Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*  KVM paravirtual clock driver. A clocksource implementation
  3    Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4*/
  5
  6#include <linux/clocksource.h>
  7#include <linux/kvm_para.h>
  8#include <asm/pvclock.h>
  9#include <asm/msr.h>
 10#include <asm/apic.h>
 11#include <linux/percpu.h>
 12#include <linux/hardirq.h>
 13#include <linux/cpuhotplug.h>
 14#include <linux/sched.h>
 15#include <linux/sched/clock.h>
 16#include <linux/mm.h>
 17#include <linux/slab.h>
 18#include <linux/set_memory.h>
 19
 20#include <asm/hypervisor.h>
 21#include <asm/mem_encrypt.h>
 22#include <asm/x86_init.h>
 23#include <asm/reboot.h>
 24#include <asm/kvmclock.h>
 25
 26static int kvmclock __initdata = 1;
 27static int kvmclock_vsyscall __initdata = 1;
 28static int msr_kvm_system_time __ro_after_init = MSR_KVM_SYSTEM_TIME;
 29static int msr_kvm_wall_clock __ro_after_init = MSR_KVM_WALL_CLOCK;
 30static u64 kvm_sched_clock_offset __ro_after_init;
 31
 32static int __init parse_no_kvmclock(char *arg)
 33{
 34	kvmclock = 0;
 35	return 0;
 36}
 37early_param("no-kvmclock", parse_no_kvmclock);
 38
 39static int __init parse_no_kvmclock_vsyscall(char *arg)
 40{
 41	kvmclock_vsyscall = 0;
 42	return 0;
 43}
 44early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall);
 45
 46/* Aligned to page sizes to match whats mapped via vsyscalls to userspace */
 47#define HV_CLOCK_SIZE	(sizeof(struct pvclock_vsyscall_time_info) * NR_CPUS)
 48#define HVC_BOOT_ARRAY_SIZE \
 49	(PAGE_SIZE / sizeof(struct pvclock_vsyscall_time_info))
 50
 51static struct pvclock_vsyscall_time_info
 52			hv_clock_boot[HVC_BOOT_ARRAY_SIZE] __bss_decrypted __aligned(PAGE_SIZE);
 53static struct pvclock_wall_clock wall_clock __bss_decrypted;
 54static DEFINE_PER_CPU(struct pvclock_vsyscall_time_info *, hv_clock_per_cpu);
 55static struct pvclock_vsyscall_time_info *hvclock_mem;
 56
 57static inline struct pvclock_vcpu_time_info *this_cpu_pvti(void)
 58{
 59	return &this_cpu_read(hv_clock_per_cpu)->pvti;
 60}
 61
 62static inline struct pvclock_vsyscall_time_info *this_cpu_hvclock(void)
 63{
 64	return this_cpu_read(hv_clock_per_cpu);
 65}
 66
 67/*
 68 * The wallclock is the time of day when we booted. Since then, some time may
 69 * have elapsed since the hypervisor wrote the data. So we try to account for
 70 * that with system time
 71 */
 72static void kvm_get_wallclock(struct timespec64 *now)
 73{
 74	wrmsrl(msr_kvm_wall_clock, slow_virt_to_phys(&wall_clock));
 75	preempt_disable();
 76	pvclock_read_wallclock(&wall_clock, this_cpu_pvti(), now);
 77	preempt_enable();
 
 
 
 
 
 
 
 
 
 
 
 78}
 79
 80static int kvm_set_wallclock(const struct timespec64 *now)
 81{
 82	return -ENODEV;
 83}
 84
 85static u64 kvm_clock_read(void)
 86{
 
 87	u64 ret;
 
 88
 89	preempt_disable_notrace();
 90	ret = pvclock_clocksource_read(this_cpu_pvti());
 
 
 91	preempt_enable_notrace();
 92	return ret;
 93}
 94
 95static u64 kvm_clock_get_cycles(struct clocksource *cs)
 96{
 97	return kvm_clock_read();
 98}
 99
100static u64 kvm_sched_clock_read(void)
101{
102	return kvm_clock_read() - kvm_sched_clock_offset;
103}
104
105static inline void kvm_sched_clock_init(bool stable)
106{
107	if (!stable)
 
