * declared in its '->write_begin()' call via the @len
564 * argument. If the page was not up-to-date, and @len was
565 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
566 * not load it from the media (for optimization reasons). This
567 * means that part of the page contains garbage. So read the
568 * page now.
569 */
570 dbg_gen("copied %d instead of %d, read page and repeat",
571 copied, len);
572 cancel_budget(c, page, ui, appending);
573 ClearPageChecked(page);
574
575 /*
576 * Return 0 to force VFS to repeat the whole operation, or the
577 * error code if 'do_readpage()' fails.
578 */
579 copied = do_readpage(page);
580 goto out;
581 }
582
583 if (!PagePrivate(page)) {
584 SetPagePrivate(page);
585 atomic_long_inc(&c->dirty_pg_cnt);
586 __set_page_dirty_nobuffers(page);
587 }
588
589 if (appending) {
590 i_size_write(inode, end_pos);
591 ui->ui_size = end_pos;
592 /*
593 * Note, we do not set @I_DIRTY_PAGES (which means that the
594 * inode has dirty pages), this has been done in
595 * '__set_page_dirty_nobuffers()'.
596 */
597 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
598 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
599 mutex_unlock(&ui->ui_mutex);
600 }
601
602out:
603 unlock_page(page);
604 put_page(page);
605 return copied;
606}
607
608/**
609 * populate_page - copy data nodes into a page for bulk-read.
610 * @c: UBIFS file-system description object
611 * @page: page
612 * @bu: bulk-read information
613 * @n: next zbranch slot
614 *
615 * This function returns %0 on success and a negative error code on failure.
616 */
617static int populate_page(struct ubifs_info *c, struct page *page,
618 struct bu_info *bu, int *n)
619{
620 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
621 struct inode *inode = page->mapping->host;
622 loff_t i_size = i_size_read(inode);
623 unsigned int page_block;
624 void *addr, *zaddr;
625 pgoff_t end_index;
626
627 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
628 inode->i_ino, page->index, i_size, page->flags);
629
630 addr = zaddr = kmap(page);
631
632 end_index = (i_size - 1) >> PAGE_SHIFT;
633 if (!i_size || page->index > end_index) {
634 hole = 1;
635 memset(addr, 0, PAGE_SIZE);
636 goto out_hole;
637 }
638
639 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
640 while (1) {
641 int err, len, out_len, dlen;
642
643 if (nn >= bu->cnt) {
644 hole = 1;
645 memset(addr, 0, UBIFS_BLOCK_SIZE);
646 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
647 struct ubifs_data_node *dn;
648
649 dn = bu->buf + (bu->zbranch[nn].offs - offs);
650
651 ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
652 ubifs_inode(inode)->creat_sqnum);
653
654 len = le32_to_cpu(dn->size);
655 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
656 goto out_err;
657
658 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
659 out_len = UBIFS_BLOCK_SIZE;
660
661 if (ubifs_crypt_is_encrypted(inode)) {
662 err = ubifs_decrypt(inode, dn, &dlen, page_block);
663 if (err)
664 goto out_err;
665 }
666
667 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
668 le16_to_cpu(dn->compr_type));
669 if (err || len != out_len)
670 goto out_err;
671
672 if (len < UBIFS_BLOCK_SIZE)
673 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
674
675 nn += 1;
676 read = (i << UBIFS_BLOCK_SHIFT) + len;
677 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
678 nn += 1;
679 continue;
680 } else {
681 hole = 1;
682 memset(addr, 0, UBIFS_BLOCK_SIZE);
683 }
684 if (++i >= UBIFS_BLOCKS_PER_PAGE)
685 break;
686 addr += UBIFS_BLOCK_SIZE;
687 page_block += 1;
688 }
689
690 if (end_index == page->index) {
691 int len = i_size & (PAGE_SIZE - 1);
692
693 if (len && len < read)
694 memset(zaddr + len, 0, read - len);
695 }
696
697out_hole:
698 if (hole) {
699 SetPageChecked(page);
700 dbg_gen("hole");
701 }
702
703 SetPageUptodate(page);
704 ClearPageError(page);
705 flush_dcache_page(page);
706 kunmap(page);
707 *n = nn;
708 return 0;
709
710out_err:
711 ClearPageUptodate(page);
712 SetPageError(page);
713 flush_dcache_page(page);
714 kunmap(page);
715 ubifs_err(c, "bad data node (block %u, inode %lu)",
716 page_block, inode->i_ino);
717 return -EINVAL;
718}
719
720/**
721 * ubifs_do_bulk_read - do bulk-read.
