Linux Audio

Check our new training course

Loading...
v5.4
   1/*
   2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
   3 */
   4
   5#include <linux/time.h>
   6#include <linux/fs.h>
   7#include "reiserfs.h"
   8#include "acl.h"
   9#include "xattr.h"
  10#include <linux/exportfs.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/slab.h>
  14#include <linux/uaccess.h>
  15#include <asm/unaligned.h>
  16#include <linux/buffer_head.h>
  17#include <linux/mpage.h>
  18#include <linux/writeback.h>
  19#include <linux/quotaops.h>
  20#include <linux/swap.h>
  21#include <linux/uio.h>
  22#include <linux/bio.h>
  23
  24int reiserfs_commit_write(struct file *f, struct page *page,
  25			  unsigned from, unsigned to);
  26
  27void reiserfs_evict_inode(struct inode *inode)
  28{
  29	/*
  30	 * We need blocks for transaction + (user+group) quota
  31	 * update (possibly delete)
  32	 */
  33	int jbegin_count =
  34	    JOURNAL_PER_BALANCE_CNT * 2 +
  35	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
  36	struct reiserfs_transaction_handle th;
  37	int err;
  38
  39	if (!inode->i_nlink && !is_bad_inode(inode))
  40		dquot_initialize(inode);
  41
  42	truncate_inode_pages_final(&inode->i_data);
  43	if (inode->i_nlink)
  44		goto no_delete;
  45
  46	/*
  47	 * The = 0 happens when we abort creating a new inode
  48	 * for some reason like lack of space..
  49	 * also handles bad_inode case
  50	 */
  51	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
  52
  53		reiserfs_delete_xattrs(inode);
  54
  55		reiserfs_write_lock(inode->i_sb);
  56
  57		if (journal_begin(&th, inode->i_sb, jbegin_count))
  58			goto out;
  59		reiserfs_update_inode_transaction(inode);
  60
  61		reiserfs_discard_prealloc(&th, inode);
  62
  63		err = reiserfs_delete_object(&th, inode);
  64
  65		/*
  66		 * Do quota update inside a transaction for journaled quotas.
  67		 * We must do that after delete_object so that quota updates
  68		 * go into the same transaction as stat data deletion
  69		 */
  70		if (!err) {
  71			int depth = reiserfs_write_unlock_nested(inode->i_sb);
  72			dquot_free_inode(inode);
  73			reiserfs_write_lock_nested(inode->i_sb, depth);
  74		}
  75
  76		if (journal_end(&th))
  77			goto out;
  78
  79		/*
  80		 * check return value from reiserfs_delete_object after
  81		 * ending the transaction
  82		 */
  83		if (err)
  84		    goto out;
  85
  86		/*
  87		 * all items of file are deleted, so we can remove
  88		 * "save" link
  89		 * we can't do anything about an error here
  90		 */
  91		remove_save_link(inode, 0 /* not truncate */);
  92out:
  93		reiserfs_write_unlock(inode->i_sb);
  94	} else {
  95		/* no object items are in the tree */
  96		;
  97	}
  98
  99	/* note this must go after the journal_end to prevent deadlock */
 100	clear_inode(inode);
 101
 102	dquot_drop(inode);
 103	inode->i_blocks = 0;
 104	return;
 105
 106no_delete:
 107	clear_inode(inode);
 108	dquot_drop(inode);
 109}
 110
 111static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
 112			  __u32 objectid, loff_t offset, int type, int length)
 113{
 114	key->version = version;
 115
 116	key->on_disk_key.k_dir_id = dirid;
 117	key->on_disk_key.k_objectid = objectid;
 118	set_cpu_key_k_offset(key, offset);
 119	set_cpu_key_k_type(key, type);
 120	key->key_length = length;
 121}
 122
 123/*
 124 * take base of inode_key (it comes from inode always) (dirid, objectid)
 125 * and version from an inode, set offset and type of key
 126 */
 127void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
 128		  int type, int length)
 129{
 130	_make_cpu_key(key, get_inode_item_key_version(inode),
 131		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
 132		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
 133		      length);
 134}
 135
 136/* when key is 0, do not set version and short key */
 137inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
 138			      int version,
 139			      loff_t offset, int type, int length,
 140			      int entry_count /*or ih_free_space */ )
 141{
 142	if (key) {
 143		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
 144		ih->ih_key.k_objectid =
 145		    cpu_to_le32(key->on_disk_key.k_objectid);
 146	}
 147	put_ih_version(ih, version);
 148	set_le_ih_k_offset(ih, offset);
 149	set_le_ih_k_type(ih, type);
 150	put_ih_item_len(ih, length);
 151	/*    set_ih_free_space (ih, 0); */
 152	/*
 153	 * for directory items it is entry count, for directs and stat
 154	 * datas - 0xffff, for indirects - 0
 155	 */
 156	put_ih_entry_count(ih, entry_count);
 157}
 158
 159/*
 160 * FIXME: we might cache recently accessed indirect item
 161 * Ugh.  Not too eager for that....
 162 * I cut the code until such time as I see a convincing argument (benchmark).
 163 * I don't want a bloated inode struct..., and I don't like code complexity....
 164 */
 165
 166/*
 167 * cutting the code is fine, since it really isn't in use yet and is easy
 168 * to add back in.  But, Vladimir has a really good idea here.  Think
 169 * about what happens for reading a file.  For each page,
 170 * The VFS layer calls reiserfs_readpage, who searches the tree to find
 171 * an indirect item.  This indirect item has X number of pointers, where
 172 * X is a big number if we've done the block allocation right.  But,
 173 * we only use one or two of these pointers during each call to readpage,
 174 * needlessly researching again later on.
 175 *
 176 * The size of the cache could be dynamic based on the size of the file.
 177 *
 178 * I'd also like to see us cache the location the stat data item, since
 179 * we are needlessly researching for that frequently.
 180 *
 181 * --chris
 182 */
 183
 184/*
 185 * If this page has a file tail in it, and
 186 * it was read in by get_block_create_0, the page data is valid,
 187 * but tail is still sitting in a direct item, and we can't write to
 188 * it.  So, look through this page, and check all the mapped buffers
 189 * to make sure they have valid block numbers.  Any that don't need
 190 * to be unmapped, so that __block_write_begin will correctly call
 191 * reiserfs_get_block to convert the tail into an unformatted node
 192 */
 193static inline void fix_tail_page_for_writing(struct page *page)
 194{
 195	struct buffer_head *head, *next, *bh;
 196
 197	if (page && page_has_buffers(page)) {
 198		head = page_buffers(page);
 199		bh = head;
 200		do {
 201			next = bh->b_this_page;
 202			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
 203				reiserfs_unmap_buffer(bh);
 204			}
 205			bh = next;
 206		} while (bh != head);
 207	}
 208}
 209
 210/*
 211 * reiserfs_get_block does not need to allocate a block only if it has been
 212 * done already or non-hole position has been found in the indirect item
 213 */
 214static inline int allocation_needed(int retval, b_blocknr_t allocated,
 215				    struct item_head *ih,
 216				    __le32 * item, int pos_in_item)
 217{
 218	if (allocated)
 219		return 0;
 220	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
 221	    get_block_num(item, pos_in_item))
 222		return 0;
 223	return 1;
 224}
 225
 226static inline int indirect_item_found(int retval, struct item_head *ih)
 227{
 228	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
 229}
 230
 231static inline void set_block_dev_mapped(struct buffer_head *bh,
 232					b_blocknr_t block, struct inode *inode)
 233{
 234	map_bh(bh, inode->i_sb, block);
 235}
 236
 237/*
 238 * files which were created in the earlier version can not be longer,
 239 * than 2 gb
 240 */
 241static int file_capable(struct inode *inode, sector_t block)
 242{
 243	/* it is new file. */
 244	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
 245	    /* old file, but 'block' is inside of 2gb */
 246	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
 247		return 1;
 248
 249	return 0;
 250}
 251
 252static int restart_transaction(struct reiserfs_transaction_handle *th,
 253			       struct inode *inode, struct treepath *path)
 254{
 255	struct super_block *s = th->t_super;
 256	int err;
 257
 258	BUG_ON(!th->t_trans_id);
 259	BUG_ON(!th->t_refcount);
 260
 261	pathrelse(path);
 262
 263	/* we cannot restart while nested */
 264	if (th->t_refcount > 1) {
 265		return 0;
 266	}
 267	reiserfs_update_sd(th, inode);
 268	err = journal_end(th);
 269	if (!err) {
 270		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
 271		if (!err)
 272			reiserfs_update_inode_transaction(inode);
 273	}
 274	return err;
 275}
 276
 277/*
 278 * it is called by get_block when create == 0. Returns block number
 279 * for 'block'-th logical block of file. When it hits direct item it
 280 * returns 0 (being called from bmap) or read direct item into piece
 281 * of page (bh_result)
 282 * Please improve the english/clarity in the comment above, as it is
 283 * hard to understand.
 284 */
 285static int _get_block_create_0(struct inode *inode, sector_t block,
 286			       struct buffer_head *bh_result, int args)
 287{
 288	INITIALIZE_PATH(path);
 289	struct cpu_key key;
 290	struct buffer_head *bh;
 291	struct item_head *ih, tmp_ih;
 292	b_blocknr_t blocknr;
 293	char *p = NULL;
 294	int chars;
 295	int ret;
 296	int result;
 297	int done = 0;
 298	unsigned long offset;
 299
 300	/* prepare the key to look for the 'block'-th block of file */
 301	make_cpu_key(&key, inode,
 302		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
 303		     3);
 304
 305	result = search_for_position_by_key(inode->i_sb, &key, &path);
 306	if (result != POSITION_FOUND) {
 307		pathrelse(&path);
 308		if (p)
 309			kunmap(bh_result->b_page);
 310		if (result == IO_ERROR)
 311			return -EIO;
 312		/*
 313		 * We do not return -ENOENT if there is a hole but page is
 314		 * uptodate, because it means that there is some MMAPED data
 315		 * associated with it that is yet to be written to disk.
 316		 */
 317		if ((args & GET_BLOCK_NO_HOLE)
 318		    && !PageUptodate(bh_result->b_page)) {
 319			return -ENOENT;
 320		}
 321		return 0;
 322	}
 323
 324	bh = get_last_bh(&path);
 325	ih = tp_item_head(&path);
 326	if (is_indirect_le_ih(ih)) {
 327		__le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
 328
 329		/*
 330		 * FIXME: here we could cache indirect item or part of it in
 331		 * the inode to avoid search_by_key in case of subsequent
 332		 * access to file
 333		 */
 334		blocknr = get_block_num(ind_item, path.pos_in_item);
 335		ret = 0;
 336		if (blocknr) {
 337			map_bh(bh_result, inode->i_sb, blocknr);
 338			if (path.pos_in_item ==
 339			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
 340				set_buffer_boundary(bh_result);
 341			}
 342		} else
 343			/*
 344			 * We do not return -ENOENT if there is a hole but
 345			 * page is uptodate, because it means that there is
 346			 * some MMAPED data associated with it that is
 347			 * yet to be written to disk.
 348			 */
 349		if ((args & GET_BLOCK_NO_HOLE)
 350			    && !PageUptodate(bh_result->b_page)) {
 351			ret = -ENOENT;
 352		}
 353
 354		pathrelse(&path);
 355		if (p)
 356			kunmap(bh_result->b_page);
 357		return ret;
 358	}
 359	/* requested data are in direct item(s) */
 360	if (!(args & GET_BLOCK_READ_DIRECT)) {
 361		/*
 362		 * we are called by bmap. FIXME: we can not map block of file
 363		 * when it is stored in direct item(s)
 364		 */
 365		pathrelse(&path);
 366		if (p)
 367			kunmap(bh_result->b_page);
 368		return -ENOENT;
 369	}
 370
 371	/*
 372	 * if we've got a direct item, and the buffer or page was uptodate,
 373	 * we don't want to pull data off disk again.  skip to the
 374	 * end, where we map the buffer and return
 375	 */
 376	if (buffer_uptodate(bh_result)) {
 377		goto finished;
 378	} else
 379		/*
 380		 * grab_tail_page can trigger calls to reiserfs_get_block on
 381		 * up to date pages without any buffers.  If the page is up
 382		 * to date, we don't want read old data off disk.  Set the up
 383		 * to date bit on the buffer instead and jump to the end
 384		 */
 385	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
 386		set_buffer_uptodate(bh_result);
 387		goto finished;
 388	}
 389	/* read file tail into part of page */
 390	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
 391	copy_item_head(&tmp_ih, ih);
 392
 393	/*
 394	 * we only want to kmap if we are reading the tail into the page.
 395	 * this is not the common case, so we don't kmap until we are
 396	 * sure we need to.  But, this means the item might move if
 397	 * kmap schedules
 398	 */
 399	if (!p)
 400		p = (char *)kmap(bh_result->b_page);
 401
 402	p += offset;
 403	memset(p, 0, inode->i_sb->s_blocksize);
 404	do {
 405		if (!is_direct_le_ih(ih)) {
 406			BUG();
 407		}
 408		/*
 409		 * make sure we don't read more bytes than actually exist in
 410		 * the file.  This can happen in odd cases where i_size isn't
 411		 * correct, and when direct item padding results in a few
 412		 * extra bytes at the end of the direct item
 413		 */
 414		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
 415			break;
 416		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
 417			chars =
 418			    inode->i_size - (le_ih_k_offset(ih) - 1) -
 419			    path.pos_in_item;
 420			done = 1;
 421		} else {
 422			chars = ih_item_len(ih) - path.pos_in_item;
 423		}
 424		memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
 425
 426		if (done)
 427			break;
 428
 429		p += chars;
 430
 431		/*
 432		 * we done, if read direct item is not the last item of
 433		 * node FIXME: we could try to check right delimiting key
 434		 * to see whether direct item continues in the right
 435		 * neighbor or rely on i_size
 436		 */
 437		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
 438			break;
 439
 440		/* update key to look for the next piece */
 441		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
 442		result = search_for_position_by_key(inode->i_sb, &key, &path);
 443		if (result != POSITION_FOUND)
 444			/* i/o error most likely */
 445			break;
 446		bh = get_last_bh(&path);
 447		ih = tp_item_head(&path);
 448	} while (1);
 449
 450	flush_dcache_page(bh_result->b_page);
 451	kunmap(bh_result->b_page);
 452
 453finished:
 454	pathrelse(&path);
 455
 456	if (result == IO_ERROR)
 457		return -EIO;
 458
 459	/*
 460	 * this buffer has valid data, but isn't valid for io.  mapping it to
 461	 * block #0 tells the rest of reiserfs it just has a tail in it
 462	 */
 463	map_bh(bh_result, inode->i_sb, 0);
 464	set_buffer_uptodate(bh_result);
 465	return 0;
 466}
 467
 468/*
 469 * this is called to create file map. So, _get_block_create_0 will not
 470 * read direct item
 471 */
 472static int reiserfs_bmap(struct inode *inode, sector_t block,
 473			 struct buffer_head *bh_result, int create)
 474{
 475	if (!file_capable(inode, block))
 476		return -EFBIG;
 477
 478	reiserfs_write_lock(inode->i_sb);
 479	/* do not read the direct item */
 480	_get_block_create_0(inode, block, bh_result, 0);
 481	reiserfs_write_unlock(inode->i_sb);
 482	return 0;
 483}
 484
 485/*
 486 * special version of get_block that is only used by grab_tail_page right
 487 * now.  It is sent to __block_write_begin, and when you try to get a
 488 * block past the end of the file (or a block from a hole) it returns
 489 * -ENOENT instead of a valid buffer.  __block_write_begin expects to
 490 * be able to do i/o on the buffers returned, unless an error value
 491 * is also returned.
 492 *
 493 * So, this allows __block_write_begin to be used for reading a single block
 494 * in a page.  Where it does not produce a valid page for holes, or past the
 495 * end of the file.  This turns out to be exactly what we need for reading
 496 * tails for conversion.
 497 *
 498 * The point of the wrapper is forcing a certain value for create, even
 499 * though the VFS layer is calling this function with create==1.  If you
 500 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
 501 * don't use this function.
 502*/
 503static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
 504				       struct buffer_head *bh_result,
 505				       int create)
 506{
 507	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
 508}
 509
 510/*
 511 * This is special helper for reiserfs_get_block in case we are executing
 512 * direct_IO request.
 513 */
 514static int reiserfs_get_blocks_direct_io(struct inode *inode,
 515					 sector_t iblock,
 516					 struct buffer_head *bh_result,
 517					 int create)
 518{
 519	int ret;
 520
 521	bh_result->b_page = NULL;
 522
 523	/*
 524	 * We set the b_size before reiserfs_get_block call since it is
 525	 * referenced in convert_tail_for_hole() that may be called from
 526	 * reiserfs_get_block()
 527	 */
 528	bh_result->b_size = i_blocksize(inode);
 529
 530	ret = reiserfs_get_block(inode, iblock, bh_result,
 531				 create | GET_BLOCK_NO_DANGLE);
 532	if (ret)
 533		goto out;
 534
 535	/* don't allow direct io onto tail pages */
 536	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
 537		/*
 538		 * make sure future calls to the direct io funcs for this
 539		 * offset in the file fail by unmapping the buffer
 540		 */
 541		clear_buffer_mapped(bh_result);
 542		ret = -EINVAL;
 543	}
 544
 545	/*
 546	 * Possible unpacked tail. Flush the data before pages have
 547	 * disappeared
 548	 */
 549	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
 550		int err;
 551
 552		reiserfs_write_lock(inode->i_sb);
 553
 554		err = reiserfs_commit_for_inode(inode);
 555		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
 556
 557		reiserfs_write_unlock(inode->i_sb);
 558
 559		if (err < 0)
 560			ret = err;
 561	}
 562out:
 563	return ret;
 564}
 565
 566/*
 567 * helper function for when reiserfs_get_block is called for a hole
 568 * but the file tail is still in a direct item
 569 * bh_result is the buffer head for the hole
 570 * tail_offset is the offset of the start of the tail in the file
 571 *
 572 * This calls prepare_write, which will start a new transaction
 573 * you should not be in a transaction, or have any paths held when you
 574 * call this.
 575 */
 576static int convert_tail_for_hole(struct inode *inode,
 577				 struct buffer_head *bh_result,
 578				 loff_t tail_offset)
 579{
 580	unsigned long index;
 581	unsigned long tail_end;
 582	unsigned long tail_start;
 583	struct page *tail_page;
 584	struct page *hole_page = bh_result->b_page;
 585	int retval = 0;
 586
 587	if ((tail_offset & (bh_result->b_size - 1)) != 1)
 588		return -EIO;
 589
 590	/* always try to read until the end of the block */
 591	tail_start = tail_offset & (PAGE_SIZE - 1);
 592	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
 593
 594	index = tail_offset >> PAGE_SHIFT;
 595	/*
 596	 * hole_page can be zero in case of direct_io, we are sure
 597	 * that we cannot get here if we write with O_DIRECT into tail page
 598	 */
 599	if (!hole_page || index != hole_page->index) {
 600		tail_page = grab_cache_page(inode->i_mapping, index);
 601		retval = -ENOMEM;
 602		if (!tail_page) {
 603			goto out;
 604		}
 605	} else {
 606		tail_page = hole_page;
 607	}
 608
 609	/*
 610	 * we don't have to make sure the conversion did not happen while
 611	 * we were locking the page because anyone that could convert
 612	 * must first take i_mutex.
 613	 *
 614	 * We must fix the tail page for writing because it might have buffers
 615	 * that are mapped, but have a block number of 0.  This indicates tail
 616	 * data that has been read directly into the page, and
 617	 * __block_write_begin won't trigger a get_block in this case.
 618	 */
 619	fix_tail_page_for_writing(tail_page);
 620	retval = __reiserfs_write_begin(tail_page, tail_start,
 621				      tail_end - tail_start);
 622	if (retval)
 623		goto unlock;
 624
 625	/* tail conversion might change the data in the page */
 626	flush_dcache_page(tail_page);
 627
 628	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
 629
 630unlock:
 631	if (tail_page != hole_page) {
 632		unlock_page(tail_page);
 633		put_page(tail_page);
 634	}
 635out:
 636	return retval;
 637}
 638
 639static inline int _allocate_block(struct reiserfs_transaction_handle *th,
 640				  sector_t block,
 641				  struct inode *inode,
 642				  b_blocknr_t * allocated_block_nr,
 643				  struct treepath *path, int flags)
 644{
 645	BUG_ON(!th->t_trans_id);
 646
 647#ifdef REISERFS_PREALLOCATE
 648	if (!(flags & GET_BLOCK_NO_IMUX)) {
 649		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
 650						  path, block);
 651	}
 652#endif
 653	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
 654					 block);
 655}
 656
 657int reiserfs_get_block(struct inode *inode, sector_t block,
 658		       struct buffer_head *bh_result, int create)
 659{
 660	int repeat, retval = 0;
 661	/* b_blocknr_t is (unsigned) 32 bit int*/
 662	b_blocknr_t allocated_block_nr = 0;
 663	INITIALIZE_PATH(path);
 664	int pos_in_item;
 665	struct cpu_key key;
 666	struct buffer_head *bh, *unbh = NULL;
 667	struct item_head *ih, tmp_ih;
 668	__le32 *item;
 669	int done;
 670	int fs_gen;
 671	struct reiserfs_transaction_handle *th = NULL;
 672	/*
 673	 * space reserved in transaction batch:
 674	 * . 3 balancings in direct->indirect conversion
 675	 * . 1 block involved into reiserfs_update_sd()
 676	 * XXX in practically impossible worst case direct2indirect()
 677	 * can incur (much) more than 3 balancings.
 678	 * quota update for user, group
 679	 */
 680	int jbegin_count =
 681	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
 682	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
 683	int version;
 684	int dangle = 1;
 685	loff_t new_offset =
 686	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
 687
 688	reiserfs_write_lock(inode->i_sb);
 689	version = get_inode_item_key_version(inode);
 690
 691	if (!file_capable(inode, block)) {
 692		reiserfs_write_unlock(inode->i_sb);
 693		return -EFBIG;
 694	}
 695
 696	/*
 697	 * if !create, we aren't changing the FS, so we don't need to
 698	 * log anything, so we don't need to start a transaction
 699	 */
 700	if (!(create & GET_BLOCK_CREATE)) {
 701		int ret;
 702		/* find number of block-th logical block of the file */
 703		ret = _get_block_create_0(inode, block, bh_result,
 704					  create | GET_BLOCK_READ_DIRECT);
 705		reiserfs_write_unlock(inode->i_sb);
 706		return ret;
 707	}
 708
 709	/*
 710	 * if we're already in a transaction, make sure to close
 711	 * any new transactions we start in this func
 712	 */
 713	if ((create & GET_BLOCK_NO_DANGLE) ||
 714	    reiserfs_transaction_running(inode->i_sb))
 715		dangle = 0;
 716
 717	/*
 718	 * If file is of such a size, that it might have a tail and
 719	 * tails are enabled  we should mark it as possibly needing
 720	 * tail packing on close
 721	 */
 722	if ((have_large_tails(inode->i_sb)
 723	     && inode->i_size < i_block_size(inode) * 4)
 724	    || (have_small_tails(inode->i_sb)
 725		&& inode->i_size < i_block_size(inode)))
 726		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
 727
 728	/* set the key of the first byte in the 'block'-th block of file */
 729	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
 730	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
 731start_trans:
 732		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
 733		if (!th) {
 734			retval = -ENOMEM;
 735			goto failure;
 736		}
 737		reiserfs_update_inode_transaction(inode);
 738	}
 739research:
 740
 741	retval = search_for_position_by_key(inode->i_sb, &key, &path);
 742	if (retval == IO_ERROR) {
 743		retval = -EIO;
 744		goto failure;
 745	}
 746
 747	bh = get_last_bh(&path);
 748	ih = tp_item_head(&path);
 749	item = tp_item_body(&path);
 750	pos_in_item = path.pos_in_item;
 751
 752	fs_gen = get_generation(inode->i_sb);
 753	copy_item_head(&tmp_ih, ih);
 754
 755	if (allocation_needed
 756	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
 757		/* we have to allocate block for the unformatted node */
 758		if (!th) {
 759			pathrelse(&path);
 760			goto start_trans;
 761		}
 762
 763		repeat =
 764		    _allocate_block(th, block, inode, &allocated_block_nr,
 765				    &path, create);
 766
 767		/*
 768		 * restart the transaction to give the journal a chance to free
 769		 * some blocks.  releases the path, so we have to go back to
 770		 * research if we succeed on the second try
 771		 */
 772		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
 773			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
 774			retval = restart_transaction(th, inode, &path);
 775			if (retval)
 776				goto failure;
 777			repeat =
 778			    _allocate_block(th, block, inode,
 779					    &allocated_block_nr, NULL, create);
 780
 781			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
 782				goto research;
 783			}
 784			if (repeat == QUOTA_EXCEEDED)
 785				retval = -EDQUOT;
 786			else
 787				retval = -ENOSPC;
 788			goto failure;
 789		}
 790
 791		if (fs_changed(fs_gen, inode->i_sb)
 792		    && item_moved(&tmp_ih, &path)) {
 793			goto research;
 794		}
 795	}
 796
 797	if (indirect_item_found(retval, ih)) {
 798		b_blocknr_t unfm_ptr;
 799		/*
 800		 * 'block'-th block is in the file already (there is
 801		 * corresponding cell in some indirect item). But it may be
 802		 * zero unformatted node pointer (hole)
 803		 */
 804		unfm_ptr = get_block_num(item, pos_in_item);
 805		if (unfm_ptr == 0) {
 806			/* use allocated block to plug the hole */
 807			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
 808			if (fs_changed(fs_gen, inode->i_sb)
 809			    && item_moved(&tmp_ih, &path)) {
 810				reiserfs_restore_prepared_buffer(inode->i_sb,
 811								 bh);
 812				goto research;
 813			}
 814			set_buffer_new(bh_result);
 815			if (buffer_dirty(bh_result)
 816			    && reiserfs_data_ordered(inode->i_sb))
 817				reiserfs_add_ordered_list(inode, bh_result);
 818			put_block_num(item, pos_in_item, allocated_block_nr);
 819			unfm_ptr = allocated_block_nr;
 820			journal_mark_dirty(th, bh);
 821			reiserfs_update_sd(th, inode);
 822		}
 823		set_block_dev_mapped(bh_result, unfm_ptr, inode);
 824		pathrelse(&path);
 825		retval = 0;
 826		if (!dangle && th)
 827			retval = reiserfs_end_persistent_transaction(th);
 828
 829		reiserfs_write_unlock(inode->i_sb);
 830
 831		/*
 832		 * the item was found, so new blocks were not added to the file
 833		 * there is no need to make sure the inode is updated with this
 834		 * transaction
 835		 */
 836		return retval;
 837	}
 838
 839	if (!th) {
 840		pathrelse(&path);
 841		goto start_trans;
 842	}
 843
 844	/*
 845	 * desired position is not found or is in the direct item. We have
 846	 * to append file with holes up to 'block'-th block converting
 847	 * direct items to indirect one if necessary
 848	 */
 849	done = 0;
 850	do {
 851		if (is_statdata_le_ih(ih)) {
 852			__le32 unp = 0;
 853			struct cpu_key tmp_key;
 854
 855			/* indirect item has to be inserted */
 856			make_le_item_head(&tmp_ih, &key, version, 1,
 857					  TYPE_INDIRECT, UNFM_P_SIZE,
 858					  0 /* free_space */ );
 859
 860			/*
 861			 * we are going to add 'block'-th block to the file.
