Linux Audio

Check our new training course

Loading...
v5.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/* Copyright(c) 2013 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  3
  4#ifndef _I40E_TXRX_H_
  5#define _I40E_TXRX_H_
  6
  7#include <net/xdp.h>
  8
  9/* Interrupt Throttling and Rate Limiting Goodies */
 10#define I40E_DEFAULT_IRQ_WORK      256
 11
 12/* The datasheet for the X710 and XL710 indicate that the maximum value for
 13 * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
 14 * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
 15 * the register value which is divided by 2 lets use the actual values and
 16 * avoid an excessive amount of translation.
 17 */
 18#define I40E_ITR_DYNAMIC	0x8000	/* use top bit as a flag */
 19#define I40E_ITR_MASK		0x1FFE	/* mask for ITR register value */
 20#define I40E_MIN_ITR		     2	/* reg uses 2 usec resolution */
 21#define I40E_ITR_100K		    10	/* all values below must be even */
 22#define I40E_ITR_50K		    20
 23#define I40E_ITR_20K		    50
 24#define I40E_ITR_18K		    60
 25#define I40E_ITR_8K		   122
 26#define I40E_MAX_ITR		  8160	/* maximum value as per datasheet */
 27#define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC)
 28#define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK)
 29#define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC))
 30
 31#define I40E_ITR_RX_DEF		(I40E_ITR_20K | I40E_ITR_DYNAMIC)
 32#define I40E_ITR_TX_DEF		(I40E_ITR_20K | I40E_ITR_DYNAMIC)
 33
 34/* 0x40 is the enable bit for interrupt rate limiting, and must be set if
 35 * the value of the rate limit is non-zero
 36 */
 37#define INTRL_ENA                  BIT(6)
 38#define I40E_MAX_INTRL             0x3B    /* reg uses 4 usec resolution */
 39#define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
 40
 41/**
 42 * i40e_intrl_usec_to_reg - convert interrupt rate limit to register
 43 * @intrl: interrupt rate limit to convert
 44 *
 45 * This function converts a decimal interrupt rate limit to the appropriate
 46 * register format expected by the firmware when setting interrupt rate limit.
 47 */
 48static inline u16 i40e_intrl_usec_to_reg(int intrl)
 49{
 50	if (intrl >> 2)
 51		return ((intrl >> 2) | INTRL_ENA);
 52	else
 53		return 0;
 54}
 55#define I40E_INTRL_8K              125     /* 8000 ints/sec */
 56#define I40E_INTRL_62K             16      /* 62500 ints/sec */
 57#define I40E_INTRL_83K             12      /* 83333 ints/sec */
 58
 59#define I40E_QUEUE_END_OF_LIST 0x7FF
 60
 61/* this enum matches hardware bits and is meant to be used by DYN_CTLN
 62 * registers and QINT registers or more generally anywhere in the manual
 63 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
 64 * register but instead is a special value meaning "don't update" ITR0/1/2.
 65 */
 66enum i40e_dyn_idx_t {
 67	I40E_IDX_ITR0 = 0,
 68	I40E_IDX_ITR1 = 1,
 69	I40E_IDX_ITR2 = 2,
 70	I40E_ITR_NONE = 3	/* ITR_NONE must not be used as an index */
 71};
 72
 73/* these are indexes into ITRN registers */
 74#define I40E_RX_ITR    I40E_IDX_ITR0
 75#define I40E_TX_ITR    I40E_IDX_ITR1
 76#define I40E_PE_ITR    I40E_IDX_ITR2
 77
 78/* Supported RSS offloads */
 79#define I40E_DEFAULT_RSS_HENA ( \
 80	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
 81	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
 82	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
 83	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
 84	BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
 85	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
 86	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
 87	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
 88	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
 89	BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
 90	BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
 91
 92#define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
 93	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
 94	BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
 95	BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
 96	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
 97	BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
 98	BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
 99
100#define i40e_pf_get_default_rss_hena(pf) \
101	(((pf)->hw_features & I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \
102	  I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
103
104/* Supported Rx Buffer Sizes (a multiple of 128) */
105#define I40E_RXBUFFER_256   256
106#define I40E_RXBUFFER_1536  1536  /* 128B aligned standard Ethernet frame */
107#define I40E_RXBUFFER_2048  2048
108#define I40E_RXBUFFER_3072  3072  /* Used for large frames w/ padding */
109#define I40E_MAX_RXBUFFER   9728  /* largest size for single descriptor */
110
111/* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
112 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
113 * this adds up to 512 bytes of extra data meaning the smallest allocation
114 * we could have is 1K.
115 * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
116 * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
117 */
118#define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
119#define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
120#define i40e_rx_desc i40e_32byte_rx_desc
121
122#define I40E_RX_DMA_ATTR \
123	(DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
124
125/* Attempt to maximize the headroom available for incoming frames.  We
126 * use a 2K buffer for receives and need 1536/1534 to store the data for
127 * the frame.  This leaves us with 512 bytes of room.  From that we need
128 * to deduct the space needed for the shared info and the padding needed
129 * to IP align the frame.
130 *
131 * Note: For cache line sizes 256 or larger this value is going to end
132 *	 up negative.  In these cases we should fall back to the legacy
133 *	 receive path.
