Linux Audio

Check our new training course

Loading...
v5.4
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3
   4   Copyright (C) 2014 Intel Corporation
   5
   6   This program is free software; you can redistribute it and/or modify
   7   it under the terms of the GNU General Public License version 2 as
   8   published by the Free Software Foundation;
   9
  10   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  11   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  12   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  13   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  14   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  15   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  16   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  17   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  18
  19   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  20   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  21   SOFTWARE IS DISCLAIMED.
  22*/
  23
  24#include <linux/sched/signal.h>
  25
  26#include <net/bluetooth/bluetooth.h>
  27#include <net/bluetooth/hci_core.h>
  28#include <net/bluetooth/mgmt.h>
  29
  30#include "smp.h"
  31#include "hci_request.h"
  32
  33#define HCI_REQ_DONE	  0
  34#define HCI_REQ_PEND	  1
  35#define HCI_REQ_CANCELED  2
  36
  37void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
  38{
  39	skb_queue_head_init(&req->cmd_q);
  40	req->hdev = hdev;
  41	req->err = 0;
  42}
  43
  44void hci_req_purge(struct hci_request *req)
  45{
  46	skb_queue_purge(&req->cmd_q);
  47}
  48
  49bool hci_req_status_pend(struct hci_dev *hdev)
  50{
  51	return hdev->req_status == HCI_REQ_PEND;
  52}
  53
  54static int req_run(struct hci_request *req, hci_req_complete_t complete,
  55		   hci_req_complete_skb_t complete_skb)
  56{
  57	struct hci_dev *hdev = req->hdev;
  58	struct sk_buff *skb;
  59	unsigned long flags;
  60
  61	BT_DBG("length %u", skb_queue_len(&req->cmd_q));
  62
  63	/* If an error occurred during request building, remove all HCI
  64	 * commands queued on the HCI request queue.
  65	 */
  66	if (req->err) {
  67		skb_queue_purge(&req->cmd_q);
  68		return req->err;
  69	}
  70
  71	/* Do not allow empty requests */
  72	if (skb_queue_empty(&req->cmd_q))
  73		return -ENODATA;
  74
  75	skb = skb_peek_tail(&req->cmd_q);
  76	if (complete) {
  77		bt_cb(skb)->hci.req_complete = complete;
  78	} else if (complete_skb) {
  79		bt_cb(skb)->hci.req_complete_skb = complete_skb;
  80		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
  81	}
  82
  83	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
  84	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
  85	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
  86
  87	queue_work(hdev->workqueue, &hdev->cmd_work);
  88
  89	return 0;
  90}
  91
  92int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
  93{
  94	return req_run(req, complete, NULL);
  95}
  96
  97int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
  98{
  99	return req_run(req, NULL, complete);
 100}
 101
 102static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
 103				  struct sk_buff *skb)
 104{
 105	BT_DBG("%s result 0x%2.2x", hdev->name, result);
 106
 107	if (hdev->req_status == HCI_REQ_PEND) {
 108		hdev->req_result = result;
 109		hdev->req_status = HCI_REQ_DONE;
 110		if (skb)
 111			hdev->req_skb = skb_get(skb);
 112		wake_up_interruptible(&hdev->req_wait_q);
 113	}
 114}
 115
 116void hci_req_sync_cancel(struct hci_dev *hdev, int err)
 117{
 118	BT_DBG("%s err 0x%2.2x", hdev->name, err);
 119
 120	if (hdev->req_status == HCI_REQ_PEND) {
 121		hdev->req_result = err;
 122		hdev->req_status = HCI_REQ_CANCELED;
 123		wake_up_interruptible(&hdev->req_wait_q);
 124	}
 125}
 126
 127struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
 128				  const void *param, u8 event, u32 timeout)
 129{
 
 130	struct hci_request req;
 131	struct sk_buff *skb;
 132	int err = 0;
 133
 134	BT_DBG("%s", hdev->name);
 135
 136	hci_req_init(&req, hdev);
 137
 138	hci_req_add_ev(&req, opcode, plen, param, event);
 139
 140	hdev->req_status = HCI_REQ_PEND;
 141
 
 
 
 142	err = hci_req_run_skb(&req, hci_req_sync_complete);
 143	if (err < 0)
 
 
 144		return ERR_PTR(err);
 
 145
 146	err = wait_event_interruptible_timeout(hdev->req_wait_q,
 147			hdev->req_status != HCI_REQ_PEND, timeout);
 148
 149	if (err == -ERESTARTSYS)
 
 
 150		return ERR_PTR(-EINTR);
 151
 152	switch (hdev->req_status) {
 153	case HCI_REQ_DONE:
 154		err = -bt_to_errno(hdev->req_result);
 155		break;
 156
 157	case HCI_REQ_CANCELED:
 158		err = -hdev->req_result;
 159		break;
 160
 161	default:
 162		err = -ETIMEDOUT;
 163		break;
 164	}
 165
 166	hdev->req_status = hdev->req_result = 0;
 167	skb = hdev->req_skb;
 168	hdev->req_skb = NULL;
 169
 170	BT_DBG("%s end: err %d", hdev->name, err);
 171
 172	if (err < 0) {
 173		kfree_skb(skb);
 174		return ERR_PTR(err);
 175	}
 176
 177	if (!skb)
 178		return ERR_PTR(-ENODATA);
 179
 180	return skb;
 181}
 182EXPORT_SYMBOL(__hci_cmd_sync_ev);
 183
 184struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
 185			       const void *param, u32 timeout)
 186{
 187	return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
 188}
 189EXPORT_SYMBOL(__hci_cmd_sync);
 190
 191/* Execute request and wait for completion. */
 192int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
 193						     unsigned long opt),
 194		   unsigned long opt, u32 timeout, u8 *hci_status)
 195{
 196	struct hci_request req;
 
 197	int err = 0;
 198
 199	BT_DBG("%s start", hdev->name);
 200
 201	hci_req_init(&req, hdev);
 202
 203	hdev->req_status = HCI_REQ_PEND;
 204
 205	err = func(&req, opt);
 206	if (err) {
 207		if (hci_status)
 208			*hci_status = HCI_ERROR_UNSPECIFIED;
 209		return err;
 210	}
 211
 
 
 
 212	err = hci_req_run_skb(&req, hci_req_sync_complete);
 213	if (err < 0) {
 214		hdev->req_status = 0;
 215
 
 
 
 216		/* ENODATA means the HCI request command queue is empty.
 217		 * This can happen when a request with conditionals doesn't
 218		 * trigger any commands to be sent. This is normal behavior
 219		 * and should not trigger an error return.
 220		 */
 221		if (err == -ENODATA) {
 222			if (hci_status)
 223				*hci_status = 0;
 224			return 0;
 225		}
 226
 227		if (hci_status)
 228			*hci_status = HCI_ERROR_UNSPECIFIED;
 229
 230		return err;
 231	}
 232
 233	err = wait_event_interruptible_timeout(hdev->req_wait_q,
 234			hdev->req_status != HCI_REQ_PEND, timeout);
 235
 236	if (err == -ERESTARTSYS)
 