108		clear_sched_clock_stable();
 
 
 
109	kvm_sched_clock_offset = kvm_clock_read();
110	pv_ops.time.sched_clock = kvm_sched_clock_read;
111
112	pr_info("kvm-clock: using sched offset of %llu cycles",
113		kvm_sched_clock_offset);
114
115	BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
116		sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
117}
118
119/*
120 * If we don't do that, there is the possibility that the guest
121 * will calibrate under heavy load - thus, getting a lower lpj -
122 * and execute the delays themselves without load. This is wrong,
123 * because no delay loop can finish beforehand.
124 * Any heuristics is subject to fail, because ultimately, a large
125 * poll of guests can be running and trouble each other. So we preset
126 * lpj here
127 */
128static unsigned long kvm_get_tsc_khz(void)
129{
130	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
131	return pvclock_tsc_khz(this_cpu_pvti());
 
 
 
 
 
 
 
132}
133
134static void __init kvm_get_preset_lpj(void)
135{
136	unsigned long khz;
137	u64 lpj;
138
139	khz = kvm_get_tsc_khz();
140
141	lpj = ((u64)khz * 1000);
142	do_div(lpj, HZ);
143	preset_lpj = lpj;
144}
145
146bool kvm_check_and_clear_guest_paused(void)
147{
148	struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
149	bool ret = false;
 
 
150
151	if (!src)
152		return ret;
153
154	if ((src->pvti.flags & PVCLOCK_GUEST_STOPPED) != 0) {
155		src->pvti.flags &= ~PVCLOCK_GUEST_STOPPED;
 
156		pvclock_touch_watchdogs();
157		ret = true;
158	}
 
159	return ret;
160}
161
162struct clocksource kvm_clock = {
163	.name	= "kvm-clock",
164	.read	= kvm_clock_get_cycles,
165	.rating	= 400,
166	.mask	= CLOCKSOURCE_MASK(64),
167	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
168};
169EXPORT_SYMBOL_GPL(kvm_clock);
170
171static void kvm_register_clock(char *txt)
172{
173	struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
174	u64 pa;
 
175
176	if (!src)
177		return;
 
 
 
 
 
 
 
178
179	pa = slow_virt_to_phys(&src->pvti) | 0x01ULL;
180	wrmsrl(msr_kvm_system_time, pa);
181	pr_info("kvm-clock: cpu %d, msr %llx, %s", smp_processor_id(), pa, txt);
182}
183
184static void kvm_save_sched_clock_state(void)
185{
186}
187
188static void kvm_restore_sched_clock_state(void)
189{
190	kvm_register_clock("primary cpu clock, resume");
191}
192
193#ifdef CONFIG_X86_LOCAL_APIC
194static void kvm_setup_secondary_clock(void)
195{
196	kvm_register_clock("secondary cpu clock");
 
 
 
 
197}
198#endif
199
200/*
201 * After the clock is registered, the host will keep writing to the
202 * registered memory location. If the guest happens to shutdown, this memory
203 * won't be valid. In cases like kexec, in which you install a new kernel, this
204 * means a random memory location will be kept being written. So before any
205 * kind of shutdown from our side, we unregister the clock by writing anything
206 * that does not have the 'enable' bit set in the msr
207 */
208#ifdef CONFIG_KEXEC_CORE
209static void kvm_crash_shutdown(struct pt_regs *regs)
210{
211	native_write_msr(msr_kvm_system_time, 0, 0);
212	kvm_disable_steal_time();
213	native_machine_crash_shutdown(regs);
214}
215#endif
216
217static void kvm_shutdown(void)
218{
219	native_write_msr(msr_kvm_system_time, 0, 0);
220	kvm_disable_steal_time();
221	native_machine_shutdown();
222}
223
224static void __init kvmclock_init_mem(void)
 