722 * @c: UBIFS file-system description object
723 * @bu: bulk-read information
724 * @page1: first page to read
725 *
726 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
727 */
728static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
729 struct page *page1)
730{
731 pgoff_t offset = page1->index, end_index;
732 struct address_space *mapping = page1->mapping;
733 struct inode *inode = mapping->host;
734 struct ubifs_inode *ui = ubifs_inode(inode);
735 int err, page_idx, page_cnt, ret = 0, n = 0;
736 int allocate = bu->buf ? 0 : 1;
737 loff_t isize;
738 gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
739
740 err = ubifs_tnc_get_bu_keys(c, bu);
741 if (err)
742 goto out_warn;
743
744 if (bu->eof) {
745 /* Turn off bulk-read at the end of the file */
746 ui->read_in_a_row = 1;
747 ui->bulk_read = 0;
748 }
749
750 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
751 if (!page_cnt) {
752 /*
753 * This happens when there are multiple blocks per page and the
754 * blocks for the first page we are looking for, are not
755 * together. If all the pages were like this, bulk-read would
756 * reduce performance, so we turn it off for a while.
757 */
758 goto out_bu_off;
759 }
760
761 if (bu->cnt) {
762 if (allocate) {
763 /*
764 * Allocate bulk-read buffer depending on how many data
765 * nodes we are going to read.
766 */
767 bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
768 bu->zbranch[bu->cnt - 1].len -
769 bu->zbranch[0].offs;
770 ubifs_assert(bu->buf_len > 0);
771 ubifs_assert(bu->buf_len <= c->leb_size);
772 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
773 if (!bu->buf)
774 goto out_bu_off;
775 }
776
777 err = ubifs_tnc_bulk_read(c, bu);
778 if (err)
779 goto out_warn;
780 }
781
782 err = populate_page(c, page1, bu, &n);
783 if (err)
784 goto out_warn;
785
786 unlock_page(page1);
787 ret = 1;
788
789 isize = i_size_read(inode);
790 if (isize == 0)
791 goto out_free;
792 end_index = ((isize - 1) >> PAGE_SHIFT);
793
794 for (page_idx = 1; page_idx < page_cnt; page_idx++) {
795 pgoff_t page_offset = offset + page_idx;
796 struct page *page;
797
798 if (page_offset > end_index)
799 break;
800 page = find_or_create_page(mapping, page_offset, ra_gfp_mask);
801 if (!page)
802 break;
803 if (!PageUptodate(page))
804 err = populate_page(c, page, bu, &n);
805 unlock_page(page);
806 put_page(page);
807 if (err)
808 break;
809 }
810
811 ui->last_page_read = offset + page_idx - 1;
812
813out_free:
814 if (allocate)
815 kfree(bu->buf);
816 return ret;
817
818out_warn:
819 ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
820 goto out_free;
821
822out_bu_off:
823 ui->read_in_a_row = ui->bulk_read = 0;
824 goto out_free;
825}
826
827/**
828 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
829 * @page: page from which to start bulk-read.
830 *
831 * Some flash media are capable of reading sequentially at faster rates. UBIFS
832 * bulk-read facility is designed to take advantage of that, by reading in one
833 * go consecutive data nodes that are also located consecutively in the same
834 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
835 */
836static int ubifs_bulk_read(struct page *page)
837{
838 struct inode *inode = page->mapping->host;
839 struct ubifs_info *c = inode->i_sb->s_fs_info;
840 struct ubifs_inode *ui = ubifs_inode(inode);
841 pgoff_t index = page->index, last_page_read = ui->last_page_read;
842 struct bu_info *bu;
843 int err = 0, allocated = 0;
844
845 ui->last_page_read = index;
846 if (!c->bulk_read)
847 return 0;
848
849 /*
850 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
851 * so don't bother if we cannot lock the mutex.
852 */
853 if (!mutex_trylock(&ui->ui_mutex))
854 return 0;
855
856 if (index != last_page_read + 1) {
857 /* Turn off bulk-read if we stop reading sequentially */
858 ui->read_in_a_row = 1;
859 if (ui->bulk_read)
860 ui->bulk_read = 0;
861 goto out_unlock;
862 }
863
864 if (!ui->bulk_read) {
865 ui->read_in_a_row += 1;
866 if (ui->read_in_a_row < 3)
867 goto out_unlock;
868 /* Three reads in a row, so switch on bulk-read */
869 ui->bulk_read = 1;
870 }
871
872 /*
873 * If possible, try to use pre-allocated bulk-read information, which
874 * is protected by @c->bu_mutex.