 
 237		return -EINTR;
 238
 239	switch (hdev->req_status) {
 240	case HCI_REQ_DONE:
 241		err = -bt_to_errno(hdev->req_result);
 242		if (hci_status)
 243			*hci_status = hdev->req_result;
 244		break;
 245
 246	case HCI_REQ_CANCELED:
 247		err = -hdev->req_result;
 248		if (hci_status)
 249			*hci_status = HCI_ERROR_UNSPECIFIED;
 250		break;
 251
 252	default:
 253		err = -ETIMEDOUT;
 254		if (hci_status)
 255			*hci_status = HCI_ERROR_UNSPECIFIED;
 256		break;
 257	}
 258
 259	kfree_skb(hdev->req_skb);
 260	hdev->req_skb = NULL;
 261	hdev->req_status = hdev->req_result = 0;
 262
 263	BT_DBG("%s end: err %d", hdev->name, err);
 264
 265	return err;
 266}
 267
 268int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
 269						  unsigned long opt),
 270		 unsigned long opt, u32 timeout, u8 *hci_status)
 271{
 272	int ret;
 273
 274	if (!test_bit(HCI_UP, &hdev->flags))
 275		return -ENETDOWN;
 276
 277	/* Serialize all requests */
 278	hci_req_sync_lock(hdev);
 279	ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
 280	hci_req_sync_unlock(hdev);
 281
 282	return ret;
 283}
 284
 285struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
 286				const void *param)
 287{
 288	int len = HCI_COMMAND_HDR_SIZE + plen;
 289	struct hci_command_hdr *hdr;
 290	struct sk_buff *skb;
 291
 292	skb = bt_skb_alloc(len, GFP_ATOMIC);
 293	if (!skb)
 294		return NULL;
 295
 296	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
 297	hdr->opcode = cpu_to_le16(opcode);
 298	hdr->plen   = plen;
 299
 300	if (plen)
 301		skb_put_data(skb, param, plen);
 302
 303	BT_DBG("skb len %d", skb->len);
 304
 305	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
 306	hci_skb_opcode(skb) = opcode;
 307
 308	return skb;
 309}
 310
 311/* Queue a command to an asynchronous HCI request */
 312void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
 313		    const void *param, u8 event)
 314{
 315	struct hci_dev *hdev = req->hdev;
 316	struct sk_buff *skb;
 317
 318	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
 319
 320	/* If an error occurred during request building, there is no point in
 321	 * queueing the HCI command. We can simply return.
 322	 */
 323	if (req->err)
 324		return;
 325
 326	skb = hci_prepare_cmd(hdev, opcode, plen, param);
 327	if (!skb) {
 328		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
 329			   opcode);
 330		req->err = -ENOMEM;
 331		return;
 332	}
 333
 334	if (skb_queue_empty(&req->cmd_q))
 335		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
 336
 337	bt_cb(skb)->hci.req_event = event;
 338
 339	skb_queue_tail(&req->cmd_q, skb);
 340}
 341
 342void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
 343		 const void *param)
 344{
 345	hci_req_add_ev(req, opcode, plen, param, 0);
 346}
 347
 348void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
 349{
 350	struct hci_dev *hdev = req->hdev;
 351	struct hci_cp_write_page_scan_activity acp;
 352	u8 type;
 353
 354	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
 355		return;
 356
 357	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 358		return;
 359
 360	if (enable) {
 361		type = PAGE_SCAN_TYPE_INTERLACED;
 362
 363		/* 160 msec page scan interval */
 364		acp.interval = cpu_to_le16(0x0100);
 365	} else {
 366		type = PAGE_SCAN_TYPE_STANDARD;	/* default */
 367
 368		/* default 1.28 sec page scan */
 369		acp.interval = cpu_to_le16(0x0800);
 370	}
 371
 372	acp.window = cpu_to_le16(0x0012);
 373
 374	if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
 375	    __cpu_to_le16(hdev->page_scan_window) != acp.window)
 376		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
 377			    sizeof(acp), &acp);
 378
 379	if (hdev->page_scan_type != type)
 380		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
 381}
 382
 383/* This function controls the background scanning based on hdev->pend_le_conns
 384 * list. If there are pending LE connection we start the background scanning,
 385 * otherwise we stop it.
 386 *
 387 * This function requires the caller holds hdev->lock.
 388 */
 389static void __hci_update_background_scan(struct hci_request *req)
 390{
 391	struct hci_dev *hdev = req->hdev;
 392
 393	if (!test_bit(HCI_UP, &hdev->flags) ||
 394	    test_bit(HCI_INIT, &hdev->flags) ||
 395	    hci_dev_test_flag(hdev, HCI_SETUP) ||
 396	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
 397	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
 398	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
 399		return;
 400
 401	/* No point in doing scanning if LE support hasn't been enabled */
 402	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 403		return;
 404
 405	/* If discovery is active don't interfere with it */
 406	if (hdev->discovery.state != DISCOVERY_STOPPED)
 407		return;
 408
 409	/* Reset RSSI and UUID filters when starting background scanning
 410	 * since these filters are meant for service discovery only.
 411	 *
 412	 * The Start Discovery and Start Service Discovery operations
 413	 * ensure to set proper values for RSSI threshold and UUID
 414	 * filter list. So it is safe to just reset them here.
 415	 */
 416	hci_discovery_filter_clear(hdev);
 417
 418	if (list_empty(&hdev->pend_le_conns) &&
 419	    list_empty(&hdev->pend_le_reports)) {
 420		/* If there is no pending LE connections or devices
 421		 * to be scanned for, we should stop the background
 422		 * scanning.
 423		 */
 424
 425		/* If controller is not scanning we are done. */
 426		if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
 427			return;
 428
 429		hci_req_add_le_scan_disable(req);
 430
 431		BT_DBG("%s stopping background scanning", hdev->name);
 432	} else {
 433		/* If there is at least one pending LE connection, we should
 434		 * keep the background scan running.
 435		 */
 436
 437		/* If controller is connecting, we should not start scanning
 438		 * since some controllers are not able to scan and connect at
 439		 * the same time.
 440		 */
 441		if (hci_lookup_le_connect(hdev))
 442			return;
 443
 444		/* If controller is currently scanning, we stop it to ensure we
 445		 * don't miss any advertising (due to duplicates filter).
 446		 */
 447		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
 448			hci_req_add_le_scan_disable(req);
 449
 450		hci_req_add_le_passive_scan(req);
 451
 452		BT_DBG("%s starting background scanning", hdev->name);
 453	}
 454}
 455
 456void __hci_req_update_name(struct hci_request *req)
 457{
 458	struct hci_dev *hdev = req->hdev;
 459	struct hci_cp_write_local_name cp;
 460
 461	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
 462
 463	hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
 464}
 465
 466#define PNP_INFO_SVCLASS_ID		0x1200
 467
 468static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 469{
 470	u8 *ptr = data, *uuids_start = NULL;
 471	struct bt_uuid *uuid;
 472
 473	if (len < 4)
 474		return ptr;
 475
 476	list_for_each_entry(uuid, &hdev->uuids, list) {
 477		u16 uuid16;
 478
 479		if (uuid->size != 16)
 480			continue;
 481
 482		uuid16 = get_unaligned_le16(&uuid->uuid[12]);
 483		if (uuid16 < 0x1100)
 484			continue;
 485
 486		if (uuid16 == PNP_INFO_SVCLASS_ID)
 487			continue;
 488
 489		if (!uuids_start) {
 490			uuids_start = ptr;
 491			uuids_start[0] = 1;
 492			uuids_start[1] = EIR_UUID16_ALL;
 493			ptr += 2;
 494		}
 495
 496		/* Stop if not enough space to put next UUID */
 497		if ((ptr - data) + sizeof(u16) > len) {
 498			uuids_start[1] = EIR_UUID16_SOME;
 499			break;
 500		}
 501
 502		*ptr++ = (uuid16 & 0x00ff);
 503		*ptr++ = (uuid16 & 0xff00) >> 8;
 504		uuids_start[0] += sizeof(uuid16);
 505	}
 506
 507	return ptr;
 508}
 509
 510static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 511{
 512	u8 *ptr = data, *uuids_start = NULL;
 513	struct bt_uuid *uuid;
 514
 515	if (len < 6)
 516		return ptr;
 517
 518	list_for_each_entry(uuid, &hdev->uuids, list) {
 519		if (uuid->size != 32)
 520			continue;
 521
 522		if (!uuids_start) {
 523			uuids_start = ptr;
 524			uuids_start[0] = 1;
 525			uuids_start[1] = EIR_UUID32_ALL;
 526			ptr += 2;
 527		}
 528
 529		/* Stop if not enough space to put next UUID */
 530		if ((ptr - data) + sizeof(u32) > len) {
 531			uuids_start[1] = EIR_UUID32_SOME;
 532			break;
 533		}
 534
 535		memcpy(ptr, &uuid->uuid[12], sizeof(u32));
 536		ptr += sizeof(u32);
 537		uuids_start[0] += sizeof(u32);
 538	}
 539
 540	return ptr;
 541}
 542
 543static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 544{
 545	u8 *ptr = data, *uuids_start = NULL;
 546	struct bt_uuid *uuid;
 547
 548	if (len < 18)
 549		return ptr;
 550
 551	list_for_each_entry(uuid, &hdev->uuids, list) {
 552		if (uuid->size != 128)
 553			continue;
 554
 555		if (!uuids_start) {
 556			uuids_start = ptr;
 557			uuids_start[0] = 1;
 558			uuids_start[1] = EIR_UUID128_ALL;
 559			ptr += 2;
 560		}
 561
 562		/* Stop if not enough space to put next UUID */
 563		if ((ptr - data) + 16 > len) {
 564			uuids_start[1] = EIR_UUID128_SOME;
 565			break;
 566		}
 567
 568		memcpy(ptr, uuid->uuid, 16);
 569		ptr += 16;
 570		uuids_start[0] += 16;
 571	}
 572
 573	return ptr;
 574}
 575
 576static void create_eir(struct hci_dev *hdev, u8 *data)
 577{
 578	u8 *ptr = data;
 579	size_t name_len;
 580
 581	name_len = strlen(hdev->dev_name);
 582
 583	if (name_len > 0) {
 584		/* EIR Data type */
 585		if (name_len > 48) {
 586			name_len = 48;
 587			ptr[1] = EIR_NAME_SHORT;
 588		} else
 589			ptr[1] = EIR_NAME_COMPLETE;
 590
 591		/* EIR Data length */
 592		ptr[0] = name_len + 1;
 593
 594		memcpy(ptr + 2, hdev->dev_name, name_len);
 595
 596		ptr += (name_len + 2);
 597	}
 598
 599	if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
 600		ptr[0] = 2;
 601		ptr[1] = EIR_TX_POWER;
 602		ptr[2] = (u8) hdev->inq_tx_power;
 603
 604		ptr += 3;
 605	}
 606
 607	if (hdev->devid_source > 0) {
 608		ptr[0] = 9;
 609		ptr[1] = EIR_DEVICE_ID;
 610
 611		put_unaligned_le16(hdev->devid_source, ptr + 2);
 612		put_unaligned_le16(hdev->devid_vendor, ptr + 4);
 613		put_unaligned_le16(hdev->devid_product, ptr + 6);
 614		put_unaligned_le16(hdev->devid_version, ptr + 8);
 615
 616		ptr += 10;
 617	}
 618
 619	ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 620	ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 621	ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 622}
 623
 624void __hci_req_update_eir(struct hci_request *req)
 625{
 626	struct hci_dev *hdev = req->hdev;
 627	struct hci_cp_write_eir cp;
 628
 629	if (!hdev_is_powered(hdev))
 630		return;
 631
 632	if (!lmp_ext_inq_capable(hdev))
 633		return;
 634
 635	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
 636		return;
 637
 638	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
 639		return;
 640
 641	memset(&cp, 0, sizeof(cp));
 642
 643	create_eir(hdev, cp.data);
 644
 645	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
 646		return;
 647
 648	memcpy(hdev->eir, cp.data, sizeof(cp.data));
 649
 650	hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 651}
 652
 653void hci_req_add_le_scan_disable(struct hci_request *req)
 654{
 655	struct hci_dev *hdev = req->hdev;
 656
 657	if (use_ext_scan(hdev)) {
 658		struct hci_cp_le_set_ext_scan_enable cp;
 659
 660		memset(&cp, 0, sizeof(cp));
 661		cp.enable = LE_SCAN_DISABLE;
 662		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
 663			    &cp);
 664	} else {
 665		struct hci_cp_le_set_scan_enable cp;
 666
 667		memset(&cp, 0, sizeof(cp));
 668		cp.enable = LE_SCAN_DISABLE;
 669		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
 670	}
 671}
 672
 673static void add_to_white_list(struct hci_request *req,
 674			      struct hci_conn_params *params)
 675{
 676	struct hci_cp_le_add_to_white_list cp;
 677
 678	cp.bdaddr_type = params->addr_type;
 679	bacpy(&cp.bdaddr, &params->addr);
 680
 681	hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
 682}
 683
 684static u8 update_white_list(struct hci_request *req)
 685{
 686	struct hci_dev *hdev = req->hdev;
 687	struct hci_conn_params *params;
 688	struct bdaddr_list *b;
 689	uint8_t white_list_entries = 0;
 690
 691	/* Go through the current white list programmed into the
 692	 * controller one by one and check if that address is still
 693	 * in the list of pending connections or list of devices to
 694	 * report. If not present in either list, then queue the
 695	 * command to remove it from the controller.
 696	 */
 697	list_for_each_entry(b, &hdev->le_white_list, list) {
 698		/* If the device is neither in pend_le_conns nor
 699		 * pend_le_reports then remove it from the whitelist.
 700		 */
 701		if (!hci_pend_le_action_lookup(&hdev->pend_le_conns,
 702					       &b->bdaddr, b->bdaddr_type) &&
 703		    !hci_pend_le_action_lookup(&hdev->pend_le_reports,
 704					       &b->bdaddr, b->bdaddr_type)) {
 705			struct hci_cp_le_del_from_white_list cp;
 706
 707			cp.bdaddr_type = b->bdaddr_type;
 708			bacpy(&cp.bdaddr, &b->bdaddr);
 709
 710			hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
 711				    sizeof(cp), &cp);
 712			continue;
 713		}
 714
 715		if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
 716			/* White list can not be used with RPAs */
 717			return 0x00;
 718		}
 719
 720		white_list_entries++;
 721	}
 722
 723	/* Since all no longer valid white list entries have been
 724	 * removed, walk through the list of pending connections
 725	 * and ensure that any new device gets programmed into
 726	 * the controller.
 727	 *
 728	 * If the list of the devices is larger than the list of
 729	 * available white list entries in the controller, then
 730	 * just abort and return filer policy value to not use the
 731	 * white list.
 732	 */
 733	list_for_each_entry(params, &hdev->pend_le_conns, action) {
 734		if (hci_bdaddr_list_lookup(&hdev->le_white_list,
 735					   &params->addr, params->addr_type))
 736			continue;
 737
 738		if (white_list_entries >= hdev->le_white_list_size) {
 739			/* Select filter policy to accept all advertising */
 740			return 0x00;
 741		}
 742
 743		if (hci_find_irk_by_addr(hdev, &params->addr,
 744					 params->addr_type)) {
 745			/* White list can not be used with RPAs */
 746			return 0x00;
 747		}
 748
 749		white_list_entries++;
 750		add_to_white_list(req, params);
 751	}
 752
 753	/* After adding all new pending connections, walk through
 754	 * the list of pending reports and also add these to the
 755	 * white list if there is still space.
 756	 */
 757	list_for_each_entry(params, &hdev->pend_le_reports, action) {
 758		if (hci_bdaddr_list_lookup(&hdev->le_white_list,
 759					   &params->addr, params->addr_type))
 760			continue;
 761
 762		if (white_list_entries >= hdev->le_white_list_size) {
 763			/* Select filter policy to accept all advertising */
 764			return 0x00;
 765		}
 766
 767		if (hci_find_irk_by_addr(hdev, &params->addr,
 768					 params->addr_type)) {
 769			/* White list can not be used with RPAs */
 770			return 0x00;
 771		}
 772
 773		white_list_entries++;
 774		add_to_white_list(req, params);
 775	}
 776
 777	/* Select filter policy to use white list */
 778	return 0x01;
 779}
 780
 781static bool scan_use_rpa(struct hci_dev *hdev)
 782{
 783	return hci_dev_test_flag(hdev, HCI_PRIVACY);
 784}
 785
 786static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
 787			       u16 window, u8 own_addr_type, u8 filter_policy)
 788{
 789	struct hci_dev *hdev = req->hdev;
 790
 791	/* Use ext scanning if set ext scan param and ext scan enable is
 792	 * supported
 793	 */
 794	if (use_ext_scan(hdev)) {
 795		struct hci_cp_le_set_ext_scan_params *ext_param_cp;
 796		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
 797		struct hci_cp_le_scan_phy_params *phy_params;
 798		u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
 799		u32 plen;
 800
 801		ext_param_cp = (void *)data;
 802		phy_params = (void *)ext_param_cp->data;
 803
 804		memset(ext_param_cp, 0, sizeof(*ext_param_cp));
 805		ext_param_cp->own_addr_type = own_addr_type;
 806		ext_param_cp->filter_policy = filter_policy;
 807
 808		plen = sizeof(*ext_param_cp);
 809
 810		if (scan_1m(hdev) || scan_2m(hdev)) {
 811			ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;
 812
 813			memset(phy_params, 0, sizeof(*phy_params));
 814			phy_params->type = type;
 815			phy_params->interval = cpu_to_le16(interval);
 816			phy_params->window = cpu_to_le16(window);
 817
 818			plen += sizeof(*phy_params);
 819			phy_params++;
 820		}
 821
 822		if (scan_coded(hdev)) {
 823			ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;
 824
 825			memset(phy_params, 0, sizeof(*phy_params));
 826			phy_params->type = type;
 827			phy_params->interval = cpu_to_le16(interval);
 828			phy_params->window = cpu_to_le16(window);
 829
 830			plen += sizeof(*phy_params);
 831			phy_params++;
 832		}
 833
 834		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
 835			    plen, ext_param_cp);
 836
 837		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
 838		ext_enable_cp.enable = LE_SCAN_ENABLE;
 839		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
 840
 841		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
 842			    sizeof(ext_enable_cp), &ext_enable_cp);
 843	} else {
 844		struct hci_cp_le_set_scan_param param_cp;
 845		struct hci_cp_le_set_scan_enable enable_cp;
 846
 847		memset(&param_cp, 0, sizeof(param_cp));
 848		param_cp.type = type;
 849		param_cp.interval = cpu_to_le16(interval);
 850		param_cp.window = cpu_to_le16(window);
 851		param_cp.own_address_type = own_addr_type;
 852		param_cp.filter_policy = filter_policy;
 853		hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
 854			    &param_cp);
 855
 856		memset(&enable_cp, 0, sizeof(enable_cp));
 857		enable_cp.enable = LE_SCAN_ENABLE;
 858		enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
 859		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
 860			    &enable_cp);
 861	}
 862}
 863
 864void hci_req_add_le_passive_scan(struct hci_request *req)
 865{
 
 
 866	struct hci_dev *hdev = req->hdev;
 867	u8 own_addr_type;
 868	u8 filter_policy;
 869
 870	/* Set require_privacy to false since no SCAN_REQ are send
 871	 * during passive scanning. Not using an non-resolvable address
 872	 * here is important so that peer devices using direct
 873	 * advertising with our address will be correctly reported
 874	 * by the controller.
 875	 */
 876	if (hci_update_random_address(req, false, scan_use_rpa(hdev),
 877				      &own_addr_type))
 878		return;
 879
 880	/* Adding or removing entries from the white list must
 881	 * happen before enabling scanning. The controller does
 882	 * not allow white list modification while scanning.
 883	 */
 884	filter_policy = update_white_list(req);
 885
 886	/* When the controller is using random resolvable addresses and
 887	 * with that having LE privacy enabled, then controllers with
 888	 * Extended Scanner Filter Policies support can now enable support
 889	 * for handling directed advertising.
 890	 *
 891	 * So instead of using filter polices 0x00 (no whitelist)
 892	 * and 0x01 (whitelist enabled) use the new filter policies
 893	 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
 894	 */
 895	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
 896	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
 897		filter_policy |= 0x02;
 898
 899	hci_req_start_scan(req, LE_SCAN_PASSIVE, hdev->le_scan_interval,
 900			   hdev->le_scan_window, own_addr_type, filter_policy);
 901}
 902
 903static u8 get_adv_instance_scan_rsp_len(struct hci_dev *hdev, u8 instance)
 904{
 905	struct adv_info *adv_instance;
 906
 907	/* Ignore instance 0 */
 908	if (instance == 0x00)
 909		return 0;
 910
 911	adv_instance = hci_find_adv_instance(hdev, instance);
 912	if (!adv_instance)
 913		return 0;
 914
 915	/* TODO: Take into account the "appearance" and "local-name" flags here.
 916	 * These are currently being ignored as they are not supported.
 917	 */
 918	return adv_instance->scan_rsp_len;
 919}
 920
 921static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
 922{
 923	u8 instance = hdev->cur_adv_instance;
 924	struct adv_info *adv_instance;
 925
 926	/* Ignore instance 0 */
 927	if (instance == 0x00)
 928		return 0;
 929
 930	adv_instance = hci_find_adv_instance(hdev, instance);
 931	if (!adv_instance)
 932		return 0;
 933
 934	/* TODO: Take into account the "appearance" and "local-name" flags here.
 935	 * These are currently being ignored as they are not supported.
 936	 */
 937	return adv_instance->scan_rsp_len;
 938}
 939
 940void __hci_req_disable_advertising(struct hci_request *req)
 941{
 942	if (ext_adv_capable(req->hdev)) {
 943		struct hci_cp_le_set_ext_adv_enable cp;
 944
 945		cp.enable = 0x00;
 946		/* Disable all sets since we only support one set at the moment */
 947		cp.num_of_sets = 0x00;
 948
 949		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), &cp);
 950	} else {
 951		u8 enable = 0x00;
 952
 953		hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
 954	}
 955}
 956
 957static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
 958{
 959	u32 flags;
 960	struct adv_info *adv_instance;
 961
 962	if (instance == 0x00) {
 963		/* Instance 0 always manages the "Tx Power" and "Flags"
 964		 * fields
 965		 */
 966		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
 967
 968		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
 969		 * corresponds to the "connectable" instance flag.
 970		 */
 971		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
 972			flags |= MGMT_ADV_FLAG_CONNECTABLE;
 973
 974		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
 975			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
 976		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
 977			flags |= MGMT_ADV_FLAG_DISCOV;
 978
 979		return flags;
 980	}
 981
 982	adv_instance = hci_find_adv_instance(hdev, instance);
 983
 984	/* Return 0 when we got an invalid instance identifier. */
 985	if (!adv_instance)
 986		return 0;
 987
 988	return adv_instance->flags;
 989}
 990
 991static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
 992{
 993	/* If privacy is not enabled don't use RPA */
 994	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
 995		return false;
 996
 997	/* If basic privacy mode is enabled use RPA */
 998	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
 999		return true;
1000
1001	/* If limited privacy mode is enabled don't use RPA if we're
1002	 * both discoverable and bondable.
1003	 */
1004	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
1005	    hci_dev_test_flag(hdev, HCI_BONDABLE))
1006		return false;
1007
1008	/* We're neither bondable nor discoverable in the limited
1009	 * privacy mode, therefore use RPA.
1010	 */
1011	return true;
1012}
1013
1014static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
1015{
1016	/* If there is no connection we are OK to advertise. */
1017	if (hci_conn_num(hdev, LE_LINK) == 0)
1018		return true;
1019
1020	/* Check le_states if there is any connection in slave role. */
1021	if (hdev->conn_hash.le_num_slave > 0) {
1022		/* Slave connection state and non connectable mode bit 20. */
1023		if (!connectable && !(hdev->le_states[2] & 0x10))
1024			return false;
1025
1026		/* Slave connection state and connectable mode bit 38
1027		 * and scannable bit 21.
1028		 */
1029		if (connectable && (!(hdev->le_states[4] & 0x40) ||
1030				    !(hdev->le_states[2] & 0x20)))
1031			return false;
1032	}
1033
1034	/* Check le_states if there is any connection in master role. */
1035	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) {
1036		/* Master connection state and non connectable mode bit 18. */
1037		if (!connectable && !(hdev->le_states[2] & 0x02))
1038			return false;
1039
1040		/* Master connection state and connectable mode bit 35 and
1041		 * scannable 19.
1042		 */
1043		if (connectable && (!(hdev->le_states[4] & 0x08) ||
1044				    !(hdev->le_states[2] & 0x08)))
1045			return false;
1046	}
1047
1048	return true;
1049}
1050
1051void __hci_req_enable_advertising(struct hci_request *req)
1052{
1053	struct hci_dev *hdev = req->hdev;
1054	struct hci_cp_le_set_adv_param cp;
1055	u8 own_addr_type, enable = 0x01;
1056	bool connectable;
1057	u16 adv_min_interval, adv_max_interval;
1058	u32 flags;
1059
1060	flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
1061
1062	/* If the "connectable" instance flag was not set, then choose between
1063	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1064	 */
1065	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1066		      mgmt_get_connectable(hdev);
1067
1068	if (!is_advertising_allowed(hdev, connectable))
1069		return;
1070
1071	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1072		__hci_req_disable_advertising(req);
1073
1074	/* Clear the HCI_LE_ADV bit temporarily so that the
1075	 * hci_update_random_address knows that it's safe to go ahead
1076	 * and write a new random address. The flag will be set back on
1077	 * as soon as the SET_ADV_ENABLE HCI command completes.
1078	 */
1079	hci_dev_clear_flag(hdev, HCI_LE_ADV);
1080
 