225{
226	unsigned long ncpus;
227	unsigned int order;
228	struct page *p;
229	int r;
230
231	if (HVC_BOOT_ARRAY_SIZE >= num_possible_cpus())
232		return;
233
234	ncpus = num_possible_cpus() - HVC_BOOT_ARRAY_SIZE;
235	order = get_order(ncpus * sizeof(*hvclock_mem));
236
237	p = alloc_pages(GFP_KERNEL, order);
238	if (!p) {
239		pr_warn("%s: failed to alloc %d pages", __func__, (1U << order));
240		return;
241	}
242
243	hvclock_mem = page_address(p);
 
 
244
245	/*
246	 * hvclock is shared between the guest and the hypervisor, must
247	 * be mapped decrypted.
248	 */
249	if (sev_active()) {
250		r = set_memory_decrypted((unsigned long) hvclock_mem,
251					 1UL << order);
252		if (r) {
253			__free_pages(p, order);
254			hvclock_mem = NULL;
255			pr_warn("kvmclock: set_memory_decrypted() failed. Disabling\n");
256			return;
257		}
258	}
259
260	memset(hvclock_mem, 0, PAGE_SIZE << order);
261}
262
263static int __init kvm_setup_vsyscall_timeinfo(void)
264{
265#ifdef CONFIG_X86_64
266	u8 flags;
267
268	if (!per_cpu(hv_clock_per_cpu, 0) || !kvmclock_vsyscall)
269		return 0;
270
271	flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
272	if (!(flags & PVCLOCK_TSC_STABLE_BIT))
273		return 0;
274
275	kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
276#endif
277
278	kvmclock_init_mem();
279
280	return 0;
281}
282early_initcall(kvm_setup_vsyscall_timeinfo);
283
284static int kvmclock_setup_percpu(unsigned int cpu)
285{
286	struct pvclock_vsyscall_time_info *p = per_cpu(hv_clock_per_cpu, cpu);
287
288	/*
289	 * The per cpu area setup replicates CPU0 data to all cpu
290	 * pointers. So carefully check. CPU0 has been set up in init
291	 * already.
292	 */
293	if (!cpu || (p && p != per_cpu(hv_clock_per_cpu, 0)))
294		return 0;
295
296	/* Use the static page for the first CPUs, allocate otherwise */
297	if (cpu < HVC_BOOT_ARRAY_SIZE)
298		p = &hv_clock_boot[cpu];
299	else if (hvclock_mem)
300		p = hvclock_mem + cpu - HVC_BOOT_ARRAY_SIZE;
301	else
302		return -ENOMEM;
303
304	per_cpu(hv_clock_per_cpu, cpu) = p;
305	return p ? 0 : -ENOMEM;
306}
307
308void __init kvmclock_init(void)
309{
 
 
 
310	u8 flags;
311
312	if (!kvm_para_available() || !kvmclock)
 
 
313		return;
314
315	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
316		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
317		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
318	} else if (!kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319		return;
320	}
321
322	if (cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "kvmclock:setup_percpu",
323			      kvmclock_setup_percpu, NULL) < 0) {
 
 
 
 
 
 
324		return;
325	}
326
327	pr_info("kvm-clock: Using msrs %x and %x",
328		msr_kvm_system_time, msr_kvm_wall_clock);
329
330	this_cpu_write(hv_clock_per_cpu, &hv_clock_boot[0]);
331	kvm_register_clock("primary cpu clock");
332	pvclock_set_pvti_cpu0_va(hv_clock_boot);
333
334	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
335		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
336
337	flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
 
 
 
338	kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
 
339
340	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
341	x86_platform.calibrate_cpu = kvm_get_tsc_khz;
342	x86_platform.get_wallclock = kvm_get_wallclock;
343	x86_platform.set_wallclock = kvm_set_wallclock;
344#ifdef CONFIG_X86_LOCAL_APIC
345	x86_cpuinit.early_percpu_clock_init = kvm_setup_secondary_clock;
 