 862			 * Use allocated block for that
 863			 */
 864			if (cpu_key_k_offset(&key) == 1) {
 865				unp = cpu_to_le32(allocated_block_nr);
 866				set_block_dev_mapped(bh_result,
 867						     allocated_block_nr, inode);
 868				set_buffer_new(bh_result);
 869				done = 1;
 870			}
 871			tmp_key = key;	/* ;) */
 872			set_cpu_key_k_offset(&tmp_key, 1);
 873			PATH_LAST_POSITION(&path)++;
 874
 875			retval =
 876			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
 877						 inode, (char *)&unp);
 878			if (retval) {
 879				reiserfs_free_block(th, inode,
 880						    allocated_block_nr, 1);
 881				/*
 882				 * retval == -ENOSPC, -EDQUOT or -EIO
 883				 * or -EEXIST
 884				 */
 885				goto failure;
 886			}
 887		} else if (is_direct_le_ih(ih)) {
 888			/* direct item has to be converted */
 889			loff_t tail_offset;
 890
 891			tail_offset =
 892			    ((le_ih_k_offset(ih) -
 893			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
 894
 895			/*
 896			 * direct item we just found fits into block we have
 897			 * to map. Convert it into unformatted node: use
 898			 * bh_result for the conversion
 899			 */
 900			if (tail_offset == cpu_key_k_offset(&key)) {
 901				set_block_dev_mapped(bh_result,
 902						     allocated_block_nr, inode);
 903				unbh = bh_result;
 904				done = 1;
 905			} else {
 906				/*
 907				 * we have to pad file tail stored in direct
 908				 * item(s) up to block size and convert it
 909				 * to unformatted node. FIXME: this should
 910				 * also get into page cache
 911				 */
 912
 913				pathrelse(&path);
 914				/*
 915				 * ugly, but we can only end the transaction if
 916				 * we aren't nested
 917				 */
 918				BUG_ON(!th->t_refcount);
 919				if (th->t_refcount == 1) {
 920					retval =
 921					    reiserfs_end_persistent_transaction
 922					    (th);
 923					th = NULL;
 924					if (retval)
 925						goto failure;
 926				}
 927
 928				retval =
 929				    convert_tail_for_hole(inode, bh_result,
 930							  tail_offset);
 931				if (retval) {
 932					if (retval != -ENOSPC)
 933						reiserfs_error(inode->i_sb,
 934							"clm-6004",
 935							"convert tail failed "
 936							"inode %lu, error %d",
 937							inode->i_ino,
 938							retval);
 939					if (allocated_block_nr) {
 940						/*
 941						 * the bitmap, the super,
 942						 * and the stat data == 3
 943						 */
 944						if (!th)
 945							th = reiserfs_persistent_transaction(inode->i_sb, 3);
 946						if (th)
 947							reiserfs_free_block(th,
 948									    inode,
 949									    allocated_block_nr,
 950									    1);
 951					}
 952					goto failure;
 953				}
 954				goto research;
 955			}
 956			retval =
 957			    direct2indirect(th, inode, &path, unbh,
 958					    tail_offset);
 959			if (retval) {
 960				reiserfs_unmap_buffer(unbh);
 961				reiserfs_free_block(th, inode,
 962						    allocated_block_nr, 1);
 963				goto failure;
 964			}
 965			/*
 966			 * it is important the set_buffer_uptodate is done
 967			 * after the direct2indirect.  The buffer might
 968			 * contain valid data newer than the data on disk
 969			 * (read by readpage, changed, and then sent here by
 970			 * writepage).  direct2indirect needs to know if unbh
 971			 * was already up to date, so it can decide if the
 972			 * data in unbh needs to be replaced with data from
 973			 * the disk
 974			 */
 975			set_buffer_uptodate(unbh);
 976
 977			/*
 978			 * unbh->b_page == NULL in case of DIRECT_IO request,
 979			 * this means buffer will disappear shortly, so it
 980			 * should not be added to
 981			 */
 982			if (unbh->b_page) {
 983				/*
 984				 * we've converted the tail, so we must
 985				 * flush unbh before the transaction commits
 986				 */
 987				reiserfs_add_tail_list(inode, unbh);
 988
 989				/*
 990				 * mark it dirty now to prevent commit_write
 991				 * from adding this buffer to the inode's
 992				 * dirty buffer list
 993				 */
 994				/*
 995				 * AKPM: changed __mark_buffer_dirty to
 996				 * mark_buffer_dirty().  It's still atomic,
 997				 * but it sets the page dirty too, which makes
 998				 * it eligible for writeback at any time by the
 999				 * VM (which was also the case with
1000				 * __mark_buffer_dirty())
1001				 */
1002				mark_buffer_dirty(unbh);
1003			}
1004		} else {
1005			/*
1006			 * append indirect item with holes if needed, when
1007			 * appending pointer to 'block'-th block use block,
1008			 * which is already allocated
1009			 */
1010			struct cpu_key tmp_key;
1011			/*
1012			 * We use this in case we need to allocate
1013			 * only one block which is a fastpath
1014			 */
1015			unp_t unf_single = 0;
1016			unp_t *un;
1017			__u64 max_to_insert =
1018			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1019			    UNFM_P_SIZE;
1020			__u64 blocks_needed;
1021
1022			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1023			       "vs-804: invalid position for append");
1024			/*
1025			 * indirect item has to be appended,
1026			 * set up key of that position
1027			 * (key type is unimportant)
1028			 */
1029			make_cpu_key(&tmp_key, inode,
1030				     le_key_k_offset(version,
1031						     &ih->ih_key) +
1032				     op_bytes_number(ih,
1033						     inode->i_sb->s_blocksize),
1034				     TYPE_INDIRECT, 3);
1035
1036			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1037			       "green-805: invalid offset");
1038			blocks_needed =
1039			    1 +
1040			    ((cpu_key_k_offset(&key) -
1041			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1042			     s_blocksize_bits);
1043
1044			if (blocks_needed == 1) {
1045				un = &unf_single;
1046			} else {
1047				un = kcalloc(min(blocks_needed, max_to_insert),
1048					     UNFM_P_SIZE, GFP_NOFS);
1049				if (!un) {
1050					un = &unf_single;
1051					blocks_needed = 1;
1052					max_to_insert = 0;
1053				}
1054			}
1055			if (blocks_needed <= max_to_insert) {
1056				/*
1057				 * we are going to add target block to
1058				 * the file. Use allocated block for that
1059				 */
1060				un[blocks_needed - 1] =
1061				    cpu_to_le32(allocated_block_nr);
1062				set_block_dev_mapped(bh_result,
1063						     allocated_block_nr, inode);
1064				set_buffer_new(bh_result);
1065				done = 1;
1066			} else {
1067				/* paste hole to the indirect item */
1068				/*
1069				 * If kmalloc failed, max_to_insert becomes
1070				 * zero and it means we only have space for
1071				 * one block
1072				 */
1073				blocks_needed =
1074				    max_to_insert ? max_to_insert : 1;
1075			}
1076			retval =
1077			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1078						     (char *)un,
1079						     UNFM_P_SIZE *
1080						     blocks_needed);
1081
1082			if (blocks_needed != 1)
1083				kfree(un);
1084
1085			if (retval) {
1086				reiserfs_free_block(th, inode,
1087						    allocated_block_nr, 1);
1088				goto failure;
1089			}
1090			if (!done) {
1091				/*
1092				 * We need to mark new file size in case
1093				 * this function will be interrupted/aborted
1094				 * later on. And we may do this only for
1095				 * holes.
1096				 */
1097				inode->i_size +=
1098				    inode->i_sb->s_blocksize * blocks_needed;
1099			}
1100		}
1101
1102		if (done == 1)
1103			break;
1104
1105		/*
1106		 * this loop could log more blocks than we had originally
1107		 * asked for.  So, we have to allow the transaction to end
1108		 * if it is too big or too full.  Update the inode so things
1109		 * are consistent if we crash before the function returns
1110		 * release the path so that anybody waiting on the path before
1111		 * ending their transaction will be able to continue.
1112		 */
1113		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1114			retval = restart_transaction(th, inode, &path);
1115			if (retval)
1116				goto failure;
1117		}
1118		/*
1119		 * inserting indirect pointers for a hole can take a
1120		 * long time.  reschedule if needed and also release the write
1121		 * lock for others.
1122		 */
1123		reiserfs_cond_resched(inode->i_sb);
1124
1125		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1126		if (retval == IO_ERROR) {
1127			retval = -EIO;
1128			goto failure;
1129		}
1130		if (retval == POSITION_FOUND) {
1131			reiserfs_warning(inode->i_sb, "vs-825",
1132					 "%K should not be found", &key);
1133			retval = -EEXIST;
1134			if (allocated_block_nr)
1135				reiserfs_free_block(th, inode,
1136						    allocated_block_nr, 1);
1137			pathrelse(&path);
1138			goto failure;
1139		}
1140		bh = get_last_bh(&path);
1141		ih = tp_item_head(&path);
1142		item = tp_item_body(&path);
1143		pos_in_item = path.pos_in_item;
1144	} while (1);
1145
1146	retval = 0;
1147
1148failure:
1149	if (th && (!dangle || (retval && !th->t_trans_id))) {
1150		int err;
1151		if (th->t_trans_id)
1152			reiserfs_update_sd(th, inode);
1153		err = reiserfs_end_persistent_transaction(th);
1154		if (err)
1155			retval = err;
1156	}
1157
1158	reiserfs_write_unlock(inode->i_sb);
1159	reiserfs_check_path(&path);
1160	return retval;
1161}
1162
1163static int
1164reiserfs_readpages(struct file *file, struct address_space *mapping,
1165		   struct list_head *pages, unsigned nr_pages)
1166{
1167	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1168}
1169
1170/*
1171 * Compute real number of used bytes by file
1172 * Following three functions can go away when we'll have enough space in
1173 * stat item
1174 */
1175static int real_space_diff(struct inode *inode, int sd_size)
1176{
1177	int bytes;
1178	loff_t blocksize = inode->i_sb->s_blocksize;
1179
1180	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1181		return sd_size;
1182
1183	/*
1184	 * End of file is also in full block with indirect reference, so round
1185	 * up to the next block.
1186	 *
1187	 * there is just no way to know if the tail is actually packed
1188	 * on the file, so we have to assume it isn't.  When we pack the
1189	 * tail, we add 4 bytes to pretend there really is an unformatted
1190	 * node pointer
1191	 */
1192	bytes =
1193	    ((inode->i_size +
1194	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1195	    sd_size;
1196	return bytes;
1197}
1198
1199static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1200					int sd_size)
1201{
1202	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1203		return inode->i_size +
1204		    (loff_t) (real_space_diff(inode, sd_size));
1205	}
1206	return ((loff_t) real_space_diff(inode, sd_size)) +
1207	    (((loff_t) blocks) << 9);
1208}
1209
1210/* Compute number of blocks used by file in ReiserFS counting */
1211static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1212{
1213	loff_t bytes = inode_get_bytes(inode);
1214	loff_t real_space = real_space_diff(inode, sd_size);
1215
1216	/* keeps fsck and non-quota versions of reiserfs happy */
1217	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1218		bytes += (loff_t) 511;
1219	}
1220
1221	/*
1222	 * files from before the quota patch might i_blocks such that
1223	 * bytes < real_space.  Deal with that here to prevent it from
1224	 * going negative.
1225	 */
1226	if (bytes < real_space)
1227		return 0;
1228	return (bytes - real_space) >> 9;
1229}
1230
1231/*
1232 * BAD: new directories have stat data of new type and all other items
1233 * of old type. Version stored in the inode says about body items, so
1234 * in update_stat_data we can not rely on inode, but have to check
1235 * item version directly
1236 */
1237
1238/* called by read_locked_inode */
1239static void init_inode(struct inode *inode, struct treepath *path)
1240{
1241	struct buffer_head *bh;
1242	struct item_head *ih;
1243	__u32 rdev;
1244
1245	bh = PATH_PLAST_BUFFER(path);
1246	ih = tp_item_head(path);
1247
1248	copy_key(INODE_PKEY(inode), &ih->ih_key);
1249
1250	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1251	REISERFS_I(inode)->i_flags = 0;
1252	REISERFS_I(inode)->i_prealloc_block = 0;
1253	REISERFS_I(inode)->i_prealloc_count = 0;
1254	REISERFS_I(inode)->i_trans_id = 0;
1255	REISERFS_I(inode)->i_jl = NULL;
1256	reiserfs_init_xattr_rwsem(inode);
1257
1258	if (stat_data_v1(ih)) {
1259		struct stat_data_v1 *sd =
1260		    (struct stat_data_v1 *)ih_item_body(bh, ih);
1261		unsigned long blocks;
1262
1263		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1264		set_inode_sd_version(inode, STAT_DATA_V1);
1265		inode->i_mode = sd_v1_mode(sd);
1266		set_nlink(inode, sd_v1_nlink(sd));
1267		i_uid_write(inode, sd_v1_uid(sd));
1268		i_gid_write(inode, sd_v1_gid(sd));
1269		inode->i_size = sd_v1_size(sd);
1270		inode->i_atime.tv_sec = sd_v1_atime(sd);
1271		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1272		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1273		inode->i_atime.tv_nsec = 0;
1274		inode->i_ctime.tv_nsec = 0;
1275		inode->i_mtime.tv_nsec = 0;
1276
1277		inode->i_blocks = sd_v1_blocks(sd);
1278		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1279		blocks = (inode->i_size + 511) >> 9;
1280		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1281
1282		/*
1283		 * there was a bug in <=3.5.23 when i_blocks could take
1284		 * negative values. Starting from 3.5.17 this value could
1285		 * even be stored in stat data. For such files we set
1286		 * i_blocks based on file size. Just 2 notes: this can be
1287		 * wrong for sparse files. On-disk value will be only
1288		 * updated if file's inode will ever change
1289		 */
1290		if (inode->i_blocks > blocks) {
1291			inode->i_blocks = blocks;
1292		}
1293
1294		rdev = sd_v1_rdev(sd);
1295		REISERFS_I(inode)->i_first_direct_byte =
1296		    sd_v1_first_direct_byte(sd);
1297
1298		/*
1299		 * an early bug in the quota code can give us an odd
1300		 * number for the block count.  This is incorrect, fix it here.
1301		 */
1302		if (inode->i_blocks & 1) {
1303			inode->i_blocks++;
1304		}
1305		inode_set_bytes(inode,
1306				to_real_used_space(inode, inode->i_blocks,
1307						   SD_V1_SIZE));
1308		/*
1309		 * nopack is initially zero for v1 objects. For v2 objects,
1310		 * nopack is initialised from sd_attrs
1311		 */
1312		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1313	} else {
1314		/*
1315		 * new stat data found, but object may have old items
1316		 * (directories and symlinks)
1317		 */
1318		struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1319
1320		inode->i_mode = sd_v2_mode(sd);
1321		set_nlink(inode, sd_v2_nlink(sd));
1322		i_uid_write(inode, sd_v2_uid(sd));
1323		inode->i_size = sd_v2_size(sd);
1324		i_gid_write(inode, sd_v2_gid(sd));
1325		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1326		inode->i_atime.tv_sec = sd_v2_atime(sd);
1327		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1328		inode->i_ctime.tv_nsec = 0;
1329		inode->i_mtime.tv_nsec = 0;
1330		inode->i_atime.tv_nsec = 0;
1331		inode->i_blocks = sd_v2_blocks(sd);
1332		rdev = sd_v2_rdev(sd);
1333		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1334			inode->i_generation =
1335			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1336		else
1337			inode->i_generation = sd_v2_generation(sd);
1338
1339		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1340			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1341		else
1342			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1343		REISERFS_I(inode)->i_first_direct_byte = 0;
1344		set_inode_sd_version(inode, STAT_DATA_V2);
1345		inode_set_bytes(inode,
1346				to_real_used_space(inode, inode->i_blocks,
1347						   SD_V2_SIZE));
1348		/*
1349		 * read persistent inode attributes from sd and initialise
1350		 * generic inode flags from them
1351		 */
1352		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1353		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1354	}
1355
1356	pathrelse(path);
1357	if (S_ISREG(inode->i_mode)) {
1358		inode->i_op = &reiserfs_file_inode_operations;
1359		inode->i_fop = &reiserfs_file_operations;
1360		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1361	} else if (S_ISDIR(inode->i_mode)) {
1362		inode->i_op = &reiserfs_dir_inode_operations;
1363		inode->i_fop = &reiserfs_dir_operations;
1364	} else if (S_ISLNK(inode->i_mode)) {
1365		inode->i_op = &reiserfs_symlink_inode_operations;
1366		inode_nohighmem(inode);
1367		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1368	} else {
1369		inode->i_blocks = 0;
1370		inode->i_op = &reiserfs_special_inode_operations;
1371		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1372	}
1373}
1374
1375/* update new stat data with inode fields */
1376static void inode2sd(void *sd, struct inode *inode, loff_t size)
1377{
1378	struct stat_data *sd_v2 = (struct stat_data *)sd;
1379
1380	set_sd_v2_mode(sd_v2, inode->i_mode);
1381	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1382	set_sd_v2_uid(sd_v2, i_uid_read(inode));
1383	set_sd_v2_size(sd_v2, size);
1384	set_sd_v2_gid(sd_v2, i_gid_read(inode));
1385	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1386	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1387	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1388	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1389	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1390		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1391	else
1392		set_sd_v2_generation(sd_v2, inode->i_generation);
1393	set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs);
1394}
1395
1396/* used to copy inode's fields to old stat data */
1397static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1398{
1399	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1400
1401	set_sd_v1_mode(sd_v1, inode->i_mode);
1402	set_sd_v1_uid(sd_v1, i_uid_read(inode));
1403	set_sd_v1_gid(sd_v1, i_gid_read(inode));
1404	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1405	set_sd_v1_size(sd_v1, size);
1406	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1407	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1408	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1409
1410	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1411		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1412	else
1413		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1414
1415	/* Sigh. i_first_direct_byte is back */
1416	set_sd_v1_first_direct_byte(sd_v1,
1417				    REISERFS_I(inode)->i_first_direct_byte);
1418}
1419
1420/*
1421 * NOTE, you must prepare the buffer head before sending it here,
1422 * and then log it after the call
1423 */
1424static void update_stat_data(struct treepath *path, struct inode *inode,
1425			     loff_t size)
1426{
1427	struct buffer_head *bh;
1428	struct item_head *ih;
1429
1430	bh = PATH_PLAST_BUFFER(path);
1431	ih = tp_item_head(path);
1432
1433	if (!is_statdata_le_ih(ih))
1434		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1435			       INODE_PKEY(inode), ih);
1436
1437	/* path points to old stat data */
1438	if (stat_data_v1(ih)) {
1439		inode2sd_v1(ih_item_body(bh, ih), inode, size);
1440	} else {
1441		inode2sd(ih_item_body(bh, ih), inode, size);
1442	}
1443
1444	return;
1445}
1446
1447void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1448			     struct inode *inode, loff_t size)
1449{
1450	struct cpu_key key;
1451	INITIALIZE_PATH(path);
1452	struct buffer_head *bh;
1453	int fs_gen;
1454	struct item_head *ih, tmp_ih;
1455	int retval;
1456
1457	BUG_ON(!th->t_trans_id);
1458
1459	/* key type is unimportant */
1460	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1461
1462	for (;;) {
1463		int pos;
1464		/* look for the object's stat data */
1465		retval = search_item(inode->i_sb, &key, &path);
1466		if (retval == IO_ERROR) {
1467			reiserfs_error(inode->i_sb, "vs-13050",
1468				       "i/o failure occurred trying to "
1469				       "update %K stat data", &key);
1470			return;
1471		}
1472		if (retval == ITEM_NOT_FOUND) {
1473			pos = PATH_LAST_POSITION(&path);
1474			pathrelse(&path);
1475			if (inode->i_nlink == 0) {
1476				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1477				return;
1478			}
1479			reiserfs_warning(inode->i_sb, "vs-13060",
1480					 "stat data of object %k (nlink == %d) "
1481					 "not found (pos %d)",
1482					 INODE_PKEY(inode), inode->i_nlink,
1483					 pos);
1484			reiserfs_check_path(&path);
1485			return;
1486		}
1487
1488		/*
1489		 * sigh, prepare_for_journal might schedule.  When it
1490		 * schedules the FS might change.  We have to detect that,
1491		 * and loop back to the search if the stat data item has moved
1492		 */
1493		bh = get_last_bh(&path);
1494		ih = tp_item_head(&path);
1495		copy_item_head(&tmp_ih, ih);
1496		fs_gen = get_generation(inode->i_sb);
1497		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1498
1499		/* Stat_data item has been moved after scheduling. */
1500		if (fs_changed(fs_gen, inode->i_sb)
1501		    && item_moved(&tmp_ih, &path)) {
1502			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1503			continue;
1504		}
1505		break;
1506	}
1507	update_stat_data(&path, inode, size);
1508	journal_mark_dirty(th, bh);
1509	pathrelse(&path);
1510	return;
1511}
1512
1513/*
1514 * reiserfs_read_locked_inode is called to read the inode off disk, and it
1515 * does a make_bad_inode when things go wrong.  But, we need to make sure
1516 * and clear the key in the private portion of the inode, otherwise a
1517 * corresponding iput might try to delete whatever object the inode last
1518 * represented.
1519 */
1520static void reiserfs_make_bad_inode(struct inode *inode)
1521{
1522	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1523	make_bad_inode(inode);
1524}
1525
1526/*
1527 * initially this function was derived from minix or ext2's analog and
1528 * evolved as the prototype did
1529 */
1530int reiserfs_init_locked_inode(struct inode *inode, void *p)
1531{
1532	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1533	inode->i_ino = args->objectid;
1534	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1535	return 0;
1536}
1537
1538/*
1539 * looks for stat data in the tree, and fills up the fields of in-core
1540 * inode stat data fields
1541 */
1542void reiserfs_read_locked_inode(struct inode *inode,
1543				struct reiserfs_iget_args *args)
1544{
1545	INITIALIZE_PATH(path_to_sd);
1546	struct cpu_key key;
1547	unsigned long dirino;
1548	int retval;
1549
1550	dirino = args->dirid;
1551
1552	/*
1553	 * set version 1, version 2 could be used too, because stat data
1554	 * key is the same in both versions
1555	 */
1556	key.version = KEY_FORMAT_3_5;
1557	key.on_disk_key.k_dir_id = dirino;
1558	key.on_disk_key.k_objectid = inode->i_ino;
1559	key.on_disk_key.k_offset = 0;
1560	key.on_disk_key.k_type = 0;
1561
1562	/* look for the object's stat data */
1563	retval = search_item(inode->i_sb, &key, &path_to_sd);
1564	if (retval == IO_ERROR) {
1565		reiserfs_error(inode->i_sb, "vs-13070",
1566			       "i/o failure occurred trying to find "
1567			       "stat data of %K", &key);
1568		reiserfs_make_bad_inode(inode);
1569		return;
1570	}
1571
1572	/* a stale NFS handle can trigger this without it being an error */
1573	if (retval != ITEM_FOUND) {
1574		pathrelse(&path_to_sd);
1575		reiserfs_make_bad_inode(inode);
1576		clear_nlink(inode);
1577		return;
1578	}
1579
1580	init_inode(inode, &path_to_sd);
1581
1582	/*
1583	 * It is possible that knfsd is trying to access inode of a file
1584	 * that is being removed from the disk by some other thread. As we
1585	 * update sd on unlink all that is required is to check for nlink
1586	 * here. This bug was first found by Sizif when debugging
1587	 * SquidNG/Butterfly, forgotten, and found again after Philippe
1588	 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1589
1590	 * More logical fix would require changes in fs/inode.c:iput() to
1591	 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1592	 * in iget() to return NULL if I_FREEING inode is found in
1593	 * hash-table.
1594	 */
1595
1596	/*
1597	 * Currently there is one place where it's ok to meet inode with
1598	 * nlink==0: processing of open-unlinked and half-truncated files
1599	 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1600	 */
1601	if ((inode->i_nlink == 0) &&
1602	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1603		reiserfs_warning(inode->i_sb, "vs-13075",
1604				 "dead inode read from disk %K. "
1605				 "This is likely to be race with knfsd. Ignore",
1606				 &key);
1607		reiserfs_make_bad_inode(inode);
1608	}
1609
1610	/* init inode should be relsing */
1611	reiserfs_check_path(&path_to_sd);
1612
1613	/*
1614	 * Stat data v1 doesn't support ACLs.
1615	 */
1616	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1617		cache_no_acl(inode);
1618}
1619
1620/*
1621 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1622 *
1623 * @inode:    inode from hash table to check
1624 * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1625 *
1626 * This function is called by iget5_locked() to distinguish reiserfs inodes
1627 * having the same inode numbers. Such inodes can only exist due to some
1628 * error condition. One of them should be bad. Inodes with identical
1629 * inode numbers (objectids) are distinguished by parent directory ids.
1630 *
1631 */
1632int reiserfs_find_actor(struct inode *inode, void *opaque)
1633{
1634	struct reiserfs_iget_args *args;
1635
1636	args = opaque;
1637	/* args is already in CPU order */
1638	return (inode->i_ino == args->objectid) &&
1639	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1640}
1641
1642struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1643{
1644	struct inode *inode;
1645	struct reiserfs_iget_args args;
1646	int depth;
1647
1648	args.objectid = key->on_disk_key.k_objectid;
1649	args.dirid = key->on_disk_key.k_dir_id;
1650	depth = reiserfs_write_unlock_nested(s);
1651	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1652			     reiserfs_find_actor, reiserfs_init_locked_inode,
1653			     (void *)(&args));
1654	reiserfs_write_lock_nested(s, depth);
1655	if (!inode)
1656		return ERR_PTR(-ENOMEM);
1657
1658	if (inode->i_state & I_NEW) {
1659		reiserfs_read_locked_inode(inode, &args);
1660		unlock_new_inode(inode);
1661	}
1662
1663	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1664		/* either due to i/o error or a stale NFS handle */
1665		iput(inode);
1666		inode = NULL;
1667	}
1668	return inode;
1669}
1670
1671static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1672	u32 objectid, u32 dir_id, u32 generation)
1673
1674{
1675	struct cpu_key key;
1676	struct inode *inode;
1677
1678	key.on_disk_key.k_objectid = objectid;
1679	key.on_disk_key.k_dir_id = dir_id;
1680	reiserfs_write_lock(sb);
1681	inode = reiserfs_iget(sb, &key);
1682	if (inode && !IS_ERR(inode) && generation != 0 &&
1683	    generation != inode->i_generation) {
1684		iput(inode);
1685		inode = NULL;
1686	}
1687	reiserfs_write_unlock(sb);
1688
1689	return d_obtain_alias(inode);
1690}
1691
1692struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1693		int fh_len, int fh_type)
1694{
1695	/*
1696	 * fhtype happens to reflect the number of u32s encoded.
1697	 * due to a bug in earlier code, fhtype might indicate there
1698	 * are more u32s then actually fitted.
1699	 * so if fhtype seems to be more than len, reduce fhtype.