 
 
 
 
 
 
 
1081	/* Set require_privacy to true only when non-connectable
1082	 * advertising is used. In that case it is fine to use a
1083	 * non-resolvable private address.
1084	 */
1085	if (hci_update_random_address(req, !connectable,
1086				      adv_use_rpa(hdev, flags),
1087				      &own_addr_type) < 0)
1088		return;
1089
1090	memset(&cp, 0, sizeof(cp));
 
 
1091
1092	if (connectable) {
1093		cp.type = LE_ADV_IND;
 
 
 
 
1094
1095		adv_min_interval = hdev->le_adv_min_interval;
1096		adv_max_interval = hdev->le_adv_max_interval;
1097	} else {
1098		if (get_cur_adv_instance_scan_rsp_len(hdev))
1099			cp.type = LE_ADV_SCAN_IND;
1100		else
1101			cp.type = LE_ADV_NONCONN_IND;
1102
1103		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1104		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1105			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1106			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1107		} else {
1108			adv_min_interval = hdev->le_adv_min_interval;
1109			adv_max_interval = hdev->le_adv_max_interval;
1110		}
1111	}
1112
1113	cp.min_interval = cpu_to_le16(adv_min_interval);
1114	cp.max_interval = cpu_to_le16(adv_max_interval);
1115	cp.own_address_type = own_addr_type;
1116	cp.channel_map = hdev->le_adv_channel_map;
1117
1118	hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
1119
1120	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1121}
1122
1123u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1124{
1125	size_t short_len;
1126	size_t complete_len;
1127
1128	/* no space left for name (+ NULL + type + len) */
1129	if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
1130		return ad_len;
1131
1132	/* use complete name if present and fits */
1133	complete_len = strlen(hdev->dev_name);
1134	if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
1135		return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
1136				       hdev->dev_name, complete_len + 1);
1137
1138	/* use short name if present */
1139	short_len = strlen(hdev->short_name);
1140	if (short_len)
1141		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
1142				       hdev->short_name, short_len + 1);
1143
1144	/* use shortened full name if present, we already know that name
1145	 * is longer then HCI_MAX_SHORT_NAME_LENGTH
1146	 */
1147	if (complete_len) {
1148		u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];
1149
1150		memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
1151		name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';
1152
1153		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
1154				       sizeof(name));
1155	}
1156
1157	return ad_len;
1158}
1159
1160static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1161{
1162	return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
1163}
1164
1165static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
1166{
1167	u8 scan_rsp_len = 0;
1168
1169	if (hdev->appearance) {
1170		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1171	}
1172
1173	return append_local_name(hdev, ptr, scan_rsp_len);
1174}
1175
1176static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1177					u8 *ptr)
1178{
1179	struct adv_info *adv_instance;
1180	u32 instance_flags;
1181	u8 scan_rsp_len = 0;
1182
1183	adv_instance = hci_find_adv_instance(hdev, instance);
1184	if (!adv_instance)
1185		return 0;
1186
1187	instance_flags = adv_instance->flags;
1188
1189	if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1190		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1191	}
1192
1193	memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1194	       adv_instance->scan_rsp_len);
1195
1196	scan_rsp_len += adv_instance->scan_rsp_len;
1197
1198	if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
1199		scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);
1200
1201	return scan_rsp_len;
1202}
1203
1204void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1205{
1206	struct hci_dev *hdev = req->hdev;
 
1207	u8 len;
1208
1209	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1210		return;
1211
1212	if (ext_adv_capable(hdev)) {
1213		struct hci_cp_le_set_ext_scan_rsp_data cp;
1214
1215		memset(&cp, 0, sizeof(cp));
1216
1217		if (instance)
1218			len = create_instance_scan_rsp_data(hdev, instance,
1219							    cp.data);
1220		else
1221			len = create_default_scan_rsp_data(hdev, cp.data);
1222
1223		if (hdev->scan_rsp_data_len == len &&
1224		    !memcmp(cp.data, hdev->scan_rsp_data, len))
1225			return;
1226
1227		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1228		hdev->scan_rsp_data_len = len;
1229
1230		cp.handle = 0;
1231		cp.length = len;
1232		cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1233		cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1234
1235		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, sizeof(cp),
1236			    &cp);
1237	} else {
1238		struct hci_cp_le_set_scan_rsp_data cp;
1239
1240		memset(&cp, 0, sizeof(cp));
1241
1242		if (instance)
1243			len = create_instance_scan_rsp_data(hdev, instance,
1244							    cp.data);
1245		else
1246			len = create_default_scan_rsp_data(hdev, cp.data);
1247
1248		if (hdev->scan_rsp_data_len == len &&
1249		    !memcmp(cp.data, hdev->scan_rsp_data, len))
1250			return;
1251
1252		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1253		hdev->scan_rsp_data_len = len;
1254
1255		cp.length = len;
1256
1257		hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1258	}
1259}
1260
1261static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1262{
1263	struct adv_info *adv_instance = NULL;
1264	u8 ad_len = 0, flags = 0;
1265	u32 instance_flags;
1266
1267	/* Return 0 when the current instance identifier is invalid. */
1268	if (instance) {
1269		adv_instance = hci_find_adv_instance(hdev, instance);
1270		if (!adv_instance)
1271			return 0;
1272	}
1273
1274	instance_flags = get_adv_instance_flags(hdev, instance);
1275
1276	/* The Add Advertising command allows userspace to set both the general
1277	 * and limited discoverable flags.
1278	 */
1279	if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1280		flags |= LE_AD_GENERAL;
1281
1282	if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1283		flags |= LE_AD_LIMITED;
1284
1285	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1286		flags |= LE_AD_NO_BREDR;
1287
1288	if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1289		/* If a discovery flag wasn't provided, simply use the global
1290		 * settings.
1291		 */
1292		if (!flags)
1293			flags |= mgmt_get_adv_discov_flags(hdev);
1294
1295		/* If flags would still be empty, then there is no need to
1296		 * include the "Flags" AD field".
1297		 */
1298		if (flags) {
1299			ptr[0] = 0x02;
1300			ptr[1] = EIR_FLAGS;
1301			ptr[2] = flags;
1302
1303			ad_len += 3;
1304			ptr += 3;
1305		}
1306	}
1307
1308	if (adv_instance) {
1309		memcpy(ptr, adv_instance->adv_data,
1310		       adv_instance->adv_data_len);
1311		ad_len += adv_instance->adv_data_len;
1312		ptr += adv_instance->adv_data_len;
1313	}
1314
1315	if (instance_flags & MGMT_ADV_FLAG_TX_POWER) {
1316		s8 adv_tx_power;
1317
1318		if (ext_adv_capable(hdev)) {
1319			if (adv_instance)
1320				adv_tx_power = adv_instance->tx_power;
1321			else
1322				adv_tx_power = hdev->adv_tx_power;
1323		} else {
1324			adv_tx_power = hdev->adv_tx_power;
1325		}
1326
1327		/* Provide Tx Power only if we can provide a valid value for it */
1328		if (adv_tx_power != HCI_TX_POWER_INVALID) {
1329			ptr[0] = 0x02;
1330			ptr[1] = EIR_TX_POWER;
1331			ptr[2] = (u8)adv_tx_power;
1332
1333			ad_len += 3;
1334			ptr += 3;
1335		}
1336	}
1337
1338	return ad_len;
1339}
1340
1341void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1342{
1343	struct hci_dev *hdev = req->hdev;
 
