Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/err.h>
  7#include <linux/uuid.h>
  8#include "ctree.h"
  9#include "transaction.h"
 10#include "disk-io.h"
 11#include "print-tree.h"
 12#include "qgroup.h"
 13#include "space-info.h"
 14
 15/*
 16 * Read a root item from the tree. In case we detect a root item smaller then
 17 * sizeof(root_item), we know it's an old version of the root structure and
 18 * initialize all new fields to zero. The same happens if we detect mismatching
 19 * generation numbers as then we know the root was once mounted with an older
 20 * kernel that was not aware of the root item structure change.
 21 */
 22static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
 23				struct btrfs_root_item *item)
 24{
 25	uuid_le uuid;
 26	u32 len;
 27	int need_reset = 0;
 28
 29	len = btrfs_item_size_nr(eb, slot);
 30	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
 31			   min_t(u32, len, sizeof(*item)));
 32	if (len < sizeof(*item))
 33		need_reset = 1;
 34	if (!need_reset && btrfs_root_generation(item)
 35		!= btrfs_root_generation_v2(item)) {
 36		if (btrfs_root_generation_v2(item) != 0) {
 37			btrfs_warn(eb->fs_info,
 38					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
 39		}
 40		need_reset = 1;
 41	}
 42	if (need_reset) {
 43		memset(&item->generation_v2, 0,
 44			sizeof(*item) - offsetof(struct btrfs_root_item,
 45					generation_v2));
 46
 47		uuid_le_gen(&uuid);
 48		memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
 49	}
 50}
 51
 52/*
 53 * btrfs_find_root - lookup the root by the key.
 54 * root: the root of the root tree
 55 * search_key: the key to search
 56 * path: the path we search
 57 * root_item: the root item of the tree we look for
 58 * root_key: the root key of the tree we look for
 59 *
 60 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
 61 * of the search key, just lookup the root with the highest offset for a
 62 * given objectid.
 63 *
 64 * If we find something return 0, otherwise > 0, < 0 on error.
 65 */
 66int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
 67		    struct btrfs_path *path, struct btrfs_root_item *root_item,
 68		    struct btrfs_key *root_key)
 69{
 70	struct btrfs_key found_key;
 71	struct extent_buffer *l;
 72	int ret;
 73	int slot;
 74
 75	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
 76	if (ret < 0)
 77		return ret;
 78
 79	if (search_key->offset != -1ULL) {	/* the search key is exact */
 80		if (ret > 0)
 81			goto out;
 82	} else {
 83		BUG_ON(ret == 0);		/* Logical error */
 84		if (path->slots[0] == 0)
 85			goto out;
 86		path->slots[0]--;
 87		ret = 0;
 88	}
 89
 90	l = path->nodes[0];
 91	slot = path->slots[0];
 92
 93	btrfs_item_key_to_cpu(l, &found_key, slot);
 94	if (found_key.objectid != search_key->objectid ||
 95	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
 96		ret = 1;
 97		goto out;
 98	}
 99
100	if (root_item)
101		btrfs_read_root_item(l, slot, root_item);
102	if (root_key)
103		memcpy(root_key, &found_key, sizeof(found_key));
104out:
105	btrfs_release_path(path);
106	return ret;
107}
108
109void btrfs_set_root_node(struct btrfs_root_item *item,
110			 struct extent_buffer *node)
111{
112	btrfs_set_root_bytenr(item, node->start);
113	btrfs_set_root_level(item, btrfs_header_level(node));
114	btrfs_set_root_generation(item, btrfs_header_generation(node));
115}
116
117/*
118 * copy the data in 'item' into the btree
119 */
120int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
121		      *root, struct btrfs_key *key, struct btrfs_root_item
122		      *item)
123{
124	struct btrfs_fs_info *fs_info = root->fs_info;
125	struct btrfs_path *path;
126	struct extent_buffer *l;
127	int ret;
128	int slot;
129	unsigned long ptr;
130	u32 old_len;
131
132	path = btrfs_alloc_path();
133	if (!path)
134		return -ENOMEM;
135
136	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
137	if (ret < 0)
138		goto out;
139
140	if (ret > 0) {
141		btrfs_crit(fs_info,
142			"unable to find root key (%llu %u %llu) in tree %llu",
143			key->objectid, key->type, key->offset,
144			root->root_key.objectid);
145		ret = -EUCLEAN;
146		btrfs_abort_transaction(trans, ret);
147		goto out;
148	}
149
 
