Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/* Large capacity key type
  3 *
  4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
  5 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
  6 * Written by David Howells (dhowells@redhat.com)
 
 
 
 
 
  7 */
  8
  9#define pr_fmt(fmt) "big_key: "fmt
 10#include <linux/init.h>
 11#include <linux/seq_file.h>
 12#include <linux/file.h>
 13#include <linux/shmem_fs.h>
 14#include <linux/err.h>
 15#include <linux/scatterlist.h>
 16#include <linux/random.h>
 17#include <linux/vmalloc.h>
 18#include <keys/user-type.h>
 19#include <keys/big_key-type.h>
 20#include <crypto/aead.h>
 21#include <crypto/gcm.h>
 22
 23struct big_key_buf {
 24	unsigned int		nr_pages;
 25	void			*virt;
 26	struct scatterlist	*sg;
 27	struct page		*pages[];
 28};
 29
 30/*
 31 * Layout of key payload words.
 32 */
 33enum {
 34	big_key_data,
 35	big_key_path,
 36	big_key_path_2nd_part,
 37	big_key_len,
 38};
 39
 40/*
 41 * Crypto operation with big_key data
 42 */
 43enum big_key_op {
 44	BIG_KEY_ENC,
 45	BIG_KEY_DEC,
 46};
 47
 48/*
 49 * If the data is under this limit, there's no point creating a shm file to
 50 * hold it as the permanently resident metadata for the shmem fs will be at
 51 * least as large as the data.
 52 */
 53#define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry))
 54
 55/*
 56 * Key size for big_key data encryption
 57 */
 58#define ENC_KEY_SIZE 32
 59
 60/*
 61 * Authentication tag length
 62 */
 63#define ENC_AUTHTAG_SIZE 16
 64
 65/*
 66 * big_key defined keys take an arbitrary string as the description and an
 67 * arbitrary blob of data as the payload
 68 */
 69struct key_type key_type_big_key = {
 70	.name			= "big_key",
 71	.preparse		= big_key_preparse,
 72	.free_preparse		= big_key_free_preparse,
 73	.instantiate		= generic_key_instantiate,
 74	.revoke			= big_key_revoke,
 75	.destroy		= big_key_destroy,
 76	.describe		= big_key_describe,
 77	.read			= big_key_read,
 78	/* no ->update(); don't add it without changing big_key_crypt() nonce */
 79};
 80
 81/*
 82 * Crypto names for big_key data authenticated encryption
 83 */
 84static const char big_key_alg_name[] = "gcm(aes)";
 85#define BIG_KEY_IV_SIZE		GCM_AES_IV_SIZE
 86
 87/*
 88 * Crypto algorithms for big_key data authenticated encryption
 89 */
 90static struct crypto_aead *big_key_aead;
 
 91
 92/*
 93 * Since changing the key affects the entire object, we need a mutex.
 94 */
 95static DEFINE_MUTEX(big_key_aead_lock);
 
 
 
 96
 97/*
 98 * Encrypt/decrypt big_key data
 99 */
100static int big_key_crypt(enum big_key_op op, struct big_key_buf *buf, size_t datalen, u8 *key)
101{
102	int ret;
103	struct aead_request *aead_req;
104	/* We always use a zero nonce. The reason we can get away with this is
105	 * because we're using a different randomly generated key for every
106	 * different encryption. Notably, too, key_type_big_key doesn't define
107	 * an .update function, so there's no chance we'll wind up reusing the
108	 * key to encrypt updated data. Simply put: one key, one encryption.
109	 */
110	u8 zero_nonce[BIG_KEY_IV_SIZE];
111
112	aead_req = aead_request_alloc(big_key_aead, GFP_KERNEL);
113	if (!aead_req)
114		return -ENOMEM;
115
116	memset(zero_nonce, 0, sizeof(zero_nonce));
117	aead_request_set_crypt(aead_req, buf->sg, buf->sg, datalen, zero_nonce);
118	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
119	aead_request_set_ad(aead_req, 0);
120
121	mutex_lock(&big_key_aead_lock);
122	if (crypto_aead_setkey(big_key_aead, key, ENC_KEY_SIZE)) {
123		ret = -EAGAIN;
124		goto error;
125	}
126	if (op == BIG_KEY_ENC)
127		ret = crypto_aead_encrypt(aead_req);
128	else
129		ret = crypto_aead_decrypt(aead_req);
130error:
131	mutex_unlock(&big_key_aead_lock);
132	aead_request_free(aead_req);
133	return ret;
134}
135
136/*
137 * Free up the buffer.
138 */
139static void big_key_free_buffer(struct big_key_buf *buf)
140{
141	unsigned int i;
142
143	if (buf->virt) {
144		memset(buf->virt, 0, buf->nr_pages * PAGE_SIZE);
145		vunmap(buf->virt);
146	}
147
148	for (i = 0; i < buf->nr_pages; i++)
149		if (buf->pages[i])
150			__free_page(buf->pages[i]);
151
152	kfree(buf);
153}
 