1344	u8 len;
1345
1346	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1347		return;
1348
1349	if (ext_adv_capable(hdev)) {
1350		struct hci_cp_le_set_ext_adv_data cp;
1351
1352		memset(&cp, 0, sizeof(cp));
1353
1354		len = create_instance_adv_data(hdev, instance, cp.data);
1355
1356		/* There's nothing to do if the data hasn't changed */
1357		if (hdev->adv_data_len == len &&
1358		    memcmp(cp.data, hdev->adv_data, len) == 0)
1359			return;
1360
1361		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1362		hdev->adv_data_len = len;
1363
1364		cp.length = len;
1365		cp.handle = 0;
1366		cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1367		cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1368
1369		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, sizeof(cp), &cp);
1370	} else {
1371		struct hci_cp_le_set_adv_data cp;
1372
1373		memset(&cp, 0, sizeof(cp));
1374
1375		len = create_instance_adv_data(hdev, instance, cp.data);
1376
1377		/* There's nothing to do if the data hasn't changed */
1378		if (hdev->adv_data_len == len &&
1379		    memcmp(cp.data, hdev->adv_data, len) == 0)
1380			return;
1381
1382		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1383		hdev->adv_data_len = len;
1384
1385		cp.length = len;
1386
1387		hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1388	}
1389}
1390
1391int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1392{
1393	struct hci_request req;
1394
1395	hci_req_init(&req, hdev);
1396	__hci_req_update_adv_data(&req, instance);
1397
1398	return hci_req_run(&req, NULL);
1399}
1400
1401static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1402{
1403	BT_DBG("%s status %u", hdev->name, status);
1404}
1405
1406void hci_req_reenable_advertising(struct hci_dev *hdev)
1407{
1408	struct hci_request req;
1409
1410	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1411	    list_empty(&hdev->adv_instances))
1412		return;
1413
1414	hci_req_init(&req, hdev);
1415
1416	if (hdev->cur_adv_instance) {
1417		__hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1418						true);
1419	} else {
1420		if (ext_adv_capable(hdev)) {
1421			__hci_req_start_ext_adv(&req, 0x00);
1422		} else {
1423			__hci_req_update_adv_data(&req, 0x00);
1424			__hci_req_update_scan_rsp_data(&req, 0x00);
1425			__hci_req_enable_advertising(&req);
1426		}
1427	}
1428
1429	hci_req_run(&req, adv_enable_complete);
1430}
1431
1432static void adv_timeout_expire(struct work_struct *work)
1433{
1434	struct hci_dev *hdev = container_of(work, struct hci_dev,
1435					    adv_instance_expire.work);
1436
1437	struct hci_request req;
1438	u8 instance;
1439
1440	BT_DBG("%s", hdev->name);
1441
1442	hci_dev_lock(hdev);
1443
1444	hdev->adv_instance_timeout = 0;
1445
1446	instance = hdev->cur_adv_instance;
1447	if (instance == 0x00)
1448		goto unlock;
1449
1450	hci_req_init(&req, hdev);
1451
1452	hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1453
1454	if (list_empty(&hdev->adv_instances))
1455		__hci_req_disable_advertising(&req);
1456
1457	hci_req_run(&req, NULL);
1458
1459unlock:
1460	hci_dev_unlock(hdev);
1461}
1462
1463int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
1464			   bool use_rpa, struct adv_info *adv_instance,
1465			   u8 *own_addr_type, bdaddr_t *rand_addr)
1466{
1467	int err;
1468
1469	bacpy(rand_addr, BDADDR_ANY);
1470
1471	/* If privacy is enabled use a resolvable private address. If
1472	 * current RPA has expired then generate a new one.
1473	 */
1474	if (use_rpa) {
1475		int to;
1476
1477		*own_addr_type = ADDR_LE_DEV_RANDOM;
1478
1479		if (adv_instance) {
1480			if (!adv_instance->rpa_expired &&
1481			    !bacmp(&adv_instance->random_addr, &hdev->rpa))
1482				return 0;
1483
1484			adv_instance->rpa_expired = false;
1485		} else {
1486			if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1487			    !bacmp(&hdev->random_addr, &hdev->rpa))
1488				return 0;
1489		}
1490
1491		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1492		if (err < 0) {
1493			BT_ERR("%s failed to generate new RPA", hdev->name);
1494			return err;
1495		}
1496
1497		bacpy(rand_addr, &hdev->rpa);
1498
1499		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1500		if (adv_instance)
1501			queue_delayed_work(hdev->workqueue,
1502					   &adv_instance->rpa_expired_cb, to);
1503		else
1504			queue_delayed_work(hdev->workqueue,
1505					   &hdev->rpa_expired, to);
1506
1507		return 0;
1508	}
1509
1510	/* In case of required privacy without resolvable private address,
1511	 * use an non-resolvable private address. This is useful for
1512	 * non-connectable advertising.
1513	 */
1514	if (require_privacy) {
1515		bdaddr_t nrpa;
1516
1517		while (true) {
1518			/* The non-resolvable private address is generated
1519			 * from random six bytes with the two most significant
1520			 * bits cleared.
1521			 */
1522			get_random_bytes(&nrpa, 6);
1523			nrpa.b[5] &= 0x3f;
1524
1525			/* The non-resolvable private address shall not be
1526			 * equal to the public address.
1527			 */
1528			if (bacmp(&hdev->bdaddr, &nrpa))
1529				break;
1530		}
1531
1532		*own_addr_type = ADDR_LE_DEV_RANDOM;
1533		bacpy(rand_addr, &nrpa);
1534
1535		return 0;
1536	}
1537
1538	/* No privacy so use a public address. */
1539	*own_addr_type = ADDR_LE_DEV_PUBLIC;
1540
1541	return 0;
1542}
1543
1544void __hci_req_clear_ext_adv_sets(struct hci_request *req)
1545{
1546	hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
1547}
1548
1549int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
1550{
1551	struct hci_cp_le_set_ext_adv_params cp;
1552	struct hci_dev *hdev = req->hdev;
1553	bool connectable;
1554	u32 flags;
1555	bdaddr_t random_addr;
1556	u8 own_addr_type;
1557	int err;
1558	struct adv_info *adv_instance;
1559	bool secondary_adv;
1560	/* In ext adv set param interval is 3 octets */
1561	const u8 adv_interval[3] = { 0x00, 0x08, 0x00 };
1562
1563	if (instance > 0) {
1564		adv_instance = hci_find_adv_instance(hdev, instance);
1565		if (!adv_instance)
1566			return -EINVAL;
1567	} else {
1568		adv_instance = NULL;
1569	}
1570
1571	flags = get_adv_instance_flags(hdev, instance);
1572
1573	/* If the "connectable" instance flag was not set, then choose between
1574	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1575	 */
1576	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1577		      mgmt_get_connectable(hdev);
1578
1579	if (!is_advertising_allowed(hdev, connectable))
1580		return -EPERM;
1581
1582	/* Set require_privacy to true only when non-connectable
1583	 * advertising is used. In that case it is fine to use a
1584	 * non-resolvable private address.
1585	 */
1586	err = hci_get_random_address(hdev, !connectable,
1587				     adv_use_rpa(hdev, flags), adv_instance,
1588				     &own_addr_type, &random_addr);
1589	if (err < 0)
1590		return err;
1591
1592	memset(&cp, 0, sizeof(cp));
1593
1594	memcpy(cp.min_interval, adv_interval, sizeof(cp.min_interval));
1595	memcpy(cp.max_interval, adv_interval, sizeof(cp.max_interval));
1596
1597	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1598
1599	if (connectable) {
1600		if (secondary_adv)
1601			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1602		else
1603			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1604	} else if (get_adv_instance_scan_rsp_len(hdev, instance)) {
1605		if (secondary_adv)
1606			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1607		else
1608			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1609	} else {
1610		if (secondary_adv)
1611			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1612		else
1613			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1614	}
1615
1616	cp.own_addr_type = own_addr_type;
1617	cp.channel_map = hdev->le_adv_channel_map;
1618	cp.tx_power = 127;
1619	cp.handle = instance;
1620
1621	if (flags & MGMT_ADV_FLAG_SEC_2M) {
1622		cp.primary_phy = HCI_ADV_PHY_1M;
1623		cp.secondary_phy = HCI_ADV_PHY_2M;
1624	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1625		cp.primary_phy = HCI_ADV_PHY_CODED;
1626		cp.secondary_phy = HCI_ADV_PHY_CODED;
1627	} else {
1628		/* In all other cases use 1M */
1629		cp.primary_phy = HCI_ADV_PHY_1M;
1630		cp.secondary_phy = HCI_ADV_PHY_1M;
1631	}
1632
1633	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
1634
1635	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
1636	    bacmp(&random_addr, BDADDR_ANY)) {
1637		struct hci_cp_le_set_adv_set_rand_addr cp;
1638
1639		/* Check if random address need to be updated */
1640		if (adv_instance) {
1641			if (!bacmp(&random_addr, &adv_instance->random_addr))
1642				return 0;
1643		} else {
1644			if (!bacmp(&random_addr, &hdev->random_addr))
1645				return 0;
1646		}
1647
1648		memset(&cp, 0, sizeof(cp));
1649
1650		cp.handle = 0;
1651		bacpy(&cp.bdaddr, &random_addr);
1652
1653		hci_req_add(req,
1654			    HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1655			    sizeof(cp), &cp);
1656	}
1657
1658	return 0;
1659}
1660
1661int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance)
1662{
1663	struct hci_dev *hdev = req->hdev;
1664	struct hci_cp_le_set_ext_adv_enable *cp;
1665	struct hci_cp_ext_adv_set *adv_set;
1666	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
1667	struct adv_info *adv_instance;
1668
1669	if (instance > 0) {
1670		adv_instance = hci_find_adv_instance(hdev, instance);
1671		if (!adv_instance)
1672			return -EINVAL;
1673	} else {
1674		adv_instance = NULL;
1675	}
1676
1677	cp = (void *) data;
1678	adv_set = (void *) cp->data;
1679
1680	memset(cp, 0, sizeof(*cp));
1681
1682	cp->enable = 0x01;
1683	cp->num_of_sets = 0x01;
1684
1685	memset(adv_set, 0, sizeof(*adv_set));
1686
1687	adv_set->handle = instance;
1688
1689	/* Set duration per instance since controller is responsible for
1690	 * scheduling it.
1691	 */
1692	if (adv_instance && adv_instance->duration) {
1693		u16 duration = adv_instance->duration * MSEC_PER_SEC;
1694
1695		/* Time = N * 10 ms */
1696		adv_set->duration = cpu_to_le16(duration / 10);
1697	}
1698
1699	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1700		    sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
1701		    data);
1702
1703	return 0;
1704}
1705
1706int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
1707{
1708	struct hci_dev *hdev = req->hdev;
1709	int err;
1710
1711	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1712		__hci_req_disable_advertising(req);
1713
1714	err = __hci_req_setup_ext_adv_instance(req, instance);
1715	if (err < 0)
1716		return err;
1717
1718	__hci_req_update_scan_rsp_data(req, instance);
1719	__hci_req_enable_ext_advertising(req, instance);
1720
1721	return 0;
1722}
1723
1724int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
1725				    bool force)
1726{
1727	struct hci_dev *hdev = req->hdev;
1728	struct adv_info *adv_instance = NULL;
1729	u16 timeout;
1730
1731	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1732	    list_empty(&hdev->adv_instances))
1733		return -EPERM;
1734
1735	if (hdev->adv_instance_timeout)
1736		return -EBUSY;
1737
1738	adv_instance = hci_find_adv_instance(hdev, instance);
1739	if (!adv_instance)
1740		return -ENOENT;
1741
1742	/* A zero timeout means unlimited advertising. As long as there is
1743	 * only one instance, duration should be ignored. We still set a timeout
1744	 * in case further instances are being added later on.
1745	 *
1746	 * If the remaining lifetime of the instance is more than the duration
1747	 * then the timeout corresponds to the duration, otherwise it will be
1748	 * reduced to the remaining instance lifetime.
1749	 */
1750	if (adv_instance->timeout == 0 ||
1751	    adv_instance->duration <= adv_instance->remaining_time)
1752		timeout = adv_instance->duration;
1753	else
1754		timeout = adv_instance->remaining_time;
1755
1756	/* The remaining time is being reduced unless the instance is being
1757	 * advertised without time limit.
1758	 */
1759	if (adv_instance->timeout)
1760		adv_instance->remaining_time =
1761				adv_instance->remaining_time - timeout;
1762
1763	/* Only use work for scheduling instances with legacy advertising */
1764	if (!ext_adv_capable(hdev)) {
1765		hdev->adv_instance_timeout = timeout;
1766		queue_delayed_work(hdev->req_workqueue,
1767			   &hdev->adv_instance_expire,
1768			   msecs_to_jiffies(timeout * 1000));
1769	}
1770
1771	/* If we're just re-scheduling the same instance again then do not
1772	 * execute any HCI commands. This happens when a single instance is
1773	 * being advertised.
1774	 */
1775	if (!force && hdev->cur_adv_instance == instance &&
1776	    hci_dev_test_flag(hdev, HCI_LE_ADV))
1777		return 0;
1778
1779	hdev->cur_adv_instance = instance;
1780	if (ext_adv_capable(hdev)) {
1781		__hci_req_start_ext_adv(req, instance);
1782	} else {
1783		__hci_req_update_adv_data(req, instance);
1784		__hci_req_update_scan_rsp_data(req, instance);
1785		__hci_req_enable_advertising(req);
1786	}
1787
1788	return 0;
1789}
1790
1791static void cancel_adv_timeout(struct hci_dev *hdev)
1792{
1793	if (hdev->adv_instance_timeout) {
1794		hdev->adv_instance_timeout = 0;
1795		cancel_delayed_work(&hdev->adv_instance_expire);
1796	}
1797}
1798
1799/* For a single instance:
1800 * - force == true: The instance will be removed even when its remaining
1801 *   lifetime is not zero.
1802 * - force == false: the instance will be deactivated but kept stored unless
1803 *   the remaining lifetime is zero.
1804 *
1805 * For instance == 0x00:
1806 * - force == true: All instances will be removed regardless of their timeout
1807 *   setting.
1808 * - force == false: Only instances that have a timeout will be removed.
1809 */
1810void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
1811				struct hci_request *req, u8 instance,
1812				bool force)
1813{
1814	struct adv_info *adv_instance, *n, *next_instance = NULL;
1815	int err;
1816	u8 rem_inst;
1817
1818	/* Cancel any timeout concerning the removed instance(s). */
1819	if (!instance || hdev->cur_adv_instance == instance)
1820		cancel_adv_timeout(hdev);
1821
1822	/* Get the next instance to advertise BEFORE we remove
1823	 * the current one. This can be the same instance again
1824	 * if there is only one instance.
1825	 */
1826	if (instance && hdev->cur_adv_instance == instance)
1827		next_instance = hci_get_next_instance(hdev, instance);
1828
1829	if (instance == 0x00) {
1830		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
1831					 list) {
1832			if (!(force || adv_instance->timeout))
1833				continue;
1834
1835			rem_inst = adv_instance->instance;
1836			err = hci_remove_adv_instance(hdev, rem_inst);
1837			if (!err)
1838				mgmt_advertising_removed(sk, hdev, rem_inst);
1839		}
1840	} else {
1841		adv_instance = hci_find_adv_instance(hdev, instance);
1842
1843		if (force || (adv_instance && adv_instance->timeout &&
1844			      !adv_instance->remaining_time)) {
1845			/* Don't advertise a removed instance. */
1846			if (next_instance &&
1847			    next_instance->instance == instance)
1848				next_instance = NULL;
1849
1850			err = hci_remove_adv_instance(hdev, instance);
1851			if (!err)
1852				mgmt_advertising_removed(sk, hdev, instance);
1853		}
1854	}
1855
1856	if (!req || !hdev_is_powered(hdev) ||
1857	    hci_dev_test_flag(hdev, HCI_ADVERTISING))
1858		return;
1859
1860	if (next_instance)
1861		__hci_req_schedule_adv_instance(req, next_instance->instance,
1862						false);
1863}
1864
1865static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
1866{
1867	struct hci_dev *hdev = req->hdev;
1868
1869	/* If we're advertising or initiating an LE connection we can't
1870	 * go ahead and change the random address at this time. This is
1871	 * because the eventual initiator address used for the
1872	 * subsequently created connection will be undefined (some
1873	 * controllers use the new address and others the one we had
1874	 * when the operation started).
1875	 *
1876	 * In this kind of scenario skip the update and let the random
1877	 * address be updated at the next cycle.
1878	 */
1879	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
1880	    hci_lookup_le_connect(hdev)) {
1881		BT_DBG("Deferring random address update");
1882		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1883		return;
1884	}
1885
1886	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
1887}
1888
1889int hci_update_random_address(struct hci_request *req, bool require_privacy,
1890			      bool use_rpa, u8 *own_addr_type)
1891{
1892	struct hci_dev *hdev = req->hdev;
1893	int err;
1894
1895	/* If privacy is enabled use a resolvable private address. If
1896	 * current RPA has expired or there is something else than
1897	 * the current RPA in use, then generate a new one.
1898	 */
1899	if (use_rpa) {
1900		int to;
1901
1902		*own_addr_type = ADDR_LE_DEV_RANDOM;
1903
1904		if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1905		    !bacmp(&hdev->random_addr, &hdev->rpa))
1906			return 0;
1907
1908		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1909		if (err < 0) {
1910			bt_dev_err(hdev, "failed to generate new RPA");
1911			return err;
1912		}
1913
1914		set_random_addr(req, &hdev->rpa);
1915
1916		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1917		queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
1918
1919		return 0;
1920	}
1921
1922	/* In case of required privacy without resolvable private address,
1923	 * use an non-resolvable private address. This is useful for active
1924	 * scanning and non-connectable advertising.
1925	 */
1926	if (require_privacy) {
1927		bdaddr_t nrpa;
1928
1929		while (true) {
1930			/* The non-resolvable private address is generated
1931			 * from random six bytes with the two most significant
1932			 * bits cleared.
1933			 */
1934			get_random_bytes(&nrpa, 6);
1935			nrpa.b[5] &= 0x3f;
1936
1937			/* The non-resolvable private address shall not be
1938			 * equal to the public address.
1939			 */
1940			if (bacmp(&hdev->bdaddr, &nrpa))
1941				break;
1942		}
1943
1944		*own_addr_type = ADDR_LE_DEV_RANDOM;
1945		set_random_addr(req, &nrpa);
1946		return 0;
1947	}
1948
1949	/* If forcing static address is in use or there is no public
1950	 * address use the static address as random address (but skip
1951	 * the HCI command if the current random address is already the
1952	 * static one.
1953	 *
1954	 * In case BR/EDR has been disabled on a dual-mode controller
1955	 * and a static address has been configured, then use that
1956	 * address instead of the public BR/EDR address.
1957	 */
1958	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1959	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1960	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1961	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
1962		*own_addr_type = ADDR_LE_DEV_RANDOM;
1963		if (bacmp(&hdev->static_addr, &hdev->random_addr))
1964			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
1965				    &hdev->static_addr);
1966		return 0;
1967	}
1968
1969	/* Neither privacy nor static address is being used so use a
1970	 * public address.
1971	 */
1972	*own_addr_type = ADDR_LE_DEV_PUBLIC;
1973
1974	return 0;
1975}
1976
1977static bool disconnected_whitelist_entries(struct hci_dev *hdev)
1978{
1979	struct bdaddr_list *b;
1980
1981	list_for_each_entry(b, &hdev->whitelist, list) {
1982		struct hci_conn *conn;
1983
1984		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
1985		if (!conn)
1986			return true;
1987
1988		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
1989			return true;
1990	}
1991
1992	return false;
1993}
1994
1995void __hci_req_update_scan(struct hci_request *req)
1996{
1997	struct hci_dev *hdev = req->hdev;
1998	u8 scan;
1999
2000	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2001		return;
2002
2003	if (!hdev_is_powered(hdev))
2004		return;
2005
2006	if (mgmt_powering_down(hdev))
2007		return;
2008
2009	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2010	    disconnected_whitelist_entries(hdev))
2011		scan = SCAN_PAGE;
2012	else
2013		scan = SCAN_DISABLED;
2014
2015	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2016		scan |= SCAN_INQUIRY;
2017
2018	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
2019	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
2020		return;
2021
2022	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
2023}
2024
2025static int update_scan(struct hci_request *req, unsigned long opt)
2026{
2027	hci_dev_lock(req->hdev);
2028	__hci_req_update_scan(req);
2029	hci_dev_unlock(req->hdev);
2030	return 0;
2031}
2032
2033static void scan_update_work(struct work_struct *work)
2034{
2035	struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
2036
2037	hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
2038}
2039
2040static int connectable_update(struct hci_request *req, unsigned long opt)
2041{
2042	struct hci_dev *hdev = req->hdev;
2043
2044	hci_dev_lock(hdev);
2045
2046	__hci_req_update_scan(req);
2047
2048	/* If BR/EDR is not enabled and we disable advertising as a
2049	 * by-product of disabling connectable, we need to update the
2050	 * advertising flags.
2051	 */
2052	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2053		__hci_req_update_adv_data(req, hdev->cur_adv_instance);
2054
2055	/* Update the advertising parameters if necessary */
2056	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2057	    !list_empty(&hdev->adv_instances)) {
2058		if (ext_adv_capable(hdev))
2059			__hci_req_start_ext_adv(req, hdev->cur_adv_instance);
2060		else
2061			__hci_req_enable_advertising(req);
2062	}
2063
2064	__hci_update_background_scan(req);
2065
2066	hci_dev_unlock(hdev);
2067
2068	return 0;
2069}
2070
2071static void connectable_update_work(struct work_struct *work)
2072{
2073	struct hci_dev *hdev = container_of(work, struct hci_dev,
2074					    connectable_update);
2075	u8 status;
2076
2077	hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
2078	mgmt_set_connectable_complete(hdev, status);
2079}
2080
2081static u8 get_service_classes(struct hci_dev *hdev)
2082{
2083	struct bt_uuid *uuid;
2084	u8 val = 0;
2085
2086	list_for_each_entry(uuid, &hdev->uuids, list)
2087		val |= uuid->svc_hint;
2088
2089	return val;
2090}
2091
2092void __hci_req_update_class(struct hci_request *req)
2093{
2094	struct hci_dev *hdev = req->hdev;
2095	u8 cod[3];
2096
2097	BT_DBG("%s", hdev->name);
2098
2099	if (!hdev_is_powered(hdev))
2100		return;
2101
2102	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2103		return;
2104
2105	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
2106		return;
2107
2108	cod[0] = hdev->minor_class;
2109	cod[1] = hdev->major_class;
2110	cod[2] = get_service_classes(hdev);
2111
2112	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
2113		cod[1] |= 0x20;
2114
2115	if (memcmp(cod, hdev->dev_class, 3) == 0)
2116		return;
2117
2118	hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
2119}
2120
2121static void write_iac(struct hci_request *req)
2122{
2123	struct hci_dev *hdev = req->hdev;
2124	struct hci_cp_write_current_iac_lap cp;
2125
2126	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2127		return;
2128
2129	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
2130		/* Limited discoverable mode */
2131		cp.num_iac = min_t(u8, hdev->num_iac, 2);
2132		cp.iac_lap[0] = 0x00;	/* LIAC */
2133		cp.iac_lap[1] = 0x8b;
2134		cp.iac_lap[2] = 0x9e;
2135		cp.iac_lap[3] = 0x33;	/* GIAC */
2136		cp.iac_lap[4] = 0x8b;
2137		cp.iac_lap[5] = 0x9e;
2138	} else {
2139		/* General discoverable mode */
2140		cp.num_iac = 1;
2141		cp.iac_lap[0] = 0x33;	/* GIAC */
2142		cp.iac_lap[1] = 0x8b;
2143		cp.iac_lap[2] = 0x9e;
2144	}
2145
2146	hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
2147		    (cp.num_iac * 3) + 1, &cp);
2148}
2149
2150static int discoverable_update(struct hci_request *req, unsigned long opt)
2151{
2152	struct hci_dev *hdev = req->hdev;
2153
2154	hci_dev_lock(hdev);
2155
2156	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2157		write_iac(req);
2158		__hci_req_update_scan(req);
2159		__hci_req_update_class(req);
2160	}
2161
2162	/* Advertising instances don't use the global discoverable setting, so
2163	 * only update AD if advertising was enabled using Set Advertising.
2164	 */
2165	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2166		__hci_req_update_adv_data(req, 0x00);
2167
2168		/* Discoverable mode affects the local advertising
2169		 * address in limited privacy mode.
2170		 */
2171		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
2172			if (ext_adv_capable(hdev))
2173				__hci_req_start_ext_adv(req, 0x00);
2174			else
2175				__hci_req_enable_advertising(req);
2176		}
2177	}
2178
2179	hci_dev_unlock(hdev);
2180
2181	return 0;
2182}
2183
2184static void discoverable_update_work(struct work_struct *work)
2185{
2186	struct hci_dev *hdev = container_of(work, struct hci_dev,
2187					    discoverable_update);
2188	u8 status;
2189
2190	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
2191	mgmt_set_discoverable_complete(hdev, status);
2192}
2193
2194void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
2195		      u8 reason)
2196{
2197	switch (conn->state) {
2198	case BT_CONNECTED:
2199	case BT_CONFIG:
2200		if (conn->type == AMP_LINK) {
2201			struct hci_cp_disconn_phy_link cp;
2202
2203			cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
2204			cp.reason = reason;
2205			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
2206				    &cp);
2207		} else {
2208			struct hci_cp_disconnect dc;
2209
2210			dc.handle = cpu_to_le16(conn->handle);
2211			dc.reason = reason;
2212			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
2213		}
2214
2215		conn->state = BT_DISCONN;
2216
2217		break;
2218	case BT_CONNECT:
2219		if (conn->type == LE_LINK) {
2220			if (test_bit(HCI_CONN_SCANNING, &conn->flags))
2221				break;
2222			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
2223				    0, NULL);
2224		} else if (conn->type == ACL_LINK) {
2225			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
2226				break;
2227			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
2228				    6, &conn->dst);
2229		}
2230		break;
2231	case BT_CONNECT2:
2232		if (conn->type == ACL_LINK) {
2233			struct hci_cp_reject_conn_req rej;
2234
2235			bacpy(&rej.bdaddr, &conn->dst);
2236			rej.reason = reason;
2237
2238			hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
2239				    sizeof(rej), &rej);
2240		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
2241			struct hci_cp_reject_sync_conn_req rej;
2242
2243			bacpy(&rej.bdaddr, &conn->dst);
2244
2245			/* SCO rejection has its own limited set of
2246			 * allowed error values (0x0D-0x0F) which isn't
2247			 * compatible with most values passed to this
2248			 * function. To be safe hard-code one of the
2249			 * values that's suitable for SCO.
2250			 */
2251			rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2252
2253			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
2254				    sizeof(rej), &rej);
2255		}
2256		break;
2257	default:
2258		conn->state = BT_CLOSED;
2259		break;
2260	}
2261}
2262
2263static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
2264{
2265	if (status)
2266		BT_DBG("Failed to abort connection: status 0x%2.2x", status);
2267}
2268
2269int hci_abort_conn(struct hci_conn *conn, u8 reason)
2270{
2271	struct hci_request req;
2272	int err;
2273
2274	hci_req_init(&req, conn->hdev);
2275
2276	__hci_abort_conn(&req, conn, reason);
2277
2278	err = hci_req_run(&req, abort_conn_complete);
2279	if (err && err != -ENODATA) {
2280		bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2281		return err;
2282	}
2283
2284	return 0;
2285}
2286
2287static int update_bg_scan(struct hci_request *req, unsigned long opt)
2288{
2289	hci_dev_lock(req->hdev);
2290	__hci_update_background_scan(req);
2291	hci_dev_unlock(req->hdev);
2292	return 0;
2293}
2294
2295static void bg_scan_update(struct work_struct *work)
2296{
2297	struct hci_dev *hdev = container_of(work, struct hci_dev,
2298					    bg_scan_update);
2299	struct hci_conn *conn;
2300	u8 status;
2301	int err;
2302
2303	err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
2304	if (!err)
2305		return;
2306
2307	hci_dev_lock(hdev);
2308
2309	conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
2310	if (conn)
2311		hci_le_conn_failed(conn, status);
2312
2313	hci_dev_unlock(hdev);
2314}
2315
2316static int le_scan_disable(struct hci_request *req, unsigned long opt)
2317{
2318	hci_req_add_le_scan_disable(req);
2319	return 0;
2320}
2321
2322static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2323{
2324	u8 length = opt;
2325	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
2326	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2327	struct hci_cp_inquiry cp;
2328
2329	BT_DBG("%s", req->hdev->name);
2330
2331	hci_dev_lock(req->hdev);
2332	hci_inquiry_cache_flush(req->hdev);
2333	hci_dev_unlock(req->hdev);
2334
2335	memset(&cp, 0, sizeof(cp));
2336
2337	if (req->hdev->discovery.limited)
2338		memcpy(&cp.lap, liac, sizeof(cp.lap));
2339	else
2340		memcpy(&cp.lap, giac, sizeof(cp.lap));
2341
2342	cp.length = length;
2343
2344	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2345
2346	return 0;
2347}
2348
2349static void le_scan_disable_work(struct work_struct *work)
2350{
2351	struct hci_dev *hdev = container_of(work, struct hci_dev,
2352					    le_scan_disable.work);
2353	u8 status;
2354
2355	BT_DBG("%s", hdev->name);
2356
2357	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2358		return;
2359
2360	cancel_delayed_work(&hdev->le_scan_restart);
2361
2362	hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
2363	if (status) {
2364		bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
2365			   status);
2366		return;
2367	}
2368
2369	hdev->discovery.scan_start = 0;
2370
2371	/* If we were running LE only scan, change discovery state. If
2372	 * we were running both LE and BR/EDR inquiry simultaneously,
2373	 * and BR/EDR inquiry is already finished, stop discovery,
2374	 * otherwise BR/EDR inquiry will stop discovery when finished.
2375	 * If we will resolve remote device name, do not change
2376	 * discovery state.
2377	 */
2378
2379	if (hdev->discovery.type == DISCOV_TYPE_LE)
2380		goto discov_stopped;
2381
2382	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
2383		return;
2384
2385	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
2386		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
2387		    hdev->discovery.state != DISCOVERY_RESOLVING)
2388			goto discov_stopped;
2389
2390		return;
2391	}
2392
2393	hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
2394		     HCI_CMD_TIMEOUT, &status);
2395	if (status) {
2396		bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
2397		goto discov_stopped;
2398	}
2399
2400	return;
2401
2402discov_stopped:
2403	hci_dev_lock(hdev);
2404	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2405	hci_dev_unlock(hdev);
2406}
2407
2408static int le_scan_restart(struct hci_request *req, unsigned long opt)
2409{
2410	struct hci_dev *hdev = req->hdev;
 