 
 
 
 
 
 
150	l = path->nodes[0];
151	slot = path->slots[0];
152	ptr = btrfs_item_ptr_offset(l, slot);
153	old_len = btrfs_item_size_nr(l, slot);
154
155	/*
156	 * If this is the first time we update the root item which originated
157	 * from an older kernel, we need to enlarge the item size to make room
158	 * for the added fields.
159	 */
160	if (old_len < sizeof(*item)) {
161		btrfs_release_path(path);
162		ret = btrfs_search_slot(trans, root, key, path,
163				-1, 1);
164		if (ret < 0) {
165			btrfs_abort_transaction(trans, ret);
166			goto out;
167		}
168
169		ret = btrfs_del_item(trans, root, path);
170		if (ret < 0) {
171			btrfs_abort_transaction(trans, ret);
172			goto out;
173		}
174		btrfs_release_path(path);
175		ret = btrfs_insert_empty_item(trans, root, path,
176				key, sizeof(*item));
177		if (ret < 0) {
178			btrfs_abort_transaction(trans, ret);
179			goto out;
180		}
181		l = path->nodes[0];
182		slot = path->slots[0];
183		ptr = btrfs_item_ptr_offset(l, slot);
184	}
185
186	/*
187	 * Update generation_v2 so at the next mount we know the new root
188	 * fields are valid.
189	 */
190	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
191
192	write_extent_buffer(l, item, ptr, sizeof(*item));
193	btrfs_mark_buffer_dirty(path->nodes[0]);
194out:
195	btrfs_free_path(path);
196	return ret;
197}
198
199int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
200		      const struct btrfs_key *key, struct btrfs_root_item *item)
201{
202	/*
203	 * Make sure generation v1 and v2 match. See update_root for details.
204	 */
205	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
206	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
207}
208
209int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
210{
211	struct btrfs_root *tree_root = fs_info->tree_root;
212	struct extent_buffer *leaf;
213	struct btrfs_path *path;
214	struct btrfs_key key;
215	struct btrfs_key root_key;
216	struct btrfs_root *root;
217	int err = 0;
218	int ret;
219
220	path = btrfs_alloc_path();
221	if (!path)
222		return -ENOMEM;
223
224	key.objectid = BTRFS_ORPHAN_OBJECTID;
225	key.type = BTRFS_ORPHAN_ITEM_KEY;
226	key.offset = 0;
227
228	root_key.type = BTRFS_ROOT_ITEM_KEY;
229	root_key.offset = (u64)-1;
230
231	while (1) {
232		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
233		if (ret < 0) {
234			err = ret;
235			break;
236		}
237
238		leaf = path->nodes[0];
239		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
240			ret = btrfs_next_leaf(tree_root, path);
241			if (ret < 0)
242				err = ret;
243			if (ret != 0)
244				break;
245			leaf = path->nodes[0];
246		}
247
248		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
249		btrfs_release_path(path);
250
251		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
252		    key.type != BTRFS_ORPHAN_ITEM_KEY)
253			break;
254
255		root_key.objectid = key.offset;
256		key.offset++;
257
258		/*
259		 * The root might have been inserted already, as before we look
260		 * for orphan roots, log replay might have happened, which
261		 * triggers a transaction commit and qgroup accounting, which
262		 * in turn reads and inserts fs roots while doing backref
263		 * walking.
264		 */
265		root = btrfs_lookup_fs_root(fs_info, root_key.objectid);
266		if (root) {
267			WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
268					  &root->state));
269			if (btrfs_root_refs(&root->root_item) == 0) {
270				set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
271				btrfs_add_dead_root(root);
272			}
273			continue;
274		}
275
276		root = btrfs_read_fs_root(tree_root, &root_key);
277		err = PTR_ERR_OR_ZERO(root);
278		if (err && err != -ENOENT) {
279			break;
280		} else if (err == -ENOENT) {
281			struct btrfs_trans_handle *trans;
282
283			btrfs_release_path(path);
284
285			trans = btrfs_join_transaction(tree_root);
286			if (IS_ERR(trans)) {
287				err = PTR_ERR(trans);
288				btrfs_handle_fs_error(fs_info, err,
289					    "Failed to start trans to delete orphan item");
290				break;
291			}
292			err = btrfs_del_orphan_item(trans, tree_root,
293						    root_key.objectid);
294			btrfs_end_transaction(trans);
295			if (err) {
296				btrfs_handle_fs_error(fs_info, err,
297					    "Failed to delete root orphan item");
298				break;
299			}
300			continue;
301		}
302
303		err = btrfs_init_fs_root(root);
304		if (err) {
305			btrfs_free_fs_root(root);
306			break;
307		}
308
309		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
310
311		err = btrfs_insert_fs_root(fs_info, root);
312		if (err) {
313			BUG_ON(err == -EEXIST);
314			btrfs_free_fs_root(root);
315			break;
316		}
317
318		if (btrfs_root_refs(&root->root_item) == 0) {
319			set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
320			btrfs_add_dead_root(root);
321		}
322	}
323
324	btrfs_free_path(path);
325	return err;
326}
327
328/* drop the root item for 'key' from the tree root */
329int btrfs_del_root(struct btrfs_trans_handle *trans,
330		   const struct btrfs_key *key)
331{
332	struct btrfs_root *root = trans->fs_info->tree_root;
333	struct btrfs_path *path;
334	int ret;
335
336	path = btrfs_alloc_path();
337	if (!path)
338		return -ENOMEM;
339	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
340	if (ret < 0)
341		goto out;
342
343	BUG_ON(ret != 0);
344
345	ret = btrfs_del_item(trans, root, path);
346out:
347	btrfs_free_path(path);
348	return ret;
349}
350
351int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
352		       u64 ref_id, u64 dirid, u64 *sequence, const char *name,
353		       int name_len)
 