1700	 * Valid types are:
1701	 *   2 - objectid + dir_id - legacy support
1702	 *   3 - objectid + dir_id + generation
1703	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1704	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1705	 *   6 - as above plus generation of directory
1706	 * 6 does not fit in NFSv2 handles
1707	 */
1708	if (fh_type > fh_len) {
1709		if (fh_type != 6 || fh_len != 5)
1710			reiserfs_warning(sb, "reiserfs-13077",
1711				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1712				fh_type, fh_len);
1713		fh_type = fh_len;
1714	}
1715	if (fh_len < 2)
1716		return NULL;
1717
1718	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1719		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1720}
1721
1722struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1723		int fh_len, int fh_type)
1724{
1725	if (fh_type > fh_len)
1726		fh_type = fh_len;
1727	if (fh_type < 4)
1728		return NULL;
1729
1730	return reiserfs_get_dentry(sb,
1731		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1732		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1733		(fh_type == 6) ? fid->raw[5] : 0);
1734}
1735
1736int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1737		       struct inode *parent)
1738{
1739	int maxlen = *lenp;
1740
1741	if (parent && (maxlen < 5)) {
1742		*lenp = 5;
1743		return FILEID_INVALID;
1744	} else if (maxlen < 3) {
1745		*lenp = 3;
1746		return FILEID_INVALID;
1747	}
1748
1749	data[0] = inode->i_ino;
1750	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1751	data[2] = inode->i_generation;
1752	*lenp = 3;
1753	if (parent) {
1754		data[3] = parent->i_ino;
1755		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1756		*lenp = 5;
1757		if (maxlen >= 6) {
1758			data[5] = parent->i_generation;
1759			*lenp = 6;
1760		}
1761	}
1762	return *lenp;
1763}
1764
1765/*
1766 * looks for stat data, then copies fields to it, marks the buffer
1767 * containing stat data as dirty
1768 */
1769/*
1770 * reiserfs inodes are never really dirty, since the dirty inode call
1771 * always logs them.  This call allows the VFS inode marking routines
1772 * to properly mark inodes for datasync and such, but only actually
1773 * does something when called for a synchronous update.
1774 */
1775int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1776{
1777	struct reiserfs_transaction_handle th;
1778	int jbegin_count = 1;
1779
1780	if (sb_rdonly(inode->i_sb))
1781		return -EROFS;
1782	/*
1783	 * memory pressure can sometimes initiate write_inode calls with
1784	 * sync == 1,
1785	 * these cases are just when the system needs ram, not when the
1786	 * inode needs to reach disk for safety, and they can safely be
1787	 * ignored because the altered inode has already been logged.
1788	 */
1789	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1790		reiserfs_write_lock(inode->i_sb);
1791		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1792			reiserfs_update_sd(&th, inode);
1793			journal_end_sync(&th);
1794		}
1795		reiserfs_write_unlock(inode->i_sb);
1796	}
1797	return 0;
1798}
1799
1800/*
1801 * stat data of new object is inserted already, this inserts the item
1802 * containing "." and ".." entries
1803 */
1804static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1805				  struct inode *inode,
1806				  struct item_head *ih, struct treepath *path,
1807				  struct inode *dir)
1808{
1809	struct super_block *sb = th->t_super;
1810	char empty_dir[EMPTY_DIR_SIZE];
1811	char *body = empty_dir;
1812	struct cpu_key key;
1813	int retval;
1814
1815	BUG_ON(!th->t_trans_id);
1816
1817	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1818		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1819		      TYPE_DIRENTRY, 3 /*key length */ );
1820
1821	/*
1822	 * compose item head for new item. Directories consist of items of
1823	 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1824	 * is done by reiserfs_new_inode
1825	 */
1826	if (old_format_only(sb)) {
1827		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1828				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1829
1830		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1831				       ih->ih_key.k_objectid,
1832				       INODE_PKEY(dir)->k_dir_id,
1833				       INODE_PKEY(dir)->k_objectid);
1834	} else {
1835		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1836				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1837
1838		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1839				    ih->ih_key.k_objectid,
1840				    INODE_PKEY(dir)->k_dir_id,
1841				    INODE_PKEY(dir)->k_objectid);
1842	}
1843
1844	/* look for place in the tree for new item */
1845	retval = search_item(sb, &key, path);
1846	if (retval == IO_ERROR) {
1847		reiserfs_error(sb, "vs-13080",
1848			       "i/o failure occurred creating new directory");
1849		return -EIO;
1850	}
1851	if (retval == ITEM_FOUND) {
1852		pathrelse(path);
1853		reiserfs_warning(sb, "vs-13070",
1854				 "object with this key exists (%k)",
1855				 &(ih->ih_key));
1856		return -EEXIST;
1857	}
1858
1859	/* insert item, that is empty directory item */
1860	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1861}
1862
1863/*
1864 * stat data of object has been inserted, this inserts the item
1865 * containing the body of symlink
1866 */
1867static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1868				struct inode *inode,
1869				struct item_head *ih,
1870				struct treepath *path, const char *symname,
1871				int item_len)
1872{
1873	struct super_block *sb = th->t_super;
1874	struct cpu_key key;
1875	int retval;
1876
1877	BUG_ON(!th->t_trans_id);
1878
1879	_make_cpu_key(&key, KEY_FORMAT_3_5,
1880		      le32_to_cpu(ih->ih_key.k_dir_id),
1881		      le32_to_cpu(ih->ih_key.k_objectid),
1882		      1, TYPE_DIRECT, 3 /*key length */ );
1883
1884	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1885			  0 /*free_space */ );
1886
1887	/* look for place in the tree for new item */
1888	retval = search_item(sb, &key, path);
1889	if (retval == IO_ERROR) {
1890		reiserfs_error(sb, "vs-13080",
1891			       "i/o failure occurred creating new symlink");
1892		return -EIO;
1893	}
1894	if (retval == ITEM_FOUND) {
1895		pathrelse(path);
1896		reiserfs_warning(sb, "vs-13080",
1897				 "object with this key exists (%k)",
1898				 &(ih->ih_key));
1899		return -EEXIST;
1900	}
1901
1902	/* insert item, that is body of symlink */
1903	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1904}
1905
1906/*
1907 * inserts the stat data into the tree, and then calls
1908 * reiserfs_new_directory (to insert ".", ".." item if new object is
1909 * directory) or reiserfs_new_symlink (to insert symlink body if new
1910 * object is symlink) or nothing (if new object is regular file)
1911
1912 * NOTE! uid and gid must already be set in the inode.  If we return
1913 * non-zero due to an error, we have to drop the quota previously allocated
1914 * for the fresh inode.  This can only be done outside a transaction, so
1915 * if we return non-zero, we also end the transaction.
1916 *
1917 * @th: active transaction handle
1918 * @dir: parent directory for new inode
1919 * @mode: mode of new inode
1920 * @symname: symlink contents if inode is symlink
1921 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1922 *         symlinks
1923 * @inode: inode to be filled
1924 * @security: optional security context to associate with this inode
1925 */
1926int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1927		       struct inode *dir, umode_t mode, const char *symname,
1928		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1929		          strlen (symname) for symlinks) */
1930		       loff_t i_size, struct dentry *dentry,
1931		       struct inode *inode,
1932		       struct reiserfs_security_handle *security)
1933{
1934	struct super_block *sb = dir->i_sb;
1935	struct reiserfs_iget_args args;
1936	INITIALIZE_PATH(path_to_key);
1937	struct cpu_key key;
1938	struct item_head ih;
1939	struct stat_data sd;
1940	int retval;
1941	int err;
1942	int depth;
1943
1944	BUG_ON(!th->t_trans_id);
1945
1946	depth = reiserfs_write_unlock_nested(sb);
1947	err = dquot_alloc_inode(inode);
1948	reiserfs_write_lock_nested(sb, depth);
1949	if (err)
1950		goto out_end_trans;
1951	if (!dir->i_nlink) {
1952		err = -EPERM;
1953		goto out_bad_inode;
1954	}
1955
1956	/* item head of new item */
1957	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1958	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1959	if (!ih.ih_key.k_objectid) {
1960		err = -ENOMEM;
1961		goto out_bad_inode;
1962	}
1963	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1964	if (old_format_only(sb))
1965		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1966				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1967	else
1968		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1969				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1970	memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1971	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1972
1973	depth = reiserfs_write_unlock_nested(inode->i_sb);
1974	err = insert_inode_locked4(inode, args.objectid,
1975			     reiserfs_find_actor, &args);
1976	reiserfs_write_lock_nested(inode->i_sb, depth);
1977	if (err) {
1978		err = -EINVAL;
1979		goto out_bad_inode;
1980	}
1981
1982	if (old_format_only(sb))
1983		/*
1984		 * not a perfect generation count, as object ids can be reused,
1985		 * but this is as good as reiserfs can do right now.
1986		 * note that the private part of inode isn't filled in yet,
1987		 * we have to use the directory.
1988		 */
1989		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1990	else
1991#if defined( USE_INODE_GENERATION_COUNTER )
1992		inode->i_generation =
1993		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1994#else
1995		inode->i_generation = ++event;
1996#endif
1997
1998	/* fill stat data */
1999	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
2000
2001	/* uid and gid must already be set by the caller for quota init */
2002
2003	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
2004	inode->i_size = i_size;
2005	inode->i_blocks = 0;
2006	inode->i_bytes = 0;
2007	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
2008	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
2009
2010	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
2011	REISERFS_I(inode)->i_flags = 0;
2012	REISERFS_I(inode)->i_prealloc_block = 0;
2013	REISERFS_I(inode)->i_prealloc_count = 0;
2014	REISERFS_I(inode)->i_trans_id = 0;
2015	REISERFS_I(inode)->i_jl = NULL;
2016	REISERFS_I(inode)->i_attrs =
2017	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
2018	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
2019	reiserfs_init_xattr_rwsem(inode);
2020
2021	/* key to search for correct place for new stat data */
2022	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2023		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2024		      TYPE_STAT_DATA, 3 /*key length */ );
2025
2026	/* find proper place for inserting of stat data */
2027	retval = search_item(sb, &key, &path_to_key);
2028	if (retval == IO_ERROR) {
2029		err = -EIO;
2030		goto out_bad_inode;
2031	}
2032	if (retval == ITEM_FOUND) {
2033		pathrelse(&path_to_key);
2034		err = -EEXIST;
2035		goto out_bad_inode;
2036	}
2037	if (old_format_only(sb)) {
2038		/* i_uid or i_gid is too big to be stored in stat data v3.5 */
2039		if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2040			pathrelse(&path_to_key);
2041			err = -EINVAL;
2042			goto out_bad_inode;
2043		}
2044		inode2sd_v1(&sd, inode, inode->i_size);
2045	} else {
2046		inode2sd(&sd, inode, inode->i_size);
2047	}
2048	/*
2049	 * store in in-core inode the key of stat data and version all
2050	 * object items will have (directory items will have old offset
2051	 * format, other new objects will consist of new items)
2052	 */
2053	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2054		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2055	else
2056		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2057	if (old_format_only(sb))
2058		set_inode_sd_version(inode, STAT_DATA_V1);
2059	else
2060		set_inode_sd_version(inode, STAT_DATA_V2);
2061
2062	/* insert the stat data into the tree */
2063#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2064	if (REISERFS_I(dir)->new_packing_locality)
2065		th->displace_new_blocks = 1;
2066#endif
2067	retval =
2068	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2069				 (char *)(&sd));
2070	if (retval) {
2071		err = retval;
2072		reiserfs_check_path(&path_to_key);
2073		goto out_bad_inode;
2074	}
2075#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2076	if (!th->displace_new_blocks)
2077		REISERFS_I(dir)->new_packing_locality = 0;
2078#endif
2079	if (S_ISDIR(mode)) {
2080		/* insert item with "." and ".." */
2081		retval =
2082		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2083	}
2084
2085	if (S_ISLNK(mode)) {
2086		/* insert body of symlink */
2087		if (!old_format_only(sb))
2088			i_size = ROUND_UP(i_size);
2089		retval =
2090		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2091					 i_size);
2092	}
2093	if (retval) {
2094		err = retval;
2095		reiserfs_check_path(&path_to_key);
2096		journal_end(th);
2097		goto out_inserted_sd;
2098	}
2099
2100	if (reiserfs_posixacl(inode->i_sb)) {
2101		reiserfs_write_unlock(inode->i_sb);
2102		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2103		reiserfs_write_lock(inode->i_sb);
2104		if (retval) {
2105			err = retval;
2106			reiserfs_check_path(&path_to_key);
2107			journal_end(th);
2108			goto out_inserted_sd;
2109		}
2110	} else if (inode->i_sb->s_flags & SB_POSIXACL) {
2111		reiserfs_warning(inode->i_sb, "jdm-13090",
2112				 "ACLs aren't enabled in the fs, "
2113				 "but vfs thinks they are!");
2114	} else if (IS_PRIVATE(dir))
2115		inode->i_flags |= S_PRIVATE;
2116
2117	if (security->name) {
2118		reiserfs_write_unlock(inode->i_sb);
2119		retval = reiserfs_security_write(th, inode, security);
2120		reiserfs_write_lock(inode->i_sb);
2121		if (retval) {
2122			err = retval;
2123			reiserfs_check_path(&path_to_key);
2124			retval = journal_end(th);
2125			if (retval)
2126				err = retval;
2127			goto out_inserted_sd;
2128		}
2129	}
2130
2131	reiserfs_update_sd(th, inode);
2132	reiserfs_check_path(&path_to_key);
2133
2134	return 0;
2135
2136out_bad_inode:
2137	/* Invalidate the object, nothing was inserted yet */
2138	INODE_PKEY(inode)->k_objectid = 0;
2139
2140	/* Quota change must be inside a transaction for journaling */
2141	depth = reiserfs_write_unlock_nested(inode->i_sb);
2142	dquot_free_inode(inode);
2143	reiserfs_write_lock_nested(inode->i_sb, depth);
2144
2145out_end_trans:
2146	journal_end(th);
2147	/*
2148	 * Drop can be outside and it needs more credits so it's better
2149	 * to have it outside
2150	 */
2151	depth = reiserfs_write_unlock_nested(inode->i_sb);
2152	dquot_drop(inode);
2153	reiserfs_write_lock_nested(inode->i_sb, depth);
2154	inode->i_flags |= S_NOQUOTA;
2155	make_bad_inode(inode);
2156
2157out_inserted_sd:
2158	clear_nlink(inode);
2159	th->t_trans_id = 0;	/* so the caller can't use this handle later */
2160	unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
2161	iput(inode);
2162	return err;
2163}
2164
2165/*
2166 * finds the tail page in the page cache,
2167 * reads the last block in.
2168 *
2169 * On success, page_result is set to a locked, pinned page, and bh_result
2170 * is set to an up to date buffer for the last block in the file.  returns 0.
2171 *
2172 * tail conversion is not done, so bh_result might not be valid for writing
2173 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2174 * trying to write the block.
2175 *
2176 * on failure, nonzero is returned, page_result and bh_result are untouched.
2177 */
2178static int grab_tail_page(struct inode *inode,
2179			  struct page **page_result,
2180			  struct buffer_head **bh_result)
2181{
2182
2183	/*
2184	 * we want the page with the last byte in the file,
2185	 * not the page that will hold the next byte for appending
2186	 */
2187	unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
2188	unsigned long pos = 0;
2189	unsigned long start = 0;
2190	unsigned long blocksize = inode->i_sb->s_blocksize;
2191	unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
2192	struct buffer_head *bh;
2193	struct buffer_head *head;
2194	struct page *page;
2195	int error;
2196
2197	/*
2198	 * we know that we are only called with inode->i_size > 0.
2199	 * we also know that a file tail can never be as big as a block
2200	 * If i_size % blocksize == 0, our file is currently block aligned
2201	 * and it won't need converting or zeroing after a truncate.
2202	 */
2203	if ((offset & (blocksize - 1)) == 0) {
2204		return -ENOENT;
2205	}
2206	page = grab_cache_page(inode->i_mapping, index);
2207	error = -ENOMEM;
2208	if (!page) {
2209		goto out;
2210	}
2211	/* start within the page of the last block in the file */
2212	start = (offset / blocksize) * blocksize;
2213
2214	error = __block_write_begin(page, start, offset - start,
2215				    reiserfs_get_block_create_0);
2216	if (error)
2217		goto unlock;
2218
2219	head = page_buffers(page);
2220	bh = head;
2221	do {
2222		if (pos >= start) {
2223			break;
2224		}
2225		bh = bh->b_this_page;
2226		pos += blocksize;
2227	} while (bh != head);
2228
2229	if (!buffer_uptodate(bh)) {
2230		/*
2231		 * note, this should never happen, prepare_write should be
2232		 * taking care of this for us.  If the buffer isn't up to
2233		 * date, I've screwed up the code to find the buffer, or the
2234		 * code to call prepare_write
2235		 */
2236		reiserfs_error(inode->i_sb, "clm-6000",
2237			       "error reading block %lu", bh->b_blocknr);
2238		error = -EIO;
2239		goto unlock;
2240	}
2241	*bh_result = bh;
2242	*page_result = page;
2243
2244out:
2245	return error;
2246
2247unlock:
2248	unlock_page(page);
2249	put_page(page);
2250	return error;
2251}
2252
2253/*
2254 * vfs version of truncate file.  Must NOT be called with
2255 * a transaction already started.
2256 *
2257 * some code taken from block_truncate_page
2258 */
2259int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2260{
2261	struct reiserfs_transaction_handle th;
2262	/* we want the offset for the first byte after the end of the file */
2263	unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
2264	unsigned blocksize = inode->i_sb->s_blocksize;
2265	unsigned length;
2266	struct page *page = NULL;
2267	int error;
2268	struct buffer_head *bh = NULL;
2269	int err2;
2270
2271	reiserfs_write_lock(inode->i_sb);
2272
2273	if (inode->i_size > 0) {
2274		error = grab_tail_page(inode, &page, &bh);
2275		if (error) {
2276			/*
2277			 * -ENOENT means we truncated past the end of the
2278			 * file, and get_block_create_0 could not find a
2279			 * block to read in, which is ok.
2280			 */
2281			if (error != -ENOENT)
2282				reiserfs_error(inode->i_sb, "clm-6001",
2283					       "grab_tail_page failed %d",
2284					       error);
2285			page = NULL;
2286			bh = NULL;
2287		}
2288	}
2289
2290	/*
2291	 * so, if page != NULL, we have a buffer head for the offset at
2292	 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2293	 * then we have an unformatted node.  Otherwise, we have a direct item,
2294	 * and no zeroing is required on disk.  We zero after the truncate,
2295	 * because the truncate might pack the item anyway
2296	 * (it will unmap bh if it packs).
2297	 *
2298	 * it is enough to reserve space in transaction for 2 balancings:
2299	 * one for "save" link adding and another for the first
2300	 * cut_from_item. 1 is for update_sd
2301	 */
2302	error = journal_begin(&th, inode->i_sb,
2303			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2304	if (error)
2305		goto out;
2306	reiserfs_update_inode_transaction(inode);
2307	if (update_timestamps)
2308		/*
2309		 * we are doing real truncate: if the system crashes
2310		 * before the last transaction of truncating gets committed
2311		 * - on reboot the file either appears truncated properly
2312		 * or not truncated at all
2313		 */
2314		add_save_link(&th, inode, 1);
2315	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2316	error = journal_end(&th);
2317	if (error)
2318		goto out;
2319
2320	/* check reiserfs_do_truncate after ending the transaction */
2321	if (err2) {
2322		error = err2;
2323  		goto out;
2324	}
2325	
2326	if (update_timestamps) {
2327		error = remove_save_link(inode, 1 /* truncate */);
2328		if (error)
2329			goto out;
2330	}
2331
2332	if (page) {
2333		length = offset & (blocksize - 1);
2334		/* if we are not on a block boundary */
2335		if (length) {
2336			length = blocksize - length;
2337			zero_user(page, offset, length);
2338			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2339				mark_buffer_dirty(bh);
2340			}
2341		}
2342		unlock_page(page);
2343		put_page(page);
2344	}
2345
2346	reiserfs_write_unlock(inode->i_sb);
2347
2348	return 0;
2349out:
2350	if (page) {
2351		unlock_page(page);
2352		put_page(page);
2353	}
2354
2355	reiserfs_write_unlock(inode->i_sb);
2356
2357	return error;
2358}
2359
2360static int map_block_for_writepage(struct inode *inode,
2361				   struct buffer_head *bh_result,
2362				   unsigned long block)
2363{
2364	struct reiserfs_transaction_handle th;
2365	int fs_gen;
2366	struct item_head tmp_ih;
2367	struct item_head *ih;
2368	struct buffer_head *bh;
2369	__le32 *item;
2370	struct cpu_key key;
2371	INITIALIZE_PATH(path);
2372	int pos_in_item;
2373	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2374	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2375	int retval;
2376	int use_get_block = 0;
2377	int bytes_copied = 0;
2378	int copy_size;
2379	int trans_running = 0;
2380
2381	/*
2382	 * catch places below that try to log something without
2383	 * starting a trans
2384	 */
2385	th.t_trans_id = 0;
2386
2387	if (!buffer_uptodate(bh_result)) {
2388		return -EIO;
2389	}
2390
2391	kmap(bh_result->b_page);
2392start_over:
2393	reiserfs_write_lock(inode->i_sb);
2394	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2395
2396research:
2397	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2398	if (retval != POSITION_FOUND) {
2399		use_get_block = 1;
2400		goto out;
2401	}
2402
2403	bh = get_last_bh(&path);
2404	ih = tp_item_head(&path);
2405	item = tp_item_body(&path);
2406	pos_in_item = path.pos_in_item;
2407
2408	/* we've found an unformatted node */
2409	if (indirect_item_found(retval, ih)) {
2410		if (bytes_copied > 0) {
2411			reiserfs_warning(inode->i_sb, "clm-6002",
2412					 "bytes_copied %d", bytes_copied);
2413		}
2414		if (!get_block_num(item, pos_in_item)) {
2415			/* crap, we are writing to a hole */
2416			use_get_block = 1;
2417			goto out;
2418		}
2419		set_block_dev_mapped(bh_result,
2420				     get_block_num(item, pos_in_item), inode);
2421	} else if (is_direct_le_ih(ih)) {
2422		char *p;
2423		p = page_address(bh_result->b_page);
2424		p += (byte_offset - 1) & (PAGE_SIZE - 1);
2425		copy_size = ih_item_len(ih) - pos_in_item;
2426
2427		fs_gen = get_generation(inode->i_sb);
2428		copy_item_head(&tmp_ih, ih);
2429
2430		if (!trans_running) {
2431			/* vs-3050 is gone, no need to drop the path */
2432			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2433			if (retval)
2434				goto out;
2435			reiserfs_update_inode_transaction(inode);
2436			trans_running = 1;
2437			if (fs_changed(fs_gen, inode->i_sb)
2438			    && item_moved(&tmp_ih, &path)) {
2439				reiserfs_restore_prepared_buffer(inode->i_sb,
2440								 bh);
2441				goto research;
2442			}
2443		}
2444
2445		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2446
2447		if (fs_changed(fs_gen, inode->i_sb)
2448		    && item_moved(&tmp_ih, &path)) {
2449			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2450			goto research;
2451		}
2452
2453		memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2454		       copy_size);
2455
2456		journal_mark_dirty(&th, bh);
2457		bytes_copied += copy_size;
2458		set_block_dev_mapped(bh_result, 0, inode);
2459
2460		/* are there still bytes left? */
2461		if (bytes_copied < bh_result->b_size &&
2462		    (byte_offset + bytes_copied) < inode->i_size) {
2463			set_cpu_key_k_offset(&key,
2464					     cpu_key_k_offset(&key) +
2465					     copy_size);
2466			goto research;
2467		}
2468	} else {
2469		reiserfs_warning(inode->i_sb, "clm-6003",
2470				 "bad item inode %lu", inode->i_ino);
2471		retval = -EIO;
2472		goto out;
2473	}
2474	retval = 0;
2475
2476out:
2477	pathrelse(&path);
2478	if (trans_running) {
2479		int err = journal_end(&th);
2480		if (err)
2481			retval = err;
2482		trans_running = 0;
2483	}
2484	reiserfs_write_unlock(inode->i_sb);
2485
2486	/* this is where we fill in holes in the file. */
2487	if (use_get_block) {
2488		retval = reiserfs_get_block(inode, block, bh_result,
2489					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2490					    | GET_BLOCK_NO_DANGLE);
2491		if (!retval) {
2492			if (!buffer_mapped(bh_result)
2493			    || bh_result->b_blocknr == 0) {
2494				/* get_block failed to find a mapped unformatted node. */
2495				use_get_block = 0;
2496				goto start_over;
2497			}
2498		}
2499	}
2500	kunmap(bh_result->b_page);
2501
2502	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2503		/*
2504		 * we've copied data from the page into the direct item, so the
2505		 * buffer in the page is now clean, mark it to reflect that.
2506		 */
2507		lock_buffer(bh_result);
2508		clear_buffer_dirty(bh_result);
2509		unlock_buffer(bh_result);
2510	}
2511	return retval;
2512}
2513
2514/*
2515 * mason@suse.com: updated in 2.5.54 to follow the same general io
2516 * start/recovery path as __block_write_full_page, along with special
2517 * code to handle reiserfs tails.
2518 */
2519static int reiserfs_write_full_page(struct page *page,
2520				    struct writeback_control *wbc)
2521{
2522	struct inode *inode = page->mapping->host;
2523	unsigned long end_index = inode->i_size >> PAGE_SHIFT;
2524	int error = 0;
2525	unsigned long block;
2526	sector_t last_block;
2527	struct buffer_head *head, *bh;
2528	int partial = 0;
2529	int nr = 0;
2530	int checked = PageChecked(page);
2531	struct reiserfs_transaction_handle th;
2532	struct super_block *s = inode->i_sb;
2533	int bh_per_page = PAGE_SIZE / s->s_blocksize;
2534	th.t_trans_id = 0;
2535
2536	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2537	if (checked && (current->flags & PF_MEMALLOC)) {
2538		redirty_page_for_writepage(wbc, page);
2539		unlock_page(page);
2540		return 0;
2541	}
2542
2543	/*
2544	 * The page dirty bit is cleared before writepage is called, which
2545	 * means we have to tell create_empty_buffers to make dirty buffers
2546	 * The page really should be up to date at this point, so tossing
2547	 * in the BH_Uptodate is just a sanity check.
