Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 * Authors: Artem Bityutskiy (Битюцкий Артём)
   8 *          Adrian Hunter
   9 */
  10
  11/*
  12 * This file implements VFS file and inode operations for regular files, device
  13 * nodes and symlinks as well as address space operations.
  14 *
  15 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
  16 * the page is dirty and is used for optimization purposes - dirty pages are
  17 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
  18 * the budget for this page. The @PG_checked flag is set if full budgeting is
  19 * required for the page e.g., when it corresponds to a file hole or it is
  20 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
  21 * it is OK to fail in this function, and the budget is released in
  22 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
  23 * information about how the page was budgeted, to make it possible to release
  24 * the budget properly.
  25 *
  26 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
  27 * implement. However, this is not true for 'ubifs_writepage()', which may be
  28 * called with @i_mutex unlocked. For example, when flusher thread is doing
  29 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
  30 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
  31 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
  32 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
  33 *
  34 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
  35 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
  36 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
  37 * set as well. However, UBIFS disables readahead.
  38 */
  39
  40#include "ubifs.h"
  41#include <linux/mount.h>
  42#include <linux/slab.h>
  43#include <linux/migrate.h>
  44
  45static int read_block(struct inode *inode, void *addr, unsigned int block,
  46		      struct ubifs_data_node *dn)
  47{
  48	struct ubifs_info *c = inode->i_sb->s_fs_info;
  49	int err, len, out_len;
  50	union ubifs_key key;
  51	unsigned int dlen;
  52
  53	data_key_init(c, &key, inode->i_ino, block);
  54	err = ubifs_tnc_lookup(c, &key, dn);
  55	if (err) {
  56		if (err == -ENOENT)
  57			/* Not found, so it must be a hole */
  58			memset(addr, 0, UBIFS_BLOCK_SIZE);
  59		return err;
  60	}
  61
  62	ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
  63		     ubifs_inode(inode)->creat_sqnum);
  64	len = le32_to_cpu(dn->size);
  65	if (len <= 0 || len > UBIFS_BLOCK_SIZE)
  66		goto dump;
  67
  68	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
  69
  70	if (ubifs_crypt_is_encrypted(inode)) {
  71		err = ubifs_decrypt(inode, dn, &dlen, block);
  72		if (err)
  73			goto dump;
  74	}
  75
  76	out_len = UBIFS_BLOCK_SIZE;
  77	err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
  78			       le16_to_cpu(dn->compr_type));
  79	if (err || len != out_len)
  80		goto dump;
  81
  82	/*
  83	 * Data length can be less than a full block, even for blocks that are
  84	 * not the last in the file (e.g., as a result of making a hole and
  85	 * appending data). Ensure that the remainder is zeroed out.
  86	 */
  87	if (len < UBIFS_BLOCK_SIZE)
  88		memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
  89
  90	return 0;
  91
  92dump:
  93	ubifs_err(c, "bad data node (block %u, inode %lu)",
  94		  block, inode->i_ino);
  95	ubifs_dump_node(c, dn);
  96	return -EINVAL;
  97}
  98
  99static int do_readpage(struct page *page)
 100{
 101	void *addr;
 102	int err = 0, i;
 103	unsigned int block, beyond;
 104	struct ubifs_data_node *dn;
 105	struct inode *inode = page->mapping->host;
 106	struct ubifs_info *c = inode->i_sb->s_fs_info;
 107	loff_t i_size = i_size_read(inode);
 108
 109	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
 110		inode->i_ino, page->index, i_size, page->flags);
 111	ubifs_assert(c, !PageChecked(page));
 112	ubifs_assert(c, !PagePrivate(page));
 113
 114	addr = kmap(page);
 115
 116	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 117	beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
 118	if (block >= beyond) {
 119		/* Reading beyond inode */
 120		SetPageChecked(page);
 121		memset(addr, 0, PAGE_SIZE);
 122		goto out;
 123	}
 124
 125	dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
 126	if (!dn) {
 127		err = -ENOMEM;
 128		goto error;
 129	}
 130
 131	i = 0;
 132	while (1) {
 133		int ret;
 134
 135		if (block >= beyond) {
 136			/* Reading beyond inode */
 137			err = -ENOENT;
 138			memset(addr, 0, UBIFS_BLOCK_SIZE);
 139		} else {
 140			ret = read_block(inode, addr, block, dn);
 141			if (ret) {
 142				err = ret;
 143				if (err != -ENOENT)
 144					break;
 145			} else if (block + 1 == beyond) {
 146				int dlen = le32_to_cpu(dn->size);
 147				int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
 148
 149				if (ilen && ilen < dlen)
 150					memset(addr + ilen, 0, dlen - ilen);
 151			}
 152		}
 153		if (++i >= UBIFS_BLOCKS_PER_PAGE)
 154			break;
 155		block += 1;
 156		addr += UBIFS_BLOCK_SIZE;
 157	}
 158	if (err) {
 159		struct ubifs_info *c = inode->i_sb->s_fs_info;
 160		if (err == -ENOENT) {
 161			/* Not found, so it must be a hole */
 162			SetPageChecked(page);
 163			dbg_gen("hole");
 164			goto out_free;
 165		}
 166		ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
 167			  page->index, inode->i_ino, err);
 168		goto error;
 169	}
 170
 171out_free:
 172	kfree(dn);
 173out:
 174	SetPageUptodate(page);
 175	ClearPageError(page);
 176	flush_dcache_page(page);
 177	kunmap(page);
 178	return 0;
 179
 180error:
 181	kfree(dn);
 182	ClearPageUptodate(page);
 183	SetPageError(page);
 184	flush_dcache_page(page);
 185	kunmap(page);
 186	return err;
 187}
 188
 189/**
 190 * release_new_page_budget - release budget of a new page.
 191 * @c: UBIFS file-system description object
 192 *
 193 * This is a helper function which releases budget corresponding to the budget
 194 * of one new page of data.
 195 */
 196static void release_new_page_budget(struct ubifs_info *c)
 197{
 198	struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
 199
 200	ubifs_release_budget(c, &req);
 201}
 202
 203/**
 204 * release_existing_page_budget - release budget of an existing page.
 205 * @c: UBIFS file-system description object
 206 *
 207 * This is a helper function which releases budget corresponding to the budget
 208 * of changing one one page of data which already exists on the flash media.
 209 */
 210static void release_existing_page_budget(struct ubifs_info *c)
 211{
 212	struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
 213
 214	ubifs_release_budget(c, &req);
 215}
 216
 217static int write_begin_slow(struct address_space *mapping,
 218			    loff_t pos, unsigned len, struct page **pagep,
 219			    unsigned flags)
 220{
 221	struct inode *inode = mapping->host;
 222	struct ubifs_info *c = inode->i_sb->s_fs_info;
 223	pgoff_t index = pos >> PAGE_SHIFT;
 224	struct ubifs_budget_req req = { .new_page = 1 };
 225	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
 226	struct page *page;
 227
 228	dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
 229		inode->i_ino, pos, len, inode->i_size);
 230
 231	/*
 232	 * At the slow path we have to budget before locking the page, because
 233	 * budgeting may force write-back, which would wait on locked pages and
 234	 * deadlock if we had the page locked. At this point we do not know
 235	 * anything about the page, so assume that this is a new page which is
 236	 * written to a hole. This corresponds to largest budget. Later the
 237	 * budget will be amended if this is not true.
 238	 */
 239	if (appending)
 240		/* We are appending data, budget for inode change */
 241		req.dirtied_ino = 1;
 242
 243	err = ubifs_budget_space(c, &req);
 244	if (unlikely(err))
 245		return err;
 246
 247	page = grab_cache_page_write_begin(mapping, index, flags);
 248	if (unlikely(!page)) {
 249		ubifs_release_budget(c, &req);
 250		return -ENOMEM;
 251	}
 252
 253	if (!PageUptodate(page)) {
 254		if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE)
 255			SetPageChecked(page);
 256		else {
 257			err = do_readpage(page);
 258			if (err) {
 259				unlock_page(page);
 260				put_page(page);
 261				ubifs_release_budget(c, &req);
 262				return err;
 263			}
 264		}
 265
 266		SetPageUptodate(page);
 267		ClearPageError(page);
 268	}
 269
 270	if (PagePrivate(page))
 271		/*
 272		 * The page is dirty, which means it was budgeted twice:
 273		 *   o first time the budget was allocated by the task which
 274		 *     made the page dirty and set the PG_private flag;
 275		 *   o and then we budgeted for it for the second time at the
 276		 *     very beginning of this function.
 277		 *
 278		 * So what we have to do is to release the page budget we
 279		 * allocated.
 280		 */
 281		release_new_page_budget(c);
 282	else if (!PageChecked(page))
 283		/*
 284		 * We are changing a page which already exists on the media.
 285		 * This means that changing the page does not make the amount
 286		 * of indexing information larger, and this part of the budget
 287		 * which we have already acquired may be released.
 288		 */
 289		ubifs_convert_page_budget(c);
 290
 291	if (appending) {
 292		struct ubifs_inode *ui = ubifs_inode(inode);
 293
 294		/*
 295		 * 'ubifs_write_end()' is optimized from the fast-path part of
 296		 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
 297		 * if data is appended.
 298		 */
 299		mutex_lock(&ui->ui_mutex);
 300		if (ui->dirty)
 301			/*
 302			 * The inode is dirty already, so we may free the
 303			 * budget we allocated.
 304			 */
 305			ubifs_release_dirty_inode_budget(c, ui);
 306	}
 307
 308	*pagep = page;
 309	return 0;
 310}
 311
 312/**
 313 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
 314 * @c: UBIFS file-system description object
 315 * @page: page to allocate budget for
 316 * @ui: UBIFS inode object the page belongs to
 317 * @appending: non-zero if the page is appended
 318 *
 319 * This is a helper function for 'ubifs_write_begin()' which allocates budget
 320 * for the operation. The budget is allocated differently depending on whether
 321 * this is appending, whether the page is dirty or not, and so on. This
 322 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
 323 * in case of success and %-ENOSPC in case of failure.
 324 */
 325static int allocate_budget(struct ubifs_info *c, struct page *page,
 326			   struct ubifs_inode *ui, int appending)
 327{
 328	struct ubifs_budget_req req = { .fast = 1 };
 329
 330	if (PagePrivate(page)) {
 331		if (!appending)
 332			/*
 333			 * The page is dirty and we are not appending, which
 334			 * means no budget is needed at all.
 335			 */
 336			return 0;
 337
 338		mutex_lock(&ui->ui_mutex);
 339		if (ui->dirty)
 340			/*
 341			 * The page is dirty and we are appending, so the inode
 342			 * has to be marked as dirty. However, it is already
 343			 * dirty, so we do not need any budget. We may return,
 344			 * but @ui->ui_mutex hast to be left locked because we
 345			 * should prevent write-back from flushing the inode
 346			 * and freeing the budget. The lock will be released in
 347			 * 'ubifs_write_end()'.
 348			 */
 349			return 0;
 350
 351		/*
 352		 * The page is dirty, we are appending, the inode is clean, so
 353		 * we need to budget the inode change.
 354		 */
 355		req.dirtied_ino = 1;
 356	} else {
 357		if (PageChecked(page))
 358			/*
 359			 * The page corresponds to a hole and does not
 360			 * exist on the media. So changing it makes
 361			 * make the amount of indexing information
 362			 * larger, and we have to budget for a new
 363			 * page.
 364			 */
 365			req.new_page = 1;
 366		else
 367			/*
 368			 * Not a hole, the change will not add any new
 369			 * indexing information, budget for page
 370			 * change.
 371			 */
 372			req.dirtied_page = 1;
 373
 374		if (appending) {
 375			mutex_lock(&ui->ui_mutex);
 376			if (!ui->dirty)
 377				/*
 378				 * The inode is clean but we will have to mark
 379				 * it as dirty because we are appending. This
 380				 * needs a budget.
 381				 */
 382				req.dirtied_ino = 1;
 383		}
 384	}
 385
 386	return ubifs_budget_space(c, &req);
 387}
 388
 389/*
 390 * This function is called when a page of data is going to be written. Since
 391 * the page of data will not necessarily go to the flash straight away, UBIFS
 392 * has to reserve space on the media for it, which is done by means of
 393 * budgeting.
 394 *
 395 * This is the hot-path of the file-system and we are trying to optimize it as
 396 * much as possible. For this reasons it is split on 2 parts - slow and fast.
 397 *
 398 * There many budgeting cases:
 399 *     o a new page is appended - we have to budget for a new page and for
 400 *       changing the inode; however, if the inode is already dirty, there is
 401 *       no need to budget for it;
 402 *     o an existing clean page is changed - we have budget for it; if the page
 403 *       does not exist on the media (a hole), we have to budget for a new
 404 *       page; otherwise, we may budget for changing an existing page; the
 405 *       difference between these cases is that changing an existing page does
 406 *       not introduce anything new to the FS indexing information, so it does
 407 *       not grow, and smaller budget is acquired in this case;
 408 *     o an existing dirty page is changed - no need to budget at all, because
 409 *       the page budget has been acquired by earlier, when the page has been
 410 *       marked dirty.
 411 *
 412 * UBIFS budgeting sub-system may force write-back if it thinks there is no
 413 * space to reserve. This imposes some locking restrictions and makes it
 414 * impossible to take into account the above cases, and makes it impossible to
 415 * optimize budgeting.
 416 *
 417 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
 418 * there is a plenty of flash space and the budget will be acquired quickly,
 419 * without forcing write-back. The slow path does not make this assumption.
 420 */
 421static int ubifs_write_begin(struct file *file, struct address_space *mapping,
 422			     loff_t pos, unsigned len, unsigned flags,
 423			     struct page **pagep, void **fsdata)
 424{
 425	struct inode *inode = mapping->host;
 426	struct ubifs_info *c = inode->i_sb->s_fs_info;
 427	struct ubifs_inode *ui = ubifs_inode(inode);
 428	pgoff_t index = pos >> PAGE_SHIFT;
 429	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
 430	int skipped_read = 0;
 431	struct page *page;
 432
 433	ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size);
 434	ubifs_assert(c, !c->ro_media && !c->ro_mount);
 435
 436	if (unlikely(c->ro_error))
 437		return -EROFS;
 438
 439	/* Try out the fast-path part first */
 440	page = grab_cache_page_write_begin(mapping, index, flags);
 441	if (unlikely(!page))
 442		return -ENOMEM;
 443
 444	if (!PageUptodate(page)) {
 445		/* The page is not loaded from the flash */
 446		if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) {
 447			/*
 448			 * We change whole page so no need to load it. But we
 449			 * do not know whether this page exists on the media or
 450			 * not, so we assume the latter because it requires
 451			 * larger budget. The assumption is that it is better
 452			 * to budget a bit more than to read the page from the
 453			 * media. Thus, we are setting the @PG_checked flag
 454			 * here.
 455			 */
 456			SetPageChecked(page);
 457			skipped_read = 1;
 458		} else {
 459			err = do_readpage(page);
 460			if (err) {
 461				unlock_page(page);
 462				put_page(page);
 463				return err;
 464			}
 465		}
 466
 467		SetPageUptodate(page);
 468		ClearPageError(page);
 469	}
 470
 471	err = allocate_budget(c, page, ui, appending);
 472	if (unlikely(err)) {
 473		ubifs_assert(c, err == -ENOSPC);
 474		/*
 475		 * If we skipped reading the page because we were going to
 476		 * write all of it, then it is not up to date.
 477		 */
 478		if (skipped_read) {
 479			ClearPageChecked(page);
 480			ClearPageUptodate(page);
 481		}
 482		/*
 483		 * Budgeting failed which means it would have to force
 484		 * write-back but didn't, because we set the @fast flag in the
 485		 * request. Write-back cannot be done now, while we have the
 486		 * page locked, because it would deadlock. Unlock and free
 487		 * everything and fall-back to slow-path.
 488		 */
 489		if (appending) {
 490			ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
 491			mutex_unlock(&ui->ui_mutex);
 492		}
 493		unlock_page(page);
 494		put_page(page);
 495
 496		return write_begin_slow(mapping, pos, len, pagep, flags);
 497	}
 498
 499	/*
 500	 * Whee, we acquired budgeting quickly - without involving
 501	 * garbage-collection, committing or forcing write-back. We return
 502	 * with @ui->ui_mutex locked if we are appending pages, and unlocked
 503	 * otherwise. This is an optimization (slightly hacky though).
 504	 */
 505	*pagep = page;
 506	return 0;
 507
 508}
 509
 510/**
 511 * cancel_budget - cancel budget.
 512 * @c: UBIFS file-system description object
 513 * @page: page to cancel budget for
 514 * @ui: UBIFS inode object the page belongs to
 515 * @appending: non-zero if the page is appended
 516 *
 517 * This is a helper function for a page write operation. It unlocks the
 518 * @ui->ui_mutex in case of appending.
 519 */
 520static void cancel_budget(struct ubifs_info *c, struct page *page,
 521			  struct ubifs_inode *ui, int appending)
 522{
 523	if (appending) {
 524		if (!ui->dirty)
 525			ubifs_release_dirty_inode_budget(c, ui);
 526		mutex_unlock(&ui->ui_mutex);
 527	}
 528	if (!PagePrivate(page)) {
 529		if (PageChecked(page))
 530			release_new_page_budget(c);
 531		else
 532			release_existing_page_budget(c);
 533	}
 534}
 535
 536static int ubifs_write_end(struct file *file, struct address_space *mapping,
 537			   loff_t pos, unsigned len, unsigned copied,
 538			   struct page *page, void *fsdata)
 539{
 540	struct inode *inode = mapping->host;
 541	struct ubifs_inode *ui = ubifs_inode(inode);
 542	struct ubifs_info *c = inode->i_sb->s_fs_info;
 543	loff_t end_pos = pos + len;
 544	int appending = !!(end_pos > inode->i_size);
 545
 546	dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
 547		inode->i_ino, pos, page->index, len, copied, inode->i_size);
 548
 549	if (unlikely(copied < len && len == PAGE_SIZE)) {
 550		/*
 551		 * VFS copied less data to the page that it intended and
 552		 * declared in its '->write_begin()' call via the @len
 553		 * argument. If the page was not up-to-date, and @len was
 554		 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
 555		 * not load it from the media (for optimization reasons). This
 556		 * means that part of the page contains garbage. So read the
 557		 * page now.
 558		 */
 559		dbg_gen("copied %d instead of %d, read page and repeat",
 560			copied, len);
 561		cancel_budget(c, page, ui, appending);
 562		ClearPageChecked(page);
 563
 564		/*
 565		 * Return 0 to force VFS to repeat the whole operation, or the
 566		 * error code if 'do_readpage()' fails.
 567		 */
 568		copied = do_readpage(page);
 569		goto out;
 570	}
 571
 572	if (!PagePrivate(page)) {
 573		SetPagePrivate(page);
 574		atomic_long_inc(&c->dirty_pg_cnt);
 575		__set_page_dirty_nobuffers(page);
 576	}
 577
 578	if (appending) {
 579		i_size_write(inode, end_pos);
 580		ui->ui_size = end_pos;
 581		/*
 582		 * Note, we do not set @I_DIRTY_PAGES (which means that the
 583		 * inode has dirty pages), this has been done in
 584		 * '__set_page_dirty_nobuffers()'.
 585		 */
 586		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
 587		ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
 588		mutex_unlock(&ui->ui_mutex);
 589	}
 590
 591out:
 592	unlock_page(page);
 593	put_page(page);
 594	return copied;
 595}
 596
 597/**
 598 * populate_page - copy data nodes into a page for bulk-read.
 599 * @c: UBIFS file-system description object
 600 * @page: page
 601 * @bu: bulk-read information
 602 * @n: next zbranch slot
 603 *
 604 * This function returns %0 on success and a negative error code on failure.
 605 */
 606static int populate_page(struct ubifs_info *c, struct page *page,
 607			 struct bu_info *bu, int *n)
 608{
 609	int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
 610	struct inode *inode = page->mapping->host;
 611	loff_t i_size = i_size_read(inode);
 612	unsigned int page_block;
 613	void *addr, *zaddr;
 614	pgoff_t end_index;
 615
 616	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
 617		inode->i_ino, page->index, i_size, page->flags);
 618
 619	addr = zaddr = kmap(page);
 620
 621	end_index = (i_size - 1) >> PAGE_SHIFT;
 622	if (!i_size || page->index > end_index) {
 623		hole = 1;
 624		memset(addr, 0, PAGE_SIZE);
 625		goto out_hole;
 626	}
 627
 628	page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 629	while (1) {
 630		int err, len, out_len, dlen;
 631
 632		if (nn >= bu->cnt) {
 633			hole = 1;
 634			memset(addr, 0, UBIFS_BLOCK_SIZE);
 635		} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
 636			struct ubifs_data_node *dn;
 637
 638			dn = bu->buf + (bu->zbranch[nn].offs - offs);
 639
 640			ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
 641				     ubifs_inode(inode)->creat_sqnum);
 642
 643			len = le32_to_cpu(dn->size);
 644			if (len <= 0 || len > UBIFS_BLOCK_SIZE)
 645				goto out_err;
 646
 647			dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
 648			out_len = UBIFS_BLOCK_SIZE;
 649
 650			if (ubifs_crypt_is_encrypted(inode)) {
 651				err = ubifs_decrypt(inode, dn, &dlen, page_block);
 652				if (err)
 653					goto out_err;
 654			}
 655
 656			err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
 657					       le16_to_cpu(dn->compr_type));
 658			if (err || len != out_len)
 659				goto out_err;
 660
 661			if (len < UBIFS_BLOCK_SIZE)
 662				memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
 663
 664			nn += 1;
 665			read = (i << UBIFS_BLOCK_SHIFT) + len;
 666		} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
 667			nn += 1;
 668			continue;
 669		} else {
 670			hole = 1;
 671			memset(addr, 0, UBIFS_BLOCK_SIZE);
 672		}
 673		if (++i >= UBIFS_BLOCKS_PER_PAGE)
 674			break;
 675		addr += UBIFS_BLOCK_SIZE;
 676		page_block += 1;
 677	}
 678
 679	if (end_index == page->index) {
 680		int len = i_size & (PAGE_SIZE - 1);
 681
 682		if (len && len < read)
 683			memset(zaddr + len, 0, read - len);
 684	}
 685
 686out_hole:
 687	if (hole) {
 688		SetPageChecked(page);
 689		dbg_gen("hole");
 690	}
 691
 692	SetPageUptodate(page);
 693	ClearPageError(page);
 694	flush_dcache_page(page);
 695	kunmap(page);
 696	*n = nn;
 697	return 0;
 698
 699out_err:
 700	ClearPageUptodate(page);
 701	SetPageError(page);
 702	flush_dcache_page(page);
 703	kunmap(page);
 704	ubifs_err(c, "bad data node (block %u, inode %lu)",
 705		  page_block, inode->i_ino);
 706	return -EINVAL;
 707}
 708
 709/**
 710 * ubifs_do_bulk_read - do bulk-read.
 711 * @c: UBIFS file-system description object
 712 * @bu: bulk-read information
 713 * @page1: first page to read
 714 *
 715 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
 716 */
 717static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
 718			      struct page *page1)
 719{
 720	pgoff_t offset = page1->index, end_index;
 721	struct address_space *mapping = page1->mapping;
 722	struct inode *inode = mapping->host;
 723	struct ubifs_inode *ui = ubifs_inode(inode);
 724	int err, page_idx, page_cnt, ret = 0, n = 0;
 725	int allocate = bu->buf ? 0 : 1;
 726	loff_t isize;
 727	gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
 728
 729	err = ubifs_tnc_get_bu_keys(c, bu);
 730	if (err)
 731		goto out_warn;
 732
 733	if (bu->eof) {
 734		/* Turn off bulk-read at the end of the file */
 735		ui->read_in_a_row = 1;
 736		ui->bulk_read = 0;
 737	}
 738
 739	page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
 740	if (!page_cnt) {
 741		/*
 742		 * This happens when there are multiple blocks per page and the
 743		 * blocks for the first page we are looking for, are not
 744		 * together. If all the pages were like this, bulk-read would
 745		 * reduce performance, so we turn it off for a while.
 746		 */
 747		goto out_bu_off;
 748	}
 749
 750	if (bu->cnt) {
 751		if (allocate) {
 752			/*
 753			 * Allocate bulk-read buffer depending on how many data
 754			 * nodes we are going to read.
 755			 */
 756			bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
 757				      bu->zbranch[bu->cnt - 1].len -
 758				      bu->zbranch[0].offs;
 759			ubifs_assert(c, bu->buf_len > 0);
 760			ubifs_assert(c, bu->buf_len <= c->leb_size);
 761			bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
 762			if (!bu->buf)
 763				goto out_bu_off;
 764		}
 765
 766		err = ubifs_tnc_bulk_read(c, bu);
 767		if (err)
 768			goto out_warn;
 769	}
 770
 771	err = populate_page(c, page1, bu, &n);
 772	if (err)
 773		goto out_warn;
 774
 775	unlock_page(page1);
 776	ret = 1;
 777
 778	isize = i_size_read(inode);
 779	if (isize == 0)
 780		goto out_free;
 781	end_index = ((isize - 1) >> PAGE_SHIFT);
 782
 783	for (page_idx = 1; page_idx < page_cnt; page_idx++) {
 784		pgoff_t page_offset = offset + page_idx;
 785		struct page *page;
 786
 787		if (page_offset > end_index)
 788			break;
 789		page = find_or_create_page(mapping, page_offset, ra_gfp_mask);
 790		if (!page)
 791			break;
 792		if (!PageUptodate(page))
 793			err = populate_page(c, page, bu, &n);
 794		unlock_page(page);
 795		put_page(page);
 796		if (err)
 797			break;
 798	}
 799
 800	ui->last_page_read = offset + page_idx - 1;
 801
 802out_free:
 803	if (allocate)
 804		kfree(bu->buf);
 805	return ret;
 806
 807out_warn:
 808	ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
 809	goto out_free;
 810
 811out_bu_off:
 812	ui->read_in_a_row = ui->bulk_read = 0;
 813	goto out_free;
 814}
 815
 816/**
 817 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
 818 * @page: page from which to start bulk-read.
 819 *
 820 * Some flash media are capable of reading sequentially at faster rates. UBIFS
 821 * bulk-read facility is designed to take advantage of that, by reading in one
 822 * go consecutive data nodes that are also located consecutively in the same
 823 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
 824 */
 825static int ubifs_bulk_read(struct page *page)
 826{
 827	struct inode *inode = page->mapping->host;
 828	struct ubifs_info *c = inode->i_sb->s_fs_info;
 829	struct ubifs_inode *ui = ubifs_inode(inode);
 830	pgoff_t index = page->index, last_page_read = ui->last_page_read;
 831	struct bu_info *bu;
 832	int err = 0, allocated = 0;
 833
 834	ui->last_page_read = index;
 835	if (!c->bulk_read)
 836		return 0;
 837
 838	/*
 839	 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
 840	 * so don't bother if we cannot lock the mutex.
 841	 */
 842	if (!mutex_trylock(&ui->ui_mutex))
 843		return 0;
 844
 845	if (index != last_page_read + 1) {
 846		/* Turn off bulk-read if we stop reading sequentially */
 847		ui->read_in_a_row = 1;
 848		if (ui->bulk_read)
 849			ui->bulk_read = 0;
 850		goto out_unlock;
 851	}
 852
 853	if (!ui->bulk_read) {
 854		ui->read_in_a_row += 1;
 855		if (ui->read_in_a_row < 3)
 856			goto out_unlock;
 857		/* Three reads in a row, so switch on bulk-read */
 858		ui->bulk_read = 1;
 859	}
 860
 861	/*
 862	 * If possible, try to use pre-allocated bulk-read information, which
 863	 * is protected by @c->bu_mutex.
 864	 */
 865	if (mutex_trylock(&c->bu_mutex))
 866		bu = &c->bu;
 867	else {
 868		bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
 869		if (!bu)
 870			goto out_unlock;
 871
 872		bu->buf = NULL;
 873		allocated = 1;
 874	}
 875
 876	bu->buf_len = c->max_bu_buf_len;
 877	data_key_init(c, &bu->key, inode->i_ino,
 878		      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
 879	err = ubifs_do_bulk_read(c, bu, page);
 880
 881	if (!allocated)
 882		mutex_unlock(&c->bu_mutex);
 883	else
 884		kfree(bu);
 885
 886out_unlock:
 887	mutex_unlock(&ui->ui_mutex);
 888	return err;
 889}
 890
 891static int ubifs_readpage(struct file *file, struct page *page)
 892{
 893	if (ubifs_bulk_read(page))
 894		return 0;
 895	do_readpage(page);
 896	unlock_page(page);
 897	return 0;
 898}
 899
 900static int do_writepage(struct page *page, int len)
 901{
 902	int err = 0, i, blen;
 903	unsigned int block;
 904	void *addr;
 905	union ubifs_key key;
 906	struct inode *inode = page->mapping->host;
 907	struct ubifs_info *c = inode->i_sb->s_fs_info;
 908
 909#ifdef UBIFS_DEBUG
 910	struct ubifs_inode *ui = ubifs_inode(inode);
 911	spin_lock(&ui->ui_lock);
 912	ubifs_assert(c, page->index <= ui->synced_i_size >> PAGE_SHIFT);
 913	spin_unlock(&ui->ui_lock);
 914#endif
 915
 916	/* Update radix tree tags */
 917	set_page_writeback(page);
 918
 919	addr = kmap(page);
 920	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 921	i = 0;
 922	while (len) {
 923		blen = min_t(int, len, UBIFS_BLOCK_SIZE);
 924		data_key_init(c, &key, inode->i_ino, block);
 925		err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
 926		if (err)
 927			break;
 928		if (++i >= UBIFS_BLOCKS_PER_PAGE)
 929			break;
 930		block += 1;
 931		addr += blen;
 932		len -= blen;
 933	}
 934	if (err) {
 935		SetPageError(page);
 936		ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
 937			  page->index, inode->i_ino, err);
 938		ubifs_ro_mode(c, err);
 939	}
 940
 941	ubifs_assert(c, PagePrivate(page));
 942	if (PageChecked(page))
 943		release_new_page_budget(c);
 944	else
 945		release_existing_page_budget(c);
 946
 947	atomic_long_dec(&c->dirty_pg_cnt);
 948	ClearPagePrivate(page);
 949	ClearPageChecked(page);
 950
 951	kunmap(page);
 952	unlock_page(page);
 953	end_page_writeback(page);
 954	return err;
 955}
 956
 957/*
 958 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
 959 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
 960 * situation when a we have an inode with size 0, then a megabyte of data is
 961 * appended to the inode, then write-back starts and flushes some amount of the
 962 * dirty pages, the journal becomes full, commit happens and finishes, and then
 963 * an unclean reboot happens. When the file system is mounted next time, the
 964 * inode size would still be 0, but there would be many pages which are beyond
 965 * the inode size, they would be indexed and consume flash space. Because the
 966 * journal has been committed, the replay would not be able to detect this
 967 * situation and correct the inode size. This means UBIFS would have to scan
 968 * whole index and correct all inode sizes, which is long an unacceptable.
 969 *
 970 * To prevent situations like this, UBIFS writes pages back only if they are
 971 * within the last synchronized inode size, i.e. the size which has been
 972 * written to the flash media last time. Otherwise, UBIFS forces inode
 973 * write-back, thus making sure the on-flash inode contains current inode size,
 974 * and then keeps writing pages back.
 975 *
 976 * Some locking issues explanation. 'ubifs_writepage()' first is called with
 977 * the page locked, and it locks @ui_mutex. However, write-back does take inode
 978 * @i_mutex, which means other VFS operations may be run on this inode at the
 979 * same time. And the problematic one is truncation to smaller size, from where
 980 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
 981 * then drops the truncated pages. And while dropping the pages, it takes the
 982 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
 983 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
 984 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
 985 *
 986 * XXX(truncate): with the new truncate sequence this is not true anymore,
 987 * and the calls to truncate_setsize can be move around freely.  They should
 988 * be moved to the very end of the truncate sequence.
 989 *
 990 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
 991 * inode size. How do we do this if @inode->i_size may became smaller while we
 992 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
 993 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
 994 * internally and updates it under @ui_mutex.
 995 *
 996 * Q: why we do not worry that if we race with truncation, we may end up with a
 997 * situation when the inode is truncated while we are in the middle of
 998 * 'do_writepage()', so we do write beyond inode size?
 999 * A: If we are in the middle of 'do_writepage()', truncation would be locked
1000 * on the page lock and it would not write the truncated inode node to the
1001 * journal before we have finished.
1002 */
1003static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1004{
1005	struct inode *inode = page->mapping->host;
1006	struct ubifs_info *c = inode->i_sb->s_fs_info;
1007	struct ubifs_inode *ui = ubifs_inode(inode);
1008	loff_t i_size =  i_size_read(inode), synced_i_size;
1009	pgoff_t end_index = i_size >> PAGE_SHIFT;
1010	int err, len = i_size & (PAGE_SIZE - 1);
1011	void *kaddr;
1012
1013	dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1014		inode->i_ino, page->index, page->flags);
1015	ubifs_assert(c, PagePrivate(page));
1016
1017	/* Is the page fully outside @i_size? (truncate in progress) */
1018	if (page->index > end_index || (page->index == end_index && !len)) {
1019		err = 0;
1020		goto out_unlock;
1021	}
1022
1023	spin_lock(&ui->ui_lock);
1024	synced_i_size = ui->synced_i_size;
1025	spin_unlock(&ui->ui_lock);
1026
1027	/* Is the page fully inside @i_size? */
1028	if (page->index < end_index) {
1029		if (page->index >= synced_i_size >> PAGE_SHIFT) {
1030			err = inode->i_sb->s_op->write_inode(inode, NULL);
1031			if (err)
1032				goto out_unlock;
1033			/*
1034			 * The inode has been written, but the write-buffer has
1035			 * not been synchronized, so in case of an unclean
1036			 * reboot we may end up with some pages beyond inode
1037			 * size, but they would be in the journal (because
1038			 * commit flushes write buffers) and recovery would deal
1039			 * with this.
1040			 */
1041		}
1042		return do_writepage(page, PAGE_SIZE);
1043	}
1044
1045	/*
1046	 * The page straddles @i_size. It must be zeroed out on each and every
1047	 * writepage invocation because it may be mmapped. "A file is mapped
1048	 * in multiples of the page size. For a file that is not a multiple of
1049	 * the page size, the remaining memory is zeroed when mapped, and
1050	 * writes to that region are not written out to the file."
1051	 */
1052	kaddr = kmap_atomic(page);
1053	memset(kaddr + len, 0, PAGE_SIZE - len);
1054	flush_dcache_page(page);
1055	kunmap_atomic(kaddr);
1056
1057	if (i_size > synced_i_size) {
1058		err = inode->i_sb->s_op->write_inode(inode, NULL);
1059		if (err)
1060			goto out_unlock;
1061	}
1062
1063	return do_writepage(page, len);
1064
1065out_unlock:
1066	unlock_page(page);
1067	return err;
1068}
1069
1070/**
1071 * do_attr_changes - change inode attributes.
1072 * @inode: inode to change attributes for
1073 * @attr: describes attributes to change
1074 */
1075static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1076{
1077	if (attr->ia_valid & ATTR_UID)
1078		inode->i_uid = attr->ia_uid;
1079	if (attr->ia_valid & ATTR_GID)
1080		inode->i_gid = attr->ia_gid;
1081	if (attr->ia_valid & ATTR_ATIME) {
1082		inode->i_atime = timestamp_truncate(attr->ia_atime,
1083						  inode);
1084	}
1085	if (attr->ia_valid & ATTR_MTIME) {
1086		inode->i_mtime = timestamp_truncate(attr->ia_mtime,
1087						  inode);
1088	}
1089	if (attr->ia_valid & ATTR_CTIME) {
1090		inode->i_ctime = timestamp_truncate(attr->ia_ctime,
1091						  inode);
1092	}
1093	if (attr->ia_valid & ATTR_MODE) {
1094		umode_t mode = attr->ia_mode;
1095
1096		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1097			mode &= ~S_ISGID;
1098		inode->i_mode = mode;
1099	}
1100}
1101
1102/**
1103 * do_truncation - truncate an inode.
1104 * @c: UBIFS file-system description object
1105 * @inode: inode to truncate
1106 * @attr: inode attribute changes description
1107 *
1108 * This function implements VFS '->setattr()' call when the inode is truncated
1109 * to a smaller size. Returns zero in case of success and a negative error code
1110 * in case of failure.
1111 */
1112static int do_truncation(struct ubifs_info *c, struct inode *inode,
1113			 const struct iattr *attr)
1114{
1115	int err;
1116	struct ubifs_budget_req req;
1117	loff_t old_size = inode->i_size, new_size = attr->ia_size;
1118	int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1119	struct ubifs_inode *ui = ubifs_inode(inode);
1120
1121	dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1122	memset(&req, 0, sizeof(struct ubifs_budget_req));
1123
1124	/*
1125	 * If this is truncation to a smaller size, and we do not truncate on a
1126	 * block boundary, budget for changing one data block, because the last
1127	 * block will be re-written.
1128	 */
1129	if (new_size & (UBIFS_BLOCK_SIZE - 1))
1130		req.dirtied_page = 1;
1131
1132	req.dirtied_ino = 1;
1133	/* A funny way to budget for truncation node */
1134	req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1135	err = ubifs_budget_space(c, &req);
1136	if (err) {
1137		/*
1138		 * Treat truncations to zero as deletion and always allow them,
1139		 * just like we do for '->unlink()'.
1140		 */
1141		if (new_size || err != -ENOSPC)
1142			return err;
1143		budgeted = 0;
1144	}
1145
1146	truncate_setsize(inode, new_size);
1147
1148	if (offset) {
1149		pgoff_t index = new_size >> PAGE_SHIFT;
1150		struct page *page;
1151
1152		page = find_lock_page(inode->i_mapping, index);
1153		if (page) {
1154			if (PageDirty(page)) {
1155				/*
1156				 * 'ubifs_jnl_truncate()' will try to truncate
1157				 * the last data node, but it contains
1158				 * out-of-date data because the page is dirty.
1159				 * Write the page now, so that
1160				 * 'ubifs_jnl_truncate()' will see an already
1161				 * truncated (and up to date) data node.
1162				 */
1163				ubifs_assert(c, PagePrivate(page));
1164
1165				clear_page_dirty_for_io(page);
1166				if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1167					offset = new_size &
1168						 (PAGE_SIZE - 1);
1169				err = do_writepage(page, offset);
1170				put_page(page);
1171				if (err)
1172					goto out_budg;
1173				/*
1174				 * We could now tell 'ubifs_jnl_truncate()' not
1175				 * to read the last block.
1176				 */
1177			} else {
1178				/*
1179				 * We could 'kmap()' the page and pass the data
1180				 * to 'ubifs_jnl_truncate()' to save it from
1181				 * having to read it.
1182				 */
1183				unlock_page(page);
1184				put_page(page);
1185			}
1186		}
1187	}
1188
1189	mutex_lock(&ui->ui_mutex);
1190	ui->ui_size = inode->i_size;
1191	/* Truncation changes inode [mc]time */
1192	inode->i_mtime = inode->i_ctime = current_time(inode);
1193	/* Other attributes may be changed at the same time as well */
1194	do_attr_changes(inode, attr);
1195	err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1196	mutex_unlock(&ui->ui_mutex);
1197
1198out_budg:
1199	if (budgeted)
1200		ubifs_release_budget(c, &req);
1201	else {
1202		c->bi.nospace = c->bi.nospace_rp = 0;
1203		smp_wmb();
1204	}
1205	return err;
1206}
1207
1208/**
1209 * do_setattr - change inode attributes.
1210 * @c: UBIFS file-system description object
1211 * @inode: inode to change attributes for
1212 * @attr: inode attribute changes description
1213 *
1214 * This function implements VFS '->setattr()' call for all cases except
1215 * truncations to smaller size. Returns zero in case of success and a negative
1216 * error code in case of failure.
1217 */
1218static int do_setattr(struct ubifs_info *c, struct inode *inode,
1219		      const struct iattr *attr)
1220{
1221	int err, release;
1222	loff_t new_size = attr->ia_size;
1223	struct ubifs_inode *ui = ubifs_inode(inode);
1224	struct ubifs_budget_req req = { .dirtied_ino = 1,
1225				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1226
1227	err = ubifs_budget_space(c, &req);
1228	if (err)
1229		return err;
1230
1231	if (attr->ia_valid & ATTR_SIZE) {
1232		dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1233		truncate_setsize(inode, new_size);
1234	}
1235
1236	mutex_lock(&ui->ui_mutex);
1237	if (attr->ia_valid & ATTR_SIZE) {
1238		/* Truncation changes inode [mc]time */
1239		inode->i_mtime = inode->i_ctime = current_time(inode);
1240		/* 'truncate_setsize()' changed @i_size, update @ui_size */
1241		ui->ui_size = inode->i_size;
1242	}
1243
1244	do_attr_changes(inode, attr);
1245
1246	release = ui->dirty;
1247	if (attr->ia_valid & ATTR_SIZE)
1248		/*
1249		 * Inode length changed, so we have to make sure
1250		 * @I_DIRTY_DATASYNC is set.
1251		 */
1252		 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1253	else
1254		mark_inode_dirty_sync(inode);
1255	mutex_unlock(&ui->ui_mutex);
1256
1257	if (release)
1258		ubifs_release_budget(c, &req);
1259	if (IS_SYNC(inode))
1260		err = inode->i_sb->s_op->write_inode(inode, NULL);
1261	return err;
1262}
1263
1264int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1265{
1266	int err;
1267	struct inode *inode = d_inode(dentry);
1268	struct ubifs_info *c = inode->i_sb->s_fs_info;
1269
1270	dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1271		inode->i_ino, inode->i_mode, attr->ia_valid);
1272	err = setattr_prepare(dentry, attr);
1273	if (err)
1274		return err;
1275
1276	err = dbg_check_synced_i_size(c, inode);
1277	if (err)
1278		return err;
1279
1280	err = fscrypt_prepare_setattr(dentry, attr);
1281	if (err)
1282		return err;
1283
1284	if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1285		/* Truncation to a smaller size */
1286		err = do_truncation(c, inode, attr);
1287	else
1288		err = do_setattr(c, inode, attr);
1289
1290	return err;
1291}
1292
1293static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1294				 unsigned int length)
1295{
1296	struct inode *inode = page->mapping->host;
1297	struct ubifs_info *c = inode->i_sb->s_fs_info;
1298
1299	ubifs_assert(c, PagePrivate(page));
1300	if (offset || length < PAGE_SIZE)
1301		/* Partial page remains dirty */
1302		return;
1303
1304	if (PageChecked(page))
1305		release_new_page_budget(c);
1306	else
1307		release_existing_page_budget(c);
1308
1309	atomic_long_dec(&c->dirty_pg_cnt);
1310	ClearPagePrivate(page);
1311	ClearPageChecked(page);
1312}
1313
1314int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1315{
1316	struct inode *inode = file->f_mapping->host;
1317	struct ubifs_info *c = inode->i_sb->s_fs_info;
1318	int err;
1319
1320	dbg_gen("syncing inode %lu", inode->i_ino);
1321
1322	if (c->ro_mount)
1323		/*
1324		 * For some really strange reasons VFS does not filter out
1325		 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1326		 */
1327		return 0;
1328
1329	err = file_write_and_wait_range(file, start, end);
1330	if (err)
1331		return err;
1332	inode_lock(inode);
1333
1334	/* Synchronize the inode unless this is a 'datasync()' call. */
1335	if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1336		err = inode->i_sb->s_op->write_inode(inode, NULL);
1337		if (err)
1338			goto out;
1339	}
1340
1341	/*
1342	 * Nodes related to this inode may still sit in a write-buffer. Flush
1343	 * them.
1344	 */
1345	err = ubifs_sync_wbufs_by_inode(c, inode);
1346out:
1347	inode_unlock(inode);
1348	return err;
1349}
1350
1351/**
1352 * mctime_update_needed - check if mtime or ctime update is needed.
1353 * @inode: the inode to do the check for
1354 * @now: current time
1355 *
1356 * This helper function checks if the inode mtime/ctime should be updated or
1357 * not. If current values of the time-stamps are within the UBIFS inode time
1358 * granularity, they are not updated. This is an optimization.
1359 */
1360static inline int mctime_update_needed(const struct inode *inode,
1361				       const struct timespec64 *now)
1362{
1363	if (!timespec64_equal(&inode->i_mtime, now) ||
1364	    !timespec64_equal(&inode->i_ctime, now))
1365		return 1;
1366	return 0;
1367}
1368
 