354
355{
356	struct btrfs_root *tree_root = trans->fs_info->tree_root;
357	struct btrfs_path *path;
358	struct btrfs_root_ref *ref;
359	struct extent_buffer *leaf;
360	struct btrfs_key key;
361	unsigned long ptr;
362	int err = 0;
363	int ret;
364
365	path = btrfs_alloc_path();
366	if (!path)
367		return -ENOMEM;
368
369	key.objectid = root_id;
370	key.type = BTRFS_ROOT_BACKREF_KEY;
371	key.offset = ref_id;
372again:
373	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
374	BUG_ON(ret < 0);
375	if (ret == 0) {
376		leaf = path->nodes[0];
377		ref = btrfs_item_ptr(leaf, path->slots[0],
378				     struct btrfs_root_ref);
379
380		WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
381		WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
382		ptr = (unsigned long)(ref + 1);
383		WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
384		*sequence = btrfs_root_ref_sequence(leaf, ref);
385
386		ret = btrfs_del_item(trans, tree_root, path);
387		if (ret) {
388			err = ret;
389			goto out;
390		}
391	} else
392		err = -ENOENT;
393
394	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
395		btrfs_release_path(path);
396		key.objectid = ref_id;
397		key.type = BTRFS_ROOT_REF_KEY;
398		key.offset = root_id;
399		goto again;
400	}
401
402out:
403	btrfs_free_path(path);
404	return err;
405}
406
407/*
408 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
409 * or BTRFS_ROOT_BACKREF_KEY.
410 *
411 * The dirid, sequence, name and name_len refer to the directory entry
412 * that is referencing the root.
413 *
414 * For a forward ref, the root_id is the id of the tree referencing
415 * the root and ref_id is the id of the subvol  or snapshot.
416 *
417 * For a back ref the root_id is the id of the subvol or snapshot and
418 * ref_id is the id of the tree referencing it.
419 *
420 * Will return 0, -ENOMEM, or anything from the CoW path
421 */
422int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
423		       u64 ref_id, u64 dirid, u64 sequence, const char *name,
424		       int name_len)
 