875 */
876 if (mutex_trylock(&c->bu_mutex))
877 bu = &c->bu;
878 else {
879 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
880 if (!bu)
881 goto out_unlock;
882
883 bu->buf = NULL;
884 allocated = 1;
885 }
886
887 bu->buf_len = c->max_bu_buf_len;
888 data_key_init(c, &bu->key, inode->i_ino,
889 page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
890 err = ubifs_do_bulk_read(c, bu, page);
891
892 if (!allocated)
893 mutex_unlock(&c->bu_mutex);
894 else
895 kfree(bu);
896
897out_unlock:
898 mutex_unlock(&ui->ui_mutex);
899 return err;
900}
901
902static int ubifs_readpage(struct file *file, struct page *page)
903{
904 if (ubifs_bulk_read(page))
905 return 0;
906 do_readpage(page);
907 unlock_page(page);
908 return 0;
909}
910
911static int do_writepage(struct page *page, int len)
912{
913 int err = 0, i, blen;
914 unsigned int block;
915 void *addr;
916 union ubifs_key key;
917 struct inode *inode = page->mapping->host;
918 struct ubifs_info *c = inode->i_sb->s_fs_info;
919
920#ifdef UBIFS_DEBUG
921 struct ubifs_inode *ui = ubifs_inode(inode);
922 spin_lock(&ui->ui_lock);
923 ubifs_assert(page->index <= ui->synced_i_size >> PAGE_SHIFT);
924 spin_unlock(&ui->ui_lock);
925#endif
926
927 /* Update radix tree tags */
928 set_page_writeback(page);
929
930 addr = kmap(page);
931 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
932 i = 0;
933 while (len) {
934 blen = min_t(int, len, UBIFS_BLOCK_SIZE);
935 data_key_init(c, &key, inode->i_ino, block);
936 err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
937 if (err)
938 break;
939 if (++i >= UBIFS_BLOCKS_PER_PAGE)
940 break;
941 block += 1;
942 addr += blen;
943 len -= blen;
944 }
945 if (err) {
946 SetPageError(page);
947 ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
948 page->index, inode->i_ino, err);
949 ubifs_ro_mode(c, err);
950 }
951
952 ubifs_assert(PagePrivate(page));
953 if (PageChecked(page))
954 release_new_page_budget(c);
955 else
956 release_existing_page_budget(c);
957
958 atomic_long_dec(&c->dirty_pg_cnt);
959 ClearPagePrivate(page);
960 ClearPageChecked(page);
961
962 kunmap(page);
963 unlock_page(page);
964 end_page_writeback(page);
965 return err;
966}
967
968/*
969 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
970 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
971 * situation when a we have an inode with size 0, then a megabyte of data is
972 * appended to the inode, then write-back starts and flushes some amount of the
973 * dirty pages, the journal becomes full, commit happens and finishes, and then
974 * an unclean reboot happens. When the file system is mounted next time, the
975 * inode size would still be 0, but there would be many pages which are beyond
976 * the inode size, they would be indexed and consume flash space. Because the
977 * journal has been committed, the replay would not be able to detect this
978 * situation and correct the inode size. This means UBIFS would have to scan
979 * whole index and correct all inode sizes, which is long an unacceptable.
980 *
981 * To prevent situations like this, UBIFS writes pages back only if they are
982 * within the last synchronized inode size, i.e. the size which has been
983 * written to the flash media last time. Otherwise, UBIFS forces inode
984 * write-back, thus making sure the on-flash inode contains current inode size,
985 * and then keeps writing pages back.
986 *
987 * Some locking issues explanation. 'ubifs_writepage()' first is called with
988 * the page locked, and it locks @ui_mutex. However, write-back does take inode
989 * @i_mutex, which means other VFS operations may be run on this inode at the
990 * same time. And the problematic one is truncation to smaller size, from where
991 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
992 * then drops the truncated pages. And while dropping the pages, it takes the
993 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
994 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
995 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
996 *
997 * XXX(truncate): with the new truncate sequence this is not true anymore,
998 * and the calls to truncate_setsize can be move around freely. They should
999 * be moved to the very end of the truncate sequence.
1000 *
1001 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
1002 * inode size. How do we do this if @inode->i_size may became smaller while we
1003 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
1004 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
1005 * internally and updates it under @ui_mutex.
1006 *
1007 * Q: why we do not worry that if we race with truncation, we may end up with a
1008 * situation when the inode is truncated while we are in the middle of
1009 * 'do_writepage()', so we do write beyond inode size?
1010 * A: If we are in the middle of 'do_writepage()', truncation would be locked
1011 * on the page lock and it would not write the truncated inode node to the
1012 * journal before we have finished.
