Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid10.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 2000-2004 Neil Brown
   6 *
   7 * RAID-10 support for md.
   8 *
   9 * Base on code in raid1.c.  See raid1.c for further copyright information.
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#include <linux/slab.h>
  13#include <linux/delay.h>
  14#include <linux/blkdev.h>
  15#include <linux/module.h>
  16#include <linux/seq_file.h>
  17#include <linux/ratelimit.h>
  18#include <linux/kthread.h>
  19#include <linux/raid/md_p.h>
  20#include <trace/events/block.h>
  21#include "md.h"
  22#include "raid10.h"
  23#include "raid0.h"
  24#include "md-bitmap.h"
  25
  26/*
  27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  28 * The layout of data is defined by
  29 *    chunk_size
  30 *    raid_disks
  31 *    near_copies (stored in low byte of layout)
  32 *    far_copies (stored in second byte of layout)
  33 *    far_offset (stored in bit 16 of layout )
  34 *    use_far_sets (stored in bit 17 of layout )
  35 *    use_far_sets_bugfixed (stored in bit 18 of layout )
  36 *
  37 * The data to be stored is divided into chunks using chunksize.  Each device
  38 * is divided into far_copies sections.   In each section, chunks are laid out
  39 * in a style similar to raid0, but near_copies copies of each chunk is stored
  40 * (each on a different drive).  The starting device for each section is offset
  41 * near_copies from the starting device of the previous section.  Thus there
  42 * are (near_copies * far_copies) of each chunk, and each is on a different
  43 * drive.  near_copies and far_copies must be at least one, and their product
  44 * is at most raid_disks.
  45 *
  46 * If far_offset is true, then the far_copies are handled a bit differently.
  47 * The copies are still in different stripes, but instead of being very far
  48 * apart on disk, there are adjacent stripes.
  49 *
  50 * The far and offset algorithms are handled slightly differently if
  51 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
  52 * sets that are (near_copies * far_copies) in size.  The far copied stripes
  53 * are still shifted by 'near_copies' devices, but this shifting stays confined
  54 * to the set rather than the entire array.  This is done to improve the number
  55 * of device combinations that can fail without causing the array to fail.
  56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  57 * on a device):
  58 *    A B C D    A B C D E
  59 *      ...         ...
  60 *    D A B C    E A B C D
  61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  62 *    [A B] [C D]    [A B] [C D E]
  63 *    |...| |...|    |...| | ... |
  64 *    [B A] [D C]    [B A] [E C D]
  65 */
  66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67static void allow_barrier(struct r10conf *conf);
  68static void lower_barrier(struct r10conf *conf);
  69static int _enough(struct r10conf *conf, int previous, int ignore);
  70static int enough(struct r10conf *conf, int ignore);
  71static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
  72				int *skipped);
  73static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
  74static void end_reshape_write(struct bio *bio);
  75static void end_reshape(struct r10conf *conf);
  76
  77#define raid10_log(md, fmt, args...)				\
  78	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
  79
  80#include "raid1-10.c"
  81
  82/*
  83 * for resync bio, r10bio pointer can be retrieved from the per-bio
  84 * 'struct resync_pages'.
  85 */
  86static inline struct r10bio *get_resync_r10bio(struct bio *bio)
  87{
  88	return get_resync_pages(bio)->raid_bio;
  89}
  90
  91static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
  92{
  93	struct r10conf *conf = data;
  94	int size = offsetof(struct r10bio, devs[conf->copies]);
  95
  96	/* allocate a r10bio with room for raid_disks entries in the
  97	 * bios array */
  98	return kzalloc(size, gfp_flags);
  99}
 100
 
 
 
 
 
 101#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 102/* amount of memory to reserve for resync requests */
 103#define RESYNC_WINDOW (1024*1024)
 104/* maximum number of concurrent requests, memory permitting */
 105#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 106#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
 107#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 108
 109/*
 110 * When performing a resync, we need to read and compare, so
 111 * we need as many pages are there are copies.
 112 * When performing a recovery, we need 2 bios, one for read,
 113 * one for write (we recover only one drive per r10buf)
 114 *
 115 */
 116static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 117{
 118	struct r10conf *conf = data;
 119	struct r10bio *r10_bio;
 120	struct bio *bio;
 121	int j;
 122	int nalloc, nalloc_rp;
 123	struct resync_pages *rps;
 124
 125	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 126	if (!r10_bio)
 127		return NULL;
 128
 129	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 130	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 131		nalloc = conf->copies; /* resync */
 132	else
 133		nalloc = 2; /* recovery */
 134
 135	/* allocate once for all bios */
 136	if (!conf->have_replacement)
 137		nalloc_rp = nalloc;
 138	else
 139		nalloc_rp = nalloc * 2;
 140	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
 141	if (!rps)
 142		goto out_free_r10bio;
 143
 144	/*
 145	 * Allocate bios.
 146	 */
 147	for (j = nalloc ; j-- ; ) {
 148		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 149		if (!bio)
 150			goto out_free_bio;
 151		r10_bio->devs[j].bio = bio;
 152		if (!conf->have_replacement)
 153			continue;
 154		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 155		if (!bio)
 156			goto out_free_bio;
 157		r10_bio->devs[j].repl_bio = bio;
 158	}
 159	/*
 160	 * Allocate RESYNC_PAGES data pages and attach them
 161	 * where needed.
 162	 */
 163	for (j = 0; j < nalloc; j++) {
 164		struct bio *rbio = r10_bio->devs[j].repl_bio;
 165		struct resync_pages *rp, *rp_repl;
 166
 167		rp = &rps[j];
 168		if (rbio)
 169			rp_repl = &rps[nalloc + j];
 170
 171		bio = r10_bio->devs[j].bio;
 172
 173		if (!j || test_bit(MD_RECOVERY_SYNC,
 174				   &conf->mddev->recovery)) {
 175			if (resync_alloc_pages(rp, gfp_flags))
 176				goto out_free_pages;
 177		} else {
 178			memcpy(rp, &rps[0], sizeof(*rp));
 179			resync_get_all_pages(rp);
 180		}
 181
 182		rp->raid_bio = r10_bio;
 183		bio->bi_private = rp;
 184		if (rbio) {
 185			memcpy(rp_repl, rp, sizeof(*rp));
 186			rbio->bi_private = rp_repl;
 187		}
 188	}
 189
 190	return r10_bio;
 191
 192out_free_pages:
 193	while (--j >= 0)
 194		resync_free_pages(&rps[j * 2]);
 195
 196	j = 0;
 197out_free_bio:
 198	for ( ; j < nalloc; j++) {
 199		if (r10_bio->devs[j].bio)
 200			bio_put(r10_bio->devs[j].bio);
 201		if (r10_bio->devs[j].repl_bio)
 202			bio_put(r10_bio->devs[j].repl_bio);
 203	}
 204	kfree(rps);
 205out_free_r10bio:
 206	rbio_pool_free(r10_bio, conf);
 207	return NULL;
 208}
 209
 210static void r10buf_pool_free(void *__r10_bio, void *data)
 211{
 212	struct r10conf *conf = data;
 213	struct r10bio *r10bio = __r10_bio;
 214	int j;
 215	struct resync_pages *rp = NULL;
 216
 217	for (j = conf->copies; j--; ) {
 218		struct bio *bio = r10bio->devs[j].bio;
 219
 220		if (bio) {
 221			rp = get_resync_pages(bio);
 222			resync_free_pages(rp);
 223			bio_put(bio);
 224		}
 225
 226		bio = r10bio->devs[j].repl_bio;
 227		if (bio)
 228			bio_put(bio);
 229	}
 230
 231	/* resync pages array stored in the 1st bio's .bi_private */
 232	kfree(rp);
 233
 234	rbio_pool_free(r10bio, conf);
 235}
 236
 237static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 238{
 239	int i;
 240
 241	for (i = 0; i < conf->copies; i++) {
 242		struct bio **bio = & r10_bio->devs[i].bio;
 243		if (!BIO_SPECIAL(*bio))
 244			bio_put(*bio);
 245		*bio = NULL;
 246		bio = &r10_bio->devs[i].repl_bio;
 247		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 248			bio_put(*bio);
 249		*bio = NULL;
 250	}
 251}
 252
 253static void free_r10bio(struct r10bio *r10_bio)
 254{
 255	struct r10conf *conf = r10_bio->mddev->private;
 256
 257	put_all_bios(conf, r10_bio);
 258	mempool_free(r10_bio, &conf->r10bio_pool);
 259}
 260
 261static void put_buf(struct r10bio *r10_bio)
 262{
 263	struct r10conf *conf = r10_bio->mddev->private;
 264
 265	mempool_free(r10_bio, &conf->r10buf_pool);
 266
 267	lower_barrier(conf);
 268}
 269
 270static void reschedule_retry(struct r10bio *r10_bio)
 271{
 272	unsigned long flags;
 273	struct mddev *mddev = r10_bio->mddev;
 274	struct r10conf *conf = mddev->private;
 275
 276	spin_lock_irqsave(&conf->device_lock, flags);
 277	list_add(&r10_bio->retry_list, &conf->retry_list);
 278	conf->nr_queued ++;
 279	spin_unlock_irqrestore(&conf->device_lock, flags);
 280
 281	/* wake up frozen array... */
 282	wake_up(&conf->wait_barrier);
 283
 284	md_wakeup_thread(mddev->thread);
 285}
 286
 287/*
 288 * raid_end_bio_io() is called when we have finished servicing a mirrored
 289 * operation and are ready to return a success/failure code to the buffer
 290 * cache layer.
 291 */
 292static void raid_end_bio_io(struct r10bio *r10_bio)
 293{
 294	struct bio *bio = r10_bio->master_bio;
 295	struct r10conf *conf = r10_bio->mddev->private;
 296
 297	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 298		bio->bi_status = BLK_STS_IOERR;
 299
 300	bio_endio(bio);
 301	/*
 302	 * Wake up any possible resync thread that waits for the device
 303	 * to go idle.
 304	 */
 305	allow_barrier(conf);
 306
 307	free_r10bio(r10_bio);
 308}
 309
 310/*
 311 * Update disk head position estimator based on IRQ completion info.
 312 */
 313static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 314{
 315	struct r10conf *conf = r10_bio->mddev->private;
 316
 317	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 318		r10_bio->devs[slot].addr + (r10_bio->sectors);
 319}
 320
 321/*
 322 * Find the disk number which triggered given bio
 323 */
 324static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 325			 struct bio *bio, int *slotp, int *replp)
 326{
 327	int slot;
 328	int repl = 0;
 329
 330	for (slot = 0; slot < conf->copies; slot++) {
 331		if (r10_bio->devs[slot].bio == bio)
 332			break;
 333		if (r10_bio->devs[slot].repl_bio == bio) {
 334			repl = 1;
 335			break;
 336		}
 337	}
 338
 339	BUG_ON(slot == conf->copies);
 340	update_head_pos(slot, r10_bio);
 341
 342	if (slotp)
 343		*slotp = slot;
 344	if (replp)
 345		*replp = repl;
 346	return r10_bio->devs[slot].devnum;
 347}
 348
 349static void raid10_end_read_request(struct bio *bio)
 350{
 351	int uptodate = !bio->bi_status;
 352	struct r10bio *r10_bio = bio->bi_private;
 353	int slot;
 354	struct md_rdev *rdev;
 355	struct r10conf *conf = r10_bio->mddev->private;
 356
 357	slot = r10_bio->read_slot;
 358	rdev = r10_bio->devs[slot].rdev;
 359	/*
 360	 * this branch is our 'one mirror IO has finished' event handler:
 361	 */
 362	update_head_pos(slot, r10_bio);
 363
 364	if (uptodate) {
 365		/*
 366		 * Set R10BIO_Uptodate in our master bio, so that
 367		 * we will return a good error code to the higher
 368		 * levels even if IO on some other mirrored buffer fails.
 369		 *
 370		 * The 'master' represents the composite IO operation to
 371		 * user-side. So if something waits for IO, then it will
 372		 * wait for the 'master' bio.
 373		 */
 374		set_bit(R10BIO_Uptodate, &r10_bio->state);
 375	} else {
 376		/* If all other devices that store this block have
 377		 * failed, we want to return the error upwards rather
 378		 * than fail the last device.  Here we redefine
 379		 * "uptodate" to mean "Don't want to retry"
 380		 */
 381		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 382			     rdev->raid_disk))
 383			uptodate = 1;
 384	}
 385	if (uptodate) {
 386		raid_end_bio_io(r10_bio);
 387		rdev_dec_pending(rdev, conf->mddev);
 388	} else {
 389		/*
 390		 * oops, read error - keep the refcount on the rdev
 391		 */
 392		char b[BDEVNAME_SIZE];
 393		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
 394				   mdname(conf->mddev),
 395				   bdevname(rdev->bdev, b),
 396				   (unsigned long long)r10_bio->sector);
 397		set_bit(R10BIO_ReadError, &r10_bio->state);
 398		reschedule_retry(r10_bio);
 399	}
 400}
 401
 402static void close_write(struct r10bio *r10_bio)
 403{
 404	/* clear the bitmap if all writes complete successfully */
 405	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 406			   r10_bio->sectors,
 407			   !test_bit(R10BIO_Degraded, &r10_bio->state),
 408			   0);
 409	md_write_end(r10_bio->mddev);
 410}
 411
 412static void one_write_done(struct r10bio *r10_bio)
 413{
 414	if (atomic_dec_and_test(&r10_bio->remaining)) {
 415		if (test_bit(R10BIO_WriteError, &r10_bio->state))
 416			reschedule_retry(r10_bio);
 417		else {
 418			close_write(r10_bio);
 419			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 420				reschedule_retry(r10_bio);
 421			else
 422				raid_end_bio_io(r10_bio);
 423		}
 424	}
 425}
 426
 427static void raid10_end_write_request(struct bio *bio)
 428{
 429	struct r10bio *r10_bio = bio->bi_private;
 430	int dev;
 431	int dec_rdev = 1;
 432	struct r10conf *conf = r10_bio->mddev->private;
 433	int slot, repl;
 434	struct md_rdev *rdev = NULL;
 435	struct bio *to_put = NULL;
 436	bool discard_error;
 437
 438	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 439
 440	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 441
 442	if (repl)
 443		rdev = conf->mirrors[dev].replacement;
 444	if (!rdev) {
 445		smp_rmb();
 446		repl = 0;
 447		rdev = conf->mirrors[dev].rdev;
 448	}
 449	/*
 450	 * this branch is our 'one mirror IO has finished' event handler:
 451	 */
 452	if (bio->bi_status && !discard_error) {
 453		if (repl)
 454			/* Never record new bad blocks to replacement,
 455			 * just fail it.
 456			 */
 457			md_error(rdev->mddev, rdev);
 458		else {
 459			set_bit(WriteErrorSeen,	&rdev->flags);
 460			if (!test_and_set_bit(WantReplacement, &rdev->flags))
 461				set_bit(MD_RECOVERY_NEEDED,
 462					&rdev->mddev->recovery);
 463
 464			dec_rdev = 0;
 465			if (test_bit(FailFast, &rdev->flags) &&
 466			    (bio->bi_opf & MD_FAILFAST)) {
 467				md_error(rdev->mddev, rdev);
 468			}
 469
 470			/*
 471			 * When the device is faulty, it is not necessary to
 472			 * handle write error.
 473			 * For failfast, this is the only remaining device,
 474			 * We need to retry the write without FailFast.
 475			 */
 476			if (!test_bit(Faulty, &rdev->flags))
 
 
 
 477				set_bit(R10BIO_WriteError, &r10_bio->state);
 478			else {
 479				r10_bio->devs[slot].bio = NULL;
 480				to_put = bio;
 481				dec_rdev = 1;
 482			}
 483		}
 484	} else {
 485		/*
 486		 * Set R10BIO_Uptodate in our master bio, so that
 487		 * we will return a good error code for to the higher
 488		 * levels even if IO on some other mirrored buffer fails.
 489		 *
 490		 * The 'master' represents the composite IO operation to
 491		 * user-side. So if something waits for IO, then it will
 492		 * wait for the 'master' bio.
 493		 */
 494		sector_t first_bad;
 495		int bad_sectors;
 496
 497		/*
 498		 * Do not set R10BIO_Uptodate if the current device is
 499		 * rebuilding or Faulty. This is because we cannot use
 500		 * such device for properly reading the data back (we could
 501		 * potentially use it, if the current write would have felt
 502		 * before rdev->recovery_offset, but for simplicity we don't
 503		 * check this here.
 504		 */
 505		if (test_bit(In_sync, &rdev->flags) &&
 506		    !test_bit(Faulty, &rdev->flags))
 507			set_bit(R10BIO_Uptodate, &r10_bio->state);
 508
 509		/* Maybe we can clear some bad blocks. */
 510		if (is_badblock(rdev,
 511				r10_bio->devs[slot].addr,
 512				r10_bio->sectors,
 513				&first_bad, &bad_sectors) && !discard_error) {
 514			bio_put(bio);
 515			if (repl)
 516				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 517			else
 518				r10_bio->devs[slot].bio = IO_MADE_GOOD;
 519			dec_rdev = 0;
 520			set_bit(R10BIO_MadeGood, &r10_bio->state);
 521		}
 522	}
 523
 524	/*
 525	 *
 526	 * Let's see if all mirrored write operations have finished
 527	 * already.
 528	 */
 529	one_write_done(r10_bio);
 530	if (dec_rdev)
 531		rdev_dec_pending(rdev, conf->mddev);
 532	if (to_put)
 533		bio_put(to_put);
 534}
 535
 536/*
 537 * RAID10 layout manager
 538 * As well as the chunksize and raid_disks count, there are two
 539 * parameters: near_copies and far_copies.
 540 * near_copies * far_copies must be <= raid_disks.
 541 * Normally one of these will be 1.
 542 * If both are 1, we get raid0.
 543 * If near_copies == raid_disks, we get raid1.
 544 *
 545 * Chunks are laid out in raid0 style with near_copies copies of the
 546 * first chunk, followed by near_copies copies of the next chunk and
 547 * so on.
 548 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 549 * as described above, we start again with a device offset of near_copies.
 550 * So we effectively have another copy of the whole array further down all
 551 * the drives, but with blocks on different drives.
 552 * With this layout, and block is never stored twice on the one device.
 553 *
 554 * raid10_find_phys finds the sector offset of a given virtual sector
 555 * on each device that it is on.
 556 *
 557 * raid10_find_virt does the reverse mapping, from a device and a
 558 * sector offset to a virtual address
 559 */
 560
 561static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 562{
 563	int n,f;
 564	sector_t sector;
 565	sector_t chunk;
 566	sector_t stripe;
 567	int dev;
 568	int slot = 0;
 569	int last_far_set_start, last_far_set_size;
 570
 571	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 572	last_far_set_start *= geo->far_set_size;
 573
 574	last_far_set_size = geo->far_set_size;
 575	last_far_set_size += (geo->raid_disks % geo->far_set_size);
 576
 577	/* now calculate first sector/dev */
 578	chunk = r10bio->sector >> geo->chunk_shift;
 579	sector = r10bio->sector & geo->chunk_mask;
 580
 581	chunk *= geo->near_copies;
 582	stripe = chunk;
 583	dev = sector_div(stripe, geo->raid_disks);
 584	if (geo->far_offset)
 585		stripe *= geo->far_copies;
 586
 587	sector += stripe << geo->chunk_shift;
 588
 589	/* and calculate all the others */
 590	for (n = 0; n < geo->near_copies; n++) {
 591		int d = dev;
 592		int set;
 593		sector_t s = sector;
 594		r10bio->devs[slot].devnum = d;
 595		r10bio->devs[slot].addr = s;
 596		slot++;
 597
 598		for (f = 1; f < geo->far_copies; f++) {
 599			set = d / geo->far_set_size;
 600			d += geo->near_copies;
 601
 602			if ((geo->raid_disks % geo->far_set_size) &&
 603			    (d > last_far_set_start)) {
 604				d -= last_far_set_start;
 605				d %= last_far_set_size;
 606				d += last_far_set_start;
 607			} else {
 608				d %= geo->far_set_size;
 609				d += geo->far_set_size * set;
 610			}
 611			s += geo->stride;
 612			r10bio->devs[slot].devnum = d;
 613			r10bio->devs[slot].addr = s;
 614			slot++;
 615		}
 616		dev++;
 617		if (dev >= geo->raid_disks) {
 618			dev = 0;
 619			sector += (geo->chunk_mask + 1);
 620		}
 621	}
 622}
 623
 624static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 625{
 626	struct geom *geo = &conf->geo;
 627
 628	if (conf->reshape_progress != MaxSector &&
 629	    ((r10bio->sector >= conf->reshape_progress) !=
 630	     conf->mddev->reshape_backwards)) {
 631		set_bit(R10BIO_Previous, &r10bio->state);
 632		geo = &conf->prev;
 633	} else
 634		clear_bit(R10BIO_Previous, &r10bio->state);
 635
 636	__raid10_find_phys(geo, r10bio);
 637}
 638
 639static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 640{
 641	sector_t offset, chunk, vchunk;
 642	/* Never use conf->prev as this is only called during resync
 643	 * or recovery, so reshape isn't happening
 644	 */
 645	struct geom *geo = &conf->geo;
 646	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 647	int far_set_size = geo->far_set_size;
 648	int last_far_set_start;
 649
 650	if (geo->raid_disks % geo->far_set_size) {
 651		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 652		last_far_set_start *= geo->far_set_size;
 653
 654		if (dev >= last_far_set_start) {
 655			far_set_size = geo->far_set_size;
 656			far_set_size += (geo->raid_disks % geo->far_set_size);
 657			far_set_start = last_far_set_start;
 658		}
 659	}
 660
 661	offset = sector & geo->chunk_mask;
 662	if (geo->far_offset) {
 663		int fc;
 664		chunk = sector >> geo->chunk_shift;
 665		fc = sector_div(chunk, geo->far_copies);
 666		dev -= fc * geo->near_copies;
 667		if (dev < far_set_start)
 668			dev += far_set_size;
 669	} else {
 670		while (sector >= geo->stride) {
 671			sector -= geo->stride;
 672			if (dev < (geo->near_copies + far_set_start))
 673				dev += far_set_size - geo->near_copies;
 674			else
 675				dev -= geo->near_copies;
 676		}
 677		chunk = sector >> geo->chunk_shift;
 678	}
 679	vchunk = chunk * geo->raid_disks + dev;
 680	sector_div(vchunk, geo->near_copies);
 681	return (vchunk << geo->chunk_shift) + offset;
 682}
 683
 684/*
 685 * This routine returns the disk from which the requested read should
 686 * be done. There is a per-array 'next expected sequential IO' sector
 687 * number - if this matches on the next IO then we use the last disk.
 688 * There is also a per-disk 'last know head position' sector that is
 689 * maintained from IRQ contexts, both the normal and the resync IO
 690 * completion handlers update this position correctly. If there is no
 691 * perfect sequential match then we pick the disk whose head is closest.
 692 *
 693 * If there are 2 mirrors in the same 2 devices, performance degrades
 694 * because position is mirror, not device based.
 695 *
 696 * The rdev for the device selected will have nr_pending incremented.
 697 */
 698
 699/*
 700 * FIXME: possibly should rethink readbalancing and do it differently
 701 * depending on near_copies / far_copies geometry.
 702 */
 703static struct md_rdev *read_balance(struct r10conf *conf,
 704				    struct r10bio *r10_bio,
 705				    int *max_sectors)
 706{
 707	const sector_t this_sector = r10_bio->sector;
 708	int disk, slot;
 709	int sectors = r10_bio->sectors;
 710	int best_good_sectors;
 711	sector_t new_distance, best_dist;
 712	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
 713	int do_balance;
 714	int best_dist_slot, best_pending_slot;
 715	bool has_nonrot_disk = false;
 716	unsigned int min_pending;
 717	struct geom *geo = &conf->geo;
 718
 719	raid10_find_phys(conf, r10_bio);
 720	rcu_read_lock();
 721	best_dist_slot = -1;
 722	min_pending = UINT_MAX;
 723	best_dist_rdev = NULL;
 724	best_pending_rdev = NULL;
 725	best_dist = MaxSector;
 726	best_good_sectors = 0;
 727	do_balance = 1;
 728	clear_bit(R10BIO_FailFast, &r10_bio->state);
 729	/*
 730	 * Check if we can balance. We can balance on the whole
 731	 * device if no resync is going on (recovery is ok), or below
 732	 * the resync window. We take the first readable disk when
 733	 * above the resync window.
 734	 */
 735	if ((conf->mddev->recovery_cp < MaxSector
 736	     && (this_sector + sectors >= conf->next_resync)) ||
 737	    (mddev_is_clustered(conf->mddev) &&
 738	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 739					    this_sector + sectors)))
 740		do_balance = 0;
 741
 742	for (slot = 0; slot < conf->copies ; slot++) {
 743		sector_t first_bad;
 744		int bad_sectors;
 745		sector_t dev_sector;
 746		unsigned int pending;
 747		bool nonrot;
 748
 749		if (r10_bio->devs[slot].bio == IO_BLOCKED)
 750			continue;
 751		disk = r10_bio->devs[slot].devnum;
 752		rdev = rcu_dereference(conf->mirrors[disk].replacement);
 753		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 754		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 755			rdev = rcu_dereference(conf->mirrors[disk].rdev);
 756		if (rdev == NULL ||
 757		    test_bit(Faulty, &rdev->flags))
 758			continue;
 759		if (!test_bit(In_sync, &rdev->flags) &&
 760		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 761			continue;
 762
 763		dev_sector = r10_bio->devs[slot].addr;
 764		if (is_badblock(rdev, dev_sector, sectors,
 765				&first_bad, &bad_sectors)) {
 766			if (best_dist < MaxSector)
 767				/* Already have a better slot */
 768				continue;
 769			if (first_bad <= dev_sector) {
 770				/* Cannot read here.  If this is the
 771				 * 'primary' device, then we must not read
 772				 * beyond 'bad_sectors' from another device.
 773				 */
 774				bad_sectors -= (dev_sector - first_bad);
 775				if (!do_balance && sectors > bad_sectors)
 776					sectors = bad_sectors;
 777				if (best_good_sectors > sectors)
 778					best_good_sectors = sectors;
 779			} else {
 780				sector_t good_sectors =
 781					first_bad - dev_sector;
 782				if (good_sectors > best_good_sectors) {
 783					best_good_sectors = good_sectors;
 784					best_dist_slot = slot;
 785					best_dist_rdev = rdev;
 786				}
 787				if (!do_balance)
 788					/* Must read from here */
 789					break;
 790			}
 791			continue;
 792		} else
 793			best_good_sectors = sectors;
 794
 795		if (!do_balance)
 796			break;
 797
 798		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 799		has_nonrot_disk |= nonrot;
 800		pending = atomic_read(&rdev->nr_pending);
 801		if (min_pending > pending && nonrot) {
 802			min_pending = pending;
 803			best_pending_slot = slot;
 804			best_pending_rdev = rdev;
 805		}
 806
 807		if (best_dist_slot >= 0)
 808			/* At least 2 disks to choose from so failfast is OK */
 809			set_bit(R10BIO_FailFast, &r10_bio->state);
 810		/* This optimisation is debatable, and completely destroys
 811		 * sequential read speed for 'far copies' arrays.  So only
 812		 * keep it for 'near' arrays, and review those later.
 813		 */
 814		if (geo->near_copies > 1 && !pending)
 815			new_distance = 0;
 816
 817		/* for far > 1 always use the lowest address */
 818		else if (geo->far_copies > 1)
 819			new_distance = r10_bio->devs[slot].addr;
 820		else
 821			new_distance = abs(r10_bio->devs[slot].addr -
 822					   conf->mirrors[disk].head_position);
 823
 824		if (new_distance < best_dist) {
 825			best_dist = new_distance;
 826			best_dist_slot = slot;
 827			best_dist_rdev = rdev;
 828		}
 829	}
 830	if (slot >= conf->copies) {
 831		if (has_nonrot_disk) {
 832			slot = best_pending_slot;
 833			rdev = best_pending_rdev;
 834		} else {
 835			slot = best_dist_slot;
 836			rdev = best_dist_rdev;
 837		}
 838	}
 839
 840	if (slot >= 0) {
 841		atomic_inc(&rdev->nr_pending);
 842		r10_bio->read_slot = slot;
 843	} else
 844		rdev = NULL;
 845	rcu_read_unlock();
 846	*max_sectors = best_good_sectors;
 847
 848	return rdev;
 849}
 850
 851static int raid10_congested(struct mddev *mddev, int bits)
 852{
 853	struct r10conf *conf = mddev->private;
 854	int i, ret = 0;
 855
 856	if ((bits & (1 << WB_async_congested)) &&
 857	    conf->pending_count >= max_queued_requests)
 858		return 1;
 859
 860	rcu_read_lock();
 861	for (i = 0;
 862	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
 863		     && ret == 0;
 864	     i++) {
 865		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 866		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 867			struct request_queue *q = bdev_get_queue(rdev->bdev);
 868
 869			ret |= bdi_congested(q->backing_dev_info, bits);
 870		}
 871	}
 872	rcu_read_unlock();
 873	return ret;
 874}
 875
 876static void flush_pending_writes(struct r10conf *conf)
 877{
 878	/* Any writes that have been queued but are awaiting
 879	 * bitmap updates get flushed here.
 880	 */
 881	spin_lock_irq(&conf->device_lock);
 882
 883	if (conf->pending_bio_list.head) {
 884		struct blk_plug plug;
 885		struct bio *bio;
 886
 887		bio = bio_list_get(&conf->pending_bio_list);
 888		conf->pending_count = 0;
 889		spin_unlock_irq(&conf->device_lock);
 890
 891		/*
 892		 * As this is called in a wait_event() loop (see freeze_array),
 893		 * current->state might be TASK_UNINTERRUPTIBLE which will
 894		 * cause a warning when we prepare to wait again.  As it is
 895		 * rare that this path is taken, it is perfectly safe to force
 896		 * us to go around the wait_event() loop again, so the warning
 897		 * is a false-positive. Silence the warning by resetting
 898		 * thread state
 899		 */
 900		__set_current_state(TASK_RUNNING);
 901
 902		blk_start_plug(&plug);
 903		/* flush any pending bitmap writes to disk
 904		 * before proceeding w/ I/O */
 905		md_bitmap_unplug(conf->mddev->bitmap);
 906		wake_up(&conf->wait_barrier);
 907
 908		while (bio) { /* submit pending writes */
 909			struct bio *next = bio->bi_next;
 910			struct md_rdev *rdev = (void*)bio->bi_disk;
 911			bio->bi_next = NULL;
 912			bio_set_dev(bio, rdev->bdev);
 913			if (test_bit(Faulty, &rdev->flags)) {
 914				bio_io_error(bio);
 915			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
 916					    !blk_queue_discard(bio->bi_disk->queue)))
 917				/* Just ignore it */
 918				bio_endio(bio);
 919			else
 920				generic_make_request(bio);
 921			bio = next;
 922		}
 923		blk_finish_plug(&plug);
 924	} else
 925		spin_unlock_irq(&conf->device_lock);
 926}
 927
 928/* Barriers....
 929 * Sometimes we need to suspend IO while we do something else,
 930 * either some resync/recovery, or reconfigure the array.
 931 * To do this we raise a 'barrier'.
 932 * The 'barrier' is a counter that can be raised multiple times
 933 * to count how many activities are happening which preclude
 934 * normal IO.
 935 * We can only raise the barrier if there is no pending IO.
 936 * i.e. if nr_pending == 0.
 937 * We choose only to raise the barrier if no-one is waiting for the
 938 * barrier to go down.  This means that as soon as an IO request
 939 * is ready, no other operations which require a barrier will start
 940 * until the IO request has had a chance.
 941 *
 942 * So: regular IO calls 'wait_barrier'.  When that returns there
 943 *    is no backgroup IO happening,  It must arrange to call
 944 *    allow_barrier when it has finished its IO.
 945 * backgroup IO calls must call raise_barrier.  Once that returns
 946 *    there is no normal IO happeing.  It must arrange to call
 947 *    lower_barrier when the particular background IO completes.
 948 */
 949
 950static void raise_barrier(struct r10conf *conf, int force)
 951{
 952	BUG_ON(force && !conf->barrier);
 953	spin_lock_irq(&conf->resync_lock);
 954
 955	/* Wait until no block IO is waiting (unless 'force') */
 956	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 957			    conf->resync_lock);
 958
 959	/* block any new IO from starting */
 960	conf->barrier++;
 961
 962	/* Now wait for all pending IO to complete */
 963	wait_event_lock_irq(conf->wait_barrier,
 964			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
 965			    conf->resync_lock);
 966
 967	spin_unlock_irq(&conf->resync_lock);
 968}
 969
 970static void lower_barrier(struct r10conf *conf)
 971{
 972	unsigned long flags;
 973	spin_lock_irqsave(&conf->resync_lock, flags);
 974	conf->barrier--;
 975	spin_unlock_irqrestore(&conf->resync_lock, flags);
 976	wake_up(&conf->wait_barrier);
 977}
 978
 979static void wait_barrier(struct r10conf *conf)
 980{
 981	spin_lock_irq(&conf->resync_lock);
 982	if (conf->barrier) {
 983		conf->nr_waiting++;
 984		/* Wait for the barrier to drop.
 985		 * However if there are already pending
 986		 * requests (preventing the barrier from
 987		 * rising completely), and the
 988		 * pre-process bio queue isn't empty,
 989		 * then don't wait, as we need to empty
 990		 * that queue to get the nr_pending
 991		 * count down.
 992		 */
 993		raid10_log(conf->mddev, "wait barrier");
 994		wait_event_lock_irq(conf->wait_barrier,
 995				    !conf->barrier ||
 996				    (atomic_read(&conf->nr_pending) &&
 997				     current->bio_list &&
 998				     (!bio_list_empty(&current->bio_list[0]) ||
 999				      !bio_list_empty(&current->bio_list[1]))),
1000				    conf->resync_lock);
1001		conf->nr_waiting--;
1002		if (!conf->nr_waiting)
1003			wake_up(&conf->wait_barrier);
1004	}
1005	atomic_inc(&conf->nr_pending);
1006	spin_unlock_irq(&conf->resync_lock);
1007}
1008
1009static void allow_barrier(struct r10conf *conf)
1010{
1011	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1012			(conf->array_freeze_pending))
1013		wake_up(&conf->wait_barrier);
1014}
1015
1016static void freeze_array(struct r10conf *conf, int extra)
1017{
1018	/* stop syncio and normal IO and wait for everything to
1019	 * go quiet.
1020	 * We increment barrier and nr_waiting, and then
1021	 * wait until nr_pending match nr_queued+extra
1022	 * This is called in the context of one normal IO request
1023	 * that has failed. Thus any sync request that might be pending
1024	 * will be blocked by nr_pending, and we need to wait for
1025	 * pending IO requests to complete or be queued for re-try.
1026	 * Thus the number queued (nr_queued) plus this request (extra)
1027	 * must match the number of pending IOs (nr_pending) before
1028	 * we continue.
1029	 */
1030	spin_lock_irq(&conf->resync_lock);
1031	conf->array_freeze_pending++;
1032	conf->barrier++;
1033	conf->nr_waiting++;
1034	wait_event_lock_irq_cmd(conf->wait_barrier,
1035				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1036				conf->resync_lock,
1037				flush_pending_writes(conf));
1038
1039	conf->array_freeze_pending--;
1040	spin_unlock_irq(&conf->resync_lock);
1041}
1042
1043static void unfreeze_array(struct r10conf *conf)
1044{
1045	/* reverse the effect of the freeze */
1046	spin_lock_irq(&conf->resync_lock);
1047	conf->barrier--;
1048	conf->nr_waiting--;
1049	wake_up(&conf->wait_barrier);
1050	spin_unlock_irq(&conf->resync_lock);
1051}
1052
1053static sector_t choose_data_offset(struct r10bio *r10_bio,
1054				   struct md_rdev *rdev)
1055{
1056	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1057	    test_bit(R10BIO_Previous, &r10_bio->state))
1058		return rdev->data_offset;
1059	else
1060		return rdev->new_data_offset;
1061}
1062
1063struct raid10_plug_cb {
1064	struct blk_plug_cb	cb;
1065	struct bio_list		pending;
1066	int			pending_cnt;
1067};
1068
1069static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1070{
1071	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1072						   cb);
1073	struct mddev *mddev = plug->cb.data;
1074	struct r10conf *conf = mddev->private;
1075	struct bio *bio;
1076
1077	if (from_schedule || current->bio_list) {
1078		spin_lock_irq(&conf->device_lock);
1079		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1080		conf->pending_count += plug->pending_cnt;
1081		spin_unlock_irq(&conf->device_lock);
1082		wake_up(&conf->wait_barrier);
1083		md_wakeup_thread(mddev->thread);
1084		kfree(plug);
1085		return;
1086	}
1087
1088	/* we aren't scheduling, so we can do the write-out directly. */
1089	bio = bio_list_get(&plug->pending);
1090	md_bitmap_unplug(mddev->bitmap);
1091	wake_up(&conf->wait_barrier);
1092
1093	while (bio) { /* submit pending writes */
1094		struct bio *next = bio->bi_next;
1095		struct md_rdev *rdev = (void*)bio->bi_disk;
1096		bio->bi_next = NULL;
1097		bio_set_dev(bio, rdev->bdev);
1098		if (test_bit(Faulty, &rdev->flags)) {
1099			bio_io_error(bio);
1100		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1101				    !blk_queue_discard(bio->bi_disk->queue)))
1102			/* Just ignore it */
1103			bio_endio(bio);
1104		else
1105			generic_make_request(bio);
1106		bio = next;
1107	}
1108	kfree(plug);
1109}
1110
1111/*
1112 * 1. Register the new request and wait if the reconstruction thread has put
1113 * up a bar for new requests. Continue immediately if no resync is active
1114 * currently.
1115 * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1116 */
1117static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1118				 struct bio *bio, sector_t sectors)
1119{
1120	wait_barrier(conf);
1121	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1122	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1123	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1124		raid10_log(conf->mddev, "wait reshape");
1125		allow_barrier(conf);
1126		wait_event(conf->wait_barrier,
1127			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1128			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1129			   sectors);
1130		wait_barrier(conf);
1131	}
1132}
1133
1134static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1135				struct r10bio *r10_bio)
1136{
1137	struct r10conf *conf = mddev->private;
1138	struct bio *read_bio;
1139	const int op = bio_op(bio);
1140	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1141	int max_sectors;
 
