Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 *  Copyright (C) 1995  Linus Torvalds
  3 *
  4 *  Pentium III FXSR, SSE support
  5 *	Gareth Hughes <gareth@valinux.com>, May 2000
  6 */
  7
  8/*
  9 * This file handles the architecture-dependent parts of process handling..
 10 */
 11
 12#include <linux/cpu.h>
 13#include <linux/errno.h>
 14#include <linux/sched.h>
 15#include <linux/sched/task.h>
 16#include <linux/sched/task_stack.h>
 17#include <linux/fs.h>
 18#include <linux/kernel.h>
 19#include <linux/mm.h>
 20#include <linux/elfcore.h>
 21#include <linux/smp.h>
 22#include <linux/stddef.h>
 23#include <linux/slab.h>
 24#include <linux/vmalloc.h>
 25#include <linux/user.h>
 26#include <linux/interrupt.h>
 27#include <linux/delay.h>
 28#include <linux/reboot.h>
 29#include <linux/mc146818rtc.h>
 30#include <linux/export.h>
 31#include <linux/kallsyms.h>
 32#include <linux/ptrace.h>
 33#include <linux/personality.h>
 34#include <linux/percpu.h>
 35#include <linux/prctl.h>
 36#include <linux/ftrace.h>
 37#include <linux/uaccess.h>
 38#include <linux/io.h>
 39#include <linux/kdebug.h>
 40#include <linux/syscalls.h>
 41
 42#include <asm/pgtable.h>
 43#include <asm/ldt.h>
 44#include <asm/processor.h>
 45#include <asm/fpu/internal.h>
 46#include <asm/desc.h>
 
 
 
 47
 48#include <linux/err.h>
 49
 50#include <asm/tlbflush.h>
 51#include <asm/cpu.h>
 52#include <asm/syscalls.h>
 53#include <asm/debugreg.h>
 54#include <asm/switch_to.h>
 55#include <asm/vm86.h>
 56#include <asm/resctrl_sched.h>
 57#include <asm/proto.h>
 58
 59#include "process.h"
 60
 61void __show_regs(struct pt_regs *regs, enum show_regs_mode mode)
 62{
 63	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
 64	unsigned long d0, d1, d2, d3, d6, d7;
 65	unsigned short gs;
 
 66
 67	if (user_mode(regs))
 
 
 68		gs = get_user_gs(regs);
 69	else
 
 
 70		savesegment(gs, gs);
 
 71
 72	show_ip(regs, KERN_DEFAULT);
 