134 */
135#if (PAGE_SIZE < 8192)
136#define I40E_2K_TOO_SMALL_WITH_PADDING \
137((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
138
139static inline int i40e_compute_pad(int rx_buf_len)
140{
141	int page_size, pad_size;
142
143	page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
144	pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
145
146	return pad_size;
147}
148
149static inline int i40e_skb_pad(void)
150{
151	int rx_buf_len;
152
153	/* If a 2K buffer cannot handle a standard Ethernet frame then
154	 * optimize padding for a 3K buffer instead of a 1.5K buffer.
155	 *
156	 * For a 3K buffer we need to add enough padding to allow for
157	 * tailroom due to NET_IP_ALIGN possibly shifting us out of
158	 * cache-line alignment.
159	 */
160	if (I40E_2K_TOO_SMALL_WITH_PADDING)
161		rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
162	else
163		rx_buf_len = I40E_RXBUFFER_1536;
164
165	/* if needed make room for NET_IP_ALIGN */
166	rx_buf_len -= NET_IP_ALIGN;
167
168	return i40e_compute_pad(rx_buf_len);
169}
170
171#define I40E_SKB_PAD i40e_skb_pad()
172#else
173#define I40E_2K_TOO_SMALL_WITH_PADDING false
174#define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
175#endif
176
177/**
178 * i40e_test_staterr - tests bits in Rx descriptor status and error fields
179 * @rx_desc: pointer to receive descriptor (in le64 format)
180 * @stat_err_bits: value to mask
181 *
182 * This function does some fast chicanery in order to return the
183 * value of the mask which is really only used for boolean tests.
184 * The status_error_len doesn't need to be shifted because it begins
185 * at offset zero.
186 */
187static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
188				     const u64 stat_err_bits)
189{
190	return !!(rx_desc->wb.qword1.status_error_len &
191		  cpu_to_le64(stat_err_bits));
192}
193
194/* How many Rx Buffers do we bundle into one write to the hardware ? */
195#define I40E_RX_BUFFER_WRITE	32	/* Must be power of 2 */
196#define I40E_RX_INCREMENT(r, i) \
197	do {					\
198		(i)++;				\
199		if ((i) == (r)->count)		\
200			i = 0;			\
201		r->next_to_clean = i;		\
202	} while (0)
203
204#define I40E_RX_NEXT_DESC(r, i, n)		\
205	do {					\
206		(i)++;				\
207		if ((i) == (r)->count)		\
208			i = 0;			\
209		(n) = I40E_RX_DESC((r), (i));	\
210	} while (0)
211
212#define I40E_RX_NEXT_DESC_PREFETCH(r, i, n)		\
213	do {						\
214		I40E_RX_NEXT_DESC((r), (i), (n));	\
215		prefetch((n));				\
216	} while (0)
217
218#define I40E_MAX_BUFFER_TXD	8
219#define I40E_MIN_TX_LEN		17
220
221/* The size limit for a transmit buffer in a descriptor is (16K - 1).
222 * In order to align with the read requests we will align the value to
223 * the nearest 4K which represents our maximum read request size.
224 */
225#define I40E_MAX_READ_REQ_SIZE		4096
226#define I40E_MAX_DATA_PER_TXD		(16 * 1024 - 1)
227#define I40E_MAX_DATA_PER_TXD_ALIGNED \
228	(I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
229
230/**
231 * i40e_txd_use_count  - estimate the number of descriptors needed for Tx
232 * @size: transmit request size in bytes
233 *
234 * Due to hardware alignment restrictions (4K alignment), we need to
235 * assume that we can have no more than 12K of data per descriptor, even
236 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
237 * Thus, we need to divide by 12K. But division is slow! Instead,
238 * we decompose the operation into shifts and one relatively cheap
239 * multiply operation.
240 *
241 * To divide by 12K, we first divide by 4K, then divide by 3:
242 *     To divide by 4K, shift right by 12 bits
243 *     To divide by 3, multiply by 85, then divide by 256
244 *     (Divide by 256 is done by shifting right by 8 bits)
245 * Finally, we add one to round up. Because 256 isn't an exact multiple of
246 * 3, we'll underestimate near each multiple of 12K. This is actually more
247 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
248 * segment.  For our purposes this is accurate out to 1M which is orders of
249 * magnitude greater than our largest possible GSO size.