1142	struct md_rdev *rdev;
1143	char b[BDEVNAME_SIZE];
1144	int slot = r10_bio->read_slot;
1145	struct md_rdev *err_rdev = NULL;
1146	gfp_t gfp = GFP_NOIO;
1147
1148	if (r10_bio->devs[slot].rdev) {
1149		/*
1150		 * This is an error retry, but we cannot
1151		 * safely dereference the rdev in the r10_bio,
1152		 * we must use the one in conf.
1153		 * If it has already been disconnected (unlikely)
1154		 * we lose the device name in error messages.
1155		 */
1156		int disk;
1157		/*
1158		 * As we are blocking raid10, it is a little safer to
1159		 * use __GFP_HIGH.
1160		 */
1161		gfp = GFP_NOIO | __GFP_HIGH;
1162
1163		rcu_read_lock();
1164		disk = r10_bio->devs[slot].devnum;
1165		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1166		if (err_rdev)
1167			bdevname(err_rdev->bdev, b);
1168		else {
1169			strcpy(b, "???");
1170			/* This never gets dereferenced */
1171			err_rdev = r10_bio->devs[slot].rdev;
1172		}
1173		rcu_read_unlock();
1174	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1175
1176	regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1177	rdev = read_balance(conf, r10_bio, &max_sectors);
1178	if (!rdev) {
1179		if (err_rdev) {
1180			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1181					    mdname(mddev), b,
1182					    (unsigned long long)r10_bio->sector);
1183		}
1184		raid_end_bio_io(r10_bio);
1185		return;
1186	}
1187	if (err_rdev)
1188		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1189				   mdname(mddev),
1190				   bdevname(rdev->bdev, b),
1191				   (unsigned long long)r10_bio->sector);
1192	if (max_sectors < bio_sectors(bio)) {
1193		struct bio *split = bio_split(bio, max_sectors,
1194					      gfp, &conf->bio_split);
1195		bio_chain(split, bio);
1196		allow_barrier(conf);
1197		generic_make_request(bio);
1198		wait_barrier(conf);
1199		bio = split;
1200		r10_bio->master_bio = bio;
1201		r10_bio->sectors = max_sectors;
1202	}
1203	slot = r10_bio->read_slot;
1204
1205	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1206
1207	r10_bio->devs[slot].bio = read_bio;
1208	r10_bio->devs[slot].rdev = rdev;
1209
1210	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1211		choose_data_offset(r10_bio, rdev);
1212	bio_set_dev(read_bio, rdev->bdev);
1213	read_bio->bi_end_io = raid10_end_read_request;
1214	bio_set_op_attrs(read_bio, op, do_sync);
1215	if (test_bit(FailFast, &rdev->flags) &&
1216	    test_bit(R10BIO_FailFast, &r10_bio->state))
1217	        read_bio->bi_opf |= MD_FAILFAST;
1218	read_bio->bi_private = r10_bio;
1219
1220	if (mddev->gendisk)
1221	        trace_block_bio_remap(read_bio->bi_disk->queue,
1222	                              read_bio, disk_devt(mddev->gendisk),
1223	                              r10_bio->sector);
1224	generic_make_request(read_bio);
1225	return;
1226}
1227
1228static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1229				  struct bio *bio, bool replacement,
1230				  int n_copy)
1231{
1232	const int op = bio_op(bio);
1233	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1234	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1235	unsigned long flags;
1236	struct blk_plug_cb *cb;
1237	struct raid10_plug_cb *plug = NULL;
1238	struct r10conf *conf = mddev->private;
1239	struct md_rdev *rdev;
1240	int devnum = r10_bio->devs[n_copy].devnum;
1241	struct bio *mbio;
1242
1243	if (replacement) {
1244		rdev = conf->mirrors[devnum].replacement;
1245		if (rdev == NULL) {
1246			/* Replacement just got moved to main 'rdev' */
1247			smp_mb();
1248			rdev = conf->mirrors[devnum].rdev;
1249		}
1250	} else
1251		rdev = conf->mirrors[devnum].rdev;
1252
1253	mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1254	if (replacement)
1255		r10_bio->devs[n_copy].repl_bio = mbio;
1256	else
1257		r10_bio->devs[n_copy].bio = mbio;
1258
1259	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1260				   choose_data_offset(r10_bio, rdev));
1261	bio_set_dev(mbio, rdev->bdev);
1262	mbio->bi_end_io	= raid10_end_write_request;
1263	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1264	if (!replacement && test_bit(FailFast,
1265				     &conf->mirrors[devnum].rdev->flags)
1266			 && enough(conf, devnum))
1267		mbio->bi_opf |= MD_FAILFAST;
1268	mbio->bi_private = r10_bio;
1269
1270	if (conf->mddev->gendisk)
1271		trace_block_bio_remap(mbio->bi_disk->queue,
1272				      mbio, disk_devt(conf->mddev->gendisk),
1273				      r10_bio->sector);
1274	/* flush_pending_writes() needs access to the rdev so...*/
1275	mbio->bi_disk = (void *)rdev;
1276
1277	atomic_inc(&r10_bio->remaining);
1278
1279	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1280	if (cb)
1281		plug = container_of(cb, struct raid10_plug_cb, cb);
1282	else
1283		plug = NULL;
1284	if (plug) {
1285		bio_list_add(&plug->pending, mbio);
1286		plug->pending_cnt++;
1287	} else {
1288		spin_lock_irqsave(&conf->device_lock, flags);
1289		bio_list_add(&conf->pending_bio_list, mbio);
1290		conf->pending_count++;
1291		spin_unlock_irqrestore(&conf->device_lock, flags);
1292		md_wakeup_thread(mddev->thread);
1293	}
1294}
1295
1296static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1297				 struct r10bio *r10_bio)
1298{
1299	struct r10conf *conf = mddev->private;
1300	int i;
1301	struct md_rdev *blocked_rdev;
1302	sector_t sectors;
1303	int max_sectors;
1304
1305	if ((mddev_is_clustered(mddev) &&
1306	     md_cluster_ops->area_resyncing(mddev, WRITE,
1307					    bio->bi_iter.bi_sector,
1308					    bio_end_sector(bio)))) {
1309		DEFINE_WAIT(w);
1310		for (;;) {
1311			prepare_to_wait(&conf->wait_barrier,
1312					&w, TASK_IDLE);
1313			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1314				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1315				break;
1316			schedule();
1317		}
1318		finish_wait(&conf->wait_barrier, &w);
1319	}
1320
 
 
 
 
 
 
 
1321	sectors = r10_bio->sectors;
1322	regular_request_wait(mddev, conf, bio, sectors);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1323	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1324	    (mddev->reshape_backwards
1325	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1326		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1327	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1328		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1329		/* Need to update reshape_position in metadata */
1330		mddev->reshape_position = conf->reshape_progress;
1331		set_mask_bits(&mddev->sb_flags, 0,
1332			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1333		md_wakeup_thread(mddev->thread);
1334		raid10_log(conf->mddev, "wait reshape metadata");
1335		wait_event(mddev->sb_wait,
1336			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1337
1338		conf->reshape_safe = mddev->reshape_position;
1339	}
1340
1341	if (conf->pending_count >= max_queued_requests) {
1342		md_wakeup_thread(mddev->thread);
1343		raid10_log(mddev, "wait queued");
1344		wait_event(conf->wait_barrier,
1345			   conf->pending_count < max_queued_requests);
1346	}
1347	/* first select target devices under rcu_lock and
1348	 * inc refcount on their rdev.  Record them by setting
1349	 * bios[x] to bio
1350	 * If there are known/acknowledged bad blocks on any device
1351	 * on which we have seen a write error, we want to avoid
1352	 * writing to those blocks.  This potentially requires several
1353	 * writes to write around the bad blocks.  Each set of writes
1354	 * gets its own r10_bio with a set of bios attached.
1355	 */
1356
1357	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1358	raid10_find_phys(conf, r10_bio);
1359retry_write:
1360	blocked_rdev = NULL;
1361	rcu_read_lock();
1362	max_sectors = r10_bio->sectors;
1363
1364	for (i = 0;  i < conf->copies; i++) {
1365		int d = r10_bio->devs[i].devnum;
1366		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1367		struct md_rdev *rrdev = rcu_dereference(
1368			conf->mirrors[d].replacement);
1369		if (rdev == rrdev)
1370			rrdev = NULL;
1371		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1372			atomic_inc(&rdev->nr_pending);
1373			blocked_rdev = rdev;
1374			break;
1375		}
1376		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1377			atomic_inc(&rrdev->nr_pending);
1378			blocked_rdev = rrdev;
1379			break;
1380		}
1381		if (rdev && (test_bit(Faulty, &rdev->flags)))
1382			rdev = NULL;
1383		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1384			rrdev = NULL;
1385
1386		r10_bio->devs[i].bio = NULL;
1387		r10_bio->devs[i].repl_bio = NULL;
1388
1389		if (!rdev && !rrdev) {
1390			set_bit(R10BIO_Degraded, &r10_bio->state);
1391			continue;
1392		}
1393		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1394			sector_t first_bad;
1395			sector_t dev_sector = r10_bio->devs[i].addr;
1396			int bad_sectors;
1397			int is_bad;
1398
1399			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1400					     &first_bad, &bad_sectors);
1401			if (is_bad < 0) {
1402				/* Mustn't write here until the bad block
1403				 * is acknowledged
1404				 */
1405				atomic_inc(&rdev->nr_pending);
1406				set_bit(BlockedBadBlocks, &rdev->flags);
1407				blocked_rdev = rdev;
1408				break;
1409			}
1410			if (is_bad && first_bad <= dev_sector) {
1411				/* Cannot write here at all */
1412				bad_sectors -= (dev_sector - first_bad);
1413				if (bad_sectors < max_sectors)
1414					/* Mustn't write more than bad_sectors
1415					 * to other devices yet
1416					 */
1417					max_sectors = bad_sectors;
1418				/* We don't set R10BIO_Degraded as that
1419				 * only applies if the disk is missing,
1420				 * so it might be re-added, and we want to
1421				 * know to recover this chunk.
1422				 * In this case the device is here, and the
1423				 * fact that this chunk is not in-sync is
1424				 * recorded in the bad block log.
1425				 */
1426				continue;
1427			}
1428			if (is_bad) {
1429				int good_sectors = first_bad - dev_sector;
1430				if (good_sectors < max_sectors)
1431					max_sectors = good_sectors;
1432			}
1433		}
1434		if (rdev) {
1435			r10_bio->devs[i].bio = bio;
1436			atomic_inc(&rdev->nr_pending);
1437		}
1438		if (rrdev) {
1439			r10_bio->devs[i].repl_bio = bio;
1440			atomic_inc(&rrdev->nr_pending);
1441		}
1442	}
1443	rcu_read_unlock();
1444
1445	if (unlikely(blocked_rdev)) {
1446		/* Have to wait for this device to get unblocked, then retry */
1447		int j;
1448		int d;
1449
1450		for (j = 0; j < i; j++) {
1451			if (r10_bio->devs[j].bio) {
1452				d = r10_bio->devs[j].devnum;
1453				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1454			}
1455			if (r10_bio->devs[j].repl_bio) {
1456				struct md_rdev *rdev;
1457				d = r10_bio->devs[j].devnum;
1458				rdev = conf->mirrors[d].replacement;
1459				if (!rdev) {
1460					/* Race with remove_disk */
1461					smp_mb();
1462					rdev = conf->mirrors[d].rdev;
1463				}
1464				rdev_dec_pending(rdev, mddev);
1465			}
1466		}
1467		allow_barrier(conf);
1468		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1469		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1470		wait_barrier(conf);
1471		goto retry_write;
1472	}
1473
1474	if (max_sectors < r10_bio->sectors)
1475		r10_bio->sectors = max_sectors;
1476
1477	if (r10_bio->sectors < bio_sectors(bio)) {
1478		struct bio *split = bio_split(bio, r10_bio->sectors,
1479					      GFP_NOIO, &conf->bio_split);
1480		bio_chain(split, bio);
1481		allow_barrier(conf);
1482		generic_make_request(bio);
1483		wait_barrier(conf);
1484		bio = split;
1485		r10_bio->master_bio = bio;
1486	}
1487
1488	atomic_set(&r10_bio->remaining, 1);
1489	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1490
1491	for (i = 0; i < conf->copies; i++) {
1492		if (r10_bio->devs[i].bio)
1493			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1494		if (r10_bio->devs[i].repl_bio)
1495			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1496	}
1497	one_write_done(r10_bio);
1498}
1499
1500static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1501{
1502	struct r10conf *conf = mddev->private;
1503	struct r10bio *r10_bio;
1504
1505	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1506
1507	r10_bio->master_bio = bio;
1508	r10_bio->sectors = sectors;
1509
1510	r10_bio->mddev = mddev;
1511	r10_bio->sector = bio->bi_iter.bi_sector;
1512	r10_bio->state = 0;
1513	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1514
1515	if (bio_data_dir(bio) == READ)
1516		raid10_read_request(mddev, bio, r10_bio);
1517	else
1518		raid10_write_request(mddev, bio, r10_bio);
1519}
1520
1521static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1522{
1523	struct r10conf *conf = mddev->private;
1524	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1525	int chunk_sects = chunk_mask + 1;
1526	int sectors = bio_sectors(bio);
1527
1528	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1529		md_flush_request(mddev, bio);
1530		return true;
1531	}
1532
1533	if (!md_write_start(mddev, bio))
1534		return false;
1535
1536	/*
1537	 * If this request crosses a chunk boundary, we need to split
1538	 * it.
1539	 */
1540	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1541		     sectors > chunk_sects
1542		     && (conf->geo.near_copies < conf->geo.raid_disks
1543			 || conf->prev.near_copies <
1544			 conf->prev.raid_disks)))
1545		sectors = chunk_sects -
1546			(bio->bi_iter.bi_sector &
1547			 (chunk_sects - 1));
1548	__make_request(mddev, bio, sectors);
1549
1550	/* In case raid10d snuck in to freeze_array */
1551	wake_up(&conf->wait_barrier);
1552	return true;
1553}
1554
1555static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1556{
1557	struct r10conf *conf = mddev->private;
1558	int i;
1559
1560	if (conf->geo.near_copies < conf->geo.raid_disks)
1561		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1562	if (conf->geo.near_copies > 1)
1563		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1564	if (conf->geo.far_copies > 1) {
1565		if (conf->geo.far_offset)
1566			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1567		else
1568			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1569		if (conf->geo.far_set_size != conf->geo.raid_disks)
1570			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1571	}
1572	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1573					conf->geo.raid_disks - mddev->degraded);
1574	rcu_read_lock();
1575	for (i = 0; i < conf->geo.raid_disks; i++) {
1576		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1577		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1578	}
1579	rcu_read_unlock();
1580	seq_printf(seq, "]");
1581}
1582
1583/* check if there are enough drives for
1584 * every block to appear on atleast one.
1585 * Don't consider the device numbered 'ignore'
1586 * as we might be about to remove it.
1587 */
1588static int _enough(struct r10conf *conf, int previous, int ignore)
1589{
1590	int first = 0;
1591	int has_enough = 0;
1592	int disks, ncopies;
1593	if (previous) {
1594		disks = conf->prev.raid_disks;
1595		ncopies = conf->prev.near_copies;
1596	} else {
1597		disks = conf->geo.raid_disks;
1598		ncopies = conf->geo.near_copies;
1599	}
1600
1601	rcu_read_lock();
1602	do {
1603		int n = conf->copies;
1604		int cnt = 0;
1605		int this = first;
1606		while (n--) {
1607			struct md_rdev *rdev;
1608			if (this != ignore &&
1609			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1610			    test_bit(In_sync, &rdev->flags))
1611				cnt++;
1612			this = (this+1) % disks;
1613		}
1614		if (cnt == 0)
1615			goto out;
1616		first = (first + ncopies) % disks;
1617	} while (first != 0);
1618	has_enough = 1;
1619out:
1620	rcu_read_unlock();
1621	return has_enough;
1622}
1623
1624static int enough(struct r10conf *conf, int ignore)
1625{
1626	/* when calling 'enough', both 'prev' and 'geo' must
1627	 * be stable.
1628	 * This is ensured if ->reconfig_mutex or ->device_lock
1629	 * is held.
1630	 */
1631	return _enough(conf, 0, ignore) &&
1632		_enough(conf, 1, ignore);
1633}
1634
1635static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1636{
1637	char b[BDEVNAME_SIZE];
1638	struct r10conf *conf = mddev->private;
1639	unsigned long flags;
1640
1641	/*
1642	 * If it is not operational, then we have already marked it as dead
1643	 * else if it is the last working disks with "fail_last_dev == false",
1644	 * ignore the error, let the next level up know.
1645	 * else mark the drive as failed
1646	 */
1647	spin_lock_irqsave(&conf->device_lock, flags);
1648	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1649	    && !enough(conf, rdev->raid_disk)) {
1650		/*
1651		 * Don't fail the drive, just return an IO error.
1652		 */
1653		spin_unlock_irqrestore(&conf->device_lock, flags);
1654		return;
1655	}
1656	if (test_and_clear_bit(In_sync, &rdev->flags))
1657		mddev->degraded++;
1658	/*
1659	 * If recovery is running, make sure it aborts.
1660	 */
1661	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1662	set_bit(Blocked, &rdev->flags);
1663	set_bit(Faulty, &rdev->flags);
1664	set_mask_bits(&mddev->sb_flags, 0,
1665		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1666	spin_unlock_irqrestore(&conf->device_lock, flags);
1667	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1668		"md/raid10:%s: Operation continuing on %d devices.\n",
1669		mdname(mddev), bdevname(rdev->bdev, b),
1670		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1671}
1672
1673static void print_conf(struct r10conf *conf)
1674{
1675	int i;
1676	struct md_rdev *rdev;
1677
1678	pr_debug("RAID10 conf printout:\n");
1679	if (!conf) {
1680		pr_debug("(!conf)\n");
1681		return;
1682	}
1683	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1684		 conf->geo.raid_disks);
1685
1686	/* This is only called with ->reconfix_mutex held, so
1687	 * rcu protection of rdev is not needed */
1688	for (i = 0; i < conf->geo.raid_disks; i++) {
1689		char b[BDEVNAME_SIZE];
1690		rdev = conf->mirrors[i].rdev;
1691		if (rdev)
1692			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1693				 i, !test_bit(In_sync, &rdev->flags),
1694				 !test_bit(Faulty, &rdev->flags),
1695				 bdevname(rdev->bdev,b));
1696	}
1697}
1698
1699static void close_sync(struct r10conf *conf)
1700{
1701	wait_barrier(conf);
1702	allow_barrier(conf);
1703
1704	mempool_exit(&conf->r10buf_pool);
 
1705}
1706
1707static int raid10_spare_active(struct mddev *mddev)
1708{
1709	int i;
1710	struct r10conf *conf = mddev->private;
1711	struct raid10_info *tmp;
1712	int count = 0;
1713	unsigned long flags;
1714
1715	/*
1716	 * Find all non-in_sync disks within the RAID10 configuration
1717	 * and mark them in_sync
1718	 */
1719	for (i = 0; i < conf->geo.raid_disks; i++) {
1720		tmp = conf->mirrors + i;
1721		if (tmp->replacement
1722		    && tmp->replacement->recovery_offset == MaxSector
1723		    && !test_bit(Faulty, &tmp->replacement->flags)
1724		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1725			/* Replacement has just become active */
1726			if (!tmp->rdev
1727			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1728				count++;
1729			if (tmp->rdev) {
1730				/* Replaced device not technically faulty,
1731				 * but we need to be sure it gets removed
1732				 * and never re-added.
1733				 */
1734				set_bit(Faulty, &tmp->rdev->flags);
1735				sysfs_notify_dirent_safe(
1736					tmp->rdev->sysfs_state);
1737			}
1738			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1739		} else if (tmp->rdev
1740			   && tmp->rdev->recovery_offset == MaxSector
1741			   && !test_bit(Faulty, &tmp->rdev->flags)
1742			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1743			count++;
1744			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1745		}
1746	}
1747	spin_lock_irqsave(&conf->device_lock, flags);
1748	mddev->degraded -= count;
1749	spin_unlock_irqrestore(&conf->device_lock, flags);
1750
1751	print_conf(conf);
1752	return count;
1753}
1754
1755static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1756{
1757	struct r10conf *conf = mddev->private;
1758	int err = -EEXIST;
1759	int mirror;
1760	int first = 0;
1761	int last = conf->geo.raid_disks - 1;
1762
1763	if (mddev->recovery_cp < MaxSector)
1764		/* only hot-add to in-sync arrays, as recovery is
1765		 * very different from resync
1766		 */
1767		return -EBUSY;
1768	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1769		return -EINVAL;
1770
1771	if (md_integrity_add_rdev(rdev, mddev))
1772		return -ENXIO;
1773
1774	if (rdev->raid_disk >= 0)
1775		first = last = rdev->raid_disk;
1776
1777	if (rdev->saved_raid_disk >= first &&
1778	    rdev->saved_raid_disk < conf->geo.raid_disks &&
1779	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1780		mirror = rdev->saved_raid_disk;
1781	else
1782		mirror = first;
1783	for ( ; mirror <= last ; mirror++) {
1784		struct raid10_info *p = &conf->mirrors[mirror];
1785		if (p->recovery_disabled == mddev->recovery_disabled)
1786			continue;
1787		if (p->rdev) {
1788			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1789			    p->replacement != NULL)
1790				continue;
1791			clear_bit(In_sync, &rdev->flags);
1792			set_bit(Replacement, &rdev->flags);
1793			rdev->raid_disk = mirror;
1794			err = 0;
1795			if (mddev->gendisk)
1796				disk_stack_limits(mddev->gendisk, rdev->bdev,
1797						  rdev->data_offset << 9);
1798			conf->fullsync = 1;
1799			rcu_assign_pointer(p->replacement, rdev);
1800			break;
1801		}
1802
1803		if (mddev->gendisk)
1804			disk_stack_limits(mddev->gendisk, rdev->bdev,
1805					  rdev->data_offset << 9);
1806
1807		p->head_position = 0;
1808		p->recovery_disabled = mddev->recovery_disabled - 1;
1809		rdev->raid_disk = mirror;
1810		err = 0;
1811		if (rdev->saved_raid_disk != mirror)
1812			conf->fullsync = 1;
1813		rcu_assign_pointer(p->rdev, rdev);
1814		break;
1815	}
1816	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1817		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1818
1819	print_conf(conf);
1820	return err;
1821}
1822
1823static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1824{
1825	struct r10conf *conf = mddev->private;
1826	int err = 0;
1827	int number = rdev->raid_disk;
1828	struct md_rdev **rdevp;
1829	struct raid10_info *p = conf->mirrors + number;
1830
1831	print_conf(conf);
1832	if (rdev == p->rdev)
1833		rdevp = &p->rdev;
1834	else if (rdev == p->replacement)
1835		rdevp = &p->replacement;
1836	else
1837		return 0;
1838
1839	if (test_bit(In_sync, &rdev->flags) ||
1840	    atomic_read(&rdev->nr_pending)) {
1841		err = -EBUSY;
1842		goto abort;
1843	}
1844	/* Only remove non-faulty devices if recovery
1845	 * is not possible.
1846	 */
1847	if (!test_bit(Faulty, &rdev->flags) &&
1848	    mddev->recovery_disabled != p->recovery_disabled &&
1849	    (!p->replacement || p->replacement == rdev) &&
1850	    number < conf->geo.raid_disks &&
1851	    enough(conf, -1)) {
1852		err = -EBUSY;
1853		goto abort;
1854	}
1855	*rdevp = NULL;
1856	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1857		synchronize_rcu();
1858		if (atomic_read(&rdev->nr_pending)) {
1859			/* lost the race, try later */
1860			err = -EBUSY;
1861			*rdevp = rdev;
1862			goto abort;
1863		}
1864	}
1865	if (p->replacement) {
1866		/* We must have just cleared 'rdev' */
1867		p->rdev = p->replacement;
1868		clear_bit(Replacement, &p->replacement->flags);
1869		smp_mb(); /* Make sure other CPUs may see both as identical
1870			   * but will never see neither -- if they are careful.
1871			   */
1872		p->replacement = NULL;
1873	}
1874
1875	clear_bit(WantReplacement, &rdev->flags);
1876	err = md_integrity_register(mddev);
1877
1878abort:
1879
1880	print_conf(conf);
1881	return err;
1882}
1883
1884static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1885{
1886	struct r10conf *conf = r10_bio->mddev->private;
1887
1888	if (!bio->bi_status)
1889		set_bit(R10BIO_Uptodate, &r10_bio->state);
1890	else
1891		/* The write handler will notice the lack of
1892		 * R10BIO_Uptodate and record any errors etc
1893		 */
1894		atomic_add(r10_bio->sectors,
1895			   &conf->mirrors[d].rdev->corrected_errors);
1896
1897	/* for reconstruct, we always reschedule after a read.
1898	 * for resync, only after all reads
1899	 */
1900	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1901	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1902	    atomic_dec_and_test(&r10_bio->remaining)) {
1903		/* we have read all the blocks,
1904		 * do the comparison in process context in raid10d
1905		 */
1906		reschedule_retry(r10_bio);
1907	}
1908}
1909
1910static void end_sync_read(struct bio *bio)
1911{
1912	struct r10bio *r10_bio = get_resync_r10bio(bio);
1913	struct r10conf *conf = r10_bio->mddev->private;
1914	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1915
1916	__end_sync_read(r10_bio, bio, d);
1917}
1918
1919static void end_reshape_read(struct bio *bio)
1920{
1921	/* reshape read bio isn't allocated from r10buf_pool */
1922	struct r10bio *r10_bio = bio->bi_private;
1923
1924	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
1925}
1926
1927static void end_sync_request(struct r10bio *r10_bio)
1928{
1929	struct mddev *mddev = r10_bio->mddev;
1930
1931	while (atomic_dec_and_test(&r10_bio->remaining)) {
1932		if (r10_bio->master_bio == NULL) {
1933			/* the primary of several recovery bios */
1934			sector_t s = r10_bio->sectors;
1935			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1936			    test_bit(R10BIO_WriteError, &r10_bio->state))
1937				reschedule_retry(r10_bio);
1938			else
1939				put_buf(r10_bio);
1940			md_done_sync(mddev, s, 1);
1941			break;
1942		} else {
1943			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1944			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1945			    test_bit(R10BIO_WriteError, &r10_bio->state))
1946				reschedule_retry(r10_bio);
1947			else
1948				put_buf(r10_bio);
1949			r10_bio = r10_bio2;
1950		}
1951	}
1952}
1953
1954static void end_sync_write(struct bio *bio)
1955{
1956	struct r10bio *r10_bio = get_resync_r10bio(bio);
1957	struct mddev *mddev = r10_bio->mddev;
1958	struct r10conf *conf = mddev->private;
1959	int d;
1960	sector_t first_bad;
1961	int bad_sectors;
1962	int slot;
1963	int repl;
1964	struct md_rdev *rdev = NULL;
1965
1966	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1967	if (repl)
1968		rdev = conf->mirrors[d].replacement;
1969	else
1970		rdev = conf->mirrors[d].rdev;
1971
1972	if (bio->bi_status) {
1973		if (repl)
1974			md_error(mddev, rdev);
1975		else {
1976			set_bit(WriteErrorSeen, &rdev->flags);
1977			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1978				set_bit(MD_RECOVERY_NEEDED,
1979					&rdev->mddev->recovery);
1980			set_bit(R10BIO_WriteError, &r10_bio->state);
1981		}
1982	} else if (is_badblock(rdev,
1983			     r10_bio->devs[slot].addr,
1984			     r10_bio->sectors,
1985			     &first_bad, &bad_sectors))
1986		set_bit(R10BIO_MadeGood, &r10_bio->state);
1987
1988	rdev_dec_pending(rdev, mddev);
1989
1990	end_sync_request(r10_bio);
1991}
1992
1993/*
1994 * Note: sync and recover and handled very differently for raid10
1995 * This code is for resync.
1996 * For resync, we read through virtual addresses and read all blocks.
1997 * If there is any error, we schedule a write.  The lowest numbered
1998 * drive is authoritative.
1999 * However requests come for physical address, so we need to map.
2000 * For every physical address there are raid_disks/copies virtual addresses,
2001 * which is always are least one, but is not necessarly an integer.
2002 * This means that a physical address can span multiple chunks, so we may
2003 * have to submit multiple io requests for a single sync request.
2004 */
2005/*
2006 * We check if all blocks are in-sync and only write to blocks that
2007 * aren't in sync
2008 */
2009static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2010{
2011	struct r10conf *conf = mddev->private;
2012	int i, first;
2013	struct bio *tbio, *fbio;
2014	int vcnt;
2015	struct page **tpages, **fpages;
2016
2017	atomic_set(&r10_bio->remaining, 1);
2018
2019	/* find the first device with a block */
2020	for (i=0; i<conf->copies; i++)
2021		if (!r10_bio->devs[i].bio->bi_status)
2022			break;
2023
2024	if (i == conf->copies)
2025		goto done;
2026
2027	first = i;
2028	fbio = r10_bio->devs[i].bio;
2029	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2030	fbio->bi_iter.bi_idx = 0;
2031	fpages = get_resync_pages(fbio)->pages;
2032
2033	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2034	/* now find blocks with errors */
2035	for (i=0 ; i < conf->copies ; i++) {
2036		int  j, d;
2037		struct md_rdev *rdev;
2038		struct resync_pages *rp;
2039
2040		tbio = r10_bio->devs[i].bio;
2041
2042		if (tbio->bi_end_io != end_sync_read)
2043			continue;
2044		if (i == first)
2045			continue;
2046
2047		tpages = get_resync_pages(tbio)->pages;
2048		d = r10_bio->devs[i].devnum;
2049		rdev = conf->mirrors[d].rdev;
2050		if (!r10_bio->devs[i].bio->bi_status) {
2051			/* We know that the bi_io_vec layout is the same for
2052			 * both 'first' and 'i', so we just compare them.
2053			 * All vec entries are PAGE_SIZE;
2054			 */
2055			int sectors = r10_bio->sectors;
2056			for (j = 0; j < vcnt; j++) {
2057				int len = PAGE_SIZE;
2058				if (sectors < (len / 512))
2059					len = sectors * 512;
2060				if (memcmp(page_address(fpages[j]),
2061					   page_address(tpages[j]),
2062					   len))
2063					break;
2064				sectors -= len/512;
2065			}
2066			if (j == vcnt)
2067				continue;
2068			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2069			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2070				/* Don't fix anything. */
2071				continue;
2072		} else if (test_bit(FailFast, &rdev->flags)) {
2073			/* Just give up on this device */
2074			md_error(rdev->mddev, rdev);
2075			continue;
2076		}
2077		/* Ok, we need to write this bio, either to correct an
2078		 * inconsistency or to correct an unreadable block.
2079		 * First we need to fixup bv_offset, bv_len and
2080		 * bi_vecs, as the read request might have corrupted these
2081		 */
2082		rp = get_resync_pages(tbio);
2083		bio_reset(tbio);
2084
2085		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2086
2087		rp->raid_bio = r10_bio;
2088		tbio->bi_private = rp;
2089		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2090		tbio->bi_end_io = end_sync_write;
2091		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2092
2093		bio_copy_data(tbio, fbio);
2094
2095		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2096		atomic_inc(&r10_bio->remaining);
2097		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2098
2099		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2100			tbio->bi_opf |= MD_FAILFAST;
2101		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2102		bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2103		generic_make_request(tbio);
2104	}
2105
2106	/* Now write out to any replacement devices
2107	 * that are active
2108	 */
2109	for (i = 0; i < conf->copies; i++) {
2110		int d;
2111
2112		tbio = r10_bio->devs[i].repl_bio;
2113		if (!tbio || !tbio->bi_end_io)
2114			continue;
2115		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2116		    && r10_bio->devs[i].bio != fbio)
2117			bio_copy_data(tbio, fbio);
2118		d = r10_bio->devs[i].devnum;
2119		atomic_inc(&r10_bio->remaining);
2120		md_sync_acct(conf->mirrors[d].replacement->bdev,
2121			     bio_sectors(tbio));
2122		generic_make_request(tbio);
2123	}
2124
2125done:
2126	if (atomic_dec_and_test(&r10_bio->remaining)) {
2127		md_done_sync(mddev, r10_bio->sectors, 1);
2128		put_buf(r10_bio);
2129	}
2130}
2131
2132/*
2133 * Now for the recovery code.
2134 * Recovery happens across physical sectors.
2135 * We recover all non-is_sync drives by finding the virtual address of
2136 * each, and then choose a working drive that also has that virt address.
2137 * There is a separate r10_bio for each non-in_sync drive.
2138 * Only the first two slots are in use. The first for reading,
2139 * The second for writing.
2140 *
2141 */
2142static void fix_recovery_read_error(struct r10bio *r10_bio)
2143{
2144	/* We got a read error during recovery.
2145	 * We repeat the read in smaller page-sized sections.
2146	 * If a read succeeds, write it to the new device or record
2147	 * a bad block if we cannot.
2148	 * If a read fails, record a bad block on both old and
2149	 * new devices.
2150	 */
2151	struct mddev *mddev = r10_bio->mddev;
2152	struct r10conf *conf = mddev->private;
2153	struct bio *bio = r10_bio->devs[0].bio;
2154	sector_t sect = 0;
2155	int sectors = r10_bio->sectors;
2156	int idx = 0;
2157	int dr = r10_bio->devs[0].devnum;
2158	int dw = r10_bio->devs[1].devnum;
2159	struct page **pages = get_resync_pages(bio)->pages;
2160
2161	while (sectors) {
2162		int s = sectors;
2163		struct md_rdev *rdev;
2164		sector_t addr;
2165		int ok;
2166
2167		if (s > (PAGE_SIZE>>9))
2168			s = PAGE_SIZE >> 9;
2169
2170		rdev = conf->mirrors[dr].rdev;
2171		addr = r10_bio->devs[0].addr + sect,
2172		ok = sync_page_io(rdev,
2173				  addr,
2174				  s << 9,
2175				  pages[idx],
2176				  REQ_OP_READ, 0, false);
2177		if (ok) {
2178			rdev = conf->mirrors[dw].rdev;
2179			addr = r10_bio->devs[1].addr + sect;
2180			ok = sync_page_io(rdev,
2181					  addr,
2182					  s << 9,
2183					  pages[idx],
2184					  REQ_OP_WRITE, 0, false);
2185			if (!ok) {
2186				set_bit(WriteErrorSeen, &rdev->flags);
2187				if (!test_and_set_bit(WantReplacement,
2188						      &rdev->flags))
2189					set_bit(MD_RECOVERY_NEEDED,
2190						&rdev->mddev->recovery);
2191			}
2192		}
2193		if (!ok) {
2194			/* We don't worry if we cannot set a bad block -
2195			 * it really is bad so there is no loss in not
2196			 * recording it yet
2197			 */
2198			rdev_set_badblocks(rdev, addr, s, 0);
2199
2200			if (rdev != conf->mirrors[dw].rdev) {
2201				/* need bad block on destination too */
2202				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2203				addr = r10_bio->devs[1].addr + sect;
2204				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2205				if (!ok) {
2206					/* just abort the recovery */
2207					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2208						  mdname(mddev));
2209
2210					conf->mirrors[dw].recovery_disabled
2211						= mddev->recovery_disabled;
2212					set_bit(MD_RECOVERY_INTR,
2213						&mddev->recovery);
2214					break;
2215				}
2216			}
2217		}
2218
2219		sectors -= s;
2220		sect += s;
2221		idx++;
2222	}
2223}
2224
2225static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2226{
2227	struct r10conf *conf = mddev->private;
2228	int d;
2229	struct bio *wbio, *wbio2;
2230
2231	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2232		fix_recovery_read_error(r10_bio);
2233		end_sync_request(r10_bio);
2234		return;
2235	}
2236
2237	/*
2238	 * share the pages with the first bio
2239	 * and submit the write request
2240	 */
2241	d = r10_bio->devs[1].devnum;
2242	wbio = r10_bio->devs[1].bio;
2243	wbio2 = r10_bio->devs[1].repl_bio;
2244	/* Need to test wbio2->bi_end_io before we call
2245	 * generic_make_request as if the former is NULL,
2246	 * the latter is free to free wbio2.
2247	 */
2248	if (wbio2 && !wbio2->bi_end_io)
2249		wbio2 = NULL;
2250	if (wbio->bi_end_io) {
2251		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2252		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2253		generic_make_request(wbio);
2254	}
2255	if (wbio2) {
2256		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2257		md_sync_acct(conf->mirrors[d].replacement->bdev,
2258			     bio_sectors(wbio2));
2259		generic_make_request(wbio2);
2260	}
2261}
2262
2263/*
2264 * Used by fix_read_error() to decay the per rdev read_errors.
2265 * We halve the read error count for every hour that has elapsed
2266 * since the last recorded read error.
2267 *
2268 */
2269static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2270{
2271	long cur_time_mon;
2272	unsigned long hours_since_last;
2273	unsigned int read_errors = atomic_read(&rdev->read_errors);
2274
2275	cur_time_mon = ktime_get_seconds();
2276
2277	if (rdev->last_read_error == 0) {
2278		/* first time we've seen a read error */
2279		rdev->last_read_error = cur_time_mon;
2280		return;
2281	}
2282
2283	hours_since_last = (long)(cur_time_mon -
2284			    rdev->last_read_error) / 3600;
2285
2286	rdev->last_read_error = cur_time_mon;
2287
2288	/*
2289	 * if hours_since_last is > the number of bits in read_errors
2290	 * just set read errors to 0. We do this to avoid
2291	 * overflowing the shift of read_errors by hours_since_last.
2292	 */
2293	if (hours_since_last >= 8 * sizeof(read_errors))
2294		atomic_set(&rdev->read_errors, 0);
2295	else
2296		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2297}
2298
2299static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2300			    int sectors, struct page *page, int rw)
2301{
2302	sector_t first_bad;
2303	int bad_sectors;
2304
2305	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2306	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2307		return -1;
2308	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2309		/* success */
2310		return 1;
2311	if (rw == WRITE) {
2312		set_bit(WriteErrorSeen, &rdev->flags);
2313		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2314			set_bit(MD_RECOVERY_NEEDED,
2315				&rdev->mddev->recovery);
2316	}
2317	/* need to record an error - either for the block or the device */
2318	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2319		md_error(rdev->mddev, rdev);
2320	return 0;
2321}
2322
2323/*
2324 * This is a kernel thread which:
2325 *
2326 *	1.	Retries failed read operations on working mirrors.
2327 *	2.	Updates the raid superblock when problems encounter.
2328 *	3.	Performs writes following reads for array synchronising.
2329 */
2330
2331static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2332{
2333	int sect = 0; /* Offset from r10_bio->sector */
2334	int sectors = r10_bio->sectors;
2335	struct md_rdev *rdev;
2336	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2337	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2338
2339	/* still own a reference to this rdev, so it cannot
2340	 * have been cleared recently.
2341	 */
2342	rdev = conf->mirrors[d].rdev;
2343
2344	if (test_bit(Faulty, &rdev->flags))
2345		/* drive has already been failed, just ignore any
2346		   more fix_read_error() attempts */
2347		return;
2348
2349	check_decay_read_errors(mddev, rdev);
2350	atomic_inc(&rdev->read_errors);
2351	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2352		char b[BDEVNAME_SIZE];
2353		bdevname(rdev->bdev, b);
2354
2355		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2356			  mdname(mddev), b,
2357			  atomic_read(&rdev->read_errors), max_read_errors);
2358		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2359			  mdname(mddev), b);
2360		md_error(mddev, rdev);
2361		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2362		return;
2363	}
2364
2365	while(sectors) {
2366		int s = sectors;
2367		int sl = r10_bio->read_slot;
2368		int success = 0;
2369		int start;
2370
2371		if (s > (PAGE_SIZE>>9))
2372			s = PAGE_SIZE >> 9;
2373
2374		rcu_read_lock();
2375		do {
2376			sector_t first_bad;
2377			int bad_sectors;
2378
2379			d = r10_bio->devs[sl].devnum;
2380			rdev = rcu_dereference(conf->mirrors[d].rdev);
2381			if (rdev &&
2382			    test_bit(In_sync, &rdev->flags) &&
2383			    !test_bit(Faulty, &rdev->flags) &&
2384			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2385					&first_bad, &bad_sectors) == 0) {
2386				atomic_inc(&rdev->nr_pending);
2387				rcu_read_unlock();
2388				success = sync_page_io(rdev,
2389						       r10_bio->devs[sl].addr +
2390						       sect,
2391						       s<<9,
2392						       conf->tmppage,
2393						       REQ_OP_READ, 0, false);
2394				rdev_dec_pending(rdev, mddev);
2395				rcu_read_lock();
2396				if (success)
2397					break;
2398			}
2399			sl++;
2400			if (sl == conf->copies)
2401				sl = 0;
2402		} while (!success && sl != r10_bio->read_slot);
2403		rcu_read_unlock();
2404
2405		if (!success) {
2406			/* Cannot read from anywhere, just mark the block
2407			 * as bad on the first device to discourage future
2408			 * reads.
2409			 */
2410			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2411			rdev = conf->mirrors[dn].rdev;
2412
2413			if (!rdev_set_badblocks(
2414				    rdev,
2415				    r10_bio->devs[r10_bio->read_slot].addr
2416				    + sect,
2417				    s, 0)) {
2418				md_error(mddev, rdev);
2419				r10_bio->devs[r10_bio->read_slot].bio
2420					= IO_BLOCKED;
2421			}
2422			break;
2423		}
2424
2425		start = sl;
2426		/* write it back and re-read */
2427		rcu_read_lock();
2428		while (sl != r10_bio->read_slot) {
2429			char b[BDEVNAME_SIZE];
2430
2431			if (sl==0)
2432				sl = conf->copies;
2433			sl--;
2434			d = r10_bio->devs[sl].devnum;
2435			rdev = rcu_dereference(conf->mirrors[d].rdev);
2436			if (!rdev ||
2437			    test_bit(Faulty, &rdev->flags) ||
2438			    !test_bit(In_sync, &rdev->flags))
2439				continue;
2440
2441			atomic_inc(&rdev->nr_pending);
2442			rcu_read_unlock();
2443			if (r10_sync_page_io(rdev,
2444					     r10_bio->devs[sl].addr +
2445					     sect,
2446					     s, conf->tmppage, WRITE)
2447			    == 0) {
2448				/* Well, this device is dead */
2449				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2450					  mdname(mddev), s,
2451					  (unsigned long long)(
2452						  sect +
2453						  choose_data_offset(r10_bio,
2454								     rdev)),
2455					  bdevname(rdev->bdev, b));
2456				pr_notice("md/raid10:%s: %s: failing drive\n",
2457					  mdname(mddev),
2458					  bdevname(rdev->bdev, b));
2459			}
2460			rdev_dec_pending(rdev, mddev);
2461			rcu_read_lock();
2462		}
2463		sl = start;
2464		while (sl != r10_bio->read_slot) {
2465			char b[BDEVNAME_SIZE];
2466
2467			if (sl==0)
2468				sl = conf->copies;
2469			sl--;
2470			d = r10_bio->devs[sl].devnum;
2471			rdev = rcu_dereference(conf->mirrors[d].rdev);
2472			if (!rdev ||
2473			    test_bit(Faulty, &rdev->flags) ||
2474			    !test_bit(In_sync, &rdev->flags))
2475				continue;
2476
2477			atomic_inc(&rdev->nr_pending);
2478			rcu_read_unlock();
2479			switch (r10_sync_page_io(rdev,
2480					     r10_bio->devs[sl].addr +
2481					     sect,
2482					     s, conf->tmppage,
2483						 READ)) {
2484			case 0:
2485				/* Well, this device is dead */
2486				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2487				       mdname(mddev), s,
2488				       (unsigned long long)(
2489					       sect +
2490					       choose_data_offset(r10_bio, rdev)),
2491				       bdevname(rdev->bdev, b));
2492				pr_notice("md/raid10:%s: %s: failing drive\n",
2493				       mdname(mddev),
2494				       bdevname(rdev->bdev, b));
2495				break;
2496			case 1:
2497				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2498				       mdname(mddev), s,
2499				       (unsigned long long)(
2500					       sect +
2501					       choose_data_offset(r10_bio, rdev)),
2502				       bdevname(rdev->bdev, b));
2503				atomic_add(s, &rdev->corrected_errors);
2504			}
2505
2506			rdev_dec_pending(rdev, mddev);
2507			rcu_read_lock();
2508		}
2509		rcu_read_unlock();
2510
2511		sectors -= s;
2512		sect += s;
2513	}
2514}
2515
2516static int narrow_write_error(struct r10bio *r10_bio, int i)
2517{
2518	struct bio *bio = r10_bio->master_bio;
2519	struct mddev *mddev = r10_bio->mddev;
2520	struct r10conf *conf = mddev->private;
2521	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2522	/* bio has the data to be written to slot 'i' where
2523	 * we just recently had a write error.
2524	 * We repeatedly clone the bio and trim down to one block,
2525	 * then try the write.  Where the write fails we record
2526	 * a bad block.
2527	 * It is conceivable that the bio doesn't exactly align with
2528	 * blocks.  We must handle this.
2529	 *
2530	 * We currently own a reference to the rdev.
2531	 */
2532
2533	int block_sectors;
2534	sector_t sector;
2535	int sectors;
2536	int sect_to_write = r10_bio->sectors;
2537	int ok = 1;
2538
2539	if (rdev->badblocks.shift < 0)
2540		return 0;
2541
2542	block_sectors = roundup(1 << rdev->badblocks.shift,
2543				bdev_logical_block_size(rdev->bdev) >> 9);
2544	sector = r10_bio->sector;
2545	sectors = ((r10_bio->sector + block_sectors)
2546		   & ~(sector_t)(block_sectors - 1))
2547		- sector;
2548
2549	while (sect_to_write) {
2550		struct bio *wbio;
2551		sector_t wsector;
2552		if (sectors > sect_to_write)
2553			sectors = sect_to_write;
2554		/* Write at 'sector' for 'sectors' */
2555		wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2556		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2557		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2558		wbio->bi_iter.bi_sector = wsector +
2559				   choose_data_offset(r10_bio, rdev);
2560		bio_set_dev(wbio, rdev->bdev);
2561		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2562
2563		if (submit_bio_wait(wbio) < 0)
2564			/* Failure! */
2565			ok = rdev_set_badblocks(rdev, wsector,
2566						sectors, 0)
2567				&& ok;
2568
2569		bio_put(wbio);
2570		sect_to_write -= sectors;
2571		sector += sectors;
2572		sectors = block_sectors;
2573	}
2574	return ok;
2575}
2576
2577static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2578{
2579	int slot = r10_bio->read_slot;
2580	struct bio *bio;
2581	struct r10conf *conf = mddev->private;
2582	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2583
2584	/* we got a read error. Maybe the drive is bad.  Maybe just
2585	 * the block and we can fix it.
2586	 * We freeze all other IO, and try reading the block from
2587	 * other devices.  When we find one, we re-write
2588	 * and check it that fixes the read error.
2589	 * This is all done synchronously while the array is
2590	 * frozen.
2591	 */
2592	bio = r10_bio->devs[slot].bio;
2593	bio_put(bio);
2594	r10_bio->devs[slot].bio = NULL;
2595
2596	if (mddev->ro)
2597		r10_bio->devs[slot].bio = IO_BLOCKED;
2598	else if (!test_bit(FailFast, &rdev->flags)) {
2599		freeze_array(conf, 1);
2600		fix_read_error(conf, mddev, r10_bio);
2601		unfreeze_array(conf);
2602	} else
2603		md_error(mddev, rdev);
2604
2605	rdev_dec_pending(rdev, mddev);
2606	allow_barrier(conf);
2607	r10_bio->state = 0;
2608	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2609}
2610
2611static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2612{
2613	/* Some sort of write request has finished and it
2614	 * succeeded in writing where we thought there was a
2615	 * bad block.  So forget the bad block.
2616	 * Or possibly if failed and we need to record
2617	 * a bad block.
2618	 */
2619	int m;
2620	struct md_rdev *rdev;
2621
2622	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2623	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2624		for (m = 0; m < conf->copies; m++) {
2625			int dev = r10_bio->devs[m].devnum;
2626			rdev = conf->mirrors[dev].rdev;
2627			if (r10_bio->devs[m].bio == NULL ||
2628				r10_bio->devs[m].bio->bi_end_io == NULL)
2629				continue;
2630			if (!r10_bio->devs[m].bio->bi_status) {
2631				rdev_clear_badblocks(
2632					rdev,
2633					r10_bio->devs[m].addr,
2634					r10_bio->sectors, 0);
2635			} else {
2636				if (!rdev_set_badblocks(
2637					    rdev,
2638					    r10_bio->devs[m].addr,
2639					    r10_bio->sectors, 0))
2640					md_error(conf->mddev, rdev);
2641			}
2642			rdev = conf->mirrors[dev].replacement;
2643			if (r10_bio->devs[m].repl_bio == NULL ||
2644				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2645				continue;
2646
2647			if (!r10_bio->devs[m].repl_bio->bi_status) {
2648				rdev_clear_badblocks(
2649					rdev,
2650					r10_bio->devs[m].addr,
2651					r10_bio->sectors, 0);
2652			} else {
2653				if (!rdev_set_badblocks(
2654					    rdev,
2655					    r10_bio->devs[m].addr,
2656					    r10_bio->sectors, 0))
2657					md_error(conf->mddev, rdev);
2658			}
2659		}
2660		put_buf(r10_bio);
2661	} else {
2662		bool fail = false;
2663		for (m = 0; m < conf->copies; m++) {
2664			int dev = r10_bio->devs[m].devnum;
2665			struct bio *bio = r10_bio->devs[m].bio;
2666			rdev = conf->mirrors[dev].rdev;
2667			if (bio == IO_MADE_GOOD) {
2668				rdev_clear_badblocks(
2669					rdev,
2670					r10_bio->devs[m].addr,
2671					r10_bio->sectors, 0);
2672				rdev_dec_pending(rdev, conf->mddev);
2673			} else if (bio != NULL && bio->bi_status) {
2674				fail = true;
2675				if (!narrow_write_error(r10_bio, m)) {
2676					md_error(conf->mddev, rdev);
2677					set_bit(R10BIO_Degraded,
2678						&r10_bio->state);
2679				}
2680				rdev_dec_pending(rdev, conf->mddev);
2681			}
2682			bio = r10_bio->devs[m].repl_bio;
2683			rdev = conf->mirrors[dev].replacement;
2684			if (rdev && bio == IO_MADE_GOOD) {
2685				rdev_clear_badblocks(
2686					rdev,
2687					r10_bio->devs[m].addr,
2688					r10_bio->sectors, 0);
2689				rdev_dec_pending(rdev, conf->mddev);
2690			}
2691		}
2692		if (fail) {
2693			spin_lock_irq(&conf->device_lock);
2694			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2695			conf->nr_queued++;
2696			spin_unlock_irq(&conf->device_lock);
2697			/*
2698			 * In case freeze_array() is waiting for condition
2699			 * nr_pending == nr_queued + extra to be true.
2700			 */
2701			wake_up(&conf->wait_barrier);
2702			md_wakeup_thread(conf->mddev->thread);
2703		} else {
2704			if (test_bit(R10BIO_WriteError,
2705				     &r10_bio->state))
2706				close_write(r10_bio);
2707			raid_end_bio_io(r10_bio);
2708		}
2709	}
2710}
2711
2712static void raid10d(struct md_thread *thread)
2713{
2714	struct mddev *mddev = thread->mddev;
2715	struct r10bio *r10_bio;
2716	unsigned long flags;
2717	struct r10conf *conf = mddev->private;
2718	struct list_head *head = &conf->retry_list;
2719	struct blk_plug plug;
2720
2721	md_check_recovery(mddev);
2722
2723	if (!list_empty_careful(&conf->bio_end_io_list) &&
2724	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2725		LIST_HEAD(tmp);
2726		spin_lock_irqsave(&conf->device_lock, flags);
2727		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2728			while (!list_empty(&conf->bio_end_io_list)) {
2729				list_move(conf->bio_end_io_list.prev, &tmp);
2730				conf->nr_queued--;
2731			}
2732		}
2733		spin_unlock_irqrestore(&conf->device_lock, flags);
2734		while (!list_empty(&tmp)) {
2735			r10_bio = list_first_entry(&tmp, struct r10bio,
2736						   retry_list);
2737			list_del(&r10_bio->retry_list);
2738			if (mddev->degraded)
2739				set_bit(R10BIO_Degraded, &r10_bio->state);
2740
2741			if (test_bit(R10BIO_WriteError,
2742				     &r10_bio->state))
2743				close_write(r10_bio);
2744			raid_end_bio_io(r10_bio);
2745		}
2746	}
2747
2748	blk_start_plug(&plug);
2749	for (;;) {
2750
2751		flush_pending_writes(conf);
2752
2753		spin_lock_irqsave(&conf->device_lock, flags);
2754		if (list_empty(head)) {
2755			spin_unlock_irqrestore(&conf->device_lock, flags);
2756			break;
2757		}
2758		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2759		list_del(head->prev);
2760		conf->nr_queued--;
2761		spin_unlock_irqrestore(&conf->device_lock, flags);
2762
2763		mddev = r10_bio->mddev;
2764		conf = mddev->private;
2765		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2766		    test_bit(R10BIO_WriteError, &r10_bio->state))
2767			handle_write_completed(conf, r10_bio);
2768		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2769			reshape_request_write(mddev, r10_bio);
2770		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2771			sync_request_write(mddev, r10_bio);
2772		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2773			recovery_request_write(mddev, r10_bio);
2774		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2775			handle_read_error(mddev, r10_bio);
2776		else
2777			WARN_ON_ONCE(1);
2778
2779		cond_resched();
2780		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2781			md_check_recovery(mddev);
2782	}
2783	blk_finish_plug(&plug);
2784}
2785
2786static int init_resync(struct r10conf *conf)
2787{
2788	int ret, buffs, i;
 