1369/**
1370 * ubifs_update_time - update time of inode.
1371 * @inode: inode to update
1372 *
1373 * This function updates time of the inode.
1374 */
1375int ubifs_update_time(struct inode *inode, struct timespec64 *time,
1376			     int flags)
1377{
1378	struct ubifs_inode *ui = ubifs_inode(inode);
1379	struct ubifs_info *c = inode->i_sb->s_fs_info;
1380	struct ubifs_budget_req req = { .dirtied_ino = 1,
1381			.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1382	int iflags = I_DIRTY_TIME;
1383	int err, release;
1384
1385	if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1386		return generic_update_time(inode, time, flags);
1387
1388	err = ubifs_budget_space(c, &req);
1389	if (err)
1390		return err;
1391
1392	mutex_lock(&ui->ui_mutex);
1393	if (flags & S_ATIME)
1394		inode->i_atime = *time;
1395	if (flags & S_CTIME)
1396		inode->i_ctime = *time;
1397	if (flags & S_MTIME)
1398		inode->i_mtime = *time;
1399
1400	if (!(inode->i_sb->s_flags & SB_LAZYTIME))
1401		iflags |= I_DIRTY_SYNC;
1402
1403	release = ui->dirty;
1404	__mark_inode_dirty(inode, iflags);
1405	mutex_unlock(&ui->ui_mutex);
1406	if (release)
1407		ubifs_release_budget(c, &req);
1408	return 0;
1409}
 