250 *
251 * This would then be implemented as:
252 *     return (((size >> 12) * 85) >> 8) + 1;
253 *
254 * Since multiplication and division are commutative, we can reorder
255 * operations into:
256 *     return ((size * 85) >> 20) + 1;
257 */
258static inline unsigned int i40e_txd_use_count(unsigned int size)
259{
260	return ((size * 85) >> 20) + 1;
261}
262
263/* Tx Descriptors needed, worst case */
264#define DESC_NEEDED (MAX_SKB_FRAGS + 6)
265#define I40E_MIN_DESC_PENDING	4
266
267#define I40E_TX_FLAGS_HW_VLAN		BIT(1)
268#define I40E_TX_FLAGS_SW_VLAN		BIT(2)
269#define I40E_TX_FLAGS_TSO		BIT(3)
270#define I40E_TX_FLAGS_IPV4		BIT(4)
271#define I40E_TX_FLAGS_IPV6		BIT(5)
272#define I40E_TX_FLAGS_FCCRC		BIT(6)
273#define I40E_TX_FLAGS_FSO		BIT(7)
274#define I40E_TX_FLAGS_TSYN		BIT(8)
275#define I40E_TX_FLAGS_FD_SB		BIT(9)
276#define I40E_TX_FLAGS_UDP_TUNNEL	BIT(10)
277#define I40E_TX_FLAGS_VLAN_MASK		0xffff0000
278#define I40E_TX_FLAGS_VLAN_PRIO_MASK	0xe0000000
279#define I40E_TX_FLAGS_VLAN_PRIO_SHIFT	29
280#define I40E_TX_FLAGS_VLAN_SHIFT	16
281
282struct i40e_tx_buffer {
283	struct i40e_tx_desc *next_to_watch;
284	union {
285		struct xdp_frame *xdpf;
286		struct sk_buff *skb;
287		void *raw_buf;
288	};
289	unsigned int bytecount;
290	unsigned short gso_segs;
291
292	DEFINE_DMA_UNMAP_ADDR(dma);
293	DEFINE_DMA_UNMAP_LEN(len);
294	u32 tx_flags;
295};
296
297struct i40e_rx_buffer {
298	dma_addr_t dma;
299	union {
300		struct {
301			struct page *page;
302			__u32 page_offset;
303			__u16 pagecnt_bias;
304		};
305		struct {
306			void *addr;
307			u64 handle;
308		};
309	};
310};
311
312struct i40e_queue_stats {
313	u64 packets;
314	u64 bytes;
315};
316
317struct i40e_tx_queue_stats {
318	u64 restart_queue;
319	u64 tx_busy;
320	u64 tx_done_old;
321	u64 tx_linearize;
322	u64 tx_force_wb;
323	int prev_pkt_ctr;
324};
325
326struct i40e_rx_queue_stats {
327	u64 non_eop_descs;
328	u64 alloc_page_failed;
329	u64 alloc_buff_failed;
330	u64 page_reuse_count;
331	u64 realloc_count;
332};
333
334enum i40e_ring_state_t {
335	__I40E_TX_FDIR_INIT_DONE,
336	__I40E_TX_XPS_INIT_DONE,
337	__I40E_RING_STATE_NBITS /* must be last */
338};
339
340/* some useful defines for virtchannel interface, which
341 * is the only remaining user of header split
342 */
343#define I40E_RX_DTYPE_NO_SPLIT      0
344#define I40E_RX_DTYPE_HEADER_SPLIT  1
345#define I40E_RX_DTYPE_SPLIT_ALWAYS  2
346#define I40E_RX_SPLIT_L2      0x1
347#define I40E_RX_SPLIT_IP      0x2
348#define I40E_RX_SPLIT_TCP_UDP 0x4
349#define I40E_RX_SPLIT_SCTP    0x8
350
351/* struct that defines a descriptor ring, associated with a VSI */
352struct i40e_ring {
353	struct i40e_ring *next;		/* pointer to next ring in q_vector */
354	void *desc;			/* Descriptor ring memory */
355	struct device *dev;		/* Used for DMA mapping */
356	struct net_device *netdev;	/* netdev ring maps to */
357	struct bpf_prog *xdp_prog;
358	union {
359		struct i40e_tx_buffer *tx_bi;
360		struct i40e_rx_buffer *rx_bi;
361	};
362	DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS);
363	u16 queue_index;		/* Queue number of ring */
364	u8 dcb_tc;			/* Traffic class of ring */
365	u8 __iomem *tail;
366
367	/* high bit set means dynamic, use accessor routines to read/write.
368	 * hardware only supports 2us resolution for the ITR registers.
369	 * these values always store the USER setting, and must be converted
370	 * before programming to a register.
371	 */
372	u16 itr_setting;
373
374	u16 count;			/* Number of descriptors */
375	u16 reg_idx;			/* HW register index of the ring */
376	u16 rx_buf_len;
377
378	/* used in interrupt processing */
379	u16 next_to_use;
380	u16 next_to_clean;
381
382	u8 atr_sample_rate;
383	u8 atr_count;
384
385	bool ring_active;		/* is ring online or not */
386	bool arm_wb;		/* do something to arm write back */
387	u8 packet_stride;
388
389	u16 flags;
390#define I40E_TXR_FLAGS_WB_ON_ITR		BIT(0)
391#define I40E_RXR_FLAGS_BUILD_SKB_ENABLED	BIT(1)
392#define I40E_TXR_FLAGS_XDP			BIT(2)
393
394	/* stats structs */
395	struct i40e_queue_stats	stats;
396	struct u64_stats_sync syncp;
397	union {
398		struct i40e_tx_queue_stats tx_stats;
399		struct i40e_rx_queue_stats rx_stats;
400	};
401
402	unsigned int size;		/* length of descriptor ring in bytes */
403	dma_addr_t dma;			/* physical address of ring */
404
405	struct i40e_vsi *vsi;		/* Backreference to associated VSI */
406	struct i40e_q_vector *q_vector;	/* Backreference to associated vector */
407
408	struct rcu_head rcu;		/* to avoid race on free */
409	u16 next_to_alloc;
410	struct sk_buff *skb;		/* When i40e_clean_rx_ring_irq() must
411					 * return before it sees the EOP for
412					 * the current packet, we save that skb
413					 * here and resume receiving this
414					 * packet the next time
415					 * i40e_clean_rx_ring_irq() is called
416					 * for this ring.