2789
2790	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2791	BUG_ON(mempool_initialized(&conf->r10buf_pool));
2792	conf->have_replacement = 0;
2793	for (i = 0; i < conf->geo.raid_disks; i++)
2794		if (conf->mirrors[i].replacement)
2795			conf->have_replacement = 1;
2796	ret = mempool_init(&conf->r10buf_pool, buffs,
2797			   r10buf_pool_alloc, r10buf_pool_free, conf);
2798	if (ret)
2799		return ret;
2800	conf->next_resync = 0;
2801	return 0;
2802}
2803
2804static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2805{
2806	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2807	struct rsync_pages *rp;
2808	struct bio *bio;
2809	int nalloc;
2810	int i;
2811
2812	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2813	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2814		nalloc = conf->copies; /* resync */
2815	else
2816		nalloc = 2; /* recovery */
2817
2818	for (i = 0; i < nalloc; i++) {
2819		bio = r10bio->devs[i].bio;
2820		rp = bio->bi_private;
2821		bio_reset(bio);
2822		bio->bi_private = rp;
2823		bio = r10bio->devs[i].repl_bio;
2824		if (bio) {
2825			rp = bio->bi_private;
2826			bio_reset(bio);
2827			bio->bi_private = rp;
2828		}
2829	}
2830	return r10bio;
2831}
2832
2833/*
2834 * Set cluster_sync_high since we need other nodes to add the
2835 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2836 */
2837static void raid10_set_cluster_sync_high(struct r10conf *conf)
2838{
2839	sector_t window_size;
2840	int extra_chunk, chunks;
2841
2842	/*
2843	 * First, here we define "stripe" as a unit which across
2844	 * all member devices one time, so we get chunks by use
2845	 * raid_disks / near_copies. Otherwise, if near_copies is
2846	 * close to raid_disks, then resync window could increases
2847	 * linearly with the increase of raid_disks, which means
2848	 * we will suspend a really large IO window while it is not
2849	 * necessary. If raid_disks is not divisible by near_copies,
2850	 * an extra chunk is needed to ensure the whole "stripe" is
2851	 * covered.
2852	 */
2853
2854	chunks = conf->geo.raid_disks / conf->geo.near_copies;
2855	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2856		extra_chunk = 0;
2857	else
2858		extra_chunk = 1;
2859	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2860
2861	/*
2862	 * At least use a 32M window to align with raid1's resync window
2863	 */
2864	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2865			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2866
2867	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2868}
2869
2870/*
2871 * perform a "sync" on one "block"
2872 *
2873 * We need to make sure that no normal I/O request - particularly write
2874 * requests - conflict with active sync requests.
2875 *
2876 * This is achieved by tracking pending requests and a 'barrier' concept
2877 * that can be installed to exclude normal IO requests.
2878 *
2879 * Resync and recovery are handled very differently.
2880 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2881 *
2882 * For resync, we iterate over virtual addresses, read all copies,
2883 * and update if there are differences.  If only one copy is live,
2884 * skip it.
2885 * For recovery, we iterate over physical addresses, read a good
2886 * value for each non-in_sync drive, and over-write.
2887 *
2888 * So, for recovery we may have several outstanding complex requests for a
2889 * given address, one for each out-of-sync device.  We model this by allocating
2890 * a number of r10_bio structures, one for each out-of-sync device.
2891 * As we setup these structures, we collect all bio's together into a list
2892 * which we then process collectively to add pages, and then process again
2893 * to pass to generic_make_request.
2894 *
2895 * The r10_bio structures are linked using a borrowed master_bio pointer.
2896 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2897 * has its remaining count decremented to 0, the whole complex operation
2898 * is complete.
2899 *
2900 */
2901
2902static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2903			     int *skipped)
2904{
2905	struct r10conf *conf = mddev->private;
2906	struct r10bio *r10_bio;
2907	struct bio *biolist = NULL, *bio;
2908	sector_t max_sector, nr_sectors;
2909	int i;
2910	int max_sync;
2911	sector_t sync_blocks;
2912	sector_t sectors_skipped = 0;
2913	int chunks_skipped = 0;
2914	sector_t chunk_mask = conf->geo.chunk_mask;
2915	int page_idx = 0;
2916
2917	if (!mempool_initialized(&conf->r10buf_pool))
2918		if (init_resync(conf))
2919			return 0;
2920
2921	/*
2922	 * Allow skipping a full rebuild for incremental assembly
2923	 * of a clean array, like RAID1 does.
2924	 */
2925	if (mddev->bitmap == NULL &&
2926	    mddev->recovery_cp == MaxSector &&
2927	    mddev->reshape_position == MaxSector &&
2928	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2929	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2930	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2931	    conf->fullsync == 0) {
2932		*skipped = 1;
2933		return mddev->dev_sectors - sector_nr;
2934	}
2935
2936 skipped:
2937	max_sector = mddev->dev_sectors;
2938	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2939	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2940		max_sector = mddev->resync_max_sectors;
2941	if (sector_nr >= max_sector) {
2942		conf->cluster_sync_low = 0;
2943		conf->cluster_sync_high = 0;
2944
2945		/* If we aborted, we need to abort the
2946		 * sync on the 'current' bitmap chucks (there can
2947		 * be several when recovering multiple devices).
2948		 * as we may have started syncing it but not finished.
2949		 * We can find the current address in
2950		 * mddev->curr_resync, but for recovery,
2951		 * we need to convert that to several
2952		 * virtual addresses.
2953		 */
2954		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2955			end_reshape(conf);
2956			close_sync(conf);
2957			return 0;
2958		}
2959
2960		if (mddev->curr_resync < max_sector) { /* aborted */
2961			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2962				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2963						   &sync_blocks, 1);
2964			else for (i = 0; i < conf->geo.raid_disks; i++) {
2965				sector_t sect =
2966					raid10_find_virt(conf, mddev->curr_resync, i);
2967				md_bitmap_end_sync(mddev->bitmap, sect,
2968						   &sync_blocks, 1);
2969			}
2970		} else {
2971			/* completed sync */
2972			if ((!mddev->bitmap || conf->fullsync)
2973			    && conf->have_replacement
2974			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2975				/* Completed a full sync so the replacements
2976				 * are now fully recovered.
2977				 */
2978				rcu_read_lock();
2979				for (i = 0; i < conf->geo.raid_disks; i++) {
2980					struct md_rdev *rdev =
2981						rcu_dereference(conf->mirrors[i].replacement);
2982					if (rdev)
2983						rdev->recovery_offset = MaxSector;
2984				}
2985				rcu_read_unlock();
2986			}
2987			conf->fullsync = 0;
2988		}
2989		md_bitmap_close_sync(mddev->bitmap);
2990		close_sync(conf);
2991		*skipped = 1;
2992		return sectors_skipped;
2993	}
2994
2995	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2996		return reshape_request(mddev, sector_nr, skipped);
2997
2998	if (chunks_skipped >= conf->geo.raid_disks) {
2999		/* if there has been nothing to do on any drive,
3000		 * then there is nothing to do at all..
3001		 */
3002		*skipped = 1;
3003		return (max_sector - sector_nr) + sectors_skipped;
3004	}
3005
3006	if (max_sector > mddev->resync_max)
3007		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3008
3009	/* make sure whole request will fit in a chunk - if chunks
3010	 * are meaningful
3011	 */
3012	if (conf->geo.near_copies < conf->geo.raid_disks &&
3013	    max_sector > (sector_nr | chunk_mask))
3014		max_sector = (sector_nr | chunk_mask) + 1;
3015
3016	/*
3017	 * If there is non-resync activity waiting for a turn, then let it
3018	 * though before starting on this new sync request.
3019	 */
3020	if (conf->nr_waiting)
3021		schedule_timeout_uninterruptible(1);
3022
3023	/* Again, very different code for resync and recovery.
3024	 * Both must result in an r10bio with a list of bios that
3025	 * have bi_end_io, bi_sector, bi_disk set,
3026	 * and bi_private set to the r10bio.
3027	 * For recovery, we may actually create several r10bios
3028	 * with 2 bios in each, that correspond to the bios in the main one.
3029	 * In this case, the subordinate r10bios link back through a
3030	 * borrowed master_bio pointer, and the counter in the master
3031	 * includes a ref from each subordinate.
3032	 */
3033	/* First, we decide what to do and set ->bi_end_io
3034	 * To end_sync_read if we want to read, and
3035	 * end_sync_write if we will want to write.
3036	 */
3037
3038	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3039	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3040		/* recovery... the complicated one */
3041		int j;
3042		r10_bio = NULL;
3043
3044		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3045			int still_degraded;
3046			struct r10bio *rb2;
3047			sector_t sect;
3048			int must_sync;
3049			int any_working;
3050			int need_recover = 0;
3051			int need_replace = 0;
3052			struct raid10_info *mirror = &conf->mirrors[i];
3053			struct md_rdev *mrdev, *mreplace;
3054
3055			rcu_read_lock();
3056			mrdev = rcu_dereference(mirror->rdev);
3057			mreplace = rcu_dereference(mirror->replacement);
3058
3059			if (mrdev != NULL &&
3060			    !test_bit(Faulty, &mrdev->flags) &&
3061			    !test_bit(In_sync, &mrdev->flags))
3062				need_recover = 1;
3063			if (mreplace != NULL &&
3064			    !test_bit(Faulty, &mreplace->flags))
3065				need_replace = 1;
3066
3067			if (!need_recover && !need_replace) {
3068				rcu_read_unlock();
3069				continue;
3070			}
3071
3072			still_degraded = 0;
3073			/* want to reconstruct this device */
3074			rb2 = r10_bio;
3075			sect = raid10_find_virt(conf, sector_nr, i);
3076			if (sect >= mddev->resync_max_sectors) {
3077				/* last stripe is not complete - don't
3078				 * try to recover this sector.
3079				 */
3080				rcu_read_unlock();
3081				continue;
3082			}
3083			if (mreplace && test_bit(Faulty, &mreplace->flags))
3084				mreplace = NULL;
3085			/* Unless we are doing a full sync, or a replacement
3086			 * we only need to recover the block if it is set in
3087			 * the bitmap
3088			 */
3089			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3090							 &sync_blocks, 1);
3091			if (sync_blocks < max_sync)
3092				max_sync = sync_blocks;
3093			if (!must_sync &&
3094			    mreplace == NULL &&
3095			    !conf->fullsync) {
3096				/* yep, skip the sync_blocks here, but don't assume
3097				 * that there will never be anything to do here
3098				 */
3099				chunks_skipped = -1;
3100				rcu_read_unlock();
3101				continue;
3102			}
3103			atomic_inc(&mrdev->nr_pending);
3104			if (mreplace)
3105				atomic_inc(&mreplace->nr_pending);
3106			rcu_read_unlock();
3107
3108			r10_bio = raid10_alloc_init_r10buf(conf);
3109			r10_bio->state = 0;
3110			raise_barrier(conf, rb2 != NULL);
3111			atomic_set(&r10_bio->remaining, 0);
3112
3113			r10_bio->master_bio = (struct bio*)rb2;
3114			if (rb2)
3115				atomic_inc(&rb2->remaining);
3116			r10_bio->mddev = mddev;
3117			set_bit(R10BIO_IsRecover, &r10_bio->state);
3118			r10_bio->sector = sect;
3119
3120			raid10_find_phys(conf, r10_bio);
3121
3122			/* Need to check if the array will still be
3123			 * degraded
3124			 */
3125			rcu_read_lock();
3126			for (j = 0; j < conf->geo.raid_disks; j++) {
3127				struct md_rdev *rdev = rcu_dereference(
3128					conf->mirrors[j].rdev);
3129				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3130					still_degraded = 1;
3131					break;
3132				}
3133			}
3134
3135			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3136							 &sync_blocks, still_degraded);
3137
3138			any_working = 0;
3139			for (j=0; j<conf->copies;j++) {
3140				int k;
3141				int d = r10_bio->devs[j].devnum;
3142				sector_t from_addr, to_addr;
3143				struct md_rdev *rdev =
3144					rcu_dereference(conf->mirrors[d].rdev);
3145				sector_t sector, first_bad;
3146				int bad_sectors;
3147				if (!rdev ||
3148				    !test_bit(In_sync, &rdev->flags))
3149					continue;
3150				/* This is where we read from */
3151				any_working = 1;
3152				sector = r10_bio->devs[j].addr;
3153
3154				if (is_badblock(rdev, sector, max_sync,
3155						&first_bad, &bad_sectors)) {
3156					if (first_bad > sector)
3157						max_sync = first_bad - sector;
3158					else {
3159						bad_sectors -= (sector
3160								- first_bad);
3161						if (max_sync > bad_sectors)
3162							max_sync = bad_sectors;
3163						continue;
3164					}
3165				}
3166				bio = r10_bio->devs[0].bio;
3167				bio->bi_next = biolist;
3168				biolist = bio;
3169				bio->bi_end_io = end_sync_read;
3170				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3171				if (test_bit(FailFast, &rdev->flags))
3172					bio->bi_opf |= MD_FAILFAST;
3173				from_addr = r10_bio->devs[j].addr;
3174				bio->bi_iter.bi_sector = from_addr +
3175					rdev->data_offset;
3176				bio_set_dev(bio, rdev->bdev);
3177				atomic_inc(&rdev->nr_pending);
3178				/* and we write to 'i' (if not in_sync) */
3179
3180				for (k=0; k<conf->copies; k++)
3181					if (r10_bio->devs[k].devnum == i)
3182						break;
3183				BUG_ON(k == conf->copies);
3184				to_addr = r10_bio->devs[k].addr;
3185				r10_bio->devs[0].devnum = d;
3186				r10_bio->devs[0].addr = from_addr;
3187				r10_bio->devs[1].devnum = i;
3188				r10_bio->devs[1].addr = to_addr;
3189
3190				if (need_recover) {
3191					bio = r10_bio->devs[1].bio;
3192					bio->bi_next = biolist;
3193					biolist = bio;
3194					bio->bi_end_io = end_sync_write;
3195					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3196					bio->bi_iter.bi_sector = to_addr
3197						+ mrdev->data_offset;
3198					bio_set_dev(bio, mrdev->bdev);
3199					atomic_inc(&r10_bio->remaining);
3200				} else
3201					r10_bio->devs[1].bio->bi_end_io = NULL;
3202
3203				/* and maybe write to replacement */
3204				bio = r10_bio->devs[1].repl_bio;
3205				if (bio)
3206					bio->bi_end_io = NULL;
3207				/* Note: if need_replace, then bio
3208				 * cannot be NULL as r10buf_pool_alloc will
3209				 * have allocated it.
 
 
 
 
3210				 */
3211				if (!need_replace)
 
3212					break;
3213				bio->bi_next = biolist;
3214				biolist = bio;
3215				bio->bi_end_io = end_sync_write;
3216				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3217				bio->bi_iter.bi_sector = to_addr +
3218					mreplace->data_offset;
3219				bio_set_dev(bio, mreplace->bdev);
3220				atomic_inc(&r10_bio->remaining);
3221				break;
3222			}
3223			rcu_read_unlock();
3224			if (j == conf->copies) {
3225				/* Cannot recover, so abort the recovery or
3226				 * record a bad block */
3227				if (any_working) {
3228					/* problem is that there are bad blocks
3229					 * on other device(s)
3230					 */
3231					int k;
3232					for (k = 0; k < conf->copies; k++)
3233						if (r10_bio->devs[k].devnum == i)
3234							break;
3235					if (!test_bit(In_sync,
3236						      &mrdev->flags)
3237					    && !rdev_set_badblocks(
3238						    mrdev,
3239						    r10_bio->devs[k].addr,
3240						    max_sync, 0))
3241						any_working = 0;
3242					if (mreplace &&
3243					    !rdev_set_badblocks(
3244						    mreplace,
3245						    r10_bio->devs[k].addr,
3246						    max_sync, 0))
3247						any_working = 0;
3248				}
3249				if (!any_working)  {
3250					if (!test_and_set_bit(MD_RECOVERY_INTR,
3251							      &mddev->recovery))
3252						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3253						       mdname(mddev));
3254					mirror->recovery_disabled
3255						= mddev->recovery_disabled;
3256				}
3257				put_buf(r10_bio);
3258				if (rb2)
3259					atomic_dec(&rb2->remaining);
3260				r10_bio = rb2;
3261				rdev_dec_pending(mrdev, mddev);
3262				if (mreplace)
3263					rdev_dec_pending(mreplace, mddev);
3264				break;
3265			}
3266			rdev_dec_pending(mrdev, mddev);
3267			if (mreplace)
3268				rdev_dec_pending(mreplace, mddev);
3269			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3270				/* Only want this if there is elsewhere to
3271				 * read from. 'j' is currently the first
3272				 * readable copy.
3273				 */
3274				int targets = 1;
3275				for (; j < conf->copies; j++) {
3276					int d = r10_bio->devs[j].devnum;
3277					if (conf->mirrors[d].rdev &&
3278					    test_bit(In_sync,
3279						      &conf->mirrors[d].rdev->flags))
3280						targets++;
3281				}
3282				if (targets == 1)
3283					r10_bio->devs[0].bio->bi_opf
3284						&= ~MD_FAILFAST;
3285			}
3286		}
3287		if (biolist == NULL) {
3288			while (r10_bio) {
3289				struct r10bio *rb2 = r10_bio;
3290				r10_bio = (struct r10bio*) rb2->master_bio;
3291				rb2->master_bio = NULL;
3292				put_buf(rb2);
3293			}
3294			goto giveup;
3295		}
3296	} else {
3297		/* resync. Schedule a read for every block at this virt offset */
3298		int count = 0;
3299
3300		/*
3301		 * Since curr_resync_completed could probably not update in
3302		 * time, and we will set cluster_sync_low based on it.
3303		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3304		 * safety reason, which ensures curr_resync_completed is
3305		 * updated in bitmap_cond_end_sync.
3306		 */
3307		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3308					mddev_is_clustered(mddev) &&
3309					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
 
3310
3311		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3312					  &sync_blocks, mddev->degraded) &&
3313		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3314						 &mddev->recovery)) {
3315			/* We can skip this block */
3316			*skipped = 1;
3317			return sync_blocks + sectors_skipped;
3318		}
3319		if (sync_blocks < max_sync)
3320			max_sync = sync_blocks;
3321		r10_bio = raid10_alloc_init_r10buf(conf);
3322		r10_bio->state = 0;
3323
3324		r10_bio->mddev = mddev;
3325		atomic_set(&r10_bio->remaining, 0);
3326		raise_barrier(conf, 0);
3327		conf->next_resync = sector_nr;
3328
3329		r10_bio->master_bio = NULL;
3330		r10_bio->sector = sector_nr;
3331		set_bit(R10BIO_IsSync, &r10_bio->state);
3332		raid10_find_phys(conf, r10_bio);
3333		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3334
3335		for (i = 0; i < conf->copies; i++) {
3336			int d = r10_bio->devs[i].devnum;
3337			sector_t first_bad, sector;
3338			int bad_sectors;
3339			struct md_rdev *rdev;
3340
3341			if (r10_bio->devs[i].repl_bio)
3342				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3343
3344			bio = r10_bio->devs[i].bio;
3345			bio->bi_status = BLK_STS_IOERR;
3346			rcu_read_lock();
3347			rdev = rcu_dereference(conf->mirrors[d].rdev);
3348			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3349				rcu_read_unlock();
3350				continue;
3351			}
3352			sector = r10_bio->devs[i].addr;
3353			if (is_badblock(rdev, sector, max_sync,
3354					&first_bad, &bad_sectors)) {
3355				if (first_bad > sector)
3356					max_sync = first_bad - sector;
3357				else {
3358					bad_sectors -= (sector - first_bad);
3359					if (max_sync > bad_sectors)
3360						max_sync = bad_sectors;
3361					rcu_read_unlock();
3362					continue;
3363				}
3364			}
3365			atomic_inc(&rdev->nr_pending);
3366			atomic_inc(&r10_bio->remaining);
3367			bio->bi_next = biolist;
3368			biolist = bio;
3369			bio->bi_end_io = end_sync_read;
3370			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3371			if (test_bit(FailFast, &rdev->flags))
3372				bio->bi_opf |= MD_FAILFAST;
3373			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3374			bio_set_dev(bio, rdev->bdev);
3375			count++;
3376
3377			rdev = rcu_dereference(conf->mirrors[d].replacement);
3378			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3379				rcu_read_unlock();
3380				continue;
3381			}
3382			atomic_inc(&rdev->nr_pending);
3383
3384			/* Need to set up for writing to the replacement */
3385			bio = r10_bio->devs[i].repl_bio;
3386			bio->bi_status = BLK_STS_IOERR;
3387
3388			sector = r10_bio->devs[i].addr;
3389			bio->bi_next = biolist;
3390			biolist = bio;
3391			bio->bi_end_io = end_sync_write;
3392			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3393			if (test_bit(FailFast, &rdev->flags))
3394				bio->bi_opf |= MD_FAILFAST;
3395			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3396			bio_set_dev(bio, rdev->bdev);
3397			count++;
3398			rcu_read_unlock();
3399		}
3400
3401		if (count < 2) {
3402			for (i=0; i<conf->copies; i++) {
3403				int d = r10_bio->devs[i].devnum;
3404				if (r10_bio->devs[i].bio->bi_end_io)
3405					rdev_dec_pending(conf->mirrors[d].rdev,
3406							 mddev);
3407				if (r10_bio->devs[i].repl_bio &&
3408				    r10_bio->devs[i].repl_bio->bi_end_io)
3409					rdev_dec_pending(
3410						conf->mirrors[d].replacement,
3411						mddev);
3412			}
3413			put_buf(r10_bio);
3414			biolist = NULL;
3415			goto giveup;
3416		}
3417	}
3418
3419	nr_sectors = 0;
3420	if (sector_nr + max_sync < max_sector)
3421		max_sector = sector_nr + max_sync;
3422	do {
3423		struct page *page;
3424		int len = PAGE_SIZE;
3425		if (sector_nr + (len>>9) > max_sector)
3426			len = (max_sector - sector_nr) << 9;
3427		if (len == 0)
3428			break;
3429		for (bio= biolist ; bio ; bio=bio->bi_next) {
3430			struct resync_pages *rp = get_resync_pages(bio);
3431			page = resync_fetch_page(rp, page_idx);
3432			/*
3433			 * won't fail because the vec table is big enough
3434			 * to hold all these pages
3435			 */
3436			bio_add_page(bio, page, len, 0);
3437		}
3438		nr_sectors += len>>9;
3439		sector_nr += len>>9;
3440	} while (++page_idx < RESYNC_PAGES);
3441	r10_bio->sectors = nr_sectors;
3442
3443	if (mddev_is_clustered(mddev) &&
3444	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3445		/* It is resync not recovery */
3446		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3447			conf->cluster_sync_low = mddev->curr_resync_completed;
3448			raid10_set_cluster_sync_high(conf);
3449			/* Send resync message */
3450			md_cluster_ops->resync_info_update(mddev,
3451						conf->cluster_sync_low,
3452						conf->cluster_sync_high);
3453		}
3454	} else if (mddev_is_clustered(mddev)) {
3455		/* This is recovery not resync */
3456		sector_t sect_va1, sect_va2;
3457		bool broadcast_msg = false;
3458
3459		for (i = 0; i < conf->geo.raid_disks; i++) {
3460			/*
3461			 * sector_nr is a device address for recovery, so we
3462			 * need translate it to array address before compare
3463			 * with cluster_sync_high.
3464			 */
3465			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3466
3467			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3468				broadcast_msg = true;
3469				/*
3470				 * curr_resync_completed is similar as
3471				 * sector_nr, so make the translation too.
3472				 */
3473				sect_va2 = raid10_find_virt(conf,
3474					mddev->curr_resync_completed, i);
3475
3476				if (conf->cluster_sync_low == 0 ||
3477				    conf->cluster_sync_low > sect_va2)
3478					conf->cluster_sync_low = sect_va2;
3479			}
3480		}
3481		if (broadcast_msg) {
3482			raid10_set_cluster_sync_high(conf);
3483			md_cluster_ops->resync_info_update(mddev,
3484						conf->cluster_sync_low,
3485						conf->cluster_sync_high);
3486		}
3487	}
3488
3489	while (biolist) {
3490		bio = biolist;
3491		biolist = biolist->bi_next;
3492
3493		bio->bi_next = NULL;
3494		r10_bio = get_resync_r10bio(bio);
3495		r10_bio->sectors = nr_sectors;
3496
3497		if (bio->bi_end_io == end_sync_read) {
3498			md_sync_acct_bio(bio, nr_sectors);
3499			bio->bi_status = 0;
3500			generic_make_request(bio);
3501		}
3502	}
3503
3504	if (sectors_skipped)
3505		/* pretend they weren't skipped, it makes
3506		 * no important difference in this case
3507		 */
3508		md_done_sync(mddev, sectors_skipped, 1);
3509
3510	return sectors_skipped + nr_sectors;
3511 giveup:
3512	/* There is nowhere to write, so all non-sync
3513	 * drives must be failed or in resync, all drives
3514	 * have a bad block, so try the next chunk...
3515	 */
3516	if (sector_nr + max_sync < max_sector)
3517		max_sector = sector_nr + max_sync;
3518
3519	sectors_skipped += (max_sector - sector_nr);
3520	chunks_skipped ++;
3521	sector_nr = max_sector;
3522	goto skipped;
3523}
3524
3525static sector_t
3526raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3527{
3528	sector_t size;
3529	struct r10conf *conf = mddev->private;
3530
3531	if (!raid_disks)
3532		raid_disks = min(conf->geo.raid_disks,
3533				 conf->prev.raid_disks);
3534	if (!sectors)
3535		sectors = conf->dev_sectors;
3536
3537	size = sectors >> conf->geo.chunk_shift;
3538	sector_div(size, conf->geo.far_copies);
3539	size = size * raid_disks;
3540	sector_div(size, conf->geo.near_copies);
3541
3542	return size << conf->geo.chunk_shift;
3543}
3544
3545static void calc_sectors(struct r10conf *conf, sector_t size)
3546{
3547	/* Calculate the number of sectors-per-device that will
3548	 * actually be used, and set conf->dev_sectors and
3549	 * conf->stride
3550	 */
3551
3552	size = size >> conf->geo.chunk_shift;
3553	sector_div(size, conf->geo.far_copies);
3554	size = size * conf->geo.raid_disks;
3555	sector_div(size, conf->geo.near_copies);
3556	/* 'size' is now the number of chunks in the array */
3557	/* calculate "used chunks per device" */
3558	size = size * conf->copies;
3559
3560	/* We need to round up when dividing by raid_disks to
3561	 * get the stride size.
3562	 */
3563	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3564
3565	conf->dev_sectors = size << conf->geo.chunk_shift;
3566
3567	if (conf->geo.far_offset)
3568		conf->geo.stride = 1 << conf->geo.chunk_shift;
3569	else {
3570		sector_div(size, conf->geo.far_copies);
3571		conf->geo.stride = size << conf->geo.chunk_shift;
3572	}
3573}
3574
3575enum geo_type {geo_new, geo_old, geo_start};
3576static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3577{
3578	int nc, fc, fo;
3579	int layout, chunk, disks;
3580	switch (new) {
3581	case geo_old:
3582		layout = mddev->layout;
3583		chunk = mddev->chunk_sectors;
3584		disks = mddev->raid_disks - mddev->delta_disks;
3585		break;
3586	case geo_new:
3587		layout = mddev->new_layout;
3588		chunk = mddev->new_chunk_sectors;
3589		disks = mddev->raid_disks;
3590		break;
3591	default: /* avoid 'may be unused' warnings */
3592	case geo_start: /* new when starting reshape - raid_disks not
3593			 * updated yet. */
3594		layout = mddev->new_layout;
3595		chunk = mddev->new_chunk_sectors;
3596		disks = mddev->raid_disks + mddev->delta_disks;
3597		break;
3598	}
3599	if (layout >> 19)
3600		return -1;
3601	if (chunk < (PAGE_SIZE >> 9) ||
3602	    !is_power_of_2(chunk))
3603		return -2;
3604	nc = layout & 255;
3605	fc = (layout >> 8) & 255;
3606	fo = layout & (1<<16);
3607	geo->raid_disks = disks;
3608	geo->near_copies = nc;
3609	geo->far_copies = fc;
3610	geo->far_offset = fo;
3611	switch (layout >> 17) {
3612	case 0:	/* original layout.  simple but not always optimal */
3613		geo->far_set_size = disks;
3614		break;
3615	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3616		 * actually using this, but leave code here just in case.*/
3617		geo->far_set_size = disks/fc;
3618		WARN(geo->far_set_size < fc,
3619		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3620		break;
3621	case 2: /* "improved" layout fixed to match documentation */
3622		geo->far_set_size = fc * nc;
3623		break;
3624	default: /* Not a valid layout */
3625		return -1;
3626	}
3627	geo->chunk_mask = chunk - 1;
3628	geo->chunk_shift = ffz(~chunk);
3629	return nc*fc;
3630}
3631
3632static struct r10conf *setup_conf(struct mddev *mddev)
3633{
3634	struct r10conf *conf = NULL;
3635	int err = -EINVAL;
3636	struct geom geo;
3637	int copies;
3638
3639	copies = setup_geo(&geo, mddev, geo_new);
3640
3641	if (copies == -2) {
3642		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3643			mdname(mddev), PAGE_SIZE);
3644		goto out;
3645	}
3646
3647	if (copies < 2 || copies > mddev->raid_disks) {
3648		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3649			mdname(mddev), mddev->new_layout);
3650		goto out;
3651	}
3652
3653	err = -ENOMEM;
3654	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3655	if (!conf)
3656		goto out;
3657
3658	/* FIXME calc properly */
3659	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3660				sizeof(struct raid10_info),
3661				GFP_KERNEL);
3662	if (!conf->mirrors)
3663		goto out;
3664
3665	conf->tmppage = alloc_page(GFP_KERNEL);
3666	if (!conf->tmppage)
3667		goto out;
3668
3669	conf->geo = geo;
3670	conf->copies = copies;
3671	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3672			   rbio_pool_free, conf);
3673	if (err)
3674		goto out;
3675
3676	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3677	if (err)
3678		goto out;
3679
3680	calc_sectors(conf, mddev->dev_sectors);
3681	if (mddev->reshape_position == MaxSector) {
3682		conf->prev = conf->geo;
3683		conf->reshape_progress = MaxSector;
3684	} else {
3685		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3686			err = -EINVAL;
3687			goto out;
3688		}
3689		conf->reshape_progress = mddev->reshape_position;
3690		if (conf->prev.far_offset)
3691			conf->prev.stride = 1 << conf->prev.chunk_shift;
3692		else
3693			/* far_copies must be 1 */
3694			conf->prev.stride = conf->dev_sectors;
3695	}
3696	conf->reshape_safe = conf->reshape_progress;
3697	spin_lock_init(&conf->device_lock);
3698	INIT_LIST_HEAD(&conf->retry_list);
3699	INIT_LIST_HEAD(&conf->bio_end_io_list);
3700
3701	spin_lock_init(&conf->resync_lock);
3702	init_waitqueue_head(&conf->wait_barrier);
3703	atomic_set(&conf->nr_pending, 0);
3704
3705	err = -ENOMEM;
3706	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3707	if (!conf->thread)
3708		goto out;
3709
3710	conf->mddev = mddev;
3711	return conf;
3712
3713 out:
3714	if (conf) {
3715		mempool_exit(&conf->r10bio_pool);
3716		kfree(conf->mirrors);
3717		safe_put_page(conf->tmppage);
3718		bioset_exit(&conf->bio_split);
 