 
154
155/*
156 * Allocate a buffer consisting of a set of pages with a virtual mapping
157 * applied over them.
158 */
159static void *big_key_alloc_buffer(size_t len)
160{
161	struct big_key_buf *buf;
162	unsigned int npg = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
163	unsigned int i, l;
164
165	buf = kzalloc(sizeof(struct big_key_buf) +
166		      sizeof(struct page) * npg +
167		      sizeof(struct scatterlist) * npg,
168		      GFP_KERNEL);
169	if (!buf)
170		return NULL;
171
172	buf->nr_pages = npg;
173	buf->sg = (void *)(buf->pages + npg);
174	sg_init_table(buf->sg, npg);
175
176	for (i = 0; i < buf->nr_pages; i++) {
177		buf->pages[i] = alloc_page(GFP_KERNEL);
178		if (!buf->pages[i])
179			goto nomem;
180
181		l = min_t(size_t, len, PAGE_SIZE);
182		sg_set_page(&buf->sg[i], buf->pages[i], l, 0);
183		len -= l;
184	}
185
186	buf->virt = vmap(buf->pages, buf->nr_pages, VM_MAP, PAGE_KERNEL);
187	if (!buf->virt)
188		goto nomem;
189
190	return buf;
191
192nomem:
193	big_key_free_buffer(buf);
194	return NULL;
195}
196
197/*
198 * Preparse a big key
199 */
200int big_key_preparse(struct key_preparsed_payload *prep)
201{
202	struct big_key_buf *buf;
203	struct path *path = (struct path *)&prep->payload.data[big_key_path];
204	struct file *file;
205	u8 *enckey;
 
206	ssize_t written;
207	size_t datalen = prep->datalen, enclen = datalen + ENC_AUTHTAG_SIZE;
208	int ret;
209
 
210	if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data)
211		return -EINVAL;
212
213	/* Set an arbitrary quota */
214	prep->quotalen = 16;
215
216	prep->payload.data[big_key_len] = (void *)(unsigned long)datalen;
217
218	if (datalen > BIG_KEY_FILE_THRESHOLD) {
219		/* Create a shmem file to store the data in.  This will permit the data
220		 * to be swapped out if needed.
221		 *
222		 * File content is stored encrypted with randomly generated key.
223		 */
224		loff_t pos = 0;
225
226		buf = big_key_alloc_buffer(enclen);
227		if (!buf)
 
228			return -ENOMEM;
229		memcpy(buf->virt, prep->data, datalen);
 
 
230
231		/* generate random key */
232		enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL);
233		if (!enckey) {
234			ret = -ENOMEM;
235			goto error;
236		}
237		ret = get_random_bytes_wait(enckey, ENC_KEY_SIZE);
238		if (unlikely(ret))
 