417					 */
418
419	struct i40e_channel *ch;
420	struct xdp_rxq_info xdp_rxq;
421	struct xdp_umem *xsk_umem;
422	struct zero_copy_allocator zca; /* ZC allocator anchor */
423} ____cacheline_internodealigned_in_smp;
424
425static inline bool ring_uses_build_skb(struct i40e_ring *ring)
426{
427	return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
428}
429
430static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
431{
432	ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
433}
434
435static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
436{
437	ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
438}
439
440static inline bool ring_is_xdp(struct i40e_ring *ring)
441{
442	return !!(ring->flags & I40E_TXR_FLAGS_XDP);
443}
444
445static inline void set_ring_xdp(struct i40e_ring *ring)
446{
447	ring->flags |= I40E_TXR_FLAGS_XDP;
448}
449
450#define I40E_ITR_ADAPTIVE_MIN_INC	0x0002
451#define I40E_ITR_ADAPTIVE_MIN_USECS	0x0002
452#define I40E_ITR_ADAPTIVE_MAX_USECS	0x007e
453#define I40E_ITR_ADAPTIVE_LATENCY	0x8000
454#define I40E_ITR_ADAPTIVE_BULK		0x0000
455#define ITR_IS_BULK(x) (!((x) & I40E_ITR_ADAPTIVE_LATENCY))
456
457struct i40e_ring_container {
458	struct i40e_ring *ring;		/* pointer to linked list of ring(s) */
459	unsigned long next_update;	/* jiffies value of next update */
460	unsigned int total_bytes;	/* total bytes processed this int */
461	unsigned int total_packets;	/* total packets processed this int */
462	u16 count;
463	u16 target_itr;			/* target ITR setting for ring(s) */
464	u16 current_itr;		/* current ITR setting for ring(s) */
465};
466
467/* iterator for handling rings in ring container */
468#define i40e_for_each_ring(pos, head) \
469	for (pos = (head).ring; pos != NULL; pos = pos->next)
470
471static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
472{
473#if (PAGE_SIZE < 8192)
474	if (ring->rx_buf_len > (PAGE_SIZE / 2))
475		return 1;
476#endif
477	return 0;
478}
479
480#define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
481
482bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
483netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
484void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
485void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
486int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
487int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
488void i40e_free_tx_resources(struct i40e_ring *tx_ring);
489void i40e_free_rx_resources(struct i40e_ring *rx_ring);
490int i40e_napi_poll(struct napi_struct *napi, int budget);
491void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
492u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw);
493void i40e_detect_recover_hung(struct i40e_vsi *vsi);
494int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
495bool __i40e_chk_linearize(struct sk_buff *skb);
496int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
497		  u32 flags);
498
499/**
500 * i40e_get_head - Retrieve head from head writeback
501 * @tx_ring:  tx ring to fetch head of
502 *
503 * Returns value of Tx ring head based on value stored
504 * in head write-back location
505 **/
506static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
507{
508	void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
509
510	return le32_to_cpu(*(volatile __le32 *)head);
511}
512
513/**
514 * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
515 * @skb:     send buffer
516 * @tx_ring: ring to send buffer on
517 *
518 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
519 * there is not enough descriptors available in this ring since we need at least
520 * one descriptor.
521 **/
522static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
523{
524	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
525	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
526	int count = 0, size = skb_headlen(skb);
527
528	for (;;) {
529		count += i40e_txd_use_count(size);
530
531		if (!nr_frags--)
532			break;
533
534		size = skb_frag_size(frag++);
535	}
536
537	return count;
538}
539
540/**
541 * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
542 * @tx_ring: the ring to be checked
543 * @size:    the size buffer we want to assure is available
544 *
545 * Returns 0 if stop is not needed
546 **/
547static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
548{
549	if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
550		return 0;
551	return __i40e_maybe_stop_tx(tx_ring, size);
552}
553
554/**
555 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
556 * @skb:      send buffer
557 * @count:    number of buffers used
558 *
559 * Note: Our HW can't scatter-gather more than 8 fragments to build
560 * a packet on the wire and so we need to figure out the cases where we
561 * need to linearize the skb.
562 **/
563static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
564{
565	/* Both TSO and single send will work if count is less than 8 */
566	if (likely(count < I40E_MAX_BUFFER_TXD))
567		return false;
568
569	if (skb_is_gso(skb))
570		return __i40e_chk_linearize(skb);
571
572	/* we can support up to 8 data buffers for a single send */
573	return count != I40E_MAX_BUFFER_TXD;
574}
575
576/**
577 * txring_txq - Find the netdev Tx ring based on the i40e Tx ring
578 * @ring: Tx ring to find the netdev equivalent of
579 **/
580static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
581{
582	return netdev_get_tx_queue(ring->netdev, ring->queue_index);
583}
584#endif /* _I40E_TXRX_H_ */
v4.17
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*******************************************************************************
  3 *
  4 * Intel Ethernet Controller XL710 Family Linux Driver
  5 * Copyright(c) 2013 - 2016 Intel Corporation.
  6 *
  7 * This program is free software; you can redistribute it and/or modify it
  8 * under the terms and conditions of the GNU General Public License,
  9 * version 2, as published by the Free Software Foundation.