1013 */
1014static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1015{
1016 struct inode *inode = page->mapping->host;
1017 struct ubifs_inode *ui = ubifs_inode(inode);
1018 loff_t i_size = i_size_read(inode), synced_i_size;
1019 pgoff_t end_index = i_size >> PAGE_SHIFT;
1020 int err, len = i_size & (PAGE_SIZE - 1);
1021 void *kaddr;
1022
1023 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1024 inode->i_ino, page->index, page->flags);
1025 ubifs_assert(PagePrivate(page));
1026
1027 /* Is the page fully outside @i_size? (truncate in progress) */
1028 if (page->index > end_index || (page->index == end_index && !len)) {
1029 err = 0;
1030 goto out_unlock;
1031 }
1032
1033 spin_lock(&ui->ui_lock);
1034 synced_i_size = ui->synced_i_size;
1035 spin_unlock(&ui->ui_lock);
1036
1037 /* Is the page fully inside @i_size? */
1038 if (page->index < end_index) {
1039 if (page->index >= synced_i_size >> PAGE_SHIFT) {
1040 err = inode->i_sb->s_op->write_inode(inode, NULL);
1041 if (err)
1042 goto out_unlock;
1043 /*
1044 * The inode has been written, but the write-buffer has
1045 * not been synchronized, so in case of an unclean
1046 * reboot we may end up with some pages beyond inode
1047 * size, but they would be in the journal (because
1048 * commit flushes write buffers) and recovery would deal
1049 * with this.
1050 */
1051 }
1052 return do_writepage(page, PAGE_SIZE);
1053 }
1054
1055 /*
1056 * The page straddles @i_size. It must be zeroed out on each and every
1057 * writepage invocation because it may be mmapped. "A file is mapped
1058 * in multiples of the page size. For a file that is not a multiple of
1059 * the page size, the remaining memory is zeroed when mapped, and
1060 * writes to that region are not written out to the file."
1061 */
1062 kaddr = kmap_atomic(page);
1063 memset(kaddr + len, 0, PAGE_SIZE - len);
1064 flush_dcache_page(page);
1065 kunmap_atomic(kaddr);
1066
1067 if (i_size > synced_i_size) {
1068 err = inode->i_sb->s_op->write_inode(inode, NULL);
1069 if (err)
1070 goto out_unlock;
1071 }
1072
1073 return do_writepage(page, len);
1074
1075out_unlock:
1076 unlock_page(page);
1077 return err;
1078}
1079
1080/**
1081 * do_attr_changes - change inode attributes.
1082 * @inode: inode to change attributes for
1083 * @attr: describes attributes to change
1084 */
1085static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1086{
1087 if (attr->ia_valid & ATTR_UID)
1088 inode->i_uid = attr->ia_uid;
1089 if (attr->ia_valid & ATTR_GID)
1090 inode->i_gid = attr->ia_gid;
1091 if (attr->ia_valid & ATTR_ATIME)
1092 inode->i_atime = timespec_trunc(attr->ia_atime,
1093 inode->i_sb->s_time_gran);
1094 if (attr->ia_valid & ATTR_MTIME)
1095 inode->i_mtime = timespec_trunc(attr->ia_mtime,
1096 inode->i_sb->s_time_gran);
1097 if (attr->ia_valid & ATTR_CTIME)
1098 inode->i_ctime = timespec_trunc(attr->ia_ctime,
1099 inode->i_sb->s_time_gran);
1100 if (attr->ia_valid & ATTR_MODE) {
1101 umode_t mode = attr->ia_mode;
1102
1103 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1104 mode &= ~S_ISGID;
1105 inode->i_mode = mode;
1106 }
1107}
1108
1109/**
1110 * do_truncation - truncate an inode.
1111 * @c: UBIFS file-system description object
1112 * @inode: inode to truncate
1113 * @attr: inode attribute changes description
1114 *
1115 * This function implements VFS '->setattr()' call when the inode is truncated
1116 * to a smaller size. Returns zero in case of success and a negative error code
1117 * in case of failure.
1118 */
1119static int do_truncation(struct ubifs_info *c, struct inode *inode,
1120 const struct iattr *attr)
1121{
1122 int err;
1123 struct ubifs_budget_req req;
1124 loff_t old_size = inode->i_size, new_size = attr->ia_size;
1125 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1126 struct ubifs_inode *ui = ubifs_inode(inode);
1127
1128 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1129 memset(&req, 0, sizeof(struct ubifs_budget_req));
1130
1131 /*
1132 * If this is truncation to a smaller size, and we do not truncate on a
1133 * block boundary, budget for changing one data block, because the last
1134 * block will be re-written.