239			goto err_enckey;
240
241		/* encrypt aligned data */
242		ret = big_key_crypt(BIG_KEY_ENC, buf, datalen, enckey);
243		if (ret)
244			goto err_enckey;
245
246		/* save aligned data to file */
247		file = shmem_kernel_file_setup("", enclen, 0);
248		if (IS_ERR(file)) {
249			ret = PTR_ERR(file);
250			goto err_enckey;
251		}
252
253		written = kernel_write(file, buf->virt, enclen, &pos);
254		if (written != enclen) {
255			ret = written;
256			if (written >= 0)
257				ret = -ENOMEM;
258			goto err_fput;
259		}
260
261		/* Pin the mount and dentry to the key so that we can open it again
262		 * later
263		 */
264		prep->payload.data[big_key_data] = enckey;
265		*path = file->f_path;
266		path_get(path);
267		fput(file);
268		big_key_free_buffer(buf);
269	} else {
270		/* Just store the data in a buffer */
271		void *data = kmalloc(datalen, GFP_KERNEL);
272
273		if (!data)
274			return -ENOMEM;
275
276		prep->payload.data[big_key_data] = data;
277		memcpy(data, prep->data, prep->datalen);
278	}
279	return 0;
280
281err_fput:
282	fput(file);
283err_enckey:
284	kzfree(enckey);
285error:
286	big_key_free_buffer(buf);
287	return ret;
288}
289
290/*
291 * Clear preparsement.
292 */
293void big_key_free_preparse(struct key_preparsed_payload *prep)
294{
295	if (prep->datalen > BIG_KEY_FILE_THRESHOLD) {
296		struct path *path = (struct path *)&prep->payload.data[big_key_path];
297
298		path_put(path);
299	}
300	kzfree(prep->payload.data[big_key_data]);
301}
302
303/*
304 * dispose of the links from a revoked keyring
305 * - called with the key sem write-locked
306 */
307void big_key_revoke(struct key *key)
308{
309	struct path *path = (struct path *)&key->payload.data[big_key_path];
310
311	/* clear the quota */
312	key_payload_reserve(key, 0);
313	if (key_is_positive(key) &&
314	    (size_t)key->payload.data[big_key_len] > BIG_KEY_FILE_THRESHOLD)
315		vfs_truncate(path, 0);
316}
317
318/*
319 * dispose of the data dangling from the corpse of a big_key key
320 */
321void big_key_destroy(struct key *key)
322{
323	size_t datalen = (size_t)key->payload.data[big_key_len];
324
325	if (datalen > BIG_KEY_FILE_THRESHOLD) {
326		struct path *path = (struct path *)&key->payload.data[big_key_path];
327
328		path_put(path);
329		path->mnt = NULL;
330		path->dentry = NULL;
331	}
332	kzfree(key->payload.data[big_key_data]);
333	key->payload.data[big_key_data] = NULL;
334}
335
336/*
337 * describe the big_key key
338 */
339void big_key_describe(const struct key *key, struct seq_file *m)
340{
341	size_t datalen = (size_t)key->payload.data[big_key_len];
342
343	seq_puts(m, key->description);
344
345	if (key_is_positive(key))
346		seq_printf(m, ": %zu [%s]",
347			   datalen,
348			   datalen > BIG_KEY_FILE_THRESHOLD ? "file" : "buff");
349}
350
351/*
352 * read the key data
353 * - the key's semaphore is read-locked
354 */
355long big_key_read(const struct key *key, char __user *buffer, size_t buflen)
356{
357	size_t datalen = (size_t)key->payload.data[big_key_len];
358	long ret;
359
360	if (!buffer || buflen < datalen)
361		return datalen;
362
363	if (datalen > BIG_KEY_FILE_THRESHOLD) {
364		struct big_key_buf *buf;
365		struct path *path = (struct path *)&key->payload.data[big_key_path];
366		struct file *file;
 
367		u8 *enckey = (u8 *)key->payload.data[big_key_data];
368		size_t enclen = datalen + ENC_AUTHTAG_SIZE;
369		loff_t pos = 0;
370
371		buf = big_key_alloc_buffer(enclen);
372		if (!buf)
373			return -ENOMEM;
374
375		file = dentry_open(path, O_RDONLY, current_cred());
376		if (IS_ERR(file)) {
377			ret = PTR_ERR(file);
378			goto error;
379		}
380
381		/* read file to kernel and decrypt */
382		ret = kernel_read(file, buf->virt, enclen, &pos);
383		if (ret >= 0 && ret != enclen) {
384			ret = -EIO;
385			goto err_fput;
386		}
387
388		ret = big_key_crypt(BIG_KEY_DEC, buf, enclen, enckey);
389		if (ret)
390			goto err_fput;
391
392		ret = datalen;
393
394		/* copy decrypted data to user */
395		if (copy_to_user(buffer, buf->virt, datalen) != 0)
396			ret = -EFAULT;
397
398err_fput:
399		fput(file);
400error:
401		big_key_free_buffer(buf);
402	} else {
403		ret = datalen;
404		if (copy_to_user(buffer, key->payload.data[big_key_data],
405				 datalen) != 0)
406			ret = -EFAULT;
407	}
408
409	return ret;
410}
411
412/*
413 * Register key type
414 */
415static int __init big_key_init(void)
416{
 