 10 *
 11 * This program is distributed in the hope it will be useful, but WITHOUT
 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 14 * more details.
 15 *
 16 * You should have received a copy of the GNU General Public License along
 17 * with this program.  If not, see <http://www.gnu.org/licenses/>.
 18 *
 19 * The full GNU General Public License is included in this distribution in
 20 * the file called "COPYING".
 21 *
 22 * Contact Information:
 23 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 24 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 25 *
 26 ******************************************************************************/
 27
 28#ifndef _I40E_TXRX_H_
 29#define _I40E_TXRX_H_
 30
 31#include <net/xdp.h>
 32
 33/* Interrupt Throttling and Rate Limiting Goodies */
 34#define I40E_DEFAULT_IRQ_WORK      256
 35
 36/* The datasheet for the X710 and XL710 indicate that the maximum value for
 37 * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
 38 * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
 39 * the register value which is divided by 2 lets use the actual values and
 40 * avoid an excessive amount of translation.
 41 */
 42#define I40E_ITR_DYNAMIC	0x8000	/* use top bit as a flag */
 43#define I40E_ITR_MASK		0x1FFE	/* mask for ITR register value */
 44#define I40E_MIN_ITR		     2	/* reg uses 2 usec resolution */
 45#define I40E_ITR_100K		    10	/* all values below must be even */
 46#define I40E_ITR_50K		    20
 47#define I40E_ITR_20K		    50
 48#define I40E_ITR_18K		    60
 49#define I40E_ITR_8K		   122
 50#define I40E_MAX_ITR		  8160	/* maximum value as per datasheet */
 51#define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC)
 52#define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK)
 53#define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC))
 54
 55#define I40E_ITR_RX_DEF		(I40E_ITR_20K | I40E_ITR_DYNAMIC)
 56#define I40E_ITR_TX_DEF		(I40E_ITR_20K | I40E_ITR_DYNAMIC)
 57
 58/* 0x40 is the enable bit for interrupt rate limiting, and must be set if
 59 * the value of the rate limit is non-zero
 60 */
 61#define INTRL_ENA                  BIT(6)
 62#define I40E_MAX_INTRL             0x3B    /* reg uses 4 usec resolution */
 63#define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
 64
 65/**
 66 * i40e_intrl_usec_to_reg - convert interrupt rate limit to register
 67 * @intrl: interrupt rate limit to convert
 68 *
 69 * This function converts a decimal interrupt rate limit to the appropriate
 70 * register format expected by the firmware when setting interrupt rate limit.
 71 */
 72static inline u16 i40e_intrl_usec_to_reg(int intrl)
 73{
 74	if (intrl >> 2)
 75		return ((intrl >> 2) | INTRL_ENA);
 76	else
 77		return 0;
 78}
 79#define I40E_INTRL_8K              125     /* 8000 ints/sec */
 80#define I40E_INTRL_62K             16      /* 62500 ints/sec */
 81#define I40E_INTRL_83K             12      /* 83333 ints/sec */
 82
 83#define I40E_QUEUE_END_OF_LIST 0x7FF
 84
 85/* this enum matches hardware bits and is meant to be used by DYN_CTLN
 86 * registers and QINT registers or more generally anywhere in the manual
 87 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
 88 * register but instead is a special value meaning "don't update" ITR0/1/2.
 89 */
 90enum i40e_dyn_idx_t {
 91	I40E_IDX_ITR0 = 0,
 92	I40E_IDX_ITR1 = 1,
 93	I40E_IDX_ITR2 = 2,
 94	I40E_ITR_NONE = 3	/* ITR_NONE must not be used as an index */
 95};
 96
 97/* these are indexes into ITRN registers */
 98#define I40E_RX_ITR    I40E_IDX_ITR0
 99#define I40E_TX_ITR    I40E_IDX_ITR1
100#define I40E_PE_ITR    I40E_IDX_ITR2
101
102/* Supported RSS offloads */
103#define I40E_DEFAULT_RSS_HENA ( \
104	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
105	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
106	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
107	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
108	BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
109	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
110	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
111	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
112	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
113	BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
114	BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
115
116#define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
117	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
118	BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
119	BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
120	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
121	BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
122	BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
123
124#define i40e_pf_get_default_rss_hena(pf) \
125	(((pf)->hw_features & I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \
126	  I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
127
128/* Supported Rx Buffer Sizes (a multiple of 128) */
129#define I40E_RXBUFFER_256   256
130#define I40E_RXBUFFER_1536  1536  /* 128B aligned standard Ethernet frame */
131#define I40E_RXBUFFER_2048  2048
132#define I40E_RXBUFFER_3072  3072  /* Used for large frames w/ padding */
133#define I40E_MAX_RXBUFFER   9728  /* largest size for single descriptor */
134
135/* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
136 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
137 * this adds up to 512 bytes of extra data meaning the smallest allocation
138 * we could have is 1K.
139 * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
140 * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
141 */
142#define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
143#define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
144#define i40e_rx_desc i40e_32byte_rx_desc
145
146#define I40E_RX_DMA_ATTR \
147	(DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
148
149/* Attempt to maximize the headroom available for incoming frames.  We
150 * use a 2K buffer for receives and need 1536/1534 to store the data for
151 * the frame.  This leaves us with 512 bytes of room.  From that we need
152 * to deduct the space needed for the shared info and the padding needed
153 * to IP align the frame.