346#endif
347	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
348	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
349	machine_ops.shutdown  = kvm_shutdown;
350#ifdef CONFIG_KEXEC_CORE
351	machine_ops.crash_shutdown  = kvm_crash_shutdown;
352#endif
353	kvm_get_preset_lpj();
354
355	/*
356	 * X86_FEATURE_NONSTOP_TSC is TSC runs at constant rate
357	 * with P/T states and does not stop in deep C-states.
358	 *
359	 * Invariant TSC exposed by host means kvmclock is not necessary:
360	 * can use TSC as clocksource.
361	 *
362	 */
363	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
364	    boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
365	    !check_tsc_unstable())
366		kvm_clock.rating = 299;
367
368	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
369	pv_info.name = "KVM";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
370}
v4.17
 
  1/*  KVM paravirtual clock driver. A clocksource implementation
  2    Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
  3
  4    This program is free software; you can redistribute it and/or modify
  5    it under the terms of the GNU General Public License as published by
  6    the Free Software Foundation; either version 2 of the License, or
  7    (at your option) any later version.
  8
  9    This program is distributed in the hope that it will be useful,
 10    but WITHOUT ANY WARRANTY; without even the implied warranty of
 11    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12    GNU General Public License for more details.
 13
 14    You should have received a copy of the GNU General Public License
 15    along with this program; if not, write to the Free Software
 16    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17*/
 18
 19#include <linux/clocksource.h>
 20#include <linux/kvm_para.h>
 21#include <asm/pvclock.h>
 22#include <asm/msr.h>
 23#include <asm/apic.h>
 24#include <linux/percpu.h>
 25#include <linux/hardirq.h>
 26#include <linux/memblock.h>
 27#include <linux/sched.h>
 28#include <linux/sched/clock.h>
 
 
 
 29
 
 30#include <asm/mem_encrypt.h>
 31#include <asm/x86_init.h>
 32#include <asm/reboot.h>
 33#include <asm/kvmclock.h>
 34
 35static int kvmclock __ro_after_init = 1;
 36static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
 37static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
 38static u64 kvm_sched_clock_offset;
 
 39
 40static int parse_no_kvmclock(char *arg)
 41{
 42	kvmclock = 0;
 43	return 0;
 44}
 45early_param("no-kvmclock", parse_no_kvmclock);
 46
 47/* The hypervisor will put information about time periodically here */
 48static struct pvclock_vsyscall_time_info *hv_clock;
 49static struct pvclock_wall_clock *wall_clock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 50
 51/*
 52 * The wallclock is the time of day when we booted. Since then, some time may
 53 * have elapsed since the hypervisor wrote the data. So we try to account for
 54 * that with system time
 55 */
 56static void kvm_get_wallclock(struct timespec *now)
 57{
 58	struct pvclock_vcpu_time_info *vcpu_time;
 59	int low, high;
 60	int cpu;
 61
 62	low = (int)slow_virt_to_phys(wall_clock);
 63	high = ((u64)slow_virt_to_phys(wall_clock) >> 32);
 64
 65	native_write_msr(msr_kvm_wall_clock, low, high);
 66
 67	cpu = get_cpu();
 68
 69	vcpu_time = &hv_clock[cpu].pvti;
 70	pvclock_read_wallclock(wall_clock, vcpu_time, now);
 71
 72	put_cpu();
 73}
 74
 75static int kvm_set_wallclock(const struct timespec *now)
 76{
 77	return -ENODEV;
 78}
 79
 80static u64 kvm_clock_read(void)
 81{
 82	struct pvclock_vcpu_time_info *src;
 83	u64 ret;
 84	int cpu;
 85
 86	preempt_disable_notrace();
 87	cpu = smp_processor_id();
 88	src = &hv_clock[cpu].pvti;
 89	ret = pvclock_clocksource_read(src);
 90	preempt_enable_notrace();
 91	return ret;
 92}
 93
 94static u64 kvm_clock_get_cycles(struct clocksource *cs)
 95{
 96	return kvm_clock_read();
 97}
 98
 99static u64 kvm_sched_clock_read(void)
100{
101	return kvm_clock_read() - kvm_sched_clock_offset;
102}
103
104static inline void kvm_sched_clock_init(bool stable)
105{
106	if (!stable) {
107		pv_time_ops.sched_clock = kvm_clock_read;
108		clear_sched_clock_stable();
109		return;
110	}
111
112	kvm_sched_clock_offset = kvm_clock_read();
113	pv_time_ops.sched_clock = kvm_sched_clock_read;
114
115	printk(KERN_INFO "kvm-clock: using sched offset of %llu cycles\n",
116			kvm_sched_clock_offset);
117
118	BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
119	         sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
120}
121
122/*
123 * If we don't do that, there is the possibility that the guest
124 * will calibrate under heavy load - thus, getting a lower lpj -
125 * and execute the delays themselves without load. This is wrong,
126 * because no delay loop can finish beforehand.
127 * Any heuristics is subject to fail, because ultimately, a large
128 * poll of guests can be running and trouble each other. So we preset
129 * lpj here
130 */
131static unsigned long kvm_get_tsc_khz(void)
132{
133	struct pvclock_vcpu_time_info *src;
134	int cpu;
135	unsigned long tsc_khz;
136
137	cpu = get_cpu();
138	src = &hv_clock[cpu].pvti;
139	tsc_khz = pvclock_tsc_khz(src);
140	put_cpu();
141	return tsc_khz;
142}
143
144static void kvm_get_preset_lpj(void)
145{
146	unsigned long khz;
147	u64 lpj;
148
149	khz = kvm_get_tsc_khz();
150
151	lpj = ((u64)khz * 1000);
152	do_div(lpj, HZ);
153	preset_lpj = lpj;
154}
155
156bool kvm_check_and_clear_guest_paused(void)
157{
 