 
417	int ret;
418
419	/* init block cipher */
420	big_key_aead = crypto_alloc_aead(big_key_alg_name, 0, CRYPTO_ALG_ASYNC);
421	if (IS_ERR(big_key_aead)) {
422		ret = PTR_ERR(big_key_aead);
423		pr_err("Can't alloc crypto: %d\n", ret);
424		return ret;
425	}
426
427	if (unlikely(crypto_aead_ivsize(big_key_aead) != BIG_KEY_IV_SIZE)) {
428		WARN(1, "big key algorithm changed?");
429		ret = -EINVAL;
430		goto free_aead;
 
 
 
431	}
432
433	ret = crypto_aead_setauthsize(big_key_aead, ENC_AUTHTAG_SIZE);
434	if (ret < 0) {
435		pr_err("Can't set crypto auth tag len: %d\n", ret);
436		goto free_aead;
 
 
437	}
438
 
 
439	ret = register_key_type(&key_type_big_key);
440	if (ret < 0) {
441		pr_err("Can't register type: %d\n", ret);
442		goto free_aead;
443	}
444
445	return 0;
446
447free_aead:
448	crypto_free_aead(big_key_aead);
 
 
449	return ret;
450}
451
452late_initcall(big_key_init);
v4.10.11
 
  1/* Large capacity key type
  2 *
 
  3 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
  4 * Written by David Howells (dhowells@redhat.com)
  5 *
  6 * This program is free software; you can redistribute it and/or
  7 * modify it under the terms of the GNU General Public Licence
  8 * as published by the Free Software Foundation; either version
  9 * 2 of the Licence, or (at your option) any later version.
 10 */
 11
 12#define pr_fmt(fmt) "big_key: "fmt
 13#include <linux/init.h>
 14#include <linux/seq_file.h>
 15#include <linux/file.h>
 16#include <linux/shmem_fs.h>
 17#include <linux/err.h>
 18#include <linux/scatterlist.h>
 
 
 19#include <keys/user-type.h>
 20#include <keys/big_key-type.h>
 21#include <crypto/rng.h>
 22#include <crypto/skcipher.h>
 
 
 
 
 
 
 
 23
 24/*
 25 * Layout of key payload words.
 26 */
 27enum {
 28	big_key_data,
 29	big_key_path,
 30	big_key_path_2nd_part,
 31	big_key_len,
 32};
 33
 34/*
 35 * Crypto operation with big_key data
 36 */
 37enum big_key_op {
 38	BIG_KEY_ENC,
 39	BIG_KEY_DEC,
 40};
 41
 42/*
 43 * If the data is under this limit, there's no point creating a shm file to
 44 * hold it as the permanently resident metadata for the shmem fs will be at
 45 * least as large as the data.
 46 */
 47#define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry))
 48
 49/*
 50 * Key size for big_key data encryption
 51 */
 52#define ENC_KEY_SIZE	16
 
 
 
 
 
 53
 54/*
 55 * big_key defined keys take an arbitrary string as the description and an
 56 * arbitrary blob of data as the payload
 57 */
 58struct key_type key_type_big_key = {
 59	.name			= "big_key",
 60	.preparse		= big_key_preparse,
 61	.free_preparse		= big_key_free_preparse,
 62	.instantiate		= generic_key_instantiate,
 63	.revoke			= big_key_revoke,
 64	.destroy		= big_key_destroy,
 65	.describe		= big_key_describe,
 66	.read			= big_key_read,
 
 67};
 68
 69/*
 70 * Crypto names for big_key data encryption
 71 */
 72static const char big_key_rng_name[] = "stdrng";
 73static const char big_key_alg_name[] = "ecb(aes)";
 74
 75/*
 76 * Crypto algorithms for big_key data encryption
 77 */
 78static struct crypto_rng *big_key_rng;
 79static struct crypto_skcipher *big_key_skcipher;
 80
 81/*
 82 * Generate random key to encrypt big_key data
 83 */
 84static inline int big_key_gen_enckey(u8 *key)
 85{
 86	return crypto_rng_get_bytes(big_key_rng, key, ENC_KEY_SIZE);
 87}
 88
 89/*
 90 * Encrypt/decrypt big_key data
 91 */
 92static int big_key_crypt(enum big_key_op op, u8 *data, size_t datalen, u8 *key)
 93{
 94	int ret = -EINVAL;
 95	struct scatterlist sgio;
 96	SKCIPHER_REQUEST_ON_STACK(req, big_key_skcipher);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 97
 98	if (crypto_skcipher_setkey(big_key_skcipher, key, ENC_KEY_SIZE)) {
 