154 *
155 * Note: For cache line sizes 256 or larger this value is going to end
156 *	 up negative.  In these cases we should fall back to the legacy
157 *	 receive path.
158 */
159#if (PAGE_SIZE < 8192)
160#define I40E_2K_TOO_SMALL_WITH_PADDING \
161((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
162
163static inline int i40e_compute_pad(int rx_buf_len)
164{
165	int page_size, pad_size;
166
167	page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
168	pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
169
170	return pad_size;
171}
172
173static inline int i40e_skb_pad(void)
174{
175	int rx_buf_len;
176
177	/* If a 2K buffer cannot handle a standard Ethernet frame then
178	 * optimize padding for a 3K buffer instead of a 1.5K buffer.
179	 *
180	 * For a 3K buffer we need to add enough padding to allow for
181	 * tailroom due to NET_IP_ALIGN possibly shifting us out of
182	 * cache-line alignment.
183	 */
184	if (I40E_2K_TOO_SMALL_WITH_PADDING)
185		rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
186	else
187		rx_buf_len = I40E_RXBUFFER_1536;
188
189	/* if needed make room for NET_IP_ALIGN */
190	rx_buf_len -= NET_IP_ALIGN;
191
192	return i40e_compute_pad(rx_buf_len);
193}
194
195#define I40E_SKB_PAD i40e_skb_pad()
196#else
197#define I40E_2K_TOO_SMALL_WITH_PADDING false
198#define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
199#endif
200
201/**
202 * i40e_test_staterr - tests bits in Rx descriptor status and error fields
203 * @rx_desc: pointer to receive descriptor (in le64 format)
204 * @stat_err_bits: value to mask
205 *
206 * This function does some fast chicanery in order to return the
207 * value of the mask which is really only used for boolean tests.
208 * The status_error_len doesn't need to be shifted because it begins
209 * at offset zero.
210 */
211static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
212				     const u64 stat_err_bits)
213{
214	return !!(rx_desc->wb.qword1.status_error_len &
215		  cpu_to_le64(stat_err_bits));
216}
217
218/* How many Rx Buffers do we bundle into one write to the hardware ? */
219#define I40E_RX_BUFFER_WRITE	32	/* Must be power of 2 */
220#define I40E_RX_INCREMENT(r, i) \
221	do {					\
222		(i)++;				\
223		if ((i) == (r)->count)		\
224			i = 0;			\
225		r->next_to_clean = i;		\
226	} while (0)
227
228#define I40E_RX_NEXT_DESC(r, i, n)		\
229	do {					\
230		(i)++;				\
231		if ((i) == (r)->count)		\
232			i = 0;			\
233		(n) = I40E_RX_DESC((r), (i));	\
234	} while (0)
235
236#define I40E_RX_NEXT_DESC_PREFETCH(r, i, n)		\
237	do {						\
238		I40E_RX_NEXT_DESC((r), (i), (n));	\
239		prefetch((n));				\
240	} while (0)
241
242#define I40E_MAX_BUFFER_TXD	8
243#define I40E_MIN_TX_LEN		17
244
245/* The size limit for a transmit buffer in a descriptor is (16K - 1).
246 * In order to align with the read requests we will align the value to
247 * the nearest 4K which represents our maximum read request size.
248 */
249#define I40E_MAX_READ_REQ_SIZE		4096
250#define I40E_MAX_DATA_PER_TXD		(16 * 1024 - 1)
251#define I40E_MAX_DATA_PER_TXD_ALIGNED \
252	(I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
253
254/**
255 * i40e_txd_use_count  - estimate the number of descriptors needed for Tx
256 * @size: transmit request size in bytes
257 *
258 * Due to hardware alignment restrictions (4K alignment), we need to
259 * assume that we can have no more than 12K of data per descriptor, even
260 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
261 * Thus, we need to divide by 12K. But division is slow! Instead,
262 * we decompose the operation into shifts and one relatively cheap
263 * multiply operation.
264 *
265 * To divide by 12K, we first divide by 4K, then divide by 3:
266 *     To divide by 4K, shift right by 12 bits
267 *     To divide by 3, multiply by 85, then divide by 256
268 *     (Divide by 256 is done by shifting right by 8 bits)
269 * Finally, we add one to round up. Because 256 isn't an exact multiple of
270 * 3, we'll underestimate near each multiple of 12K. This is actually more
271 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
272 * segment.  For our purposes this is accurate out to 1M which is orders of
273 * magnitude greater than our largest possible GSO size.