1410
1411/**
1412 * update_mctime - update mtime and ctime of an inode.
1413 * @inode: inode to update
1414 *
1415 * This function updates mtime and ctime of the inode if it is not equivalent to
1416 * current time. Returns zero in case of success and a negative error code in
1417 * case of failure.
1418 */
1419static int update_mctime(struct inode *inode)
1420{
1421	struct timespec64 now = current_time(inode);
1422	struct ubifs_inode *ui = ubifs_inode(inode);
1423	struct ubifs_info *c = inode->i_sb->s_fs_info;
1424
1425	if (mctime_update_needed(inode, &now)) {
1426		int err, release;
1427		struct ubifs_budget_req req = { .dirtied_ino = 1,
1428				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1429
1430		err = ubifs_budget_space(c, &req);
1431		if (err)
1432			return err;
1433
1434		mutex_lock(&ui->ui_mutex);
1435		inode->i_mtime = inode->i_ctime = current_time(inode);
1436		release = ui->dirty;
1437		mark_inode_dirty_sync(inode);
1438		mutex_unlock(&ui->ui_mutex);
1439		if (release)
1440			ubifs_release_budget(c, &req);
1441	}
1442
1443	return 0;
1444}
1445
1446static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1447{
1448	int err = update_mctime(file_inode(iocb->ki_filp));
1449	if (err)
1450		return err;
1451
1452	return generic_file_write_iter(iocb, from);
1453}
1454
1455static int ubifs_set_page_dirty(struct page *page)
1456{
1457	int ret;
1458	struct inode *inode = page->mapping->host;
1459	struct ubifs_info *c = inode->i_sb->s_fs_info;
1460
1461	ret = __set_page_dirty_nobuffers(page);
1462	/*
1463	 * An attempt to dirty a page without budgeting for it - should not
1464	 * happen.
1465	 */
1466	ubifs_assert(c, ret == 0);
1467	return ret;
1468}
1469
1470#ifdef CONFIG_MIGRATION
1471static int ubifs_migrate_page(struct address_space *mapping,
1472		struct page *newpage, struct page *page, enum migrate_mode mode)
1473{
1474	int rc;
1475
1476	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
1477	if (rc != MIGRATEPAGE_SUCCESS)
1478		return rc;
1479
1480	if (PagePrivate(page)) {
1481		ClearPagePrivate(page);
1482		SetPagePrivate(newpage);
1483	}
1484
1485	if (mode != MIGRATE_SYNC_NO_COPY)
1486		migrate_page_copy(newpage, page);
1487	else
1488		migrate_page_states(newpage, page);
1489	return MIGRATEPAGE_SUCCESS;
1490}
1491#endif
1492
1493static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1494{
1495	struct inode *inode = page->mapping->host;
1496	struct ubifs_info *c = inode->i_sb->s_fs_info;
1497
1498	/*
1499	 * An attempt to release a dirty page without budgeting for it - should
1500	 * not happen.
1501	 */
1502	if (PageWriteback(page))
1503		return 0;
1504	ubifs_assert(c, PagePrivate(page));
1505	ubifs_assert(c, 0);
1506	ClearPagePrivate(page);
1507	ClearPageChecked(page);
1508	return 1;
1509}
1510
1511/*
1512 * mmap()d file has taken write protection fault and is being made writable.
1513 * UBIFS must ensure page is budgeted for.
1514 */
1515static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1516{
1517	struct page *page = vmf->page;
1518	struct inode *inode = file_inode(vmf->vma->vm_file);
1519	struct ubifs_info *c = inode->i_sb->s_fs_info;
1520	struct timespec64 now = current_time(inode);
1521	struct ubifs_budget_req req = { .new_page = 1 };
1522	int err, update_time;
1523
1524	dbg_gen("ino %lu, pg %lu, i_size %lld",	inode->i_ino, page->index,
1525		i_size_read(inode));
1526	ubifs_assert(c, !c->ro_media && !c->ro_mount);
1527
1528	if (unlikely(c->ro_error))
1529		return VM_FAULT_SIGBUS; /* -EROFS */
1530
1531	/*
1532	 * We have not locked @page so far so we may budget for changing the
1533	 * page. Note, we cannot do this after we locked the page, because
1534	 * budgeting may cause write-back which would cause deadlock.
1535	 *
1536	 * At the moment we do not know whether the page is dirty or not, so we
1537	 * assume that it is not and budget for a new page. We could look at
1538	 * the @PG_private flag and figure this out, but we may race with write
1539	 * back and the page state may change by the time we lock it, so this
1540	 * would need additional care. We do not bother with this at the
1541	 * moment, although it might be good idea to do. Instead, we allocate
1542	 * budget for a new page and amend it later on if the page was in fact
1543	 * dirty.
1544	 *
1545	 * The budgeting-related logic of this function is similar to what we
1546	 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1547	 * for more comments.
1548	 */
1549	update_time = mctime_update_needed(inode, &now);
1550	if (update_time)
1551		/*
1552		 * We have to change inode time stamp which requires extra
1553		 * budgeting.
1554		 */
1555		req.dirtied_ino = 1;
1556
1557	err = ubifs_budget_space(c, &req);
1558	if (unlikely(err)) {
1559		if (err == -ENOSPC)
1560			ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1561				   inode->i_ino);
1562		return VM_FAULT_SIGBUS;
1563	}
1564
1565	lock_page(page);
1566	if (unlikely(page->mapping != inode->i_mapping ||
1567		     page_offset(page) > i_size_read(inode))) {
1568		/* Page got truncated out from underneath us */
1569		goto sigbus;
 