2548	 */
2549	if (!page_has_buffers(page)) {
2550		create_empty_buffers(page, s->s_blocksize,
2551				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2552	}
2553	head = page_buffers(page);
2554
2555	/*
2556	 * last page in the file, zero out any contents past the
2557	 * last byte in the file
2558	 */
2559	if (page->index >= end_index) {
2560		unsigned last_offset;
2561
2562		last_offset = inode->i_size & (PAGE_SIZE - 1);
2563		/* no file contents in this page */
2564		if (page->index >= end_index + 1 || !last_offset) {
2565			unlock_page(page);
2566			return 0;
2567		}
2568		zero_user_segment(page, last_offset, PAGE_SIZE);
2569	}
2570	bh = head;
2571	block = page->index << (PAGE_SHIFT - s->s_blocksize_bits);
2572	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2573	/* first map all the buffers, logging any direct items we find */
2574	do {
2575		if (block > last_block) {
2576			/*
2577			 * This can happen when the block size is less than
2578			 * the page size.  The corresponding bytes in the page
2579			 * were zero filled above
2580			 */
2581			clear_buffer_dirty(bh);
2582			set_buffer_uptodate(bh);
2583		} else if ((checked || buffer_dirty(bh)) &&
2584		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2585						       && bh->b_blocknr ==
2586						       0))) {
2587			/*
2588			 * not mapped yet, or it points to a direct item, search
2589			 * the btree for the mapping info, and log any direct
2590			 * items found
2591			 */
2592			if ((error = map_block_for_writepage(inode, bh, block))) {
2593				goto fail;
2594			}
2595		}
2596		bh = bh->b_this_page;
2597		block++;
2598	} while (bh != head);
2599
2600	/*
2601	 * we start the transaction after map_block_for_writepage,
2602	 * because it can create holes in the file (an unbounded operation).
2603	 * starting it here, we can make a reliable estimate for how many
2604	 * blocks we're going to log
2605	 */
2606	if (checked) {
2607		ClearPageChecked(page);
2608		reiserfs_write_lock(s);
2609		error = journal_begin(&th, s, bh_per_page + 1);
2610		if (error) {
2611			reiserfs_write_unlock(s);
2612			goto fail;
2613		}
2614		reiserfs_update_inode_transaction(inode);
2615	}
2616	/* now go through and lock any dirty buffers on the page */
2617	do {
2618		get_bh(bh);
2619		if (!buffer_mapped(bh))
2620			continue;
2621		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2622			continue;
2623
2624		if (checked) {
2625			reiserfs_prepare_for_journal(s, bh, 1);
2626			journal_mark_dirty(&th, bh);
2627			continue;
2628		}
2629		/*
2630		 * from this point on, we know the buffer is mapped to a
2631		 * real block and not a direct item
2632		 */
2633		if (wbc->sync_mode != WB_SYNC_NONE) {
2634			lock_buffer(bh);
2635		} else {
2636			if (!trylock_buffer(bh)) {
2637				redirty_page_for_writepage(wbc, page);
2638				continue;
2639			}
2640		}
2641		if (test_clear_buffer_dirty(bh)) {
2642			mark_buffer_async_write(bh);
2643		} else {
2644			unlock_buffer(bh);
2645		}
2646	} while ((bh = bh->b_this_page) != head);
2647
2648	if (checked) {
2649		error = journal_end(&th);
2650		reiserfs_write_unlock(s);
2651		if (error)
2652			goto fail;
2653	}
2654	BUG_ON(PageWriteback(page));
2655	set_page_writeback(page);
2656	unlock_page(page);
2657
2658	/*
2659	 * since any buffer might be the only dirty buffer on the page,
2660	 * the first submit_bh can bring the page out of writeback.
2661	 * be careful with the buffers.
2662	 */
2663	do {
2664		struct buffer_head *next = bh->b_this_page;
2665		if (buffer_async_write(bh)) {
2666			submit_bh(REQ_OP_WRITE, 0, bh);
2667			nr++;
2668		}
2669		put_bh(bh);
2670		bh = next;
2671	} while (bh != head);
2672
2673	error = 0;
2674done:
2675	if (nr == 0) {
2676		/*
2677		 * if this page only had a direct item, it is very possible for
2678		 * no io to be required without there being an error.  Or,
2679		 * someone else could have locked them and sent them down the
2680		 * pipe without locking the page
2681		 */
2682		bh = head;
2683		do {
2684			if (!buffer_uptodate(bh)) {
2685				partial = 1;
2686				break;
2687			}
2688			bh = bh->b_this_page;
2689		} while (bh != head);
2690		if (!partial)
2691			SetPageUptodate(page);
2692		end_page_writeback(page);
2693	}
2694	return error;
2695
2696fail:
2697	/*
2698	 * catches various errors, we need to make sure any valid dirty blocks
2699	 * get to the media.  The page is currently locked and not marked for
2700	 * writeback
2701	 */
2702	ClearPageUptodate(page);
2703	bh = head;
2704	do {
2705		get_bh(bh);
2706		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2707			lock_buffer(bh);
2708			mark_buffer_async_write(bh);
2709		} else {
2710			/*
2711			 * clear any dirty bits that might have come from
2712			 * getting attached to a dirty page
2713			 */
2714			clear_buffer_dirty(bh);
2715		}
2716		bh = bh->b_this_page;
2717	} while (bh != head);
2718	SetPageError(page);
2719	BUG_ON(PageWriteback(page));
2720	set_page_writeback(page);
2721	unlock_page(page);
2722	do {
2723		struct buffer_head *next = bh->b_this_page;
2724		if (buffer_async_write(bh)) {
2725			clear_buffer_dirty(bh);
2726			submit_bh(REQ_OP_WRITE, 0, bh);
2727			nr++;
2728		}
2729		put_bh(bh);
2730		bh = next;
2731	} while (bh != head);
2732	goto done;
2733}
2734
2735static int reiserfs_readpage(struct file *f, struct page *page)
2736{
2737	return block_read_full_page(page, reiserfs_get_block);
2738}
2739
2740static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2741{
2742	struct inode *inode = page->mapping->host;
2743	reiserfs_wait_on_write_block(inode->i_sb);
2744	return reiserfs_write_full_page(page, wbc);
2745}
2746
2747static void reiserfs_truncate_failed_write(struct inode *inode)
2748{
2749	truncate_inode_pages(inode->i_mapping, inode->i_size);
2750	reiserfs_truncate_file(inode, 0);
2751}
2752
2753static int reiserfs_write_begin(struct file *file,
2754				struct address_space *mapping,
2755				loff_t pos, unsigned len, unsigned flags,
2756				struct page **pagep, void **fsdata)
2757{
2758	struct inode *inode;
2759	struct page *page;
2760	pgoff_t index;
2761	int ret;
2762	int old_ref = 0;
2763
2764 	inode = mapping->host;
2765	*fsdata = NULL;
2766 	if (flags & AOP_FLAG_CONT_EXPAND &&
2767 	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2768 		pos ++;
2769		*fsdata = (void *)(unsigned long)flags;
2770	}
2771
2772	index = pos >> PAGE_SHIFT;
2773	page = grab_cache_page_write_begin(mapping, index, flags);
2774	if (!page)
2775		return -ENOMEM;
2776	*pagep = page;
2777
2778	reiserfs_wait_on_write_block(inode->i_sb);
2779	fix_tail_page_for_writing(page);
2780	if (reiserfs_transaction_running(inode->i_sb)) {
2781		struct reiserfs_transaction_handle *th;
2782		th = (struct reiserfs_transaction_handle *)current->
2783		    journal_info;
2784		BUG_ON(!th->t_refcount);
2785		BUG_ON(!th->t_trans_id);
2786		old_ref = th->t_refcount;
2787		th->t_refcount++;
2788	}
2789	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2790	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2791		struct reiserfs_transaction_handle *th = current->journal_info;
2792		/*
2793		 * this gets a little ugly.  If reiserfs_get_block returned an
2794		 * error and left a transacstion running, we've got to close
2795		 * it, and we've got to free handle if it was a persistent
2796		 * transaction.
2797		 *
2798		 * But, if we had nested into an existing transaction, we need
2799		 * to just drop the ref count on the handle.
2800		 *
2801		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2802		 * and it was a persistent trans.  Otherwise, it was nested
2803		 * above.
2804		 */
2805		if (th->t_refcount > old_ref) {
2806			if (old_ref)
2807				th->t_refcount--;
2808			else {
2809				int err;
2810				reiserfs_write_lock(inode->i_sb);
2811				err = reiserfs_end_persistent_transaction(th);
2812				reiserfs_write_unlock(inode->i_sb);
2813				if (err)
2814					ret = err;
2815			}
2816		}
2817	}
2818	if (ret) {
2819		unlock_page(page);
2820		put_page(page);
2821		/* Truncate allocated blocks */
2822		reiserfs_truncate_failed_write(inode);
2823	}
2824	return ret;
2825}
2826
2827int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2828{
2829	struct inode *inode = page->mapping->host;
2830	int ret;
2831	int old_ref = 0;
2832	int depth;
2833
2834	depth = reiserfs_write_unlock_nested(inode->i_sb);
2835	reiserfs_wait_on_write_block(inode->i_sb);
2836	reiserfs_write_lock_nested(inode->i_sb, depth);
2837
2838	fix_tail_page_for_writing(page);
2839	if (reiserfs_transaction_running(inode->i_sb)) {
2840		struct reiserfs_transaction_handle *th;
2841		th = (struct reiserfs_transaction_handle *)current->
2842		    journal_info;
2843		BUG_ON(!th->t_refcount);
2844		BUG_ON(!th->t_trans_id);
2845		old_ref = th->t_refcount;
2846		th->t_refcount++;
2847	}
2848
2849	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2850	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2851		struct reiserfs_transaction_handle *th = current->journal_info;
2852		/*
2853		 * this gets a little ugly.  If reiserfs_get_block returned an
2854		 * error and left a transacstion running, we've got to close
2855		 * it, and we've got to free handle if it was a persistent
2856		 * transaction.
2857		 *
2858		 * But, if we had nested into an existing transaction, we need
2859		 * to just drop the ref count on the handle.
2860		 *
2861		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2862		 * and it was a persistent trans.  Otherwise, it was nested
2863		 * above.
2864		 */
2865		if (th->t_refcount > old_ref) {
2866			if (old_ref)
2867				th->t_refcount--;
2868			else {
2869				int err;
2870				reiserfs_write_lock(inode->i_sb);
2871				err = reiserfs_end_persistent_transaction(th);
2872				reiserfs_write_unlock(inode->i_sb);
2873				if (err)
2874					ret = err;
2875			}
2876		}
2877	}
2878	return ret;
2879
2880}
2881
2882static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2883{
2884	return generic_block_bmap(as, block, reiserfs_bmap);
2885}
2886
2887static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2888			      loff_t pos, unsigned len, unsigned copied,
2889			      struct page *page, void *fsdata)
2890{
2891	struct inode *inode = page->mapping->host;
2892	int ret = 0;
2893	int update_sd = 0;
2894	struct reiserfs_transaction_handle *th;
2895	unsigned start;
2896	bool locked = false;
2897
2898	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2899		pos ++;
2900
2901	reiserfs_wait_on_write_block(inode->i_sb);
2902	if (reiserfs_transaction_running(inode->i_sb))
2903		th = current->journal_info;
2904	else
2905		th = NULL;
2906
2907	start = pos & (PAGE_SIZE - 1);
2908	if (unlikely(copied < len)) {
2909		if (!PageUptodate(page))
2910			copied = 0;
2911
2912		page_zero_new_buffers(page, start + copied, start + len);
2913	}
2914	flush_dcache_page(page);
2915
2916	reiserfs_commit_page(inode, page, start, start + copied);
2917
2918	/*
2919	 * generic_commit_write does this for us, but does not update the
2920	 * transaction tracking stuff when the size changes.  So, we have
2921	 * to do the i_size updates here.
2922	 */
2923	if (pos + copied > inode->i_size) {
2924		struct reiserfs_transaction_handle myth;
2925		reiserfs_write_lock(inode->i_sb);
2926		locked = true;
2927		/*
2928		 * If the file have grown beyond the border where it
2929		 * can have a tail, unmark it as needing a tail
2930		 * packing
2931		 */
2932		if ((have_large_tails(inode->i_sb)
2933		     && inode->i_size > i_block_size(inode) * 4)
2934		    || (have_small_tails(inode->i_sb)
2935			&& inode->i_size > i_block_size(inode)))
2936			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2937
2938		ret = journal_begin(&myth, inode->i_sb, 1);
2939		if (ret)
2940			goto journal_error;
2941
2942		reiserfs_update_inode_transaction(inode);
2943		inode->i_size = pos + copied;
2944		/*
2945		 * this will just nest into our transaction.  It's important
2946		 * to use mark_inode_dirty so the inode gets pushed around on
2947		 * the dirty lists, and so that O_SYNC works as expected
2948		 */
2949		mark_inode_dirty(inode);
2950		reiserfs_update_sd(&myth, inode);
2951		update_sd = 1;
2952		ret = journal_end(&myth);
2953		if (ret)
2954			goto journal_error;
2955	}
2956	if (th) {
2957		if (!locked) {
2958			reiserfs_write_lock(inode->i_sb);
2959			locked = true;
2960		}
2961		if (!update_sd)
2962			mark_inode_dirty(inode);
2963		ret = reiserfs_end_persistent_transaction(th);
2964		if (ret)
2965			goto out;
2966	}
2967
2968out:
2969	if (locked)
2970		reiserfs_write_unlock(inode->i_sb);
2971	unlock_page(page);
2972	put_page(page);
2973
2974	if (pos + len > inode->i_size)
2975		reiserfs_truncate_failed_write(inode);
2976
2977	return ret == 0 ? copied : ret;
2978
2979journal_error:
2980	reiserfs_write_unlock(inode->i_sb);
2981	locked = false;
2982	if (th) {
2983		if (!update_sd)
2984			reiserfs_update_sd(th, inode);
2985		ret = reiserfs_end_persistent_transaction(th);
2986	}
2987	goto out;
2988}
2989
2990int reiserfs_commit_write(struct file *f, struct page *page,
2991			  unsigned from, unsigned to)
2992{
2993	struct inode *inode = page->mapping->host;
2994	loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
2995	int ret = 0;
2996	int update_sd = 0;
2997	struct reiserfs_transaction_handle *th = NULL;
2998	int depth;
2999
3000	depth = reiserfs_write_unlock_nested(inode->i_sb);
3001	reiserfs_wait_on_write_block(inode->i_sb);
3002	reiserfs_write_lock_nested(inode->i_sb, depth);
3003
3004	if (reiserfs_transaction_running(inode->i_sb)) {
3005		th = current->journal_info;
3006	}
3007	reiserfs_commit_page(inode, page, from, to);
3008
3009	/*
3010	 * generic_commit_write does this for us, but does not update the
3011	 * transaction tracking stuff when the size changes.  So, we have
3012	 * to do the i_size updates here.
3013	 */
3014	if (pos > inode->i_size) {
3015		struct reiserfs_transaction_handle myth;
3016		/*
3017		 * If the file have grown beyond the border where it
3018		 * can have a tail, unmark it as needing a tail
3019		 * packing
3020		 */
3021		if ((have_large_tails(inode->i_sb)
3022		     && inode->i_size > i_block_size(inode) * 4)
3023		    || (have_small_tails(inode->i_sb)
3024			&& inode->i_size > i_block_size(inode)))
3025			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3026
3027		ret = journal_begin(&myth, inode->i_sb, 1);
3028		if (ret)
3029			goto journal_error;
3030
3031		reiserfs_update_inode_transaction(inode);
3032		inode->i_size = pos;
3033		/*
3034		 * this will just nest into our transaction.  It's important
3035		 * to use mark_inode_dirty so the inode gets pushed around
3036		 * on the dirty lists, and so that O_SYNC works as expected
3037		 */
3038		mark_inode_dirty(inode);
3039		reiserfs_update_sd(&myth, inode);
3040		update_sd = 1;
3041		ret = journal_end(&myth);
3042		if (ret)
3043			goto journal_error;
3044	}
3045	if (th) {
3046		if (!update_sd)
3047			mark_inode_dirty(inode);
3048		ret = reiserfs_end_persistent_transaction(th);
3049		if (ret)
3050			goto out;
3051	}
3052
3053out:
3054	return ret;
3055
3056journal_error:
3057	if (th) {
3058		if (!update_sd)
3059			reiserfs_update_sd(th, inode);
3060		ret = reiserfs_end_persistent_transaction(th);
3061	}
3062
3063	return ret;
3064}
3065
3066void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3067{
3068	if (reiserfs_attrs(inode->i_sb)) {
3069		if (sd_attrs & REISERFS_SYNC_FL)
3070			inode->i_flags |= S_SYNC;
3071		else
3072			inode->i_flags &= ~S_SYNC;
3073		if (sd_attrs & REISERFS_IMMUTABLE_FL)
3074			inode->i_flags |= S_IMMUTABLE;
3075		else
3076			inode->i_flags &= ~S_IMMUTABLE;
3077		if (sd_attrs & REISERFS_APPEND_FL)
3078			inode->i_flags |= S_APPEND;
3079		else
3080			inode->i_flags &= ~S_APPEND;
3081		if (sd_attrs & REISERFS_NOATIME_FL)
3082			inode->i_flags |= S_NOATIME;
3083		else
3084			inode->i_flags &= ~S_NOATIME;
3085		if (sd_attrs & REISERFS_NOTAIL_FL)
3086			REISERFS_I(inode)->i_flags |= i_nopack_mask;
3087		else
3088			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3089	}
3090}
3091
3092/*
3093 * decide if this buffer needs to stay around for data logging or ordered
3094 * write purposes
3095 */
3096static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
3097{
3098	int ret = 1;
3099	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3100
3101	lock_buffer(bh);
3102	spin_lock(&j->j_dirty_buffers_lock);
3103	if (!buffer_mapped(bh)) {
3104		goto free_jh;
3105	}
3106	/*
3107	 * the page is locked, and the only places that log a data buffer
3108	 * also lock the page.
3109	 */
3110	if (reiserfs_file_data_log(inode)) {
3111		/*
3112		 * very conservative, leave the buffer pinned if
3113		 * anyone might need it.
3114		 */
3115		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3116			ret = 0;
3117		}
3118	} else  if (buffer_dirty(bh)) {
3119		struct reiserfs_journal_list *jl;
3120		struct reiserfs_jh *jh = bh->b_private;
3121
3122		/*
3123		 * why is this safe?
3124		 * reiserfs_setattr updates i_size in the on disk
3125		 * stat data before allowing vmtruncate to be called.
3126		 *
3127		 * If buffer was put onto the ordered list for this
3128		 * transaction, we know for sure either this transaction
3129		 * or an older one already has updated i_size on disk,
3130		 * and this ordered data won't be referenced in the file
3131		 * if we crash.
3132		 *
3133		 * if the buffer was put onto the ordered list for an older
3134		 * transaction, we need to leave it around
3135		 */
3136		if (jh && (jl = jh->jl)
3137		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3138			ret = 0;
3139	}
3140free_jh:
3141	if (ret && bh->b_private) {
3142		reiserfs_free_jh(bh);
3143	}
3144	spin_unlock(&j->j_dirty_buffers_lock);
3145	unlock_buffer(bh);
3146	return ret;
3147}
3148
3149/* clm -- taken from fs/buffer.c:block_invalidate_page */
3150static void reiserfs_invalidatepage(struct page *page, unsigned int offset,
3151				    unsigned int length)
3152{
3153	struct buffer_head *head, *bh, *next;
3154	struct inode *inode = page->mapping->host;
3155	unsigned int curr_off = 0;
3156	unsigned int stop = offset + length;
3157	int partial_page = (offset || length < PAGE_SIZE);
3158	int ret = 1;
3159
3160	BUG_ON(!PageLocked(page));
3161
3162	if (!partial_page)
3163		ClearPageChecked(page);
3164
3165	if (!page_has_buffers(page))
3166		goto out;
3167
3168	head = page_buffers(page);
3169	bh = head;
3170	do {
3171		unsigned int next_off = curr_off + bh->b_size;
3172		next = bh->b_this_page;
3173
3174		if (next_off > stop)
3175			goto out;
3176
3177		/*
3178		 * is this block fully invalidated?
3179		 */
3180		if (offset <= curr_off) {
3181			if (invalidatepage_can_drop(inode, bh))
3182				reiserfs_unmap_buffer(bh);
3183			else
3184				ret = 0;
3185		}
3186		curr_off = next_off;
3187		bh = next;
3188	} while (bh != head);
3189
3190	/*
3191	 * We release buffers only if the entire page is being invalidated.
3192	 * The get_block cached value has been unconditionally invalidated,
3193	 * so real IO is not possible anymore.
3194	 */
3195	if (!partial_page && ret) {
3196		ret = try_to_release_page(page, 0);
3197		/* maybe should BUG_ON(!ret); - neilb */
3198	}
3199out:
3200	return;
3201}
3202
3203static int reiserfs_set_page_dirty(struct page *page)
3204{
3205	struct inode *inode = page->mapping->host;
3206	if (reiserfs_file_data_log(inode)) {
3207		SetPageChecked(page);
3208		return __set_page_dirty_nobuffers(page);
3209	}
3210	return __set_page_dirty_buffers(page);
3211}
3212
3213/*
3214 * Returns 1 if the page's buffers were dropped.  The page is locked.
3215 *
3216 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3217 * in the buffers at page_buffers(page).
3218 *
3219 * even in -o notail mode, we can't be sure an old mount without -o notail
3220 * didn't create files with tails.
3221 */
3222static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3223{
3224	struct inode *inode = page->mapping->host;
3225	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3226	struct buffer_head *head;
3227	struct buffer_head *bh;
3228	int ret = 1;
3229
3230	WARN_ON(PageChecked(page));
3231	spin_lock(&j->j_dirty_buffers_lock);
3232	head = page_buffers(page);
3233	bh = head;
3234	do {
3235		if (bh->b_private) {
3236			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3237				reiserfs_free_jh(bh);
3238			} else {
3239				ret = 0;
3240				break;
3241			}
3242		}
3243		bh = bh->b_this_page;
3244	} while (bh != head);
3245	if (ret)
3246		ret = try_to_free_buffers(page);
3247	spin_unlock(&j->j_dirty_buffers_lock);
3248	return ret;
3249}
3250
3251/*
3252 * We thank Mingming Cao for helping us understand in great detail what
3253 * to do in this section of the code.
3254 */
3255static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3256{
3257	struct file *file = iocb->ki_filp;
3258	struct inode *inode = file->f_mapping->host;
3259	size_t count = iov_iter_count(iter);
3260	ssize_t ret;
3261
3262	ret = blockdev_direct_IO(iocb, inode, iter,
3263				 reiserfs_get_blocks_direct_io);
3264
3265	/*
3266	 * In case of error extending write may have instantiated a few
3267	 * blocks outside i_size. Trim these off again.
3268	 */
3269	if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3270		loff_t isize = i_size_read(inode);
3271		loff_t end = iocb->ki_pos + count;
3272
3273		if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3274			truncate_setsize(inode, isize);
3275			reiserfs_vfs_truncate_file(inode);
3276		}
3277	}
3278
3279	return ret;
3280}
3281
3282int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3283{
3284	struct inode *inode = d_inode(dentry);
3285	unsigned int ia_valid;
3286	int error;
3287
3288	error = setattr_prepare(dentry, attr);
3289	if (error)
3290		return error;
3291
3292	/* must be turned off for recursive notify_change calls */
3293	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3294
3295	if (is_quota_modification(inode, attr)) {
3296		error = dquot_initialize(inode);
3297		if (error)
3298			return error;
3299	}
3300	reiserfs_write_lock(inode->i_sb);
3301	if (attr->ia_valid & ATTR_SIZE) {
3302		/*
3303		 * version 2 items will be caught by the s_maxbytes check
3304		 * done for us in vmtruncate
3305		 */
3306		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3307		    attr->ia_size > MAX_NON_LFS) {
3308			reiserfs_write_unlock(inode->i_sb);
3309			error = -EFBIG;
3310			goto out;
3311		}
3312
3313		inode_dio_wait(inode);
3314
3315		/* fill in hole pointers in the expanding truncate case. */
3316		if (attr->ia_size > inode->i_size) {
3317			error = generic_cont_expand_simple(inode, attr->ia_size);
3318			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3319				int err;
3320				struct reiserfs_transaction_handle th;
3321				/* we're changing at most 2 bitmaps, inode + super */
3322				err = journal_begin(&th, inode->i_sb, 4);
3323				if (!err) {
3324					reiserfs_discard_prealloc(&th, inode);
3325					err = journal_end(&th);
3326				}
3327				if (err)
3328					error = err;
3329			}
3330			if (error) {
3331				reiserfs_write_unlock(inode->i_sb);
3332				goto out;
3333			}
3334			/*
3335			 * file size is changed, ctime and mtime are
3336			 * to be updated
3337			 */
3338			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3339		}
3340	}
3341	reiserfs_write_unlock(inode->i_sb);
3342
3343	if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3344	     ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3345	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3346		/* stat data of format v3.5 has 16 bit uid and gid */
3347		error = -EINVAL;
3348		goto out;
3349	}
3350
3351	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3352	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3353		struct reiserfs_transaction_handle th;
3354		int jbegin_count =
3355		    2 *
3356		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3357		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3358		    2;
3359
3360		error = reiserfs_chown_xattrs(inode, attr);
3361
3362		if (error)
3363			return error;
3364
3365		/*
3366		 * (user+group)*(old+new) structure - we count quota
3367		 * info and , inode write (sb, inode)
3368		 */
3369		reiserfs_write_lock(inode->i_sb);
3370		error = journal_begin(&th, inode->i_sb, jbegin_count);
3371		reiserfs_write_unlock(inode->i_sb);
3372		if (error)
3373			goto out;
3374		error = dquot_transfer(inode, attr);
3375		reiserfs_write_lock(inode->i_sb);
3376		if (error) {
3377			journal_end(&th);
3378			reiserfs_write_unlock(inode->i_sb);
3379			goto out;
3380		}
3381
3382		/*
3383		 * Update corresponding info in inode so that everything
3384		 * is in one transaction
3385		 */
3386		if (attr->ia_valid & ATTR_UID)
3387			inode->i_uid = attr->ia_uid;
3388		if (attr->ia_valid & ATTR_GID)
3389			inode->i_gid = attr->ia_gid;
3390		mark_inode_dirty(inode);
3391		error = journal_end(&th);
3392		reiserfs_write_unlock(inode->i_sb);
3393		if (error)
3394			goto out;
3395	}
3396
3397	if ((attr->ia_valid & ATTR_SIZE) &&
3398	    attr->ia_size != i_size_read(inode)) {
3399		error = inode_newsize_ok(inode, attr->ia_size);
3400		if (!error) {
3401			/*
3402			 * Could race against reiserfs_file_release
3403			 * if called from NFS, so take tailpack mutex.