2411
2412	/* If controller is not scanning we are done. */
2413	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2414		return 0;
2415
2416	hci_req_add_le_scan_disable(req);
2417
2418	if (use_ext_scan(hdev)) {
2419		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
2420
2421		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
2422		ext_enable_cp.enable = LE_SCAN_ENABLE;
2423		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2424
2425		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
2426			    sizeof(ext_enable_cp), &ext_enable_cp);
2427	} else {
2428		struct hci_cp_le_set_scan_enable cp;
2429
2430		memset(&cp, 0, sizeof(cp));
2431		cp.enable = LE_SCAN_ENABLE;
2432		cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2433		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2434	}
2435
2436	return 0;
2437}
2438
2439static void le_scan_restart_work(struct work_struct *work)
2440{
2441	struct hci_dev *hdev = container_of(work, struct hci_dev,
2442					    le_scan_restart.work);
2443	unsigned long timeout, duration, scan_start, now;
2444	u8 status;
2445
2446	BT_DBG("%s", hdev->name);
2447
2448	hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
2449	if (status) {
2450		bt_dev_err(hdev, "failed to restart LE scan: status %d",
2451			   status);
2452		return;
2453	}
2454
2455	hci_dev_lock(hdev);
2456
2457	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
2458	    !hdev->discovery.scan_start)
2459		goto unlock;
2460
2461	/* When the scan was started, hdev->le_scan_disable has been queued
2462	 * after duration from scan_start. During scan restart this job
2463	 * has been canceled, and we need to queue it again after proper
2464	 * timeout, to make sure that scan does not run indefinitely.
2465	 */
2466	duration = hdev->discovery.scan_duration;
2467	scan_start = hdev->discovery.scan_start;
2468	now = jiffies;
2469	if (now - scan_start <= duration) {
2470		int elapsed;
2471
2472		if (now >= scan_start)
2473			elapsed = now - scan_start;
2474		else
2475			elapsed = ULONG_MAX - scan_start + now;
2476
2477		timeout = duration - elapsed;
2478	} else {
2479		timeout = 0;
2480	}
2481
2482	queue_delayed_work(hdev->req_workqueue,
2483			   &hdev->le_scan_disable, timeout);
2484
2485unlock:
2486	hci_dev_unlock(hdev);
2487}
2488
 
 
 
 
 
 
 
2489static int active_scan(struct hci_request *req, unsigned long opt)
2490{
2491	uint16_t interval = opt;
2492	struct hci_dev *hdev = req->hdev;
 