3719		kfree(conf);
3720	}
3721	return ERR_PTR(err);
3722}
3723
3724static int raid10_run(struct mddev *mddev)
3725{
3726	struct r10conf *conf;
3727	int i, disk_idx, chunk_size;
3728	struct raid10_info *disk;
3729	struct md_rdev *rdev;
3730	sector_t size;
3731	sector_t min_offset_diff = 0;
3732	int first = 1;
3733	bool discard_supported = false;
3734
3735	if (mddev_init_writes_pending(mddev) < 0)
3736		return -ENOMEM;
3737
3738	if (mddev->private == NULL) {
3739		conf = setup_conf(mddev);
3740		if (IS_ERR(conf))
3741			return PTR_ERR(conf);
3742		mddev->private = conf;
3743	}
3744	conf = mddev->private;
3745	if (!conf)
3746		goto out;
3747
3748	if (mddev_is_clustered(conf->mddev)) {
3749		int fc, fo;
3750
3751		fc = (mddev->layout >> 8) & 255;
3752		fo = mddev->layout & (1<<16);
3753		if (fc > 1 || fo > 0) {
3754			pr_err("only near layout is supported by clustered"
3755				" raid10\n");
3756			goto out_free_conf;
3757		}
3758	}
3759
3760	mddev->thread = conf->thread;
3761	conf->thread = NULL;
3762
3763	chunk_size = mddev->chunk_sectors << 9;
3764	if (mddev->queue) {
3765		blk_queue_max_discard_sectors(mddev->queue,
3766					      mddev->chunk_sectors);
3767		blk_queue_max_write_same_sectors(mddev->queue, 0);
3768		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3769		blk_queue_io_min(mddev->queue, chunk_size);
3770		if (conf->geo.raid_disks % conf->geo.near_copies)
3771			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3772		else
3773			blk_queue_io_opt(mddev->queue, chunk_size *
3774					 (conf->geo.raid_disks / conf->geo.near_copies));
3775	}
3776
3777	rdev_for_each(rdev, mddev) {
3778		long long diff;
3779
3780		disk_idx = rdev->raid_disk;
3781		if (disk_idx < 0)
3782			continue;
3783		if (disk_idx >= conf->geo.raid_disks &&
3784		    disk_idx >= conf->prev.raid_disks)
3785			continue;
3786		disk = conf->mirrors + disk_idx;
3787
3788		if (test_bit(Replacement, &rdev->flags)) {
3789			if (disk->replacement)
3790				goto out_free_conf;
3791			disk->replacement = rdev;
3792		} else {
3793			if (disk->rdev)
3794				goto out_free_conf;
3795			disk->rdev = rdev;
3796		}
3797		diff = (rdev->new_data_offset - rdev->data_offset);
3798		if (!mddev->reshape_backwards)
3799			diff = -diff;
3800		if (diff < 0)
3801			diff = 0;
3802		if (first || diff < min_offset_diff)
3803			min_offset_diff = diff;
3804
3805		if (mddev->gendisk)
3806			disk_stack_limits(mddev->gendisk, rdev->bdev,
3807					  rdev->data_offset << 9);
3808
3809		disk->head_position = 0;
3810
3811		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3812			discard_supported = true;
3813		first = 0;
3814	}
3815
3816	if (mddev->queue) {
3817		if (discard_supported)
3818			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3819						mddev->queue);
3820		else
3821			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3822						  mddev->queue);
3823	}
3824	/* need to check that every block has at least one working mirror */
3825	if (!enough(conf, -1)) {
3826		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3827		       mdname(mddev));
3828		goto out_free_conf;
3829	}
3830
3831	if (conf->reshape_progress != MaxSector) {
3832		/* must ensure that shape change is supported */
3833		if (conf->geo.far_copies != 1 &&
3834		    conf->geo.far_offset == 0)
3835			goto out_free_conf;
3836		if (conf->prev.far_copies != 1 &&
3837		    conf->prev.far_offset == 0)
3838			goto out_free_conf;
3839	}
3840
3841	mddev->degraded = 0;
3842	for (i = 0;
3843	     i < conf->geo.raid_disks
3844		     || i < conf->prev.raid_disks;
3845	     i++) {
3846
3847		disk = conf->mirrors + i;
3848
3849		if (!disk->rdev && disk->replacement) {
3850			/* The replacement is all we have - use it */
3851			disk->rdev = disk->replacement;
3852			disk->replacement = NULL;
3853			clear_bit(Replacement, &disk->rdev->flags);
3854		}
3855
3856		if (!disk->rdev ||
3857		    !test_bit(In_sync, &disk->rdev->flags)) {
3858			disk->head_position = 0;
3859			mddev->degraded++;
3860			if (disk->rdev &&
3861			    disk->rdev->saved_raid_disk < 0)
3862				conf->fullsync = 1;
3863		}
3864
3865		if (disk->replacement &&
3866		    !test_bit(In_sync, &disk->replacement->flags) &&
3867		    disk->replacement->saved_raid_disk < 0) {
3868			conf->fullsync = 1;
3869		}
3870
3871		disk->recovery_disabled = mddev->recovery_disabled - 1;
3872	}
3873
3874	if (mddev->recovery_cp != MaxSector)
3875		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3876			  mdname(mddev));
3877	pr_info("md/raid10:%s: active with %d out of %d devices\n",
3878		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3879		conf->geo.raid_disks);
3880	/*
3881	 * Ok, everything is just fine now
3882	 */
3883	mddev->dev_sectors = conf->dev_sectors;
3884	size = raid10_size(mddev, 0, 0);
3885	md_set_array_sectors(mddev, size);
3886	mddev->resync_max_sectors = size;
3887	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3888
3889	if (mddev->queue) {
3890		int stripe = conf->geo.raid_disks *
3891			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3892
3893		/* Calculate max read-ahead size.
3894		 * We need to readahead at least twice a whole stripe....
3895		 * maybe...
3896		 */
3897		stripe /= conf->geo.near_copies;
3898		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3899			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3900	}
3901
3902	if (md_integrity_register(mddev))
3903		goto out_free_conf;
3904
3905	if (conf->reshape_progress != MaxSector) {
3906		unsigned long before_length, after_length;
3907
3908		before_length = ((1 << conf->prev.chunk_shift) *
3909				 conf->prev.far_copies);
3910		after_length = ((1 << conf->geo.chunk_shift) *
3911				conf->geo.far_copies);
3912
3913		if (max(before_length, after_length) > min_offset_diff) {
3914			/* This cannot work */
3915			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3916			goto out_free_conf;
3917		}
3918		conf->offset_diff = min_offset_diff;
3919
3920		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3921		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3922		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3923		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3924		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3925							"reshape");
3926		if (!mddev->sync_thread)
3927			goto out_free_conf;
3928	}
3929
3930	return 0;
3931
3932out_free_conf:
3933	md_unregister_thread(&mddev->thread);
3934	mempool_exit(&conf->r10bio_pool);
3935	safe_put_page(conf->tmppage);
3936	kfree(conf->mirrors);
3937	kfree(conf);
3938	mddev->private = NULL;
3939out:
3940	return -EIO;
3941}
3942
3943static void raid10_free(struct mddev *mddev, void *priv)
3944{
3945	struct r10conf *conf = priv;
3946
3947	mempool_exit(&conf->r10bio_pool);
3948	safe_put_page(conf->tmppage);
3949	kfree(conf->mirrors);
3950	kfree(conf->mirrors_old);
3951	kfree(conf->mirrors_new);
3952	bioset_exit(&conf->bio_split);
 
3953	kfree(conf);
3954}
3955
3956static void raid10_quiesce(struct mddev *mddev, int quiesce)
3957{
3958	struct r10conf *conf = mddev->private;
3959
3960	if (quiesce)
3961		raise_barrier(conf, 0);
3962	else
3963		lower_barrier(conf);
3964}
3965
3966static int raid10_resize(struct mddev *mddev, sector_t sectors)
3967{
3968	/* Resize of 'far' arrays is not supported.
3969	 * For 'near' and 'offset' arrays we can set the
3970	 * number of sectors used to be an appropriate multiple
3971	 * of the chunk size.
3972	 * For 'offset', this is far_copies*chunksize.
3973	 * For 'near' the multiplier is the LCM of
3974	 * near_copies and raid_disks.
3975	 * So if far_copies > 1 && !far_offset, fail.
3976	 * Else find LCM(raid_disks, near_copy)*far_copies and
3977	 * multiply by chunk_size.  Then round to this number.
3978	 * This is mostly done by raid10_size()
3979	 */
3980	struct r10conf *conf = mddev->private;
3981	sector_t oldsize, size;
3982
3983	if (mddev->reshape_position != MaxSector)
3984		return -EBUSY;
3985
3986	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3987		return -EINVAL;
3988
3989	oldsize = raid10_size(mddev, 0, 0);
3990	size = raid10_size(mddev, sectors, 0);
3991	if (mddev->external_size &&
3992	    mddev->array_sectors > size)
3993		return -EINVAL;
3994	if (mddev->bitmap) {
3995		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3996		if (ret)
3997			return ret;
3998	}
3999	md_set_array_sectors(mddev, size);
4000	if (sectors > mddev->dev_sectors &&
4001	    mddev->recovery_cp > oldsize) {
4002		mddev->recovery_cp = oldsize;
4003		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4004	}
4005	calc_sectors(conf, sectors);
4006	mddev->dev_sectors = conf->dev_sectors;
4007	mddev->resync_max_sectors = size;
4008	return 0;
4009}
4010
4011static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4012{
4013	struct md_rdev *rdev;
4014	struct r10conf *conf;
4015
4016	if (mddev->degraded > 0) {
4017		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4018			mdname(mddev));
4019		return ERR_PTR(-EINVAL);
4020	}
4021	sector_div(size, devs);
4022
4023	/* Set new parameters */
4024	mddev->new_level = 10;
4025	/* new layout: far_copies = 1, near_copies = 2 */
4026	mddev->new_layout = (1<<8) + 2;
4027	mddev->new_chunk_sectors = mddev->chunk_sectors;
4028	mddev->delta_disks = mddev->raid_disks;
4029	mddev->raid_disks *= 2;
4030	/* make sure it will be not marked as dirty */
4031	mddev->recovery_cp = MaxSector;
4032	mddev->dev_sectors = size;
4033
4034	conf = setup_conf(mddev);
4035	if (!IS_ERR(conf)) {
4036		rdev_for_each(rdev, mddev)
4037			if (rdev->raid_disk >= 0) {
4038				rdev->new_raid_disk = rdev->raid_disk * 2;
4039				rdev->sectors = size;
4040			}
4041		conf->barrier = 1;
4042	}
4043
4044	return conf;
4045}
4046
4047static void *raid10_takeover(struct mddev *mddev)
4048{
4049	struct r0conf *raid0_conf;
4050
4051	/* raid10 can take over:
4052	 *  raid0 - providing it has only two drives
4053	 */
4054	if (mddev->level == 0) {
4055		/* for raid0 takeover only one zone is supported */
4056		raid0_conf = mddev->private;
4057		if (raid0_conf->nr_strip_zones > 1) {
4058			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4059				mdname(mddev));
4060			return ERR_PTR(-EINVAL);
4061		}
4062		return raid10_takeover_raid0(mddev,
4063			raid0_conf->strip_zone->zone_end,
4064			raid0_conf->strip_zone->nb_dev);
4065	}
4066	return ERR_PTR(-EINVAL);
4067}
4068
4069static int raid10_check_reshape(struct mddev *mddev)
4070{
4071	/* Called when there is a request to change
4072	 * - layout (to ->new_layout)
4073	 * - chunk size (to ->new_chunk_sectors)
4074	 * - raid_disks (by delta_disks)
4075	 * or when trying to restart a reshape that was ongoing.
4076	 *
4077	 * We need to validate the request and possibly allocate
4078	 * space if that might be an issue later.
4079	 *
4080	 * Currently we reject any reshape of a 'far' mode array,
4081	 * allow chunk size to change if new is generally acceptable,
4082	 * allow raid_disks to increase, and allow
4083	 * a switch between 'near' mode and 'offset' mode.
4084	 */
4085	struct r10conf *conf = mddev->private;
4086	struct geom geo;
4087
4088	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4089		return -EINVAL;
4090
4091	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4092		/* mustn't change number of copies */
4093		return -EINVAL;
4094	if (geo.far_copies > 1 && !geo.far_offset)
4095		/* Cannot switch to 'far' mode */
4096		return -EINVAL;
4097
4098	if (mddev->array_sectors & geo.chunk_mask)
4099			/* not factor of array size */
4100			return -EINVAL;
4101
4102	if (!enough(conf, -1))
4103		return -EINVAL;
4104
4105	kfree(conf->mirrors_new);
4106	conf->mirrors_new = NULL;
4107	if (mddev->delta_disks > 0) {
4108		/* allocate new 'mirrors' list */
4109		conf->mirrors_new =
4110			kcalloc(mddev->raid_disks + mddev->delta_disks,
4111				sizeof(struct raid10_info),
4112				GFP_KERNEL);
 
4113		if (!conf->mirrors_new)
4114			return -ENOMEM;
4115	}
4116	return 0;
4117}
4118
4119/*
4120 * Need to check if array has failed when deciding whether to:
4121 *  - start an array
4122 *  - remove non-faulty devices
4123 *  - add a spare
4124 *  - allow a reshape
4125 * This determination is simple when no reshape is happening.
4126 * However if there is a reshape, we need to carefully check
4127 * both the before and after sections.
4128 * This is because some failed devices may only affect one
4129 * of the two sections, and some non-in_sync devices may
4130 * be insync in the section most affected by failed devices.
4131 */
4132static int calc_degraded(struct r10conf *conf)
4133{
4134	int degraded, degraded2;
4135	int i;
4136
4137	rcu_read_lock();
4138	degraded = 0;
4139	/* 'prev' section first */
4140	for (i = 0; i < conf->prev.raid_disks; i++) {
4141		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4142		if (!rdev || test_bit(Faulty, &rdev->flags))
4143			degraded++;
4144		else if (!test_bit(In_sync, &rdev->flags))
4145			/* When we can reduce the number of devices in
4146			 * an array, this might not contribute to
4147			 * 'degraded'.  It does now.
4148			 */
4149			degraded++;
4150	}
4151	rcu_read_unlock();
4152	if (conf->geo.raid_disks == conf->prev.raid_disks)
4153		return degraded;
4154	rcu_read_lock();
4155	degraded2 = 0;
4156	for (i = 0; i < conf->geo.raid_disks; i++) {
4157		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4158		if (!rdev || test_bit(Faulty, &rdev->flags))
4159			degraded2++;
4160		else if (!test_bit(In_sync, &rdev->flags)) {
4161			/* If reshape is increasing the number of devices,
4162			 * this section has already been recovered, so
4163			 * it doesn't contribute to degraded.
4164			 * else it does.
4165			 */
4166			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4167				degraded2++;
4168		}
4169	}
4170	rcu_read_unlock();
4171	if (degraded2 > degraded)
4172		return degraded2;
4173	return degraded;
4174}
4175
4176static int raid10_start_reshape(struct mddev *mddev)
4177{
4178	/* A 'reshape' has been requested. This commits
4179	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4180	 * This also checks if there are enough spares and adds them
4181	 * to the array.
4182	 * We currently require enough spares to make the final
4183	 * array non-degraded.  We also require that the difference
4184	 * between old and new data_offset - on each device - is
4185	 * enough that we never risk over-writing.
4186	 */
4187
4188	unsigned long before_length, after_length;
4189	sector_t min_offset_diff = 0;
4190	int first = 1;
4191	struct geom new;
4192	struct r10conf *conf = mddev->private;
4193	struct md_rdev *rdev;
4194	int spares = 0;
4195	int ret;
4196
4197	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4198		return -EBUSY;
4199
4200	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4201		return -EINVAL;
4202
4203	before_length = ((1 << conf->prev.chunk_shift) *
4204			 conf->prev.far_copies);
4205	after_length = ((1 << conf->geo.chunk_shift) *
4206			conf->geo.far_copies);
4207
4208	rdev_for_each(rdev, mddev) {
4209		if (!test_bit(In_sync, &rdev->flags)
4210		    && !test_bit(Faulty, &rdev->flags))
4211			spares++;
4212		if (rdev->raid_disk >= 0) {
4213			long long diff = (rdev->new_data_offset
4214					  - rdev->data_offset);
4215			if (!mddev->reshape_backwards)
4216				diff = -diff;
4217			if (diff < 0)
4218				diff = 0;
4219			if (first || diff < min_offset_diff)
4220				min_offset_diff = diff;
4221			first = 0;
4222		}
4223	}
4224
4225	if (max(before_length, after_length) > min_offset_diff)
4226		return -EINVAL;
4227
4228	if (spares < mddev->delta_disks)
4229		return -EINVAL;
4230
4231	conf->offset_diff = min_offset_diff;
4232	spin_lock_irq(&conf->device_lock);
4233	if (conf->mirrors_new) {
4234		memcpy(conf->mirrors_new, conf->mirrors,
4235		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4236		smp_mb();
4237		kfree(conf->mirrors_old);
4238		conf->mirrors_old = conf->mirrors;
4239		conf->mirrors = conf->mirrors_new;
4240		conf->mirrors_new = NULL;
4241	}
4242	setup_geo(&conf->geo, mddev, geo_start);
4243	smp_mb();
4244	if (mddev->reshape_backwards) {
4245		sector_t size = raid10_size(mddev, 0, 0);
4246		if (size < mddev->array_sectors) {
4247			spin_unlock_irq(&conf->device_lock);
4248			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4249				mdname(mddev));
4250			return -EINVAL;
4251		}
4252		mddev->resync_max_sectors = size;
4253		conf->reshape_progress = size;
4254	} else
4255		conf->reshape_progress = 0;
4256	conf->reshape_safe = conf->reshape_progress;
4257	spin_unlock_irq(&conf->device_lock);
4258
4259	if (mddev->delta_disks && mddev->bitmap) {
4260		struct mdp_superblock_1 *sb = NULL;
4261		sector_t oldsize, newsize;
4262
4263		oldsize = raid10_size(mddev, 0, 0);
4264		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4265
4266		if (!mddev_is_clustered(mddev)) {
4267			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4268			if (ret)
4269				goto abort;
4270			else
4271				goto out;
4272		}
4273
4274		rdev_for_each(rdev, mddev) {
4275			if (rdev->raid_disk > -1 &&
4276			    !test_bit(Faulty, &rdev->flags))
4277				sb = page_address(rdev->sb_page);
4278		}
4279
4280		/*
4281		 * some node is already performing reshape, and no need to
4282		 * call md_bitmap_resize again since it should be called when
4283		 * receiving BITMAP_RESIZE msg
4284		 */
4285		if ((sb && (le32_to_cpu(sb->feature_map) &
4286			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4287			goto out;
4288
4289		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4290		if (ret)
4291			goto abort;
4292
4293		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4294		if (ret) {
4295			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4296			goto abort;
4297		}
4298	}
4299out:
4300	if (mddev->delta_disks > 0) {
4301		rdev_for_each(rdev, mddev)
4302			if (rdev->raid_disk < 0 &&
4303			    !test_bit(Faulty, &rdev->flags)) {
4304				if (raid10_add_disk(mddev, rdev) == 0) {
4305					if (rdev->raid_disk >=
4306					    conf->prev.raid_disks)
4307						set_bit(In_sync, &rdev->flags);
4308					else
4309						rdev->recovery_offset = 0;
4310
4311					if (sysfs_link_rdev(mddev, rdev))
4312						/* Failure here  is OK */;
4313				}
4314			} else if (rdev->raid_disk >= conf->prev.raid_disks
4315				   && !test_bit(Faulty, &rdev->flags)) {
4316				/* This is a spare that was manually added */
4317				set_bit(In_sync, &rdev->flags);
4318			}
4319	}
4320	/* When a reshape changes the number of devices,
4321	 * ->degraded is measured against the larger of the
4322	 * pre and  post numbers.
4323	 */
4324	spin_lock_irq(&conf->device_lock);
4325	mddev->degraded = calc_degraded(conf);
4326	spin_unlock_irq(&conf->device_lock);
4327	mddev->raid_disks = conf->geo.raid_disks;
4328	mddev->reshape_position = conf->reshape_progress;
4329	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4330
4331	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4332	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4333	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4334	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4335	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4336
4337	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4338						"reshape");
4339	if (!mddev->sync_thread) {
4340		ret = -EAGAIN;
4341		goto abort;
4342	}
4343	conf->reshape_checkpoint = jiffies;
4344	md_wakeup_thread(mddev->sync_thread);
4345	md_new_event(mddev);
4346	return 0;
4347
4348abort:
4349	mddev->recovery = 0;
4350	spin_lock_irq(&conf->device_lock);
4351	conf->geo = conf->prev;
4352	mddev->raid_disks = conf->geo.raid_disks;
4353	rdev_for_each(rdev, mddev)
4354		rdev->new_data_offset = rdev->data_offset;
4355	smp_wmb();
4356	conf->reshape_progress = MaxSector;
4357	conf->reshape_safe = MaxSector;
4358	mddev->reshape_position = MaxSector;
4359	spin_unlock_irq(&conf->device_lock);
4360	return ret;
4361}
4362
4363/* Calculate the last device-address that could contain
4364 * any block from the chunk that includes the array-address 's'
4365 * and report the next address.
4366 * i.e. the address returned will be chunk-aligned and after
4367 * any data that is in the chunk containing 's'.
4368 */
4369static sector_t last_dev_address(sector_t s, struct geom *geo)
4370{
4371	s = (s | geo->chunk_mask) + 1;
4372	s >>= geo->chunk_shift;
4373	s *= geo->near_copies;
4374	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4375	s *= geo->far_copies;
4376	s <<= geo->chunk_shift;
4377	return s;
4378}
4379
4380/* Calculate the first device-address that could contain
4381 * any block from the chunk that includes the array-address 's'.
4382 * This too will be the start of a chunk
4383 */
4384static sector_t first_dev_address(sector_t s, struct geom *geo)
4385{
4386	s >>= geo->chunk_shift;
4387	s *= geo->near_copies;
4388	sector_div(s, geo->raid_disks);
4389	s *= geo->far_copies;
4390	s <<= geo->chunk_shift;
4391	return s;
4392}
4393
4394static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4395				int *skipped)
4396{
4397	/* We simply copy at most one chunk (smallest of old and new)
4398	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4399	 * or we hit a bad block or something.
4400	 * This might mean we pause for normal IO in the middle of
4401	 * a chunk, but that is not a problem as mddev->reshape_position
4402	 * can record any location.
4403	 *
4404	 * If we will want to write to a location that isn't
4405	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4406	 * we need to flush all reshape requests and update the metadata.
4407	 *
4408	 * When reshaping forwards (e.g. to more devices), we interpret
4409	 * 'safe' as the earliest block which might not have been copied
4410	 * down yet.  We divide this by previous stripe size and multiply
4411	 * by previous stripe length to get lowest device offset that we
4412	 * cannot write to yet.
4413	 * We interpret 'sector_nr' as an address that we want to write to.
4414	 * From this we use last_device_address() to find where we might
4415	 * write to, and first_device_address on the  'safe' position.
4416	 * If this 'next' write position is after the 'safe' position,
4417	 * we must update the metadata to increase the 'safe' position.
4418	 *
4419	 * When reshaping backwards, we round in the opposite direction
4420	 * and perform the reverse test:  next write position must not be
4421	 * less than current safe position.
4422	 *
4423	 * In all this the minimum difference in data offsets
4424	 * (conf->offset_diff - always positive) allows a bit of slack,
4425	 * so next can be after 'safe', but not by more than offset_diff
4426	 *
4427	 * We need to prepare all the bios here before we start any IO
4428	 * to ensure the size we choose is acceptable to all devices.
4429	 * The means one for each copy for write-out and an extra one for
4430	 * read-in.
4431	 * We store the read-in bio in ->master_bio and the others in
4432	 * ->devs[x].bio and ->devs[x].repl_bio.
4433	 */
4434	struct r10conf *conf = mddev->private;
4435	struct r10bio *r10_bio;
4436	sector_t next, safe, last;
4437	int max_sectors;
4438	int nr_sectors;
4439	int s;
4440	struct md_rdev *rdev;
4441	int need_flush = 0;
4442	struct bio *blist;
4443	struct bio *bio, *read_bio;
4444	int sectors_done = 0;
4445	struct page **pages;
4446
4447	if (sector_nr == 0) {
4448		/* If restarting in the middle, skip the initial sectors */
4449		if (mddev->reshape_backwards &&
4450		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4451			sector_nr = (raid10_size(mddev, 0, 0)
4452				     - conf->reshape_progress);
4453		} else if (!mddev->reshape_backwards &&
4454			   conf->reshape_progress > 0)
4455			sector_nr = conf->reshape_progress;
4456		if (sector_nr) {
4457			mddev->curr_resync_completed = sector_nr;
4458			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4459			*skipped = 1;
4460			return sector_nr;
4461		}
4462	}
4463
4464	/* We don't use sector_nr to track where we are up to
4465	 * as that doesn't work well for ->reshape_backwards.
4466	 * So just use ->reshape_progress.
4467	 */
4468	if (mddev->reshape_backwards) {
4469		/* 'next' is the earliest device address that we might
4470		 * write to for this chunk in the new layout
4471		 */
4472		next = first_dev_address(conf->reshape_progress - 1,
4473					 &conf->geo);
4474
4475		/* 'safe' is the last device address that we might read from
4476		 * in the old layout after a restart
4477		 */
4478		safe = last_dev_address(conf->reshape_safe - 1,
4479					&conf->prev);
4480
4481		if (next + conf->offset_diff < safe)
4482			need_flush = 1;
4483
4484		last = conf->reshape_progress - 1;
4485		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4486					       & conf->prev.chunk_mask);
4487		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4488			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4489	} else {
4490		/* 'next' is after the last device address that we
4491		 * might write to for this chunk in the new layout
4492		 */
4493		next = last_dev_address(conf->reshape_progress, &conf->geo);
4494
4495		/* 'safe' is the earliest device address that we might
4496		 * read from in the old layout after a restart
4497		 */
4498		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4499
4500		/* Need to update metadata if 'next' might be beyond 'safe'
4501		 * as that would possibly corrupt data
4502		 */
4503		if (next > safe + conf->offset_diff)
4504			need_flush = 1;
4505
4506		sector_nr = conf->reshape_progress;
4507		last  = sector_nr | (conf->geo.chunk_mask
4508				     & conf->prev.chunk_mask);
4509
4510		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4511			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4512	}
4513
4514	if (need_flush ||
4515	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4516		/* Need to update reshape_position in metadata */
4517		wait_barrier(conf);
4518		mddev->reshape_position = conf->reshape_progress;
4519		if (mddev->reshape_backwards)
4520			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4521				- conf->reshape_progress;
4522		else
4523			mddev->curr_resync_completed = conf->reshape_progress;
4524		conf->reshape_checkpoint = jiffies;
4525		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4526		md_wakeup_thread(mddev->thread);
4527		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4528			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4529		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4530			allow_barrier(conf);
4531			return sectors_done;
4532		}
4533		conf->reshape_safe = mddev->reshape_position;
4534		allow_barrier(conf);
4535	}
4536
4537	raise_barrier(conf, 0);
4538read_more:
4539	/* Now schedule reads for blocks from sector_nr to last */
4540	r10_bio = raid10_alloc_init_r10buf(conf);
4541	r10_bio->state = 0;
4542	raise_barrier(conf, 1);
4543	atomic_set(&r10_bio->remaining, 0);
4544	r10_bio->mddev = mddev;
4545	r10_bio->sector = sector_nr;
4546	set_bit(R10BIO_IsReshape, &r10_bio->state);
4547	r10_bio->sectors = last - sector_nr + 1;
4548	rdev = read_balance(conf, r10_bio, &max_sectors);
4549	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4550
4551	if (!rdev) {
4552		/* Cannot read from here, so need to record bad blocks
4553		 * on all the target devices.
4554		 */
4555		// FIXME
4556		mempool_free(r10_bio, &conf->r10buf_pool);
4557		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4558		return sectors_done;
4559	}
4560
4561	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4562
4563	bio_set_dev(read_bio, rdev->bdev);
4564	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4565			       + rdev->data_offset);
4566	read_bio->bi_private = r10_bio;
4567	read_bio->bi_end_io = end_reshape_read;
4568	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4569	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4570	read_bio->bi_status = 0;
4571	read_bio->bi_vcnt = 0;
4572	read_bio->bi_iter.bi_size = 0;
4573	r10_bio->master_bio = read_bio;
4574	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4575
4576	/*
4577	 * Broadcast RESYNC message to other nodes, so all nodes would not
4578	 * write to the region to avoid conflict.
4579	*/
4580	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4581		struct mdp_superblock_1 *sb = NULL;
4582		int sb_reshape_pos = 0;
4583
4584		conf->cluster_sync_low = sector_nr;
4585		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4586		sb = page_address(rdev->sb_page);
4587		if (sb) {
4588			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4589			/*
4590			 * Set cluster_sync_low again if next address for array
4591			 * reshape is less than cluster_sync_low. Since we can't
4592			 * update cluster_sync_low until it has finished reshape.
4593			 */
4594			if (sb_reshape_pos < conf->cluster_sync_low)
4595				conf->cluster_sync_low = sb_reshape_pos;
4596		}
4597
4598		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4599							  conf->cluster_sync_high);
4600	}
4601
4602	/* Now find the locations in the new layout */
4603	__raid10_find_phys(&conf->geo, r10_bio);
4604
4605	blist = read_bio;
4606	read_bio->bi_next = NULL;
4607
4608	rcu_read_lock();
4609	for (s = 0; s < conf->copies*2; s++) {
4610		struct bio *b;
4611		int d = r10_bio->devs[s/2].devnum;
4612		struct md_rdev *rdev2;
4613		if (s&1) {
4614			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4615			b = r10_bio->devs[s/2].repl_bio;
4616		} else {
4617			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4618			b = r10_bio->devs[s/2].bio;
4619		}
4620		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4621			continue;
4622
4623		bio_set_dev(b, rdev2->bdev);
4624		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4625			rdev2->new_data_offset;
4626		b->bi_end_io = end_reshape_write;
4627		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4628		b->bi_next = blist;
4629		blist = b;
4630	}
4631
4632	/* Now add as many pages as possible to all of these bios. */
4633
4634	nr_sectors = 0;
4635	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4636	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4637		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4638		int len = (max_sectors - s) << 9;
4639		if (len > PAGE_SIZE)
4640			len = PAGE_SIZE;
4641		for (bio = blist; bio ; bio = bio->bi_next) {
4642			/*
4643			 * won't fail because the vec table is big enough
4644			 * to hold all these pages
4645			 */
4646			bio_add_page(bio, page, len, 0);
4647		}
4648		sector_nr += len >> 9;
4649		nr_sectors += len >> 9;
4650	}
4651	rcu_read_unlock();
4652	r10_bio->sectors = nr_sectors;
4653
4654	/* Now submit the read */
4655	md_sync_acct_bio(read_bio, r10_bio->sectors);
4656	atomic_inc(&r10_bio->remaining);
4657	read_bio->bi_next = NULL;
4658	generic_make_request(read_bio);
 
4659	sectors_done += nr_sectors;
4660	if (sector_nr <= last)
4661		goto read_more;
4662
4663	lower_barrier(conf);
4664
4665	/* Now that we have done the whole section we can
4666	 * update reshape_progress
4667	 */
4668	if (mddev->reshape_backwards)
4669		conf->reshape_progress -= sectors_done;
4670	else
4671		conf->reshape_progress += sectors_done;
4672
4673	return sectors_done;
4674}
4675
4676static void end_reshape_request(struct r10bio *r10_bio);
4677static int handle_reshape_read_error(struct mddev *mddev,
4678				     struct r10bio *r10_bio);
4679static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4680{
4681	/* Reshape read completed.  Hopefully we have a block
4682	 * to write out.
4683	 * If we got a read error then we do sync 1-page reads from
4684	 * elsewhere until we find the data - or give up.
4685	 */
4686	struct r10conf *conf = mddev->private;
4687	int s;
4688
4689	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4690		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4691			/* Reshape has been aborted */
4692			md_done_sync(mddev, r10_bio->sectors, 0);
4693			return;
4694		}
4695
4696	/* We definitely have the data in the pages, schedule the
4697	 * writes.
4698	 */
4699	atomic_set(&r10_bio->remaining, 1);
4700	for (s = 0; s < conf->copies*2; s++) {
4701		struct bio *b;
4702		int d = r10_bio->devs[s/2].devnum;
4703		struct md_rdev *rdev;
4704		rcu_read_lock();
4705		if (s&1) {
4706			rdev = rcu_dereference(conf->mirrors[d].replacement);
4707			b = r10_bio->devs[s/2].repl_bio;
4708		} else {
4709			rdev = rcu_dereference(conf->mirrors[d].rdev);
4710			b = r10_bio->devs[s/2].bio;
4711		}
4712		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4713			rcu_read_unlock();
4714			continue;
4715		}
4716		atomic_inc(&rdev->nr_pending);
4717		rcu_read_unlock();
4718		md_sync_acct_bio(b, r10_bio->sectors);
4719		atomic_inc(&r10_bio->remaining);
4720		b->bi_next = NULL;
4721		generic_make_request(b);
4722	}
4723	end_reshape_request(r10_bio);
4724}
4725
4726static void end_reshape(struct r10conf *conf)
4727{
4728	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4729		return;
4730
4731	spin_lock_irq(&conf->device_lock);
4732	conf->prev = conf->geo;
4733	md_finish_reshape(conf->mddev);
4734	smp_wmb();
4735	conf->reshape_progress = MaxSector;
4736	conf->reshape_safe = MaxSector;
4737	spin_unlock_irq(&conf->device_lock);
4738
4739	/* read-ahead size must cover two whole stripes, which is
4740	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4741	 */
4742	if (conf->mddev->queue) {
4743		int stripe = conf->geo.raid_disks *
4744			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4745		stripe /= conf->geo.near_copies;
4746		if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4747			conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4748	}
4749	conf->fullsync = 0;
4750}
4751
4752static void raid10_update_reshape_pos(struct mddev *mddev)
4753{
4754	struct r10conf *conf = mddev->private;
4755	sector_t lo, hi;
4756
4757	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4758	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4759	    || mddev->reshape_position == MaxSector)
4760		conf->reshape_progress = mddev->reshape_position;
4761	else
4762		WARN_ON_ONCE(1);
4763}
4764
4765static int handle_reshape_read_error(struct mddev *mddev,
4766				     struct r10bio *r10_bio)
4767{
4768	/* Use sync reads to get the blocks from somewhere else */
4769	int sectors = r10_bio->sectors;
4770	struct r10conf *conf = mddev->private;
4771	struct r10bio *r10b;
4772	int slot = 0;
4773	int idx = 0;
4774	struct page **pages;
4775
4776	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
 
4777	if (!r10b) {
4778		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4779		return -ENOMEM;
4780	}
4781
4782	/* reshape IOs share pages from .devs[0].bio */
4783	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4784
4785	r10b->sector = r10_bio->sector;
4786	__raid10_find_phys(&conf->prev, r10b);
4787
4788	while (sectors) {
4789		int s = sectors;
4790		int success = 0;
4791		int first_slot = slot;
4792
4793		if (s > (PAGE_SIZE >> 9))
4794			s = PAGE_SIZE >> 9;
4795
4796		rcu_read_lock();
4797		while (!success) {
4798			int d = r10b->devs[slot].devnum;
4799			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4800			sector_t addr;
4801			if (rdev == NULL ||
4802			    test_bit(Faulty, &rdev->flags) ||
4803			    !test_bit(In_sync, &rdev->flags))
4804				goto failed;
4805
4806			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4807			atomic_inc(&rdev->nr_pending);
4808			rcu_read_unlock();
4809			success = sync_page_io(rdev,
4810					       addr,
4811					       s << 9,
4812					       pages[idx],
4813					       REQ_OP_READ, 0, false);
4814			rdev_dec_pending(rdev, mddev);
4815			rcu_read_lock();
4816			if (success)
4817				break;
4818		failed:
4819			slot++;
4820			if (slot >= conf->copies)
4821				slot = 0;
4822			if (slot == first_slot)
4823				break;
4824		}
4825		rcu_read_unlock();
4826		if (!success) {
4827			/* couldn't read this block, must give up */
4828			set_bit(MD_RECOVERY_INTR,
4829				&mddev->recovery);
4830			kfree(r10b);
4831			return -EIO;
4832		}
4833		sectors -= s;
4834		idx++;
4835	}
4836	kfree(r10b);
4837	return 0;
4838}
4839
4840static void end_reshape_write(struct bio *bio)
4841{
4842	struct r10bio *r10_bio = get_resync_r10bio(bio);
4843	struct mddev *mddev = r10_bio->mddev;
4844	struct r10conf *conf = mddev->private;
4845	int d;
4846	int slot;
4847	int repl;
4848	struct md_rdev *rdev = NULL;
4849
4850	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4851	if (repl)
4852		rdev = conf->mirrors[d].replacement;
4853	if (!rdev) {
4854		smp_mb();
4855		rdev = conf->mirrors[d].rdev;
4856	}
4857
4858	if (bio->bi_status) {
4859		/* FIXME should record badblock */
4860		md_error(mddev, rdev);
4861	}
4862
4863	rdev_dec_pending(rdev, mddev);
4864	end_reshape_request(r10_bio);
4865}
4866
4867static void end_reshape_request(struct r10bio *r10_bio)
4868{
4869	if (!atomic_dec_and_test(&r10_bio->remaining))
4870		return;
4871	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4872	bio_put(r10_bio->master_bio);
4873	put_buf(r10_bio);
4874}
4875
4876static void raid10_finish_reshape(struct mddev *mddev)
4877{
4878	struct r10conf *conf = mddev->private;
4879
4880	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4881		return;
4882
4883	if (mddev->delta_disks > 0) {
4884		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4885			mddev->recovery_cp = mddev->resync_max_sectors;
4886			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4887		}
4888		mddev->resync_max_sectors = mddev->array_sectors;
4889	} else {
4890		int d;
4891		rcu_read_lock();
4892		for (d = conf->geo.raid_disks ;
4893		     d < conf->geo.raid_disks - mddev->delta_disks;
4894		     d++) {
4895			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4896			if (rdev)
4897				clear_bit(In_sync, &rdev->flags);
4898			rdev = rcu_dereference(conf->mirrors[d].replacement);
4899			if (rdev)
4900				clear_bit(In_sync, &rdev->flags);
4901		}
4902		rcu_read_unlock();
4903	}
4904	mddev->layout = mddev->new_layout;
4905	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4906	mddev->reshape_position = MaxSector;
4907	mddev->delta_disks = 0;
4908	mddev->reshape_backwards = 0;
4909}
4910
4911static struct md_personality raid10_personality =
4912{
4913	.name		= "raid10",
4914	.level		= 10,
4915	.owner		= THIS_MODULE,
4916	.make_request	= raid10_make_request,
4917	.run		= raid10_run,
4918	.free		= raid10_free,
4919	.status		= raid10_status,
4920	.error_handler	= raid10_error,
4921	.hot_add_disk	= raid10_add_disk,
4922	.hot_remove_disk= raid10_remove_disk,
4923	.spare_active	= raid10_spare_active,
4924	.sync_request	= raid10_sync_request,
4925	.quiesce	= raid10_quiesce,
4926	.size		= raid10_size,
4927	.resize		= raid10_resize,
4928	.takeover	= raid10_takeover,
4929	.check_reshape	= raid10_check_reshape,
4930	.start_reshape	= raid10_start_reshape,
4931	.finish_reshape	= raid10_finish_reshape,
4932	.update_reshape_pos = raid10_update_reshape_pos,
4933	.congested	= raid10_congested,
4934};
4935
4936static int __init raid_init(void)
4937{
4938	return register_md_personality(&raid10_personality);
4939}
4940
4941static void raid_exit(void)
4942{
4943	unregister_md_personality(&raid10_personality);
4944}
4945
4946module_init(raid_init);
4947module_exit(raid_exit);
4948MODULE_LICENSE("GPL");
4949MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4950MODULE_ALIAS("md-personality-9"); /* RAID10 */
4951MODULE_ALIAS("md-raid10");
4952MODULE_ALIAS("md-level-10");
4953
4954module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
v4.17
 