 99		ret = -EAGAIN;
100		goto error;
101	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
103	skcipher_request_set_tfm(req, big_key_skcipher);
104	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
105				      NULL, NULL);
 
106
107	sg_init_one(&sgio, data, datalen);
108	skcipher_request_set_crypt(req, &sgio, &sgio, datalen, NULL);
 
109
110	if (op == BIG_KEY_ENC)
111		ret = crypto_skcipher_encrypt(req);
112	else
113		ret = crypto_skcipher_decrypt(req);
114
115	skcipher_request_zero(req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
117error:
118	return ret;
 
 
 
 
 
 
 
119}
120
121/*
122 * Preparse a big key
123 */
124int big_key_preparse(struct key_preparsed_payload *prep)
125{
 
126	struct path *path = (struct path *)&prep->payload.data[big_key_path];
127	struct file *file;
128	u8 *enckey;
129	u8 *data = NULL;
130	ssize_t written;
131	size_t datalen = prep->datalen;
132	int ret;
133
134	ret = -EINVAL;
135	if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data)
136		goto error;
137
138	/* Set an arbitrary quota */
139	prep->quotalen = 16;
140
141	prep->payload.data[big_key_len] = (void *)(unsigned long)datalen;
142
143	if (datalen > BIG_KEY_FILE_THRESHOLD) {
144		/* Create a shmem file to store the data in.  This will permit the data
145		 * to be swapped out if needed.
146		 *
147		 * File content is stored encrypted with randomly generated key.
148		 */
149		size_t enclen = ALIGN(datalen, crypto_skcipher_blocksize(big_key_skcipher));
150
151		/* prepare aligned data to encrypt */
152		data = kmalloc(enclen, GFP_KERNEL);
153		if (!data)
154			return -ENOMEM;
155
156		memcpy(data, prep->data, datalen);
157		memset(data + datalen, 0x00, enclen - datalen);
158
159		/* generate random key */
160		enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL);
161		if (!enckey) {
162			ret = -ENOMEM;
163			goto error;
164		}
165
166		ret = big_key_gen_enckey(enckey);
167		if (ret)
168			goto err_enckey;
169
170		/* encrypt aligned data */
171		ret = big_key_crypt(BIG_KEY_ENC, data, enclen, enckey);
172		if (ret)
173			goto err_enckey;
174
175		/* save aligned data to file */
176		file = shmem_kernel_file_setup("", enclen, 0);
177		if (IS_ERR(file)) {
178			ret = PTR_ERR(file);
179			goto err_enckey;
180		}
181
182		written = kernel_write(file, data, enclen, 0);
183		if (written != enclen) {
184			ret = written;
185			if (written >= 0)
186				ret = -ENOMEM;
187			goto err_fput;
188		}
189
190		/* Pin the mount and dentry to the key so that we can open it again
191		 * later
192		 */
193		prep->payload.data[big_key_data] = enckey;
194		*path = file->f_path;
195		path_get(path);
196		fput(file);
197		kfree(data);
198	} else {
199		/* Just store the data in a buffer */
200		void *data = kmalloc(datalen, GFP_KERNEL);
201
202		if (!data)
203			return -ENOMEM;
204
205		prep->payload.data[big_key_data] = data;
206		memcpy(data, prep->data, prep->datalen);
207	}
208	return 0;
209
210err_fput:
211	fput(file);
212err_enckey:
213	kfree(enckey);
214error:
215	kfree(data);
216	return ret;
217}
218
219/*
220 * Clear preparsement.
221 */
222void big_key_free_preparse(struct key_preparsed_payload *prep)
223{
224	if (prep->datalen > BIG_KEY_FILE_THRESHOLD) {
225		struct path *path = (struct path *)&prep->payload.data[big_key_path];
226
227		path_put(path);
228	}
229	kfree(prep->payload.data[big_key_data]);
230}
231
232/*
233 * dispose of the links from a revoked keyring
234 * - called with the key sem write-locked
235 */
236void big_key_revoke(struct key *key)
237{
238	struct path *path = (struct path *)&key->payload.data[big_key_path];
239
240	/* clear the quota */
241	key_payload_reserve(key, 0);
242	if (key_is_instantiated(key) &&
243	    (size_t)key->payload.data[big_key_len] > BIG_KEY_FILE_THRESHOLD)
244		vfs_truncate(path, 0);
245}
246
247/*
248 * dispose of the data dangling from the corpse of a big_key key
249 */
250void big_key_destroy(struct key *key)
251{
252	size_t datalen = (size_t)key->payload.data[big_key_len];
253
254	if (datalen > BIG_KEY_FILE_THRESHOLD) {
255		struct path *path = (struct path *)&key->payload.data[big_key_path];
256
257		path_put(path);
258		path->mnt = NULL;
259		path->dentry = NULL;
260	}
261	kfree(key->payload.data[big_key_data]);
262	key->payload.data[big_key_data] = NULL;
263}
264
265/*
266 * describe the big_key key
267 */
268void big_key_describe(const struct key *key, struct seq_file *m)
269{
270	size_t datalen = (size_t)key->payload.data[big_key_len];
271
272	seq_puts(m, key->description);
273
274	if (key_is_instantiated(key))
275		seq_printf(m, ": %zu [%s]",
276			   datalen,
277			   datalen > BIG_KEY_FILE_THRESHOLD ? "file" : "buff");
278}
279
280/*
281 * read the key data
282 * - the key's semaphore is read-locked
283 */
284long big_key_read(const struct key *key, char __user *buffer, size_t buflen)
285{
286	size_t datalen = (size_t)key->payload.data[big_key_len];
287	long ret;
288
289	if (!buffer || buflen < datalen)
290		return datalen;
291
292	if (datalen > BIG_KEY_FILE_THRESHOLD) {
 