425{
426	struct btrfs_root *tree_root = trans->fs_info->tree_root;
427	struct btrfs_key key;
428	int ret;
429	struct btrfs_path *path;
430	struct btrfs_root_ref *ref;
431	struct extent_buffer *leaf;
432	unsigned long ptr;
433
434	path = btrfs_alloc_path();
435	if (!path)
436		return -ENOMEM;
437
438	key.objectid = root_id;
439	key.type = BTRFS_ROOT_BACKREF_KEY;
440	key.offset = ref_id;
441again:
442	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
443				      sizeof(*ref) + name_len);
444	if (ret) {
445		btrfs_abort_transaction(trans, ret);
446		btrfs_free_path(path);
447		return ret;
448	}
449
450	leaf = path->nodes[0];
451	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
452	btrfs_set_root_ref_dirid(leaf, ref, dirid);
453	btrfs_set_root_ref_sequence(leaf, ref, sequence);
454	btrfs_set_root_ref_name_len(leaf, ref, name_len);
455	ptr = (unsigned long)(ref + 1);
456	write_extent_buffer(leaf, name, ptr, name_len);
457	btrfs_mark_buffer_dirty(leaf);
458
459	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
460		btrfs_release_path(path);
461		key.objectid = ref_id;
462		key.type = BTRFS_ROOT_REF_KEY;
463		key.offset = root_id;
464		goto again;
465	}
466
467	btrfs_free_path(path);
468	return 0;
469}
470
471/*
472 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
473 * for subvolumes. To work around this problem, we steal a bit from
474 * root_item->inode_item->flags, and use it to indicate if those fields
475 * have been properly initialized.
476 */
477void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
478{
479	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
480
481	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
482		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
483		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
484		btrfs_set_root_flags(root_item, 0);
485		btrfs_set_root_limit(root_item, 0);
486	}
487}
488
489void btrfs_update_root_times(struct btrfs_trans_handle *trans,
490			     struct btrfs_root *root)
491{
492	struct btrfs_root_item *item = &root->root_item;
493	struct timespec64 ct;
494
495	ktime_get_real_ts64(&ct);
496	spin_lock(&root->root_item_lock);
497	btrfs_set_root_ctransid(item, trans->transid);
498	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
499	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
500	spin_unlock(&root->root_item_lock);
501}
502
503/*
504 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
505 * root: the root of the parent directory
506 * rsv: block reservation
507 * items: the number of items that we need do reservation
508 * use_global_rsv: allow fallback to the global block reservation
509 *
510 * This function is used to reserve the space for snapshot/subvolume
511 * creation and deletion. Those operations are different with the
512 * common file/directory operations, they change two fs/file trees
513 * and root tree, the number of items that the qgroup reserves is
514 * different with the free space reservation. So we can not use
515 * the space reservation mechanism in start_transaction().
516 */
517int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
518				     struct btrfs_block_rsv *rsv, int items,
519				     bool use_global_rsv)
520{
521	u64 qgroup_num_bytes = 0;
522	u64 num_bytes;
523	int ret;
524	struct btrfs_fs_info *fs_info = root->fs_info;
525	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
526
527	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
528		/* One for parent inode, two for dir entries */
529		qgroup_num_bytes = 3 * fs_info->nodesize;
530		ret = btrfs_qgroup_reserve_meta_prealloc(root,
531				qgroup_num_bytes, true);
532		if (ret)
533			return ret;
534	}
535
536	num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
537	rsv->space_info = btrfs_find_space_info(fs_info,
538					    BTRFS_BLOCK_GROUP_METADATA);
539	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
540				  BTRFS_RESERVE_FLUSH_ALL);
541
542	if (ret == -ENOSPC && use_global_rsv)
543		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
544
545	if (ret && qgroup_num_bytes)
546		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
547
548	return ret;
549}
550
551void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
552				      struct btrfs_block_rsv *rsv)
553{
554	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
555}
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/err.h>
  7#include <linux/uuid.h>
  8#include "ctree.h"
  9#include "transaction.h"
 10#include "disk-io.h"
 11#include "print-tree.h"
 