3404			 */
3405			mutex_lock(&REISERFS_I(inode)->tailpack);
3406			truncate_setsize(inode, attr->ia_size);
3407			reiserfs_truncate_file(inode, 1);
3408			mutex_unlock(&REISERFS_I(inode)->tailpack);
3409		}
3410	}
3411
3412	if (!error) {
3413		setattr_copy(inode, attr);
3414		mark_inode_dirty(inode);
3415	}
3416
3417	if (!error && reiserfs_posixacl(inode->i_sb)) {
3418		if (attr->ia_valid & ATTR_MODE)
3419			error = reiserfs_acl_chmod(inode);
3420	}
3421
3422out:
3423	return error;
3424}
3425
3426const struct address_space_operations reiserfs_address_space_operations = {
3427	.writepage = reiserfs_writepage,
3428	.readpage = reiserfs_readpage,
3429	.readpages = reiserfs_readpages,
3430	.releasepage = reiserfs_releasepage,
3431	.invalidatepage = reiserfs_invalidatepage,
3432	.write_begin = reiserfs_write_begin,
3433	.write_end = reiserfs_write_end,
3434	.bmap = reiserfs_aop_bmap,
3435	.direct_IO = reiserfs_direct_IO,
3436	.set_page_dirty = reiserfs_set_page_dirty,
3437};
v4.17
   1/*
   2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
   3 */
   4
   5#include <linux/time.h>
   6#include <linux/fs.h>
   7#include "reiserfs.h"
   8#include "acl.h"
   9#include "xattr.h"
  10#include <linux/exportfs.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/slab.h>
  14#include <linux/uaccess.h>
  15#include <asm/unaligned.h>
  16#include <linux/buffer_head.h>
  17#include <linux/mpage.h>
  18#include <linux/writeback.h>
  19#include <linux/quotaops.h>
  20#include <linux/swap.h>
  21#include <linux/uio.h>
  22#include <linux/bio.h>
  23
  24int reiserfs_commit_write(struct file *f, struct page *page,
  25			  unsigned from, unsigned to);
  26
  27void reiserfs_evict_inode(struct inode *inode)
  28{
  29	/*
  30	 * We need blocks for transaction + (user+group) quota
  31	 * update (possibly delete)
  32	 */
  33	int jbegin_count =
  34	    JOURNAL_PER_BALANCE_CNT * 2 +
  35	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
  36	struct reiserfs_transaction_handle th;
  37	int err;
  38
  39	if (!inode->i_nlink && !is_bad_inode(inode))
  40		dquot_initialize(inode);
  41
  42	truncate_inode_pages_final(&inode->i_data);
  43	if (inode->i_nlink)
  44		goto no_delete;
  45
  46	/*
  47	 * The = 0 happens when we abort creating a new inode
  48	 * for some reason like lack of space..
  49	 * also handles bad_inode case
  50	 */
  51	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
  52
  53		reiserfs_delete_xattrs(inode);
  54
  55		reiserfs_write_lock(inode->i_sb);
  56
  57		if (journal_begin(&th, inode->i_sb, jbegin_count))
  58			goto out;
  59		reiserfs_update_inode_transaction(inode);
  60
  61		reiserfs_discard_prealloc(&th, inode);
  62
  63		err = reiserfs_delete_object(&th, inode);
  64
  65		/*
  66		 * Do quota update inside a transaction for journaled quotas.
  67		 * We must do that after delete_object so that quota updates
  68		 * go into the same transaction as stat data deletion
  69		 */
  70		if (!err) {
  71			int depth = reiserfs_write_unlock_nested(inode->i_sb);
  72			dquot_free_inode(inode);
  73			reiserfs_write_lock_nested(inode->i_sb, depth);
  74		}
  75
  76		if (journal_end(&th))
  77			goto out;
  78
  79		/*
  80		 * check return value from reiserfs_delete_object after
  81		 * ending the transaction
  82		 */
  83		if (err)
  84		    goto out;
  85
  86		/*
  87		 * all items of file are deleted, so we can remove
  88		 * "save" link
  89		 * we can't do anything about an error here
  90		 */
  91		remove_save_link(inode, 0 /* not truncate */);
  92out:
  93		reiserfs_write_unlock(inode->i_sb);
  94	} else {
  95		/* no object items are in the tree */
  96		;
  97	}
  98
  99	/* note this must go after the journal_end to prevent deadlock */
 100	clear_inode(inode);
 101
 102	dquot_drop(inode);
 103	inode->i_blocks = 0;
 104	return;
 105
 106no_delete:
 107	clear_inode(inode);
 108	dquot_drop(inode);
 109}
 110
 111static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
 112			  __u32 objectid, loff_t offset, int type, int length)
 113{
 114	key->version = version;
 115
 116	key->on_disk_key.k_dir_id = dirid;
 117	key->on_disk_key.k_objectid = objectid;
 118	set_cpu_key_k_offset(key, offset);
 119	set_cpu_key_k_type(key, type);
 120	key->key_length = length;
 121}
 122
 123/*
 124 * take base of inode_key (it comes from inode always) (dirid, objectid)
 125 * and version from an inode, set offset and type of key
 126 */
 127void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
 128		  int type, int length)
 129{
 130	_make_cpu_key(key, get_inode_item_key_version(inode),
 131		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
 132		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
 133		      length);
 134}
 135
 136/* when key is 0, do not set version and short key */
 137inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
 138			      int version,
 139			      loff_t offset, int type, int length,
 140			      int entry_count /*or ih_free_space */ )
 141{
 142	if (key) {
 143		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
 144		ih->ih_key.k_objectid =
 145		    cpu_to_le32(key->on_disk_key.k_objectid);
 146	}
 147	put_ih_version(ih, version);
 148	set_le_ih_k_offset(ih, offset);
 149	set_le_ih_k_type(ih, type);
 150	put_ih_item_len(ih, length);
 151	/*    set_ih_free_space (ih, 0); */
 152	/*
 153	 * for directory items it is entry count, for directs and stat
 154	 * datas - 0xffff, for indirects - 0
 155	 */
 156	put_ih_entry_count(ih, entry_count);
 157}
 158
 159/*
 160 * FIXME: we might cache recently accessed indirect item
 161 * Ugh.  Not too eager for that....
 162 * I cut the code until such time as I see a convincing argument (benchmark).
 163 * I don't want a bloated inode struct..., and I don't like code complexity....
 164 */
 165
 166/*
 167 * cutting the code is fine, since it really isn't in use yet and is easy
 168 * to add back in.  But, Vladimir has a really good idea here.  Think
 169 * about what happens for reading a file.  For each page,
 170 * The VFS layer calls reiserfs_readpage, who searches the tree to find
 171 * an indirect item.  This indirect item has X number of pointers, where
 172 * X is a big number if we've done the block allocation right.  But,
 173 * we only use one or two of these pointers during each call to readpage,
 174 * needlessly researching again later on.
 175 *
 176 * The size of the cache could be dynamic based on the size of the file.
 177 *
 178 * I'd also like to see us cache the location the stat data item, since
 179 * we are needlessly researching for that frequently.
 180 *
 181 * --chris
 182 */
 183
 184/*
 185 * If this page has a file tail in it, and
 186 * it was read in by get_block_create_0, the page data is valid,
 187 * but tail is still sitting in a direct item, and we can't write to
 188 * it.  So, look through this page, and check all the mapped buffers
 189 * to make sure they have valid block numbers.  Any that don't need
 190 * to be unmapped, so that __block_write_begin will correctly call
 191 * reiserfs_get_block to convert the tail into an unformatted node
 192 */
 193static inline void fix_tail_page_for_writing(struct page *page)
 194{
 195	struct buffer_head *head, *next, *bh;
 196
 197	if (page && page_has_buffers(page)) {
 198		head = page_buffers(page);
 199		bh = head;
 200		do {
 201			next = bh->b_this_page;
 202			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
 203				reiserfs_unmap_buffer(bh);
 204			}
 205			bh = next;
 206		} while (bh != head);
 207	}
 208}
 209
 210/*
 211 * reiserfs_get_block does not need to allocate a block only if it has been
 212 * done already or non-hole position has been found in the indirect item
 213 */
 214static inline int allocation_needed(int retval, b_blocknr_t allocated,
 215				    struct item_head *ih,
 216				    __le32 * item, int pos_in_item)
 217{
 218	if (allocated)
 219		return 0;
 220	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
 221	    get_block_num(item, pos_in_item))
 222		return 0;
 223	return 1;
 224}
 225
 226static inline int indirect_item_found(int retval, struct item_head *ih)
 227{
 228	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
 229}
 230
 231static inline void set_block_dev_mapped(struct buffer_head *bh,
 232					b_blocknr_t block, struct inode *inode)
 233{
 234	map_bh(bh, inode->i_sb, block);
 235}
 236
 237/*
 238 * files which were created in the earlier version can not be longer,
 239 * than 2 gb
 240 */
 241static int file_capable(struct inode *inode, sector_t block)
 242{
 243	/* it is new file. */
 244	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
 245	    /* old file, but 'block' is inside of 2gb */
 246	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
 247		return 1;
 248
 249	return 0;
 250}
 251
 252static int restart_transaction(struct reiserfs_transaction_handle *th,
 253			       struct inode *inode, struct treepath *path)
 254{
 255	struct super_block *s = th->t_super;
 256	int err;
 257
 258	BUG_ON(!th->t_trans_id);
 259	BUG_ON(!th->t_refcount);
 260
 261	pathrelse(path);
 262
 263	/* we cannot restart while nested */
 264	if (th->t_refcount > 1) {
 265		return 0;
 266	}
 267	reiserfs_update_sd(th, inode);
 268	err = journal_end(th);
 269	if (!err) {
 270		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
 271		if (!err)
 272			reiserfs_update_inode_transaction(inode);
 273	}
 274	return err;
 275}
 276
 277/*
 278 * it is called by get_block when create == 0. Returns block number
 279 * for 'block'-th logical block of file. When it hits direct item it
 280 * returns 0 (being called from bmap) or read direct item into piece
 281 * of page (bh_result)
 282 * Please improve the english/clarity in the comment above, as it is
 283 * hard to understand.
 284 */
 285static int _get_block_create_0(struct inode *inode, sector_t block,
 286			       struct buffer_head *bh_result, int args)
 287{
 288	INITIALIZE_PATH(path);
 289	struct cpu_key key;
 290	struct buffer_head *bh;
 291	struct item_head *ih, tmp_ih;
 292	b_blocknr_t blocknr;
 293	char *p = NULL;
 294	int chars;
 295	int ret;
 296	int result;
 297	int done = 0;
 298	unsigned long offset;
 299
 300	/* prepare the key to look for the 'block'-th block of file */
 301	make_cpu_key(&key, inode,
 302		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
 303		     3);
 304
 305	result = search_for_position_by_key(inode->i_sb, &key, &path);
 306	if (result != POSITION_FOUND) {
 307		pathrelse(&path);
 308		if (p)
 309			kunmap(bh_result->b_page);
 310		if (result == IO_ERROR)
 311			return -EIO;
 312		/*
 313		 * We do not return -ENOENT if there is a hole but page is
 314		 * uptodate, because it means that there is some MMAPED data
 315		 * associated with it that is yet to be written to disk.
 316		 */
 317		if ((args & GET_BLOCK_NO_HOLE)
 318		    && !PageUptodate(bh_result->b_page)) {
 319			return -ENOENT;
 320		}
 321		return 0;
 322	}
 323
 324	bh = get_last_bh(&path);
 325	ih = tp_item_head(&path);
 326	if (is_indirect_le_ih(ih)) {
 327		__le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
 328
 329		/*
 330		 * FIXME: here we could cache indirect item or part of it in
 331		 * the inode to avoid search_by_key in case of subsequent
 332		 * access to file
 333		 */
 334		blocknr = get_block_num(ind_item, path.pos_in_item);
 335		ret = 0;
 336		if (blocknr) {
 337			map_bh(bh_result, inode->i_sb, blocknr);
 338			if (path.pos_in_item ==
 339			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
 340				set_buffer_boundary(bh_result);
 341			}
 342		} else
 343			/*
 344			 * We do not return -ENOENT if there is a hole but
 345			 * page is uptodate, because it means that there is
 346			 * some MMAPED data associated with it that is
 347			 * yet to be written to disk.
 348			 */
 349		if ((args & GET_BLOCK_NO_HOLE)
 350			    && !PageUptodate(bh_result->b_page)) {
 351			ret = -ENOENT;
 352		}
 353
 354		pathrelse(&path);
 355		if (p)
 356			kunmap(bh_result->b_page);
 357		return ret;
 358	}
 359	/* requested data are in direct item(s) */
 360	if (!(args & GET_BLOCK_READ_DIRECT)) {
 361		/*
 362		 * we are called by bmap. FIXME: we can not map block of file
 363		 * when it is stored in direct item(s)
 364		 */
 365		pathrelse(&path);
 366		if (p)
 367			kunmap(bh_result->b_page);
 368		return -ENOENT;
 369	}
 370
 371	/*
 372	 * if we've got a direct item, and the buffer or page was uptodate,
 373	 * we don't want to pull data off disk again.  skip to the
 374	 * end, where we map the buffer and return
 375	 */
 376	if (buffer_uptodate(bh_result)) {
 377		goto finished;
 378	} else
 379		/*
 380		 * grab_tail_page can trigger calls to reiserfs_get_block on
 381		 * up to date pages without any buffers.  If the page is up
 382		 * to date, we don't want read old data off disk.  Set the up
 383		 * to date bit on the buffer instead and jump to the end
 384		 */
 385	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
 386		set_buffer_uptodate(bh_result);
 387		goto finished;
 388	}
 389	/* read file tail into part of page */
 390	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
 391	copy_item_head(&tmp_ih, ih);
 392
 393	/*
 394	 * we only want to kmap if we are reading the tail into the page.
 395	 * this is not the common case, so we don't kmap until we are
 396	 * sure we need to.  But, this means the item might move if
 397	 * kmap schedules
 398	 */
 399	if (!p)
 400		p = (char *)kmap(bh_result->b_page);
 401
 402	p += offset;
 403	memset(p, 0, inode->i_sb->s_blocksize);
 404	do {
 405		if (!is_direct_le_ih(ih)) {
 406			BUG();
 407		}
 408		/*
 409		 * make sure we don't read more bytes than actually exist in
 410		 * the file.  This can happen in odd cases where i_size isn't
 411		 * correct, and when direct item padding results in a few
 412		 * extra bytes at the end of the direct item
 413		 */
 414		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
 415			break;
 416		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
 417			chars =
 418			    inode->i_size - (le_ih_k_offset(ih) - 1) -
 419			    path.pos_in_item;
 420			done = 1;
 421		} else {
 422			chars = ih_item_len(ih) - path.pos_in_item;
 423		}
 424		memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
 425
 426		if (done)
 427			break;
 428
 429		p += chars;
 430
 431		/*
 432		 * we done, if read direct item is not the last item of
 433		 * node FIXME: we could try to check right delimiting key
 434		 * to see whether direct item continues in the right
 435		 * neighbor or rely on i_size
 436		 */
 437		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
 438			break;
 439
 440		/* update key to look for the next piece */
 441		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
 442		result = search_for_position_by_key(inode->i_sb, &key, &path);
 443		if (result != POSITION_FOUND)
 444			/* i/o error most likely */
 445			break;
 446		bh = get_last_bh(&path);
 447		ih = tp_item_head(&path);
 448	} while (1);
 449
 450	flush_dcache_page(bh_result->b_page);
 451	kunmap(bh_result->b_page);
 452
 453finished:
 454	pathrelse(&path);
 455
 456	if (result == IO_ERROR)
 457		return -EIO;
 458
 459	/*
 460	 * this buffer has valid data, but isn't valid for io.  mapping it to
 461	 * block #0 tells the rest of reiserfs it just has a tail in it
 462	 */
 463	map_bh(bh_result, inode->i_sb, 0);
 464	set_buffer_uptodate(bh_result);
 465	return 0;
 466}
 467
 468/*
 469 * this is called to create file map. So, _get_block_create_0 will not
 470 * read direct item
 471 */
 472static int reiserfs_bmap(struct inode *inode, sector_t block,
 473			 struct buffer_head *bh_result, int create)
 474{
 475	if (!file_capable(inode, block))
 476		return -EFBIG;
 477
 478	reiserfs_write_lock(inode->i_sb);
 479	/* do not read the direct item */
 480	_get_block_create_0(inode, block, bh_result, 0);
 481	reiserfs_write_unlock(inode->i_sb);
 482	return 0;
 483}
 484
 485/*
 486 * special version of get_block that is only used by grab_tail_page right
 487 * now.  It is sent to __block_write_begin, and when you try to get a
 488 * block past the end of the file (or a block from a hole) it returns
 489 * -ENOENT instead of a valid buffer.  __block_write_begin expects to
 490 * be able to do i/o on the buffers returned, unless an error value
 491 * is also returned.
 492 *
 493 * So, this allows __block_write_begin to be used for reading a single block
 494 * in a page.  Where it does not produce a valid page for holes, or past the
 495 * end of the file.  This turns out to be exactly what we need for reading
 496 * tails for conversion.
 497 *
 498 * The point of the wrapper is forcing a certain value for create, even
 499 * though the VFS layer is calling this function with create==1.  If you
 500 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
 501 * don't use this function.
 502*/
 503static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
 504				       struct buffer_head *bh_result,
 505				       int create)
 506{
 507	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
 508}
 509
 510/*
 511 * This is special helper for reiserfs_get_block in case we are executing
 512 * direct_IO request.
 513 */
 514static int reiserfs_get_blocks_direct_io(struct inode *inode,
 515					 sector_t iblock,
 516					 struct buffer_head *bh_result,
 517					 int create)
 518{
 519	int ret;
 520
 521	bh_result->b_page = NULL;
 522
 523	/*
 524	 * We set the b_size before reiserfs_get_block call since it is
 525	 * referenced in convert_tail_for_hole() that may be called from
 526	 * reiserfs_get_block()
 527	 */
 528	bh_result->b_size = i_blocksize(inode);
 529
 530	ret = reiserfs_get_block(inode, iblock, bh_result,
 531				 create | GET_BLOCK_NO_DANGLE);
 532	if (ret)
 533		goto out;
 534
 535	/* don't allow direct io onto tail pages */
 536	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
 537		/*
 538		 * make sure future calls to the direct io funcs for this
 539		 * offset in the file fail by unmapping the buffer
 540		 */
 541		clear_buffer_mapped(bh_result);
 542		ret = -EINVAL;
 543	}
 544
 545	/*
 546	 * Possible unpacked tail. Flush the data before pages have
 547	 * disappeared
 548	 */
 549	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
 550		int err;
 551
 552		reiserfs_write_lock(inode->i_sb);
 553
 554		err = reiserfs_commit_for_inode(inode);
 555		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
 556
 557		reiserfs_write_unlock(inode->i_sb);
 558
 559		if (err < 0)
 560			ret = err;
 561	}
 562out:
 563	return ret;
 564}
 565
 566/*
 567 * helper function for when reiserfs_get_block is called for a hole
 568 * but the file tail is still in a direct item
 569 * bh_result is the buffer head for the hole
 570 * tail_offset is the offset of the start of the tail in the file
 571 *
 572 * This calls prepare_write, which will start a new transaction
 573 * you should not be in a transaction, or have any paths held when you
 574 * call this.
 575 */
 576static int convert_tail_for_hole(struct inode *inode,
 577				 struct buffer_head *bh_result,
 578				 loff_t tail_offset)
 579{
 580	unsigned long index;
 581	unsigned long tail_end;
 582	unsigned long tail_start;
 583	struct page *tail_page;
 584	struct page *hole_page = bh_result->b_page;
 585	int retval = 0;
 586
 587	if ((tail_offset & (bh_result->b_size - 1)) != 1)
 588		return -EIO;
 589
 590	/* always try to read until the end of the block */
 591	tail_start = tail_offset & (PAGE_SIZE - 1);
 592	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
 593
 594	index = tail_offset >> PAGE_SHIFT;
 595	/*
 596	 * hole_page can be zero in case of direct_io, we are sure
 597	 * that we cannot get here if we write with O_DIRECT into tail page
 598	 */
 599	if (!hole_page || index != hole_page->index) {
 600		tail_page = grab_cache_page(inode->i_mapping, index);
 601		retval = -ENOMEM;
 602		if (!tail_page) {
 603			goto out;
 604		}
 605	} else {
 606		tail_page = hole_page;
 607	}
 608
 609	/*
 610	 * we don't have to make sure the conversion did not happen while
 611	 * we were locking the page because anyone that could convert
 612	 * must first take i_mutex.
 613	 *
 614	 * We must fix the tail page for writing because it might have buffers
 615	 * that are mapped, but have a block number of 0.  This indicates tail
 616	 * data that has been read directly into the page, and
 617	 * __block_write_begin won't trigger a get_block in this case.
 618	 */
 619	fix_tail_page_for_writing(tail_page);
 620	retval = __reiserfs_write_begin(tail_page, tail_start,
 621				      tail_end - tail_start);
 622	if (retval)
 623		goto unlock;
 624
 625	/* tail conversion might change the data in the page */
 626	flush_dcache_page(tail_page);
 627
 628	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
 629
 630unlock:
 631	if (tail_page != hole_page) {
 632		unlock_page(tail_page);
 633		put_page(tail_page);
 634	}
 635out:
 636	return retval;
 637}
 638
 639static inline int _allocate_block(struct reiserfs_transaction_handle *th,
 640				  sector_t block,
 641				  struct inode *inode,
 642				  b_blocknr_t * allocated_block_nr,
 643				  struct treepath *path, int flags)
 644{
 645	BUG_ON(!th->t_trans_id);
 646
 647#ifdef REISERFS_PREALLOCATE
 648	if (!(flags & GET_BLOCK_NO_IMUX)) {
 649		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
 650						  path, block);
 651	}
 652#endif
 653	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
 654					 block);
 655}
 656
 657int reiserfs_get_block(struct inode *inode, sector_t block,
 658		       struct buffer_head *bh_result, int create)
 659{
 660	int repeat, retval = 0;
 661	/* b_blocknr_t is (unsigned) 32 bit int*/
 662	b_blocknr_t allocated_block_nr = 0;
 663	INITIALIZE_PATH(path);
 664	int pos_in_item;
 665	struct cpu_key key;
 666	struct buffer_head *bh, *unbh = NULL;
 667	struct item_head *ih, tmp_ih;
 668	__le32 *item;
 669	int done;
 670	int fs_gen;
 671	struct reiserfs_transaction_handle *th = NULL;
 672	/*
 673	 * space reserved in transaction batch:
 674	 * . 3 balancings in direct->indirect conversion
 675	 * . 1 block involved into reiserfs_update_sd()
 676	 * XXX in practically impossible worst case direct2indirect()
 677	 * can incur (much) more than 3 balancings.
 678	 * quota update for user, group
 679	 */
 680	int jbegin_count =
 681	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
 682	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
 683	int version;
 684	int dangle = 1;
 685	loff_t new_offset =
 686	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
 687
 688	reiserfs_write_lock(inode->i_sb);
 689	version = get_inode_item_key_version(inode);
 690
 691	if (!file_capable(inode, block)) {
 692		reiserfs_write_unlock(inode->i_sb);
 693		return -EFBIG;
 694	}
 695
 696	/*
 697	 * if !create, we aren't changing the FS, so we don't need to
 698	 * log anything, so we don't need to start a transaction
 699	 */
 700	if (!(create & GET_BLOCK_CREATE)) {
 701		int ret;
 702		/* find number of block-th logical block of the file */
 703		ret = _get_block_create_0(inode, block, bh_result,
 704					  create | GET_BLOCK_READ_DIRECT);
 705		reiserfs_write_unlock(inode->i_sb);
 706		return ret;
 707	}
 708
 709	/*
 710	 * if we're already in a transaction, make sure to close
 711	 * any new transactions we start in this func
 712	 */
 713	if ((create & GET_BLOCK_NO_DANGLE) ||
 714	    reiserfs_transaction_running(inode->i_sb))
 715		dangle = 0;
 716
 717	/*
 718	 * If file is of such a size, that it might have a tail and
 719	 * tails are enabled  we should mark it as possibly needing
 720	 * tail packing on close
 721	 */
 722	if ((have_large_tails(inode->i_sb)
 723	     && inode->i_size < i_block_size(inode) * 4)
 724	    || (have_small_tails(inode->i_sb)
 725		&& inode->i_size < i_block_size(inode)))
 726		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
 727
 728	/* set the key of the first byte in the 'block'-th block of file */
 729	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
 730	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
 731start_trans:
 732		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
 733		if (!th) {
 734			retval = -ENOMEM;
 735			goto failure;
 736		}
 737		reiserfs_update_inode_transaction(inode);
 738	}
 739research:
 740
 741	retval = search_for_position_by_key(inode->i_sb, &key, &path);
 742	if (retval == IO_ERROR) {
 743		retval = -EIO;
 744		goto failure;
 745	}
 746
 747	bh = get_last_bh(&path);
 748	ih = tp_item_head(&path);
 749	item = tp_item_body(&path);
 750	pos_in_item = path.pos_in_item;
 751
 752	fs_gen = get_generation(inode->i_sb);
 753	copy_item_head(&tmp_ih, ih);
 754
 755	if (allocation_needed
 756	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
 757		/* we have to allocate block for the unformatted node */
 758		if (!th) {
 759			pathrelse(&path);
 760			goto start_trans;
 761		}
 762
 763		repeat =
 764		    _allocate_block(th, block, inode, &allocated_block_nr,
 765				    &path, create);
 766
 767		/*
 768		 * restart the transaction to give the journal a chance to free
 769		 * some blocks.  releases the path, so we have to go back to
 770		 * research if we succeed on the second try
 771		 */
 772		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
 773			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
 774			retval = restart_transaction(th, inode, &path);
 775			if (retval)
 776				goto failure;
 777			repeat =
 778			    _allocate_block(th, block, inode,
 779					    &allocated_block_nr, NULL, create);
 780
 781			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
 782				goto research;
 783			}
 784			if (repeat == QUOTA_EXCEEDED)
 785				retval = -EDQUOT;
 786			else
 787				retval = -ENOSPC;
 788			goto failure;
 789		}
 790
 791		if (fs_changed(fs_gen, inode->i_sb)
 792		    && item_moved(&tmp_ih, &path)) {
 793			goto research;
 794		}
 795	}
 796
 797	if (indirect_item_found(retval, ih)) {
 798		b_blocknr_t unfm_ptr;
 799		/*
 800		 * 'block'-th block is in the file already (there is
 801		 * corresponding cell in some indirect item). But it may be
 802		 * zero unformatted node pointer (hole)
 803		 */
 804		unfm_ptr = get_block_num(item, pos_in_item);
 805		if (unfm_ptr == 0) {
 806			/* use allocated block to plug the hole */
 807			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
 808			if (fs_changed(fs_gen, inode->i_sb)
 809			    && item_moved(&tmp_ih, &path)) {
 810				reiserfs_restore_prepared_buffer(inode->i_sb,
 811								 bh);
 812				goto research;
 813			}
 814			set_buffer_new(bh_result);
 815			if (buffer_dirty(bh_result)
 816			    && reiserfs_data_ordered(inode->i_sb))
 817				reiserfs_add_ordered_list(inode, bh_result);
 818			put_block_num(item, pos_in_item, allocated_block_nr);
 819			unfm_ptr = allocated_block_nr;
 820			journal_mark_dirty(th, bh);
 821			reiserfs_update_sd(th, inode);
 822		}
 823		set_block_dev_mapped(bh_result, unfm_ptr, inode);
 824		pathrelse(&path);
 825		retval = 0;
 826		if (!dangle && th)
 827			retval = reiserfs_end_persistent_transaction(th);
 828
 829		reiserfs_write_unlock(inode->i_sb);
 830
 831		/*
 832		 * the item was found, so new blocks were not added to the file
 833		 * there is no need to make sure the inode is updated with this
 834		 * transaction
 835		 */
 836		return retval;
 837	}
 838
 839	if (!th) {
 840		pathrelse(&path);
 841		goto start_trans;
 842	}
 843
 844	/*
 845	 * desired position is not found or is in the direct item. We have
 846	 * to append file with holes up to 'block'-th block converting
 847	 * direct items to indirect one if necessary
 848	 */
 849	done = 0;
 850	do {
 851		if (is_statdata_le_ih(ih)) {
 852			__le32 unp = 0;
 853			struct cpu_key tmp_key;
 854
 855			/* indirect item has to be inserted */
 856			make_le_item_head(&tmp_ih, &key, version, 1,
 857					  TYPE_INDIRECT, UNFM_P_SIZE,
 858					  0 /* free_space */ );
 859
 860			/*
 861			 * we are going to add 'block'-th block to the file.