   1/*
   2 * raid10.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 2000-2004 Neil Brown
   5 *
   6 * RAID-10 support for md.
   7 *
   8 * Base on code in raid1.c.  See raid1.c for further copyright information.
   9 *
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21#include <linux/slab.h>
  22#include <linux/delay.h>
  23#include <linux/blkdev.h>
  24#include <linux/module.h>
  25#include <linux/seq_file.h>
  26#include <linux/ratelimit.h>
  27#include <linux/kthread.h>
 
  28#include <trace/events/block.h>
  29#include "md.h"
  30#include "raid10.h"
  31#include "raid0.h"
  32#include "md-bitmap.h"
  33
  34/*
  35 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  36 * The layout of data is defined by
  37 *    chunk_size
  38 *    raid_disks
  39 *    near_copies (stored in low byte of layout)
  40 *    far_copies (stored in second byte of layout)
  41 *    far_offset (stored in bit 16 of layout )
  42 *    use_far_sets (stored in bit 17 of layout )
  43 *    use_far_sets_bugfixed (stored in bit 18 of layout )
  44 *
  45 * The data to be stored is divided into chunks using chunksize.  Each device
  46 * is divided into far_copies sections.   In each section, chunks are laid out
  47 * in a style similar to raid0, but near_copies copies of each chunk is stored
  48 * (each on a different drive).  The starting device for each section is offset
  49 * near_copies from the starting device of the previous section.  Thus there
  50 * are (near_copies * far_copies) of each chunk, and each is on a different
  51 * drive.  near_copies and far_copies must be at least one, and their product
  52 * is at most raid_disks.
  53 *
  54 * If far_offset is true, then the far_copies are handled a bit differently.
  55 * The copies are still in different stripes, but instead of being very far
  56 * apart on disk, there are adjacent stripes.
  57 *
  58 * The far and offset algorithms are handled slightly differently if
  59 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
  60 * sets that are (near_copies * far_copies) in size.  The far copied stripes
  61 * are still shifted by 'near_copies' devices, but this shifting stays confined
  62 * to the set rather than the entire array.  This is done to improve the number
  63 * of device combinations that can fail without causing the array to fail.
  64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  65 * on a device):
  66 *    A B C D    A B C D E
  67 *      ...         ...
  68 *    D A B C    E A B C D
  69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  70 *    [A B] [C D]    [A B] [C D E]
  71 *    |...| |...|    |...| | ... |
  72 *    [B A] [D C]    [B A] [E C D]
  73 */
  74
  75/*
  76 * Number of guaranteed r10bios in case of extreme VM load:
  77 */
  78#define	NR_RAID10_BIOS 256
  79
  80/* when we get a read error on a read-only array, we redirect to another
  81 * device without failing the first device, or trying to over-write to
  82 * correct the read error.  To keep track of bad blocks on a per-bio
  83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  84 */
  85#define IO_BLOCKED ((struct bio *)1)
  86/* When we successfully write to a known bad-block, we need to remove the
  87 * bad-block marking which must be done from process context.  So we record
  88 * the success by setting devs[n].bio to IO_MADE_GOOD
  89 */
  90#define IO_MADE_GOOD ((struct bio *)2)
  91
  92#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  93
  94/* When there are this many requests queued to be written by
  95 * the raid10 thread, we become 'congested' to provide back-pressure
  96 * for writeback.
  97 */
  98static int max_queued_requests = 1024;
  99
 100static void allow_barrier(struct r10conf *conf);
 101static void lower_barrier(struct r10conf *conf);
 102static int _enough(struct r10conf *conf, int previous, int ignore);
 103static int enough(struct r10conf *conf, int ignore);
 104static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
 105				int *skipped);
 106static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
 107static void end_reshape_write(struct bio *bio);
 108static void end_reshape(struct r10conf *conf);
 109
 110#define raid10_log(md, fmt, args...)				\
 111	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
 112
 113#include "raid1-10.c"
 114
 115/*
 116 * for resync bio, r10bio pointer can be retrieved from the per-bio
 117 * 'struct resync_pages'.
 118 */
 119static inline struct r10bio *get_resync_r10bio(struct bio *bio)
 120{
 121	return get_resync_pages(bio)->raid_bio;
 122}
 123
 124static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
 125{
 126	struct r10conf *conf = data;
 127	int size = offsetof(struct r10bio, devs[conf->copies]);
 128
 129	/* allocate a r10bio with room for raid_disks entries in the
 130	 * bios array */
 131	return kzalloc(size, gfp_flags);
 132}
 133
 134static void r10bio_pool_free(void *r10_bio, void *data)
 135{
 136	kfree(r10_bio);
 137}
 138
 139#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 140/* amount of memory to reserve for resync requests */
 141#define RESYNC_WINDOW (1024*1024)
 142/* maximum number of concurrent requests, memory permitting */
 143#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 144#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
 145#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 146
 147/*
 148 * When performing a resync, we need to read and compare, so
 149 * we need as many pages are there are copies.
 150 * When performing a recovery, we need 2 bios, one for read,
 151 * one for write (we recover only one drive per r10buf)
 152 *
 153 */
 154static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 155{
 156	struct r10conf *conf = data;
 157	struct r10bio *r10_bio;
 158	struct bio *bio;
 159	int j;
 160	int nalloc, nalloc_rp;
 161	struct resync_pages *rps;
 162
 163	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 164	if (!r10_bio)
 165		return NULL;
 166
 167	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 168	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 169		nalloc = conf->copies; /* resync */
 170	else
 171		nalloc = 2; /* recovery */
 172
 173	/* allocate once for all bios */
 174	if (!conf->have_replacement)
 175		nalloc_rp = nalloc;
 176	else
 177		nalloc_rp = nalloc * 2;
 178	rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags);
 179	if (!rps)
 180		goto out_free_r10bio;
 181
 182	/*
 183	 * Allocate bios.
 184	 */
 185	for (j = nalloc ; j-- ; ) {
 186		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 187		if (!bio)
 188			goto out_free_bio;
 189		r10_bio->devs[j].bio = bio;
 190		if (!conf->have_replacement)
 191			continue;
 192		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 193		if (!bio)
 194			goto out_free_bio;
 195		r10_bio->devs[j].repl_bio = bio;
 196	}
 197	/*
 198	 * Allocate RESYNC_PAGES data pages and attach them
 199	 * where needed.
 200	 */
 201	for (j = 0; j < nalloc; j++) {
 202		struct bio *rbio = r10_bio->devs[j].repl_bio;
 203		struct resync_pages *rp, *rp_repl;
 204
 205		rp = &rps[j];
 206		if (rbio)
 207			rp_repl = &rps[nalloc + j];
 208
 209		bio = r10_bio->devs[j].bio;
 210
 211		if (!j || test_bit(MD_RECOVERY_SYNC,
 212				   &conf->mddev->recovery)) {
 213			if (resync_alloc_pages(rp, gfp_flags))
 214				goto out_free_pages;
 215		} else {
 216			memcpy(rp, &rps[0], sizeof(*rp));
 217			resync_get_all_pages(rp);
 218		}
 219
 220		rp->raid_bio = r10_bio;
 221		bio->bi_private = rp;
 222		if (rbio) {
 223			memcpy(rp_repl, rp, sizeof(*rp));
 224			rbio->bi_private = rp_repl;
 225		}
 226	}
 227
 228	return r10_bio;
 229
 230out_free_pages:
 231	while (--j >= 0)
 232		resync_free_pages(&rps[j * 2]);
 233
 234	j = 0;
 235out_free_bio:
 236	for ( ; j < nalloc; j++) {
 237		if (r10_bio->devs[j].bio)
 238			bio_put(r10_bio->devs[j].bio);
 239		if (r10_bio->devs[j].repl_bio)
 240			bio_put(r10_bio->devs[j].repl_bio);
 241	}
 242	kfree(rps);
 243out_free_r10bio:
 244	r10bio_pool_free(r10_bio, conf);
 245	return NULL;
 246}
 247
 248static void r10buf_pool_free(void *__r10_bio, void *data)
 249{
 250	struct r10conf *conf = data;
 251	struct r10bio *r10bio = __r10_bio;
 252	int j;
 253	struct resync_pages *rp = NULL;
 254
 255	for (j = conf->copies; j--; ) {
 256		struct bio *bio = r10bio->devs[j].bio;
 257
 258		rp = get_resync_pages(bio);
 259		resync_free_pages(rp);
 260		bio_put(bio);
 
 
 261
 262		bio = r10bio->devs[j].repl_bio;
 263		if (bio)
 264			bio_put(bio);
 265	}
 266
 267	/* resync pages array stored in the 1st bio's .bi_private */
 268	kfree(rp);
 269
 270	r10bio_pool_free(r10bio, conf);
 271}
 272
 273static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 274{
 275	int i;
 276
 277	for (i = 0; i < conf->copies; i++) {
 278		struct bio **bio = & r10_bio->devs[i].bio;
 279		if (!BIO_SPECIAL(*bio))
 280			bio_put(*bio);
 281		*bio = NULL;
 282		bio = &r10_bio->devs[i].repl_bio;
 283		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 284			bio_put(*bio);
 285		*bio = NULL;
 286	}
 287}
 288
 289static void free_r10bio(struct r10bio *r10_bio)
 290{
 291	struct r10conf *conf = r10_bio->mddev->private;
 292
 293	put_all_bios(conf, r10_bio);
 294	mempool_free(r10_bio, conf->r10bio_pool);
 295}
 296
 297static void put_buf(struct r10bio *r10_bio)
 298{
 299	struct r10conf *conf = r10_bio->mddev->private;
 300
 301	mempool_free(r10_bio, conf->r10buf_pool);
 302
 303	lower_barrier(conf);
 304}
 305
 306static void reschedule_retry(struct r10bio *r10_bio)
 307{
 308	unsigned long flags;
 309	struct mddev *mddev = r10_bio->mddev;
 310	struct r10conf *conf = mddev->private;
 311
 312	spin_lock_irqsave(&conf->device_lock, flags);
 313	list_add(&r10_bio->retry_list, &conf->retry_list);
 314	conf->nr_queued ++;
 315	spin_unlock_irqrestore(&conf->device_lock, flags);
 316
 317	/* wake up frozen array... */
 318	wake_up(&conf->wait_barrier);
 319
 320	md_wakeup_thread(mddev->thread);
 321}
 322
 323/*
 324 * raid_end_bio_io() is called when we have finished servicing a mirrored
 325 * operation and are ready to return a success/failure code to the buffer
 326 * cache layer.
 327 */
 328static void raid_end_bio_io(struct r10bio *r10_bio)
 329{
 330	struct bio *bio = r10_bio->master_bio;
 331	struct r10conf *conf = r10_bio->mddev->private;
 332
 333	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 334		bio->bi_status = BLK_STS_IOERR;
 335
 336	bio_endio(bio);
 337	/*
 338	 * Wake up any possible resync thread that waits for the device
 339	 * to go idle.
 340	 */
 341	allow_barrier(conf);
 342
 343	free_r10bio(r10_bio);
 344}
 345
 346/*
 347 * Update disk head position estimator based on IRQ completion info.
 348 */
 349static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 350{
 351	struct r10conf *conf = r10_bio->mddev->private;
 352
 353	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 354		r10_bio->devs[slot].addr + (r10_bio->sectors);
 355}
 356
 357/*
 358 * Find the disk number which triggered given bio
 359 */
 360static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 361			 struct bio *bio, int *slotp, int *replp)
 362{
 363	int slot;
 364	int repl = 0;
 365
 366	for (slot = 0; slot < conf->copies; slot++) {
 367		if (r10_bio->devs[slot].bio == bio)
 368			break;
 369		if (r10_bio->devs[slot].repl_bio == bio) {
 370			repl = 1;
 371			break;
 372		}
 373	}
 374
 375	BUG_ON(slot == conf->copies);
 376	update_head_pos(slot, r10_bio);
 377
 378	if (slotp)
 379		*slotp = slot;
 380	if (replp)
 381		*replp = repl;
 382	return r10_bio->devs[slot].devnum;
 383}
 384
 385static void raid10_end_read_request(struct bio *bio)
 386{
 387	int uptodate = !bio->bi_status;
 388	struct r10bio *r10_bio = bio->bi_private;
 389	int slot;
 390	struct md_rdev *rdev;
 391	struct r10conf *conf = r10_bio->mddev->private;
 392
 393	slot = r10_bio->read_slot;
 394	rdev = r10_bio->devs[slot].rdev;
 395	/*
 396	 * this branch is our 'one mirror IO has finished' event handler:
 397	 */
 398	update_head_pos(slot, r10_bio);
 399
 400	if (uptodate) {
 401		/*
 402		 * Set R10BIO_Uptodate in our master bio, so that
 403		 * we will return a good error code to the higher
 404		 * levels even if IO on some other mirrored buffer fails.
 405		 *
 406		 * The 'master' represents the composite IO operation to
 407		 * user-side. So if something waits for IO, then it will
 408		 * wait for the 'master' bio.
 409		 */
 410		set_bit(R10BIO_Uptodate, &r10_bio->state);
 411	} else {
 412		/* If all other devices that store this block have
 413		 * failed, we want to return the error upwards rather
 414		 * than fail the last device.  Here we redefine
 415		 * "uptodate" to mean "Don't want to retry"
 416		 */
 417		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 418			     rdev->raid_disk))
 419			uptodate = 1;
 420	}
 421	if (uptodate) {
 422		raid_end_bio_io(r10_bio);
 423		rdev_dec_pending(rdev, conf->mddev);
 424	} else {
 425		/*
 426		 * oops, read error - keep the refcount on the rdev
 427		 */
 428		char b[BDEVNAME_SIZE];
 429		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
 430				   mdname(conf->mddev),
 431				   bdevname(rdev->bdev, b),
 432				   (unsigned long long)r10_bio->sector);
 433		set_bit(R10BIO_ReadError, &r10_bio->state);
 434		reschedule_retry(r10_bio);
 435	}
 436}
 437
 438static void close_write(struct r10bio *r10_bio)
 439{
 440	/* clear the bitmap if all writes complete successfully */
 441	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 442			r10_bio->sectors,
 443			!test_bit(R10BIO_Degraded, &r10_bio->state),
 444			0);
 445	md_write_end(r10_bio->mddev);
 446}
 447
 448static void one_write_done(struct r10bio *r10_bio)
 449{
 450	if (atomic_dec_and_test(&r10_bio->remaining)) {
 451		if (test_bit(R10BIO_WriteError, &r10_bio->state))
 452			reschedule_retry(r10_bio);
 453		else {
 454			close_write(r10_bio);
 455			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 456				reschedule_retry(r10_bio);
 457			else
 458				raid_end_bio_io(r10_bio);
 459		}
 460	}
 461}
 462
 463static void raid10_end_write_request(struct bio *bio)
 464{
 465	struct r10bio *r10_bio = bio->bi_private;
 466	int dev;
 467	int dec_rdev = 1;
 468	struct r10conf *conf = r10_bio->mddev->private;
 469	int slot, repl;
 470	struct md_rdev *rdev = NULL;
 471	struct bio *to_put = NULL;
 472	bool discard_error;
 473
 474	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 475
 476	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 477
 478	if (repl)
 479		rdev = conf->mirrors[dev].replacement;
 480	if (!rdev) {
 481		smp_rmb();
 482		repl = 0;
 483		rdev = conf->mirrors[dev].rdev;
 484	}
 485	/*
 486	 * this branch is our 'one mirror IO has finished' event handler:
 487	 */
 488	if (bio->bi_status && !discard_error) {
 489		if (repl)
 490			/* Never record new bad blocks to replacement,
 491			 * just fail it.
 492			 */
 493			md_error(rdev->mddev, rdev);
 494		else {
 495			set_bit(WriteErrorSeen,	&rdev->flags);
 496			if (!test_and_set_bit(WantReplacement, &rdev->flags))
 497				set_bit(MD_RECOVERY_NEEDED,
 498					&rdev->mddev->recovery);
 499
 500			dec_rdev = 0;
 501			if (test_bit(FailFast, &rdev->flags) &&
 502			    (bio->bi_opf & MD_FAILFAST)) {
 503				md_error(rdev->mddev, rdev);
 504				if (!test_bit(Faulty, &rdev->flags))
 505					/* This is the only remaining device,
 506					 * We need to retry the write without
 507					 * FailFast
 508					 */
 509					set_bit(R10BIO_WriteError, &r10_bio->state);
 510				else {
 511					r10_bio->devs[slot].bio = NULL;
 512					to_put = bio;
 513					dec_rdev = 1;
 514				}
 515			} else
 516				set_bit(R10BIO_WriteError, &r10_bio->state);
 
 
 
 
 
 517		}
 518	} else {
 519		/*
 520		 * Set R10BIO_Uptodate in our master bio, so that
 521		 * we will return a good error code for to the higher
 522		 * levels even if IO on some other mirrored buffer fails.
 523		 *
 524		 * The 'master' represents the composite IO operation to
 525		 * user-side. So if something waits for IO, then it will
 526		 * wait for the 'master' bio.
 527		 */
 528		sector_t first_bad;
 529		int bad_sectors;
 530
 531		/*
 532		 * Do not set R10BIO_Uptodate if the current device is
 533		 * rebuilding or Faulty. This is because we cannot use
 534		 * such device for properly reading the data back (we could
 535		 * potentially use it, if the current write would have felt
 536		 * before rdev->recovery_offset, but for simplicity we don't
 537		 * check this here.
 538		 */
 539		if (test_bit(In_sync, &rdev->flags) &&
 540		    !test_bit(Faulty, &rdev->flags))
 541			set_bit(R10BIO_Uptodate, &r10_bio->state);
 542
 543		/* Maybe we can clear some bad blocks. */
 544		if (is_badblock(rdev,
 545				r10_bio->devs[slot].addr,
 546				r10_bio->sectors,
 547				&first_bad, &bad_sectors) && !discard_error) {
 548			bio_put(bio);
 549			if (repl)
 550				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 551			else
 552				r10_bio->devs[slot].bio = IO_MADE_GOOD;
 553			dec_rdev = 0;
 554			set_bit(R10BIO_MadeGood, &r10_bio->state);
 555		}
 556	}
 557
 558	/*
 559	 *
 560	 * Let's see if all mirrored write operations have finished
 561	 * already.
 562	 */
 563	one_write_done(r10_bio);
 564	if (dec_rdev)
 565		rdev_dec_pending(rdev, conf->mddev);
 566	if (to_put)
 567		bio_put(to_put);
 568}
 569
 570/*
 571 * RAID10 layout manager
 572 * As well as the chunksize and raid_disks count, there are two
 573 * parameters: near_copies and far_copies.
 574 * near_copies * far_copies must be <= raid_disks.
 575 * Normally one of these will be 1.
 576 * If both are 1, we get raid0.
 577 * If near_copies == raid_disks, we get raid1.
 578 *
 579 * Chunks are laid out in raid0 style with near_copies copies of the
 580 * first chunk, followed by near_copies copies of the next chunk and
 581 * so on.
 582 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 583 * as described above, we start again with a device offset of near_copies.
 584 * So we effectively have another copy of the whole array further down all
 585 * the drives, but with blocks on different drives.
 586 * With this layout, and block is never stored twice on the one device.
 587 *
 588 * raid10_find_phys finds the sector offset of a given virtual sector
 589 * on each device that it is on.
 590 *
 591 * raid10_find_virt does the reverse mapping, from a device and a
 592 * sector offset to a virtual address
 593 */
 594
 595static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 596{
 597	int n,f;
 598	sector_t sector;
 599	sector_t chunk;
 600	sector_t stripe;
 601	int dev;
 602	int slot = 0;
 603	int last_far_set_start, last_far_set_size;
 604
 605	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 606	last_far_set_start *= geo->far_set_size;
 607
 608	last_far_set_size = geo->far_set_size;
 609	last_far_set_size += (geo->raid_disks % geo->far_set_size);
 610
 611	/* now calculate first sector/dev */
 612	chunk = r10bio->sector >> geo->chunk_shift;
 613	sector = r10bio->sector & geo->chunk_mask;
 614
 615	chunk *= geo->near_copies;
 616	stripe = chunk;
 617	dev = sector_div(stripe, geo->raid_disks);
 618	if (geo->far_offset)
 619		stripe *= geo->far_copies;
 620
 621	sector += stripe << geo->chunk_shift;
 622
 623	/* and calculate all the others */
 624	for (n = 0; n < geo->near_copies; n++) {
 625		int d = dev;
 626		int set;
 627		sector_t s = sector;
 628		r10bio->devs[slot].devnum = d;
 629		r10bio->devs[slot].addr = s;
 630		slot++;
 631
 632		for (f = 1; f < geo->far_copies; f++) {
 633			set = d / geo->far_set_size;
 634			d += geo->near_copies;
 635
 636			if ((geo->raid_disks % geo->far_set_size) &&
 637			    (d > last_far_set_start)) {
 638				d -= last_far_set_start;
 639				d %= last_far_set_size;
 640				d += last_far_set_start;
 641			} else {
 642				d %= geo->far_set_size;
 643				d += geo->far_set_size * set;
 644			}
 645			s += geo->stride;
 646			r10bio->devs[slot].devnum = d;
 647			r10bio->devs[slot].addr = s;
 648			slot++;
 649		}
 650		dev++;
 651		if (dev >= geo->raid_disks) {
 652			dev = 0;
 653			sector += (geo->chunk_mask + 1);
 654		}
 655	}
 656}
 657
 658static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 659{
 660	struct geom *geo = &conf->geo;
 661
 662	if (conf->reshape_progress != MaxSector &&
 663	    ((r10bio->sector >= conf->reshape_progress) !=
 664	     conf->mddev->reshape_backwards)) {
 665		set_bit(R10BIO_Previous, &r10bio->state);
 666		geo = &conf->prev;
 667	} else
 668		clear_bit(R10BIO_Previous, &r10bio->state);
 669
 670	__raid10_find_phys(geo, r10bio);
 671}
 672
 673static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 674{
 675	sector_t offset, chunk, vchunk;
 676	/* Never use conf->prev as this is only called during resync
 677	 * or recovery, so reshape isn't happening
 678	 */
 679	struct geom *geo = &conf->geo;
 680	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 681	int far_set_size = geo->far_set_size;
 682	int last_far_set_start;
 683
 684	if (geo->raid_disks % geo->far_set_size) {
 685		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 686		last_far_set_start *= geo->far_set_size;
 687
 688		if (dev >= last_far_set_start) {
 689			far_set_size = geo->far_set_size;
 690			far_set_size += (geo->raid_disks % geo->far_set_size);
 691			far_set_start = last_far_set_start;
 692		}
 693	}
 694
 695	offset = sector & geo->chunk_mask;
 696	if (geo->far_offset) {
 697		int fc;
 698		chunk = sector >> geo->chunk_shift;
 699		fc = sector_div(chunk, geo->far_copies);
 700		dev -= fc * geo->near_copies;
 701		if (dev < far_set_start)
 702			dev += far_set_size;
 703	} else {
 704		while (sector >= geo->stride) {
 705			sector -= geo->stride;
 706			if (dev < (geo->near_copies + far_set_start))
 707				dev += far_set_size - geo->near_copies;
 708			else
 709				dev -= geo->near_copies;
 710		}
 711		chunk = sector >> geo->chunk_shift;
 712	}
 713	vchunk = chunk * geo->raid_disks + dev;
 714	sector_div(vchunk, geo->near_copies);
 715	return (vchunk << geo->chunk_shift) + offset;
 716}
 717
 718/*
 719 * This routine returns the disk from which the requested read should
 720 * be done. There is a per-array 'next expected sequential IO' sector
 721 * number - if this matches on the next IO then we use the last disk.
 722 * There is also a per-disk 'last know head position' sector that is
 723 * maintained from IRQ contexts, both the normal and the resync IO
 724 * completion handlers update this position correctly. If there is no
 725 * perfect sequential match then we pick the disk whose head is closest.
 726 *
 727 * If there are 2 mirrors in the same 2 devices, performance degrades
 728 * because position is mirror, not device based.
 729 *
 730 * The rdev for the device selected will have nr_pending incremented.
 731 */
 732
 733/*
 734 * FIXME: possibly should rethink readbalancing and do it differently
 735 * depending on near_copies / far_copies geometry.
 736 */
 737static struct md_rdev *read_balance(struct r10conf *conf,
 738				    struct r10bio *r10_bio,
 739				    int *max_sectors)
 740{
 741	const sector_t this_sector = r10_bio->sector;
 742	int disk, slot;
 743	int sectors = r10_bio->sectors;
 744	int best_good_sectors;
 745	sector_t new_distance, best_dist;
 746	struct md_rdev *best_rdev, *rdev = NULL;
 747	int do_balance;
 748	int best_slot;
 
 
 749	struct geom *geo = &conf->geo;
 750
 751	raid10_find_phys(conf, r10_bio);
 752	rcu_read_lock();
 753	best_slot = -1;
 754	best_rdev = NULL;
 
 
 755	best_dist = MaxSector;
 756	best_good_sectors = 0;
 757	do_balance = 1;
 758	clear_bit(R10BIO_FailFast, &r10_bio->state);
 759	/*
 760	 * Check if we can balance. We can balance on the whole
 761	 * device if no resync is going on (recovery is ok), or below
 762	 * the resync window. We take the first readable disk when
 763	 * above the resync window.
 764	 */
 765	if ((conf->mddev->recovery_cp < MaxSector
 766	     && (this_sector + sectors >= conf->next_resync)) ||
 767	    (mddev_is_clustered(conf->mddev) &&
 768	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 769					    this_sector + sectors)))
 770		do_balance = 0;
 771
 772	for (slot = 0; slot < conf->copies ; slot++) {
 773		sector_t first_bad;
 774		int bad_sectors;
 775		sector_t dev_sector;
 
 
 776
 777		if (r10_bio->devs[slot].bio == IO_BLOCKED)
 778			continue;
 779		disk = r10_bio->devs[slot].devnum;
 780		rdev = rcu_dereference(conf->mirrors[disk].replacement);
 781		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 782		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 783			rdev = rcu_dereference(conf->mirrors[disk].rdev);
 784		if (rdev == NULL ||
 785		    test_bit(Faulty, &rdev->flags))
 786			continue;
 787		if (!test_bit(In_sync, &rdev->flags) &&
 788		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 789			continue;
 790
 791		dev_sector = r10_bio->devs[slot].addr;
 792		if (is_badblock(rdev, dev_sector, sectors,
 793				&first_bad, &bad_sectors)) {
 794			if (best_dist < MaxSector)
 795				/* Already have a better slot */
 796				continue;
 797			if (first_bad <= dev_sector) {
 798				/* Cannot read here.  If this is the
 799				 * 'primary' device, then we must not read
 800				 * beyond 'bad_sectors' from another device.
 801				 */
 802				bad_sectors -= (dev_sector - first_bad);
 803				if (!do_balance && sectors > bad_sectors)
 804					sectors = bad_sectors;
 805				if (best_good_sectors > sectors)
 806					best_good_sectors = sectors;
 807			} else {
 808				sector_t good_sectors =
 809					first_bad - dev_sector;
 810				if (good_sectors > best_good_sectors) {
 811					best_good_sectors = good_sectors;
 812					best_slot = slot;
 813					best_rdev = rdev;
 814				}
 815				if (!do_balance)
 816					/* Must read from here */
 817					break;
 818			}
 819			continue;
 820		} else
 821			best_good_sectors = sectors;
 822
 823		if (!do_balance)
 824			break;
 825
 826		if (best_slot >= 0)
 
 
 
 
 
 
 
 
 
 827			/* At least 2 disks to choose from so failfast is OK */
 828			set_bit(R10BIO_FailFast, &r10_bio->state);
 829		/* This optimisation is debatable, and completely destroys
 830		 * sequential read speed for 'far copies' arrays.  So only
 831		 * keep it for 'near' arrays, and review those later.
 832		 */
 833		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
 834			new_distance = 0;
 835
 836		/* for far > 1 always use the lowest address */
 837		else if (geo->far_copies > 1)
 838			new_distance = r10_bio->devs[slot].addr;
 839		else
 840			new_distance = abs(r10_bio->devs[slot].addr -
 841					   conf->mirrors[disk].head_position);
 
 842		if (new_distance < best_dist) {
 843			best_dist = new_distance;
 844			best_slot = slot;
 845			best_rdev = rdev;
 846		}
 847	}
 848	if (slot >= conf->copies) {
 849		slot = best_slot;
 850		rdev = best_rdev;
 
 
 
 
 
 851	}
 852
 853	if (slot >= 0) {
 854		atomic_inc(&rdev->nr_pending);
 855		r10_bio->read_slot = slot;
 856	} else
 857		rdev = NULL;
 858	rcu_read_unlock();
 859	*max_sectors = best_good_sectors;
 860
 861	return rdev;
 862}
 863
 864static int raid10_congested(struct mddev *mddev, int bits)
 865{
 866	struct r10conf *conf = mddev->private;
 867	int i, ret = 0;
 868
 869	if ((bits & (1 << WB_async_congested)) &&
 870	    conf->pending_count >= max_queued_requests)
 871		return 1;
 872
 873	rcu_read_lock();
 874	for (i = 0;
 875	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
 876		     && ret == 0;
 877	     i++) {
 878		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 879		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 880			struct request_queue *q = bdev_get_queue(rdev->bdev);
 881
 882			ret |= bdi_congested(q->backing_dev_info, bits);
 883		}
 884	}
 885	rcu_read_unlock();
 886	return ret;
 887}
 888
 889static void flush_pending_writes(struct r10conf *conf)
 890{
 891	/* Any writes that have been queued but are awaiting
 892	 * bitmap updates get flushed here.
 893	 */
 894	spin_lock_irq(&conf->device_lock);
 895
 896	if (conf->pending_bio_list.head) {
 897		struct blk_plug plug;
 898		struct bio *bio;
 899
 900		bio = bio_list_get(&conf->pending_bio_list);
 901		conf->pending_count = 0;
 902		spin_unlock_irq(&conf->device_lock);
 903
 904		/*
 905		 * As this is called in a wait_event() loop (see freeze_array),
 906		 * current->state might be TASK_UNINTERRUPTIBLE which will
 907		 * cause a warning when we prepare to wait again.  As it is
 908		 * rare that this path is taken, it is perfectly safe to force
 909		 * us to go around the wait_event() loop again, so the warning
 910		 * is a false-positive. Silence the warning by resetting
 911		 * thread state
 912		 */
 913		__set_current_state(TASK_RUNNING);
 914
 915		blk_start_plug(&plug);
 916		/* flush any pending bitmap writes to disk
 917		 * before proceeding w/ I/O */
 918		bitmap_unplug(conf->mddev->bitmap);
 919		wake_up(&conf->wait_barrier);
 920
 921		while (bio) { /* submit pending writes */
 922			struct bio *next = bio->bi_next;
 923			struct md_rdev *rdev = (void*)bio->bi_disk;
 924			bio->bi_next = NULL;
 925			bio_set_dev(bio, rdev->bdev);
 926			if (test_bit(Faulty, &rdev->flags)) {
 927				bio_io_error(bio);
 928			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
 929					    !blk_queue_discard(bio->bi_disk->queue)))
 930				/* Just ignore it */
 931				bio_endio(bio);
 932			else
 933				generic_make_request(bio);
 934			bio = next;
 935		}
 936		blk_finish_plug(&plug);
 937	} else
 938		spin_unlock_irq(&conf->device_lock);
 939}
 940
 941/* Barriers....
 942 * Sometimes we need to suspend IO while we do something else,
 943 * either some resync/recovery, or reconfigure the array.
 944 * To do this we raise a 'barrier'.
 945 * The 'barrier' is a counter that can be raised multiple times
 946 * to count how many activities are happening which preclude
 947 * normal IO.
 948 * We can only raise the barrier if there is no pending IO.
 949 * i.e. if nr_pending == 0.
 950 * We choose only to raise the barrier if no-one is waiting for the
 951 * barrier to go down.  This means that as soon as an IO request
 952 * is ready, no other operations which require a barrier will start
 953 * until the IO request has had a chance.
 954 *
 955 * So: regular IO calls 'wait_barrier'.  When that returns there
 956 *    is no backgroup IO happening,  It must arrange to call
 957 *    allow_barrier when it has finished its IO.
 958 * backgroup IO calls must call raise_barrier.  Once that returns
 959 *    there is no normal IO happeing.  It must arrange to call
 960 *    lower_barrier when the particular background IO completes.
 961 */
 962
 963static void raise_barrier(struct r10conf *conf, int force)
 964{
 965	BUG_ON(force && !conf->barrier);
 966	spin_lock_irq(&conf->resync_lock);
 967
 968	/* Wait until no block IO is waiting (unless 'force') */
 969	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 970			    conf->resync_lock);
 971
 972	/* block any new IO from starting */
 973	conf->barrier++;
 974
 975	/* Now wait for all pending IO to complete */
 976	wait_event_lock_irq(conf->wait_barrier,
 977			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
 978			    conf->resync_lock);
 979
 980	spin_unlock_irq(&conf->resync_lock);
 981}
 982
 983static void lower_barrier(struct r10conf *conf)
 984{
 985	unsigned long flags;
 986	spin_lock_irqsave(&conf->resync_lock, flags);
 987	conf->barrier--;
 988	spin_unlock_irqrestore(&conf->resync_lock, flags);
 989	wake_up(&conf->wait_barrier);
 990}
 991
 992static void wait_barrier(struct r10conf *conf)
 993{
 994	spin_lock_irq(&conf->resync_lock);
 995	if (conf->barrier) {
 996		conf->nr_waiting++;
 997		/* Wait for the barrier to drop.
 998		 * However if there are already pending
 999		 * requests (preventing the barrier from
1000		 * rising completely), and the
1001		 * pre-process bio queue isn't empty,
1002		 * then don't wait, as we need to empty
1003		 * that queue to get the nr_pending
1004		 * count down.
1005		 */
1006		raid10_log(conf->mddev, "wait barrier");
1007		wait_event_lock_irq(conf->wait_barrier,
1008				    !conf->barrier ||
1009				    (atomic_read(&conf->nr_pending) &&
1010				     current->bio_list &&
1011				     (!bio_list_empty(&current->bio_list[0]) ||
1012				      !bio_list_empty(&current->bio_list[1]))),
1013				    conf->resync_lock);
1014		conf->nr_waiting--;
1015		if (!conf->nr_waiting)
1016			wake_up(&conf->wait_barrier);
1017	}
1018	atomic_inc(&conf->nr_pending);
1019	spin_unlock_irq(&conf->resync_lock);
1020}
1021
1022static void allow_barrier(struct r10conf *conf)
1023{
1024	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1025			(conf->array_freeze_pending))
1026		wake_up(&conf->wait_barrier);
1027}
1028
1029static void freeze_array(struct r10conf *conf, int extra)
1030{
1031	/* stop syncio and normal IO and wait for everything to
1032	 * go quiet.
1033	 * We increment barrier and nr_waiting, and then
1034	 * wait until nr_pending match nr_queued+extra
1035	 * This is called in the context of one normal IO request
1036	 * that has failed. Thus any sync request that might be pending
1037	 * will be blocked by nr_pending, and we need to wait for
1038	 * pending IO requests to complete or be queued for re-try.
1039	 * Thus the number queued (nr_queued) plus this request (extra)
1040	 * must match the number of pending IOs (nr_pending) before
1041	 * we continue.
1042	 */
1043	spin_lock_irq(&conf->resync_lock);
1044	conf->array_freeze_pending++;
1045	conf->barrier++;
1046	conf->nr_waiting++;
1047	wait_event_lock_irq_cmd(conf->wait_barrier,
1048				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1049				conf->resync_lock,
1050				flush_pending_writes(conf));
1051
1052	conf->array_freeze_pending--;
1053	spin_unlock_irq(&conf->resync_lock);
1054}
1055
1056static void unfreeze_array(struct r10conf *conf)
1057{
1058	/* reverse the effect of the freeze */
1059	spin_lock_irq(&conf->resync_lock);
1060	conf->barrier--;
1061	conf->nr_waiting--;
1062	wake_up(&conf->wait_barrier);
1063	spin_unlock_irq(&conf->resync_lock);
1064}
1065
1066static sector_t choose_data_offset(struct r10bio *r10_bio,
1067				   struct md_rdev *rdev)
1068{
1069	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1070	    test_bit(R10BIO_Previous, &r10_bio->state))
1071		return rdev->data_offset;
1072	else
1073		return rdev->new_data_offset;
1074}
1075
1076struct raid10_plug_cb {
1077	struct blk_plug_cb	cb;
1078	struct bio_list		pending;
1079	int			pending_cnt;
1080};
1081
1082static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1083{
1084	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1085						   cb);
1086	struct mddev *mddev = plug->cb.data;
1087	struct r10conf *conf = mddev->private;
1088	struct bio *bio;
1089
1090	if (from_schedule || current->bio_list) {
1091		spin_lock_irq(&conf->device_lock);
1092		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1093		conf->pending_count += plug->pending_cnt;
1094		spin_unlock_irq(&conf->device_lock);
1095		wake_up(&conf->wait_barrier);
1096		md_wakeup_thread(mddev->thread);
1097		kfree(plug);
1098		return;
1099	}
1100
1101	/* we aren't scheduling, so we can do the write-out directly. */
1102	bio = bio_list_get(&plug->pending);
1103	bitmap_unplug(mddev->bitmap);
1104	wake_up(&conf->wait_barrier);
1105
1106	while (bio) { /* submit pending writes */
1107		struct bio *next = bio->bi_next;
1108		struct md_rdev *rdev = (void*)bio->bi_disk;
1109		bio->bi_next = NULL;
1110		bio_set_dev(bio, rdev->bdev);
1111		if (test_bit(Faulty, &rdev->flags)) {
1112			bio_io_error(bio);
1113		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1114				    !blk_queue_discard(bio->bi_disk->queue)))
1115			/* Just ignore it */
1116			bio_endio(bio);
1117		else
1118			generic_make_request(bio);
1119		bio = next;
1120	}
1121	kfree(plug);
1122}
1123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1124static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1125				struct r10bio *r10_bio)
1126{
1127	struct r10conf *conf = mddev->private;
1128	struct bio *read_bio;
1129	const int op = bio_op(bio);
1130	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1131	int max_sectors;
1132	sector_t sectors;
1133	struct md_rdev *rdev;
1134	char b[BDEVNAME_SIZE];
1135	int slot = r10_bio->read_slot;
1136	struct md_rdev *err_rdev = NULL;
1137	gfp_t gfp = GFP_NOIO;
1138
1139	if (r10_bio->devs[slot].rdev) {
1140		/*
1141		 * This is an error retry, but we cannot
1142		 * safely dereference the rdev in the r10_bio,
1143		 * we must use the one in conf.
1144		 * If it has already been disconnected (unlikely)
1145		 * we lose the device name in error messages.
1146		 */
1147		int disk;
1148		/*
1149		 * As we are blocking raid10, it is a little safer to
1150		 * use __GFP_HIGH.
1151		 */
1152		gfp = GFP_NOIO | __GFP_HIGH;
1153
1154		rcu_read_lock();
1155		disk = r10_bio->devs[slot].devnum;
1156		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1157		if (err_rdev)
1158			bdevname(err_rdev->bdev, b);
1159		else {
1160			strcpy(b, "???");
1161			/* This never gets dereferenced */
1162			err_rdev = r10_bio->devs[slot].rdev;
1163		}
1164		rcu_read_unlock();
1165	}
1166	/*
1167	 * Register the new request and wait if the reconstruction
1168	 * thread has put up a bar for new requests.
1169	 * Continue immediately if no resync is active currently.
1170	 */
1171	wait_barrier(conf);
1172
1173	sectors = r10_bio->sectors;
1174	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1175	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1176	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1177		/*
1178		 * IO spans the reshape position.  Need to wait for reshape to
1179		 * pass
1180		 */
1181		raid10_log(conf->mddev, "wait reshape");
1182		allow_barrier(conf);
1183		wait_event(conf->wait_barrier,
1184			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1185			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1186			   sectors);
1187		wait_barrier(conf);
1188	}
1189
 