1135 */
1136 if (new_size & (UBIFS_BLOCK_SIZE - 1))
1137 req.dirtied_page = 1;
1138
1139 req.dirtied_ino = 1;
1140 /* A funny way to budget for truncation node */
1141 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1142 err = ubifs_budget_space(c, &req);
1143 if (err) {
1144 /*
1145 * Treat truncations to zero as deletion and always allow them,
1146 * just like we do for '->unlink()'.
1147 */
1148 if (new_size || err != -ENOSPC)
1149 return err;
1150 budgeted = 0;
1151 }
1152
1153 truncate_setsize(inode, new_size);
1154
1155 if (offset) {
1156 pgoff_t index = new_size >> PAGE_SHIFT;
1157 struct page *page;
1158
1159 page = find_lock_page(inode->i_mapping, index);
1160 if (page) {
1161 if (PageDirty(page)) {
1162 /*
1163 * 'ubifs_jnl_truncate()' will try to truncate
1164 * the last data node, but it contains
1165 * out-of-date data because the page is dirty.
1166 * Write the page now, so that
1167 * 'ubifs_jnl_truncate()' will see an already
1168 * truncated (and up to date) data node.
1169 */
1170 ubifs_assert(PagePrivate(page));
1171
1172 clear_page_dirty_for_io(page);
1173 if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1174 offset = new_size &
1175 (PAGE_SIZE - 1);
1176 err = do_writepage(page, offset);
1177 put_page(page);
1178 if (err)
1179 goto out_budg;
1180 /*
1181 * We could now tell 'ubifs_jnl_truncate()' not
1182 * to read the last block.
1183 */
1184 } else {
1185 /*
1186 * We could 'kmap()' the page and pass the data
1187 * to 'ubifs_jnl_truncate()' to save it from
1188 * having to read it.
1189 */
1190 unlock_page(page);
1191 put_page(page);
1192 }
1193 }
1194 }
1195
1196 mutex_lock(&ui->ui_mutex);
1197 ui->ui_size = inode->i_size;
1198 /* Truncation changes inode [mc]time */
1199 inode->i_mtime = inode->i_ctime = current_time(inode);
1200 /* Other attributes may be changed at the same time as well */
1201 do_attr_changes(inode, attr);
1202 err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1203 mutex_unlock(&ui->ui_mutex);
1204
1205out_budg:
1206 if (budgeted)
1207 ubifs_release_budget(c, &req);
1208 else {
1209 c->bi.nospace = c->bi.nospace_rp = 0;
1210 smp_wmb();
1211 }
1212 return err;
1213}
1214
1215/**
1216 * do_setattr - change inode attributes.
1217 * @c: UBIFS file-system description object
1218 * @inode: inode to change attributes for
1219 * @attr: inode attribute changes description
1220 *
1221 * This function implements VFS '->setattr()' call for all cases except
1222 * truncations to smaller size. Returns zero in case of success and a negative
1223 * error code in case of failure.
1224 */
1225static int do_setattr(struct ubifs_info *c, struct inode *inode,
1226 const struct iattr *attr)
1227{
1228 int err, release;
1229 loff_t new_size = attr->ia_size;
1230 struct ubifs_inode *ui = ubifs_inode(inode);
1231 struct ubifs_budget_req req = { .dirtied_ino = 1,
1232 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1233
1234 err = ubifs_budget_space(c, &req);
1235 if (err)
1236 return err;
1237
1238 if (attr->ia_valid & ATTR_SIZE) {
1239 dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1240 truncate_setsize(inode, new_size);
1241 }
1242
1243 mutex_lock(&ui->ui_mutex);
1244 if (attr->ia_valid & ATTR_SIZE) {
1245 /* Truncation changes inode [mc]time */
1246 inode->i_mtime = inode->i_ctime = current_time(inode);
1247 /* 'truncate_setsize()' changed @i_size, update @ui_size */
1248 ui->ui_size = inode->i_size;
1249 }
1250
1251 do_attr_changes(inode, attr);
1252
1253 release = ui->dirty;
1254 if (attr->ia_valid & ATTR_SIZE)
1255 /*
1256 * Inode length changed, so we have to make sure
1257 * @I_DIRTY_DATASYNC is set.