293		struct path *path = (struct path *)&key->payload.data[big_key_path];
294		struct file *file;
295		u8 *data;
296		u8 *enckey = (u8 *)key->payload.data[big_key_data];
297		size_t enclen = ALIGN(datalen, crypto_skcipher_blocksize(big_key_skcipher));
 
298
299		data = kmalloc(enclen, GFP_KERNEL);
300		if (!data)
301			return -ENOMEM;
302
303		file = dentry_open(path, O_RDONLY, current_cred());
304		if (IS_ERR(file)) {
305			ret = PTR_ERR(file);
306			goto error;
307		}
308
309		/* read file to kernel and decrypt */
310		ret = kernel_read(file, 0, data, enclen);
311		if (ret >= 0 && ret != enclen) {
312			ret = -EIO;
313			goto err_fput;
314		}
315
316		ret = big_key_crypt(BIG_KEY_DEC, data, enclen, enckey);
317		if (ret)
318			goto err_fput;
319
320		ret = datalen;
321
322		/* copy decrypted data to user */
323		if (copy_to_user(buffer, data, datalen) != 0)
324			ret = -EFAULT;
325
326err_fput:
327		fput(file);
328error:
329		kfree(data);
330	} else {
331		ret = datalen;
332		if (copy_to_user(buffer, key->payload.data[big_key_data],
333				 datalen) != 0)
334			ret = -EFAULT;
335	}
336
337	return ret;
338}
339
340/*
341 * Register key type
342 */
343static int __init big_key_init(void)
344{
345	struct crypto_skcipher *cipher;
346	struct crypto_rng *rng;
347	int ret;
348
349	rng = crypto_alloc_rng(big_key_rng_name, 0, 0);
350	if (IS_ERR(rng)) {
351		pr_err("Can't alloc rng: %ld\n", PTR_ERR(rng));
352		return PTR_ERR(rng);
 
 
353	}
354
355	big_key_rng = rng;
356
357	/* seed RNG */
358	ret = crypto_rng_reset(rng, NULL, crypto_rng_seedsize(rng));
359	if (ret) {
360		pr_err("Can't reset rng: %d\n", ret);
361		goto error_rng;
362	}
363
364	/* init block cipher */
365	cipher = crypto_alloc_skcipher(big_key_alg_name, 0, CRYPTO_ALG_ASYNC);
366	if (IS_ERR(cipher)) {
367		ret = PTR_ERR(cipher);
368		pr_err("Can't alloc crypto: %d\n", ret);
369		goto error_rng;
370	}
371
372	big_key_skcipher = cipher;
373
374	ret = register_key_type(&key_type_big_key);
375	if (ret < 0) {
376		pr_err("Can't register type: %d\n", ret);
377		goto error_cipher;
378	}
379
380	return 0;
381
382error_cipher:
383	crypto_free_skcipher(big_key_skcipher);
384error_rng:
385	crypto_free_rng(big_key_rng);
386	return ret;
387}
388
389late_initcall(big_key_init);