1570	}
1571
1572	if (PagePrivate(page))
1573		release_new_page_budget(c);
1574	else {
1575		if (!PageChecked(page))
1576			ubifs_convert_page_budget(c);
1577		SetPagePrivate(page);
1578		atomic_long_inc(&c->dirty_pg_cnt);
1579		__set_page_dirty_nobuffers(page);
1580	}
1581
1582	if (update_time) {
1583		int release;
1584		struct ubifs_inode *ui = ubifs_inode(inode);
1585
1586		mutex_lock(&ui->ui_mutex);
1587		inode->i_mtime = inode->i_ctime = current_time(inode);
1588		release = ui->dirty;
1589		mark_inode_dirty_sync(inode);
1590		mutex_unlock(&ui->ui_mutex);
1591		if (release)
1592			ubifs_release_dirty_inode_budget(c, ui);
1593	}
1594
1595	wait_for_stable_page(page);
1596	return VM_FAULT_LOCKED;
1597
1598sigbus:
1599	unlock_page(page);
1600	ubifs_release_budget(c, &req);
1601	return VM_FAULT_SIGBUS;
 
 
1602}
1603
1604static const struct vm_operations_struct ubifs_file_vm_ops = {
1605	.fault        = filemap_fault,
1606	.map_pages = filemap_map_pages,
1607	.page_mkwrite = ubifs_vm_page_mkwrite,
1608};
1609
1610static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1611{
1612	int err;
1613
1614	err = generic_file_mmap(file, vma);
1615	if (err)
1616		return err;
1617	vma->vm_ops = &ubifs_file_vm_ops;
1618
1619	if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1620		file_accessed(file);
1621
1622	return 0;
1623}
1624
1625static const char *ubifs_get_link(struct dentry *dentry,
1626					    struct inode *inode,
1627					    struct delayed_call *done)
1628{
1629	struct ubifs_inode *ui = ubifs_inode(inode);
1630
1631	if (!IS_ENCRYPTED(inode))
1632		return ui->data;
1633
1634	if (!dentry)
1635		return ERR_PTR(-ECHILD);
1636
1637	return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
1638}
1639
1640const struct address_space_operations ubifs_file_address_operations = {
1641	.readpage       = ubifs_readpage,
1642	.writepage      = ubifs_writepage,
1643	.write_begin    = ubifs_write_begin,
1644	.write_end      = ubifs_write_end,
1645	.invalidatepage = ubifs_invalidatepage,
1646	.set_page_dirty = ubifs_set_page_dirty,
1647#ifdef CONFIG_MIGRATION
1648	.migratepage	= ubifs_migrate_page,
1649#endif
1650	.releasepage    = ubifs_releasepage,
1651};
1652
1653const struct inode_operations ubifs_file_inode_operations = {
1654	.setattr     = ubifs_setattr,
1655	.getattr     = ubifs_getattr,
1656#ifdef CONFIG_UBIFS_FS_XATTR
1657	.listxattr   = ubifs_listxattr,
1658#endif
1659	.update_time = ubifs_update_time,
 
1660};
1661
1662const struct inode_operations ubifs_symlink_inode_operations = {
1663	.get_link    = ubifs_get_link,
1664	.setattr     = ubifs_setattr,
1665	.getattr     = ubifs_getattr,
1666#ifdef CONFIG_UBIFS_FS_XATTR
1667	.listxattr   = ubifs_listxattr,
1668#endif
1669	.update_time = ubifs_update_time,
 
1670};
1671
1672const struct file_operations ubifs_file_operations = {
1673	.llseek         = generic_file_llseek,
1674	.read_iter      = generic_file_read_iter,
1675	.write_iter     = ubifs_write_iter,
1676	.mmap           = ubifs_file_mmap,
1677	.fsync          = ubifs_fsync,
1678	.unlocked_ioctl = ubifs_ioctl,
1679	.splice_read	= generic_file_splice_read,
1680	.splice_write	= iter_file_splice_write,
1681	.open		= fscrypt_file_open,
1682#ifdef CONFIG_COMPAT
1683	.compat_ioctl   = ubifs_compat_ioctl,
1684#endif
1685};
v4.17
 