 
2493	u8 own_addr_type;
2494	int err;
2495
2496	BT_DBG("%s", hdev->name);
2497
2498	if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
2499		hci_dev_lock(hdev);
2500
2501		/* Don't let discovery abort an outgoing connection attempt
2502		 * that's using directed advertising.
2503		 */
2504		if (hci_lookup_le_connect(hdev)) {
2505			hci_dev_unlock(hdev);
2506			return -EBUSY;
2507		}
2508
2509		cancel_adv_timeout(hdev);
2510		hci_dev_unlock(hdev);
2511
2512		__hci_req_disable_advertising(req);
2513	}
2514
2515	/* If controller is scanning, it means the background scanning is
2516	 * running. Thus, we should temporarily stop it in order to set the
2517	 * discovery scanning parameters.
2518	 */
2519	if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
2520		hci_req_add_le_scan_disable(req);
2521
2522	/* All active scans will be done with either a resolvable private
2523	 * address (when privacy feature has been enabled) or non-resolvable
2524	 * private address.
2525	 */
2526	err = hci_update_random_address(req, true, scan_use_rpa(hdev),
2527					&own_addr_type);
2528	if (err < 0)
2529		own_addr_type = ADDR_LE_DEV_PUBLIC;
2530
2531	hci_req_start_scan(req, LE_SCAN_ACTIVE, interval, DISCOV_LE_SCAN_WIN,
2532			   own_addr_type, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2533	return 0;
2534}
2535
2536static int interleaved_discov(struct hci_request *req, unsigned long opt)
2537{
2538	int err;
2539
2540	BT_DBG("%s", req->hdev->name);
2541
2542	err = active_scan(req, opt);
2543	if (err)
2544		return err;
2545
2546	return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2547}
2548
2549static void start_discovery(struct hci_dev *hdev, u8 *status)
2550{
2551	unsigned long timeout;
2552
2553	BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2554
2555	switch (hdev->discovery.type) {
2556	case DISCOV_TYPE_BREDR:
2557		if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2558			hci_req_sync(hdev, bredr_inquiry,
2559				     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2560				     status);
2561		return;
2562	case DISCOV_TYPE_INTERLEAVED:
2563		/* When running simultaneous discovery, the LE scanning time
2564		 * should occupy the whole discovery time sine BR/EDR inquiry
2565		 * and LE scanning are scheduled by the controller.
2566		 *
2567		 * For interleaving discovery in comparison, BR/EDR inquiry
2568		 * and LE scanning are done sequentially with separate
2569		 * timeouts.
2570		 */
2571		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2572			     &hdev->quirks)) {
2573			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2574			/* During simultaneous discovery, we double LE scan
2575			 * interval. We must leave some time for the controller
2576			 * to do BR/EDR inquiry.
2577			 */
2578			hci_req_sync(hdev, interleaved_discov,
2579				     DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
2580				     status);
2581			break;
2582		}
2583
2584		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2585		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2586			     HCI_CMD_TIMEOUT, status);
2587		break;
2588	case DISCOV_TYPE_LE:
2589		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2590		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2591			     HCI_CMD_TIMEOUT, status);
2592		break;
2593	default:
2594		*status = HCI_ERROR_UNSPECIFIED;
2595		return;
2596	}
2597
2598	if (*status)
2599		return;
2600
2601	BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2602
2603	/* When service discovery is used and the controller has a
2604	 * strict duplicate filter, it is important to remember the
2605	 * start and duration of the scan. This is required for
2606	 * restarting scanning during the discovery phase.
2607	 */
2608	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
2609		     hdev->discovery.result_filtering) {
2610		hdev->discovery.scan_start = jiffies;
2611		hdev->discovery.scan_duration = timeout;
2612	}
2613
2614	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
2615			   timeout);
2616}
2617
2618bool hci_req_stop_discovery(struct hci_request *req)
2619{
2620	struct hci_dev *hdev = req->hdev;
2621	struct discovery_state *d = &hdev->discovery;
2622	struct hci_cp_remote_name_req_cancel cp;
2623	struct inquiry_entry *e;
2624	bool ret = false;
2625
2626	BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
2627
2628	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
2629		if (test_bit(HCI_INQUIRY, &hdev->flags))
2630			hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2631
2632		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2633			cancel_delayed_work(&hdev->le_scan_disable);
2634			hci_req_add_le_scan_disable(req);
2635		}
2636
2637		ret = true;
2638	} else {
2639		/* Passive scanning */
2640		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2641			hci_req_add_le_scan_disable(req);
2642			ret = true;
2643		}
2644	}
2645
2646	/* No further actions needed for LE-only discovery */
2647	if (d->type == DISCOV_TYPE_LE)
2648		return ret;
2649
2650	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
2651		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
2652						     NAME_PENDING);
2653		if (!e)
2654			return ret;
2655
2656		bacpy(&cp.bdaddr, &e->data.bdaddr);
2657		hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
2658			    &cp);
2659		ret = true;
2660	}
2661
2662	return ret;
2663}
2664
2665static int stop_discovery(struct hci_request *req, unsigned long opt)
2666{
2667	hci_dev_lock(req->hdev);
2668	hci_req_stop_discovery(req);
2669	hci_dev_unlock(req->hdev);
2670
2671	return 0;
2672}
2673
2674static void discov_update(struct work_struct *work)
2675{
2676	struct hci_dev *hdev = container_of(work, struct hci_dev,
2677					    discov_update);
2678	u8 status = 0;
2679
2680	switch (hdev->discovery.state) {
2681	case DISCOVERY_STARTING:
2682		start_discovery(hdev, &status);
2683		mgmt_start_discovery_complete(hdev, status);
2684		if (status)
2685			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2686		else
2687			hci_discovery_set_state(hdev, DISCOVERY_FINDING);
2688		break;
2689	case DISCOVERY_STOPPING:
2690		hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
2691		mgmt_stop_discovery_complete(hdev, status);
2692		if (!status)
2693			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2694		break;
2695	case DISCOVERY_STOPPED:
2696	default:
2697		return;
2698	}
2699}
2700
2701static void discov_off(struct work_struct *work)
2702{
2703	struct hci_dev *hdev = container_of(work, struct hci_dev,
2704					    discov_off.work);
2705
2706	BT_DBG("%s", hdev->name);
2707
2708	hci_dev_lock(hdev);
2709
2710	/* When discoverable timeout triggers, then just make sure
2711	 * the limited discoverable flag is cleared. Even in the case
2712	 * of a timeout triggered from general discoverable, it is
2713	 * safe to unconditionally clear the flag.
2714	 */
2715	hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2716	hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2717	hdev->discov_timeout = 0;
2718
2719	hci_dev_unlock(hdev);
2720
2721	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
2722	mgmt_new_settings(hdev);
2723}
2724
2725static int powered_update_hci(struct hci_request *req, unsigned long opt)
2726{
2727	struct hci_dev *hdev = req->hdev;
2728	u8 link_sec;
2729
2730	hci_dev_lock(hdev);
2731
2732	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
2733	    !lmp_host_ssp_capable(hdev)) {
2734		u8 mode = 0x01;
2735
2736		hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
2737
2738		if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
2739			u8 support = 0x01;
2740
2741			hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
2742				    sizeof(support), &support);
2743		}
2744	}
2745
2746	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
2747	    lmp_bredr_capable(hdev)) {
2748		struct hci_cp_write_le_host_supported cp;
2749
2750		cp.le = 0x01;
2751		cp.simul = 0x00;
2752
2753		/* Check first if we already have the right
2754		 * host state (host features set)
2755		 */
2756		if (cp.le != lmp_host_le_capable(hdev) ||
2757		    cp.simul != lmp_host_le_br_capable(hdev))
2758			hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2759				    sizeof(cp), &cp);
2760	}
2761
2762	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2763		/* Make sure the controller has a good default for
2764		 * advertising data. This also applies to the case
2765		 * where BR/EDR was toggled during the AUTO_OFF phase.
2766		 */
2767		if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2768		    list_empty(&hdev->adv_instances)) {
2769			int err;
 
2770
2771			if (ext_adv_capable(hdev)) {
2772				err = __hci_req_setup_ext_adv_instance(req,
2773								       0x00);
2774				if (!err)
2775					__hci_req_update_scan_rsp_data(req,
2776								       0x00);
2777			} else {
2778				err = 0;
2779				__hci_req_update_adv_data(req, 0x00);
2780				__hci_req_update_scan_rsp_data(req, 0x00);
2781			}
2782
2783			if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2784				if (!ext_adv_capable(hdev))
2785					__hci_req_enable_advertising(req);
2786				else if (!err)
2787					__hci_req_enable_ext_advertising(req,
2788									 0x00);
2789			}
2790		} else if (!list_empty(&hdev->adv_instances)) {
2791			struct adv_info *adv_instance;
2792
2793			adv_instance = list_first_entry(&hdev->adv_instances,
2794							struct adv_info, list);
2795			__hci_req_schedule_adv_instance(req,
2796							adv_instance->instance,
2797							true);
2798		}
2799	}
2800
2801	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2802	if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
2803		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
2804			    sizeof(link_sec), &link_sec);
2805
2806	if (lmp_bredr_capable(hdev)) {
2807		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2808			__hci_req_write_fast_connectable(req, true);
2809		else
2810			__hci_req_write_fast_connectable(req, false);
2811		__hci_req_update_scan(req);
2812		__hci_req_update_class(req);
2813		__hci_req_update_name(req);
2814		__hci_req_update_eir(req);
2815	}
2816
2817	hci_dev_unlock(hdev);
2818	return 0;
2819}
2820
2821int __hci_req_hci_power_on(struct hci_dev *hdev)
2822{
2823	/* Register the available SMP channels (BR/EDR and LE) only when
2824	 * successfully powering on the controller. This late
2825	 * registration is required so that LE SMP can clearly decide if
2826	 * the public address or static address is used.
2827	 */
2828	smp_register(hdev);
2829
2830	return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
2831			      NULL);
2832}
2833
2834void hci_request_setup(struct hci_dev *hdev)
2835{
2836	INIT_WORK(&hdev->discov_update, discov_update);
2837	INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
2838	INIT_WORK(&hdev->scan_update, scan_update_work);
2839	INIT_WORK(&hdev->connectable_update, connectable_update_work);
2840	INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
2841	INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
2842	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2843	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
2844	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
2845}
2846
2847void hci_request_cancel_all(struct hci_dev *hdev)
2848{
2849	hci_req_sync_cancel(hdev, ENODEV);
2850
2851	cancel_work_sync(&hdev->discov_update);
2852	cancel_work_sync(&hdev->bg_scan_update);
2853	cancel_work_sync(&hdev->scan_update);
2854	cancel_work_sync(&hdev->connectable_update);
2855	cancel_work_sync(&hdev->discoverable_update);
2856	cancel_delayed_work_sync(&hdev->discov_off);
2857	cancel_delayed_work_sync(&hdev->le_scan_disable);
2858	cancel_delayed_work_sync(&hdev->le_scan_restart);
2859
2860	if (hdev->adv_instance_timeout) {
2861		cancel_delayed_work_sync(&hdev->adv_instance_expire);
2862		hdev->adv_instance_timeout = 0;
2863	}
2864}
v4.10.11
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3
   4   Copyright (C) 2014 Intel Corporation
   5
   6   This program is free software; you can redistribute it and/or modify
   7   it under the terms of the GNU General Public License version 2 as
   8   published by the Free Software Foundation;
   9
  10   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  11   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  12   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  13   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  14   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  15   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  16   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  17   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  18
  19   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  20   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  21   SOFTWARE IS DISCLAIMED.
  22*/
  23
 
 
  24#include <net/bluetooth/bluetooth.h>
  25#include <net/bluetooth/hci_core.h>
  26#include <net/bluetooth/mgmt.h>
  27
  28#include "smp.h"
  29#include "hci_request.h"
  30
  31#define HCI_REQ_DONE	  0
  32#define HCI_REQ_PEND	  1
  33#define HCI_REQ_CANCELED  2
  34
  35void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
  36{
  37	skb_queue_head_init(&req->cmd_q);
  38	req->hdev = hdev;
  39	req->err = 0;
  40}
  41
 
 
 
 
 
 
 
 
 
 
  42static int req_run(struct hci_request *req, hci_req_complete_t complete,
  43		   hci_req_complete_skb_t complete_skb)
  44{
  45	struct hci_dev *hdev = req->hdev;
  46	struct sk_buff *skb;
  47	unsigned long flags;
  48
  49	BT_DBG("length %u", skb_queue_len(&req->cmd_q));
  50
  51	/* If an error occurred during request building, remove all HCI
  52	 * commands queued on the HCI request queue.
  53	 */
  54	if (req->err) {
  55		skb_queue_purge(&req->cmd_q);
  56		return req->err;
  57	}
  58
  59	/* Do not allow empty requests */
  60	if (skb_queue_empty(&req->cmd_q))
  61		return -ENODATA;
  62
  63	skb = skb_peek_tail(&req->cmd_q);
  64	if (complete) {
  65		bt_cb(skb)->hci.req_complete = complete;
  66	} else if (complete_skb) {
  67		bt_cb(skb)->hci.req_complete_skb = complete_skb;
  68		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
  69	}
  70
  71	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
  72	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
  73	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
  74
  75	queue_work(hdev->workqueue, &hdev->cmd_work);
  76
  77	return 0;
  78}
  79
  80int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
  81{
  82	return req_run(req, complete, NULL);
  83}
  84
  85int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
  86{
  87	return req_run(req, NULL, complete);
  88}
  89
  90static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
  91				  struct sk_buff *skb)
  92{
  93	BT_DBG("%s result 0x%2.2x", hdev->name, result);
  94
  95	if (hdev->req_status == HCI_REQ_PEND) {
  96		hdev->req_result = result;
  97		hdev->req_status = HCI_REQ_DONE;
  98		if (skb)
  99			hdev->req_skb = skb_get(skb);
 100		wake_up_interruptible(&hdev->req_wait_q);
 101	}
 102}
 103
 104void hci_req_sync_cancel(struct hci_dev *hdev, int err)
 105{
 106	BT_DBG("%s err 0x%2.2x", hdev->name, err);
 107
 108	if (hdev->req_status == HCI_REQ_PEND) {
 109		hdev->req_result = err;
 110		hdev->req_status = HCI_REQ_CANCELED;
 111		wake_up_interruptible(&hdev->req_wait_q);
 112	}
 113}
 114
 115struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
 116				  const void *param, u8 event, u32 timeout)
 117{
 118	DECLARE_WAITQUEUE(wait, current);
 119	struct hci_request req;
 120	struct sk_buff *skb;
 121	int err = 0;
 122
 123	BT_DBG("%s", hdev->name);
 124
 125	hci_req_init(&req, hdev);
 126
 127	hci_req_add_ev(&req, opcode, plen, param, event);
 128
 129	hdev->req_status = HCI_REQ_PEND;
 130
 131	add_wait_queue(&hdev->req_wait_q, &wait);
 132	set_current_state(TASK_INTERRUPTIBLE);
 133
 134	err = hci_req_run_skb(&req, hci_req_sync_complete);
 135	if (err < 0) {
 136		remove_wait_queue(&hdev->req_wait_q, &wait);
 137		set_current_state(TASK_RUNNING);
 138		return ERR_PTR(err);
 139	}
 140
 141	schedule_timeout(timeout);
 