 862			 * Use allocated block for that
 863			 */
 864			if (cpu_key_k_offset(&key) == 1) {
 865				unp = cpu_to_le32(allocated_block_nr);
 866				set_block_dev_mapped(bh_result,
 867						     allocated_block_nr, inode);
 868				set_buffer_new(bh_result);
 869				done = 1;
 870			}
 871			tmp_key = key;	/* ;) */
 872			set_cpu_key_k_offset(&tmp_key, 1);
 873			PATH_LAST_POSITION(&path)++;
 874
 875			retval =
 876			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
 877						 inode, (char *)&unp);
 878			if (retval) {
 879				reiserfs_free_block(th, inode,
 880						    allocated_block_nr, 1);
 881				/*
 882				 * retval == -ENOSPC, -EDQUOT or -EIO
 883				 * or -EEXIST
 884				 */
 885				goto failure;
 886			}
 887		} else if (is_direct_le_ih(ih)) {
 888			/* direct item has to be converted */
 889			loff_t tail_offset;
 890
 891			tail_offset =
 892			    ((le_ih_k_offset(ih) -
 893			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
 894
 895			/*
 896			 * direct item we just found fits into block we have
 897			 * to map. Convert it into unformatted node: use
 898			 * bh_result for the conversion
 899			 */
 900			if (tail_offset == cpu_key_k_offset(&key)) {
 901				set_block_dev_mapped(bh_result,
 902						     allocated_block_nr, inode);
 903				unbh = bh_result;
 904				done = 1;
 905			} else {
 906				/*
 907				 * we have to pad file tail stored in direct
 908				 * item(s) up to block size and convert it
 909				 * to unformatted node. FIXME: this should
 910				 * also get into page cache
 911				 */
 912
 913				pathrelse(&path);
 914				/*
 915				 * ugly, but we can only end the transaction if
 916				 * we aren't nested
 917				 */
 918				BUG_ON(!th->t_refcount);
 919				if (th->t_refcount == 1) {
 920					retval =
 921					    reiserfs_end_persistent_transaction
 922					    (th);
 923					th = NULL;
 924					if (retval)
 925						goto failure;
 926				}
 927
 928				retval =
 929				    convert_tail_for_hole(inode, bh_result,
 930							  tail_offset);
 931				if (retval) {
 932					if (retval != -ENOSPC)
 933						reiserfs_error(inode->i_sb,
 934							"clm-6004",
 935							"convert tail failed "
 936							"inode %lu, error %d",
 937							inode->i_ino,
 938							retval);
 939					if (allocated_block_nr) {
 940						/*
 941						 * the bitmap, the super,
 942						 * and the stat data == 3
 943						 */
 944						if (!th)
 945							th = reiserfs_persistent_transaction(inode->i_sb, 3);
 946						if (th)
 947							reiserfs_free_block(th,
 948									    inode,
 949									    allocated_block_nr,
 950									    1);
 951					}
 952					goto failure;
 953				}
 954				goto research;
 955			}
 956			retval =
 957			    direct2indirect(th, inode, &path, unbh,
 958					    tail_offset);
 959			if (retval) {
 960				reiserfs_unmap_buffer(unbh);
 961				reiserfs_free_block(th, inode,
 962						    allocated_block_nr, 1);
 963				goto failure;
 964			}
 965			/*
 966			 * it is important the set_buffer_uptodate is done
 967			 * after the direct2indirect.  The buffer might
 968			 * contain valid data newer than the data on disk
 969			 * (read by readpage, changed, and then sent here by
 970			 * writepage).  direct2indirect needs to know if unbh
 971			 * was already up to date, so it can decide if the
 972			 * data in unbh needs to be replaced with data from
 973			 * the disk
 974			 */
 975			set_buffer_uptodate(unbh);
 976
 977			/*
 978			 * unbh->b_page == NULL in case of DIRECT_IO request,
 979			 * this means buffer will disappear shortly, so it
 980			 * should not be added to
 981			 */
 982			if (unbh->b_page) {
 983				/*
 984				 * we've converted the tail, so we must
 985				 * flush unbh before the transaction commits
 986				 */
 987				reiserfs_add_tail_list(inode, unbh);
 988
 989				/*
 990				 * mark it dirty now to prevent commit_write
 991				 * from adding this buffer to the inode's
 992				 * dirty buffer list
 993				 */
 994				/*
 995				 * AKPM: changed __mark_buffer_dirty to
 996				 * mark_buffer_dirty().  It's still atomic,
 997				 * but it sets the page dirty too, which makes
 998				 * it eligible for writeback at any time by the
 999				 * VM (which was also the case with
1000				 * __mark_buffer_dirty())
1001				 */
1002				mark_buffer_dirty(unbh);
1003			}
1004		} else {
1005			/*
1006			 * append indirect item with holes if needed, when
1007			 * appending pointer to 'block'-th block use block,
1008			 * which is already allocated
1009			 */
1010			struct cpu_key tmp_key;
1011			/*
1012			 * We use this in case we need to allocate
1013			 * only one block which is a fastpath
1014			 */
1015			unp_t unf_single = 0;
1016			unp_t *un;
1017			__u64 max_to_insert =
1018			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1019			    UNFM_P_SIZE;
1020			__u64 blocks_needed;
1021
1022			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1023			       "vs-804: invalid position for append");
1024			/*
1025			 * indirect item has to be appended,
1026			 * set up key of that position
1027			 * (key type is unimportant)
1028			 */
1029			make_cpu_key(&tmp_key, inode,
1030				     le_key_k_offset(version,
1031						     &ih->ih_key) +
1032				     op_bytes_number(ih,
1033						     inode->i_sb->s_blocksize),
1034				     TYPE_INDIRECT, 3);
1035
1036			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1037			       "green-805: invalid offset");
1038			blocks_needed =
1039			    1 +
1040			    ((cpu_key_k_offset(&key) -
1041			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1042			     s_blocksize_bits);
1043
1044			if (blocks_needed == 1) {
1045				un = &unf_single;
1046			} else {
1047				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
 
1048				if (!un) {
1049					un = &unf_single;
1050					blocks_needed = 1;
1051					max_to_insert = 0;
1052				}
1053			}
1054			if (blocks_needed <= max_to_insert) {
1055				/*
1056				 * we are going to add target block to
1057				 * the file. Use allocated block for that
1058				 */
1059				un[blocks_needed - 1] =
1060				    cpu_to_le32(allocated_block_nr);
1061				set_block_dev_mapped(bh_result,
1062						     allocated_block_nr, inode);
1063				set_buffer_new(bh_result);
1064				done = 1;
1065			} else {
1066				/* paste hole to the indirect item */
1067				/*
1068				 * If kmalloc failed, max_to_insert becomes
1069				 * zero and it means we only have space for
1070				 * one block
1071				 */
1072				blocks_needed =
1073				    max_to_insert ? max_to_insert : 1;
1074			}
1075			retval =
1076			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1077						     (char *)un,
1078						     UNFM_P_SIZE *
1079						     blocks_needed);
1080
1081			if (blocks_needed != 1)
1082				kfree(un);
1083
1084			if (retval) {
1085				reiserfs_free_block(th, inode,
1086						    allocated_block_nr, 1);
1087				goto failure;
1088			}
1089			if (!done) {
1090				/*
1091				 * We need to mark new file size in case
1092				 * this function will be interrupted/aborted
1093				 * later on. And we may do this only for
1094				 * holes.
1095				 */
1096				inode->i_size +=
1097				    inode->i_sb->s_blocksize * blocks_needed;
1098			}
1099		}
1100
1101		if (done == 1)
1102			break;
1103
1104		/*
1105		 * this loop could log more blocks than we had originally
1106		 * asked for.  So, we have to allow the transaction to end
1107		 * if it is too big or too full.  Update the inode so things
1108		 * are consistent if we crash before the function returns
1109		 * release the path so that anybody waiting on the path before
1110		 * ending their transaction will be able to continue.
1111		 */
1112		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1113			retval = restart_transaction(th, inode, &path);
1114			if (retval)
1115				goto failure;
1116		}
1117		/*
1118		 * inserting indirect pointers for a hole can take a
1119		 * long time.  reschedule if needed and also release the write
1120		 * lock for others.
1121		 */
1122		reiserfs_cond_resched(inode->i_sb);
1123
1124		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1125		if (retval == IO_ERROR) {
1126			retval = -EIO;
1127			goto failure;
1128		}
1129		if (retval == POSITION_FOUND) {
1130			reiserfs_warning(inode->i_sb, "vs-825",
1131					 "%K should not be found", &key);
1132			retval = -EEXIST;
1133			if (allocated_block_nr)
1134				reiserfs_free_block(th, inode,
1135						    allocated_block_nr, 1);
1136			pathrelse(&path);
1137			goto failure;
1138		}
1139		bh = get_last_bh(&path);
1140		ih = tp_item_head(&path);
1141		item = tp_item_body(&path);
1142		pos_in_item = path.pos_in_item;
1143	} while (1);
1144
1145	retval = 0;
1146
1147failure:
1148	if (th && (!dangle || (retval && !th->t_trans_id))) {
1149		int err;
1150		if (th->t_trans_id)
1151			reiserfs_update_sd(th, inode);
1152		err = reiserfs_end_persistent_transaction(th);
1153		if (err)
1154			retval = err;
1155	}
1156
1157	reiserfs_write_unlock(inode->i_sb);
1158	reiserfs_check_path(&path);
1159	return retval;
1160}
1161
1162static int
1163reiserfs_readpages(struct file *file, struct address_space *mapping,
1164		   struct list_head *pages, unsigned nr_pages)
1165{
1166	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1167}
1168
1169/*
1170 * Compute real number of used bytes by file
1171 * Following three functions can go away when we'll have enough space in
1172 * stat item
1173 */
1174static int real_space_diff(struct inode *inode, int sd_size)
1175{
1176	int bytes;
1177	loff_t blocksize = inode->i_sb->s_blocksize;
1178
1179	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1180		return sd_size;
1181
1182	/*
1183	 * End of file is also in full block with indirect reference, so round
1184	 * up to the next block.
1185	 *
1186	 * there is just no way to know if the tail is actually packed
1187	 * on the file, so we have to assume it isn't.  When we pack the
1188	 * tail, we add 4 bytes to pretend there really is an unformatted
1189	 * node pointer
1190	 */
1191	bytes =
1192	    ((inode->i_size +
1193	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1194	    sd_size;
1195	return bytes;
1196}
1197
1198static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1199					int sd_size)
1200{
1201	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1202		return inode->i_size +
1203		    (loff_t) (real_space_diff(inode, sd_size));
1204	}
1205	return ((loff_t) real_space_diff(inode, sd_size)) +
1206	    (((loff_t) blocks) << 9);
1207}
1208
1209/* Compute number of blocks used by file in ReiserFS counting */
1210static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1211{
1212	loff_t bytes = inode_get_bytes(inode);
1213	loff_t real_space = real_space_diff(inode, sd_size);
1214
1215	/* keeps fsck and non-quota versions of reiserfs happy */
1216	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1217		bytes += (loff_t) 511;
1218	}
1219
1220	/*
1221	 * files from before the quota patch might i_blocks such that
1222	 * bytes < real_space.  Deal with that here to prevent it from
1223	 * going negative.
1224	 */
1225	if (bytes < real_space)
1226		return 0;
1227	return (bytes - real_space) >> 9;
1228}
1229
1230/*
1231 * BAD: new directories have stat data of new type and all other items
1232 * of old type. Version stored in the inode says about body items, so
1233 * in update_stat_data we can not rely on inode, but have to check
1234 * item version directly
1235 */
1236
1237/* called by read_locked_inode */
1238static void init_inode(struct inode *inode, struct treepath *path)
1239{
1240	struct buffer_head *bh;
1241	struct item_head *ih;
1242	__u32 rdev;
1243
1244	bh = PATH_PLAST_BUFFER(path);
1245	ih = tp_item_head(path);
1246
1247	copy_key(INODE_PKEY(inode), &ih->ih_key);
1248
1249	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1250	REISERFS_I(inode)->i_flags = 0;
1251	REISERFS_I(inode)->i_prealloc_block = 0;
1252	REISERFS_I(inode)->i_prealloc_count = 0;
1253	REISERFS_I(inode)->i_trans_id = 0;
1254	REISERFS_I(inode)->i_jl = NULL;
1255	reiserfs_init_xattr_rwsem(inode);
1256
1257	if (stat_data_v1(ih)) {
1258		struct stat_data_v1 *sd =
1259		    (struct stat_data_v1 *)ih_item_body(bh, ih);
1260		unsigned long blocks;
1261
1262		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1263		set_inode_sd_version(inode, STAT_DATA_V1);
1264		inode->i_mode = sd_v1_mode(sd);
1265		set_nlink(inode, sd_v1_nlink(sd));
1266		i_uid_write(inode, sd_v1_uid(sd));
1267		i_gid_write(inode, sd_v1_gid(sd));
1268		inode->i_size = sd_v1_size(sd);
1269		inode->i_atime.tv_sec = sd_v1_atime(sd);
1270		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1271		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1272		inode->i_atime.tv_nsec = 0;
1273		inode->i_ctime.tv_nsec = 0;
1274		inode->i_mtime.tv_nsec = 0;
1275
1276		inode->i_blocks = sd_v1_blocks(sd);
1277		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1278		blocks = (inode->i_size + 511) >> 9;
1279		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1280
1281		/*
1282		 * there was a bug in <=3.5.23 when i_blocks could take
1283		 * negative values. Starting from 3.5.17 this value could
1284		 * even be stored in stat data. For such files we set
1285		 * i_blocks based on file size. Just 2 notes: this can be
1286		 * wrong for sparse files. On-disk value will be only
1287		 * updated if file's inode will ever change
1288		 */
1289		if (inode->i_blocks > blocks) {
1290			inode->i_blocks = blocks;
1291		}
1292
1293		rdev = sd_v1_rdev(sd);
1294		REISERFS_I(inode)->i_first_direct_byte =
1295		    sd_v1_first_direct_byte(sd);
1296
1297		/*
1298		 * an early bug in the quota code can give us an odd
1299		 * number for the block count.  This is incorrect, fix it here.
1300		 */
1301		if (inode->i_blocks & 1) {
1302			inode->i_blocks++;
1303		}
1304		inode_set_bytes(inode,
1305				to_real_used_space(inode, inode->i_blocks,
1306						   SD_V1_SIZE));
1307		/*
1308		 * nopack is initially zero for v1 objects. For v2 objects,
1309		 * nopack is initialised from sd_attrs
1310		 */
1311		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1312	} else {
1313		/*
1314		 * new stat data found, but object may have old items
1315		 * (directories and symlinks)
1316		 */
1317		struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1318
1319		inode->i_mode = sd_v2_mode(sd);
1320		set_nlink(inode, sd_v2_nlink(sd));
1321		i_uid_write(inode, sd_v2_uid(sd));
1322		inode->i_size = sd_v2_size(sd);
1323		i_gid_write(inode, sd_v2_gid(sd));
1324		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1325		inode->i_atime.tv_sec = sd_v2_atime(sd);
1326		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1327		inode->i_ctime.tv_nsec = 0;
1328		inode->i_mtime.tv_nsec = 0;
1329		inode->i_atime.tv_nsec = 0;
1330		inode->i_blocks = sd_v2_blocks(sd);
1331		rdev = sd_v2_rdev(sd);
1332		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1333			inode->i_generation =
1334			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1335		else
1336			inode->i_generation = sd_v2_generation(sd);
1337
1338		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1339			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1340		else
1341			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1342		REISERFS_I(inode)->i_first_direct_byte = 0;
1343		set_inode_sd_version(inode, STAT_DATA_V2);
1344		inode_set_bytes(inode,
1345				to_real_used_space(inode, inode->i_blocks,
1346						   SD_V2_SIZE));
1347		/*
1348		 * read persistent inode attributes from sd and initialise
1349		 * generic inode flags from them
1350		 */
1351		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1352		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1353	}
1354
1355	pathrelse(path);
1356	if (S_ISREG(inode->i_mode)) {
1357		inode->i_op = &reiserfs_file_inode_operations;
1358		inode->i_fop = &reiserfs_file_operations;
1359		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1360	} else if (S_ISDIR(inode->i_mode)) {
1361		inode->i_op = &reiserfs_dir_inode_operations;
1362		inode->i_fop = &reiserfs_dir_operations;
1363	} else if (S_ISLNK(inode->i_mode)) {
1364		inode->i_op = &reiserfs_symlink_inode_operations;
1365		inode_nohighmem(inode);
1366		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1367	} else {
1368		inode->i_blocks = 0;
1369		inode->i_op = &reiserfs_special_inode_operations;
1370		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1371	}
1372}
1373
1374/* update new stat data with inode fields */
1375static void inode2sd(void *sd, struct inode *inode, loff_t size)
1376{
1377	struct stat_data *sd_v2 = (struct stat_data *)sd;
1378
1379	set_sd_v2_mode(sd_v2, inode->i_mode);
1380	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1381	set_sd_v2_uid(sd_v2, i_uid_read(inode));
1382	set_sd_v2_size(sd_v2, size);
1383	set_sd_v2_gid(sd_v2, i_gid_read(inode));
1384	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1385	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1386	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1387	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1388	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1389		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1390	else
1391		set_sd_v2_generation(sd_v2, inode->i_generation);
1392	set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs);
1393}
1394
1395/* used to copy inode's fields to old stat data */
1396static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1397{
1398	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1399
1400	set_sd_v1_mode(sd_v1, inode->i_mode);
1401	set_sd_v1_uid(sd_v1, i_uid_read(inode));
1402	set_sd_v1_gid(sd_v1, i_gid_read(inode));
1403	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1404	set_sd_v1_size(sd_v1, size);
1405	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1406	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1407	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1408
1409	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1410		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1411	else
1412		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1413
1414	/* Sigh. i_first_direct_byte is back */
1415	set_sd_v1_first_direct_byte(sd_v1,
1416				    REISERFS_I(inode)->i_first_direct_byte);
1417}
1418
1419/*
1420 * NOTE, you must prepare the buffer head before sending it here,
1421 * and then log it after the call
1422 */
1423static void update_stat_data(struct treepath *path, struct inode *inode,
1424			     loff_t size)
1425{
1426	struct buffer_head *bh;
1427	struct item_head *ih;
1428
1429	bh = PATH_PLAST_BUFFER(path);
1430	ih = tp_item_head(path);
1431
1432	if (!is_statdata_le_ih(ih))
1433		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1434			       INODE_PKEY(inode), ih);
1435
1436	/* path points to old stat data */
1437	if (stat_data_v1(ih)) {
1438		inode2sd_v1(ih_item_body(bh, ih), inode, size);
1439	} else {
1440		inode2sd(ih_item_body(bh, ih), inode, size);
1441	}
1442
1443	return;
1444}
1445
1446void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1447			     struct inode *inode, loff_t size)
1448{
1449	struct cpu_key key;
1450	INITIALIZE_PATH(path);
1451	struct buffer_head *bh;
1452	int fs_gen;
1453	struct item_head *ih, tmp_ih;
1454	int retval;
1455
1456	BUG_ON(!th->t_trans_id);
1457
1458	/* key type is unimportant */
1459	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1460
1461	for (;;) {
1462		int pos;
1463		/* look for the object's stat data */
1464		retval = search_item(inode->i_sb, &key, &path);
1465		if (retval == IO_ERROR) {
1466			reiserfs_error(inode->i_sb, "vs-13050",
1467				       "i/o failure occurred trying to "
1468				       "update %K stat data", &key);
1469			return;
1470		}
1471		if (retval == ITEM_NOT_FOUND) {
1472			pos = PATH_LAST_POSITION(&path);
1473			pathrelse(&path);
1474			if (inode->i_nlink == 0) {
1475				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1476				return;
1477			}
1478			reiserfs_warning(inode->i_sb, "vs-13060",
1479					 "stat data of object %k (nlink == %d) "
1480					 "not found (pos %d)",
1481					 INODE_PKEY(inode), inode->i_nlink,
1482					 pos);
1483			reiserfs_check_path(&path);
1484			return;
1485		}
1486
1487		/*
1488		 * sigh, prepare_for_journal might schedule.  When it
1489		 * schedules the FS might change.  We have to detect that,
1490		 * and loop back to the search if the stat data item has moved
1491		 */
1492		bh = get_last_bh(&path);
1493		ih = tp_item_head(&path);
1494		copy_item_head(&tmp_ih, ih);
1495		fs_gen = get_generation(inode->i_sb);
1496		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1497
1498		/* Stat_data item has been moved after scheduling. */
1499		if (fs_changed(fs_gen, inode->i_sb)
1500		    && item_moved(&tmp_ih, &path)) {
1501			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1502			continue;
1503		}
1504		break;
1505	}
1506	update_stat_data(&path, inode, size);
1507	journal_mark_dirty(th, bh);
1508	pathrelse(&path);
1509	return;
1510}
1511
1512/*
1513 * reiserfs_read_locked_inode is called to read the inode off disk, and it
1514 * does a make_bad_inode when things go wrong.  But, we need to make sure
1515 * and clear the key in the private portion of the inode, otherwise a
1516 * corresponding iput might try to delete whatever object the inode last
1517 * represented.
1518 */
1519static void reiserfs_make_bad_inode(struct inode *inode)
1520{
1521	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1522	make_bad_inode(inode);
1523}
1524
1525/*
1526 * initially this function was derived from minix or ext2's analog and
1527 * evolved as the prototype did
1528 */
1529int reiserfs_init_locked_inode(struct inode *inode, void *p)
1530{
1531	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1532	inode->i_ino = args->objectid;
1533	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1534	return 0;
1535}
1536
1537/*
1538 * looks for stat data in the tree, and fills up the fields of in-core
1539 * inode stat data fields
1540 */
1541void reiserfs_read_locked_inode(struct inode *inode,
1542				struct reiserfs_iget_args *args)
1543{
1544	INITIALIZE_PATH(path_to_sd);
1545	struct cpu_key key;
1546	unsigned long dirino;
1547	int retval;
1548
1549	dirino = args->dirid;
1550
1551	/*
1552	 * set version 1, version 2 could be used too, because stat data
1553	 * key is the same in both versions
1554	 */
1555	key.version = KEY_FORMAT_3_5;
1556	key.on_disk_key.k_dir_id = dirino;
1557	key.on_disk_key.k_objectid = inode->i_ino;
1558	key.on_disk_key.k_offset = 0;
1559	key.on_disk_key.k_type = 0;
1560
1561	/* look for the object's stat data */
1562	retval = search_item(inode->i_sb, &key, &path_to_sd);
1563	if (retval == IO_ERROR) {
1564		reiserfs_error(inode->i_sb, "vs-13070",
1565			       "i/o failure occurred trying to find "
1566			       "stat data of %K", &key);
1567		reiserfs_make_bad_inode(inode);
1568		return;
1569	}
1570
1571	/* a stale NFS handle can trigger this without it being an error */
1572	if (retval != ITEM_FOUND) {
1573		pathrelse(&path_to_sd);
1574		reiserfs_make_bad_inode(inode);
1575		clear_nlink(inode);
1576		return;
1577	}
1578
1579	init_inode(inode, &path_to_sd);
1580
1581	/*
1582	 * It is possible that knfsd is trying to access inode of a file
1583	 * that is being removed from the disk by some other thread. As we
1584	 * update sd on unlink all that is required is to check for nlink
1585	 * here. This bug was first found by Sizif when debugging
1586	 * SquidNG/Butterfly, forgotten, and found again after Philippe
1587	 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1588
1589	 * More logical fix would require changes in fs/inode.c:iput() to
1590	 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1591	 * in iget() to return NULL if I_FREEING inode is found in
1592	 * hash-table.
1593	 */
1594
1595	/*
1596	 * Currently there is one place where it's ok to meet inode with
1597	 * nlink==0: processing of open-unlinked and half-truncated files
1598	 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1599	 */
1600	if ((inode->i_nlink == 0) &&
1601	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1602		reiserfs_warning(inode->i_sb, "vs-13075",
1603				 "dead inode read from disk %K. "
1604				 "This is likely to be race with knfsd. Ignore",
1605				 &key);
1606		reiserfs_make_bad_inode(inode);
1607	}
1608
1609	/* init inode should be relsing */
1610	reiserfs_check_path(&path_to_sd);
1611
1612	/*
1613	 * Stat data v1 doesn't support ACLs.
1614	 */
1615	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1616		cache_no_acl(inode);
1617}
1618
1619/*
1620 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1621 *
1622 * @inode:    inode from hash table to check
1623 * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1624 *
1625 * This function is called by iget5_locked() to distinguish reiserfs inodes
1626 * having the same inode numbers. Such inodes can only exist due to some
1627 * error condition. One of them should be bad. Inodes with identical
1628 * inode numbers (objectids) are distinguished by parent directory ids.
1629 *
1630 */
1631int reiserfs_find_actor(struct inode *inode, void *opaque)
1632{
1633	struct reiserfs_iget_args *args;
1634
1635	args = opaque;
1636	/* args is already in CPU order */
1637	return (inode->i_ino == args->objectid) &&
1638	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1639}
1640
1641struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1642{
1643	struct inode *inode;
1644	struct reiserfs_iget_args args;
1645	int depth;
1646
1647	args.objectid = key->on_disk_key.k_objectid;
1648	args.dirid = key->on_disk_key.k_dir_id;
1649	depth = reiserfs_write_unlock_nested(s);
1650	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1651			     reiserfs_find_actor, reiserfs_init_locked_inode,
1652			     (void *)(&args));
1653	reiserfs_write_lock_nested(s, depth);
1654	if (!inode)
1655		return ERR_PTR(-ENOMEM);
1656
1657	if (inode->i_state & I_NEW) {
1658		reiserfs_read_locked_inode(inode, &args);
1659		unlock_new_inode(inode);
1660	}
1661
1662	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1663		/* either due to i/o error or a stale NFS handle */
1664		iput(inode);
1665		inode = NULL;
1666	}
1667	return inode;
1668}
1669
1670static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1671	u32 objectid, u32 dir_id, u32 generation)
1672
1673{
1674	struct cpu_key key;
1675	struct inode *inode;
1676
1677	key.on_disk_key.k_objectid = objectid;
1678	key.on_disk_key.k_dir_id = dir_id;
1679	reiserfs_write_lock(sb);
1680	inode = reiserfs_iget(sb, &key);
1681	if (inode && !IS_ERR(inode) && generation != 0 &&
1682	    generation != inode->i_generation) {
1683		iput(inode);
1684		inode = NULL;
1685	}
1686	reiserfs_write_unlock(sb);
1687
1688	return d_obtain_alias(inode);
1689}
1690
1691struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1692		int fh_len, int fh_type)
1693{
1694	/*
1695	 * fhtype happens to reflect the number of u32s encoded.
1696	 * due to a bug in earlier code, fhtype might indicate there
1697	 * are more u32s then actually fitted.
1698	 * so if fhtype seems to be more than len, reduce fhtype.