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements VFS file and inode operations for regular files, device
  25 * nodes and symlinks as well as address space operations.
  26 *
  27 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
  28 * the page is dirty and is used for optimization purposes - dirty pages are
  29 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
  30 * the budget for this page. The @PG_checked flag is set if full budgeting is
  31 * required for the page e.g., when it corresponds to a file hole or it is
  32 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
  33 * it is OK to fail in this function, and the budget is released in
  34 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
  35 * information about how the page was budgeted, to make it possible to release
  36 * the budget properly.
  37 *
  38 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
  39 * implement. However, this is not true for 'ubifs_writepage()', which may be
  40 * called with @i_mutex unlocked. For example, when flusher thread is doing
  41 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
  42 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
  43 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
  44 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
  45 *
  46 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
  47 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
  48 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
  49 * set as well. However, UBIFS disables readahead.
  50 */
  51
  52#include "ubifs.h"
  53#include <linux/mount.h>
  54#include <linux/slab.h>
  55#include <linux/migrate.h>
  56
  57static int read_block(struct inode *inode, void *addr, unsigned int block,
  58		      struct ubifs_data_node *dn)
  59{
  60	struct ubifs_info *c = inode->i_sb->s_fs_info;
  61	int err, len, out_len;
  62	union ubifs_key key;
  63	unsigned int dlen;
  64
  65	data_key_init(c, &key, inode->i_ino, block);
  66	err = ubifs_tnc_lookup(c, &key, dn);
  67	if (err) {
  68		if (err == -ENOENT)
  69			/* Not found, so it must be a hole */
  70			memset(addr, 0, UBIFS_BLOCK_SIZE);
  71		return err;
  72	}
  73
  74	ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
  75		     ubifs_inode(inode)->creat_sqnum);
  76	len = le32_to_cpu(dn->size);
  77	if (len <= 0 || len > UBIFS_BLOCK_SIZE)
  78		goto dump;
  79
  80	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
  81
  82	if (ubifs_crypt_is_encrypted(inode)) {
  83		err = ubifs_decrypt(inode, dn, &dlen, block);
  84		if (err)
  85			goto dump;
  86	}
  87
  88	out_len = UBIFS_BLOCK_SIZE;
  89	err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
  90			       le16_to_cpu(dn->compr_type));
  91	if (err || len != out_len)
  92		goto dump;
  93
  94	/*
  95	 * Data length can be less than a full block, even for blocks that are
  96	 * not the last in the file (e.g., as a result of making a hole and
  97	 * appending data). Ensure that the remainder is zeroed out.
  98	 */
  99	if (len < UBIFS_BLOCK_SIZE)
 100		memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
 101
 102	return 0;
 103
 104dump:
 105	ubifs_err(c, "bad data node (block %u, inode %lu)",
 106		  block, inode->i_ino);
 107	ubifs_dump_node(c, dn);
 108	return -EINVAL;
 109}
 110
 111static int do_readpage(struct page *page)
 112{
 113	void *addr;
 114	int err = 0, i;
 115	unsigned int block, beyond;
 116	struct ubifs_data_node *dn;
 117	struct inode *inode = page->mapping->host;
 