1258 */
1259 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1260 else
1261 mark_inode_dirty_sync(inode);
1262 mutex_unlock(&ui->ui_mutex);
1263
1264 if (release)
1265 ubifs_release_budget(c, &req);
1266 if (IS_SYNC(inode))
1267 err = inode->i_sb->s_op->write_inode(inode, NULL);
1268 return err;
1269}
1270
1271int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1272{
1273 int err;
1274 struct inode *inode = d_inode(dentry);
1275 struct ubifs_info *c = inode->i_sb->s_fs_info;
1276
1277 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1278 inode->i_ino, inode->i_mode, attr->ia_valid);
1279 err = setattr_prepare(dentry, attr);
1280 if (err)
1281 return err;
1282
1283 err = dbg_check_synced_i_size(c, inode);
1284 if (err)
1285 return err;
1286
1287 err = fscrypt_prepare_setattr(dentry, attr);
1288 if (err)
1289 return err;
1290
1291 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1292 /* Truncation to a smaller size */
1293 err = do_truncation(c, inode, attr);
1294 else
1295 err = do_setattr(c, inode, attr);
1296
1297 return err;
1298}
1299
1300static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1301 unsigned int length)
1302{
1303 struct inode *inode = page->mapping->host;
1304 struct ubifs_info *c = inode->i_sb->s_fs_info;
1305
1306 ubifs_assert(PagePrivate(page));
1307 if (offset || length < PAGE_SIZE)
1308 /* Partial page remains dirty */
1309 return;
1310
1311 if (PageChecked(page))
1312 release_new_page_budget(c);
1313 else
1314 release_existing_page_budget(c);
1315
1316 atomic_long_dec(&c->dirty_pg_cnt);
1317 ClearPagePrivate(page);
1318 ClearPageChecked(page);
1319}
1320
1321int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1322{
1323 struct inode *inode = file->f_mapping->host;
1324 struct ubifs_info *c = inode->i_sb->s_fs_info;
1325 int err;
1326
1327 dbg_gen("syncing inode %lu", inode->i_ino);
1328
1329 if (c->ro_mount)
1330 /*
1331 * For some really strange reasons VFS does not filter out
1332 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1333 */
1334 return 0;
1335
1336 err = file_write_and_wait_range(file, start, end);
1337 if (err)
1338 return err;
1339 inode_lock(inode);
1340
1341 /* Synchronize the inode unless this is a 'datasync()' call. */
1342 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1343 err = inode->i_sb->s_op->write_inode(inode, NULL);
1344 if (err)
1345 goto out;
1346 }
1347
1348 /*
1349 * Nodes related to this inode may still sit in a write-buffer. Flush
1350 * them.
1351 */
1352 err = ubifs_sync_wbufs_by_inode(c, inode);
1353out:
1354 inode_unlock(inode);
1355 return err;
1356}
1357
1358/**
1359 * mctime_update_needed - check if mtime or ctime update is needed.
1360 * @inode: the inode to do the check for
1361 * @now: current time
1362 *
1363 * This helper function checks if the inode mtime/ctime should be updated or
1364 * not. If current values of the time-stamps are within the UBIFS inode time
1365 * granularity, they are not updated. This is an optimization.
1366 */
1367static inline int mctime_update_needed(const struct inode *inode,
1368 const struct timespec *now)
1369{
1370 if (!timespec_equal(&inode->i_mtime, now) ||
1371 !timespec_equal(&inode->i_ctime, now))
1372 return 1;
1373 return 0;
1374}
1375
1376#ifdef CONFIG_UBIFS_ATIME_SUPPORT
1377/**
1378 * ubifs_update_time - update time of inode.
1379 * @inode: inode to update
1380 *
1381 * This function updates time of the inode.
1382 */
1383int ubifs_update_time(struct inode *inode, struct timespec *time,
1384 int flags)
1385{
1386 struct ubifs_inode *ui = ubifs_inode(inode);
1387 struct ubifs_info *c = inode->i_sb->s_fs_info;
1388 struct ubifs_budget_req req = { .dirtied_ino = 1,
1389 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1390 int iflags = I_DIRTY_TIME;
1391 int err, release;
1392
1393 err = ubifs_budget_space(c, &req);
1394 if (err)
1395 return err;
1396
1397 mutex_lock(&ui->ui_mutex);
1398 if (flags & S_ATIME)
1399 inode->i_atime = *time;
1400 if (flags & S_CTIME)
1401 inode->i_ctime = *time;
1402 if (flags & S_MTIME)
1403 inode->i_mtime = *time;
1404
1405 if (!(inode->i_sb->s_flags & SB_LAZYTIME))
1406 iflags |= I_DIRTY_SYNC;
1407
1408 release = ui->dirty;
1409 __mark_inode_dirty(inode, iflags);
1410 mutex_unlock(&ui->ui_mutex);
1411 if (release)
1412 ubifs_release_budget(c, &req);
1413 return 0;
1414}
1415#endif
1416
1417/**
1418 * update_mctime - update mtime and ctime of an inode.