 
 73
 74	printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
 75		regs->ax, regs->bx, regs->cx, regs->dx);
 76	printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
 77		regs->si, regs->di, regs->bp, regs->sp);
 78	printk(KERN_DEFAULT "DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x EFLAGS: %08lx\n",
 79	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, regs->ss, regs->flags);
 80
 81	if (mode != SHOW_REGS_ALL)
 82		return;
 83
 84	cr0 = read_cr0();
 85	cr2 = read_cr2();
 86	cr3 = __read_cr3();
 87	cr4 = __read_cr4();
 88	printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
 89			cr0, cr2, cr3, cr4);
 90
 91	get_debugreg(d0, 0);
 92	get_debugreg(d1, 1);
 93	get_debugreg(d2, 2);
 94	get_debugreg(d3, 3);
 95	get_debugreg(d6, 6);
 96	get_debugreg(d7, 7);
 97
 98	/* Only print out debug registers if they are in their non-default state. */
 99	if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
100	    (d6 == DR6_RESERVED) && (d7 == 0x400))
101		return;
102
103	printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
104			d0, d1, d2, d3);
105	printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
106			d6, d7);
107}
108
109void release_thread(struct task_struct *dead_task)
110{
111	BUG_ON(dead_task->mm);
112	release_vm86_irqs(dead_task);
113}
114
115int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
116	unsigned long arg, struct task_struct *p, unsigned long tls)
117{
118	struct pt_regs *childregs = task_pt_regs(p);
119	struct fork_frame *fork_frame = container_of(childregs, struct fork_frame, regs);
120	struct inactive_task_frame *frame = &fork_frame->frame;
121	struct task_struct *tsk;
122	int err;
123
124	/*
125	 * For a new task use the RESET flags value since there is no before.
126	 * All the status flags are zero; DF and all the system flags must also
127	 * be 0, specifically IF must be 0 because we context switch to the new
128	 * task with interrupts disabled.
129	 */
130	frame->flags = X86_EFLAGS_FIXED;
131	frame->bp = 0;
132	frame->ret_addr = (unsigned long) ret_from_fork;
133	p->thread.sp = (unsigned long) fork_frame;
134	p->thread.sp0 = (unsigned long) (childregs+1);
135	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
136
137	if (unlikely(p->flags & PF_KTHREAD)) {
138		/* kernel thread */
139		memset(childregs, 0, sizeof(struct pt_regs));
140		frame->bx = sp;		/* function */
141		frame->di = arg;
142		p->thread.io_bitmap_ptr = NULL;
143		return 0;
144	}
145	frame->bx = 0;
146	*childregs = *current_pt_regs();
147	childregs->ax = 0;
148	if (sp)
149		childregs->sp = sp;
150
151	task_user_gs(p) = get_user_gs(current_pt_regs());
152
153	p->thread.io_bitmap_ptr = NULL;
154	tsk = current;
155	err = -ENOMEM;
156
157	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
158		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
159						IO_BITMAP_BYTES, GFP_KERNEL);
160		if (!p->thread.io_bitmap_ptr) {
161			p->thread.io_bitmap_max = 0;
162			return -ENOMEM;
163		}
164		set_tsk_thread_flag(p, TIF_IO_BITMAP);
165	}
166
167	err = 0;
168
169	/*
170	 * Set a new TLS for the child thread?
171	 */
172	if (clone_flags & CLONE_SETTLS)
173		err = do_set_thread_area(p, -1,
174			(struct user_desc __user *)tls, 0);
175
176	if (err && p->thread.io_bitmap_ptr) {
177		kfree(p->thread.io_bitmap_ptr);
178		p->thread.io_bitmap_max = 0;
179	}
180	return err;
181}
182
183void
184start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
185{
186	set_user_gs(regs, 0);
187	regs->fs		= 0;
188	regs->ds		= __USER_DS;
189	regs->es		= __USER_DS;
190	regs->ss		= __USER_DS;
191	regs->cs		= __USER_CS;
192	regs->ip		= new_ip;
193	regs->sp		= new_sp;
194	regs->flags		= X86_EFLAGS_IF;
195	force_iret();
196}
197EXPORT_SYMBOL_GPL(start_thread);
198
199
200/*
201 *	switch_to(x,y) should switch tasks from x to y.
202 *
203 * We fsave/fwait so that an exception goes off at the right time
204 * (as a call from the fsave or fwait in effect) rather than to
205 * the wrong process. Lazy FP saving no longer makes any sense
206 * with modern CPU's, and this simplifies a lot of things (SMP
207 * and UP become the same).
208 *
209 * NOTE! We used to use the x86 hardware context switching. The
210 * reason for not using it any more becomes apparent when you
211 * try to recover gracefully from saved state that is no longer
212 * valid (stale segment register values in particular). With the
213 * hardware task-switch, there is no way to fix up bad state in
214 * a reasonable manner.
215 *
216 * The fact that Intel documents the hardware task-switching to
217 * be slow is a fairly red herring - this code is not noticeably
218 * faster. However, there _is_ some room for improvement here,
219 * so the performance issues may eventually be a valid point.
220 * More important, however, is the fact that this allows us much
221 * more flexibility.
222 *
223 * The return value (in %ax) will be the "prev" task after
224 * the task-switch, and shows up in ret_from_fork in entry.S,
225 * for example.
226 */
227__visible __notrace_funcgraph struct task_struct *
228__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
229{
230	struct thread_struct *prev = &prev_p->thread,
231			     *next = &next_p->thread;
232	struct fpu *prev_fpu = &prev->fpu;
233	struct fpu *next_fpu = &next->fpu;
234	int cpu = smp_processor_id();
 