 
 12
 13/*
 14 * Read a root item from the tree. In case we detect a root item smaller then
 15 * sizeof(root_item), we know it's an old version of the root structure and
 16 * initialize all new fields to zero. The same happens if we detect mismatching
 17 * generation numbers as then we know the root was once mounted with an older
 18 * kernel that was not aware of the root item structure change.
 19 */
 20static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
 21				struct btrfs_root_item *item)
 22{
 23	uuid_le uuid;
 24	int len;
 25	int need_reset = 0;
 26
 27	len = btrfs_item_size_nr(eb, slot);
 28	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
 29			min_t(int, len, (int)sizeof(*item)));
 30	if (len < sizeof(*item))
 31		need_reset = 1;
 32	if (!need_reset && btrfs_root_generation(item)
 33		!= btrfs_root_generation_v2(item)) {
 34		if (btrfs_root_generation_v2(item) != 0) {
 35			btrfs_warn(eb->fs_info,
 36					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
 37		}
 38		need_reset = 1;
 39	}
 40	if (need_reset) {
 41		memset(&item->generation_v2, 0,
 42			sizeof(*item) - offsetof(struct btrfs_root_item,
 43					generation_v2));
 44
 45		uuid_le_gen(&uuid);
 46		memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
 47	}
 48}
 49
 50/*
 51 * btrfs_find_root - lookup the root by the key.
 52 * root: the root of the root tree
 53 * search_key: the key to search
 54 * path: the path we search
 55 * root_item: the root item of the tree we look for
 56 * root_key: the root key of the tree we look for
 57 *
 58 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
 59 * of the search key, just lookup the root with the highest offset for a
 60 * given objectid.
 61 *
 62 * If we find something return 0, otherwise > 0, < 0 on error.
 63 */
 64int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
 65		    struct btrfs_path *path, struct btrfs_root_item *root_item,
 66		    struct btrfs_key *root_key)
 67{
 68	struct btrfs_key found_key;
 69	struct extent_buffer *l;
 70	int ret;
 71	int slot;
 72
 73	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
 74	if (ret < 0)
 75		return ret;
 76
 77	if (search_key->offset != -1ULL) {	/* the search key is exact */
 78		if (ret > 0)
 79			goto out;
 80	} else {
 81		BUG_ON(ret == 0);		/* Logical error */
 82		if (path->slots[0] == 0)
 83			goto out;
 84		path->slots[0]--;
 85		ret = 0;
 86	}
 87
 88	l = path->nodes[0];
 89	slot = path->slots[0];
 90
 91	btrfs_item_key_to_cpu(l, &found_key, slot);
 92	if (found_key.objectid != search_key->objectid ||
 93	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
 94		ret = 1;
 95		goto out;
 96	}
 97
 98	if (root_item)
 99		btrfs_read_root_item(l, slot, root_item);
100	if (root_key)
101		memcpy(root_key, &found_key, sizeof(found_key));
102out:
103	btrfs_release_path(path);
104	return ret;
105}
106
107void btrfs_set_root_node(struct btrfs_root_item *item,
108			 struct extent_buffer *node)
109{
110	btrfs_set_root_bytenr(item, node->start);
111	btrfs_set_root_level(item, btrfs_header_level(node));
112	btrfs_set_root_generation(item, btrfs_header_generation(node));
113}
114
115/*
116 * copy the data in 'item' into the btree
117 */
118int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
119		      *root, struct btrfs_key *key, struct btrfs_root_item
120		      *item)
121{
122	struct btrfs_fs_info *fs_info = root->fs_info;
123	struct btrfs_path *path;
124	struct extent_buffer *l;
125	int ret;
126	int slot;
127	unsigned long ptr;
128	u32 old_len;
129
130	path = btrfs_alloc_path();
131	if (!path)
132		return -ENOMEM;
133
134	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
135	if (ret < 0) {
 
 
 
 
 
 
 