1190	rdev = read_balance(conf, r10_bio, &max_sectors);
1191	if (!rdev) {
1192		if (err_rdev) {
1193			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1194					    mdname(mddev), b,
1195					    (unsigned long long)r10_bio->sector);
1196		}
1197		raid_end_bio_io(r10_bio);
1198		return;
1199	}
1200	if (err_rdev)
1201		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1202				   mdname(mddev),
1203				   bdevname(rdev->bdev, b),
1204				   (unsigned long long)r10_bio->sector);
1205	if (max_sectors < bio_sectors(bio)) {
1206		struct bio *split = bio_split(bio, max_sectors,
1207					      gfp, conf->bio_split);
1208		bio_chain(split, bio);
 
1209		generic_make_request(bio);
 
1210		bio = split;
1211		r10_bio->master_bio = bio;
1212		r10_bio->sectors = max_sectors;
1213	}
1214	slot = r10_bio->read_slot;
1215
1216	read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1217
1218	r10_bio->devs[slot].bio = read_bio;
1219	r10_bio->devs[slot].rdev = rdev;
1220
1221	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1222		choose_data_offset(r10_bio, rdev);
1223	bio_set_dev(read_bio, rdev->bdev);
1224	read_bio->bi_end_io = raid10_end_read_request;
1225	bio_set_op_attrs(read_bio, op, do_sync);
1226	if (test_bit(FailFast, &rdev->flags) &&
1227	    test_bit(R10BIO_FailFast, &r10_bio->state))
1228	        read_bio->bi_opf |= MD_FAILFAST;
1229	read_bio->bi_private = r10_bio;
1230
1231	if (mddev->gendisk)
1232	        trace_block_bio_remap(read_bio->bi_disk->queue,
1233	                              read_bio, disk_devt(mddev->gendisk),
1234	                              r10_bio->sector);
1235	generic_make_request(read_bio);
1236	return;
1237}
1238
1239static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1240				  struct bio *bio, bool replacement,
1241				  int n_copy)
1242{
1243	const int op = bio_op(bio);
1244	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1245	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1246	unsigned long flags;
1247	struct blk_plug_cb *cb;
1248	struct raid10_plug_cb *plug = NULL;
1249	struct r10conf *conf = mddev->private;
1250	struct md_rdev *rdev;
1251	int devnum = r10_bio->devs[n_copy].devnum;
1252	struct bio *mbio;
1253
1254	if (replacement) {
1255		rdev = conf->mirrors[devnum].replacement;
1256		if (rdev == NULL) {
1257			/* Replacement just got moved to main 'rdev' */
1258			smp_mb();
1259			rdev = conf->mirrors[devnum].rdev;
1260		}
1261	} else
1262		rdev = conf->mirrors[devnum].rdev;
1263
1264	mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1265	if (replacement)
1266		r10_bio->devs[n_copy].repl_bio = mbio;
1267	else
1268		r10_bio->devs[n_copy].bio = mbio;
1269
1270	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1271				   choose_data_offset(r10_bio, rdev));
1272	bio_set_dev(mbio, rdev->bdev);
1273	mbio->bi_end_io	= raid10_end_write_request;
1274	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1275	if (!replacement && test_bit(FailFast,
1276				     &conf->mirrors[devnum].rdev->flags)
1277			 && enough(conf, devnum))
1278		mbio->bi_opf |= MD_FAILFAST;
1279	mbio->bi_private = r10_bio;
1280
1281	if (conf->mddev->gendisk)
1282		trace_block_bio_remap(mbio->bi_disk->queue,
1283				      mbio, disk_devt(conf->mddev->gendisk),
1284				      r10_bio->sector);
1285	/* flush_pending_writes() needs access to the rdev so...*/
1286	mbio->bi_disk = (void *)rdev;
1287
1288	atomic_inc(&r10_bio->remaining);
1289
1290	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1291	if (cb)
1292		plug = container_of(cb, struct raid10_plug_cb, cb);
1293	else
1294		plug = NULL;
1295	if (plug) {
1296		bio_list_add(&plug->pending, mbio);
1297		plug->pending_cnt++;
1298	} else {
1299		spin_lock_irqsave(&conf->device_lock, flags);
1300		bio_list_add(&conf->pending_bio_list, mbio);
1301		conf->pending_count++;
1302		spin_unlock_irqrestore(&conf->device_lock, flags);
1303		md_wakeup_thread(mddev->thread);
1304	}
1305}
1306
1307static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1308				 struct r10bio *r10_bio)
1309{
1310	struct r10conf *conf = mddev->private;
1311	int i;
1312	struct md_rdev *blocked_rdev;
1313	sector_t sectors;
1314	int max_sectors;
1315
1316	if ((mddev_is_clustered(mddev) &&
1317	     md_cluster_ops->area_resyncing(mddev, WRITE,
1318					    bio->bi_iter.bi_sector,
1319					    bio_end_sector(bio)))) {
1320		DEFINE_WAIT(w);
1321		for (;;) {
1322			prepare_to_wait(&conf->wait_barrier,
1323					&w, TASK_IDLE);
1324			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1325				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1326				break;
1327			schedule();
1328		}
1329		finish_wait(&conf->wait_barrier, &w);
1330	}
1331
1332	/*
1333	 * Register the new request and wait if the reconstruction
1334	 * thread has put up a bar for new requests.
1335	 * Continue immediately if no resync is active currently.
1336	 */
1337	wait_barrier(conf);
1338
1339	sectors = r10_bio->sectors;
1340	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1341	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1342	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1343		/*
1344		 * IO spans the reshape position.  Need to wait for reshape to
1345		 * pass
1346		 */
1347		raid10_log(conf->mddev, "wait reshape");
1348		allow_barrier(conf);
1349		wait_event(conf->wait_barrier,
1350			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1351			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1352			   sectors);
1353		wait_barrier(conf);
1354	}
1355
1356	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1357	    (mddev->reshape_backwards
1358	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1359		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1360	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1361		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1362		/* Need to update reshape_position in metadata */
1363		mddev->reshape_position = conf->reshape_progress;
1364		set_mask_bits(&mddev->sb_flags, 0,
1365			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1366		md_wakeup_thread(mddev->thread);
1367		raid10_log(conf->mddev, "wait reshape metadata");
1368		wait_event(mddev->sb_wait,
1369			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1370
1371		conf->reshape_safe = mddev->reshape_position;
1372	}
1373
1374	if (conf->pending_count >= max_queued_requests) {
1375		md_wakeup_thread(mddev->thread);
1376		raid10_log(mddev, "wait queued");
1377		wait_event(conf->wait_barrier,
1378			   conf->pending_count < max_queued_requests);
1379	}
1380	/* first select target devices under rcu_lock and
1381	 * inc refcount on their rdev.  Record them by setting
1382	 * bios[x] to bio
1383	 * If there are known/acknowledged bad blocks on any device
1384	 * on which we have seen a write error, we want to avoid
1385	 * writing to those blocks.  This potentially requires several
1386	 * writes to write around the bad blocks.  Each set of writes
1387	 * gets its own r10_bio with a set of bios attached.
1388	 */
1389
1390	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1391	raid10_find_phys(conf, r10_bio);
1392retry_write:
1393	blocked_rdev = NULL;
1394	rcu_read_lock();
1395	max_sectors = r10_bio->sectors;
1396
1397	for (i = 0;  i < conf->copies; i++) {
1398		int d = r10_bio->devs[i].devnum;
1399		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1400		struct md_rdev *rrdev = rcu_dereference(
1401			conf->mirrors[d].replacement);
1402		if (rdev == rrdev)
1403			rrdev = NULL;
1404		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1405			atomic_inc(&rdev->nr_pending);
1406			blocked_rdev = rdev;
1407			break;
1408		}
1409		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1410			atomic_inc(&rrdev->nr_pending);
1411			blocked_rdev = rrdev;
1412			break;
1413		}
1414		if (rdev && (test_bit(Faulty, &rdev->flags)))
1415			rdev = NULL;
1416		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1417			rrdev = NULL;
1418
1419		r10_bio->devs[i].bio = NULL;
1420		r10_bio->devs[i].repl_bio = NULL;
1421
1422		if (!rdev && !rrdev) {
1423			set_bit(R10BIO_Degraded, &r10_bio->state);
1424			continue;
1425		}
1426		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1427			sector_t first_bad;
1428			sector_t dev_sector = r10_bio->devs[i].addr;
1429			int bad_sectors;
1430			int is_bad;
1431
1432			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1433					     &first_bad, &bad_sectors);
1434			if (is_bad < 0) {
1435				/* Mustn't write here until the bad block
1436				 * is acknowledged
1437				 */
1438				atomic_inc(&rdev->nr_pending);
1439				set_bit(BlockedBadBlocks, &rdev->flags);
1440				blocked_rdev = rdev;
1441				break;
1442			}
1443			if (is_bad && first_bad <= dev_sector) {
1444				/* Cannot write here at all */
1445				bad_sectors -= (dev_sector - first_bad);
1446				if (bad_sectors < max_sectors)
1447					/* Mustn't write more than bad_sectors
1448					 * to other devices yet
1449					 */
1450					max_sectors = bad_sectors;
1451				/* We don't set R10BIO_Degraded as that
1452				 * only applies if the disk is missing,
1453				 * so it might be re-added, and we want to
1454				 * know to recover this chunk.
1455				 * In this case the device is here, and the
1456				 * fact that this chunk is not in-sync is
1457				 * recorded in the bad block log.
1458				 */
1459				continue;
1460			}
1461			if (is_bad) {
1462				int good_sectors = first_bad - dev_sector;
1463				if (good_sectors < max_sectors)
1464					max_sectors = good_sectors;
1465			}
1466		}
1467		if (rdev) {
1468			r10_bio->devs[i].bio = bio;
1469			atomic_inc(&rdev->nr_pending);
1470		}
1471		if (rrdev) {
1472			r10_bio->devs[i].repl_bio = bio;
1473			atomic_inc(&rrdev->nr_pending);
1474		}
1475	}
1476	rcu_read_unlock();
1477
1478	if (unlikely(blocked_rdev)) {
1479		/* Have to wait for this device to get unblocked, then retry */
1480		int j;
1481		int d;
1482
1483		for (j = 0; j < i; j++) {
1484			if (r10_bio->devs[j].bio) {
1485				d = r10_bio->devs[j].devnum;
1486				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1487			}
1488			if (r10_bio->devs[j].repl_bio) {
1489				struct md_rdev *rdev;
1490				d = r10_bio->devs[j].devnum;
1491				rdev = conf->mirrors[d].replacement;
1492				if (!rdev) {
1493					/* Race with remove_disk */
1494					smp_mb();
1495					rdev = conf->mirrors[d].rdev;
1496				}
1497				rdev_dec_pending(rdev, mddev);
1498			}
1499		}
1500		allow_barrier(conf);
1501		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1502		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1503		wait_barrier(conf);
1504		goto retry_write;
1505	}
1506
1507	if (max_sectors < r10_bio->sectors)
1508		r10_bio->sectors = max_sectors;
1509
1510	if (r10_bio->sectors < bio_sectors(bio)) {
1511		struct bio *split = bio_split(bio, r10_bio->sectors,
1512					      GFP_NOIO, conf->bio_split);
1513		bio_chain(split, bio);
 
1514		generic_make_request(bio);
 
1515		bio = split;
1516		r10_bio->master_bio = bio;
1517	}
1518
1519	atomic_set(&r10_bio->remaining, 1);
1520	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1521
1522	for (i = 0; i < conf->copies; i++) {
1523		if (r10_bio->devs[i].bio)
1524			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1525		if (r10_bio->devs[i].repl_bio)
1526			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1527	}
1528	one_write_done(r10_bio);
1529}
1530
1531static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1532{
1533	struct r10conf *conf = mddev->private;
1534	struct r10bio *r10_bio;
1535
1536	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1537
1538	r10_bio->master_bio = bio;
1539	r10_bio->sectors = sectors;
1540
1541	r10_bio->mddev = mddev;
1542	r10_bio->sector = bio->bi_iter.bi_sector;
1543	r10_bio->state = 0;
1544	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1545
1546	if (bio_data_dir(bio) == READ)
1547		raid10_read_request(mddev, bio, r10_bio);
1548	else
1549		raid10_write_request(mddev, bio, r10_bio);
1550}
1551
1552static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1553{
1554	struct r10conf *conf = mddev->private;
1555	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1556	int chunk_sects = chunk_mask + 1;
1557	int sectors = bio_sectors(bio);
1558
1559	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1560		md_flush_request(mddev, bio);
1561		return true;
1562	}
1563
1564	if (!md_write_start(mddev, bio))
1565		return false;
1566
1567	/*
1568	 * If this request crosses a chunk boundary, we need to split
1569	 * it.
1570	 */
1571	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1572		     sectors > chunk_sects
1573		     && (conf->geo.near_copies < conf->geo.raid_disks
1574			 || conf->prev.near_copies <
1575			 conf->prev.raid_disks)))
1576		sectors = chunk_sects -
1577			(bio->bi_iter.bi_sector &
1578			 (chunk_sects - 1));
1579	__make_request(mddev, bio, sectors);
1580
1581	/* In case raid10d snuck in to freeze_array */
1582	wake_up(&conf->wait_barrier);
1583	return true;
1584}
1585
1586static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1587{
1588	struct r10conf *conf = mddev->private;
1589	int i;
1590
1591	if (conf->geo.near_copies < conf->geo.raid_disks)
1592		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1593	if (conf->geo.near_copies > 1)
1594		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1595	if (conf->geo.far_copies > 1) {
1596		if (conf->geo.far_offset)
1597			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1598		else
1599			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1600		if (conf->geo.far_set_size != conf->geo.raid_disks)
1601			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1602	}
1603	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1604					conf->geo.raid_disks - mddev->degraded);
1605	rcu_read_lock();
1606	for (i = 0; i < conf->geo.raid_disks; i++) {
1607		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1608		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1609	}
1610	rcu_read_unlock();
1611	seq_printf(seq, "]");
1612}
1613
1614/* check if there are enough drives for
1615 * every block to appear on atleast one.
1616 * Don't consider the device numbered 'ignore'
1617 * as we might be about to remove it.
1618 */
1619static int _enough(struct r10conf *conf, int previous, int ignore)
1620{
1621	int first = 0;
1622	int has_enough = 0;
1623	int disks, ncopies;
1624	if (previous) {
1625		disks = conf->prev.raid_disks;
1626		ncopies = conf->prev.near_copies;
1627	} else {
1628		disks = conf->geo.raid_disks;
1629		ncopies = conf->geo.near_copies;
1630	}
1631
1632	rcu_read_lock();
1633	do {
1634		int n = conf->copies;
1635		int cnt = 0;
1636		int this = first;
1637		while (n--) {
1638			struct md_rdev *rdev;
1639			if (this != ignore &&
1640			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1641			    test_bit(In_sync, &rdev->flags))
1642				cnt++;
1643			this = (this+1) % disks;
1644		}
1645		if (cnt == 0)
1646			goto out;
1647		first = (first + ncopies) % disks;
1648	} while (first != 0);
1649	has_enough = 1;
1650out:
1651	rcu_read_unlock();
1652	return has_enough;
1653}
1654
1655static int enough(struct r10conf *conf, int ignore)
1656{
1657	/* when calling 'enough', both 'prev' and 'geo' must
1658	 * be stable.
1659	 * This is ensured if ->reconfig_mutex or ->device_lock
1660	 * is held.
1661	 */
1662	return _enough(conf, 0, ignore) &&
1663		_enough(conf, 1, ignore);
1664}
1665
1666static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1667{
1668	char b[BDEVNAME_SIZE];
1669	struct r10conf *conf = mddev->private;
1670	unsigned long flags;
1671
1672	/*
1673	 * If it is not operational, then we have already marked it as dead
1674	 * else if it is the last working disks, ignore the error, let the
1675	 * next level up know.
1676	 * else mark the drive as failed
1677	 */
1678	spin_lock_irqsave(&conf->device_lock, flags);
1679	if (test_bit(In_sync, &rdev->flags)
1680	    && !enough(conf, rdev->raid_disk)) {
1681		/*
1682		 * Don't fail the drive, just return an IO error.
1683		 */
1684		spin_unlock_irqrestore(&conf->device_lock, flags);
1685		return;
1686	}
1687	if (test_and_clear_bit(In_sync, &rdev->flags))
1688		mddev->degraded++;
1689	/*
1690	 * If recovery is running, make sure it aborts.
1691	 */
1692	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1693	set_bit(Blocked, &rdev->flags);
1694	set_bit(Faulty, &rdev->flags);
1695	set_mask_bits(&mddev->sb_flags, 0,
1696		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1697	spin_unlock_irqrestore(&conf->device_lock, flags);
1698	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1699		"md/raid10:%s: Operation continuing on %d devices.\n",
1700		mdname(mddev), bdevname(rdev->bdev, b),
1701		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1702}
1703
1704static void print_conf(struct r10conf *conf)
1705{
1706	int i;
1707	struct md_rdev *rdev;
1708
1709	pr_debug("RAID10 conf printout:\n");
1710	if (!conf) {
1711		pr_debug("(!conf)\n");
1712		return;
1713	}
1714	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1715		 conf->geo.raid_disks);
1716
1717	/* This is only called with ->reconfix_mutex held, so
1718	 * rcu protection of rdev is not needed */
1719	for (i = 0; i < conf->geo.raid_disks; i++) {
1720		char b[BDEVNAME_SIZE];
1721		rdev = conf->mirrors[i].rdev;
1722		if (rdev)
1723			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1724				 i, !test_bit(In_sync, &rdev->flags),
1725				 !test_bit(Faulty, &rdev->flags),
1726				 bdevname(rdev->bdev,b));
1727	}
1728}
1729
1730static void close_sync(struct r10conf *conf)
1731{
1732	wait_barrier(conf);
1733	allow_barrier(conf);
1734
1735	mempool_destroy(conf->r10buf_pool);
1736	conf->r10buf_pool = NULL;
1737}
1738
1739static int raid10_spare_active(struct mddev *mddev)
1740{
1741	int i;
1742	struct r10conf *conf = mddev->private;
1743	struct raid10_info *tmp;
1744	int count = 0;
1745	unsigned long flags;
1746
1747	/*
1748	 * Find all non-in_sync disks within the RAID10 configuration
1749	 * and mark them in_sync
1750	 */
1751	for (i = 0; i < conf->geo.raid_disks; i++) {
1752		tmp = conf->mirrors + i;
1753		if (tmp->replacement
1754		    && tmp->replacement->recovery_offset == MaxSector
1755		    && !test_bit(Faulty, &tmp->replacement->flags)
1756		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1757			/* Replacement has just become active */
1758			if (!tmp->rdev
1759			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1760				count++;
1761			if (tmp->rdev) {
1762				/* Replaced device not technically faulty,
1763				 * but we need to be sure it gets removed
1764				 * and never re-added.
1765				 */
1766				set_bit(Faulty, &tmp->rdev->flags);
1767				sysfs_notify_dirent_safe(
1768					tmp->rdev->sysfs_state);
1769			}
1770			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1771		} else if (tmp->rdev
1772			   && tmp->rdev->recovery_offset == MaxSector
1773			   && !test_bit(Faulty, &tmp->rdev->flags)
1774			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1775			count++;
1776			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1777		}
1778	}
1779	spin_lock_irqsave(&conf->device_lock, flags);
1780	mddev->degraded -= count;
1781	spin_unlock_irqrestore(&conf->device_lock, flags);
1782
1783	print_conf(conf);
1784	return count;
1785}
1786
1787static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1788{
1789	struct r10conf *conf = mddev->private;
1790	int err = -EEXIST;
1791	int mirror;
1792	int first = 0;
1793	int last = conf->geo.raid_disks - 1;
1794
1795	if (mddev->recovery_cp < MaxSector)
1796		/* only hot-add to in-sync arrays, as recovery is
1797		 * very different from resync
1798		 */
1799		return -EBUSY;
1800	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1801		return -EINVAL;
1802
1803	if (md_integrity_add_rdev(rdev, mddev))
1804		return -ENXIO;
1805
1806	if (rdev->raid_disk >= 0)
1807		first = last = rdev->raid_disk;
1808
1809	if (rdev->saved_raid_disk >= first &&
 
1810	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1811		mirror = rdev->saved_raid_disk;
1812	else
1813		mirror = first;
1814	for ( ; mirror <= last ; mirror++) {
1815		struct raid10_info *p = &conf->mirrors[mirror];
1816		if (p->recovery_disabled == mddev->recovery_disabled)
1817			continue;
1818		if (p->rdev) {
1819			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1820			    p->replacement != NULL)
1821				continue;
1822			clear_bit(In_sync, &rdev->flags);
1823			set_bit(Replacement, &rdev->flags);
1824			rdev->raid_disk = mirror;
1825			err = 0;
1826			if (mddev->gendisk)
1827				disk_stack_limits(mddev->gendisk, rdev->bdev,
1828						  rdev->data_offset << 9);
1829			conf->fullsync = 1;
1830			rcu_assign_pointer(p->replacement, rdev);
1831			break;
1832		}
1833
1834		if (mddev->gendisk)
1835			disk_stack_limits(mddev->gendisk, rdev->bdev,
1836					  rdev->data_offset << 9);
1837
1838		p->head_position = 0;
1839		p->recovery_disabled = mddev->recovery_disabled - 1;
1840		rdev->raid_disk = mirror;
1841		err = 0;
1842		if (rdev->saved_raid_disk != mirror)
1843			conf->fullsync = 1;
1844		rcu_assign_pointer(p->rdev, rdev);
1845		break;
1846	}
1847	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1848		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1849
1850	print_conf(conf);
1851	return err;
1852}
1853
1854static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1855{
1856	struct r10conf *conf = mddev->private;
1857	int err = 0;
1858	int number = rdev->raid_disk;
1859	struct md_rdev **rdevp;
1860	struct raid10_info *p = conf->mirrors + number;
1861
1862	print_conf(conf);
1863	if (rdev == p->rdev)
1864		rdevp = &p->rdev;
1865	else if (rdev == p->replacement)
1866		rdevp = &p->replacement;
1867	else
1868		return 0;
1869
1870	if (test_bit(In_sync, &rdev->flags) ||
1871	    atomic_read(&rdev->nr_pending)) {
1872		err = -EBUSY;
1873		goto abort;
1874	}
1875	/* Only remove non-faulty devices if recovery
1876	 * is not possible.
1877	 */
1878	if (!test_bit(Faulty, &rdev->flags) &&
1879	    mddev->recovery_disabled != p->recovery_disabled &&
1880	    (!p->replacement || p->replacement == rdev) &&
1881	    number < conf->geo.raid_disks &&
1882	    enough(conf, -1)) {
1883		err = -EBUSY;
1884		goto abort;
1885	}
1886	*rdevp = NULL;
1887	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1888		synchronize_rcu();
1889		if (atomic_read(&rdev->nr_pending)) {
1890			/* lost the race, try later */
1891			err = -EBUSY;
1892			*rdevp = rdev;
1893			goto abort;
1894		}
1895	}
1896	if (p->replacement) {
1897		/* We must have just cleared 'rdev' */
1898		p->rdev = p->replacement;
1899		clear_bit(Replacement, &p->replacement->flags);
1900		smp_mb(); /* Make sure other CPUs may see both as identical
1901			   * but will never see neither -- if they are careful.
1902			   */
1903		p->replacement = NULL;
1904	}
1905
1906	clear_bit(WantReplacement, &rdev->flags);
1907	err = md_integrity_register(mddev);
1908
1909abort:
1910
1911	print_conf(conf);
1912	return err;
1913}
1914
1915static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1916{
1917	struct r10conf *conf = r10_bio->mddev->private;
1918
1919	if (!bio->bi_status)
1920		set_bit(R10BIO_Uptodate, &r10_bio->state);
1921	else
1922		/* The write handler will notice the lack of
1923		 * R10BIO_Uptodate and record any errors etc
1924		 */
1925		atomic_add(r10_bio->sectors,
1926			   &conf->mirrors[d].rdev->corrected_errors);
1927
1928	/* for reconstruct, we always reschedule after a read.
1929	 * for resync, only after all reads
1930	 */
1931	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1932	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1933	    atomic_dec_and_test(&r10_bio->remaining)) {
1934		/* we have read all the blocks,
1935		 * do the comparison in process context in raid10d
1936		 */
1937		reschedule_retry(r10_bio);
1938	}
1939}
1940
1941static void end_sync_read(struct bio *bio)
1942{
1943	struct r10bio *r10_bio = get_resync_r10bio(bio);
1944	struct r10conf *conf = r10_bio->mddev->private;
1945	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1946
1947	__end_sync_read(r10_bio, bio, d);
1948}
1949
1950static void end_reshape_read(struct bio *bio)
1951{
1952	/* reshape read bio isn't allocated from r10buf_pool */
1953	struct r10bio *r10_bio = bio->bi_private;
1954
1955	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
1956}
1957
1958static void end_sync_request(struct r10bio *r10_bio)
1959{
1960	struct mddev *mddev = r10_bio->mddev;
1961
1962	while (atomic_dec_and_test(&r10_bio->remaining)) {
1963		if (r10_bio->master_bio == NULL) {
1964			/* the primary of several recovery bios */
1965			sector_t s = r10_bio->sectors;
1966			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1967			    test_bit(R10BIO_WriteError, &r10_bio->state))
1968				reschedule_retry(r10_bio);
1969			else
1970				put_buf(r10_bio);
1971			md_done_sync(mddev, s, 1);
1972			break;
1973		} else {
1974			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1975			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1976			    test_bit(R10BIO_WriteError, &r10_bio->state))
1977				reschedule_retry(r10_bio);
1978			else
1979				put_buf(r10_bio);
1980			r10_bio = r10_bio2;
1981		}
1982	}
1983}
1984
1985static void end_sync_write(struct bio *bio)
1986{
1987	struct r10bio *r10_bio = get_resync_r10bio(bio);
1988	struct mddev *mddev = r10_bio->mddev;
1989	struct r10conf *conf = mddev->private;
1990	int d;
1991	sector_t first_bad;
1992	int bad_sectors;
1993	int slot;
1994	int repl;
1995	struct md_rdev *rdev = NULL;
1996
1997	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1998	if (repl)
1999		rdev = conf->mirrors[d].replacement;
2000	else
2001		rdev = conf->mirrors[d].rdev;
2002
2003	if (bio->bi_status) {
2004		if (repl)
2005			md_error(mddev, rdev);
2006		else {
2007			set_bit(WriteErrorSeen, &rdev->flags);
2008			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2009				set_bit(MD_RECOVERY_NEEDED,
2010					&rdev->mddev->recovery);
2011			set_bit(R10BIO_WriteError, &r10_bio->state);
2012		}
2013	} else if (is_badblock(rdev,
2014			     r10_bio->devs[slot].addr,
2015			     r10_bio->sectors,
2016			     &first_bad, &bad_sectors))
2017		set_bit(R10BIO_MadeGood, &r10_bio->state);
2018
2019	rdev_dec_pending(rdev, mddev);
2020
2021	end_sync_request(r10_bio);
2022}
2023
2024/*
2025 * Note: sync and recover and handled very differently for raid10
2026 * This code is for resync.
2027 * For resync, we read through virtual addresses and read all blocks.
2028 * If there is any error, we schedule a write.  The lowest numbered
2029 * drive is authoritative.
2030 * However requests come for physical address, so we need to map.
2031 * For every physical address there are raid_disks/copies virtual addresses,
2032 * which is always are least one, but is not necessarly an integer.
2033 * This means that a physical address can span multiple chunks, so we may
2034 * have to submit multiple io requests for a single sync request.
2035 */
2036/*
2037 * We check if all blocks are in-sync and only write to blocks that
2038 * aren't in sync
2039 */
2040static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2041{
2042	struct r10conf *conf = mddev->private;
2043	int i, first;
2044	struct bio *tbio, *fbio;
2045	int vcnt;
2046	struct page **tpages, **fpages;
2047
2048	atomic_set(&r10_bio->remaining, 1);
2049
2050	/* find the first device with a block */
2051	for (i=0; i<conf->copies; i++)
2052		if (!r10_bio->devs[i].bio->bi_status)
2053			break;
2054
2055	if (i == conf->copies)
2056		goto done;
2057
2058	first = i;
2059	fbio = r10_bio->devs[i].bio;
2060	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2061	fbio->bi_iter.bi_idx = 0;
2062	fpages = get_resync_pages(fbio)->pages;
2063
2064	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2065	/* now find blocks with errors */
2066	for (i=0 ; i < conf->copies ; i++) {
2067		int  j, d;
2068		struct md_rdev *rdev;
2069		struct resync_pages *rp;
2070
2071		tbio = r10_bio->devs[i].bio;
2072
2073		if (tbio->bi_end_io != end_sync_read)
2074			continue;
2075		if (i == first)
2076			continue;
2077
2078		tpages = get_resync_pages(tbio)->pages;
2079		d = r10_bio->devs[i].devnum;
2080		rdev = conf->mirrors[d].rdev;
2081		if (!r10_bio->devs[i].bio->bi_status) {
2082			/* We know that the bi_io_vec layout is the same for
2083			 * both 'first' and 'i', so we just compare them.
2084			 * All vec entries are PAGE_SIZE;
2085			 */
2086			int sectors = r10_bio->sectors;
2087			for (j = 0; j < vcnt; j++) {
2088				int len = PAGE_SIZE;
2089				if (sectors < (len / 512))
2090					len = sectors * 512;
2091				if (memcmp(page_address(fpages[j]),
2092					   page_address(tpages[j]),
2093					   len))
2094					break;
2095				sectors -= len/512;
2096			}
2097			if (j == vcnt)
2098				continue;
2099			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2100			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2101				/* Don't fix anything. */
2102				continue;
2103		} else if (test_bit(FailFast, &rdev->flags)) {
2104			/* Just give up on this device */
2105			md_error(rdev->mddev, rdev);
2106			continue;
2107		}
2108		/* Ok, we need to write this bio, either to correct an
2109		 * inconsistency or to correct an unreadable block.
2110		 * First we need to fixup bv_offset, bv_len and
2111		 * bi_vecs, as the read request might have corrupted these
2112		 */
2113		rp = get_resync_pages(tbio);
2114		bio_reset(tbio);
2115
2116		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2117
2118		rp->raid_bio = r10_bio;
2119		tbio->bi_private = rp;
2120		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2121		tbio->bi_end_io = end_sync_write;
2122		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2123
2124		bio_copy_data(tbio, fbio);
2125
2126		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2127		atomic_inc(&r10_bio->remaining);
2128		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2129
2130		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2131			tbio->bi_opf |= MD_FAILFAST;
2132		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2133		bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2134		generic_make_request(tbio);
2135	}
2136
2137	/* Now write out to any replacement devices
2138	 * that are active
2139	 */
2140	for (i = 0; i < conf->copies; i++) {
2141		int d;
2142
2143		tbio = r10_bio->devs[i].repl_bio;
2144		if (!tbio || !tbio->bi_end_io)
2145			continue;
2146		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2147		    && r10_bio->devs[i].bio != fbio)
2148			bio_copy_data(tbio, fbio);
2149		d = r10_bio->devs[i].devnum;
2150		atomic_inc(&r10_bio->remaining);
2151		md_sync_acct(conf->mirrors[d].replacement->bdev,
2152			     bio_sectors(tbio));
2153		generic_make_request(tbio);
2154	}
2155
2156done:
2157	if (atomic_dec_and_test(&r10_bio->remaining)) {
2158		md_done_sync(mddev, r10_bio->sectors, 1);
2159		put_buf(r10_bio);
2160	}
2161}
2162
2163/*
2164 * Now for the recovery code.
2165 * Recovery happens across physical sectors.
2166 * We recover all non-is_sync drives by finding the virtual address of
2167 * each, and then choose a working drive that also has that virt address.
2168 * There is a separate r10_bio for each non-in_sync drive.
2169 * Only the first two slots are in use. The first for reading,
2170 * The second for writing.
2171 *
2172 */
2173static void fix_recovery_read_error(struct r10bio *r10_bio)
2174{
2175	/* We got a read error during recovery.
2176	 * We repeat the read in smaller page-sized sections.
2177	 * If a read succeeds, write it to the new device or record
2178	 * a bad block if we cannot.
2179	 * If a read fails, record a bad block on both old and
2180	 * new devices.
2181	 */
2182	struct mddev *mddev = r10_bio->mddev;
2183	struct r10conf *conf = mddev->private;
2184	struct bio *bio = r10_bio->devs[0].bio;
2185	sector_t sect = 0;
2186	int sectors = r10_bio->sectors;
2187	int idx = 0;
2188	int dr = r10_bio->devs[0].devnum;
2189	int dw = r10_bio->devs[1].devnum;
2190	struct page **pages = get_resync_pages(bio)->pages;
2191
2192	while (sectors) {
2193		int s = sectors;
2194		struct md_rdev *rdev;
2195		sector_t addr;
2196		int ok;
2197
2198		if (s > (PAGE_SIZE>>9))
2199			s = PAGE_SIZE >> 9;
2200
2201		rdev = conf->mirrors[dr].rdev;
2202		addr = r10_bio->devs[0].addr + sect,
2203		ok = sync_page_io(rdev,
2204				  addr,
2205				  s << 9,
2206				  pages[idx],
2207				  REQ_OP_READ, 0, false);
2208		if (ok) {
2209			rdev = conf->mirrors[dw].rdev;
2210			addr = r10_bio->devs[1].addr + sect;
2211			ok = sync_page_io(rdev,
2212					  addr,
2213					  s << 9,
2214					  pages[idx],
2215					  REQ_OP_WRITE, 0, false);
2216			if (!ok) {
2217				set_bit(WriteErrorSeen, &rdev->flags);
2218				if (!test_and_set_bit(WantReplacement,
2219						      &rdev->flags))
2220					set_bit(MD_RECOVERY_NEEDED,
2221						&rdev->mddev->recovery);
2222			}
2223		}
2224		if (!ok) {
2225			/* We don't worry if we cannot set a bad block -
2226			 * it really is bad so there is no loss in not
2227			 * recording it yet
2228			 */
2229			rdev_set_badblocks(rdev, addr, s, 0);
2230
2231			if (rdev != conf->mirrors[dw].rdev) {
2232				/* need bad block on destination too */
2233				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2234				addr = r10_bio->devs[1].addr + sect;
2235				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2236				if (!ok) {
2237					/* just abort the recovery */
2238					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2239						  mdname(mddev));
2240
2241					conf->mirrors[dw].recovery_disabled
2242						= mddev->recovery_disabled;
2243					set_bit(MD_RECOVERY_INTR,
2244						&mddev->recovery);
2245					break;
2246				}
2247			}
2248		}
2249
2250		sectors -= s;
2251		sect += s;
2252		idx++;
2253	}
2254}
2255
2256static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2257{
2258	struct r10conf *conf = mddev->private;
2259	int d;
2260	struct bio *wbio, *wbio2;
2261
2262	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2263		fix_recovery_read_error(r10_bio);
2264		end_sync_request(r10_bio);
2265		return;
2266	}
2267
2268	/*
2269	 * share the pages with the first bio
2270	 * and submit the write request
2271	 */
2272	d = r10_bio->devs[1].devnum;
2273	wbio = r10_bio->devs[1].bio;
2274	wbio2 = r10_bio->devs[1].repl_bio;
2275	/* Need to test wbio2->bi_end_io before we call
2276	 * generic_make_request as if the former is NULL,
2277	 * the latter is free to free wbio2.
2278	 */
2279	if (wbio2 && !wbio2->bi_end_io)
2280		wbio2 = NULL;
2281	if (wbio->bi_end_io) {
2282		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2283		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2284		generic_make_request(wbio);
2285	}
2286	if (wbio2) {
2287		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2288		md_sync_acct(conf->mirrors[d].replacement->bdev,
2289			     bio_sectors(wbio2));
2290		generic_make_request(wbio2);
2291	}
2292}
2293
2294/*
2295 * Used by fix_read_error() to decay the per rdev read_errors.
2296 * We halve the read error count for every hour that has elapsed
2297 * since the last recorded read error.
2298 *
2299 */
2300static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2301{
2302	long cur_time_mon;
2303	unsigned long hours_since_last;
2304	unsigned int read_errors = atomic_read(&rdev->read_errors);
2305
2306	cur_time_mon = ktime_get_seconds();
2307
2308	if (rdev->last_read_error == 0) {
2309		/* first time we've seen a read error */
2310		rdev->last_read_error = cur_time_mon;
2311		return;
2312	}
2313
2314	hours_since_last = (long)(cur_time_mon -
2315			    rdev->last_read_error) / 3600;
2316
2317	rdev->last_read_error = cur_time_mon;
2318
2319	/*
2320	 * if hours_since_last is > the number of bits in read_errors
2321	 * just set read errors to 0. We do this to avoid
2322	 * overflowing the shift of read_errors by hours_since_last.
2323	 */
2324	if (hours_since_last >= 8 * sizeof(read_errors))
2325		atomic_set(&rdev->read_errors, 0);
2326	else
2327		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2328}
2329
2330static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2331			    int sectors, struct page *page, int rw)
2332{
2333	sector_t first_bad;
2334	int bad_sectors;
2335
2336	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2337	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2338		return -1;
2339	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2340		/* success */
2341		return 1;
2342	if (rw == WRITE) {
2343		set_bit(WriteErrorSeen, &rdev->flags);
2344		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2345			set_bit(MD_RECOVERY_NEEDED,
2346				&rdev->mddev->recovery);
2347	}
2348	/* need to record an error - either for the block or the device */
2349	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2350		md_error(rdev->mddev, rdev);
2351	return 0;
2352}
2353
2354/*
2355 * This is a kernel thread which:
2356 *
2357 *	1.	Retries failed read operations on working mirrors.
2358 *	2.	Updates the raid superblock when problems encounter.
2359 *	3.	Performs writes following reads for array synchronising.
2360 */
2361
2362static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2363{
2364	int sect = 0; /* Offset from r10_bio->sector */
2365	int sectors = r10_bio->sectors;
2366	struct md_rdev*rdev;
2367	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2368	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2369
2370	/* still own a reference to this rdev, so it cannot
2371	 * have been cleared recently.
2372	 */
2373	rdev = conf->mirrors[d].rdev;
2374
2375	if (test_bit(Faulty, &rdev->flags))
2376		/* drive has already been failed, just ignore any
2377		   more fix_read_error() attempts */
2378		return;
2379
2380	check_decay_read_errors(mddev, rdev);
2381	atomic_inc(&rdev->read_errors);
2382	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2383		char b[BDEVNAME_SIZE];
2384		bdevname(rdev->bdev, b);
2385
2386		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2387			  mdname(mddev), b,
2388			  atomic_read(&rdev->read_errors), max_read_errors);
2389		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2390			  mdname(mddev), b);
2391		md_error(mddev, rdev);
2392		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2393		return;
2394	}
2395
2396	while(sectors) {
2397		int s = sectors;
2398		int sl = r10_bio->read_slot;
2399		int success = 0;
2400		int start;
2401
2402		if (s > (PAGE_SIZE>>9))
2403			s = PAGE_SIZE >> 9;
2404
2405		rcu_read_lock();
2406		do {
2407			sector_t first_bad;
2408			int bad_sectors;
2409
2410			d = r10_bio->devs[sl].devnum;
2411			rdev = rcu_dereference(conf->mirrors[d].rdev);
2412			if (rdev &&
2413			    test_bit(In_sync, &rdev->flags) &&
2414			    !test_bit(Faulty, &rdev->flags) &&
2415			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2416					&first_bad, &bad_sectors) == 0) {
2417				atomic_inc(&rdev->nr_pending);
2418				rcu_read_unlock();
2419				success = sync_page_io(rdev,
2420						       r10_bio->devs[sl].addr +
2421						       sect,
2422						       s<<9,
2423						       conf->tmppage,
2424						       REQ_OP_READ, 0, false);
2425				rdev_dec_pending(rdev, mddev);
2426				rcu_read_lock();
2427				if (success)
2428					break;
2429			}
2430			sl++;
2431			if (sl == conf->copies)
2432				sl = 0;
2433		} while (!success && sl != r10_bio->read_slot);
2434		rcu_read_unlock();
2435
2436		if (!success) {
2437			/* Cannot read from anywhere, just mark the block
2438			 * as bad on the first device to discourage future
2439			 * reads.
2440			 */
2441			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2442			rdev = conf->mirrors[dn].rdev;
2443
2444			if (!rdev_set_badblocks(
2445				    rdev,
2446				    r10_bio->devs[r10_bio->read_slot].addr
2447				    + sect,
2448				    s, 0)) {
2449				md_error(mddev, rdev);
2450				r10_bio->devs[r10_bio->read_slot].bio
2451					= IO_BLOCKED;
2452			}
2453			break;
2454		}
2455
2456		start = sl;
2457		/* write it back and re-read */
2458		rcu_read_lock();
2459		while (sl != r10_bio->read_slot) {
2460			char b[BDEVNAME_SIZE];
2461
2462			if (sl==0)
2463				sl = conf->copies;
2464			sl--;
2465			d = r10_bio->devs[sl].devnum;
2466			rdev = rcu_dereference(conf->mirrors[d].rdev);
2467			if (!rdev ||
2468			    test_bit(Faulty, &rdev->flags) ||
2469			    !test_bit(In_sync, &rdev->flags))
2470				continue;
2471
2472			atomic_inc(&rdev->nr_pending);
2473			rcu_read_unlock();
2474			if (r10_sync_page_io(rdev,
2475					     r10_bio->devs[sl].addr +
2476					     sect,
2477					     s, conf->tmppage, WRITE)
2478			    == 0) {
2479				/* Well, this device is dead */
2480				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2481					  mdname(mddev), s,
2482					  (unsigned long long)(
2483						  sect +
2484						  choose_data_offset(r10_bio,
2485								     rdev)),
2486					  bdevname(rdev->bdev, b));
2487				pr_notice("md/raid10:%s: %s: failing drive\n",
2488					  mdname(mddev),
2489					  bdevname(rdev->bdev, b));
2490			}
2491			rdev_dec_pending(rdev, mddev);
2492			rcu_read_lock();
2493		}
2494		sl = start;
2495		while (sl != r10_bio->read_slot) {
2496			char b[BDEVNAME_SIZE];
2497
2498			if (sl==0)
2499				sl = conf->copies;
2500			sl--;
2501			d = r10_bio->devs[sl].devnum;
2502			rdev = rcu_dereference(conf->mirrors[d].rdev);
2503			if (!rdev ||
2504			    test_bit(Faulty, &rdev->flags) ||
2505			    !test_bit(In_sync, &rdev->flags))
2506				continue;
2507
2508			atomic_inc(&rdev->nr_pending);
2509			rcu_read_unlock();
2510			switch (r10_sync_page_io(rdev,
2511					     r10_bio->devs[sl].addr +
2512					     sect,
2513					     s, conf->tmppage,
2514						 READ)) {
2515			case 0:
2516				/* Well, this device is dead */
2517				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2518				       mdname(mddev), s,
2519				       (unsigned long long)(
2520					       sect +
2521					       choose_data_offset(r10_bio, rdev)),
2522				       bdevname(rdev->bdev, b));
2523				pr_notice("md/raid10:%s: %s: failing drive\n",
2524				       mdname(mddev),
2525				       bdevname(rdev->bdev, b));
2526				break;
2527			case 1:
2528				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2529				       mdname(mddev), s,
2530				       (unsigned long long)(
2531					       sect +
2532					       choose_data_offset(r10_bio, rdev)),
2533				       bdevname(rdev->bdev, b));
2534				atomic_add(s, &rdev->corrected_errors);
2535			}
2536
2537			rdev_dec_pending(rdev, mddev);
2538			rcu_read_lock();
2539		}
2540		rcu_read_unlock();
2541
2542		sectors -= s;
2543		sect += s;
2544	}
2545}
2546
2547static int narrow_write_error(struct r10bio *r10_bio, int i)
2548{
2549	struct bio *bio = r10_bio->master_bio;
2550	struct mddev *mddev = r10_bio->mddev;
2551	struct r10conf *conf = mddev->private;
2552	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2553	/* bio has the data to be written to slot 'i' where
2554	 * we just recently had a write error.
2555	 * We repeatedly clone the bio and trim down to one block,
2556	 * then try the write.  Where the write fails we record
2557	 * a bad block.
2558	 * It is conceivable that the bio doesn't exactly align with
2559	 * blocks.  We must handle this.
2560	 *
2561	 * We currently own a reference to the rdev.
2562	 */
2563
2564	int block_sectors;
2565	sector_t sector;
2566	int sectors;
2567	int sect_to_write = r10_bio->sectors;
2568	int ok = 1;
2569
2570	if (rdev->badblocks.shift < 0)
2571		return 0;
2572
2573	block_sectors = roundup(1 << rdev->badblocks.shift,
2574				bdev_logical_block_size(rdev->bdev) >> 9);
2575	sector = r10_bio->sector;
2576	sectors = ((r10_bio->sector + block_sectors)
2577		   & ~(sector_t)(block_sectors - 1))
2578		- sector;
2579
2580	while (sect_to_write) {
2581		struct bio *wbio;
2582		sector_t wsector;
2583		if (sectors > sect_to_write)
2584			sectors = sect_to_write;
2585		/* Write at 'sector' for 'sectors' */
2586		wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
2587		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2588		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2589		wbio->bi_iter.bi_sector = wsector +
2590				   choose_data_offset(r10_bio, rdev);
2591		bio_set_dev(wbio, rdev->bdev);
2592		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2593
2594		if (submit_bio_wait(wbio) < 0)
2595			/* Failure! */
2596			ok = rdev_set_badblocks(rdev, wsector,
2597						sectors, 0)
2598				&& ok;
2599
2600		bio_put(wbio);
2601		sect_to_write -= sectors;
2602		sector += sectors;
2603		sectors = block_sectors;
2604	}
2605	return ok;
2606}
2607
2608static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2609{
2610	int slot = r10_bio->read_slot;
2611	struct bio *bio;
2612	struct r10conf *conf = mddev->private;
2613	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2614
2615	/* we got a read error. Maybe the drive is bad.  Maybe just
2616	 * the block and we can fix it.
2617	 * We freeze all other IO, and try reading the block from
2618	 * other devices.  When we find one, we re-write
2619	 * and check it that fixes the read error.
2620	 * This is all done synchronously while the array is
2621	 * frozen.
2622	 */
2623	bio = r10_bio->devs[slot].bio;
2624	bio_put(bio);
2625	r10_bio->devs[slot].bio = NULL;
2626
2627	if (mddev->ro)
2628		r10_bio->devs[slot].bio = IO_BLOCKED;
2629	else if (!test_bit(FailFast, &rdev->flags)) {
2630		freeze_array(conf, 1);
2631		fix_read_error(conf, mddev, r10_bio);
2632		unfreeze_array(conf);
2633	} else
2634		md_error(mddev, rdev);
2635
2636	rdev_dec_pending(rdev, mddev);
2637	allow_barrier(conf);
2638	r10_bio->state = 0;
2639	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2640}
2641
2642static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2643{
2644	/* Some sort of write request has finished and it
2645	 * succeeded in writing where we thought there was a
2646	 * bad block.  So forget the bad block.
2647	 * Or possibly if failed and we need to record
2648	 * a bad block.
2649	 */
2650	int m;
2651	struct md_rdev *rdev;
2652
2653	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2654	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2655		for (m = 0; m < conf->copies; m++) {
2656			int dev = r10_bio->devs[m].devnum;
2657			rdev = conf->mirrors[dev].rdev;
2658			if (r10_bio->devs[m].bio == NULL ||
2659				r10_bio->devs[m].bio->bi_end_io == NULL)
2660				continue;
2661			if (!r10_bio->devs[m].bio->bi_status) {
2662				rdev_clear_badblocks(
2663					rdev,
2664					r10_bio->devs[m].addr,
2665					r10_bio->sectors, 0);
2666			} else {
2667				if (!rdev_set_badblocks(
2668					    rdev,
2669					    r10_bio->devs[m].addr,
2670					    r10_bio->sectors, 0))
2671					md_error(conf->mddev, rdev);
2672			}
2673			rdev = conf->mirrors[dev].replacement;
2674			if (r10_bio->devs[m].repl_bio == NULL ||
2675				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2676				continue;
2677
2678			if (!r10_bio->devs[m].repl_bio->bi_status) {
2679				rdev_clear_badblocks(
2680					rdev,
2681					r10_bio->devs[m].addr,
2682					r10_bio->sectors, 0);
2683			} else {
2684				if (!rdev_set_badblocks(
2685					    rdev,
2686					    r10_bio->devs[m].addr,
2687					    r10_bio->sectors, 0))
2688					md_error(conf->mddev, rdev);
2689			}
2690		}
2691		put_buf(r10_bio);
2692	} else {
2693		bool fail = false;
2694		for (m = 0; m < conf->copies; m++) {
2695			int dev = r10_bio->devs[m].devnum;
2696			struct bio *bio = r10_bio->devs[m].bio;
2697			rdev = conf->mirrors[dev].rdev;
2698			if (bio == IO_MADE_GOOD) {
2699				rdev_clear_badblocks(
2700					rdev,
2701					r10_bio->devs[m].addr,
2702					r10_bio->sectors, 0);
2703				rdev_dec_pending(rdev, conf->mddev);
2704			} else if (bio != NULL && bio->bi_status) {
2705				fail = true;
2706				if (!narrow_write_error(r10_bio, m)) {
2707					md_error(conf->mddev, rdev);
2708					set_bit(R10BIO_Degraded,
2709						&r10_bio->state);
2710				}
2711				rdev_dec_pending(rdev, conf->mddev);
2712			}
2713			bio = r10_bio->devs[m].repl_bio;
2714			rdev = conf->mirrors[dev].replacement;
2715			if (rdev && bio == IO_MADE_GOOD) {
2716				rdev_clear_badblocks(
2717					rdev,
2718					r10_bio->devs[m].addr,
2719					r10_bio->sectors, 0);
2720				rdev_dec_pending(rdev, conf->mddev);
2721			}
2722		}
2723		if (fail) {
2724			spin_lock_irq(&conf->device_lock);
2725			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2726			conf->nr_queued++;
2727			spin_unlock_irq(&conf->device_lock);
2728			/*
2729			 * In case freeze_array() is waiting for condition
2730			 * nr_pending == nr_queued + extra to be true.
2731			 */
2732			wake_up(&conf->wait_barrier);
2733			md_wakeup_thread(conf->mddev->thread);
2734		} else {
2735			if (test_bit(R10BIO_WriteError,
2736				     &r10_bio->state))
2737				close_write(r10_bio);
2738			raid_end_bio_io(r10_bio);
2739		}
2740	}
2741}
2742
2743static void raid10d(struct md_thread *thread)
2744{
2745	struct mddev *mddev = thread->mddev;
2746	struct r10bio *r10_bio;
2747	unsigned long flags;
2748	struct r10conf *conf = mddev->private;
2749	struct list_head *head = &conf->retry_list;
2750	struct blk_plug plug;
2751
2752	md_check_recovery(mddev);
2753
2754	if (!list_empty_careful(&conf->bio_end_io_list) &&
2755	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2756		LIST_HEAD(tmp);
2757		spin_lock_irqsave(&conf->device_lock, flags);
2758		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2759			while (!list_empty(&conf->bio_end_io_list)) {
2760				list_move(conf->bio_end_io_list.prev, &tmp);
2761				conf->nr_queued--;
2762			}
2763		}
2764		spin_unlock_irqrestore(&conf->device_lock, flags);
2765		while (!list_empty(&tmp)) {
2766			r10_bio = list_first_entry(&tmp, struct r10bio,
2767						   retry_list);
2768			list_del(&r10_bio->retry_list);
2769			if (mddev->degraded)
2770				set_bit(R10BIO_Degraded, &r10_bio->state);
2771
2772			if (test_bit(R10BIO_WriteError,
2773				     &r10_bio->state))
2774				close_write(r10_bio);
2775			raid_end_bio_io(r10_bio);
2776		}
2777	}
2778
2779	blk_start_plug(&plug);
2780	for (;;) {
2781
2782		flush_pending_writes(conf);
2783
2784		spin_lock_irqsave(&conf->device_lock, flags);
2785		if (list_empty(head)) {
2786			spin_unlock_irqrestore(&conf->device_lock, flags);
2787			break;
2788		}
2789		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2790		list_del(head->prev);
2791		conf->nr_queued--;
2792		spin_unlock_irqrestore(&conf->device_lock, flags);
2793
2794		mddev = r10_bio->mddev;
2795		conf = mddev->private;
2796		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2797		    test_bit(R10BIO_WriteError, &r10_bio->state))
2798			handle_write_completed(conf, r10_bio);
2799		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2800			reshape_request_write(mddev, r10_bio);
2801		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2802			sync_request_write(mddev, r10_bio);
2803		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2804			recovery_request_write(mddev, r10_bio);
2805		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2806			handle_read_error(mddev, r10_bio);
2807		else
2808			WARN_ON_ONCE(1);
2809
2810		cond_resched();
2811		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2812			md_check_recovery(mddev);
2813	}
2814	blk_finish_plug(&plug);
2815}
2816
2817static int init_resync(struct r10conf *conf)
2818{
2819	int buffs;
2820	int i;
2821
2822	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2823	BUG_ON(conf->r10buf_pool);
2824	conf->have_replacement = 0;
2825	for (i = 0; i < conf->geo.raid_disks; i++)
2826		if (conf->mirrors[i].replacement)
2827			conf->have_replacement = 1;
2828	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2829	if (!conf->r10buf_pool)
2830		return -ENOMEM;
 