274 *
275 * This would then be implemented as:
276 *     return (((size >> 12) * 85) >> 8) + 1;
277 *
278 * Since multiplication and division are commutative, we can reorder
279 * operations into:
280 *     return ((size * 85) >> 20) + 1;
281 */
282static inline unsigned int i40e_txd_use_count(unsigned int size)
283{
284	return ((size * 85) >> 20) + 1;
285}
286
287/* Tx Descriptors needed, worst case */
288#define DESC_NEEDED (MAX_SKB_FRAGS + 6)
289#define I40E_MIN_DESC_PENDING	4
290
291#define I40E_TX_FLAGS_HW_VLAN		BIT(1)
292#define I40E_TX_FLAGS_SW_VLAN		BIT(2)
293#define I40E_TX_FLAGS_TSO		BIT(3)
294#define I40E_TX_FLAGS_IPV4		BIT(4)
295#define I40E_TX_FLAGS_IPV6		BIT(5)
296#define I40E_TX_FLAGS_FCCRC		BIT(6)
297#define I40E_TX_FLAGS_FSO		BIT(7)
298#define I40E_TX_FLAGS_TSYN		BIT(8)
299#define I40E_TX_FLAGS_FD_SB		BIT(9)
300#define I40E_TX_FLAGS_UDP_TUNNEL	BIT(10)
301#define I40E_TX_FLAGS_VLAN_MASK		0xffff0000
302#define I40E_TX_FLAGS_VLAN_PRIO_MASK	0xe0000000
303#define I40E_TX_FLAGS_VLAN_PRIO_SHIFT	29
304#define I40E_TX_FLAGS_VLAN_SHIFT	16
305
306struct i40e_tx_buffer {
307	struct i40e_tx_desc *next_to_watch;
308	union {
 
309		struct sk_buff *skb;
310		void *raw_buf;
311	};
312	unsigned int bytecount;
313	unsigned short gso_segs;
314
315	DEFINE_DMA_UNMAP_ADDR(dma);
316	DEFINE_DMA_UNMAP_LEN(len);
317	u32 tx_flags;
318};
319
320struct i40e_rx_buffer {
321	dma_addr_t dma;
322	struct page *page;
323#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
324	__u32 page_offset;
325#else
326	__u16 page_offset;
327#endif
328	__u16 pagecnt_bias;
 
 
 
 
329};
330
331struct i40e_queue_stats {
332	u64 packets;
333	u64 bytes;
334};
335
336struct i40e_tx_queue_stats {
337	u64 restart_queue;
338	u64 tx_busy;
339	u64 tx_done_old;
340	u64 tx_linearize;
341	u64 tx_force_wb;
342	int prev_pkt_ctr;
343};
344
345struct i40e_rx_queue_stats {
346	u64 non_eop_descs;
347	u64 alloc_page_failed;
348	u64 alloc_buff_failed;
349	u64 page_reuse_count;
350	u64 realloc_count;
351};
352
353enum i40e_ring_state_t {
354	__I40E_TX_FDIR_INIT_DONE,
355	__I40E_TX_XPS_INIT_DONE,
356	__I40E_RING_STATE_NBITS /* must be last */
357};
358
359/* some useful defines for virtchannel interface, which
360 * is the only remaining user of header split
361 */
362#define I40E_RX_DTYPE_NO_SPLIT      0
363#define I40E_RX_DTYPE_HEADER_SPLIT  1
364#define I40E_RX_DTYPE_SPLIT_ALWAYS  2
365#define I40E_RX_SPLIT_L2      0x1
366#define I40E_RX_SPLIT_IP      0x2
367#define I40E_RX_SPLIT_TCP_UDP 0x4
368#define I40E_RX_SPLIT_SCTP    0x8
369
370/* struct that defines a descriptor ring, associated with a VSI */
371struct i40e_ring {
372	struct i40e_ring *next;		/* pointer to next ring in q_vector */
373	void *desc;			/* Descriptor ring memory */
374	struct device *dev;		/* Used for DMA mapping */
375	struct net_device *netdev;	/* netdev ring maps to */
376	struct bpf_prog *xdp_prog;
377	union {
378		struct i40e_tx_buffer *tx_bi;
379		struct i40e_rx_buffer *rx_bi;
380	};
381	DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS);
382	u16 queue_index;		/* Queue number of ring */
383	u8 dcb_tc;			/* Traffic class of ring */
384	u8 __iomem *tail;
385
386	/* high bit set means dynamic, use accessor routines to read/write.
387	 * hardware only supports 2us resolution for the ITR registers.
388	 * these values always store the USER setting, and must be converted
389	 * before programming to a register.
390	 */
391	u16 itr_setting;
392
393	u16 count;			/* Number of descriptors */
394	u16 reg_idx;			/* HW register index of the ring */
395	u16 rx_buf_len;
396
397	/* used in interrupt processing */
398	u16 next_to_use;
399	u16 next_to_clean;
400
401	u8 atr_sample_rate;
402	u8 atr_count;
403
404	bool ring_active;		/* is ring online or not */
405	bool arm_wb;		/* do something to arm write back */
406	u8 packet_stride;
407
408	u16 flags;
409#define I40E_TXR_FLAGS_WB_ON_ITR		BIT(0)
410#define I40E_RXR_FLAGS_BUILD_SKB_ENABLED	BIT(1)
411#define I40E_TXR_FLAGS_XDP			BIT(2)
412
413	/* stats structs */
414	struct i40e_queue_stats	stats;
415	struct u64_stats_sync syncp;
416	union {
417		struct i40e_tx_queue_stats tx_stats;
418		struct i40e_rx_queue_stats rx_stats;
419	};
420
421	unsigned int size;		/* length of descriptor ring in bytes */
422	dma_addr_t dma;			/* physical address of ring */
423
424	struct i40e_vsi *vsi;		/* Backreference to associated VSI */
425	struct i40e_q_vector *q_vector;	/* Backreference to associated vector */
426
427	struct rcu_head rcu;		/* to avoid race on free */
428	u16 next_to_alloc;
429	struct sk_buff *skb;		/* When i40e_clean_rx_ring_irq() must
430					 * return before it sees the EOP for
431					 * the current packet, we save that skb
432					 * here and resume receiving this
433					 * packet the next time
434					 * i40e_clean_rx_ring_irq() is called
435					 * for this ring.