158	bool ret = false;
159	struct pvclock_vcpu_time_info *src;
160	int cpu = smp_processor_id();
161
162	if (!hv_clock)
163		return ret;
164
165	src = &hv_clock[cpu].pvti;
166	if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
167		src->flags &= ~PVCLOCK_GUEST_STOPPED;
168		pvclock_touch_watchdogs();
169		ret = true;
170	}
171
172	return ret;
173}
174
175struct clocksource kvm_clock = {
176	.name = "kvm-clock",
177	.read = kvm_clock_get_cycles,
178	.rating = 400,
179	.mask = CLOCKSOURCE_MASK(64),
180	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
181};
182EXPORT_SYMBOL_GPL(kvm_clock);
183
184int kvm_register_clock(char *txt)
185{
186	int cpu = smp_processor_id();
187	int low, high, ret;
188	struct pvclock_vcpu_time_info *src;
189
190	if (!hv_clock)
191		return 0;
192
193	src = &hv_clock[cpu].pvti;
194	low = (int)slow_virt_to_phys(src) | 1;
195	high = ((u64)slow_virt_to_phys(src) >> 32);
196	ret = native_write_msr_safe(msr_kvm_system_time, low, high);
197	printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
198	       cpu, high, low, txt);
199
200	return ret;
 
 
201}
202
203static void kvm_save_sched_clock_state(void)
204{
205}
206
207static void kvm_restore_sched_clock_state(void)
208{
209	kvm_register_clock("primary cpu clock, resume");
210}
211
212#ifdef CONFIG_X86_LOCAL_APIC
213static void kvm_setup_secondary_clock(void)
214{
215	/*
216	 * Now that the first cpu already had this clocksource initialized,
217	 * we shouldn't fail.
218	 */
219	WARN_ON(kvm_register_clock("secondary cpu clock"));
220}
221#endif
222
223/*
224 * After the clock is registered, the host will keep writing to the
225 * registered memory location. If the guest happens to shutdown, this memory
226 * won't be valid. In cases like kexec, in which you install a new kernel, this
227 * means a random memory location will be kept being written. So before any
228 * kind of shutdown from our side, we unregister the clock by writing anything
229 * that does not have the 'enable' bit set in the msr
230 */
231#ifdef CONFIG_KEXEC_CORE
232static void kvm_crash_shutdown(struct pt_regs *regs)
233{
234	native_write_msr(msr_kvm_system_time, 0, 0);
235	kvm_disable_steal_time();
236	native_machine_crash_shutdown(regs);
237}
238#endif
239
240static void kvm_shutdown(void)
241{
242	native_write_msr(msr_kvm_system_time, 0, 0);
243	kvm_disable_steal_time();
244	native_machine_shutdown();
245}
246
247static phys_addr_t __init kvm_memblock_alloc(phys_addr_t size,
248					     phys_addr_t align)
249{
250	phys_addr_t mem;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251
252	mem = memblock_alloc(size, align);
253	if (!mem)
254		return 0;
255
 