1419 * @inode: inode to update
1420 *
1421 * This function updates mtime and ctime of the inode if it is not equivalent to
1422 * current time. Returns zero in case of success and a negative error code in
1423 * case of failure.
1424 */
1425static int update_mctime(struct inode *inode)
1426{
1427 struct timespec now = current_time(inode);
1428 struct ubifs_inode *ui = ubifs_inode(inode);
1429 struct ubifs_info *c = inode->i_sb->s_fs_info;
1430
1431 if (mctime_update_needed(inode, &now)) {
1432 int err, release;
1433 struct ubifs_budget_req req = { .dirtied_ino = 1,
1434 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1435
1436 err = ubifs_budget_space(c, &req);
1437 if (err)
1438 return err;
1439
1440 mutex_lock(&ui->ui_mutex);
1441 inode->i_mtime = inode->i_ctime = current_time(inode);
1442 release = ui->dirty;
1443 mark_inode_dirty_sync(inode);
1444 mutex_unlock(&ui->ui_mutex);
1445 if (release)
1446 ubifs_release_budget(c, &req);
1447 }
1448
1449 return 0;
1450}
1451
1452static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1453{
1454 int err = update_mctime(file_inode(iocb->ki_filp));
1455 if (err)
1456 return err;
1457
1458 return generic_file_write_iter(iocb, from);
1459}
1460
1461static int ubifs_set_page_dirty(struct page *page)
1462{
1463 int ret;
1464
1465 ret = __set_page_dirty_nobuffers(page);
1466 /*
1467 * An attempt to dirty a page without budgeting for it - should not
1468 * happen.
1469 */
1470 ubifs_assert(ret == 0);
1471 return ret;
1472}
1473
1474#ifdef CONFIG_MIGRATION
1475static int ubifs_migrate_page(struct address_space *mapping,
1476 struct page *newpage, struct page *page, enum migrate_mode mode)
1477{
1478 int rc;
1479
1480 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
1481 if (rc != MIGRATEPAGE_SUCCESS)
1482 return rc;
1483
1484 if (PagePrivate(page)) {
1485 ClearPagePrivate(page);
1486 SetPagePrivate(newpage);
1487 }
1488
1489 if (mode != MIGRATE_SYNC_NO_COPY)
1490 migrate_page_copy(newpage, page);
1491 else
1492 migrate_page_states(newpage, page);
1493 return MIGRATEPAGE_SUCCESS;
1494}
1495#endif
1496
1497static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1498{
1499 /*
1500 * An attempt to release a dirty page without budgeting for it - should
1501 * not happen.
1502 */
1503 if (PageWriteback(page))
1504 return 0;
1505 ubifs_assert(PagePrivate(page));
1506 ubifs_assert(0);
1507 ClearPagePrivate(page);
1508 ClearPageChecked(page);
1509 return 1;
1510}
1511
1512/*
1513 * mmap()d file has taken write protection fault and is being made writable.
1514 * UBIFS must ensure page is budgeted for.
1515 */
1516static int ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1517{
1518 struct page *page = vmf->page;
1519 struct inode *inode = file_inode(vmf->vma->vm_file);
1520 struct ubifs_info *c = inode->i_sb->s_fs_info;
1521 struct timespec now = current_time(inode);
1522 struct ubifs_budget_req req = { .new_page = 1 };
1523 int err, update_time;
1524
1525 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
1526 i_size_read(inode));
1527 ubifs_assert(!c->ro_media && !c->ro_mount);
1528
1529 if (unlikely(c->ro_error))
1530 return VM_FAULT_SIGBUS; /* -EROFS */
1531
1532 /*
1533 * We have not locked @page so far so we may budget for changing the
1534 * page. Note, we cannot do this after we locked the page, because
1535 * budgeting may cause write-back which would cause deadlock.
1536 *
1537 * At the moment we do not know whether the page is dirty or not, so we
1538 * assume that it is not and budget for a new page. We could look at
1539 * the @PG_private flag and figure this out, but we may race with write
1540 * back and the page state may change by the time we lock it, so this
1541 * would need additional care. We do not bother with this at the
1542 * moment, although it might be good idea to do. Instead, we allocate
1543 * budget for a new page and amend it later on if the page was in fact
1544 * dirty.
1545 *
1546 * The budgeting-related logic of this function is similar to what we
1547 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1548 * for more comments.
1549 */
1550 update_time = mctime_update_needed(inode, &now);
1551 if (update_time)
1552 /*
1553 * We have to change inode time stamp which requires extra
1554 * budgeting.