235
236	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
237
238	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
239		switch_fpu_prepare(prev_fpu, cpu);
240
241	/*
242	 * Save away %gs. No need to save %fs, as it was saved on the
243	 * stack on entry.  No need to save %es and %ds, as those are
244	 * always kernel segments while inside the kernel.  Doing this
245	 * before setting the new TLS descriptors avoids the situation
246	 * where we temporarily have non-reloadable segments in %fs
247	 * and %gs.  This could be an issue if the NMI handler ever
248	 * used %fs or %gs (it does not today), or if the kernel is
249	 * running inside of a hypervisor layer.
250	 */
251	lazy_save_gs(prev->gs);
252
253	/*
254	 * Load the per-thread Thread-Local Storage descriptor.
255	 */
256	load_TLS(next, cpu);
257
258	/*
259	 * Restore IOPL if needed.  In normal use, the flags restore
260	 * in the switch assembly will handle this.  But if the kernel
261	 * is running virtualized at a non-zero CPL, the popf will
262	 * not restore flags, so it must be done in a separate step.
263	 */
264	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
265		set_iopl_mask(next->iopl);
266
267	switch_to_extra(prev_p, next_p);
 
 
 
 
 
268
269	/*
270	 * Leave lazy mode, flushing any hypercalls made here.
271	 * This must be done before restoring TLS segments so
272	 * the GDT and LDT are properly updated.
 
 
273	 */
274	arch_end_context_switch(next_p);
275
276	/*
277	 * Reload esp0 and cpu_current_top_of_stack.  This changes
278	 * current_thread_info().  Refresh the SYSENTER configuration in
279	 * case prev or next is vm86.
280	 */
281	update_task_stack(next_p);
282	refresh_sysenter_cs(next);
283	this_cpu_write(cpu_current_top_of_stack,
284		       (unsigned long)task_stack_page(next_p) +
285		       THREAD_SIZE);
286
287	/*
288	 * Restore %gs if needed (which is common)
289	 */
290	if (prev->gs | next->gs)
291		lazy_load_gs(next->gs);
292
293	this_cpu_write(current_task, next_p);
294
295	switch_fpu_finish(next_fpu);
296
297	/* Load the Intel cache allocation PQR MSR. */
298	resctrl_sched_in();
299
300	return prev_p;
301}
302
303SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
304{
305	return do_arch_prctl_common(current, option, arg2);
306}
v4.17
  1/*
  2 *  Copyright (C) 1995  Linus Torvalds
  3 *
  4 *  Pentium III FXSR, SSE support
  5 *	Gareth Hughes <gareth@valinux.com>, May 2000
  6 */
  7
  8/*
  9 * This file handles the architecture-dependent parts of process handling..
 10 */
 11
 12#include <linux/cpu.h>
 13#include <linux/errno.h>
 14#include <linux/sched.h>
 15#include <linux/sched/task.h>
 16#include <linux/sched/task_stack.h>
 17#include <linux/fs.h>
 18#include <linux/kernel.h>
 19#include <linux/mm.h>
 20#include <linux/elfcore.h>
 21#include <linux/smp.h>
 22#include <linux/stddef.h>
 23#include <linux/slab.h>
 24#include <linux/vmalloc.h>
 25#include <linux/user.h>
 26#include <linux/interrupt.h>
 27#include <linux/delay.h>
 28#include <linux/reboot.h>
 29#include <linux/mc146818rtc.h>
 30#include <linux/export.h>
 31#include <linux/kallsyms.h>
 32#include <linux/ptrace.h>
 33#include <linux/personality.h>
 34#include <linux/percpu.h>
 35#include <linux/prctl.h>
 36#include <linux/ftrace.h>
 37#include <linux/uaccess.h>
 38#include <linux/io.h>
 39#include <linux/kdebug.h>
 40#include <linux/syscalls.h>
 41
 42#include <asm/pgtable.h>
 43#include <asm/ldt.h>
 44#include <asm/processor.h>
 45#include <asm/fpu/internal.h>
 46#include <asm/desc.h>
 47#ifdef CONFIG_MATH_EMULATION
 48#include <asm/math_emu.h>
 49#endif
 50
 51#include <linux/err.h>
 52
 53#include <asm/tlbflush.h>
 54#include <asm/cpu.h>
 55#include <asm/syscalls.h>
 56#include <asm/debugreg.h>
 57#include <asm/switch_to.h>
 58#include <asm/vm86.h>
 59#include <asm/intel_rdt_sched.h>
 60#include <asm/proto.h>
 61
 62void __show_regs(struct pt_regs *regs, int all)
 