 
 
 
256	if (sev_active()) {
257		if (early_set_memory_decrypted((unsigned long)__va(mem), size))
258			goto e_free;
 
 
 
 
 
 
259	}
260
261	return mem;
262e_free:
263	memblock_free(mem, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
264	return 0;
265}
 
266
267static void __init kvm_memblock_free(phys_addr_t addr, phys_addr_t size)
268{
269	if (sev_active())
270		early_set_memory_encrypted((unsigned long)__va(addr), size);
 
 
 
 
 
 
 
271
272	memblock_free(addr, size);
 
 
 
 
 
 
 
 
 
273}
274
275void __init kvmclock_init(void)
276{
277	struct pvclock_vcpu_time_info *vcpu_time;
278	unsigned long mem, mem_wall_clock;
279	int size, cpu, wall_clock_size;
280	u8 flags;
281
282	size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
283
284	if (!kvm_para_available())
285		return;
286
287	if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
288		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
289		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
290	} else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
291		return;
292
293	wall_clock_size = PAGE_ALIGN(sizeof(struct pvclock_wall_clock));
294	mem_wall_clock = kvm_memblock_alloc(wall_clock_size, PAGE_SIZE);
295	if (!mem_wall_clock)
296		return;
297
298	wall_clock = __va(mem_wall_clock);
299	memset(wall_clock, 0, wall_clock_size);
300
301	mem = kvm_memblock_alloc(size, PAGE_SIZE);
302	if (!mem) {
303		kvm_memblock_free(mem_wall_clock, wall_clock_size);
304		wall_clock = NULL;
305		return;
306	}
307
308	hv_clock = __va(mem);
309	memset(hv_clock, 0, size);
310
311	if (kvm_register_clock("primary cpu clock")) {
312		hv_clock = NULL;
313		kvm_memblock_free(mem, size);
314		kvm_memblock_free(mem_wall_clock, wall_clock_size);
315		wall_clock = NULL;
316		return;
317	}
318
319	printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
320		msr_kvm_system_time, msr_kvm_wall_clock);
321
 
 
 
 
322	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
323		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
324
325	cpu = get_cpu();
326	vcpu_time = &hv_clock[cpu].pvti;
327	flags = pvclock_read_flags(vcpu_time);
328
329	kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
330	put_cpu();
331
332	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
333	x86_platform.calibrate_cpu = kvm_get_tsc_khz;
334	x86_platform.get_wallclock = kvm_get_wallclock;
335	x86_platform.set_wallclock = kvm_set_wallclock;
336#ifdef CONFIG_X86_LOCAL_APIC
337	x86_cpuinit.early_percpu_clock_init =
338		kvm_setup_secondary_clock;
339#endif
340	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
341	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
342	machine_ops.shutdown  = kvm_shutdown;
343#ifdef CONFIG_KEXEC_CORE
344	machine_ops.crash_shutdown  = kvm_crash_shutdown;
345#endif
346	kvm_get_preset_lpj();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
347	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
348	pv_info.name = "KVM";
349}
350
351int __init kvm_setup_vsyscall_timeinfo(void)
352{
353#ifdef CONFIG_X86_64
354	int cpu;
355	u8 flags;
356	struct pvclock_vcpu_time_info *vcpu_time;
357	unsigned int size;
358
359	if (!hv_clock)
360		return 0;
361
362	size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
363
364	cpu = get_cpu();
365
366	vcpu_time = &hv_clock[cpu].pvti;
367	flags = pvclock_read_flags(vcpu_time);
368
369	if (!(flags & PVCLOCK_TSC_STABLE_BIT)) {
370		put_cpu();
371		return 1;
372	}
373
374	pvclock_set_pvti_cpu0_va(hv_clock);
375	put_cpu();
376
377	kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
378#endif
379	return 0;
380}