2831	conf->next_resync = 0;
2832	return 0;
2833}
2834
2835static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2836{
2837	struct r10bio *r10bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2838	struct rsync_pages *rp;
2839	struct bio *bio;
2840	int nalloc;
2841	int i;
2842
2843	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2844	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2845		nalloc = conf->copies; /* resync */
2846	else
2847		nalloc = 2; /* recovery */
2848
2849	for (i = 0; i < nalloc; i++) {
2850		bio = r10bio->devs[i].bio;
2851		rp = bio->bi_private;
2852		bio_reset(bio);
2853		bio->bi_private = rp;
2854		bio = r10bio->devs[i].repl_bio;
2855		if (bio) {
2856			rp = bio->bi_private;
2857			bio_reset(bio);
2858			bio->bi_private = rp;
2859		}
2860	}
2861	return r10bio;
2862}
2863
2864/*
2865 * Set cluster_sync_high since we need other nodes to add the
2866 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2867 */
2868static void raid10_set_cluster_sync_high(struct r10conf *conf)
2869{
2870	sector_t window_size;
2871	int extra_chunk, chunks;
2872
2873	/*
2874	 * First, here we define "stripe" as a unit which across
2875	 * all member devices one time, so we get chunks by use
2876	 * raid_disks / near_copies. Otherwise, if near_copies is
2877	 * close to raid_disks, then resync window could increases
2878	 * linearly with the increase of raid_disks, which means
2879	 * we will suspend a really large IO window while it is not
2880	 * necessary. If raid_disks is not divisible by near_copies,
2881	 * an extra chunk is needed to ensure the whole "stripe" is
2882	 * covered.
2883	 */
2884
2885	chunks = conf->geo.raid_disks / conf->geo.near_copies;
2886	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2887		extra_chunk = 0;
2888	else
2889		extra_chunk = 1;
2890	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2891
2892	/*
2893	 * At least use a 32M window to align with raid1's resync window
2894	 */
2895	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2896			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2897
2898	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2899}
2900
2901/*
2902 * perform a "sync" on one "block"
2903 *
2904 * We need to make sure that no normal I/O request - particularly write
2905 * requests - conflict with active sync requests.
2906 *
2907 * This is achieved by tracking pending requests and a 'barrier' concept
2908 * that can be installed to exclude normal IO requests.
2909 *
2910 * Resync and recovery are handled very differently.
2911 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2912 *
2913 * For resync, we iterate over virtual addresses, read all copies,
2914 * and update if there are differences.  If only one copy is live,
2915 * skip it.
2916 * For recovery, we iterate over physical addresses, read a good
2917 * value for each non-in_sync drive, and over-write.
2918 *
2919 * So, for recovery we may have several outstanding complex requests for a
2920 * given address, one for each out-of-sync device.  We model this by allocating
2921 * a number of r10_bio structures, one for each out-of-sync device.
2922 * As we setup these structures, we collect all bio's together into a list
2923 * which we then process collectively to add pages, and then process again
2924 * to pass to generic_make_request.
2925 *
2926 * The r10_bio structures are linked using a borrowed master_bio pointer.
2927 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2928 * has its remaining count decremented to 0, the whole complex operation
2929 * is complete.
2930 *
2931 */
2932
2933static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2934			     int *skipped)
2935{
2936	struct r10conf *conf = mddev->private;
2937	struct r10bio *r10_bio;
2938	struct bio *biolist = NULL, *bio;
2939	sector_t max_sector, nr_sectors;
2940	int i;
2941	int max_sync;
2942	sector_t sync_blocks;
2943	sector_t sectors_skipped = 0;
2944	int chunks_skipped = 0;
2945	sector_t chunk_mask = conf->geo.chunk_mask;
2946	int page_idx = 0;
2947
2948	if (!conf->r10buf_pool)
2949		if (init_resync(conf))
2950			return 0;
2951
2952	/*
2953	 * Allow skipping a full rebuild for incremental assembly
2954	 * of a clean array, like RAID1 does.
2955	 */
2956	if (mddev->bitmap == NULL &&
2957	    mddev->recovery_cp == MaxSector &&
2958	    mddev->reshape_position == MaxSector &&
2959	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2960	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2961	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2962	    conf->fullsync == 0) {
2963		*skipped = 1;
2964		return mddev->dev_sectors - sector_nr;
2965	}
2966
2967 skipped:
2968	max_sector = mddev->dev_sectors;
2969	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2970	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2971		max_sector = mddev->resync_max_sectors;
2972	if (sector_nr >= max_sector) {
2973		conf->cluster_sync_low = 0;
2974		conf->cluster_sync_high = 0;
2975
2976		/* If we aborted, we need to abort the
2977		 * sync on the 'current' bitmap chucks (there can
2978		 * be several when recovering multiple devices).
2979		 * as we may have started syncing it but not finished.
2980		 * We can find the current address in
2981		 * mddev->curr_resync, but for recovery,
2982		 * we need to convert that to several
2983		 * virtual addresses.
2984		 */
2985		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2986			end_reshape(conf);
2987			close_sync(conf);
2988			return 0;
2989		}
2990
2991		if (mddev->curr_resync < max_sector) { /* aborted */
2992			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2993				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2994						&sync_blocks, 1);
2995			else for (i = 0; i < conf->geo.raid_disks; i++) {
2996				sector_t sect =
2997					raid10_find_virt(conf, mddev->curr_resync, i);
2998				bitmap_end_sync(mddev->bitmap, sect,
2999						&sync_blocks, 1);
3000			}
3001		} else {
3002			/* completed sync */
3003			if ((!mddev->bitmap || conf->fullsync)
3004			    && conf->have_replacement
3005			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3006				/* Completed a full sync so the replacements
3007				 * are now fully recovered.
3008				 */
3009				rcu_read_lock();
3010				for (i = 0; i < conf->geo.raid_disks; i++) {
3011					struct md_rdev *rdev =
3012						rcu_dereference(conf->mirrors[i].replacement);
3013					if (rdev)
3014						rdev->recovery_offset = MaxSector;
3015				}
3016				rcu_read_unlock();
3017			}
3018			conf->fullsync = 0;
3019		}
3020		bitmap_close_sync(mddev->bitmap);
3021		close_sync(conf);
3022		*skipped = 1;
3023		return sectors_skipped;
3024	}
3025
3026	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3027		return reshape_request(mddev, sector_nr, skipped);
3028
3029	if (chunks_skipped >= conf->geo.raid_disks) {
3030		/* if there has been nothing to do on any drive,
3031		 * then there is nothing to do at all..
3032		 */
3033		*skipped = 1;
3034		return (max_sector - sector_nr) + sectors_skipped;
3035	}
3036
3037	if (max_sector > mddev->resync_max)
3038		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3039
3040	/* make sure whole request will fit in a chunk - if chunks
3041	 * are meaningful
3042	 */
3043	if (conf->geo.near_copies < conf->geo.raid_disks &&
3044	    max_sector > (sector_nr | chunk_mask))
3045		max_sector = (sector_nr | chunk_mask) + 1;
3046
3047	/*
3048	 * If there is non-resync activity waiting for a turn, then let it
3049	 * though before starting on this new sync request.
3050	 */
3051	if (conf->nr_waiting)
3052		schedule_timeout_uninterruptible(1);
3053
3054	/* Again, very different code for resync and recovery.
3055	 * Both must result in an r10bio with a list of bios that
3056	 * have bi_end_io, bi_sector, bi_disk set,
3057	 * and bi_private set to the r10bio.
3058	 * For recovery, we may actually create several r10bios
3059	 * with 2 bios in each, that correspond to the bios in the main one.
3060	 * In this case, the subordinate r10bios link back through a
3061	 * borrowed master_bio pointer, and the counter in the master
3062	 * includes a ref from each subordinate.
3063	 */
3064	/* First, we decide what to do and set ->bi_end_io
3065	 * To end_sync_read if we want to read, and
3066	 * end_sync_write if we will want to write.
3067	 */
3068
3069	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3070	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3071		/* recovery... the complicated one */
3072		int j;
3073		r10_bio = NULL;
3074
3075		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3076			int still_degraded;
3077			struct r10bio *rb2;
3078			sector_t sect;
3079			int must_sync;
3080			int any_working;
 
 
3081			struct raid10_info *mirror = &conf->mirrors[i];
3082			struct md_rdev *mrdev, *mreplace;
3083
3084			rcu_read_lock();
3085			mrdev = rcu_dereference(mirror->rdev);
3086			mreplace = rcu_dereference(mirror->replacement);
3087
3088			if ((mrdev == NULL ||
3089			     test_bit(Faulty, &mrdev->flags) ||
3090			     test_bit(In_sync, &mrdev->flags)) &&
3091			    (mreplace == NULL ||
3092			     test_bit(Faulty, &mreplace->flags))) {
 
 
 
 
3093				rcu_read_unlock();
3094				continue;
3095			}
3096
3097			still_degraded = 0;
3098			/* want to reconstruct this device */
3099			rb2 = r10_bio;
3100			sect = raid10_find_virt(conf, sector_nr, i);
3101			if (sect >= mddev->resync_max_sectors) {
3102				/* last stripe is not complete - don't
3103				 * try to recover this sector.
3104				 */
3105				rcu_read_unlock();
3106				continue;
3107			}
3108			if (mreplace && test_bit(Faulty, &mreplace->flags))
3109				mreplace = NULL;
3110			/* Unless we are doing a full sync, or a replacement
3111			 * we only need to recover the block if it is set in
3112			 * the bitmap
3113			 */
3114			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3115						      &sync_blocks, 1);
3116			if (sync_blocks < max_sync)
3117				max_sync = sync_blocks;
3118			if (!must_sync &&
3119			    mreplace == NULL &&
3120			    !conf->fullsync) {
3121				/* yep, skip the sync_blocks here, but don't assume
3122				 * that there will never be anything to do here
3123				 */
3124				chunks_skipped = -1;
3125				rcu_read_unlock();
3126				continue;
3127			}
3128			atomic_inc(&mrdev->nr_pending);
3129			if (mreplace)
3130				atomic_inc(&mreplace->nr_pending);
3131			rcu_read_unlock();
3132
3133			r10_bio = raid10_alloc_init_r10buf(conf);
3134			r10_bio->state = 0;
3135			raise_barrier(conf, rb2 != NULL);
3136			atomic_set(&r10_bio->remaining, 0);
3137
3138			r10_bio->master_bio = (struct bio*)rb2;
3139			if (rb2)
3140				atomic_inc(&rb2->remaining);
3141			r10_bio->mddev = mddev;
3142			set_bit(R10BIO_IsRecover, &r10_bio->state);
3143			r10_bio->sector = sect;
3144
3145			raid10_find_phys(conf, r10_bio);
3146
3147			/* Need to check if the array will still be
3148			 * degraded
3149			 */
3150			rcu_read_lock();
3151			for (j = 0; j < conf->geo.raid_disks; j++) {
3152				struct md_rdev *rdev = rcu_dereference(
3153					conf->mirrors[j].rdev);
3154				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3155					still_degraded = 1;
3156					break;
3157				}
3158			}
3159
3160			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3161						      &sync_blocks, still_degraded);
3162
3163			any_working = 0;
3164			for (j=0; j<conf->copies;j++) {
3165				int k;
3166				int d = r10_bio->devs[j].devnum;
3167				sector_t from_addr, to_addr;
3168				struct md_rdev *rdev =
3169					rcu_dereference(conf->mirrors[d].rdev);
3170				sector_t sector, first_bad;
3171				int bad_sectors;
3172				if (!rdev ||
3173				    !test_bit(In_sync, &rdev->flags))
3174					continue;
3175				/* This is where we read from */
3176				any_working = 1;
3177				sector = r10_bio->devs[j].addr;
3178
3179				if (is_badblock(rdev, sector, max_sync,
3180						&first_bad, &bad_sectors)) {
3181					if (first_bad > sector)
3182						max_sync = first_bad - sector;
3183					else {
3184						bad_sectors -= (sector
3185								- first_bad);
3186						if (max_sync > bad_sectors)
3187							max_sync = bad_sectors;
3188						continue;
3189					}
3190				}
3191				bio = r10_bio->devs[0].bio;
3192				bio->bi_next = biolist;
3193				biolist = bio;
3194				bio->bi_end_io = end_sync_read;
3195				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3196				if (test_bit(FailFast, &rdev->flags))
3197					bio->bi_opf |= MD_FAILFAST;
3198				from_addr = r10_bio->devs[j].addr;
3199				bio->bi_iter.bi_sector = from_addr +
3200					rdev->data_offset;
3201				bio_set_dev(bio, rdev->bdev);
3202				atomic_inc(&rdev->nr_pending);
3203				/* and we write to 'i' (if not in_sync) */
3204
3205				for (k=0; k<conf->copies; k++)
3206					if (r10_bio->devs[k].devnum == i)
3207						break;
3208				BUG_ON(k == conf->copies);
3209				to_addr = r10_bio->devs[k].addr;
3210				r10_bio->devs[0].devnum = d;
3211				r10_bio->devs[0].addr = from_addr;
3212				r10_bio->devs[1].devnum = i;
3213				r10_bio->devs[1].addr = to_addr;
3214
3215				if (!test_bit(In_sync, &mrdev->flags)) {
3216					bio = r10_bio->devs[1].bio;
3217					bio->bi_next = biolist;
3218					biolist = bio;
3219					bio->bi_end_io = end_sync_write;
3220					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3221					bio->bi_iter.bi_sector = to_addr
3222						+ mrdev->data_offset;
3223					bio_set_dev(bio, mrdev->bdev);
3224					atomic_inc(&r10_bio->remaining);
3225				} else
3226					r10_bio->devs[1].bio->bi_end_io = NULL;
3227
3228				/* and maybe write to replacement */
3229				bio = r10_bio->devs[1].repl_bio;
3230				if (bio)
3231					bio->bi_end_io = NULL;
3232				/* Note: if mreplace != NULL, then bio
3233				 * cannot be NULL as r10buf_pool_alloc will
3234				 * have allocated it.
3235				 * So the second test here is pointless.
3236				 * But it keeps semantic-checkers happy, and
3237				 * this comment keeps human reviewers
3238				 * happy.
3239				 */
3240				if (mreplace == NULL || bio == NULL ||
3241				    test_bit(Faulty, &mreplace->flags))
3242					break;
3243				bio->bi_next = biolist;
3244				biolist = bio;
3245				bio->bi_end_io = end_sync_write;
3246				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3247				bio->bi_iter.bi_sector = to_addr +
3248					mreplace->data_offset;
3249				bio_set_dev(bio, mreplace->bdev);
3250				atomic_inc(&r10_bio->remaining);
3251				break;
3252			}
3253			rcu_read_unlock();
3254			if (j == conf->copies) {
3255				/* Cannot recover, so abort the recovery or
3256				 * record a bad block */
3257				if (any_working) {
3258					/* problem is that there are bad blocks
3259					 * on other device(s)
3260					 */
3261					int k;
3262					for (k = 0; k < conf->copies; k++)
3263						if (r10_bio->devs[k].devnum == i)
3264							break;
3265					if (!test_bit(In_sync,
3266						      &mrdev->flags)
3267					    && !rdev_set_badblocks(
3268						    mrdev,
3269						    r10_bio->devs[k].addr,
3270						    max_sync, 0))
3271						any_working = 0;
3272					if (mreplace &&
3273					    !rdev_set_badblocks(
3274						    mreplace,
3275						    r10_bio->devs[k].addr,
3276						    max_sync, 0))
3277						any_working = 0;
3278				}
3279				if (!any_working)  {
3280					if (!test_and_set_bit(MD_RECOVERY_INTR,
3281							      &mddev->recovery))
3282						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3283						       mdname(mddev));
3284					mirror->recovery_disabled
3285						= mddev->recovery_disabled;
3286				}
3287				put_buf(r10_bio);
3288				if (rb2)
3289					atomic_dec(&rb2->remaining);
3290				r10_bio = rb2;
3291				rdev_dec_pending(mrdev, mddev);
3292				if (mreplace)
3293					rdev_dec_pending(mreplace, mddev);
3294				break;
3295			}
3296			rdev_dec_pending(mrdev, mddev);
3297			if (mreplace)
3298				rdev_dec_pending(mreplace, mddev);
3299			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3300				/* Only want this if there is elsewhere to
3301				 * read from. 'j' is currently the first
3302				 * readable copy.
3303				 */
3304				int targets = 1;
3305				for (; j < conf->copies; j++) {
3306					int d = r10_bio->devs[j].devnum;
3307					if (conf->mirrors[d].rdev &&
3308					    test_bit(In_sync,
3309						      &conf->mirrors[d].rdev->flags))
3310						targets++;
3311				}
3312				if (targets == 1)
3313					r10_bio->devs[0].bio->bi_opf
3314						&= ~MD_FAILFAST;
3315			}
3316		}
3317		if (biolist == NULL) {
3318			while (r10_bio) {
3319				struct r10bio *rb2 = r10_bio;
3320				r10_bio = (struct r10bio*) rb2->master_bio;
3321				rb2->master_bio = NULL;
3322				put_buf(rb2);
3323			}
3324			goto giveup;
3325		}
3326	} else {
3327		/* resync. Schedule a read for every block at this virt offset */
3328		int count = 0;
3329
3330		/*
3331		 * Since curr_resync_completed could probably not update in
3332		 * time, and we will set cluster_sync_low based on it.
3333		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3334		 * safety reason, which ensures curr_resync_completed is
3335		 * updated in bitmap_cond_end_sync.
3336		 */
3337		bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3338				     mddev_is_clustered(mddev) &&
3339				     (sector_nr + 2 * RESYNC_SECTORS >
3340				      conf->cluster_sync_high));
3341
3342		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3343				       &sync_blocks, mddev->degraded) &&
3344		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3345						 &mddev->recovery)) {
3346			/* We can skip this block */
3347			*skipped = 1;
3348			return sync_blocks + sectors_skipped;
3349		}
3350		if (sync_blocks < max_sync)
3351			max_sync = sync_blocks;
3352		r10_bio = raid10_alloc_init_r10buf(conf);
3353		r10_bio->state = 0;
3354
3355		r10_bio->mddev = mddev;
3356		atomic_set(&r10_bio->remaining, 0);
3357		raise_barrier(conf, 0);
3358		conf->next_resync = sector_nr;
3359
3360		r10_bio->master_bio = NULL;
3361		r10_bio->sector = sector_nr;
3362		set_bit(R10BIO_IsSync, &r10_bio->state);
3363		raid10_find_phys(conf, r10_bio);
3364		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3365
3366		for (i = 0; i < conf->copies; i++) {
3367			int d = r10_bio->devs[i].devnum;
3368			sector_t first_bad, sector;
3369			int bad_sectors;
3370			struct md_rdev *rdev;
3371
3372			if (r10_bio->devs[i].repl_bio)
3373				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3374
3375			bio = r10_bio->devs[i].bio;
3376			bio->bi_status = BLK_STS_IOERR;
3377			rcu_read_lock();
3378			rdev = rcu_dereference(conf->mirrors[d].rdev);
3379			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3380				rcu_read_unlock();
3381				continue;
3382			}
3383			sector = r10_bio->devs[i].addr;
3384			if (is_badblock(rdev, sector, max_sync,
3385					&first_bad, &bad_sectors)) {
3386				if (first_bad > sector)
3387					max_sync = first_bad - sector;
3388				else {
3389					bad_sectors -= (sector - first_bad);
3390					if (max_sync > bad_sectors)
3391						max_sync = bad_sectors;
3392					rcu_read_unlock();
3393					continue;
3394				}
3395			}
3396			atomic_inc(&rdev->nr_pending);
3397			atomic_inc(&r10_bio->remaining);
3398			bio->bi_next = biolist;
3399			biolist = bio;
3400			bio->bi_end_io = end_sync_read;
3401			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3402			if (test_bit(FailFast, &rdev->flags))
3403				bio->bi_opf |= MD_FAILFAST;
3404			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3405			bio_set_dev(bio, rdev->bdev);
3406			count++;
3407
3408			rdev = rcu_dereference(conf->mirrors[d].replacement);
3409			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3410				rcu_read_unlock();
3411				continue;
3412			}
3413			atomic_inc(&rdev->nr_pending);
3414
3415			/* Need to set up for writing to the replacement */
3416			bio = r10_bio->devs[i].repl_bio;
3417			bio->bi_status = BLK_STS_IOERR;
3418
3419			sector = r10_bio->devs[i].addr;
3420			bio->bi_next = biolist;
3421			biolist = bio;
3422			bio->bi_end_io = end_sync_write;
3423			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3424			if (test_bit(FailFast, &rdev->flags))
3425				bio->bi_opf |= MD_FAILFAST;
3426			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3427			bio_set_dev(bio, rdev->bdev);
3428			count++;
3429			rcu_read_unlock();
3430		}
3431
3432		if (count < 2) {
3433			for (i=0; i<conf->copies; i++) {
3434				int d = r10_bio->devs[i].devnum;
3435				if (r10_bio->devs[i].bio->bi_end_io)
3436					rdev_dec_pending(conf->mirrors[d].rdev,
3437							 mddev);
3438				if (r10_bio->devs[i].repl_bio &&
3439				    r10_bio->devs[i].repl_bio->bi_end_io)
3440					rdev_dec_pending(
3441						conf->mirrors[d].replacement,
3442						mddev);
3443			}
3444			put_buf(r10_bio);
3445			biolist = NULL;
3446			goto giveup;
3447		}
3448	}
3449
3450	nr_sectors = 0;
3451	if (sector_nr + max_sync < max_sector)
3452		max_sector = sector_nr + max_sync;
3453	do {
3454		struct page *page;
3455		int len = PAGE_SIZE;
3456		if (sector_nr + (len>>9) > max_sector)
3457			len = (max_sector - sector_nr) << 9;
3458		if (len == 0)
3459			break;
3460		for (bio= biolist ; bio ; bio=bio->bi_next) {
3461			struct resync_pages *rp = get_resync_pages(bio);
3462			page = resync_fetch_page(rp, page_idx);
3463			/*
3464			 * won't fail because the vec table is big enough
3465			 * to hold all these pages
3466			 */
3467			bio_add_page(bio, page, len, 0);
3468		}
3469		nr_sectors += len>>9;
3470		sector_nr += len>>9;
3471	} while (++page_idx < RESYNC_PAGES);
3472	r10_bio->sectors = nr_sectors;
3473
3474	if (mddev_is_clustered(mddev) &&
3475	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3476		/* It is resync not recovery */
3477		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3478			conf->cluster_sync_low = mddev->curr_resync_completed;
3479			raid10_set_cluster_sync_high(conf);
3480			/* Send resync message */
3481			md_cluster_ops->resync_info_update(mddev,
3482						conf->cluster_sync_low,
3483						conf->cluster_sync_high);
3484		}
3485	} else if (mddev_is_clustered(mddev)) {
3486		/* This is recovery not resync */
3487		sector_t sect_va1, sect_va2;
3488		bool broadcast_msg = false;
3489
3490		for (i = 0; i < conf->geo.raid_disks; i++) {
3491			/*
3492			 * sector_nr is a device address for recovery, so we
3493			 * need translate it to array address before compare
3494			 * with cluster_sync_high.
3495			 */
3496			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3497
3498			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3499				broadcast_msg = true;
3500				/*
3501				 * curr_resync_completed is similar as
3502				 * sector_nr, so make the translation too.
3503				 */
3504				sect_va2 = raid10_find_virt(conf,
3505					mddev->curr_resync_completed, i);
3506
3507				if (conf->cluster_sync_low == 0 ||
3508				    conf->cluster_sync_low > sect_va2)
3509					conf->cluster_sync_low = sect_va2;
3510			}
3511		}
3512		if (broadcast_msg) {
3513			raid10_set_cluster_sync_high(conf);
3514			md_cluster_ops->resync_info_update(mddev,
3515						conf->cluster_sync_low,
3516						conf->cluster_sync_high);
3517		}
3518	}
3519
3520	while (biolist) {
3521		bio = biolist;
3522		biolist = biolist->bi_next;
3523
3524		bio->bi_next = NULL;
3525		r10_bio = get_resync_r10bio(bio);
3526		r10_bio->sectors = nr_sectors;
3527
3528		if (bio->bi_end_io == end_sync_read) {
3529			md_sync_acct_bio(bio, nr_sectors);
3530			bio->bi_status = 0;
3531			generic_make_request(bio);
3532		}
3533	}
3534
3535	if (sectors_skipped)
3536		/* pretend they weren't skipped, it makes
3537		 * no important difference in this case
3538		 */
3539		md_done_sync(mddev, sectors_skipped, 1);
3540
3541	return sectors_skipped + nr_sectors;
3542 giveup:
3543	/* There is nowhere to write, so all non-sync
3544	 * drives must be failed or in resync, all drives
3545	 * have a bad block, so try the next chunk...
3546	 */
3547	if (sector_nr + max_sync < max_sector)
3548		max_sector = sector_nr + max_sync;
3549
3550	sectors_skipped += (max_sector - sector_nr);
3551	chunks_skipped ++;
3552	sector_nr = max_sector;
3553	goto skipped;
3554}
3555
3556static sector_t
3557raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3558{
3559	sector_t size;
3560	struct r10conf *conf = mddev->private;
3561
3562	if (!raid_disks)
3563		raid_disks = min(conf->geo.raid_disks,
3564				 conf->prev.raid_disks);
3565	if (!sectors)
3566		sectors = conf->dev_sectors;
3567
3568	size = sectors >> conf->geo.chunk_shift;
3569	sector_div(size, conf->geo.far_copies);
3570	size = size * raid_disks;
3571	sector_div(size, conf->geo.near_copies);
3572
3573	return size << conf->geo.chunk_shift;
3574}
3575
3576static void calc_sectors(struct r10conf *conf, sector_t size)
3577{
3578	/* Calculate the number of sectors-per-device that will
3579	 * actually be used, and set conf->dev_sectors and
3580	 * conf->stride
3581	 */
3582
3583	size = size >> conf->geo.chunk_shift;
3584	sector_div(size, conf->geo.far_copies);
3585	size = size * conf->geo.raid_disks;
3586	sector_div(size, conf->geo.near_copies);
3587	/* 'size' is now the number of chunks in the array */
3588	/* calculate "used chunks per device" */
3589	size = size * conf->copies;
3590
3591	/* We need to round up when dividing by raid_disks to
3592	 * get the stride size.
3593	 */
3594	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3595
3596	conf->dev_sectors = size << conf->geo.chunk_shift;
3597
3598	if (conf->geo.far_offset)
3599		conf->geo.stride = 1 << conf->geo.chunk_shift;
3600	else {
3601		sector_div(size, conf->geo.far_copies);
3602		conf->geo.stride = size << conf->geo.chunk_shift;
3603	}
3604}
3605
3606enum geo_type {geo_new, geo_old, geo_start};
3607static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3608{
3609	int nc, fc, fo;
3610	int layout, chunk, disks;
3611	switch (new) {
3612	case geo_old:
3613		layout = mddev->layout;
3614		chunk = mddev->chunk_sectors;
3615		disks = mddev->raid_disks - mddev->delta_disks;
3616		break;
3617	case geo_new:
3618		layout = mddev->new_layout;
3619		chunk = mddev->new_chunk_sectors;
3620		disks = mddev->raid_disks;
3621		break;
3622	default: /* avoid 'may be unused' warnings */
3623	case geo_start: /* new when starting reshape - raid_disks not
3624			 * updated yet. */
3625		layout = mddev->new_layout;
3626		chunk = mddev->new_chunk_sectors;
3627		disks = mddev->raid_disks + mddev->delta_disks;
3628		break;
3629	}
3630	if (layout >> 19)
3631		return -1;
3632	if (chunk < (PAGE_SIZE >> 9) ||
3633	    !is_power_of_2(chunk))
3634		return -2;
3635	nc = layout & 255;
3636	fc = (layout >> 8) & 255;
3637	fo = layout & (1<<16);
3638	geo->raid_disks = disks;
3639	geo->near_copies = nc;
3640	geo->far_copies = fc;
3641	geo->far_offset = fo;
3642	switch (layout >> 17) {
3643	case 0:	/* original layout.  simple but not always optimal */
3644		geo->far_set_size = disks;
3645		break;
3646	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3647		 * actually using this, but leave code here just in case.*/
3648		geo->far_set_size = disks/fc;
3649		WARN(geo->far_set_size < fc,
3650		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3651		break;
3652	case 2: /* "improved" layout fixed to match documentation */
3653		geo->far_set_size = fc * nc;
3654		break;
3655	default: /* Not a valid layout */
3656		return -1;
3657	}
3658	geo->chunk_mask = chunk - 1;
3659	geo->chunk_shift = ffz(~chunk);
3660	return nc*fc;
3661}
3662
3663static struct r10conf *setup_conf(struct mddev *mddev)
3664{
3665	struct r10conf *conf = NULL;
3666	int err = -EINVAL;
3667	struct geom geo;
3668	int copies;
3669
3670	copies = setup_geo(&geo, mddev, geo_new);
3671
3672	if (copies == -2) {
3673		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3674			mdname(mddev), PAGE_SIZE);
3675		goto out;
3676	}
3677
3678	if (copies < 2 || copies > mddev->raid_disks) {
3679		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3680			mdname(mddev), mddev->new_layout);
3681		goto out;
3682	}
3683
3684	err = -ENOMEM;
3685	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3686	if (!conf)
3687		goto out;
3688
3689	/* FIXME calc properly */
3690	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3691							    max(0,-mddev->delta_disks)),
3692				GFP_KERNEL);
3693	if (!conf->mirrors)
3694		goto out;
3695
3696	conf->tmppage = alloc_page(GFP_KERNEL);
3697	if (!conf->tmppage)
3698		goto out;
3699
3700	conf->geo = geo;
3701	conf->copies = copies;
3702	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3703					   r10bio_pool_free, conf);
3704	if (!conf->r10bio_pool)
3705		goto out;
3706
3707	conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
3708	if (!conf->bio_split)
3709		goto out;
3710
3711	calc_sectors(conf, mddev->dev_sectors);
3712	if (mddev->reshape_position == MaxSector) {
3713		conf->prev = conf->geo;
3714		conf->reshape_progress = MaxSector;
3715	} else {
3716		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3717			err = -EINVAL;
3718			goto out;
3719		}
3720		conf->reshape_progress = mddev->reshape_position;
3721		if (conf->prev.far_offset)
3722			conf->prev.stride = 1 << conf->prev.chunk_shift;
3723		else
3724			/* far_copies must be 1 */
3725			conf->prev.stride = conf->dev_sectors;
3726	}
3727	conf->reshape_safe = conf->reshape_progress;
3728	spin_lock_init(&conf->device_lock);
3729	INIT_LIST_HEAD(&conf->retry_list);
3730	INIT_LIST_HEAD(&conf->bio_end_io_list);
3731
3732	spin_lock_init(&conf->resync_lock);
3733	init_waitqueue_head(&conf->wait_barrier);
3734	atomic_set(&conf->nr_pending, 0);
3735
 