 
 63{
 64	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
 65	unsigned long d0, d1, d2, d3, d6, d7;
 66	unsigned long sp;
 67	unsigned short ss, gs;
 68
 69	if (user_mode(regs)) {
 70		sp = regs->sp;
 71		ss = regs->ss;
 72		gs = get_user_gs(regs);
 73	} else {
 74		sp = kernel_stack_pointer(regs);
 75		savesegment(ss, ss);
 76		savesegment(gs, gs);
 77	}
 78
 79	printk(KERN_DEFAULT "EIP: %pS\n", (void *)regs->ip);
 80	printk(KERN_DEFAULT "EFLAGS: %08lx CPU: %d\n", regs->flags,
 81		raw_smp_processor_id());
 82
 83	printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
 84		regs->ax, regs->bx, regs->cx, regs->dx);
 85	printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
 86		regs->si, regs->di, regs->bp, sp);
 87	printk(KERN_DEFAULT " DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
 88	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
 89
 90	if (!all)
 91		return;
 92
 93	cr0 = read_cr0();
 94	cr2 = read_cr2();
 95	cr3 = __read_cr3();
 96	cr4 = __read_cr4();
 97	printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
 98			cr0, cr2, cr3, cr4);
 99
100	get_debugreg(d0, 0);
101	get_debugreg(d1, 1);
102	get_debugreg(d2, 2);
103	get_debugreg(d3, 3);
104	get_debugreg(d6, 6);
105	get_debugreg(d7, 7);
106
107	/* Only print out debug registers if they are in their non-default state. */
108	if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
109	    (d6 == DR6_RESERVED) && (d7 == 0x400))
110		return;
111
112	printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
113			d0, d1, d2, d3);
114	printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
115			d6, d7);
116}
117
118void release_thread(struct task_struct *dead_task)
119{
120	BUG_ON(dead_task->mm);
121	release_vm86_irqs(dead_task);
122}
123
124int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
125	unsigned long arg, struct task_struct *p, unsigned long tls)
126{
127	struct pt_regs *childregs = task_pt_regs(p);
128	struct fork_frame *fork_frame = container_of(childregs, struct fork_frame, regs);
129	struct inactive_task_frame *frame = &fork_frame->frame;
130	struct task_struct *tsk;
131	int err;
132
 
 
 
 
 
 
 
133	frame->bp = 0;
134	frame->ret_addr = (unsigned long) ret_from_fork;
135	p->thread.sp = (unsigned long) fork_frame;
136	p->thread.sp0 = (unsigned long) (childregs+1);
137	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
138
139	if (unlikely(p->flags & PF_KTHREAD)) {
140		/* kernel thread */
141		memset(childregs, 0, sizeof(struct pt_regs));
142		frame->bx = sp;		/* function */
143		frame->di = arg;
144		p->thread.io_bitmap_ptr = NULL;
145		return 0;
146	}
147	frame->bx = 0;
148	*childregs = *current_pt_regs();
149	childregs->ax = 0;
150	if (sp)
151		childregs->sp = sp;
152
153	task_user_gs(p) = get_user_gs(current_pt_regs());
154
155	p->thread.io_bitmap_ptr = NULL;
156	tsk = current;
157	err = -ENOMEM;
158
159	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
160		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
161						IO_BITMAP_BYTES, GFP_KERNEL);
162		if (!p->thread.io_bitmap_ptr) {
163			p->thread.io_bitmap_max = 0;
164			return -ENOMEM;
165		}
166		set_tsk_thread_flag(p, TIF_IO_BITMAP);
167	}
168
169	err = 0;
170
171	/*
172	 * Set a new TLS for the child thread?
173	 */
174	if (clone_flags & CLONE_SETTLS)
175		err = do_set_thread_area(p, -1,
176			(struct user_desc __user *)tls, 0);
177
178	if (err && p->thread.io_bitmap_ptr) {
179		kfree(p->thread.io_bitmap_ptr);
180		p->thread.io_bitmap_max = 0;
181	}
182	return err;
183}
184
185void
186start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
187{
188	set_user_gs(regs, 0);
189	regs->fs		= 0;
190	regs->ds		= __USER_DS;
191	regs->es		= __USER_DS;
192	regs->ss		= __USER_DS;
193	regs->cs		= __USER_CS;
194	regs->ip		= new_ip;
195	regs->sp		= new_sp;
196	regs->flags		= X86_EFLAGS_IF;
197	force_iret();
198}
199EXPORT_SYMBOL_GPL(start_thread);
200
201
202/*
203 *	switch_to(x,y) should switch tasks from x to y.
204 *
205 * We fsave/fwait so that an exception goes off at the right time
206 * (as a call from the fsave or fwait in effect) rather than to
207 * the wrong process. Lazy FP saving no longer makes any sense
208 * with modern CPU's, and this simplifies a lot of things (SMP
209 * and UP become the same).
210 *
211 * NOTE! We used to use the x86 hardware context switching. The
212 * reason for not using it any more becomes apparent when you
213 * try to recover gracefully from saved state that is no longer
214 * valid (stale segment register values in particular). With the
215 * hardware task-switch, there is no way to fix up bad state in
216 * a reasonable manner.
217 *
218 * The fact that Intel documents the hardware task-switching to
219 * be slow is a fairly red herring - this code is not noticeably
220 * faster. However, there _is_ some room for improvement here,
221 * so the performance issues may eventually be a valid point.
222 * More important, however, is the fact that this allows us much
223 * more flexibility.
224 *
225 * The return value (in %ax) will be the "prev" task after
226 * the task-switch, and shows up in ret_from_fork in entry.S,
227 * for example.
228 */
229__visible __notrace_funcgraph struct task_struct *
230__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
231{
232	struct thread_struct *prev = &prev_p->thread,
233			     *next = &next_p->thread;
234	struct fpu *prev_fpu = &prev->fpu;
235	struct fpu *next_fpu = &next->fpu;
236	int cpu = smp_processor_id();
237	struct tss_struct *tss = &per_cpu(cpu_tss_rw, cpu);
238
239	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
240
241	switch_fpu_prepare(prev_fpu, cpu);
 