 142
 143	remove_wait_queue(&hdev->req_wait_q, &wait);
 144
 145	if (signal_pending(current))
 146		return ERR_PTR(-EINTR);
 147
 148	switch (hdev->req_status) {
 149	case HCI_REQ_DONE:
 150		err = -bt_to_errno(hdev->req_result);
 151		break;
 152
 153	case HCI_REQ_CANCELED:
 154		err = -hdev->req_result;
 155		break;
 156
 157	default:
 158		err = -ETIMEDOUT;
 159		break;
 160	}
 161
 162	hdev->req_status = hdev->req_result = 0;
 163	skb = hdev->req_skb;
 164	hdev->req_skb = NULL;
 165
 166	BT_DBG("%s end: err %d", hdev->name, err);
 167
 168	if (err < 0) {
 169		kfree_skb(skb);
 170		return ERR_PTR(err);
 171	}
 172
 173	if (!skb)
 174		return ERR_PTR(-ENODATA);
 175
 176	return skb;
 177}
 178EXPORT_SYMBOL(__hci_cmd_sync_ev);
 179
 180struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
 181			       const void *param, u32 timeout)
 182{
 183	return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
 184}
 185EXPORT_SYMBOL(__hci_cmd_sync);
 186
 187/* Execute request and wait for completion. */
 188int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
 189						     unsigned long opt),
 190		   unsigned long opt, u32 timeout, u8 *hci_status)
 191{
 192	struct hci_request req;
 193	DECLARE_WAITQUEUE(wait, current);
 194	int err = 0;
 195
 196	BT_DBG("%s start", hdev->name);
 197
 198	hci_req_init(&req, hdev);
 199
 200	hdev->req_status = HCI_REQ_PEND;
 201
 202	err = func(&req, opt);
 203	if (err) {
 204		if (hci_status)
 205			*hci_status = HCI_ERROR_UNSPECIFIED;
 206		return err;
 207	}
 208
 209	add_wait_queue(&hdev->req_wait_q, &wait);
 210	set_current_state(TASK_INTERRUPTIBLE);
 211
 212	err = hci_req_run_skb(&req, hci_req_sync_complete);
 213	if (err < 0) {
 214		hdev->req_status = 0;
 215
 216		remove_wait_queue(&hdev->req_wait_q, &wait);
 217		set_current_state(TASK_RUNNING);
 218
 219		/* ENODATA means the HCI request command queue is empty.
 220		 * This can happen when a request with conditionals doesn't
 221		 * trigger any commands to be sent. This is normal behavior
 222		 * and should not trigger an error return.
 223		 */
 224		if (err == -ENODATA) {
 225			if (hci_status)
 226				*hci_status = 0;
 227			return 0;
 228		}
 229
 230		if (hci_status)
 231			*hci_status = HCI_ERROR_UNSPECIFIED;
 232
 233		return err;
 234	}
 235
 236	schedule_timeout(timeout);
 
 237
 238	remove_wait_queue(&hdev->req_wait_q, &wait);
 239
 240	if (signal_pending(current))
 241		return -EINTR;
 242
 243	switch (hdev->req_status) {
 244	case HCI_REQ_DONE:
 245		err = -bt_to_errno(hdev->req_result);
 246		if (hci_status)
 247			*hci_status = hdev->req_result;
 248		break;
 249
 250	case HCI_REQ_CANCELED:
 251		err = -hdev->req_result;
 252		if (hci_status)
 253			*hci_status = HCI_ERROR_UNSPECIFIED;
 254		break;
 255
 256	default:
 257		err = -ETIMEDOUT;
 258		if (hci_status)
 259			*hci_status = HCI_ERROR_UNSPECIFIED;
 260		break;
 261	}
 262
 263	kfree_skb(hdev->req_skb);
 264	hdev->req_skb = NULL;
 265	hdev->req_status = hdev->req_result = 0;
 266
 267	BT_DBG("%s end: err %d", hdev->name, err);
 268
 269	return err;
 270}
 271
 272int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
 273						  unsigned long opt),
 274		 unsigned long opt, u32 timeout, u8 *hci_status)
 275{
 276	int ret;
 277
 278	if (!test_bit(HCI_UP, &hdev->flags))
 279		return -ENETDOWN;
 280
 281	/* Serialize all requests */
 282	hci_req_sync_lock(hdev);
 283	ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
 284	hci_req_sync_unlock(hdev);
 285
 286	return ret;
 287}
 288
 289struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
 290				const void *param)
 291{
 292	int len = HCI_COMMAND_HDR_SIZE + plen;
 293	struct hci_command_hdr *hdr;
 294	struct sk_buff *skb;
 295
 296	skb = bt_skb_alloc(len, GFP_ATOMIC);
 297	if (!skb)
 298		return NULL;
 299
 300	hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
 301	hdr->opcode = cpu_to_le16(opcode);
 302	hdr->plen   = plen;
 303
 304	if (plen)
 305		memcpy(skb_put(skb, plen), param, plen);
 306
 307	BT_DBG("skb len %d", skb->len);
 308
 309	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
 310	hci_skb_opcode(skb) = opcode;
 311
 312	return skb;
 313}
 314
 315/* Queue a command to an asynchronous HCI request */
 316void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
 317		    const void *param, u8 event)
 318{
 319	struct hci_dev *hdev = req->hdev;
 320	struct sk_buff *skb;
 321
 322	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
 323
 324	/* If an error occurred during request building, there is no point in
 325	 * queueing the HCI command. We can simply return.
 326	 */
 327	if (req->err)
 328		return;
 329
 330	skb = hci_prepare_cmd(hdev, opcode, plen, param);
 331	if (!skb) {
 332		BT_ERR("%s no memory for command (opcode 0x%4.4x)",
 333		       hdev->name, opcode);
 334		req->err = -ENOMEM;
 335		return;
 336	}
 337
 338	if (skb_queue_empty(&req->cmd_q))
 339		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
 340
 341	bt_cb(skb)->hci.req_event = event;
 342
 343	skb_queue_tail(&req->cmd_q, skb);
 344}
 345
 346void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
 347		 const void *param)
 348{
 349	hci_req_add_ev(req, opcode, plen, param, 0);
 350}
 351
 352void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
 353{
 354	struct hci_dev *hdev = req->hdev;
 355	struct hci_cp_write_page_scan_activity acp;
 356	u8 type;
 357
 358	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
 359		return;
 360
 361	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 362		return;
 363
 364	if (enable) {
 365		type = PAGE_SCAN_TYPE_INTERLACED;
 366
 367		/* 160 msec page scan interval */
 368		acp.interval = cpu_to_le16(0x0100);
 369	} else {
 370		type = PAGE_SCAN_TYPE_STANDARD;	/* default */
 371
 372		/* default 1.28 sec page scan */
 373		acp.interval = cpu_to_le16(0x0800);
 374	}
 375
 376	acp.window = cpu_to_le16(0x0012);
 377
 378	if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
 379	    __cpu_to_le16(hdev->page_scan_window) != acp.window)
 380		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
 381			    sizeof(acp), &acp);
 382
 383	if (hdev->page_scan_type != type)
 384		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
 385}
 386
 387/* This function controls the background scanning based on hdev->pend_le_conns
 388 * list. If there are pending LE connection we start the background scanning,
 389 * otherwise we stop it.
 390 *
 391 * This function requires the caller holds hdev->lock.
 392 */
 393static void __hci_update_background_scan(struct hci_request *req)
 394{
 395	struct hci_dev *hdev = req->hdev;
 396
 397	if (!test_bit(HCI_UP, &hdev->flags) ||
 398	    test_bit(HCI_INIT, &hdev->flags) ||
 399	    hci_dev_test_flag(hdev, HCI_SETUP) ||
 400	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
 401	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
 402	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
 403		return;
 404
 405	/* No point in doing scanning if LE support hasn't been enabled */
 406	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 407		return;
 408
 409	/* If discovery is active don't interfere with it */
 410	if (hdev->discovery.state != DISCOVERY_STOPPED)
 411		return;
 412
 413	/* Reset RSSI and UUID filters when starting background scanning
 414	 * since these filters are meant for service discovery only.
 415	 *
 416	 * The Start Discovery and Start Service Discovery operations
 417	 * ensure to set proper values for RSSI threshold and UUID
 418	 * filter list. So it is safe to just reset them here.
 419	 */
 420	hci_discovery_filter_clear(hdev);
 421
 422	if (list_empty(&hdev->pend_le_conns) &&
 423	    list_empty(&hdev->pend_le_reports)) {
 424		/* If there is no pending LE connections or devices
 425		 * to be scanned for, we should stop the background
 426		 * scanning.
 427		 */
 428
 429		/* If controller is not scanning we are done. */
 430		if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
 431			return;
 432
 433		hci_req_add_le_scan_disable(req);
 434
 435		BT_DBG("%s stopping background scanning", hdev->name);
 436	} else {
 437		/* If there is at least one pending LE connection, we should
 438		 * keep the background scan running.
 439		 */
 440
 441		/* If controller is connecting, we should not start scanning
 442		 * since some controllers are not able to scan and connect at
 443		 * the same time.
 444		 */
 445		if (hci_lookup_le_connect(hdev))
 446			return;
 447
 448		/* If controller is currently scanning, we stop it to ensure we
 449		 * don't miss any advertising (due to duplicates filter).
 450		 */
 451		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
 452			hci_req_add_le_scan_disable(req);
 453
 454		hci_req_add_le_passive_scan(req);
 455
 456		BT_DBG("%s starting background scanning", hdev->name);
 457	}
 458}
 459
 460void __hci_req_update_name(struct hci_request *req)
 461{
 462	struct hci_dev *hdev = req->hdev;
 463	struct hci_cp_write_local_name cp;
 464
 465	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
 466
 467	hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
 468}
 469
 470#define PNP_INFO_SVCLASS_ID		0x1200
 471
 472static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 473{
 474	u8 *ptr = data, *uuids_start = NULL;
 475	struct bt_uuid *uuid;
 476
 477	if (len < 4)
 478		return ptr;
 479
 480	list_for_each_entry(uuid, &hdev->uuids, list) {
 481		u16 uuid16;
 482
 483		if (uuid->size != 16)
 484			continue;
 485
 486		uuid16 = get_unaligned_le16(&uuid->uuid[12]);
 487		if (uuid16 < 0x1100)
 488			continue;
 489
 490		if (uuid16 == PNP_INFO_SVCLASS_ID)
 491			continue;
 492
 493		if (!uuids_start) {
 494			uuids_start = ptr;
 495			uuids_start[0] = 1;
 496			uuids_start[1] = EIR_UUID16_ALL;
 497			ptr += 2;
 498		}
 499
 500		/* Stop if not enough space to put next UUID */
 501		if ((ptr - data) + sizeof(u16) > len) {
 502			uuids_start[1] = EIR_UUID16_SOME;
 503			break;
 504		}
 505
 506		*ptr++ = (uuid16 & 0x00ff);
 507		*ptr++ = (uuid16 & 0xff00) >> 8;
 508		uuids_start[0] += sizeof(uuid16);
 509	}
 510
 511	return ptr;
 512}
 513
 514static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 515{
 516	u8 *ptr = data, *uuids_start = NULL;
 517	struct bt_uuid *uuid;
 518
 519	if (len < 6)
 520		return ptr;
 521
 522	list_for_each_entry(uuid, &hdev->uuids, list) {
 523		if (uuid->size != 32)
 524			continue;
 525
 526		if (!uuids_start) {
 527			uuids_start = ptr;
 528			uuids_start[0] = 1;
 529			uuids_start[1] = EIR_UUID32_ALL;
 530			ptr += 2;
 531		}
 532
 533		/* Stop if not enough space to put next UUID */
 534		if ((ptr - data) + sizeof(u32) > len) {
 535			uuids_start[1] = EIR_UUID32_SOME;
 536			break;
 537		}
 538
 539		memcpy(ptr, &uuid->uuid[12], sizeof(u32));
 540		ptr += sizeof(u32);
 541		uuids_start[0] += sizeof(u32);
 542	}
 543
 544	return ptr;
 545}
 546
 547static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 548{
 549	u8 *ptr = data, *uuids_start = NULL;
 550	struct bt_uuid *uuid;
 551
 552	if (len < 18)
 553		return ptr;
 554
 555	list_for_each_entry(uuid, &hdev->uuids, list) {
 556		if (uuid->size != 128)
 557			continue;
 558
 559		if (!uuids_start) {
 560			uuids_start = ptr;
 561			uuids_start[0] = 1;
 562			uuids_start[1] = EIR_UUID128_ALL;
 563			ptr += 2;
 564		}
 565
 566		/* Stop if not enough space to put next UUID */
 567		if ((ptr - data) + 16 > len) {
 568			uuids_start[1] = EIR_UUID128_SOME;
 569			break;
 570		}
 571
 572		memcpy(ptr, uuid->uuid, 16);
 573		ptr += 16;
 574		uuids_start[0] += 16;
 575	}
 576
 577	return ptr;
 578}
 579
 580static void create_eir(struct hci_dev *hdev, u8 *data)
 581{
 582	u8 *ptr = data;
 583	size_t name_len;
 584
 585	name_len = strlen(hdev->dev_name);
 586
 587	if (name_len > 0) {
 588		/* EIR Data type */
 589		if (name_len > 48) {
 590			name_len = 48;
 591			ptr[1] = EIR_NAME_SHORT;
 592		} else
 593			ptr[1] = EIR_NAME_COMPLETE;
 594
 595		/* EIR Data length */
 596		ptr[0] = name_len + 1;
 597
 598		memcpy(ptr + 2, hdev->dev_name, name_len);
 599
 600		ptr += (name_len + 2);
 601	}
 602
 603	if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
 604		ptr[0] = 2;
 605		ptr[1] = EIR_TX_POWER;
 606		ptr[2] = (u8) hdev->inq_tx_power;
 607
 608		ptr += 3;
 609	}
 610
 611	if (hdev->devid_source > 0) {
 612		ptr[0] = 9;
 613		ptr[1] = EIR_DEVICE_ID;
 614
 615		put_unaligned_le16(hdev->devid_source, ptr + 2);
 616		put_unaligned_le16(hdev->devid_vendor, ptr + 4);
 617		put_unaligned_le16(hdev->devid_product, ptr + 6);
 618		put_unaligned_le16(hdev->devid_version, ptr + 8);
 619
 620		ptr += 10;
 621	}
 622
 623	ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 624	ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 625	ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 626}
 627
 628void __hci_req_update_eir(struct hci_request *req)
 629{
 630	struct hci_dev *hdev = req->hdev;
 631	struct hci_cp_write_eir cp;
 632
 633	if (!hdev_is_powered(hdev))
 634		return;
 635
 636	if (!lmp_ext_inq_capable(hdev))
 637		return;
 638
 639	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
 640		return;
 641
 642	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
 643		return;
 644
 645	memset(&cp, 0, sizeof(cp));
 646
 647	create_eir(hdev, cp.data);
 648
 649	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
 650		return;
 651
 652	memcpy(hdev->eir, cp.data, sizeof(cp.data));
 653
 654	hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 655}
 656
 657void hci_req_add_le_scan_disable(struct hci_request *req)
 658{
 659	struct hci_cp_le_set_scan_enable cp;
 660
 661	memset(&cp, 0, sizeof(cp));
 662	cp.enable = LE_SCAN_DISABLE;
 663	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
 