 
136		btrfs_abort_transaction(trans, ret);
137		goto out;
138	}
139
140	if (ret != 0) {
141		btrfs_print_leaf(path->nodes[0]);
142		btrfs_crit(fs_info, "unable to update root key %llu %u %llu",
143			   key->objectid, key->type, key->offset);
144		BUG_ON(1);
145	}
146
147	l = path->nodes[0];
148	slot = path->slots[0];
149	ptr = btrfs_item_ptr_offset(l, slot);
150	old_len = btrfs_item_size_nr(l, slot);
151
152	/*
153	 * If this is the first time we update the root item which originated
154	 * from an older kernel, we need to enlarge the item size to make room
155	 * for the added fields.
156	 */
157	if (old_len < sizeof(*item)) {
158		btrfs_release_path(path);
159		ret = btrfs_search_slot(trans, root, key, path,
160				-1, 1);
161		if (ret < 0) {
162			btrfs_abort_transaction(trans, ret);
163			goto out;
164		}
165
166		ret = btrfs_del_item(trans, root, path);
167		if (ret < 0) {
168			btrfs_abort_transaction(trans, ret);
169			goto out;
170		}
171		btrfs_release_path(path);
172		ret = btrfs_insert_empty_item(trans, root, path,
173				key, sizeof(*item));
174		if (ret < 0) {
175			btrfs_abort_transaction(trans, ret);
176			goto out;
177		}
178		l = path->nodes[0];
179		slot = path->slots[0];
180		ptr = btrfs_item_ptr_offset(l, slot);
181	}
182
183	/*
184	 * Update generation_v2 so at the next mount we know the new root
185	 * fields are valid.
186	 */
187	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
188
189	write_extent_buffer(l, item, ptr, sizeof(*item));
190	btrfs_mark_buffer_dirty(path->nodes[0]);
191out:
192	btrfs_free_path(path);
193	return ret;
194}
195
196int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
197		      const struct btrfs_key *key, struct btrfs_root_item *item)
198{
199	/*
200	 * Make sure generation v1 and v2 match. See update_root for details.
201	 */
202	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
203	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
204}
205
206int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
207{
208	struct btrfs_root *tree_root = fs_info->tree_root;
209	struct extent_buffer *leaf;
210	struct btrfs_path *path;
211	struct btrfs_key key;
212	struct btrfs_key root_key;
213	struct btrfs_root *root;
214	int err = 0;
215	int ret;
216
217	path = btrfs_alloc_path();
218	if (!path)
219		return -ENOMEM;
220
221	key.objectid = BTRFS_ORPHAN_OBJECTID;
222	key.type = BTRFS_ORPHAN_ITEM_KEY;
223	key.offset = 0;
224
225	root_key.type = BTRFS_ROOT_ITEM_KEY;
226	root_key.offset = (u64)-1;
227
228	while (1) {
229		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
230		if (ret < 0) {
231			err = ret;
232			break;
233		}
234
235		leaf = path->nodes[0];
236		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
237			ret = btrfs_next_leaf(tree_root, path);
238			if (ret < 0)
239				err = ret;
240			if (ret != 0)
241				break;
242			leaf = path->nodes[0];
243		}
244
245		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
246		btrfs_release_path(path);
247
248		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
249		    key.type != BTRFS_ORPHAN_ITEM_KEY)
250			break;
251
252		root_key.objectid = key.offset;
253		key.offset++;
254
255		/*
256		 * The root might have been inserted already, as before we look
257		 * for orphan roots, log replay might have happened, which
258		 * triggers a transaction commit and qgroup accounting, which
259		 * in turn reads and inserts fs roots while doing backref
260		 * walking.
261		 */
262		root = btrfs_lookup_fs_root(fs_info, root_key.objectid);
263		if (root) {
264			WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
265					  &root->state));
266			if (btrfs_root_refs(&root->root_item) == 0)
 
267				btrfs_add_dead_root(root);
 
268			continue;
269		}
270
271		root = btrfs_read_fs_root(tree_root, &root_key);
272		err = PTR_ERR_OR_ZERO(root);
273		if (err && err != -ENOENT) {
274			break;
275		} else if (err == -ENOENT) {
276			struct btrfs_trans_handle *trans;
277
278			btrfs_release_path(path);
279
280			trans = btrfs_join_transaction(tree_root);
281			if (IS_ERR(trans)) {
282				err = PTR_ERR(trans);
283				btrfs_handle_fs_error(fs_info, err,
284					    "Failed to start trans to delete orphan item");
285				break;
286			}
287			err = btrfs_del_orphan_item(trans, tree_root,
288						    root_key.objectid);
289			btrfs_end_transaction(trans);
290			if (err) {
291				btrfs_handle_fs_error(fs_info, err,
292					    "Failed to delete root orphan item");
293				break;
294			}
295			continue;
296		}
297
298		err = btrfs_init_fs_root(root);
299		if (err) {
300			btrfs_free_fs_root(root);
301			break;
302		}
303
304		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
305
306		err = btrfs_insert_fs_root(fs_info, root);
307		if (err) {
308			BUG_ON(err == -EEXIST);
309			btrfs_free_fs_root(root);
310			break;
311		}
312
313		if (btrfs_root_refs(&root->root_item) == 0)
 
314			btrfs_add_dead_root(root);
 