 118	loff_t i_size = i_size_read(inode);
 119
 120	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
 121		inode->i_ino, page->index, i_size, page->flags);
 122	ubifs_assert(!PageChecked(page));
 123	ubifs_assert(!PagePrivate(page));
 124
 125	addr = kmap(page);
 126
 127	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 128	beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
 129	if (block >= beyond) {
 130		/* Reading beyond inode */
 131		SetPageChecked(page);
 132		memset(addr, 0, PAGE_SIZE);
 133		goto out;
 134	}
 135
 136	dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
 137	if (!dn) {
 138		err = -ENOMEM;
 139		goto error;
 140	}
 141
 142	i = 0;
 143	while (1) {
 144		int ret;
 145
 146		if (block >= beyond) {
 147			/* Reading beyond inode */
 148			err = -ENOENT;
 149			memset(addr, 0, UBIFS_BLOCK_SIZE);
 150		} else {
 151			ret = read_block(inode, addr, block, dn);
 152			if (ret) {
 153				err = ret;
 154				if (err != -ENOENT)
 155					break;
 156			} else if (block + 1 == beyond) {
 157				int dlen = le32_to_cpu(dn->size);
 158				int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
 159
 160				if (ilen && ilen < dlen)
 161					memset(addr + ilen, 0, dlen - ilen);
 162			}
 163		}
 164		if (++i >= UBIFS_BLOCKS_PER_PAGE)
 165			break;
 166		block += 1;
 167		addr += UBIFS_BLOCK_SIZE;
 168	}
 169	if (err) {
 170		struct ubifs_info *c = inode->i_sb->s_fs_info;
 171		if (err == -ENOENT) {
 172			/* Not found, so it must be a hole */
 173			SetPageChecked(page);
 174			dbg_gen("hole");
 175			goto out_free;
 176		}
 177		ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
 178			  page->index, inode->i_ino, err);
 179		goto error;
 180	}
 181
 182out_free:
 183	kfree(dn);
 184out:
 185	SetPageUptodate(page);
 186	ClearPageError(page);
 187	flush_dcache_page(page);
 188	kunmap(page);
 189	return 0;
 190
 191error:
 192	kfree(dn);
 193	ClearPageUptodate(page);
 194	SetPageError(page);
 195	flush_dcache_page(page);
 196	kunmap(page);
 197	return err;
 198}
 199
 200/**
 201 * release_new_page_budget - release budget of a new page.
 202 * @c: UBIFS file-system description object
 203 *
 204 * This is a helper function which releases budget corresponding to the budget
 205 * of one new page of data.
 206 */
 207static void release_new_page_budget(struct ubifs_info *c)
 208{
 209	struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
 210
 211	ubifs_release_budget(c, &req);
 212}
 213
 214/**
 215 * release_existing_page_budget - release budget of an existing page.
 216 * @c: UBIFS file-system description object
 217 *
 218 * This is a helper function which releases budget corresponding to the budget
 219 * of changing one one page of data which already exists on the flash media.
 220 */
 221static void release_existing_page_budget(struct ubifs_info *c)
 222{
 223	struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
 224
 225	ubifs_release_budget(c, &req);
 226}
 227
 228static int write_begin_slow(struct address_space *mapping,
 229			    loff_t pos, unsigned len, struct page **pagep,
 230			    unsigned flags)
 231{
 232	struct inode *inode = mapping->host;
 233	struct ubifs_info *c = inode->i_sb->s_fs_info;
 234	pgoff_t index = pos >> PAGE_SHIFT;
 235	struct ubifs_budget_req req = { .new_page = 1 };
 236	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
 237	struct page *page;
 238
 239	dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
 240		inode->i_ino, pos, len, inode->i_size);
 241
 242	/*
 243	 * At the slow path we have to budget before locking the page, because
 244	 * budgeting may force write-back, which would wait on locked pages and
 245	 * deadlock if we had the page locked. At this point we do not know
 246	 * anything about the page, so assume that this is a new page which is
 247	 * written to a hole. This corresponds to largest budget. Later the
 248	 * budget will be amended if this is not true.
 249	 */
 250	if (appending)
 251		/* We are appending data, budget for inode change */
 252		req.dirtied_ino = 1;
 253
 254	err = ubifs_budget_space(c, &req);
 255	if (unlikely(err))
 256		return err;
 257
 258	page = grab_cache_page_write_begin(mapping, index, flags);
 259	if (unlikely(!page)) {
 260		ubifs_release_budget(c, &req);
 261		return -ENOMEM;
 262	}
 263
 264	if (!PageUptodate(page)) {
 265		if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE)
 266			SetPageChecked(page);
 267		else {
 268			err = do_readpage(page);
 269			if (err) {
 270				unlock_page(page);
 271				put_page(page);
 272				ubifs_release_budget(c, &req);
 273				return err;
 274			}
 275		}
 276
 277		SetPageUptodate(page);
 278		ClearPageError(page);
 279	}
 280
 281	if (PagePrivate(page))
 282		/*
 283		 * The page is dirty, which means it was budgeted twice:
 284		 *   o first time the budget was allocated by the task which
 285		 *     made the page dirty and set the PG_private flag;
 286		 *   o and then we budgeted for it for the second time at the
 287		 *     very beginning of this function.
 288		 *
 289		 * So what we have to do is to release the page budget we
 290		 * allocated.
 291		 */
 292		release_new_page_budget(c);
 293	else if (!PageChecked(page))
 294		/*
 295		 * We are changing a page which already exists on the media.
 296		 * This means that changing the page does not make the amount
 297		 * of indexing information larger, and this part of the budget
 298		 * which we have already acquired may be released.
 299		 */
 300		ubifs_convert_page_budget(c);
 301
 302	if (appending) {
 303		struct ubifs_inode *ui = ubifs_inode(inode);
 304
 305		/*
 306		 * 'ubifs_write_end()' is optimized from the fast-path part of
 307		 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
 308		 * if data is appended.
 309		 */
 310		mutex_lock(&ui->ui_mutex);
 311		if (ui->dirty)
 312			/*
 313			 * The inode is dirty already, so we may free the
 314			 * budget we allocated.
 315			 */
 316			ubifs_release_dirty_inode_budget(c, ui);
 317	}
 318
 319	*pagep = page;
 320	return 0;
 321}
 322
 323/**
 324 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
 325 * @c: UBIFS file-system description object
 326 * @page: page to allocate budget for
 327 * @ui: UBIFS inode object the page belongs to
 328 * @appending: non-zero if the page is appended
 329 *
 330 * This is a helper function for 'ubifs_write_begin()' which allocates budget
 331 * for the operation. The budget is allocated differently depending on whether
 332 * this is appending, whether the page is dirty or not, and so on. This
 333 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
 334 * in case of success and %-ENOSPC in case of failure.
 335 */
 336static int allocate_budget(struct ubifs_info *c, struct page *page,
 337			   struct ubifs_inode *ui, int appending)
 338{
 339	struct ubifs_budget_req req = { .fast = 1 };
 340
 341	if (PagePrivate(page)) {
 342		if (!appending)
 343			/*
 344			 * The page is dirty and we are not appending, which
 345			 * means no budget is needed at all.
 346			 */
 347			return 0;
 348
 349		mutex_lock(&ui->ui_mutex);
 350		if (ui->dirty)
 351			/*
 352			 * The page is dirty and we are appending, so the inode
 353			 * has to be marked as dirty. However, it is already
 354			 * dirty, so we do not need any budget. We may return,
 355			 * but @ui->ui_mutex hast to be left locked because we
 356			 * should prevent write-back from flushing the inode
 357			 * and freeing the budget. The lock will be released in
 358			 * 'ubifs_write_end()'.
 359			 */
 360			return 0;
 361
 362		/*
 363		 * The page is dirty, we are appending, the inode is clean, so
 364		 * we need to budget the inode change.
 365		 */
 366		req.dirtied_ino = 1;
 367	} else {
 368		if (PageChecked(page))
 369			/*
 370			 * The page corresponds to a hole and does not
 371			 * exist on the media. So changing it makes
 372			 * make the amount of indexing information
 373			 * larger, and we have to budget for a new
 374			 * page.
 375			 */
 376			req.new_page = 1;
 377		else
 378			/*
 379			 * Not a hole, the change will not add any new
 380			 * indexing information, budget for page
 381			 * change.
 382			 */
 383			req.dirtied_page = 1;
 384
 385		if (appending) {
 386			mutex_lock(&ui->ui_mutex);
 387			if (!ui->dirty)
 388				/*
 389				 * The inode is clean but we will have to mark
 390				 * it as dirty because we are appending. This
 391				 * needs a budget.
 392				 */
 393				req.dirtied_ino = 1;
 394		}
 395	}
 396
 397	return ubifs_budget_space(c, &req);
 398}
 399
 400/*
 401 * This function is called when a page of data is going to be written. Since
 402 * the page of data will not necessarily go to the flash straight away, UBIFS
 403 * has to reserve space on the media for it, which is done by means of
 404 * budgeting.
 405 *
 406 * This is the hot-path of the file-system and we are trying to optimize it as
 407 * much as possible. For this reasons it is split on 2 parts - slow and fast.
 408 *
 409 * There many budgeting cases:
 410 *     o a new page is appended - we have to budget for a new page and for
 411 *       changing the inode; however, if the inode is already dirty, there is
 412 *       no need to budget for it;
 413 *     o an existing clean page is changed - we have budget for it; if the page
 414 *       does not exist on the media (a hole), we have to budget for a new
 415 *       page; otherwise, we may budget for changing an existing page; the
 416 *       difference between these cases is that changing an existing page does
 417 *       not introduce anything new to the FS indexing information, so it does
 418 *       not grow, and smaller budget is acquired in this case;
 419 *     o an existing dirty page is changed - no need to budget at all, because
 420 *       the page budget has been acquired by earlier, when the page has been
 421 *       marked dirty.
 422 *
 423 * UBIFS budgeting sub-system may force write-back if it thinks there is no
 424 * space to reserve. This imposes some locking restrictions and makes it
 425 * impossible to take into account the above cases, and makes it impossible to
 426 * optimize budgeting.
 427 *
 428 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
 429 * there is a plenty of flash space and the budget will be acquired quickly,
 430 * without forcing write-back. The slow path does not make this assumption.
 431 */
 432static int ubifs_write_begin(struct file *file, struct address_space *mapping,
 433			     loff_t pos, unsigned len, unsigned flags,
 434			     struct page **pagep, void **fsdata)
 435{
 436	struct inode *inode = mapping->host;
 437	struct ubifs_info *c = inode->i_sb->s_fs_info;
 438	struct ubifs_inode *ui = ubifs_inode(inode);
 439	pgoff_t index = pos >> PAGE_SHIFT;
 440	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
 441	int skipped_read = 0;
 442	struct page *page;
 443
 444	ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
 445	ubifs_assert(!c->ro_media && !c->ro_mount);
 446
 447	if (unlikely(c->ro_error))
 448		return -EROFS;
 449
 450	/* Try out the fast-path part first */
 451	page = grab_cache_page_write_begin(mapping, index, flags);
 452	if (unlikely(!page))
 453		return -ENOMEM;
 454
 455	if (!PageUptodate(page)) {
 456		/* The page is not loaded from the flash */
 457		if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) {
 458			/*
 459			 * We change whole page so no need to load it. But we
 460			 * do not know whether this page exists on the media or
 461			 * not, so we assume the latter because it requires
 462			 * larger budget. The assumption is that it is better
 463			 * to budget a bit more than to read the page from the
 464			 * media. Thus, we are setting the @PG_checked flag
 465			 * here.
 466			 */
 467			SetPageChecked(page);
 468			skipped_read = 1;
 469		} else {
 470			err = do_readpage(page);
 471			if (err) {
 472				unlock_page(page);
 473				put_page(page);
 474				return err;
 475			}
 476		}
 477
 478		SetPageUptodate(page);
 479		ClearPageError(page);
 480	}
 481
 482	err = allocate_budget(c, page, ui, appending);
 483	if (unlikely(err)) {
 484		ubifs_assert(err == -ENOSPC);
 485		/*
 486		 * If we skipped reading the page because we were going to
 487		 * write all of it, then it is not up to date.
 488		 */
 489		if (skipped_read) {
 490			ClearPageChecked(page);
 491			ClearPageUptodate(page);
 492		}
 493		/*
 494		 * Budgeting failed which means it would have to force
 495		 * write-back but didn't, because we set the @fast flag in the
 496		 * request. Write-back cannot be done now, while we have the
 497		 * page locked, because it would deadlock. Unlock and free
 498		 * everything and fall-back to slow-path.
 499		 */
 500		if (appending) {
 501			ubifs_assert(mutex_is_locked(&ui->ui_mutex));
 502			mutex_unlock(&ui->ui_mutex);
 503		}
 504		unlock_page(page);
 505		put_page(page);
 506
 507		return write_begin_slow(mapping, pos, len, pagep, flags);
 508	}
 509
 510	/*
 511	 * Whee, we acquired budgeting quickly - without involving
 512	 * garbage-collection, committing or forcing write-back. We return
 513	 * with @ui->ui_mutex locked if we are appending pages, and unlocked
 514	 * otherwise. This is an optimization (slightly hacky though).
 515	 */
 516	*pagep = page;
 517	return 0;
 518
 519}
 520
 521/**
 522 * cancel_budget - cancel budget.
 523 * @c: UBIFS file-system description object
 524 * @page: page to cancel budget for
 525 * @ui: UBIFS inode object the page belongs to
 526 * @appending: non-zero if the page is appended
 527 *
 528 * This is a helper function for a page write operation. It unlocks the
 529 * @ui->ui_mutex in case of appending.
 530 */
 531static void cancel_budget(struct ubifs_info *c, struct page *page,
 532			  struct ubifs_inode *ui, int appending)
 533{
 534	if (appending) {
 535		if (!ui->dirty)
 536			ubifs_release_dirty_inode_budget(c, ui);
 537		mutex_unlock(&ui->ui_mutex);
 538	}
 539	if (!PagePrivate(page)) {
 540		if (PageChecked(page))
 541			release_new_page_budget(c);
 542		else
 543			release_existing_page_budget(c);
 544	}
 545}
 546
 547static int ubifs_write_end(struct file *file, struct address_space *mapping,
 548			   loff_t pos, unsigned len, unsigned copied,
 549			   struct page *page, void *fsdata)
 550{
 551	struct inode *inode = mapping->host;
 552	struct ubifs_inode *ui = ubifs_inode(inode);
 553	struct ubifs_info *c = inode->i_sb->s_fs_info;
 554	loff_t end_pos = pos + len;
 555	int appending = !!(end_pos > inode->i_size);
 556
 557	dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
 558		inode->i_ino, pos, page->index, len, copied, inode->i_size);
 559
 560	if (unlikely(copied < len && len == PAGE_SIZE)) {
 561		/*
 562		 * VFS copied less data to the page that it intended and
 563		 * declared in its '->write_begin()' call via the @len
 564		 * argument. If the page was not up-to-date, and @len was
 565		 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
 566		 * not load it from the media (for optimization reasons). This
 567		 * means that part of the page contains garbage. So read the
 568		 * page now.
 569		 */
 570		dbg_gen("copied %d instead of %d, read page and repeat",
 571			copied, len);
 572		cancel_budget(c, page, ui, appending);
 573		ClearPageChecked(page);
 574
 575		/*
 576		 * Return 0 to force VFS to repeat the whole operation, or the
 577		 * error code if 'do_readpage()' fails.
 578		 */
 579		copied = do_readpage(page);
 580		goto out;
 581	}
 582
 583	if (!PagePrivate(page)) {
 584		SetPagePrivate(page);
 585		atomic_long_inc(&c->dirty_pg_cnt);
 586		__set_page_dirty_nobuffers(page);
 587	}
 588
 589	if (appending) {
 590		i_size_write(inode, end_pos);
 591		ui->ui_size = end_pos;
 592		/*
 593		 * Note, we do not set @I_DIRTY_PAGES (which means that the
 594		 * inode has dirty pages), this has been done in
 595		 * '__set_page_dirty_nobuffers()'.
 596		 */
 597		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
 598		ubifs_assert(mutex_is_locked(&ui->ui_mutex));
 599		mutex_unlock(&ui->ui_mutex);
 600	}
 601
 602out:
 603	unlock_page(page);
 604	put_page(page);
 605	return copied;
 606}
 607
 608/**
 609 * populate_page - copy data nodes into a page for bulk-read.
 610 * @c: UBIFS file-system description object
 611 * @page: page
 612 * @bu: bulk-read information
 613 * @n: next zbranch slot
 614 *
 615 * This function returns %0 on success and a negative error code on failure.
 616 */
 617static int populate_page(struct ubifs_info *c, struct page *page,
 618			 struct bu_info *bu, int *n)
 619{
 620	int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
 621	struct inode *inode = page->mapping->host;
 622	loff_t i_size = i_size_read(inode);
 623	unsigned int page_block;
 624	void *addr, *zaddr;
 625	pgoff_t end_index;
 626
 627	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
 628		inode->i_ino, page->index, i_size, page->flags);
 629
 630	addr = zaddr = kmap(page);
 631
 632	end_index = (i_size - 1) >> PAGE_SHIFT;
 633	if (!i_size || page->index > end_index) {
 634		hole = 1;
 635		memset(addr, 0, PAGE_SIZE);
 636		goto out_hole;
 637	}
 638
 639	page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 640	while (1) {
 641		int err, len, out_len, dlen;
 642
 643		if (nn >= bu->cnt) {
 644			hole = 1;
 645			memset(addr, 0, UBIFS_BLOCK_SIZE);
 646		} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
 647			struct ubifs_data_node *dn;
 648
 649			dn = bu->buf + (bu->zbranch[nn].offs - offs);
 650
 651			ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
 652				     ubifs_inode(inode)->creat_sqnum);
 653
 654			len = le32_to_cpu(dn->size);
 655			if (len <= 0 || len > UBIFS_BLOCK_SIZE)
 656				goto out_err;
 657
 658			dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
 659			out_len = UBIFS_BLOCK_SIZE;
 660
 661			if (ubifs_crypt_is_encrypted(inode)) {
 662				err = ubifs_decrypt(inode, dn, &dlen, page_block);
 663				if (err)
 664					goto out_err;
 665			}
 666
 667			err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
 668					       le16_to_cpu(dn->compr_type));
 669			if (err || len != out_len)
 670				goto out_err;
 671
 672			if (len < UBIFS_BLOCK_SIZE)
 673				memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
 674
 675			nn += 1;
 676			read = (i << UBIFS_BLOCK_SHIFT) + len;
 677		} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
 678			nn += 1;
 679			continue;
 680		} else {
 681			hole = 1;
 682			memset(addr, 0, UBIFS_BLOCK_SIZE);
 683		}
 684		if (++i >= UBIFS_BLOCKS_PER_PAGE)
 685			break;
 686		addr += UBIFS_BLOCK_SIZE;
 687		page_block += 1;
 688	}
 689
 690	if (end_index == page->index) {
 691		int len = i_size & (PAGE_SIZE - 1);
 692
 693		if (len && len < read)
 694			memset(zaddr + len, 0, read - len);
 695	}
 696
 697out_hole:
 698	if (hole) {
 699		SetPageChecked(page);
 700		dbg_gen("hole");
 701	}
 702
 703	SetPageUptodate(page);
 704	ClearPageError(page);
 705	flush_dcache_page(page);
 706	kunmap(page);
 707	*n = nn;
 708	return 0;
 709
 710out_err:
 711	ClearPageUptodate(page);
 712	SetPageError(page);
 713	flush_dcache_page(page);
 714	kunmap(page);
 715	ubifs_err(c, "bad data node (block %u, inode %lu)",
 716		  page_block, inode->i_ino);
 717	return -EINVAL;
 718}
 719
 720/**
 721 * ubifs_do_bulk_read - do bulk-read.
 722 * @c: UBIFS file-system description object
 723 * @bu: bulk-read information
 724 * @page1: first page to read
 725 *
 726 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
 727 */
 728static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
 729			      struct page *page1)
 730{
 731	pgoff_t offset = page1->index, end_index;
 732	struct address_space *mapping = page1->mapping;
 733	struct inode *inode = mapping->host;
 734	struct ubifs_inode *ui = ubifs_inode(inode);
 735	int err, page_idx, page_cnt, ret = 0, n = 0;
 736	int allocate = bu->buf ? 0 : 1;
 737	loff_t isize;
 738	gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
 739
 740	err = ubifs_tnc_get_bu_keys(c, bu);
 741	if (err)
 742		goto out_warn;
 743
 744	if (bu->eof) {
 745		/* Turn off bulk-read at the end of the file */
 746		ui->read_in_a_row = 1;
 747		ui->bulk_read = 0;
 748	}
 749
 750	page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
 751	if (!page_cnt) {
 752		/*
 753		 * This happens when there are multiple blocks per page and the
 754		 * blocks for the first page we are looking for, are not
 755		 * together. If all the pages were like this, bulk-read would
 756		 * reduce performance, so we turn it off for a while.
 757		 */
 758		goto out_bu_off;
 759	}
 760
 761	if (bu->cnt) {
 762		if (allocate) {
 763			/*
 764			 * Allocate bulk-read buffer depending on how many data
 765			 * nodes we are going to read.
 766			 */
 767			bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
 768				      bu->zbranch[bu->cnt - 1].len -
 769				      bu->zbranch[0].offs;
 770			ubifs_assert(bu->buf_len > 0);
 771			ubifs_assert(bu->buf_len <= c->leb_size);
 772			bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
 773			if (!bu->buf)
 774				goto out_bu_off;
 775		}
 776
 777		err = ubifs_tnc_bulk_read(c, bu);
 778		if (err)
 779			goto out_warn;
 780	}
 781
 782	err = populate_page(c, page1, bu, &n);
 783	if (err)
 784		goto out_warn;
 785
 786	unlock_page(page1);
 787	ret = 1;
 788
 789	isize = i_size_read(inode);
 790	if (isize == 0)
 791		goto out_free;
 792	end_index = ((isize - 1) >> PAGE_SHIFT);
 793
 794	for (page_idx = 1; page_idx < page_cnt; page_idx++) {
 795		pgoff_t page_offset = offset + page_idx;
 796		struct page *page;
 797
 798		if (page_offset > end_index)
 799			break;
 800		page = find_or_create_page(mapping, page_offset, ra_gfp_mask);
 801		if (!page)
 802			break;
 803		if (!PageUptodate(page))
 804			err = populate_page(c, page, bu, &n);
 805		unlock_page(page);
 806		put_page(page);
 807		if (err)
 808			break;
 809	}
 810
 811	ui->last_page_read = offset + page_idx - 1;
 812
 813out_free:
 814	if (allocate)
 815		kfree(bu->buf);
 816	return ret;
 817
 818out_warn:
 819	ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
 820	goto out_free;
 821
 822out_bu_off:
 823	ui->read_in_a_row = ui->bulk_read = 0;
 824	goto out_free;
 825}
 826
 827/**
 828 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
 829 * @page: page from which to start bulk-read.
 830 *
 831 * Some flash media are capable of reading sequentially at faster rates. UBIFS
 832 * bulk-read facility is designed to take advantage of that, by reading in one
 833 * go consecutive data nodes that are also located consecutively in the same
 834 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
 835 */
 836static int ubifs_bulk_read(struct page *page)
 837{
 838	struct inode *inode = page->mapping->host;
 839	struct ubifs_info *c = inode->i_sb->s_fs_info;
 840	struct ubifs_inode *ui = ubifs_inode(inode);
 841	pgoff_t index = page->index, last_page_read = ui->last_page_read;
 842	struct bu_info *bu;
 843	int err = 0, allocated = 0;
 844
 845	ui->last_page_read = index;
 846	if (!c->bulk_read)
 847		return 0;
 848
 849	/*
 850	 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
 851	 * so don't bother if we cannot lock the mutex.
 852	 */
 853	if (!mutex_trylock(&ui->ui_mutex))
 854		return 0;
 855
 856	if (index != last_page_read + 1) {
 857		/* Turn off bulk-read if we stop reading sequentially */
 858		ui->read_in_a_row = 1;
 859		if (ui->bulk_read)
 860			ui->bulk_read = 0;
 861		goto out_unlock;
 862	}
 863
 864	if (!ui->bulk_read) {
 865		ui->read_in_a_row += 1;
 866		if (ui->read_in_a_row < 3)
 867			goto out_unlock;
 868		/* Three reads in a row, so switch on bulk-read */
 869		ui->bulk_read = 1;
 870	}
 871
 872	/*
 873	 * If possible, try to use pre-allocated bulk-read information, which
 874	 * is protected by @c->bu_mutex.
 875	 */
 876	if (mutex_trylock(&c->bu_mutex))
 877		bu = &c->bu;
 878	else {
 879		bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
 880		if (!bu)
 881			goto out_unlock;
 882
 883		bu->buf = NULL;
 884		allocated = 1;
 885	}
 886
 887	bu->buf_len = c->max_bu_buf_len;
 888	data_key_init(c, &bu->key, inode->i_ino,
 889		      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
 890	err = ubifs_do_bulk_read(c, bu, page);
 891
 892	if (!allocated)
 893		mutex_unlock(&c->bu_mutex);
 894	else
 895		kfree(bu);
 896
 897out_unlock:
 898	mutex_unlock(&ui->ui_mutex);
 899	return err;
 900}
 901
 902static int ubifs_readpage(struct file *file, struct page *page)
 903{
 904	if (ubifs_bulk_read(page))
 905		return 0;
 906	do_readpage(page);
 907	unlock_page(page);
 908	return 0;
 909}
 910
 911static int do_writepage(struct page *page, int len)
 912{
 913	int err = 0, i, blen;
 914	unsigned int block;
 915	void *addr;
 916	union ubifs_key key;
 917	struct inode *inode = page->mapping->host;
 918	struct ubifs_info *c = inode->i_sb->s_fs_info;
 919
 920#ifdef UBIFS_DEBUG
 921	struct ubifs_inode *ui = ubifs_inode(inode);
 922	spin_lock(&ui->ui_lock);
 923	ubifs_assert(page->index <= ui->synced_i_size >> PAGE_SHIFT);
 924	spin_unlock(&ui->ui_lock);
 925#endif
 926
 927	/* Update radix tree tags */
 928	set_page_writeback(page);
 929
 930	addr = kmap(page);
 931	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 932	i = 0;
 933	while (len) {
 934		blen = min_t(int, len, UBIFS_BLOCK_SIZE);
 935		data_key_init(c, &key, inode->i_ino, block);
 936		err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
 937		if (err)
 938			break;
 939		if (++i >= UBIFS_BLOCKS_PER_PAGE)
 940			break;
 941		block += 1;
 942		addr += blen;
 943		len -= blen;
 944	}
 945	if (err) {
 946		SetPageError(page);
 947		ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
 948			  page->index, inode->i_ino, err);
 949		ubifs_ro_mode(c, err);
 950	}
 951
 952	ubifs_assert(PagePrivate(page));
 953	if (PageChecked(page))
 954		release_new_page_budget(c);
 955	else
 956		release_existing_page_budget(c);
 957
 958	atomic_long_dec(&c->dirty_pg_cnt);
 959	ClearPagePrivate(page);
 960	ClearPageChecked(page);
 961
 962	kunmap(page);
 963	unlock_page(page);
 964	end_page_writeback(page);
 965	return err;
 966}
 967
 968/*
 969 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
 970 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
 971 * situation when a we have an inode with size 0, then a megabyte of data is
 972 * appended to the inode, then write-back starts and flushes some amount of the
 973 * dirty pages, the journal becomes full, commit happens and finishes, and then
 974 * an unclean reboot happens. When the file system is mounted next time, the
 975 * inode size would still be 0, but there would be many pages which are beyond
 976 * the inode size, they would be indexed and consume flash space. Because the
 977 * journal has been committed, the replay would not be able to detect this
 978 * situation and correct the inode size. This means UBIFS would have to scan
 979 * whole index and correct all inode sizes, which is long an unacceptable.
 980 *
 981 * To prevent situations like this, UBIFS writes pages back only if they are
 982 * within the last synchronized inode size, i.e. the size which has been
 983 * written to the flash media last time. Otherwise, UBIFS forces inode
 984 * write-back, thus making sure the on-flash inode contains current inode size,
 985 * and then keeps writing pages back.
 986 *
 987 * Some locking issues explanation. 'ubifs_writepage()' first is called with
 988 * the page locked, and it locks @ui_mutex. However, write-back does take inode
 989 * @i_mutex, which means other VFS operations may be run on this inode at the
 990 * same time. And the problematic one is truncation to smaller size, from where
 991 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
 992 * then drops the truncated pages. And while dropping the pages, it takes the
 993 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
 994 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
 995 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
 996 *
 997 * XXX(truncate): with the new truncate sequence this is not true anymore,
 998 * and the calls to truncate_setsize can be move around freely.  They should
 999 * be moved to the very end of the truncate sequence.
1000 *
1001 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
1002 * inode size. How do we do this if @inode->i_size may became smaller while we
1003 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
1004 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
1005 * internally and updates it under @ui_mutex.
1006 *
1007 * Q: why we do not worry that if we race with truncation, we may end up with a
1008 * situation when the inode is truncated while we are in the middle of
1009 * 'do_writepage()', so we do write beyond inode size?
1010 * A: If we are in the middle of 'do_writepage()', truncation would be locked
1011 * on the page lock and it would not write the truncated inode node to the
1012 * journal before we have finished.
1013 */
1014static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1015{
1016	struct inode *inode = page->mapping->host;
 