1555 */
1556 req.dirtied_ino = 1;
1557
1558 err = ubifs_budget_space(c, &req);
1559 if (unlikely(err)) {
1560 if (err == -ENOSPC)
1561 ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1562 inode->i_ino);
1563 return VM_FAULT_SIGBUS;
1564 }
1565
1566 lock_page(page);
1567 if (unlikely(page->mapping != inode->i_mapping ||
1568 page_offset(page) > i_size_read(inode))) {
1569 /* Page got truncated out from underneath us */
1570 err = -EINVAL;
1571 goto out_unlock;
1572 }
1573
1574 if (PagePrivate(page))
1575 release_new_page_budget(c);
1576 else {
1577 if (!PageChecked(page))
1578 ubifs_convert_page_budget(c);
1579 SetPagePrivate(page);
1580 atomic_long_inc(&c->dirty_pg_cnt);
1581 __set_page_dirty_nobuffers(page);
1582 }
1583
1584 if (update_time) {
1585 int release;
1586 struct ubifs_inode *ui = ubifs_inode(inode);
1587
1588 mutex_lock(&ui->ui_mutex);
1589 inode->i_mtime = inode->i_ctime = current_time(inode);
1590 release = ui->dirty;
1591 mark_inode_dirty_sync(inode);
1592 mutex_unlock(&ui->ui_mutex);
1593 if (release)
1594 ubifs_release_dirty_inode_budget(c, ui);
1595 }
1596
1597 wait_for_stable_page(page);
1598 return VM_FAULT_LOCKED;
1599
1600out_unlock:
1601 unlock_page(page);
1602 ubifs_release_budget(c, &req);
1603 if (err)
1604 err = VM_FAULT_SIGBUS;
1605 return err;
1606}
1607
1608static const struct vm_operations_struct ubifs_file_vm_ops = {
1609 .fault = filemap_fault,
1610 .map_pages = filemap_map_pages,
1611 .page_mkwrite = ubifs_vm_page_mkwrite,
1612};
1613
1614static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1615{
1616 int err;
1617
1618 err = generic_file_mmap(file, vma);
1619 if (err)
1620 return err;
1621 vma->vm_ops = &ubifs_file_vm_ops;
1622#ifdef CONFIG_UBIFS_ATIME_SUPPORT
1623 file_accessed(file);
1624#endif
1625 return 0;
1626}
1627
1628static const char *ubifs_get_link(struct dentry *dentry,
1629 struct inode *inode,
1630 struct delayed_call *done)
1631{
1632 struct ubifs_inode *ui = ubifs_inode(inode);
1633
1634 if (!IS_ENCRYPTED(inode))
1635 return ui->data;
1636
1637 if (!dentry)
1638 return ERR_PTR(-ECHILD);
1639
1640 return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
1641}
1642
1643const struct address_space_operations ubifs_file_address_operations = {
1644 .readpage = ubifs_readpage,
1645 .writepage = ubifs_writepage,
1646 .write_begin = ubifs_write_begin,
1647 .write_end = ubifs_write_end,
1648 .invalidatepage = ubifs_invalidatepage,
1649 .set_page_dirty = ubifs_set_page_dirty,
1650#ifdef CONFIG_MIGRATION
1651 .migratepage = ubifs_migrate_page,
1652#endif
1653 .releasepage = ubifs_releasepage,
1654};
1655
1656const struct inode_operations ubifs_file_inode_operations = {
1657 .setattr = ubifs_setattr,
1658 .getattr = ubifs_getattr,
1659 .listxattr = ubifs_listxattr,
1660#ifdef CONFIG_UBIFS_ATIME_SUPPORT
1661 .update_time = ubifs_update_time,
1662#endif
1663};
1664
1665const struct inode_operations ubifs_symlink_inode_operations = {
1666 .get_link = ubifs_get_link,
1667 .setattr = ubifs_setattr,
1668 .getattr = ubifs_getattr,
1669 .listxattr = ubifs_listxattr,
1670#ifdef CONFIG_UBIFS_ATIME_SUPPORT
1671 .update_time = ubifs_update_time,
1672#endif
1673};
1674
1675const struct file_operations ubifs_file_operations = {
1676 .llseek = generic_file_llseek,
1677 .read_iter = generic_file_read_iter,
1678 .write_iter = ubifs_write_iter,
1679 .mmap = ubifs_file_mmap,
1680 .fsync = ubifs_fsync,
1681 .unlocked_ioctl = ubifs_ioctl,
1682 .splice_read = generic_file_splice_read,
1683 .splice_write = iter_file_splice_write,
1684 .open = fscrypt_file_open,
1685#ifdef CONFIG_COMPAT
1686 .compat_ioctl = ubifs_compat_ioctl,
1687#endif
1688};