315	}
316
317	btrfs_free_path(path);
318	return err;
319}
320
321/* drop the root item for 'key' from the tree root */
322int btrfs_del_root(struct btrfs_trans_handle *trans,
323		   struct btrfs_fs_info *fs_info, const struct btrfs_key *key)
324{
325	struct btrfs_root *root = fs_info->tree_root;
326	struct btrfs_path *path;
327	int ret;
328
329	path = btrfs_alloc_path();
330	if (!path)
331		return -ENOMEM;
332	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
333	if (ret < 0)
334		goto out;
335
336	BUG_ON(ret != 0);
337
338	ret = btrfs_del_item(trans, root, path);
339out:
340	btrfs_free_path(path);
341	return ret;
342}
343
344int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
345		       struct btrfs_fs_info *fs_info,
346		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
347		       const char *name, int name_len)
348
349{
350	struct btrfs_root *tree_root = fs_info->tree_root;
351	struct btrfs_path *path;
352	struct btrfs_root_ref *ref;
353	struct extent_buffer *leaf;
354	struct btrfs_key key;
355	unsigned long ptr;
356	int err = 0;
357	int ret;
358
359	path = btrfs_alloc_path();
360	if (!path)
361		return -ENOMEM;
362
363	key.objectid = root_id;
364	key.type = BTRFS_ROOT_BACKREF_KEY;
365	key.offset = ref_id;
366again:
367	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
368	BUG_ON(ret < 0);
369	if (ret == 0) {
370		leaf = path->nodes[0];
371		ref = btrfs_item_ptr(leaf, path->slots[0],
372				     struct btrfs_root_ref);
373
374		WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
375		WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
376		ptr = (unsigned long)(ref + 1);
377		WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
378		*sequence = btrfs_root_ref_sequence(leaf, ref);
379
380		ret = btrfs_del_item(trans, tree_root, path);
381		if (ret) {
382			err = ret;
383			goto out;
384		}
385	} else
386		err = -ENOENT;
387
388	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
389		btrfs_release_path(path);
390		key.objectid = ref_id;
391		key.type = BTRFS_ROOT_REF_KEY;
392		key.offset = root_id;
393		goto again;
394	}
395
396out:
397	btrfs_free_path(path);
398	return err;
399}
400
401/*
402 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
403 * or BTRFS_ROOT_BACKREF_KEY.
404 *
405 * The dirid, sequence, name and name_len refer to the directory entry
406 * that is referencing the root.
407 *
408 * For a forward ref, the root_id is the id of the tree referencing
409 * the root and ref_id is the id of the subvol  or snapshot.
410 *
411 * For a back ref the root_id is the id of the subvol or snapshot and
412 * ref_id is the id of the tree referencing it.
413 *
414 * Will return 0, -ENOMEM, or anything from the CoW path
415 */
416int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
417		       struct btrfs_fs_info *fs_info,
418		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
419		       const char *name, int name_len)
420{
421	struct btrfs_root *tree_root = fs_info->tree_root;
422	struct btrfs_key key;
423	int ret;
424	struct btrfs_path *path;
425	struct btrfs_root_ref *ref;
426	struct extent_buffer *leaf;
427	unsigned long ptr;
428
429	path = btrfs_alloc_path();
430	if (!path)
431		return -ENOMEM;
432
433	key.objectid = root_id;
434	key.type = BTRFS_ROOT_BACKREF_KEY;
435	key.offset = ref_id;
436again:
437	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
438				      sizeof(*ref) + name_len);
439	if (ret) {
440		btrfs_abort_transaction(trans, ret);
441		btrfs_free_path(path);
442		return ret;
443	}
444
445	leaf = path->nodes[0];
446	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
447	btrfs_set_root_ref_dirid(leaf, ref, dirid);
448	btrfs_set_root_ref_sequence(leaf, ref, sequence);
449	btrfs_set_root_ref_name_len(leaf, ref, name_len);
450	ptr = (unsigned long)(ref + 1);
451	write_extent_buffer(leaf, name, ptr, name_len);
452	btrfs_mark_buffer_dirty(leaf);
453
454	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
455		btrfs_release_path(path);
456		key.objectid = ref_id;
457		key.type = BTRFS_ROOT_REF_KEY;
458		key.offset = root_id;
459		goto again;
460	}
461
462	btrfs_free_path(path);
463	return 0;
464}
465
466/*
467 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
468 * for subvolumes. To work around this problem, we steal a bit from
469 * root_item->inode_item->flags, and use it to indicate if those fields
470 * have been properly initialized.
471 */
472void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
473{
474	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
475
476	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
477		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
478		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
479		btrfs_set_root_flags(root_item, 0);
480		btrfs_set_root_limit(root_item, 0);
481	}
482}
483
484void btrfs_update_root_times(struct btrfs_trans_handle *trans,
485			     struct btrfs_root *root)
486{
487	struct btrfs_root_item *item = &root->root_item;
488	struct timespec ct;
489
490	ktime_get_real_ts(&ct);
491	spin_lock(&root->root_item_lock);
492	btrfs_set_root_ctransid(item, trans->transid);
493	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
494	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
495	spin_unlock(&root->root_item_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
496}