1017	struct ubifs_inode *ui = ubifs_inode(inode);
1018	loff_t i_size =  i_size_read(inode), synced_i_size;
1019	pgoff_t end_index = i_size >> PAGE_SHIFT;
1020	int err, len = i_size & (PAGE_SIZE - 1);
1021	void *kaddr;
1022
1023	dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1024		inode->i_ino, page->index, page->flags);
1025	ubifs_assert(PagePrivate(page));
1026
1027	/* Is the page fully outside @i_size? (truncate in progress) */
1028	if (page->index > end_index || (page->index == end_index && !len)) {
1029		err = 0;
1030		goto out_unlock;
1031	}
1032
1033	spin_lock(&ui->ui_lock);
1034	synced_i_size = ui->synced_i_size;
1035	spin_unlock(&ui->ui_lock);
1036
1037	/* Is the page fully inside @i_size? */
1038	if (page->index < end_index) {
1039		if (page->index >= synced_i_size >> PAGE_SHIFT) {
1040			err = inode->i_sb->s_op->write_inode(inode, NULL);
1041			if (err)
1042				goto out_unlock;
1043			/*
1044			 * The inode has been written, but the write-buffer has
1045			 * not been synchronized, so in case of an unclean
1046			 * reboot we may end up with some pages beyond inode
1047			 * size, but they would be in the journal (because
1048			 * commit flushes write buffers) and recovery would deal
1049			 * with this.
1050			 */
1051		}
1052		return do_writepage(page, PAGE_SIZE);
1053	}
1054
1055	/*
1056	 * The page straddles @i_size. It must be zeroed out on each and every
1057	 * writepage invocation because it may be mmapped. "A file is mapped
1058	 * in multiples of the page size. For a file that is not a multiple of
1059	 * the page size, the remaining memory is zeroed when mapped, and
1060	 * writes to that region are not written out to the file."
1061	 */
1062	kaddr = kmap_atomic(page);
1063	memset(kaddr + len, 0, PAGE_SIZE - len);
1064	flush_dcache_page(page);
1065	kunmap_atomic(kaddr);
1066
1067	if (i_size > synced_i_size) {
1068		err = inode->i_sb->s_op->write_inode(inode, NULL);
1069		if (err)
1070			goto out_unlock;
1071	}
1072
1073	return do_writepage(page, len);
1074
1075out_unlock:
1076	unlock_page(page);
1077	return err;
1078}
1079
1080/**
1081 * do_attr_changes - change inode attributes.
1082 * @inode: inode to change attributes for
1083 * @attr: describes attributes to change
1084 */
1085static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1086{
1087	if (attr->ia_valid & ATTR_UID)
1088		inode->i_uid = attr->ia_uid;
1089	if (attr->ia_valid & ATTR_GID)
1090		inode->i_gid = attr->ia_gid;
1091	if (attr->ia_valid & ATTR_ATIME)
1092		inode->i_atime = timespec_trunc(attr->ia_atime,
1093						inode->i_sb->s_time_gran);
1094	if (attr->ia_valid & ATTR_MTIME)
1095		inode->i_mtime = timespec_trunc(attr->ia_mtime,
1096						inode->i_sb->s_time_gran);
1097	if (attr->ia_valid & ATTR_CTIME)
1098		inode->i_ctime = timespec_trunc(attr->ia_ctime,
1099						inode->i_sb->s_time_gran);
 
 
 
1100	if (attr->ia_valid & ATTR_MODE) {
1101		umode_t mode = attr->ia_mode;
1102
1103		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1104			mode &= ~S_ISGID;
1105		inode->i_mode = mode;
1106	}
1107}
1108
1109/**
1110 * do_truncation - truncate an inode.
1111 * @c: UBIFS file-system description object
1112 * @inode: inode to truncate
1113 * @attr: inode attribute changes description
1114 *
1115 * This function implements VFS '->setattr()' call when the inode is truncated
1116 * to a smaller size. Returns zero in case of success and a negative error code
1117 * in case of failure.
1118 */
1119static int do_truncation(struct ubifs_info *c, struct inode *inode,
1120			 const struct iattr *attr)
1121{
1122	int err;
1123	struct ubifs_budget_req req;
1124	loff_t old_size = inode->i_size, new_size = attr->ia_size;
1125	int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1126	struct ubifs_inode *ui = ubifs_inode(inode);
1127
1128	dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1129	memset(&req, 0, sizeof(struct ubifs_budget_req));
1130
1131	/*
1132	 * If this is truncation to a smaller size, and we do not truncate on a
1133	 * block boundary, budget for changing one data block, because the last
1134	 * block will be re-written.
1135	 */
1136	if (new_size & (UBIFS_BLOCK_SIZE - 1))
1137		req.dirtied_page = 1;
1138
1139	req.dirtied_ino = 1;
1140	/* A funny way to budget for truncation node */
1141	req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1142	err = ubifs_budget_space(c, &req);
1143	if (err) {
1144		/*
1145		 * Treat truncations to zero as deletion and always allow them,
1146		 * just like we do for '->unlink()'.
1147		 */
1148		if (new_size || err != -ENOSPC)
1149			return err;
1150		budgeted = 0;
1151	}
1152
1153	truncate_setsize(inode, new_size);
1154
1155	if (offset) {
1156		pgoff_t index = new_size >> PAGE_SHIFT;
1157		struct page *page;
1158
1159		page = find_lock_page(inode->i_mapping, index);
1160		if (page) {
1161			if (PageDirty(page)) {
1162				/*
1163				 * 'ubifs_jnl_truncate()' will try to truncate
1164				 * the last data node, but it contains
1165				 * out-of-date data because the page is dirty.
1166				 * Write the page now, so that
1167				 * 'ubifs_jnl_truncate()' will see an already
1168				 * truncated (and up to date) data node.
1169				 */
1170				ubifs_assert(PagePrivate(page));
1171
1172				clear_page_dirty_for_io(page);
1173				if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1174					offset = new_size &
1175						 (PAGE_SIZE - 1);
1176				err = do_writepage(page, offset);
1177				put_page(page);
1178				if (err)
1179					goto out_budg;
1180				/*
1181				 * We could now tell 'ubifs_jnl_truncate()' not
1182				 * to read the last block.
1183				 */
1184			} else {
1185				/*
1186				 * We could 'kmap()' the page and pass the data
1187				 * to 'ubifs_jnl_truncate()' to save it from
1188				 * having to read it.
1189				 */
1190				unlock_page(page);
1191				put_page(page);
1192			}
1193		}
1194	}
1195
1196	mutex_lock(&ui->ui_mutex);
1197	ui->ui_size = inode->i_size;
1198	/* Truncation changes inode [mc]time */
1199	inode->i_mtime = inode->i_ctime = current_time(inode);
1200	/* Other attributes may be changed at the same time as well */
1201	do_attr_changes(inode, attr);
1202	err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1203	mutex_unlock(&ui->ui_mutex);
1204
1205out_budg:
1206	if (budgeted)
1207		ubifs_release_budget(c, &req);
1208	else {
1209		c->bi.nospace = c->bi.nospace_rp = 0;
1210		smp_wmb();
1211	}
1212	return err;
1213}
1214
1215/**
1216 * do_setattr - change inode attributes.
1217 * @c: UBIFS file-system description object
1218 * @inode: inode to change attributes for
1219 * @attr: inode attribute changes description
1220 *
1221 * This function implements VFS '->setattr()' call for all cases except
1222 * truncations to smaller size. Returns zero in case of success and a negative
1223 * error code in case of failure.
1224 */
1225static int do_setattr(struct ubifs_info *c, struct inode *inode,
1226		      const struct iattr *attr)
1227{
1228	int err, release;
1229	loff_t new_size = attr->ia_size;
1230	struct ubifs_inode *ui = ubifs_inode(inode);
1231	struct ubifs_budget_req req = { .dirtied_ino = 1,
1232				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1233
1234	err = ubifs_budget_space(c, &req);
1235	if (err)
1236		return err;
1237
1238	if (attr->ia_valid & ATTR_SIZE) {
1239		dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1240		truncate_setsize(inode, new_size);
1241	}
1242
1243	mutex_lock(&ui->ui_mutex);
1244	if (attr->ia_valid & ATTR_SIZE) {
1245		/* Truncation changes inode [mc]time */
1246		inode->i_mtime = inode->i_ctime = current_time(inode);
1247		/* 'truncate_setsize()' changed @i_size, update @ui_size */
1248		ui->ui_size = inode->i_size;
1249	}
1250
1251	do_attr_changes(inode, attr);
1252
1253	release = ui->dirty;
1254	if (attr->ia_valid & ATTR_SIZE)
1255		/*
1256		 * Inode length changed, so we have to make sure
1257		 * @I_DIRTY_DATASYNC is set.
1258		 */
1259		 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1260	else
1261		mark_inode_dirty_sync(inode);
1262	mutex_unlock(&ui->ui_mutex);
1263
1264	if (release)
1265		ubifs_release_budget(c, &req);
1266	if (IS_SYNC(inode))
1267		err = inode->i_sb->s_op->write_inode(inode, NULL);
1268	return err;
1269}
1270
1271int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1272{
1273	int err;
1274	struct inode *inode = d_inode(dentry);
1275	struct ubifs_info *c = inode->i_sb->s_fs_info;
1276
1277	dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1278		inode->i_ino, inode->i_mode, attr->ia_valid);
1279	err = setattr_prepare(dentry, attr);
1280	if (err)
1281		return err;
1282
1283	err = dbg_check_synced_i_size(c, inode);
1284	if (err)
1285		return err;
1286
1287	err = fscrypt_prepare_setattr(dentry, attr);
1288	if (err)
1289		return err;
1290
1291	if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1292		/* Truncation to a smaller size */
1293		err = do_truncation(c, inode, attr);
1294	else
1295		err = do_setattr(c, inode, attr);
1296
1297	return err;
1298}
1299
1300static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1301				 unsigned int length)
1302{
1303	struct inode *inode = page->mapping->host;
1304	struct ubifs_info *c = inode->i_sb->s_fs_info;
1305
1306	ubifs_assert(PagePrivate(page));
1307	if (offset || length < PAGE_SIZE)
1308		/* Partial page remains dirty */
1309		return;
1310
1311	if (PageChecked(page))
1312		release_new_page_budget(c);
1313	else
1314		release_existing_page_budget(c);
1315
1316	atomic_long_dec(&c->dirty_pg_cnt);
1317	ClearPagePrivate(page);
1318	ClearPageChecked(page);
1319}
1320
1321int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1322{
1323	struct inode *inode = file->f_mapping->host;
1324	struct ubifs_info *c = inode->i_sb->s_fs_info;
1325	int err;
1326
1327	dbg_gen("syncing inode %lu", inode->i_ino);
1328
1329	if (c->ro_mount)
1330		/*
1331		 * For some really strange reasons VFS does not filter out
1332		 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1333		 */
1334		return 0;
1335
1336	err = file_write_and_wait_range(file, start, end);
1337	if (err)
1338		return err;
1339	inode_lock(inode);
1340
1341	/* Synchronize the inode unless this is a 'datasync()' call. */
1342	if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1343		err = inode->i_sb->s_op->write_inode(inode, NULL);
1344		if (err)
1345			goto out;
1346	}
1347
1348	/*
1349	 * Nodes related to this inode may still sit in a write-buffer. Flush
1350	 * them.
1351	 */
1352	err = ubifs_sync_wbufs_by_inode(c, inode);
1353out:
1354	inode_unlock(inode);
1355	return err;
1356}
1357
1358/**
1359 * mctime_update_needed - check if mtime or ctime update is needed.
1360 * @inode: the inode to do the check for
1361 * @now: current time
1362 *
1363 * This helper function checks if the inode mtime/ctime should be updated or
1364 * not. If current values of the time-stamps are within the UBIFS inode time
1365 * granularity, they are not updated. This is an optimization.
1366 */
1367static inline int mctime_update_needed(const struct inode *inode,
1368				       const struct timespec *now)
1369{
1370	if (!timespec_equal(&inode->i_mtime, now) ||
1371	    !timespec_equal(&inode->i_ctime, now))
1372		return 1;
1373	return 0;
1374}
1375
1376#ifdef CONFIG_UBIFS_ATIME_SUPPORT
1377/**
1378 * ubifs_update_time - update time of inode.
1379 * @inode: inode to update
1380 *
1381 * This function updates time of the inode.
1382 */
1383int ubifs_update_time(struct inode *inode, struct timespec *time,
1384			     int flags)
1385{
1386	struct ubifs_inode *ui = ubifs_inode(inode);
1387	struct ubifs_info *c = inode->i_sb->s_fs_info;
1388	struct ubifs_budget_req req = { .dirtied_ino = 1,
1389			.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1390	int iflags = I_DIRTY_TIME;
1391	int err, release;
1392
 