436					 */
437
438	struct i40e_channel *ch;
439	struct xdp_rxq_info xdp_rxq;
 
 
440} ____cacheline_internodealigned_in_smp;
441
442static inline bool ring_uses_build_skb(struct i40e_ring *ring)
443{
444	return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
445}
446
447static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
448{
449	ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
450}
451
452static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
453{
454	ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
455}
456
457static inline bool ring_is_xdp(struct i40e_ring *ring)
458{
459	return !!(ring->flags & I40E_TXR_FLAGS_XDP);
460}
461
462static inline void set_ring_xdp(struct i40e_ring *ring)
463{
464	ring->flags |= I40E_TXR_FLAGS_XDP;
465}
466
467#define I40E_ITR_ADAPTIVE_MIN_INC	0x0002
468#define I40E_ITR_ADAPTIVE_MIN_USECS	0x0002
469#define I40E_ITR_ADAPTIVE_MAX_USECS	0x007e
470#define I40E_ITR_ADAPTIVE_LATENCY	0x8000
471#define I40E_ITR_ADAPTIVE_BULK		0x0000
472#define ITR_IS_BULK(x) (!((x) & I40E_ITR_ADAPTIVE_LATENCY))
473
474struct i40e_ring_container {
475	struct i40e_ring *ring;		/* pointer to linked list of ring(s) */
476	unsigned long next_update;	/* jiffies value of next update */
477	unsigned int total_bytes;	/* total bytes processed this int */
478	unsigned int total_packets;	/* total packets processed this int */
479	u16 count;
480	u16 target_itr;			/* target ITR setting for ring(s) */
481	u16 current_itr;		/* current ITR setting for ring(s) */
482};
483
484/* iterator for handling rings in ring container */
485#define i40e_for_each_ring(pos, head) \
486	for (pos = (head).ring; pos != NULL; pos = pos->next)
487
488static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
489{
490#if (PAGE_SIZE < 8192)
491	if (ring->rx_buf_len > (PAGE_SIZE / 2))
492		return 1;
493#endif
494	return 0;
495}
496
497#define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
498
499bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
500netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
501void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
502void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
503int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
504int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
505void i40e_free_tx_resources(struct i40e_ring *tx_ring);
506void i40e_free_rx_resources(struct i40e_ring *rx_ring);
507int i40e_napi_poll(struct napi_struct *napi, int budget);
508void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
509u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw);
510void i40e_detect_recover_hung(struct i40e_vsi *vsi);
511int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
512bool __i40e_chk_linearize(struct sk_buff *skb);
513int i40e_xdp_xmit(struct net_device *dev, struct xdp_buff *xdp);
514void i40e_xdp_flush(struct net_device *dev);
515
516/**
517 * i40e_get_head - Retrieve head from head writeback
518 * @tx_ring:  tx ring to fetch head of
519 *
520 * Returns value of Tx ring head based on value stored
521 * in head write-back location
522 **/
523static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
524{
525	void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
526
527	return le32_to_cpu(*(volatile __le32 *)head);
528}
529
530/**
531 * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
532 * @skb:     send buffer
533 * @tx_ring: ring to send buffer on
534 *
535 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
536 * there is not enough descriptors available in this ring since we need at least
537 * one descriptor.
538 **/
539static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
540{
541	const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
542	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
543	int count = 0, size = skb_headlen(skb);
544
545	for (;;) {
546		count += i40e_txd_use_count(size);
547
548		if (!nr_frags--)
549			break;
550
551		size = skb_frag_size(frag++);
552	}
553
554	return count;
555}
556
557/**
558 * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
559 * @tx_ring: the ring to be checked
560 * @size:    the size buffer we want to assure is available
561 *
562 * Returns 0 if stop is not needed
563 **/
564static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
565{
566	if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
567		return 0;
568	return __i40e_maybe_stop_tx(tx_ring, size);
569}
570
571/**
572 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
573 * @skb:      send buffer
574 * @count:    number of buffers used
575 *
576 * Note: Our HW can't scatter-gather more than 8 fragments to build
577 * a packet on the wire and so we need to figure out the cases where we
578 * need to linearize the skb.
579 **/
580static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
581{
582	/* Both TSO and single send will work if count is less than 8 */
583	if (likely(count < I40E_MAX_BUFFER_TXD))
584		return false;
585
586	if (skb_is_gso(skb))
587		return __i40e_chk_linearize(skb);
588
589	/* we can support up to 8 data buffers for a single send */
590	return count != I40E_MAX_BUFFER_TXD;
591}
592
593/**
594 * txring_txq - Find the netdev Tx ring based on the i40e Tx ring
595 * @ring: Tx ring to find the netdev equivalent of
596 **/
597static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
598{
599	return netdev_get_tx_queue(ring->netdev, ring->queue_index);
600}
601#endif /* _I40E_TXRX_H_ */