1699	 * Valid types are:
1700	 *   2 - objectid + dir_id - legacy support
1701	 *   3 - objectid + dir_id + generation
1702	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1703	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1704	 *   6 - as above plus generation of directory
1705	 * 6 does not fit in NFSv2 handles
1706	 */
1707	if (fh_type > fh_len) {
1708		if (fh_type != 6 || fh_len != 5)
1709			reiserfs_warning(sb, "reiserfs-13077",
1710				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1711				fh_type, fh_len);
1712		fh_type = fh_len;
1713	}
1714	if (fh_len < 2)
1715		return NULL;
1716
1717	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1718		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1719}
1720
1721struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1722		int fh_len, int fh_type)
1723{
1724	if (fh_type > fh_len)
1725		fh_type = fh_len;
1726	if (fh_type < 4)
1727		return NULL;
1728
1729	return reiserfs_get_dentry(sb,
1730		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1731		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1732		(fh_type == 6) ? fid->raw[5] : 0);
1733}
1734
1735int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1736		       struct inode *parent)
1737{
1738	int maxlen = *lenp;
1739
1740	if (parent && (maxlen < 5)) {
1741		*lenp = 5;
1742		return FILEID_INVALID;
1743	} else if (maxlen < 3) {
1744		*lenp = 3;
1745		return FILEID_INVALID;
1746	}
1747
1748	data[0] = inode->i_ino;
1749	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1750	data[2] = inode->i_generation;
1751	*lenp = 3;
1752	if (parent) {
1753		data[3] = parent->i_ino;
1754		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1755		*lenp = 5;
1756		if (maxlen >= 6) {
1757			data[5] = parent->i_generation;
1758			*lenp = 6;
1759		}
1760	}
1761	return *lenp;
1762}
1763
1764/*
1765 * looks for stat data, then copies fields to it, marks the buffer
1766 * containing stat data as dirty
1767 */
1768/*
1769 * reiserfs inodes are never really dirty, since the dirty inode call
1770 * always logs them.  This call allows the VFS inode marking routines
1771 * to properly mark inodes for datasync and such, but only actually
1772 * does something when called for a synchronous update.
1773 */
1774int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1775{
1776	struct reiserfs_transaction_handle th;
1777	int jbegin_count = 1;
1778
1779	if (sb_rdonly(inode->i_sb))
1780		return -EROFS;
1781	/*
1782	 * memory pressure can sometimes initiate write_inode calls with
1783	 * sync == 1,
1784	 * these cases are just when the system needs ram, not when the
1785	 * inode needs to reach disk for safety, and they can safely be
1786	 * ignored because the altered inode has already been logged.
1787	 */
1788	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1789		reiserfs_write_lock(inode->i_sb);
1790		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1791			reiserfs_update_sd(&th, inode);
1792			journal_end_sync(&th);
1793		}
1794		reiserfs_write_unlock(inode->i_sb);
1795	}
1796	return 0;
1797}
1798
1799/*
1800 * stat data of new object is inserted already, this inserts the item
1801 * containing "." and ".." entries
1802 */
1803static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1804				  struct inode *inode,
1805				  struct item_head *ih, struct treepath *path,
1806				  struct inode *dir)
1807{
1808	struct super_block *sb = th->t_super;
1809	char empty_dir[EMPTY_DIR_SIZE];
1810	char *body = empty_dir;
1811	struct cpu_key key;
1812	int retval;
1813
1814	BUG_ON(!th->t_trans_id);
1815
1816	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1817		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1818		      TYPE_DIRENTRY, 3 /*key length */ );
1819
1820	/*
1821	 * compose item head for new item. Directories consist of items of
1822	 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1823	 * is done by reiserfs_new_inode
1824	 */
1825	if (old_format_only(sb)) {
1826		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1827				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1828
1829		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1830				       ih->ih_key.k_objectid,
1831				       INODE_PKEY(dir)->k_dir_id,
1832				       INODE_PKEY(dir)->k_objectid);
1833	} else {
1834		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1835				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1836
1837		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1838				    ih->ih_key.k_objectid,
1839				    INODE_PKEY(dir)->k_dir_id,
1840				    INODE_PKEY(dir)->k_objectid);
1841	}
1842
1843	/* look for place in the tree for new item */
1844	retval = search_item(sb, &key, path);
1845	if (retval == IO_ERROR) {
1846		reiserfs_error(sb, "vs-13080",
1847			       "i/o failure occurred creating new directory");
1848		return -EIO;
1849	}
1850	if (retval == ITEM_FOUND) {
1851		pathrelse(path);
1852		reiserfs_warning(sb, "vs-13070",
1853				 "object with this key exists (%k)",
1854				 &(ih->ih_key));
1855		return -EEXIST;
1856	}
1857
1858	/* insert item, that is empty directory item */
1859	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1860}
1861
1862/*
1863 * stat data of object has been inserted, this inserts the item
1864 * containing the body of symlink
1865 */
1866static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1867				struct inode *inode,
1868				struct item_head *ih,
1869				struct treepath *path, const char *symname,
1870				int item_len)
1871{
1872	struct super_block *sb = th->t_super;
1873	struct cpu_key key;
1874	int retval;
1875
1876	BUG_ON(!th->t_trans_id);
1877
1878	_make_cpu_key(&key, KEY_FORMAT_3_5,
1879		      le32_to_cpu(ih->ih_key.k_dir_id),
1880		      le32_to_cpu(ih->ih_key.k_objectid),
1881		      1, TYPE_DIRECT, 3 /*key length */ );
1882
1883	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1884			  0 /*free_space */ );
1885
1886	/* look for place in the tree for new item */
1887	retval = search_item(sb, &key, path);
1888	if (retval == IO_ERROR) {
1889		reiserfs_error(sb, "vs-13080",
1890			       "i/o failure occurred creating new symlink");
1891		return -EIO;
1892	}
1893	if (retval == ITEM_FOUND) {
1894		pathrelse(path);
1895		reiserfs_warning(sb, "vs-13080",
1896				 "object with this key exists (%k)",
1897				 &(ih->ih_key));
1898		return -EEXIST;
1899	}
1900
1901	/* insert item, that is body of symlink */
1902	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1903}
1904
1905/*
1906 * inserts the stat data into the tree, and then calls
1907 * reiserfs_new_directory (to insert ".", ".." item if new object is
1908 * directory) or reiserfs_new_symlink (to insert symlink body if new
1909 * object is symlink) or nothing (if new object is regular file)
1910
1911 * NOTE! uid and gid must already be set in the inode.  If we return
1912 * non-zero due to an error, we have to drop the quota previously allocated
1913 * for the fresh inode.  This can only be done outside a transaction, so
1914 * if we return non-zero, we also end the transaction.
1915 *
1916 * @th: active transaction handle
1917 * @dir: parent directory for new inode
1918 * @mode: mode of new inode
1919 * @symname: symlink contents if inode is symlink
1920 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1921 *         symlinks
1922 * @inode: inode to be filled
1923 * @security: optional security context to associate with this inode
1924 */
1925int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1926		       struct inode *dir, umode_t mode, const char *symname,
1927		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1928		          strlen (symname) for symlinks) */
1929		       loff_t i_size, struct dentry *dentry,
1930		       struct inode *inode,
1931		       struct reiserfs_security_handle *security)
1932{
1933	struct super_block *sb = dir->i_sb;
1934	struct reiserfs_iget_args args;
1935	INITIALIZE_PATH(path_to_key);
1936	struct cpu_key key;
1937	struct item_head ih;
1938	struct stat_data sd;
1939	int retval;
1940	int err;
1941	int depth;
1942
1943	BUG_ON(!th->t_trans_id);
1944
1945	depth = reiserfs_write_unlock_nested(sb);
1946	err = dquot_alloc_inode(inode);
1947	reiserfs_write_lock_nested(sb, depth);
1948	if (err)
1949		goto out_end_trans;
1950	if (!dir->i_nlink) {
1951		err = -EPERM;
1952		goto out_bad_inode;
1953	}
1954
1955	/* item head of new item */
1956	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1957	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1958	if (!ih.ih_key.k_objectid) {
1959		err = -ENOMEM;
1960		goto out_bad_inode;
1961	}
1962	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1963	if (old_format_only(sb))
1964		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1965				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1966	else
1967		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1968				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1969	memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1970	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1971
1972	depth = reiserfs_write_unlock_nested(inode->i_sb);
1973	err = insert_inode_locked4(inode, args.objectid,
1974			     reiserfs_find_actor, &args);
1975	reiserfs_write_lock_nested(inode->i_sb, depth);
1976	if (err) {
1977		err = -EINVAL;
1978		goto out_bad_inode;
1979	}
1980
1981	if (old_format_only(sb))
1982		/*
1983		 * not a perfect generation count, as object ids can be reused,
1984		 * but this is as good as reiserfs can do right now.
1985		 * note that the private part of inode isn't filled in yet,
1986		 * we have to use the directory.
1987		 */
1988		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1989	else
1990#if defined( USE_INODE_GENERATION_COUNTER )
1991		inode->i_generation =
1992		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1993#else
1994		inode->i_generation = ++event;
1995#endif
1996
1997	/* fill stat data */
1998	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1999
2000	/* uid and gid must already be set by the caller for quota init */
2001
2002	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
2003	inode->i_size = i_size;
2004	inode->i_blocks = 0;
2005	inode->i_bytes = 0;
2006	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
2007	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
2008
2009	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
2010	REISERFS_I(inode)->i_flags = 0;
2011	REISERFS_I(inode)->i_prealloc_block = 0;
2012	REISERFS_I(inode)->i_prealloc_count = 0;
2013	REISERFS_I(inode)->i_trans_id = 0;
2014	REISERFS_I(inode)->i_jl = NULL;
2015	REISERFS_I(inode)->i_attrs =
2016	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
2017	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
2018	reiserfs_init_xattr_rwsem(inode);
2019
2020	/* key to search for correct place for new stat data */
2021	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2022		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2023		      TYPE_STAT_DATA, 3 /*key length */ );
2024
2025	/* find proper place for inserting of stat data */
2026	retval = search_item(sb, &key, &path_to_key);
2027	if (retval == IO_ERROR) {
2028		err = -EIO;
2029		goto out_bad_inode;
2030	}
2031	if (retval == ITEM_FOUND) {
2032		pathrelse(&path_to_key);
2033		err = -EEXIST;
2034		goto out_bad_inode;
2035	}
2036	if (old_format_only(sb)) {
2037		/* i_uid or i_gid is too big to be stored in stat data v3.5 */
2038		if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2039			pathrelse(&path_to_key);
2040			err = -EINVAL;
2041			goto out_bad_inode;
2042		}
2043		inode2sd_v1(&sd, inode, inode->i_size);
2044	} else {
2045		inode2sd(&sd, inode, inode->i_size);
2046	}
2047	/*
2048	 * store in in-core inode the key of stat data and version all
2049	 * object items will have (directory items will have old offset
2050	 * format, other new objects will consist of new items)
2051	 */
2052	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2053		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2054	else
2055		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2056	if (old_format_only(sb))
2057		set_inode_sd_version(inode, STAT_DATA_V1);
2058	else
2059		set_inode_sd_version(inode, STAT_DATA_V2);
2060
2061	/* insert the stat data into the tree */
2062#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2063	if (REISERFS_I(dir)->new_packing_locality)
2064		th->displace_new_blocks = 1;
2065#endif
2066	retval =
2067	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2068				 (char *)(&sd));
2069	if (retval) {
2070		err = retval;
2071		reiserfs_check_path(&path_to_key);
2072		goto out_bad_inode;
2073	}
2074#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2075	if (!th->displace_new_blocks)
2076		REISERFS_I(dir)->new_packing_locality = 0;
2077#endif
2078	if (S_ISDIR(mode)) {
2079		/* insert item with "." and ".." */
2080		retval =
2081		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2082	}
2083
2084	if (S_ISLNK(mode)) {
2085		/* insert body of symlink */
2086		if (!old_format_only(sb))
2087			i_size = ROUND_UP(i_size);
2088		retval =
2089		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2090					 i_size);
2091	}
2092	if (retval) {
2093		err = retval;
2094		reiserfs_check_path(&path_to_key);
2095		journal_end(th);
2096		goto out_inserted_sd;
2097	}
2098
2099	if (reiserfs_posixacl(inode->i_sb)) {
2100		reiserfs_write_unlock(inode->i_sb);
2101		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2102		reiserfs_write_lock(inode->i_sb);
2103		if (retval) {
2104			err = retval;
2105			reiserfs_check_path(&path_to_key);
2106			journal_end(th);
2107			goto out_inserted_sd;
2108		}
2109	} else if (inode->i_sb->s_flags & SB_POSIXACL) {
2110		reiserfs_warning(inode->i_sb, "jdm-13090",
2111				 "ACLs aren't enabled in the fs, "
2112				 "but vfs thinks they are!");
2113	} else if (IS_PRIVATE(dir))
2114		inode->i_flags |= S_PRIVATE;
2115
2116	if (security->name) {
2117		reiserfs_write_unlock(inode->i_sb);
2118		retval = reiserfs_security_write(th, inode, security);
2119		reiserfs_write_lock(inode->i_sb);
2120		if (retval) {
2121			err = retval;
2122			reiserfs_check_path(&path_to_key);
2123			retval = journal_end(th);
2124			if (retval)
2125				err = retval;
2126			goto out_inserted_sd;
2127		}
2128	}
2129
2130	reiserfs_update_sd(th, inode);
2131	reiserfs_check_path(&path_to_key);
2132
2133	return 0;
2134
2135out_bad_inode:
2136	/* Invalidate the object, nothing was inserted yet */
2137	INODE_PKEY(inode)->k_objectid = 0;
2138
2139	/* Quota change must be inside a transaction for journaling */
2140	depth = reiserfs_write_unlock_nested(inode->i_sb);
2141	dquot_free_inode(inode);
2142	reiserfs_write_lock_nested(inode->i_sb, depth);
2143
2144out_end_trans:
2145	journal_end(th);
2146	/*
2147	 * Drop can be outside and it needs more credits so it's better
2148	 * to have it outside
2149	 */
2150	depth = reiserfs_write_unlock_nested(inode->i_sb);
2151	dquot_drop(inode);
2152	reiserfs_write_lock_nested(inode->i_sb, depth);
2153	inode->i_flags |= S_NOQUOTA;
2154	make_bad_inode(inode);
2155
2156out_inserted_sd:
2157	clear_nlink(inode);
2158	th->t_trans_id = 0;	/* so the caller can't use this handle later */
2159	unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
2160	iput(inode);
2161	return err;
2162}
2163
2164/*
2165 * finds the tail page in the page cache,
2166 * reads the last block in.
2167 *
2168 * On success, page_result is set to a locked, pinned page, and bh_result
2169 * is set to an up to date buffer for the last block in the file.  returns 0.
2170 *
2171 * tail conversion is not done, so bh_result might not be valid for writing
2172 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2173 * trying to write the block.
2174 *
2175 * on failure, nonzero is returned, page_result and bh_result are untouched.
2176 */
2177static int grab_tail_page(struct inode *inode,
2178			  struct page **page_result,
2179			  struct buffer_head **bh_result)
2180{
2181
2182	/*
2183	 * we want the page with the last byte in the file,
2184	 * not the page that will hold the next byte for appending
2185	 */
2186	unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
2187	unsigned long pos = 0;
2188	unsigned long start = 0;
2189	unsigned long blocksize = inode->i_sb->s_blocksize;
2190	unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
2191	struct buffer_head *bh;
2192	struct buffer_head *head;
2193	struct page *page;
2194	int error;
2195
2196	/*
2197	 * we know that we are only called with inode->i_size > 0.
2198	 * we also know that a file tail can never be as big as a block
2199	 * If i_size % blocksize == 0, our file is currently block aligned
2200	 * and it won't need converting or zeroing after a truncate.
2201	 */
2202	if ((offset & (blocksize - 1)) == 0) {
2203		return -ENOENT;
2204	}
2205	page = grab_cache_page(inode->i_mapping, index);
2206	error = -ENOMEM;
2207	if (!page) {
2208		goto out;
2209	}
2210	/* start within the page of the last block in the file */
2211	start = (offset / blocksize) * blocksize;
2212
2213	error = __block_write_begin(page, start, offset - start,
2214				    reiserfs_get_block_create_0);
2215	if (error)
2216		goto unlock;
2217
2218	head = page_buffers(page);
2219	bh = head;
2220	do {
2221		if (pos >= start) {
2222			break;
2223		}
2224		bh = bh->b_this_page;
2225		pos += blocksize;
2226	} while (bh != head);
2227
2228	if (!buffer_uptodate(bh)) {
2229		/*
2230		 * note, this should never happen, prepare_write should be
2231		 * taking care of this for us.  If the buffer isn't up to
2232		 * date, I've screwed up the code to find the buffer, or the
2233		 * code to call prepare_write
2234		 */
2235		reiserfs_error(inode->i_sb, "clm-6000",
2236			       "error reading block %lu", bh->b_blocknr);
2237		error = -EIO;
2238		goto unlock;
2239	}
2240	*bh_result = bh;
2241	*page_result = page;
2242
2243out:
2244	return error;
2245
2246unlock:
2247	unlock_page(page);
2248	put_page(page);
2249	return error;
2250}
2251
2252/*
2253 * vfs version of truncate file.  Must NOT be called with
2254 * a transaction already started.
2255 *
2256 * some code taken from block_truncate_page
2257 */
2258int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2259{
2260	struct reiserfs_transaction_handle th;
2261	/* we want the offset for the first byte after the end of the file */
2262	unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
2263	unsigned blocksize = inode->i_sb->s_blocksize;
2264	unsigned length;
2265	struct page *page = NULL;
2266	int error;
2267	struct buffer_head *bh = NULL;
2268	int err2;
2269
2270	reiserfs_write_lock(inode->i_sb);
2271
2272	if (inode->i_size > 0) {
2273		error = grab_tail_page(inode, &page, &bh);
2274		if (error) {
2275			/*
2276			 * -ENOENT means we truncated past the end of the
2277			 * file, and get_block_create_0 could not find a
2278			 * block to read in, which is ok.
2279			 */
2280			if (error != -ENOENT)
2281				reiserfs_error(inode->i_sb, "clm-6001",
2282					       "grab_tail_page failed %d",
2283					       error);
2284			page = NULL;
2285			bh = NULL;
2286		}
2287	}
2288
2289	/*
2290	 * so, if page != NULL, we have a buffer head for the offset at
2291	 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2292	 * then we have an unformatted node.  Otherwise, we have a direct item,
2293	 * and no zeroing is required on disk.  We zero after the truncate,
2294	 * because the truncate might pack the item anyway
2295	 * (it will unmap bh if it packs).
2296	 *
2297	 * it is enough to reserve space in transaction for 2 balancings:
2298	 * one for "save" link adding and another for the first
2299	 * cut_from_item. 1 is for update_sd
2300	 */
2301	error = journal_begin(&th, inode->i_sb,
2302			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2303	if (error)
2304		goto out;
2305	reiserfs_update_inode_transaction(inode);
2306	if (update_timestamps)
2307		/*
2308		 * we are doing real truncate: if the system crashes
2309		 * before the last transaction of truncating gets committed
2310		 * - on reboot the file either appears truncated properly
2311		 * or not truncated at all
2312		 */
2313		add_save_link(&th, inode, 1);
2314	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2315	error = journal_end(&th);
2316	if (error)
2317		goto out;
2318
2319	/* check reiserfs_do_truncate after ending the transaction */
2320	if (err2) {
2321		error = err2;
2322  		goto out;
2323	}
2324	
2325	if (update_timestamps) {
2326		error = remove_save_link(inode, 1 /* truncate */);
2327		if (error)
2328			goto out;
2329	}
2330
2331	if (page) {
2332		length = offset & (blocksize - 1);
2333		/* if we are not on a block boundary */
2334		if (length) {
2335			length = blocksize - length;
2336			zero_user(page, offset, length);
2337			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2338				mark_buffer_dirty(bh);
2339			}
2340		}
2341		unlock_page(page);
2342		put_page(page);
2343	}
2344
2345	reiserfs_write_unlock(inode->i_sb);
2346
2347	return 0;
2348out:
2349	if (page) {
2350		unlock_page(page);
2351		put_page(page);
2352	}
2353
2354	reiserfs_write_unlock(inode->i_sb);
2355
2356	return error;
2357}
2358
2359static int map_block_for_writepage(struct inode *inode,
2360				   struct buffer_head *bh_result,
2361				   unsigned long block)
2362{
2363	struct reiserfs_transaction_handle th;
2364	int fs_gen;
2365	struct item_head tmp_ih;
2366	struct item_head *ih;
2367	struct buffer_head *bh;
2368	__le32 *item;
2369	struct cpu_key key;
2370	INITIALIZE_PATH(path);
2371	int pos_in_item;
2372	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2373	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2374	int retval;
2375	int use_get_block = 0;
2376	int bytes_copied = 0;
2377	int copy_size;
2378	int trans_running = 0;
2379
2380	/*
2381	 * catch places below that try to log something without
2382	 * starting a trans
2383	 */
2384	th.t_trans_id = 0;
2385
2386	if (!buffer_uptodate(bh_result)) {
2387		return -EIO;
2388	}
2389
2390	kmap(bh_result->b_page);
2391start_over:
2392	reiserfs_write_lock(inode->i_sb);
2393	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2394
2395research:
2396	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2397	if (retval != POSITION_FOUND) {
2398		use_get_block = 1;
2399		goto out;
2400	}
2401
2402	bh = get_last_bh(&path);
2403	ih = tp_item_head(&path);
2404	item = tp_item_body(&path);
2405	pos_in_item = path.pos_in_item;
2406
2407	/* we've found an unformatted node */
2408	if (indirect_item_found(retval, ih)) {
2409		if (bytes_copied > 0) {
2410			reiserfs_warning(inode->i_sb, "clm-6002",
2411					 "bytes_copied %d", bytes_copied);
2412		}
2413		if (!get_block_num(item, pos_in_item)) {
2414			/* crap, we are writing to a hole */
2415			use_get_block = 1;
2416			goto out;
2417		}
2418		set_block_dev_mapped(bh_result,
2419				     get_block_num(item, pos_in_item), inode);
2420	} else if (is_direct_le_ih(ih)) {
2421		char *p;
2422		p = page_address(bh_result->b_page);
2423		p += (byte_offset - 1) & (PAGE_SIZE - 1);
2424		copy_size = ih_item_len(ih) - pos_in_item;
2425
2426		fs_gen = get_generation(inode->i_sb);
2427		copy_item_head(&tmp_ih, ih);
2428
2429		if (!trans_running) {
2430			/* vs-3050 is gone, no need to drop the path */
2431			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2432			if (retval)
2433				goto out;
2434			reiserfs_update_inode_transaction(inode);
2435			trans_running = 1;
2436			if (fs_changed(fs_gen, inode->i_sb)
2437			    && item_moved(&tmp_ih, &path)) {
2438				reiserfs_restore_prepared_buffer(inode->i_sb,
2439								 bh);
2440				goto research;
2441			}
2442		}
2443
2444		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2445
2446		if (fs_changed(fs_gen, inode->i_sb)
2447		    && item_moved(&tmp_ih, &path)) {
2448			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2449			goto research;
2450		}
2451
2452		memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2453		       copy_size);
2454
2455		journal_mark_dirty(&th, bh);
2456		bytes_copied += copy_size;
2457		set_block_dev_mapped(bh_result, 0, inode);
2458
2459		/* are there still bytes left? */
2460		if (bytes_copied < bh_result->b_size &&
2461		    (byte_offset + bytes_copied) < inode->i_size) {
2462			set_cpu_key_k_offset(&key,
2463					     cpu_key_k_offset(&key) +
2464					     copy_size);
2465			goto research;
2466		}
2467	} else {
2468		reiserfs_warning(inode->i_sb, "clm-6003",
2469				 "bad item inode %lu", inode->i_ino);
2470		retval = -EIO;
2471		goto out;
2472	}
2473	retval = 0;
2474
2475out:
2476	pathrelse(&path);
2477	if (trans_running) {
2478		int err = journal_end(&th);
2479		if (err)
2480			retval = err;
2481		trans_running = 0;
2482	}
2483	reiserfs_write_unlock(inode->i_sb);
2484
2485	/* this is where we fill in holes in the file. */
2486	if (use_get_block) {
2487		retval = reiserfs_get_block(inode, block, bh_result,
2488					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2489					    | GET_BLOCK_NO_DANGLE);
2490		if (!retval) {
2491			if (!buffer_mapped(bh_result)
2492			    || bh_result->b_blocknr == 0) {
2493				/* get_block failed to find a mapped unformatted node. */
2494				use_get_block = 0;
2495				goto start_over;
2496			}
2497		}
2498	}
2499	kunmap(bh_result->b_page);
2500
2501	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2502		/*
2503		 * we've copied data from the page into the direct item, so the
2504		 * buffer in the page is now clean, mark it to reflect that.
2505		 */
2506		lock_buffer(bh_result);
2507		clear_buffer_dirty(bh_result);
2508		unlock_buffer(bh_result);
2509	}
2510	return retval;
2511}
2512
2513/*
2514 * mason@suse.com: updated in 2.5.54 to follow the same general io
2515 * start/recovery path as __block_write_full_page, along with special
2516 * code to handle reiserfs tails.
2517 */
2518static int reiserfs_write_full_page(struct page *page,
2519				    struct writeback_control *wbc)
2520{
2521	struct inode *inode = page->mapping->host;
2522	unsigned long end_index = inode->i_size >> PAGE_SHIFT;
2523	int error = 0;
2524	unsigned long block;
2525	sector_t last_block;
2526	struct buffer_head *head, *bh;
2527	int partial = 0;
2528	int nr = 0;
2529	int checked = PageChecked(page);
2530	struct reiserfs_transaction_handle th;
2531	struct super_block *s = inode->i_sb;
2532	int bh_per_page = PAGE_SIZE / s->s_blocksize;
2533	th.t_trans_id = 0;
2534
2535	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2536	if (checked && (current->flags & PF_MEMALLOC)) {
2537		redirty_page_for_writepage(wbc, page);
2538		unlock_page(page);
2539		return 0;
2540	}
2541
2542	/*
2543	 * The page dirty bit is cleared before writepage is called, which
2544	 * means we have to tell create_empty_buffers to make dirty buffers
2545	 * The page really should be up to date at this point, so tossing
2546	 * in the BH_Uptodate is just a sanity check.
2547	 */
2548	if (!page_has_buffers(page)) {
2549		create_empty_buffers(page, s->s_blocksize,
2550				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2551	}
2552	head = page_buffers(page);
2553
2554	/*
2555	 * last page in the file, zero out any contents past the
2556	 * last byte in the file
2557	 */
2558	if (page->index >= end_index) {
2559		unsigned last_offset;
2560
2561		last_offset = inode->i_size & (PAGE_SIZE - 1);
2562		/* no file contents in this page */
2563		if (page->index >= end_index + 1 || !last_offset) {
2564			unlock_page(page);
2565			return 0;
2566		}
2567		zero_user_segment(page, last_offset, PAGE_SIZE);
2568	}
2569	bh = head;
2570	block = page->index << (PAGE_SHIFT - s->s_blocksize_bits);
2571	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2572	/* first map all the buffers, logging any direct items we find */
2573	do {
2574		if (block > last_block) {
2575			/*
2576			 * This can happen when the block size is less than
2577			 * the page size.  The corresponding bytes in the page
2578			 * were zero filled above
2579			 */
2580			clear_buffer_dirty(bh);
2581			set_buffer_uptodate(bh);
2582		} else if ((checked || buffer_dirty(bh)) &&
2583		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2584						       && bh->b_blocknr ==
2585						       0))) {
2586			/*
2587			 * not mapped yet, or it points to a direct item, search
2588			 * the btree for the mapping info, and log any direct
2589			 * items found
2590			 */
2591			if ((error = map_block_for_writepage(inode, bh, block))) {
2592				goto fail;
2593			}
2594		}
2595		bh = bh->b_this_page;
2596		block++;
2597	} while (bh != head);
2598
2599	/*
2600	 * we start the transaction after map_block_for_writepage,
2601	 * because it can create holes in the file (an unbounded operation).