 
 
1393	err = ubifs_budget_space(c, &req);
1394	if (err)
1395		return err;
1396
1397	mutex_lock(&ui->ui_mutex);
1398	if (flags & S_ATIME)
1399		inode->i_atime = *time;
1400	if (flags & S_CTIME)
1401		inode->i_ctime = *time;
1402	if (flags & S_MTIME)
1403		inode->i_mtime = *time;
1404
1405	if (!(inode->i_sb->s_flags & SB_LAZYTIME))
1406		iflags |= I_DIRTY_SYNC;
1407
1408	release = ui->dirty;
1409	__mark_inode_dirty(inode, iflags);
1410	mutex_unlock(&ui->ui_mutex);
1411	if (release)
1412		ubifs_release_budget(c, &req);
1413	return 0;
1414}
1415#endif
1416
1417/**
1418 * update_mctime - update mtime and ctime of an inode.
1419 * @inode: inode to update
1420 *
1421 * This function updates mtime and ctime of the inode if it is not equivalent to
1422 * current time. Returns zero in case of success and a negative error code in
1423 * case of failure.
1424 */
1425static int update_mctime(struct inode *inode)
1426{
1427	struct timespec now = current_time(inode);
1428	struct ubifs_inode *ui = ubifs_inode(inode);
1429	struct ubifs_info *c = inode->i_sb->s_fs_info;
1430
1431	if (mctime_update_needed(inode, &now)) {
1432		int err, release;
1433		struct ubifs_budget_req req = { .dirtied_ino = 1,
1434				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1435
1436		err = ubifs_budget_space(c, &req);
1437		if (err)
1438			return err;
1439
1440		mutex_lock(&ui->ui_mutex);
1441		inode->i_mtime = inode->i_ctime = current_time(inode);
1442		release = ui->dirty;
1443		mark_inode_dirty_sync(inode);
1444		mutex_unlock(&ui->ui_mutex);
1445		if (release)
1446			ubifs_release_budget(c, &req);
1447	}
1448
1449	return 0;
1450}
1451
1452static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1453{
1454	int err = update_mctime(file_inode(iocb->ki_filp));
1455	if (err)
1456		return err;
1457
1458	return generic_file_write_iter(iocb, from);
1459}
1460
1461static int ubifs_set_page_dirty(struct page *page)
1462{
1463	int ret;
 
 
1464
1465	ret = __set_page_dirty_nobuffers(page);
1466	/*
1467	 * An attempt to dirty a page without budgeting for it - should not
1468	 * happen.
1469	 */
1470	ubifs_assert(ret == 0);
1471	return ret;
1472}
1473
1474#ifdef CONFIG_MIGRATION
1475static int ubifs_migrate_page(struct address_space *mapping,
1476		struct page *newpage, struct page *page, enum migrate_mode mode)
1477{
1478	int rc;
1479
1480	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
1481	if (rc != MIGRATEPAGE_SUCCESS)
1482		return rc;
1483
1484	if (PagePrivate(page)) {
1485		ClearPagePrivate(page);
1486		SetPagePrivate(newpage);
1487	}
1488
1489	if (mode != MIGRATE_SYNC_NO_COPY)
1490		migrate_page_copy(newpage, page);
1491	else
1492		migrate_page_states(newpage, page);
1493	return MIGRATEPAGE_SUCCESS;
1494}
1495#endif
1496
1497static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1498{
 
 
 
1499	/*
1500	 * An attempt to release a dirty page without budgeting for it - should
1501	 * not happen.
1502	 */
1503	if (PageWriteback(page))
1504		return 0;
1505	ubifs_assert(PagePrivate(page));
1506	ubifs_assert(0);
1507	ClearPagePrivate(page);
1508	ClearPageChecked(page);
1509	return 1;
1510}
1511
1512/*
1513 * mmap()d file has taken write protection fault and is being made writable.
1514 * UBIFS must ensure page is budgeted for.
1515 */
1516static int ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1517{
1518	struct page *page = vmf->page;
1519	struct inode *inode = file_inode(vmf->vma->vm_file);
1520	struct ubifs_info *c = inode->i_sb->s_fs_info;
1521	struct timespec now = current_time(inode);
1522	struct ubifs_budget_req req = { .new_page = 1 };
1523	int err, update_time;
1524
1525	dbg_gen("ino %lu, pg %lu, i_size %lld",	inode->i_ino, page->index,
1526		i_size_read(inode));
1527	ubifs_assert(!c->ro_media && !c->ro_mount);
1528
1529	if (unlikely(c->ro_error))
1530		return VM_FAULT_SIGBUS; /* -EROFS */
1531
1532	/*
1533	 * We have not locked @page so far so we may budget for changing the
1534	 * page. Note, we cannot do this after we locked the page, because
1535	 * budgeting may cause write-back which would cause deadlock.
1536	 *
1537	 * At the moment we do not know whether the page is dirty or not, so we
1538	 * assume that it is not and budget for a new page. We could look at
1539	 * the @PG_private flag and figure this out, but we may race with write
1540	 * back and the page state may change by the time we lock it, so this
1541	 * would need additional care. We do not bother with this at the
1542	 * moment, although it might be good idea to do. Instead, we allocate
1543	 * budget for a new page and amend it later on if the page was in fact
1544	 * dirty.
1545	 *
1546	 * The budgeting-related logic of this function is similar to what we
1547	 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1548	 * for more comments.
1549	 */
1550	update_time = mctime_update_needed(inode, &now);
1551	if (update_time)
1552		/*
1553		 * We have to change inode time stamp which requires extra
1554		 * budgeting.
1555		 */
1556		req.dirtied_ino = 1;
1557
1558	err = ubifs_budget_space(c, &req);
1559	if (unlikely(err)) {
1560		if (err == -ENOSPC)
1561			ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1562				   inode->i_ino);
1563		return VM_FAULT_SIGBUS;
1564	}
1565
1566	lock_page(page);
1567	if (unlikely(page->mapping != inode->i_mapping ||
1568		     page_offset(page) > i_size_read(inode))) {
1569		/* Page got truncated out from underneath us */
1570		err = -EINVAL;
1571		goto out_unlock;
1572	}
1573
1574	if (PagePrivate(page))
1575		release_new_page_budget(c);
1576	else {
1577		if (!PageChecked(page))
1578			ubifs_convert_page_budget(c);
1579		SetPagePrivate(page);
1580		atomic_long_inc(&c->dirty_pg_cnt);
1581		__set_page_dirty_nobuffers(page);
1582	}
1583
1584	if (update_time) {
1585		int release;
1586		struct ubifs_inode *ui = ubifs_inode(inode);
1587
1588		mutex_lock(&ui->ui_mutex);
1589		inode->i_mtime = inode->i_ctime = current_time(inode);
1590		release = ui->dirty;
1591		mark_inode_dirty_sync(inode);
1592		mutex_unlock(&ui->ui_mutex);
1593		if (release)
1594			ubifs_release_dirty_inode_budget(c, ui);
1595	}
1596
1597	wait_for_stable_page(page);
1598	return VM_FAULT_LOCKED;
1599
1600out_unlock:
1601	unlock_page(page);
1602	ubifs_release_budget(c, &req);
1603	if (err)
1604		err = VM_FAULT_SIGBUS;
1605	return err;
1606}
1607
1608static const struct vm_operations_struct ubifs_file_vm_ops = {
1609	.fault        = filemap_fault,
1610	.map_pages = filemap_map_pages,
1611	.page_mkwrite = ubifs_vm_page_mkwrite,
1612};
1613
1614static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1615{
1616	int err;
1617
1618	err = generic_file_mmap(file, vma);
1619	if (err)
1620		return err;
1621	vma->vm_ops = &ubifs_file_vm_ops;
1622#ifdef CONFIG_UBIFS_ATIME_SUPPORT
1623	file_accessed(file);
1624#endif
 
1625	return 0;
1626}
1627
1628static const char *ubifs_get_link(struct dentry *dentry,
1629					    struct inode *inode,
1630					    struct delayed_call *done)
1631{
1632	struct ubifs_inode *ui = ubifs_inode(inode);
1633
1634	if (!IS_ENCRYPTED(inode))
1635		return ui->data;
1636
1637	if (!dentry)
1638		return ERR_PTR(-ECHILD);
1639
1640	return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
1641}
1642
1643const struct address_space_operations ubifs_file_address_operations = {
1644	.readpage       = ubifs_readpage,
1645	.writepage      = ubifs_writepage,
1646	.write_begin    = ubifs_write_begin,
1647	.write_end      = ubifs_write_end,
1648	.invalidatepage = ubifs_invalidatepage,
1649	.set_page_dirty = ubifs_set_page_dirty,
1650#ifdef CONFIG_MIGRATION
1651	.migratepage	= ubifs_migrate_page,
1652#endif
1653	.releasepage    = ubifs_releasepage,
1654};
1655
1656const struct inode_operations ubifs_file_inode_operations = {
1657	.setattr     = ubifs_setattr,
1658	.getattr     = ubifs_getattr,
 
1659	.listxattr   = ubifs_listxattr,
1660#ifdef CONFIG_UBIFS_ATIME_SUPPORT
1661	.update_time = ubifs_update_time,
1662#endif
1663};
1664
1665const struct inode_operations ubifs_symlink_inode_operations = {
1666	.get_link    = ubifs_get_link,
1667	.setattr     = ubifs_setattr,
1668	.getattr     = ubifs_getattr,
 
1669	.listxattr   = ubifs_listxattr,
1670#ifdef CONFIG_UBIFS_ATIME_SUPPORT
1671	.update_time = ubifs_update_time,
1672#endif
1673};
1674
1675const struct file_operations ubifs_file_operations = {
1676	.llseek         = generic_file_llseek,
1677	.read_iter      = generic_file_read_iter,
1678	.write_iter     = ubifs_write_iter,
1679	.mmap           = ubifs_file_mmap,
1680	.fsync          = ubifs_fsync,
1681	.unlocked_ioctl = ubifs_ioctl,
1682	.splice_read	= generic_file_splice_read,
1683	.splice_write	= iter_file_splice_write,
1684	.open		= fscrypt_file_open,
1685#ifdef CONFIG_COMPAT
1686	.compat_ioctl   = ubifs_compat_ioctl,
1687#endif
1688};