3736	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3737	if (!conf->thread)
3738		goto out;
3739
3740	conf->mddev = mddev;
3741	return conf;
3742
3743 out:
3744	if (conf) {
3745		mempool_destroy(conf->r10bio_pool);
3746		kfree(conf->mirrors);
3747		safe_put_page(conf->tmppage);
3748		if (conf->bio_split)
3749			bioset_free(conf->bio_split);
3750		kfree(conf);
3751	}
3752	return ERR_PTR(err);
3753}
3754
3755static int raid10_run(struct mddev *mddev)
3756{
3757	struct r10conf *conf;
3758	int i, disk_idx, chunk_size;
3759	struct raid10_info *disk;
3760	struct md_rdev *rdev;
3761	sector_t size;
3762	sector_t min_offset_diff = 0;
3763	int first = 1;
3764	bool discard_supported = false;
3765
3766	if (mddev_init_writes_pending(mddev) < 0)
3767		return -ENOMEM;
3768
3769	if (mddev->private == NULL) {
3770		conf = setup_conf(mddev);
3771		if (IS_ERR(conf))
3772			return PTR_ERR(conf);
3773		mddev->private = conf;
3774	}
3775	conf = mddev->private;
3776	if (!conf)
3777		goto out;
3778
3779	if (mddev_is_clustered(conf->mddev)) {
3780		int fc, fo;
3781
3782		fc = (mddev->layout >> 8) & 255;
3783		fo = mddev->layout & (1<<16);
3784		if (fc > 1 || fo > 0) {
3785			pr_err("only near layout is supported by clustered"
3786				" raid10\n");
3787			goto out_free_conf;
3788		}
3789	}
3790
3791	mddev->thread = conf->thread;
3792	conf->thread = NULL;
3793
3794	chunk_size = mddev->chunk_sectors << 9;
3795	if (mddev->queue) {
3796		blk_queue_max_discard_sectors(mddev->queue,
3797					      mddev->chunk_sectors);
3798		blk_queue_max_write_same_sectors(mddev->queue, 0);
3799		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3800		blk_queue_io_min(mddev->queue, chunk_size);
3801		if (conf->geo.raid_disks % conf->geo.near_copies)
3802			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3803		else
3804			blk_queue_io_opt(mddev->queue, chunk_size *
3805					 (conf->geo.raid_disks / conf->geo.near_copies));
3806	}
3807
3808	rdev_for_each(rdev, mddev) {
3809		long long diff;
3810
3811		disk_idx = rdev->raid_disk;
3812		if (disk_idx < 0)
3813			continue;
3814		if (disk_idx >= conf->geo.raid_disks &&
3815		    disk_idx >= conf->prev.raid_disks)
3816			continue;
3817		disk = conf->mirrors + disk_idx;
3818
3819		if (test_bit(Replacement, &rdev->flags)) {
3820			if (disk->replacement)
3821				goto out_free_conf;
3822			disk->replacement = rdev;
3823		} else {
3824			if (disk->rdev)
3825				goto out_free_conf;
3826			disk->rdev = rdev;
3827		}
3828		diff = (rdev->new_data_offset - rdev->data_offset);
3829		if (!mddev->reshape_backwards)
3830			diff = -diff;
3831		if (diff < 0)
3832			diff = 0;
3833		if (first || diff < min_offset_diff)
3834			min_offset_diff = diff;
3835
3836		if (mddev->gendisk)
3837			disk_stack_limits(mddev->gendisk, rdev->bdev,
3838					  rdev->data_offset << 9);
3839
3840		disk->head_position = 0;
3841
3842		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3843			discard_supported = true;
3844		first = 0;
3845	}
3846
3847	if (mddev->queue) {
3848		if (discard_supported)
3849			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3850						mddev->queue);
3851		else
3852			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3853						  mddev->queue);
3854	}
3855	/* need to check that every block has at least one working mirror */
3856	if (!enough(conf, -1)) {
3857		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3858		       mdname(mddev));
3859		goto out_free_conf;
3860	}
3861
3862	if (conf->reshape_progress != MaxSector) {
3863		/* must ensure that shape change is supported */
3864		if (conf->geo.far_copies != 1 &&
3865		    conf->geo.far_offset == 0)
3866			goto out_free_conf;
3867		if (conf->prev.far_copies != 1 &&
3868		    conf->prev.far_offset == 0)
3869			goto out_free_conf;
3870	}
3871
3872	mddev->degraded = 0;
3873	for (i = 0;
3874	     i < conf->geo.raid_disks
3875		     || i < conf->prev.raid_disks;
3876	     i++) {
3877
3878		disk = conf->mirrors + i;
3879
3880		if (!disk->rdev && disk->replacement) {
3881			/* The replacement is all we have - use it */
3882			disk->rdev = disk->replacement;
3883			disk->replacement = NULL;
3884			clear_bit(Replacement, &disk->rdev->flags);
3885		}
3886
3887		if (!disk->rdev ||
3888		    !test_bit(In_sync, &disk->rdev->flags)) {
3889			disk->head_position = 0;
3890			mddev->degraded++;
3891			if (disk->rdev &&
3892			    disk->rdev->saved_raid_disk < 0)
3893				conf->fullsync = 1;
3894		}
 
 
 
 
 
 
 
3895		disk->recovery_disabled = mddev->recovery_disabled - 1;
3896	}
3897
3898	if (mddev->recovery_cp != MaxSector)
3899		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3900			  mdname(mddev));
3901	pr_info("md/raid10:%s: active with %d out of %d devices\n",
3902		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3903		conf->geo.raid_disks);
3904	/*
3905	 * Ok, everything is just fine now
3906	 */
3907	mddev->dev_sectors = conf->dev_sectors;
3908	size = raid10_size(mddev, 0, 0);
3909	md_set_array_sectors(mddev, size);
3910	mddev->resync_max_sectors = size;
3911	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3912
3913	if (mddev->queue) {
3914		int stripe = conf->geo.raid_disks *
3915			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3916
3917		/* Calculate max read-ahead size.
3918		 * We need to readahead at least twice a whole stripe....
3919		 * maybe...
3920		 */
3921		stripe /= conf->geo.near_copies;
3922		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3923			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3924	}
3925
3926	if (md_integrity_register(mddev))
3927		goto out_free_conf;
3928
3929	if (conf->reshape_progress != MaxSector) {
3930		unsigned long before_length, after_length;
3931
3932		before_length = ((1 << conf->prev.chunk_shift) *
3933				 conf->prev.far_copies);
3934		after_length = ((1 << conf->geo.chunk_shift) *
3935				conf->geo.far_copies);
3936
3937		if (max(before_length, after_length) > min_offset_diff) {
3938			/* This cannot work */
3939			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3940			goto out_free_conf;
3941		}
3942		conf->offset_diff = min_offset_diff;
3943
3944		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3945		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3946		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3947		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3948		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3949							"reshape");
 
 
3950	}
3951
3952	return 0;
3953
3954out_free_conf:
3955	md_unregister_thread(&mddev->thread);
3956	mempool_destroy(conf->r10bio_pool);
3957	safe_put_page(conf->tmppage);
3958	kfree(conf->mirrors);
3959	kfree(conf);
3960	mddev->private = NULL;
3961out:
3962	return -EIO;
3963}
3964
3965static void raid10_free(struct mddev *mddev, void *priv)
3966{
3967	struct r10conf *conf = priv;
3968
3969	mempool_destroy(conf->r10bio_pool);
3970	safe_put_page(conf->tmppage);
3971	kfree(conf->mirrors);
3972	kfree(conf->mirrors_old);
3973	kfree(conf->mirrors_new);
3974	if (conf->bio_split)
3975		bioset_free(conf->bio_split);
3976	kfree(conf);
3977}
3978
3979static void raid10_quiesce(struct mddev *mddev, int quiesce)
3980{
3981	struct r10conf *conf = mddev->private;
3982
3983	if (quiesce)
3984		raise_barrier(conf, 0);
3985	else
3986		lower_barrier(conf);
3987}
3988
3989static int raid10_resize(struct mddev *mddev, sector_t sectors)
3990{
3991	/* Resize of 'far' arrays is not supported.
3992	 * For 'near' and 'offset' arrays we can set the
3993	 * number of sectors used to be an appropriate multiple
3994	 * of the chunk size.
3995	 * For 'offset', this is far_copies*chunksize.
3996	 * For 'near' the multiplier is the LCM of
3997	 * near_copies and raid_disks.
3998	 * So if far_copies > 1 && !far_offset, fail.
3999	 * Else find LCM(raid_disks, near_copy)*far_copies and
4000	 * multiply by chunk_size.  Then round to this number.
4001	 * This is mostly done by raid10_size()
4002	 */
4003	struct r10conf *conf = mddev->private;
4004	sector_t oldsize, size;
4005
4006	if (mddev->reshape_position != MaxSector)
4007		return -EBUSY;
4008
4009	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4010		return -EINVAL;
4011
4012	oldsize = raid10_size(mddev, 0, 0);
4013	size = raid10_size(mddev, sectors, 0);
4014	if (mddev->external_size &&
4015	    mddev->array_sectors > size)
4016		return -EINVAL;
4017	if (mddev->bitmap) {
4018		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
4019		if (ret)
4020			return ret;
4021	}
4022	md_set_array_sectors(mddev, size);
4023	if (sectors > mddev->dev_sectors &&
4024	    mddev->recovery_cp > oldsize) {
4025		mddev->recovery_cp = oldsize;
4026		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4027	}
4028	calc_sectors(conf, sectors);
4029	mddev->dev_sectors = conf->dev_sectors;
4030	mddev->resync_max_sectors = size;
4031	return 0;
4032}
4033
4034static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4035{
4036	struct md_rdev *rdev;
4037	struct r10conf *conf;
4038
4039	if (mddev->degraded > 0) {
4040		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4041			mdname(mddev));
4042		return ERR_PTR(-EINVAL);
4043	}
4044	sector_div(size, devs);
4045
4046	/* Set new parameters */
4047	mddev->new_level = 10;
4048	/* new layout: far_copies = 1, near_copies = 2 */
4049	mddev->new_layout = (1<<8) + 2;
4050	mddev->new_chunk_sectors = mddev->chunk_sectors;
4051	mddev->delta_disks = mddev->raid_disks;
4052	mddev->raid_disks *= 2;
4053	/* make sure it will be not marked as dirty */
4054	mddev->recovery_cp = MaxSector;
4055	mddev->dev_sectors = size;
4056
4057	conf = setup_conf(mddev);
4058	if (!IS_ERR(conf)) {
4059		rdev_for_each(rdev, mddev)
4060			if (rdev->raid_disk >= 0) {
4061				rdev->new_raid_disk = rdev->raid_disk * 2;
4062				rdev->sectors = size;
4063			}
4064		conf->barrier = 1;
4065	}
4066
4067	return conf;
4068}
4069
4070static void *raid10_takeover(struct mddev *mddev)
4071{
4072	struct r0conf *raid0_conf;
4073
4074	/* raid10 can take over:
4075	 *  raid0 - providing it has only two drives
4076	 */
4077	if (mddev->level == 0) {
4078		/* for raid0 takeover only one zone is supported */
4079		raid0_conf = mddev->private;
4080		if (raid0_conf->nr_strip_zones > 1) {
4081			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4082				mdname(mddev));
4083			return ERR_PTR(-EINVAL);
4084		}
4085		return raid10_takeover_raid0(mddev,
4086			raid0_conf->strip_zone->zone_end,
4087			raid0_conf->strip_zone->nb_dev);
4088	}
4089	return ERR_PTR(-EINVAL);
4090}
4091
4092static int raid10_check_reshape(struct mddev *mddev)
4093{
4094	/* Called when there is a request to change
4095	 * - layout (to ->new_layout)
4096	 * - chunk size (to ->new_chunk_sectors)
4097	 * - raid_disks (by delta_disks)
4098	 * or when trying to restart a reshape that was ongoing.
4099	 *
4100	 * We need to validate the request and possibly allocate
4101	 * space if that might be an issue later.
4102	 *
4103	 * Currently we reject any reshape of a 'far' mode array,
4104	 * allow chunk size to change if new is generally acceptable,
4105	 * allow raid_disks to increase, and allow
4106	 * a switch between 'near' mode and 'offset' mode.
4107	 */
4108	struct r10conf *conf = mddev->private;
4109	struct geom geo;
4110
4111	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4112		return -EINVAL;
4113
4114	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4115		/* mustn't change number of copies */
4116		return -EINVAL;
4117	if (geo.far_copies > 1 && !geo.far_offset)
4118		/* Cannot switch to 'far' mode */
4119		return -EINVAL;
4120
4121	if (mddev->array_sectors & geo.chunk_mask)
4122			/* not factor of array size */
4123			return -EINVAL;
4124
4125	if (!enough(conf, -1))
4126		return -EINVAL;
4127
4128	kfree(conf->mirrors_new);
4129	conf->mirrors_new = NULL;
4130	if (mddev->delta_disks > 0) {
4131		/* allocate new 'mirrors' list */
4132		conf->mirrors_new = kzalloc(
4133			sizeof(struct raid10_info)
4134			*(mddev->raid_disks +
4135			  mddev->delta_disks),
4136			GFP_KERNEL);
4137		if (!conf->mirrors_new)
4138			return -ENOMEM;
4139	}
4140	return 0;
4141}
4142
4143/*
4144 * Need to check if array has failed when deciding whether to:
4145 *  - start an array
4146 *  - remove non-faulty devices
4147 *  - add a spare
4148 *  - allow a reshape
4149 * This determination is simple when no reshape is happening.
4150 * However if there is a reshape, we need to carefully check
4151 * both the before and after sections.
4152 * This is because some failed devices may only affect one
4153 * of the two sections, and some non-in_sync devices may
4154 * be insync in the section most affected by failed devices.
4155 */
4156static int calc_degraded(struct r10conf *conf)
4157{
4158	int degraded, degraded2;
4159	int i;
4160
4161	rcu_read_lock();
4162	degraded = 0;
4163	/* 'prev' section first */
4164	for (i = 0; i < conf->prev.raid_disks; i++) {
4165		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4166		if (!rdev || test_bit(Faulty, &rdev->flags))
4167			degraded++;
4168		else if (!test_bit(In_sync, &rdev->flags))
4169			/* When we can reduce the number of devices in
4170			 * an array, this might not contribute to
4171			 * 'degraded'.  It does now.
4172			 */
4173			degraded++;
4174	}
4175	rcu_read_unlock();
4176	if (conf->geo.raid_disks == conf->prev.raid_disks)
4177		return degraded;
4178	rcu_read_lock();
4179	degraded2 = 0;
4180	for (i = 0; i < conf->geo.raid_disks; i++) {
4181		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4182		if (!rdev || test_bit(Faulty, &rdev->flags))
4183			degraded2++;
4184		else if (!test_bit(In_sync, &rdev->flags)) {
4185			/* If reshape is increasing the number of devices,
4186			 * this section has already been recovered, so
4187			 * it doesn't contribute to degraded.
4188			 * else it does.
4189			 */
4190			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4191				degraded2++;
4192		}
4193	}
4194	rcu_read_unlock();
4195	if (degraded2 > degraded)
4196		return degraded2;
4197	return degraded;
4198}
4199
4200static int raid10_start_reshape(struct mddev *mddev)
4201{
4202	/* A 'reshape' has been requested. This commits
4203	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4204	 * This also checks if there are enough spares and adds them
4205	 * to the array.
4206	 * We currently require enough spares to make the final
4207	 * array non-degraded.  We also require that the difference
4208	 * between old and new data_offset - on each device - is
4209	 * enough that we never risk over-writing.
4210	 */
4211
4212	unsigned long before_length, after_length;
4213	sector_t min_offset_diff = 0;
4214	int first = 1;
4215	struct geom new;
4216	struct r10conf *conf = mddev->private;
4217	struct md_rdev *rdev;
4218	int spares = 0;
4219	int ret;
4220
4221	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4222		return -EBUSY;
4223
4224	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4225		return -EINVAL;
4226
4227	before_length = ((1 << conf->prev.chunk_shift) *
4228			 conf->prev.far_copies);
4229	after_length = ((1 << conf->geo.chunk_shift) *
4230			conf->geo.far_copies);
4231
4232	rdev_for_each(rdev, mddev) {
4233		if (!test_bit(In_sync, &rdev->flags)
4234		    && !test_bit(Faulty, &rdev->flags))
4235			spares++;
4236		if (rdev->raid_disk >= 0) {
4237			long long diff = (rdev->new_data_offset
4238					  - rdev->data_offset);
4239			if (!mddev->reshape_backwards)
4240				diff = -diff;
4241			if (diff < 0)
4242				diff = 0;
4243			if (first || diff < min_offset_diff)
4244				min_offset_diff = diff;
4245			first = 0;
4246		}
4247	}
4248
4249	if (max(before_length, after_length) > min_offset_diff)
4250		return -EINVAL;
4251
4252	if (spares < mddev->delta_disks)
4253		return -EINVAL;
4254
4255	conf->offset_diff = min_offset_diff;
4256	spin_lock_irq(&conf->device_lock);
4257	if (conf->mirrors_new) {
4258		memcpy(conf->mirrors_new, conf->mirrors,
4259		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4260		smp_mb();
4261		kfree(conf->mirrors_old);
4262		conf->mirrors_old = conf->mirrors;
4263		conf->mirrors = conf->mirrors_new;
4264		conf->mirrors_new = NULL;
4265	}
4266	setup_geo(&conf->geo, mddev, geo_start);
4267	smp_mb();
4268	if (mddev->reshape_backwards) {
4269		sector_t size = raid10_size(mddev, 0, 0);
4270		if (size < mddev->array_sectors) {
4271			spin_unlock_irq(&conf->device_lock);
4272			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4273				mdname(mddev));
4274			return -EINVAL;
4275		}
4276		mddev->resync_max_sectors = size;
4277		conf->reshape_progress = size;
4278	} else
4279		conf->reshape_progress = 0;
4280	conf->reshape_safe = conf->reshape_progress;
4281	spin_unlock_irq(&conf->device_lock);
4282
4283	if (mddev->delta_disks && mddev->bitmap) {
4284		ret = bitmap_resize(mddev->bitmap,
4285				    raid10_size(mddev, 0,
4286						conf->geo.raid_disks),
4287				    0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4288		if (ret)
4289			goto abort;
 
 
 
 
 
 
4290	}
 
4291	if (mddev->delta_disks > 0) {
4292		rdev_for_each(rdev, mddev)
4293			if (rdev->raid_disk < 0 &&
4294			    !test_bit(Faulty, &rdev->flags)) {
4295				if (raid10_add_disk(mddev, rdev) == 0) {
4296					if (rdev->raid_disk >=
4297					    conf->prev.raid_disks)
4298						set_bit(In_sync, &rdev->flags);
4299					else
4300						rdev->recovery_offset = 0;
4301
4302					if (sysfs_link_rdev(mddev, rdev))
4303						/* Failure here  is OK */;
4304				}
4305			} else if (rdev->raid_disk >= conf->prev.raid_disks
4306				   && !test_bit(Faulty, &rdev->flags)) {
4307				/* This is a spare that was manually added */
4308				set_bit(In_sync, &rdev->flags);
4309			}
4310	}
4311	/* When a reshape changes the number of devices,
4312	 * ->degraded is measured against the larger of the
4313	 * pre and  post numbers.
4314	 */
4315	spin_lock_irq(&conf->device_lock);
4316	mddev->degraded = calc_degraded(conf);
4317	spin_unlock_irq(&conf->device_lock);
4318	mddev->raid_disks = conf->geo.raid_disks;
4319	mddev->reshape_position = conf->reshape_progress;
4320	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4321
4322	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4323	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4324	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4325	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4326	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4327
4328	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4329						"reshape");
4330	if (!mddev->sync_thread) {
4331		ret = -EAGAIN;
4332		goto abort;
4333	}
4334	conf->reshape_checkpoint = jiffies;
4335	md_wakeup_thread(mddev->sync_thread);
4336	md_new_event(mddev);
4337	return 0;
4338
4339abort:
4340	mddev->recovery = 0;
4341	spin_lock_irq(&conf->device_lock);
4342	conf->geo = conf->prev;
4343	mddev->raid_disks = conf->geo.raid_disks;
4344	rdev_for_each(rdev, mddev)
4345		rdev->new_data_offset = rdev->data_offset;
4346	smp_wmb();
4347	conf->reshape_progress = MaxSector;
4348	conf->reshape_safe = MaxSector;
4349	mddev->reshape_position = MaxSector;
4350	spin_unlock_irq(&conf->device_lock);
4351	return ret;
4352}
4353
4354/* Calculate the last device-address that could contain
4355 * any block from the chunk that includes the array-address 's'
4356 * and report the next address.
4357 * i.e. the address returned will be chunk-aligned and after
4358 * any data that is in the chunk containing 's'.
4359 */
4360static sector_t last_dev_address(sector_t s, struct geom *geo)
4361{
4362	s = (s | geo->chunk_mask) + 1;
4363	s >>= geo->chunk_shift;
4364	s *= geo->near_copies;
4365	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4366	s *= geo->far_copies;
4367	s <<= geo->chunk_shift;
4368	return s;
4369}
4370
4371/* Calculate the first device-address that could contain
4372 * any block from the chunk that includes the array-address 's'.
4373 * This too will be the start of a chunk
4374 */
4375static sector_t first_dev_address(sector_t s, struct geom *geo)
4376{
4377	s >>= geo->chunk_shift;
4378	s *= geo->near_copies;
4379	sector_div(s, geo->raid_disks);
4380	s *= geo->far_copies;
4381	s <<= geo->chunk_shift;
4382	return s;
4383}
4384
4385static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4386				int *skipped)
4387{
4388	/* We simply copy at most one chunk (smallest of old and new)
4389	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4390	 * or we hit a bad block or something.
4391	 * This might mean we pause for normal IO in the middle of
4392	 * a chunk, but that is not a problem as mddev->reshape_position
4393	 * can record any location.
4394	 *
4395	 * If we will want to write to a location that isn't
4396	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4397	 * we need to flush all reshape requests and update the metadata.
4398	 *
4399	 * When reshaping forwards (e.g. to more devices), we interpret
4400	 * 'safe' as the earliest block which might not have been copied
4401	 * down yet.  We divide this by previous stripe size and multiply
4402	 * by previous stripe length to get lowest device offset that we
4403	 * cannot write to yet.
4404	 * We interpret 'sector_nr' as an address that we want to write to.
4405	 * From this we use last_device_address() to find where we might
4406	 * write to, and first_device_address on the  'safe' position.
4407	 * If this 'next' write position is after the 'safe' position,
4408	 * we must update the metadata to increase the 'safe' position.
4409	 *
4410	 * When reshaping backwards, we round in the opposite direction
4411	 * and perform the reverse test:  next write position must not be
4412	 * less than current safe position.
4413	 *
4414	 * In all this the minimum difference in data offsets
4415	 * (conf->offset_diff - always positive) allows a bit of slack,
4416	 * so next can be after 'safe', but not by more than offset_diff
4417	 *
4418	 * We need to prepare all the bios here before we start any IO
4419	 * to ensure the size we choose is acceptable to all devices.
4420	 * The means one for each copy for write-out and an extra one for
4421	 * read-in.
4422	 * We store the read-in bio in ->master_bio and the others in
4423	 * ->devs[x].bio and ->devs[x].repl_bio.
4424	 */
4425	struct r10conf *conf = mddev->private;
4426	struct r10bio *r10_bio;
4427	sector_t next, safe, last;
4428	int max_sectors;
4429	int nr_sectors;
4430	int s;
4431	struct md_rdev *rdev;
4432	int need_flush = 0;
4433	struct bio *blist;
4434	struct bio *bio, *read_bio;
4435	int sectors_done = 0;
4436	struct page **pages;
4437
4438	if (sector_nr == 0) {
4439		/* If restarting in the middle, skip the initial sectors */
4440		if (mddev->reshape_backwards &&
4441		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4442			sector_nr = (raid10_size(mddev, 0, 0)
4443				     - conf->reshape_progress);
4444		} else if (!mddev->reshape_backwards &&
4445			   conf->reshape_progress > 0)
4446			sector_nr = conf->reshape_progress;
4447		if (sector_nr) {
4448			mddev->curr_resync_completed = sector_nr;
4449			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4450			*skipped = 1;
4451			return sector_nr;
4452		}
4453	}
4454
4455	/* We don't use sector_nr to track where we are up to
4456	 * as that doesn't work well for ->reshape_backwards.
4457	 * So just use ->reshape_progress.
4458	 */
4459	if (mddev->reshape_backwards) {
4460		/* 'next' is the earliest device address that we might
4461		 * write to for this chunk in the new layout
4462		 */
4463		next = first_dev_address(conf->reshape_progress - 1,
4464					 &conf->geo);
4465
4466		/* 'safe' is the last device address that we might read from
4467		 * in the old layout after a restart
4468		 */
4469		safe = last_dev_address(conf->reshape_safe - 1,
4470					&conf->prev);
4471
4472		if (next + conf->offset_diff < safe)
4473			need_flush = 1;
4474
4475		last = conf->reshape_progress - 1;
4476		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4477					       & conf->prev.chunk_mask);
4478		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4479			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4480	} else {
4481		/* 'next' is after the last device address that we
4482		 * might write to for this chunk in the new layout
4483		 */
4484		next = last_dev_address(conf->reshape_progress, &conf->geo);
4485
4486		/* 'safe' is the earliest device address that we might
4487		 * read from in the old layout after a restart
4488		 */
4489		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4490
4491		/* Need to update metadata if 'next' might be beyond 'safe'
4492		 * as that would possibly corrupt data
4493		 */
4494		if (next > safe + conf->offset_diff)
4495			need_flush = 1;
4496
4497		sector_nr = conf->reshape_progress;
4498		last  = sector_nr | (conf->geo.chunk_mask
4499				     & conf->prev.chunk_mask);
4500
4501		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4502			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4503	}
4504
4505	if (need_flush ||
4506	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4507		/* Need to update reshape_position in metadata */
4508		wait_barrier(conf);
4509		mddev->reshape_position = conf->reshape_progress;
4510		if (mddev->reshape_backwards)
4511			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4512				- conf->reshape_progress;
4513		else
4514			mddev->curr_resync_completed = conf->reshape_progress;
4515		conf->reshape_checkpoint = jiffies;
4516		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4517		md_wakeup_thread(mddev->thread);
4518		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4519			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4520		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4521			allow_barrier(conf);
4522			return sectors_done;
4523		}
4524		conf->reshape_safe = mddev->reshape_position;
4525		allow_barrier(conf);
4526	}
4527
 
4528read_more:
4529	/* Now schedule reads for blocks from sector_nr to last */
4530	r10_bio = raid10_alloc_init_r10buf(conf);
4531	r10_bio->state = 0;
4532	raise_barrier(conf, sectors_done != 0);
4533	atomic_set(&r10_bio->remaining, 0);
4534	r10_bio->mddev = mddev;
4535	r10_bio->sector = sector_nr;
4536	set_bit(R10BIO_IsReshape, &r10_bio->state);
4537	r10_bio->sectors = last - sector_nr + 1;
4538	rdev = read_balance(conf, r10_bio, &max_sectors);
4539	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4540
4541	if (!rdev) {
4542		/* Cannot read from here, so need to record bad blocks
4543		 * on all the target devices.
4544		 */
4545		// FIXME
4546		mempool_free(r10_bio, conf->r10buf_pool);
4547		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4548		return sectors_done;
4549	}
4550
4551	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4552
4553	bio_set_dev(read_bio, rdev->bdev);
4554	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4555			       + rdev->data_offset);
4556	read_bio->bi_private = r10_bio;
4557	read_bio->bi_end_io = end_reshape_read;
4558	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4559	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4560	read_bio->bi_status = 0;
4561	read_bio->bi_vcnt = 0;
4562	read_bio->bi_iter.bi_size = 0;
4563	r10_bio->master_bio = read_bio;
4564	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4566	/* Now find the locations in the new layout */
4567	__raid10_find_phys(&conf->geo, r10_bio);
4568
4569	blist = read_bio;
4570	read_bio->bi_next = NULL;
4571
4572	rcu_read_lock();
4573	for (s = 0; s < conf->copies*2; s++) {
4574		struct bio *b;
4575		int d = r10_bio->devs[s/2].devnum;
4576		struct md_rdev *rdev2;
4577		if (s&1) {
4578			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4579			b = r10_bio->devs[s/2].repl_bio;
4580		} else {
4581			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4582			b = r10_bio->devs[s/2].bio;
4583		}
4584		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4585			continue;
4586
4587		bio_set_dev(b, rdev2->bdev);
4588		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4589			rdev2->new_data_offset;
4590		b->bi_end_io = end_reshape_write;
4591		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4592		b->bi_next = blist;
4593		blist = b;
4594	}
4595
4596	/* Now add as many pages as possible to all of these bios. */
4597
4598	nr_sectors = 0;
4599	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4600	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4601		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4602		int len = (max_sectors - s) << 9;
4603		if (len > PAGE_SIZE)
4604			len = PAGE_SIZE;
4605		for (bio = blist; bio ; bio = bio->bi_next) {
4606			/*
4607			 * won't fail because the vec table is big enough
4608			 * to hold all these pages
4609			 */
4610			bio_add_page(bio, page, len, 0);
4611		}
4612		sector_nr += len >> 9;
4613		nr_sectors += len >> 9;
4614	}
4615	rcu_read_unlock();
4616	r10_bio->sectors = nr_sectors;
4617
4618	/* Now submit the read */
4619	md_sync_acct_bio(read_bio, r10_bio->sectors);
4620	atomic_inc(&r10_bio->remaining);
4621	read_bio->bi_next = NULL;
4622	generic_make_request(read_bio);
4623	sector_nr += nr_sectors;
4624	sectors_done += nr_sectors;
4625	if (sector_nr <= last)
4626		goto read_more;
4627
 
 
4628	/* Now that we have done the whole section we can
4629	 * update reshape_progress
4630	 */
4631	if (mddev->reshape_backwards)
4632		conf->reshape_progress -= sectors_done;
4633	else
4634		conf->reshape_progress += sectors_done;
4635
4636	return sectors_done;
4637}
4638
4639static void end_reshape_request(struct r10bio *r10_bio);
4640static int handle_reshape_read_error(struct mddev *mddev,
4641				     struct r10bio *r10_bio);
4642static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4643{
4644	/* Reshape read completed.  Hopefully we have a block
4645	 * to write out.
4646	 * If we got a read error then we do sync 1-page reads from
4647	 * elsewhere until we find the data - or give up.
4648	 */
4649	struct r10conf *conf = mddev->private;
4650	int s;
4651
4652	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4653		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4654			/* Reshape has been aborted */
4655			md_done_sync(mddev, r10_bio->sectors, 0);
4656			return;
4657		}
4658
4659	/* We definitely have the data in the pages, schedule the
4660	 * writes.
4661	 */
4662	atomic_set(&r10_bio->remaining, 1);
4663	for (s = 0; s < conf->copies*2; s++) {
4664		struct bio *b;
4665		int d = r10_bio->devs[s/2].devnum;
4666		struct md_rdev *rdev;
4667		rcu_read_lock();
4668		if (s&1) {
4669			rdev = rcu_dereference(conf->mirrors[d].replacement);
4670			b = r10_bio->devs[s/2].repl_bio;
4671		} else {
4672			rdev = rcu_dereference(conf->mirrors[d].rdev);
4673			b = r10_bio->devs[s/2].bio;
4674		}
4675		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4676			rcu_read_unlock();
4677			continue;
4678		}
4679		atomic_inc(&rdev->nr_pending);
4680		rcu_read_unlock();
4681		md_sync_acct_bio(b, r10_bio->sectors);
4682		atomic_inc(&r10_bio->remaining);
4683		b->bi_next = NULL;
4684		generic_make_request(b);
4685	}
4686	end_reshape_request(r10_bio);
4687}
4688
4689static void end_reshape(struct r10conf *conf)
4690{
4691	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4692		return;
4693
4694	spin_lock_irq(&conf->device_lock);
4695	conf->prev = conf->geo;
4696	md_finish_reshape(conf->mddev);
4697	smp_wmb();
4698	conf->reshape_progress = MaxSector;
4699	conf->reshape_safe = MaxSector;
4700	spin_unlock_irq(&conf->device_lock);
4701
4702	/* read-ahead size must cover two whole stripes, which is
4703	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4704	 */
4705	if (conf->mddev->queue) {
4706		int stripe = conf->geo.raid_disks *
4707			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4708		stripe /= conf->geo.near_copies;
4709		if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4710			conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4711	}
4712	conf->fullsync = 0;
4713}
4714
 
 
 
 
 
 
 
 
 
 
 
 
 
4715static int handle_reshape_read_error(struct mddev *mddev,
4716				     struct r10bio *r10_bio)
4717{
4718	/* Use sync reads to get the blocks from somewhere else */
4719	int sectors = r10_bio->sectors;
4720	struct r10conf *conf = mddev->private;
4721	struct r10bio *r10b;
4722	int slot = 0;
4723	int idx = 0;
4724	struct page **pages;
4725
4726	r10b = kmalloc(sizeof(*r10b) +
4727	       sizeof(struct r10dev) * conf->copies, GFP_NOIO);
4728	if (!r10b) {
4729		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4730		return -ENOMEM;
4731	}
4732
4733	/* reshape IOs share pages from .devs[0].bio */
4734	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4735
4736	r10b->sector = r10_bio->sector;
4737	__raid10_find_phys(&conf->prev, r10b);
4738
4739	while (sectors) {
4740		int s = sectors;
4741		int success = 0;
4742		int first_slot = slot;
4743
4744		if (s > (PAGE_SIZE >> 9))
4745			s = PAGE_SIZE >> 9;
4746
4747		rcu_read_lock();
4748		while (!success) {
4749			int d = r10b->devs[slot].devnum;
4750			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4751			sector_t addr;
4752			if (rdev == NULL ||
4753			    test_bit(Faulty, &rdev->flags) ||
4754			    !test_bit(In_sync, &rdev->flags))
4755				goto failed;
4756
4757			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4758			atomic_inc(&rdev->nr_pending);
4759			rcu_read_unlock();
4760			success = sync_page_io(rdev,
4761					       addr,
4762					       s << 9,
4763					       pages[idx],
4764					       REQ_OP_READ, 0, false);
4765			rdev_dec_pending(rdev, mddev);
4766			rcu_read_lock();
4767			if (success)
4768				break;
4769		failed:
4770			slot++;
4771			if (slot >= conf->copies)
4772				slot = 0;
4773			if (slot == first_slot)
4774				break;
4775		}
4776		rcu_read_unlock();
4777		if (!success) {
4778			/* couldn't read this block, must give up */
4779			set_bit(MD_RECOVERY_INTR,
4780				&mddev->recovery);
4781			kfree(r10b);
4782			return -EIO;
4783		}
4784		sectors -= s;
4785		idx++;
4786	}
4787	kfree(r10b);
4788	return 0;
4789}
4790
4791static void end_reshape_write(struct bio *bio)
4792{
4793	struct r10bio *r10_bio = get_resync_r10bio(bio);
4794	struct mddev *mddev = r10_bio->mddev;
4795	struct r10conf *conf = mddev->private;
4796	int d;
4797	int slot;
4798	int repl;
4799	struct md_rdev *rdev = NULL;
4800
4801	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4802	if (repl)
4803		rdev = conf->mirrors[d].replacement;
4804	if (!rdev) {
4805		smp_mb();
4806		rdev = conf->mirrors[d].rdev;
4807	}
4808
4809	if (bio->bi_status) {
4810		/* FIXME should record badblock */
4811		md_error(mddev, rdev);
4812	}
4813
4814	rdev_dec_pending(rdev, mddev);
4815	end_reshape_request(r10_bio);
4816}
4817
4818static void end_reshape_request(struct r10bio *r10_bio)
4819{
4820	if (!atomic_dec_and_test(&r10_bio->remaining))
4821		return;
4822	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4823	bio_put(r10_bio->master_bio);
4824	put_buf(r10_bio);
4825}
4826
4827static void raid10_finish_reshape(struct mddev *mddev)
4828{
4829	struct r10conf *conf = mddev->private;
4830
4831	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4832		return;
4833
4834	if (mddev->delta_disks > 0) {
4835		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4836			mddev->recovery_cp = mddev->resync_max_sectors;
4837			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4838		}
4839		mddev->resync_max_sectors = mddev->array_sectors;
4840	} else {
4841		int d;
4842		rcu_read_lock();
4843		for (d = conf->geo.raid_disks ;
4844		     d < conf->geo.raid_disks - mddev->delta_disks;
4845		     d++) {
4846			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4847			if (rdev)
4848				clear_bit(In_sync, &rdev->flags);
4849			rdev = rcu_dereference(conf->mirrors[d].replacement);
4850			if (rdev)
4851				clear_bit(In_sync, &rdev->flags);
4852		}
4853		rcu_read_unlock();
4854	}
4855	mddev->layout = mddev->new_layout;
4856	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4857	mddev->reshape_position = MaxSector;
4858	mddev->delta_disks = 0;
4859	mddev->reshape_backwards = 0;
4860}
4861
4862static struct md_personality raid10_personality =
4863{
4864	.name		= "raid10",
4865	.level		= 10,
4866	.owner		= THIS_MODULE,
4867	.make_request	= raid10_make_request,
4868	.run		= raid10_run,
4869	.free		= raid10_free,
4870	.status		= raid10_status,
4871	.error_handler	= raid10_error,
4872	.hot_add_disk	= raid10_add_disk,
4873	.hot_remove_disk= raid10_remove_disk,
4874	.spare_active	= raid10_spare_active,
4875	.sync_request	= raid10_sync_request,
4876	.quiesce	= raid10_quiesce,
4877	.size		= raid10_size,
4878	.resize		= raid10_resize,
4879	.takeover	= raid10_takeover,
4880	.check_reshape	= raid10_check_reshape,
4881	.start_reshape	= raid10_start_reshape,
4882	.finish_reshape	= raid10_finish_reshape,
 
4883	.congested	= raid10_congested,
4884};
4885
4886static int __init raid_init(void)
4887{
4888	return register_md_personality(&raid10_personality);
4889}
4890
4891static void raid_exit(void)
4892{
4893	unregister_md_personality(&raid10_personality);
4894}
4895
4896module_init(raid_init);
4897module_exit(raid_exit);
4898MODULE_LICENSE("GPL");
4899MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4900MODULE_ALIAS("md-personality-9"); /* RAID10 */
4901MODULE_ALIAS("md-raid10");
4902MODULE_ALIAS("md-level-10");
4903
4904module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);