242
243	/*
244	 * Save away %gs. No need to save %fs, as it was saved on the
245	 * stack on entry.  No need to save %es and %ds, as those are
246	 * always kernel segments while inside the kernel.  Doing this
247	 * before setting the new TLS descriptors avoids the situation
248	 * where we temporarily have non-reloadable segments in %fs
249	 * and %gs.  This could be an issue if the NMI handler ever
250	 * used %fs or %gs (it does not today), or if the kernel is
251	 * running inside of a hypervisor layer.
252	 */
253	lazy_save_gs(prev->gs);
254
255	/*
256	 * Load the per-thread Thread-Local Storage descriptor.
257	 */
258	load_TLS(next, cpu);
259
260	/*
261	 * Restore IOPL if needed.  In normal use, the flags restore
262	 * in the switch assembly will handle this.  But if the kernel
263	 * is running virtualized at a non-zero CPL, the popf will
264	 * not restore flags, so it must be done in a separate step.
265	 */
266	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
267		set_iopl_mask(next->iopl);
268
269	/*
270	 * Now maybe handle debug registers and/or IO bitmaps
271	 */
272	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
273		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
274		__switch_to_xtra(prev_p, next_p, tss);
275
276	/*
277	 * Leave lazy mode, flushing any hypercalls made here.
278	 * This must be done before restoring TLS segments so
279	 * the GDT and LDT are properly updated, and must be
280	 * done before fpu__restore(), so the TS bit is up
281	 * to date.
282	 */
283	arch_end_context_switch(next_p);
284
285	/*
286	 * Reload esp0 and cpu_current_top_of_stack.  This changes
287	 * current_thread_info().  Refresh the SYSENTER configuration in
288	 * case prev or next is vm86.
289	 */
290	update_sp0(next_p);
291	refresh_sysenter_cs(next);
292	this_cpu_write(cpu_current_top_of_stack,
293		       (unsigned long)task_stack_page(next_p) +
294		       THREAD_SIZE);
295
296	/*
297	 * Restore %gs if needed (which is common)
298	 */
299	if (prev->gs | next->gs)
300		lazy_load_gs(next->gs);
301
302	switch_fpu_finish(next_fpu, cpu);
303
304	this_cpu_write(current_task, next_p);
305
306	/* Load the Intel cache allocation PQR MSR. */
307	intel_rdt_sched_in();
308
309	return prev_p;
310}
311
312SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
313{
314	return do_arch_prctl_common(current, option, arg2);
315}