2602	 * starting it here, we can make a reliable estimate for how many
2603	 * blocks we're going to log
2604	 */
2605	if (checked) {
2606		ClearPageChecked(page);
2607		reiserfs_write_lock(s);
2608		error = journal_begin(&th, s, bh_per_page + 1);
2609		if (error) {
2610			reiserfs_write_unlock(s);
2611			goto fail;
2612		}
2613		reiserfs_update_inode_transaction(inode);
2614	}
2615	/* now go through and lock any dirty buffers on the page */
2616	do {
2617		get_bh(bh);
2618		if (!buffer_mapped(bh))
2619			continue;
2620		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2621			continue;
2622
2623		if (checked) {
2624			reiserfs_prepare_for_journal(s, bh, 1);
2625			journal_mark_dirty(&th, bh);
2626			continue;
2627		}
2628		/*
2629		 * from this point on, we know the buffer is mapped to a
2630		 * real block and not a direct item
2631		 */
2632		if (wbc->sync_mode != WB_SYNC_NONE) {
2633			lock_buffer(bh);
2634		} else {
2635			if (!trylock_buffer(bh)) {
2636				redirty_page_for_writepage(wbc, page);
2637				continue;
2638			}
2639		}
2640		if (test_clear_buffer_dirty(bh)) {
2641			mark_buffer_async_write(bh);
2642		} else {
2643			unlock_buffer(bh);
2644		}
2645	} while ((bh = bh->b_this_page) != head);
2646
2647	if (checked) {
2648		error = journal_end(&th);
2649		reiserfs_write_unlock(s);
2650		if (error)
2651			goto fail;
2652	}
2653	BUG_ON(PageWriteback(page));
2654	set_page_writeback(page);
2655	unlock_page(page);
2656
2657	/*
2658	 * since any buffer might be the only dirty buffer on the page,
2659	 * the first submit_bh can bring the page out of writeback.
2660	 * be careful with the buffers.
2661	 */
2662	do {
2663		struct buffer_head *next = bh->b_this_page;
2664		if (buffer_async_write(bh)) {
2665			submit_bh(REQ_OP_WRITE, 0, bh);
2666			nr++;
2667		}
2668		put_bh(bh);
2669		bh = next;
2670	} while (bh != head);
2671
2672	error = 0;
2673done:
2674	if (nr == 0) {
2675		/*
2676		 * if this page only had a direct item, it is very possible for
2677		 * no io to be required without there being an error.  Or,
2678		 * someone else could have locked them and sent them down the
2679		 * pipe without locking the page
2680		 */
2681		bh = head;
2682		do {
2683			if (!buffer_uptodate(bh)) {
2684				partial = 1;
2685				break;
2686			}
2687			bh = bh->b_this_page;
2688		} while (bh != head);
2689		if (!partial)
2690			SetPageUptodate(page);
2691		end_page_writeback(page);
2692	}
2693	return error;
2694
2695fail:
2696	/*
2697	 * catches various errors, we need to make sure any valid dirty blocks
2698	 * get to the media.  The page is currently locked and not marked for
2699	 * writeback
2700	 */
2701	ClearPageUptodate(page);
2702	bh = head;
2703	do {
2704		get_bh(bh);
2705		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2706			lock_buffer(bh);
2707			mark_buffer_async_write(bh);
2708		} else {
2709			/*
2710			 * clear any dirty bits that might have come from
2711			 * getting attached to a dirty page
2712			 */
2713			clear_buffer_dirty(bh);
2714		}
2715		bh = bh->b_this_page;
2716	} while (bh != head);
2717	SetPageError(page);
2718	BUG_ON(PageWriteback(page));
2719	set_page_writeback(page);
2720	unlock_page(page);
2721	do {
2722		struct buffer_head *next = bh->b_this_page;
2723		if (buffer_async_write(bh)) {
2724			clear_buffer_dirty(bh);
2725			submit_bh(REQ_OP_WRITE, 0, bh);
2726			nr++;
2727		}
2728		put_bh(bh);
2729		bh = next;
2730	} while (bh != head);
2731	goto done;
2732}
2733
2734static int reiserfs_readpage(struct file *f, struct page *page)
2735{
2736	return block_read_full_page(page, reiserfs_get_block);
2737}
2738
2739static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2740{
2741	struct inode *inode = page->mapping->host;
2742	reiserfs_wait_on_write_block(inode->i_sb);
2743	return reiserfs_write_full_page(page, wbc);
2744}
2745
2746static void reiserfs_truncate_failed_write(struct inode *inode)
2747{
2748	truncate_inode_pages(inode->i_mapping, inode->i_size);
2749	reiserfs_truncate_file(inode, 0);
2750}
2751
2752static int reiserfs_write_begin(struct file *file,
2753				struct address_space *mapping,
2754				loff_t pos, unsigned len, unsigned flags,
2755				struct page **pagep, void **fsdata)
2756{
2757	struct inode *inode;
2758	struct page *page;
2759	pgoff_t index;
2760	int ret;
2761	int old_ref = 0;
2762
2763 	inode = mapping->host;
2764	*fsdata = NULL;
2765 	if (flags & AOP_FLAG_CONT_EXPAND &&
2766 	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2767 		pos ++;
2768		*fsdata = (void *)(unsigned long)flags;
2769	}
2770
2771	index = pos >> PAGE_SHIFT;
2772	page = grab_cache_page_write_begin(mapping, index, flags);
2773	if (!page)
2774		return -ENOMEM;
2775	*pagep = page;
2776
2777	reiserfs_wait_on_write_block(inode->i_sb);
2778	fix_tail_page_for_writing(page);
2779	if (reiserfs_transaction_running(inode->i_sb)) {
2780		struct reiserfs_transaction_handle *th;
2781		th = (struct reiserfs_transaction_handle *)current->
2782		    journal_info;
2783		BUG_ON(!th->t_refcount);
2784		BUG_ON(!th->t_trans_id);
2785		old_ref = th->t_refcount;
2786		th->t_refcount++;
2787	}
2788	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2789	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2790		struct reiserfs_transaction_handle *th = current->journal_info;
2791		/*
2792		 * this gets a little ugly.  If reiserfs_get_block returned an
2793		 * error and left a transacstion running, we've got to close
2794		 * it, and we've got to free handle if it was a persistent
2795		 * transaction.
2796		 *
2797		 * But, if we had nested into an existing transaction, we need
2798		 * to just drop the ref count on the handle.
2799		 *
2800		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2801		 * and it was a persistent trans.  Otherwise, it was nested
2802		 * above.
2803		 */
2804		if (th->t_refcount > old_ref) {
2805			if (old_ref)
2806				th->t_refcount--;
2807			else {
2808				int err;
2809				reiserfs_write_lock(inode->i_sb);
2810				err = reiserfs_end_persistent_transaction(th);
2811				reiserfs_write_unlock(inode->i_sb);
2812				if (err)
2813					ret = err;
2814			}
2815		}
2816	}
2817	if (ret) {
2818		unlock_page(page);
2819		put_page(page);
2820		/* Truncate allocated blocks */
2821		reiserfs_truncate_failed_write(inode);
2822	}
2823	return ret;
2824}
2825
2826int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2827{
2828	struct inode *inode = page->mapping->host;
2829	int ret;
2830	int old_ref = 0;
2831	int depth;
2832
2833	depth = reiserfs_write_unlock_nested(inode->i_sb);
2834	reiserfs_wait_on_write_block(inode->i_sb);
2835	reiserfs_write_lock_nested(inode->i_sb, depth);
2836
2837	fix_tail_page_for_writing(page);
2838	if (reiserfs_transaction_running(inode->i_sb)) {
2839		struct reiserfs_transaction_handle *th;
2840		th = (struct reiserfs_transaction_handle *)current->
2841		    journal_info;
2842		BUG_ON(!th->t_refcount);
2843		BUG_ON(!th->t_trans_id);
2844		old_ref = th->t_refcount;
2845		th->t_refcount++;
2846	}
2847
2848	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2849	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2850		struct reiserfs_transaction_handle *th = current->journal_info;
2851		/*
2852		 * this gets a little ugly.  If reiserfs_get_block returned an
2853		 * error and left a transacstion running, we've got to close
2854		 * it, and we've got to free handle if it was a persistent
2855		 * transaction.
2856		 *
2857		 * But, if we had nested into an existing transaction, we need
2858		 * to just drop the ref count on the handle.
2859		 *
2860		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2861		 * and it was a persistent trans.  Otherwise, it was nested
2862		 * above.
2863		 */
2864		if (th->t_refcount > old_ref) {
2865			if (old_ref)
2866				th->t_refcount--;
2867			else {
2868				int err;
2869				reiserfs_write_lock(inode->i_sb);
2870				err = reiserfs_end_persistent_transaction(th);
2871				reiserfs_write_unlock(inode->i_sb);
2872				if (err)
2873					ret = err;
2874			}
2875		}
2876	}
2877	return ret;
2878
2879}
2880
2881static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2882{
2883	return generic_block_bmap(as, block, reiserfs_bmap);
2884}
2885
2886static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2887			      loff_t pos, unsigned len, unsigned copied,
2888			      struct page *page, void *fsdata)
2889{
2890	struct inode *inode = page->mapping->host;
2891	int ret = 0;
2892	int update_sd = 0;
2893	struct reiserfs_transaction_handle *th;
2894	unsigned start;
2895	bool locked = false;
2896
2897	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2898		pos ++;
2899
2900	reiserfs_wait_on_write_block(inode->i_sb);
2901	if (reiserfs_transaction_running(inode->i_sb))
2902		th = current->journal_info;
2903	else
2904		th = NULL;
2905
2906	start = pos & (PAGE_SIZE - 1);
2907	if (unlikely(copied < len)) {
2908		if (!PageUptodate(page))
2909			copied = 0;
2910
2911		page_zero_new_buffers(page, start + copied, start + len);
2912	}
2913	flush_dcache_page(page);
2914
2915	reiserfs_commit_page(inode, page, start, start + copied);
2916
2917	/*
2918	 * generic_commit_write does this for us, but does not update the
2919	 * transaction tracking stuff when the size changes.  So, we have
2920	 * to do the i_size updates here.
2921	 */
2922	if (pos + copied > inode->i_size) {
2923		struct reiserfs_transaction_handle myth;
2924		reiserfs_write_lock(inode->i_sb);
2925		locked = true;
2926		/*
2927		 * If the file have grown beyond the border where it
2928		 * can have a tail, unmark it as needing a tail
2929		 * packing
2930		 */
2931		if ((have_large_tails(inode->i_sb)
2932		     && inode->i_size > i_block_size(inode) * 4)
2933		    || (have_small_tails(inode->i_sb)
2934			&& inode->i_size > i_block_size(inode)))
2935			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2936
2937		ret = journal_begin(&myth, inode->i_sb, 1);
2938		if (ret)
2939			goto journal_error;
2940
2941		reiserfs_update_inode_transaction(inode);
2942		inode->i_size = pos + copied;
2943		/*
2944		 * this will just nest into our transaction.  It's important
2945		 * to use mark_inode_dirty so the inode gets pushed around on
2946		 * the dirty lists, and so that O_SYNC works as expected
2947		 */
2948		mark_inode_dirty(inode);
2949		reiserfs_update_sd(&myth, inode);
2950		update_sd = 1;
2951		ret = journal_end(&myth);
2952		if (ret)
2953			goto journal_error;
2954	}
2955	if (th) {
2956		if (!locked) {
2957			reiserfs_write_lock(inode->i_sb);
2958			locked = true;
2959		}
2960		if (!update_sd)
2961			mark_inode_dirty(inode);
2962		ret = reiserfs_end_persistent_transaction(th);
2963		if (ret)
2964			goto out;
2965	}
2966
2967out:
2968	if (locked)
2969		reiserfs_write_unlock(inode->i_sb);
2970	unlock_page(page);
2971	put_page(page);
2972
2973	if (pos + len > inode->i_size)
2974		reiserfs_truncate_failed_write(inode);
2975
2976	return ret == 0 ? copied : ret;
2977
2978journal_error:
2979	reiserfs_write_unlock(inode->i_sb);
2980	locked = false;
2981	if (th) {
2982		if (!update_sd)
2983			reiserfs_update_sd(th, inode);
2984		ret = reiserfs_end_persistent_transaction(th);
2985	}
2986	goto out;
2987}
2988
2989int reiserfs_commit_write(struct file *f, struct page *page,
2990			  unsigned from, unsigned to)
2991{
2992	struct inode *inode = page->mapping->host;
2993	loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
2994	int ret = 0;
2995	int update_sd = 0;
2996	struct reiserfs_transaction_handle *th = NULL;
2997	int depth;
2998
2999	depth = reiserfs_write_unlock_nested(inode->i_sb);
3000	reiserfs_wait_on_write_block(inode->i_sb);
3001	reiserfs_write_lock_nested(inode->i_sb, depth);
3002
3003	if (reiserfs_transaction_running(inode->i_sb)) {
3004		th = current->journal_info;
3005	}
3006	reiserfs_commit_page(inode, page, from, to);
3007
3008	/*
3009	 * generic_commit_write does this for us, but does not update the
3010	 * transaction tracking stuff when the size changes.  So, we have
3011	 * to do the i_size updates here.
3012	 */
3013	if (pos > inode->i_size) {
3014		struct reiserfs_transaction_handle myth;
3015		/*
3016		 * If the file have grown beyond the border where it
3017		 * can have a tail, unmark it as needing a tail
3018		 * packing
3019		 */
3020		if ((have_large_tails(inode->i_sb)
3021		     && inode->i_size > i_block_size(inode) * 4)
3022		    || (have_small_tails(inode->i_sb)
3023			&& inode->i_size > i_block_size(inode)))
3024			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3025
3026		ret = journal_begin(&myth, inode->i_sb, 1);
3027		if (ret)
3028			goto journal_error;
3029
3030		reiserfs_update_inode_transaction(inode);
3031		inode->i_size = pos;
3032		/*
3033		 * this will just nest into our transaction.  It's important
3034		 * to use mark_inode_dirty so the inode gets pushed around
3035		 * on the dirty lists, and so that O_SYNC works as expected
3036		 */
3037		mark_inode_dirty(inode);
3038		reiserfs_update_sd(&myth, inode);
3039		update_sd = 1;
3040		ret = journal_end(&myth);
3041		if (ret)
3042			goto journal_error;
3043	}
3044	if (th) {
3045		if (!update_sd)
3046			mark_inode_dirty(inode);
3047		ret = reiserfs_end_persistent_transaction(th);
3048		if (ret)
3049			goto out;
3050	}
3051
3052out:
3053	return ret;
3054
3055journal_error:
3056	if (th) {
3057		if (!update_sd)
3058			reiserfs_update_sd(th, inode);
3059		ret = reiserfs_end_persistent_transaction(th);
3060	}
3061
3062	return ret;
3063}
3064
3065void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3066{
3067	if (reiserfs_attrs(inode->i_sb)) {
3068		if (sd_attrs & REISERFS_SYNC_FL)
3069			inode->i_flags |= S_SYNC;
3070		else
3071			inode->i_flags &= ~S_SYNC;
3072		if (sd_attrs & REISERFS_IMMUTABLE_FL)
3073			inode->i_flags |= S_IMMUTABLE;
3074		else
3075			inode->i_flags &= ~S_IMMUTABLE;
3076		if (sd_attrs & REISERFS_APPEND_FL)
3077			inode->i_flags |= S_APPEND;
3078		else
3079			inode->i_flags &= ~S_APPEND;
3080		if (sd_attrs & REISERFS_NOATIME_FL)
3081			inode->i_flags |= S_NOATIME;
3082		else
3083			inode->i_flags &= ~S_NOATIME;
3084		if (sd_attrs & REISERFS_NOTAIL_FL)
3085			REISERFS_I(inode)->i_flags |= i_nopack_mask;
3086		else
3087			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3088	}
3089}
3090
3091/*
3092 * decide if this buffer needs to stay around for data logging or ordered
3093 * write purposes
3094 */
3095static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
3096{
3097	int ret = 1;
3098	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3099
3100	lock_buffer(bh);
3101	spin_lock(&j->j_dirty_buffers_lock);
3102	if (!buffer_mapped(bh)) {
3103		goto free_jh;
3104	}
3105	/*
3106	 * the page is locked, and the only places that log a data buffer
3107	 * also lock the page.
3108	 */
3109	if (reiserfs_file_data_log(inode)) {
3110		/*
3111		 * very conservative, leave the buffer pinned if
3112		 * anyone might need it.
3113		 */
3114		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3115			ret = 0;
3116		}
3117	} else  if (buffer_dirty(bh)) {
3118		struct reiserfs_journal_list *jl;
3119		struct reiserfs_jh *jh = bh->b_private;
3120
3121		/*
3122		 * why is this safe?
3123		 * reiserfs_setattr updates i_size in the on disk
3124		 * stat data before allowing vmtruncate to be called.
3125		 *
3126		 * If buffer was put onto the ordered list for this
3127		 * transaction, we know for sure either this transaction
3128		 * or an older one already has updated i_size on disk,
3129		 * and this ordered data won't be referenced in the file
3130		 * if we crash.
3131		 *
3132		 * if the buffer was put onto the ordered list for an older
3133		 * transaction, we need to leave it around
3134		 */
3135		if (jh && (jl = jh->jl)
3136		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3137			ret = 0;
3138	}
3139free_jh:
3140	if (ret && bh->b_private) {
3141		reiserfs_free_jh(bh);
3142	}
3143	spin_unlock(&j->j_dirty_buffers_lock);
3144	unlock_buffer(bh);
3145	return ret;
3146}
3147
3148/* clm -- taken from fs/buffer.c:block_invalidate_page */
3149static void reiserfs_invalidatepage(struct page *page, unsigned int offset,
3150				    unsigned int length)
3151{
3152	struct buffer_head *head, *bh, *next;
3153	struct inode *inode = page->mapping->host;
3154	unsigned int curr_off = 0;
3155	unsigned int stop = offset + length;
3156	int partial_page = (offset || length < PAGE_SIZE);
3157	int ret = 1;
3158
3159	BUG_ON(!PageLocked(page));
3160
3161	if (!partial_page)
3162		ClearPageChecked(page);
3163
3164	if (!page_has_buffers(page))
3165		goto out;
3166
3167	head = page_buffers(page);
3168	bh = head;
3169	do {
3170		unsigned int next_off = curr_off + bh->b_size;
3171		next = bh->b_this_page;
3172
3173		if (next_off > stop)
3174			goto out;
3175
3176		/*
3177		 * is this block fully invalidated?
3178		 */
3179		if (offset <= curr_off) {
3180			if (invalidatepage_can_drop(inode, bh))
3181				reiserfs_unmap_buffer(bh);
3182			else
3183				ret = 0;
3184		}
3185		curr_off = next_off;
3186		bh = next;
3187	} while (bh != head);
3188
3189	/*
3190	 * We release buffers only if the entire page is being invalidated.
3191	 * The get_block cached value has been unconditionally invalidated,
3192	 * so real IO is not possible anymore.
3193	 */
3194	if (!partial_page && ret) {
3195		ret = try_to_release_page(page, 0);
3196		/* maybe should BUG_ON(!ret); - neilb */
3197	}
3198out:
3199	return;
3200}
3201
3202static int reiserfs_set_page_dirty(struct page *page)
3203{
3204	struct inode *inode = page->mapping->host;
3205	if (reiserfs_file_data_log(inode)) {
3206		SetPageChecked(page);
3207		return __set_page_dirty_nobuffers(page);
3208	}
3209	return __set_page_dirty_buffers(page);
3210}
3211
3212/*
3213 * Returns 1 if the page's buffers were dropped.  The page is locked.
3214 *
3215 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3216 * in the buffers at page_buffers(page).
3217 *
3218 * even in -o notail mode, we can't be sure an old mount without -o notail
3219 * didn't create files with tails.
3220 */
3221static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3222{
3223	struct inode *inode = page->mapping->host;
3224	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3225	struct buffer_head *head;
3226	struct buffer_head *bh;
3227	int ret = 1;
3228
3229	WARN_ON(PageChecked(page));
3230	spin_lock(&j->j_dirty_buffers_lock);
3231	head = page_buffers(page);
3232	bh = head;
3233	do {
3234		if (bh->b_private) {
3235			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3236				reiserfs_free_jh(bh);
3237			} else {
3238				ret = 0;
3239				break;
3240			}
3241		}
3242		bh = bh->b_this_page;
3243	} while (bh != head);
3244	if (ret)
3245		ret = try_to_free_buffers(page);
3246	spin_unlock(&j->j_dirty_buffers_lock);
3247	return ret;
3248}
3249
3250/*
3251 * We thank Mingming Cao for helping us understand in great detail what
3252 * to do in this section of the code.
3253 */
3254static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3255{
3256	struct file *file = iocb->ki_filp;
3257	struct inode *inode = file->f_mapping->host;
3258	size_t count = iov_iter_count(iter);
3259	ssize_t ret;
3260
3261	ret = blockdev_direct_IO(iocb, inode, iter,
3262				 reiserfs_get_blocks_direct_io);
3263
3264	/*
3265	 * In case of error extending write may have instantiated a few
3266	 * blocks outside i_size. Trim these off again.
3267	 */
3268	if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3269		loff_t isize = i_size_read(inode);
3270		loff_t end = iocb->ki_pos + count;
3271
3272		if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3273			truncate_setsize(inode, isize);
3274			reiserfs_vfs_truncate_file(inode);
3275		}
3276	}
3277
3278	return ret;
3279}
3280
3281int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3282{
3283	struct inode *inode = d_inode(dentry);
3284	unsigned int ia_valid;
3285	int error;
3286
3287	error = setattr_prepare(dentry, attr);
3288	if (error)
3289		return error;
3290
3291	/* must be turned off for recursive notify_change calls */
3292	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3293
3294	if (is_quota_modification(inode, attr)) {
3295		error = dquot_initialize(inode);
3296		if (error)
3297			return error;
3298	}
3299	reiserfs_write_lock(inode->i_sb);
3300	if (attr->ia_valid & ATTR_SIZE) {
3301		/*
3302		 * version 2 items will be caught by the s_maxbytes check
3303		 * done for us in vmtruncate
3304		 */
3305		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3306		    attr->ia_size > MAX_NON_LFS) {
3307			reiserfs_write_unlock(inode->i_sb);
3308			error = -EFBIG;
3309			goto out;
3310		}
3311
3312		inode_dio_wait(inode);
3313
3314		/* fill in hole pointers in the expanding truncate case. */
3315		if (attr->ia_size > inode->i_size) {
3316			error = generic_cont_expand_simple(inode, attr->ia_size);
3317			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3318				int err;
3319				struct reiserfs_transaction_handle th;
3320				/* we're changing at most 2 bitmaps, inode + super */
3321				err = journal_begin(&th, inode->i_sb, 4);
3322				if (!err) {
3323					reiserfs_discard_prealloc(&th, inode);
3324					err = journal_end(&th);
3325				}
3326				if (err)
3327					error = err;
3328			}
3329			if (error) {
3330				reiserfs_write_unlock(inode->i_sb);
3331				goto out;
3332			}
3333			/*
3334			 * file size is changed, ctime and mtime are
3335			 * to be updated
3336			 */
3337			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3338		}
3339	}
3340	reiserfs_write_unlock(inode->i_sb);
3341
3342	if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3343	     ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3344	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3345		/* stat data of format v3.5 has 16 bit uid and gid */
3346		error = -EINVAL;
3347		goto out;
3348	}
3349
3350	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3351	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3352		struct reiserfs_transaction_handle th;
3353		int jbegin_count =
3354		    2 *
3355		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3356		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3357		    2;
3358
3359		error = reiserfs_chown_xattrs(inode, attr);
3360
3361		if (error)
3362			return error;
3363
3364		/*
3365		 * (user+group)*(old+new) structure - we count quota
3366		 * info and , inode write (sb, inode)
3367		 */
3368		reiserfs_write_lock(inode->i_sb);
3369		error = journal_begin(&th, inode->i_sb, jbegin_count);
3370		reiserfs_write_unlock(inode->i_sb);
3371		if (error)
3372			goto out;
3373		error = dquot_transfer(inode, attr);
3374		reiserfs_write_lock(inode->i_sb);
3375		if (error) {
3376			journal_end(&th);
3377			reiserfs_write_unlock(inode->i_sb);
3378			goto out;
3379		}
3380
3381		/*
3382		 * Update corresponding info in inode so that everything
3383		 * is in one transaction
3384		 */
3385		if (attr->ia_valid & ATTR_UID)
3386			inode->i_uid = attr->ia_uid;
3387		if (attr->ia_valid & ATTR_GID)
3388			inode->i_gid = attr->ia_gid;
3389		mark_inode_dirty(inode);
3390		error = journal_end(&th);
3391		reiserfs_write_unlock(inode->i_sb);
3392		if (error)
3393			goto out;
3394	}
3395
3396	if ((attr->ia_valid & ATTR_SIZE) &&
3397	    attr->ia_size != i_size_read(inode)) {
3398		error = inode_newsize_ok(inode, attr->ia_size);
3399		if (!error) {
3400			/*
3401			 * Could race against reiserfs_file_release
3402			 * if called from NFS, so take tailpack mutex.
3403			 */
3404			mutex_lock(&REISERFS_I(inode)->tailpack);
3405			truncate_setsize(inode, attr->ia_size);
3406			reiserfs_truncate_file(inode, 1);
3407			mutex_unlock(&REISERFS_I(inode)->tailpack);
3408		}
3409	}
3410
3411	if (!error) {
3412		setattr_copy(inode, attr);
3413		mark_inode_dirty(inode);
3414	}
3415
3416	if (!error && reiserfs_posixacl(inode->i_sb)) {
3417		if (attr->ia_valid & ATTR_MODE)
3418			error = reiserfs_acl_chmod(inode);
3419	}
3420
3421out:
3422	return error;
3423}
3424
3425const struct address_space_operations reiserfs_address_space_operations = {
3426	.writepage = reiserfs_writepage,
3427	.readpage = reiserfs_readpage,
3428	.readpages = reiserfs_readpages,
3429	.releasepage = reiserfs_releasepage,
3430	.invalidatepage = reiserfs_invalidatepage,
3431	.write_begin = reiserfs_write_begin,
3432	.write_end = reiserfs_write_end,
3433	.bmap = reiserfs_aop_bmap,
3434	.direct_IO = reiserfs_direct_IO,
3435	.set_page_dirty = reiserfs_set_page_dirty,
3436};