 
 
 
 
 
 
 
 
 
 
 664}
 665
 666static void add_to_white_list(struct hci_request *req,
 667			      struct hci_conn_params *params)
 668{
 669	struct hci_cp_le_add_to_white_list cp;
 670
 671	cp.bdaddr_type = params->addr_type;
 672	bacpy(&cp.bdaddr, &params->addr);
 673
 674	hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
 675}
 676
 677static u8 update_white_list(struct hci_request *req)
 678{
 679	struct hci_dev *hdev = req->hdev;
 680	struct hci_conn_params *params;
 681	struct bdaddr_list *b;
 682	uint8_t white_list_entries = 0;
 683
 684	/* Go through the current white list programmed into the
 685	 * controller one by one and check if that address is still
 686	 * in the list of pending connections or list of devices to
 687	 * report. If not present in either list, then queue the
 688	 * command to remove it from the controller.
 689	 */
 690	list_for_each_entry(b, &hdev->le_white_list, list) {
 691		/* If the device is neither in pend_le_conns nor
 692		 * pend_le_reports then remove it from the whitelist.
 693		 */
 694		if (!hci_pend_le_action_lookup(&hdev->pend_le_conns,
 695					       &b->bdaddr, b->bdaddr_type) &&
 696		    !hci_pend_le_action_lookup(&hdev->pend_le_reports,
 697					       &b->bdaddr, b->bdaddr_type)) {
 698			struct hci_cp_le_del_from_white_list cp;
 699
 700			cp.bdaddr_type = b->bdaddr_type;
 701			bacpy(&cp.bdaddr, &b->bdaddr);
 702
 703			hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
 704				    sizeof(cp), &cp);
 705			continue;
 706		}
 707
 708		if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
 709			/* White list can not be used with RPAs */
 710			return 0x00;
 711		}
 712
 713		white_list_entries++;
 714	}
 715
 716	/* Since all no longer valid white list entries have been
 717	 * removed, walk through the list of pending connections
 718	 * and ensure that any new device gets programmed into
 719	 * the controller.
 720	 *
 721	 * If the list of the devices is larger than the list of
 722	 * available white list entries in the controller, then
 723	 * just abort and return filer policy value to not use the
 724	 * white list.
 725	 */
 726	list_for_each_entry(params, &hdev->pend_le_conns, action) {
 727		if (hci_bdaddr_list_lookup(&hdev->le_white_list,
 728					   &params->addr, params->addr_type))
 729			continue;
 730
 731		if (white_list_entries >= hdev->le_white_list_size) {
 732			/* Select filter policy to accept all advertising */
 733			return 0x00;
 734		}
 735
 736		if (hci_find_irk_by_addr(hdev, &params->addr,
 737					 params->addr_type)) {
 738			/* White list can not be used with RPAs */
 739			return 0x00;
 740		}
 741
 742		white_list_entries++;
 743		add_to_white_list(req, params);
 744	}
 745
 746	/* After adding all new pending connections, walk through
 747	 * the list of pending reports and also add these to the
 748	 * white list if there is still space.
 749	 */
 750	list_for_each_entry(params, &hdev->pend_le_reports, action) {
 751		if (hci_bdaddr_list_lookup(&hdev->le_white_list,
 752					   &params->addr, params->addr_type))
 753			continue;
 754
 755		if (white_list_entries >= hdev->le_white_list_size) {
 756			/* Select filter policy to accept all advertising */
 757			return 0x00;
 758		}
 759
 760		if (hci_find_irk_by_addr(hdev, &params->addr,
 761					 params->addr_type)) {
 762			/* White list can not be used with RPAs */
 763			return 0x00;
 764		}
 765
 766		white_list_entries++;
 767		add_to_white_list(req, params);
 768	}
 769
 770	/* Select filter policy to use white list */
 771	return 0x01;
 772}
 773
 774static bool scan_use_rpa(struct hci_dev *hdev)
 775{
 776	return hci_dev_test_flag(hdev, HCI_PRIVACY);
 777}
 778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 779void hci_req_add_le_passive_scan(struct hci_request *req)
 780{
 781	struct hci_cp_le_set_scan_param param_cp;
 782	struct hci_cp_le_set_scan_enable enable_cp;
 783	struct hci_dev *hdev = req->hdev;
 784	u8 own_addr_type;
 785	u8 filter_policy;
 786
 787	/* Set require_privacy to false since no SCAN_REQ are send
 788	 * during passive scanning. Not using an non-resolvable address
 789	 * here is important so that peer devices using direct
 790	 * advertising with our address will be correctly reported
 791	 * by the controller.
 792	 */
 793	if (hci_update_random_address(req, false, scan_use_rpa(hdev),
 794				      &own_addr_type))
 795		return;
 796
 797	/* Adding or removing entries from the white list must
 798	 * happen before enabling scanning. The controller does
 799	 * not allow white list modification while scanning.
 800	 */
 801	filter_policy = update_white_list(req);
 802
 803	/* When the controller is using random resolvable addresses and
 804	 * with that having LE privacy enabled, then controllers with
 805	 * Extended Scanner Filter Policies support can now enable support
 806	 * for handling directed advertising.
 807	 *
 808	 * So instead of using filter polices 0x00 (no whitelist)
 809	 * and 0x01 (whitelist enabled) use the new filter policies
 810	 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
 811	 */
 812	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
 813	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
 814		filter_policy |= 0x02;
 815
 816	memset(&param_cp, 0, sizeof(param_cp));
 817	param_cp.type = LE_SCAN_PASSIVE;
 818	param_cp.interval = cpu_to_le16(hdev->le_scan_interval);
 819	param_cp.window = cpu_to_le16(hdev->le_scan_window);
 820	param_cp.own_address_type = own_addr_type;
 821	param_cp.filter_policy = filter_policy;
 822	hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
 823		    &param_cp);
 824
 825	memset(&enable_cp, 0, sizeof(enable_cp));
 826	enable_cp.enable = LE_SCAN_ENABLE;
 827	enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
 828	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
 829		    &enable_cp);
 
 
 
 
 
 
 830}
 831
 832static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
 833{
 834	u8 instance = hdev->cur_adv_instance;
 835	struct adv_info *adv_instance;
 836
 837	/* Ignore instance 0 */
 838	if (instance == 0x00)
 839		return 0;
 840
 841	adv_instance = hci_find_adv_instance(hdev, instance);
 842	if (!adv_instance)
 843		return 0;
 844
 845	/* TODO: Take into account the "appearance" and "local-name" flags here.
 846	 * These are currently being ignored as they are not supported.
 847	 */
 848	return adv_instance->scan_rsp_len;
 849}
 850
 851void __hci_req_disable_advertising(struct hci_request *req)
 852{
 853	u8 enable = 0x00;
 
 
 
 
 
 854
 855	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
 
 
 
 
 
 856}
 857
 858static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
 859{
 860	u32 flags;
 861	struct adv_info *adv_instance;
 862
 863	if (instance == 0x00) {
 864		/* Instance 0 always manages the "Tx Power" and "Flags"
 865		 * fields
 866		 */
 867		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
 868
 869		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
 870		 * corresponds to the "connectable" instance flag.
 871		 */
 872		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
 873			flags |= MGMT_ADV_FLAG_CONNECTABLE;
 874
 875		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
 876			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
 877		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
 878			flags |= MGMT_ADV_FLAG_DISCOV;
 879
 880		return flags;
 881	}
 882
 883	adv_instance = hci_find_adv_instance(hdev, instance);
 884
 885	/* Return 0 when we got an invalid instance identifier. */
 886	if (!adv_instance)
 887		return 0;
 888
 889	return adv_instance->flags;
 890}
 891
 892static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
 893{
 894	/* If privacy is not enabled don't use RPA */
 895	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
 896		return false;
 897
 898	/* If basic privacy mode is enabled use RPA */
 899	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
 900		return true;
 901
 902	/* If limited privacy mode is enabled don't use RPA if we're
 903	 * both discoverable and bondable.
 904	 */
 905	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
 906	    hci_dev_test_flag(hdev, HCI_BONDABLE))
 907		return false;
 908
 909	/* We're neither bondable nor discoverable in the limited
 910	 * privacy mode, therefore use RPA.
 911	 */
 912	return true;
 913}
 914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 915void __hci_req_enable_advertising(struct hci_request *req)
 916{
 917	struct hci_dev *hdev = req->hdev;
 918	struct hci_cp_le_set_adv_param cp;
 919	u8 own_addr_type, enable = 0x01;
 920	bool connectable;
 
 921	u32 flags;
 922
 923	if (hci_conn_num(hdev, LE_LINK) > 0)
 
 
 
 
 
 
 
 
 924		return;
 925
 926	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
 927		__hci_req_disable_advertising(req);
 928
 929	/* Clear the HCI_LE_ADV bit temporarily so that the
 930	 * hci_update_random_address knows that it's safe to go ahead
 931	 * and write a new random address. The flag will be set back on
 932	 * as soon as the SET_ADV_ENABLE HCI command completes.
 933	 */
 934	hci_dev_clear_flag(hdev, HCI_LE_ADV);
 935
 936	flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
 937
 938	/* If the "connectable" instance flag was not set, then choose between
 939	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
 940	 */
 941	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
 942		      mgmt_get_connectable(hdev);
 943
 944	/* Set require_privacy to true only when non-connectable
 945	 * advertising is used. In that case it is fine to use a
 946	 * non-resolvable private address.
 947	 */
 948	if (hci_update_random_address(req, !connectable,
 949				      adv_use_rpa(hdev, flags),
 950				      &own_addr_type) < 0)
 951		return;
 952
 953	memset(&cp, 0, sizeof(cp));
 954	cp.min_interval = cpu_to_le16(hdev->le_adv_min_interval);
 955	cp.max_interval = cpu_to_le16(hdev->le_adv_max_interval);
 956
 957	if (connectable)
 958		cp.type = LE_ADV_IND;
 959	else if (get_cur_adv_instance_scan_rsp_len(hdev))
 960		cp.type = LE_ADV_SCAN_IND;
 961	else
 962		cp.type = LE_ADV_NONCONN_IND;
 963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 964	cp.own_address_type = own_addr_type;
 965	cp.channel_map = hdev->le_adv_channel_map;
 966
 967	hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
 968
 969	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
 970}
 971
 972u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
 973{
 974	size_t short_len;
 975	size_t complete_len;
 976
 977	/* no space left for name (+ NULL + type + len) */
 978	if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
 979		return ad_len;
 980
 981	/* use complete name if present and fits */
 982	complete_len = strlen(hdev->dev_name);
 983	if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
 984		return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
 985				       hdev->dev_name, complete_len + 1);
 986
 987	/* use short name if present */
 988	short_len = strlen(hdev->short_name);
 989	if (short_len)
 990		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
 991				       hdev->short_name, short_len + 1);
 992
 993	/* use shortened full name if present, we already know that name
 994	 * is longer then HCI_MAX_SHORT_NAME_LENGTH
 995	 */
 996	if (complete_len) {
 997		u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];
 998
 999		memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
1000		name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';
1001
1002		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
1003				       sizeof(name));
1004	}
1005
1006	return ad_len;
1007}
1008
1009static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1010{
1011	return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
1012}
1013
1014static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
1015{
1016	u8 scan_rsp_len = 0;
1017
1018	if (hdev->appearance) {
1019		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1020	}
1021
1022	return append_local_name(hdev, ptr, scan_rsp_len);
1023}
1024
1025static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1026					u8 *ptr)
1027{
1028	struct adv_info *adv_instance;
1029	u32 instance_flags;
1030	u8 scan_rsp_len = 0;
1031
1032	adv_instance = hci_find_adv_instance(hdev, instance);
1033	if (!adv_instance)
1034		return 0;
1035
1036	instance_flags = adv_instance->flags;
1037
1038	if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1039		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1040	}
1041
1042	memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1043	       adv_instance->scan_rsp_len);
1044
1045	scan_rsp_len += adv_instance->scan_rsp_len;
1046
1047	if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
1048		scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);
1049
1050	return scan_rsp_len;
1051}
1052
1053void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1054{
1055	struct hci_dev *hdev = req->hdev;
1056	struct hci_cp_le_set_scan_rsp_data cp;
1057	u8 len;
1058
1059	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1060		return;
1061
1062	memset(&cp, 0, sizeof(cp));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063
1064	if (instance)
1065		len = create_instance_scan_rsp_data(hdev, instance, cp.data);
1066	else
1067		len = create_default_scan_rsp_data(hdev, cp.data);
 
1068
1069	if (hdev->scan_rsp_data_len == len &&
1070	    !memcmp(cp.data, hdev->scan_rsp_data, len))
1071		return;
1072
1073	memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1074	hdev->scan_rsp_data_len = len;
1075
1076	cp.length = len;
1077
1078	hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
 
1079}
1080
1081static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1082{
1083	struct adv_info *adv_instance = NULL;
1084	u8 ad_len = 0, flags = 0;
1085	u32 instance_flags;
1086
1087	/* Return 0 when the current instance identifier is invalid. */
1088	if (instance) {
1089		adv_instance = hci_find_adv_instance(hdev, instance);
1090		if (!adv_instance)
1091			return 0;
1092	}
1093
1094	instance_flags = get_adv_instance_flags(hdev, instance);
1095
1096	/* The Add Advertising command allows userspace to set both the general
1097	 * and limited discoverable flags.
1098	 */
1099	if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1100		flags |= LE_AD_GENERAL;
1101
1102	if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1103		flags |= LE_AD_LIMITED;
1104
1105	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1106		flags |= LE_AD_NO_BREDR;
1107
1108	if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1109		/* If a discovery flag wasn't provided, simply use the global
1110		 * settings.
1111		 */
1112		if (!flags)
1113			flags |= mgmt_get_adv_discov_flags(hdev);
1114
1115		/* If flags would still be empty, then there is no need to
1116		 * include the "Flags" AD field".
1117		 */
1118		if (flags) {
1119			ptr[0] = 0x02;
1120			ptr[1] = EIR_FLAGS;
1121			ptr[2] = flags;
1122
1123			ad_len += 3;
1124			ptr += 3;
1125		}
1126	}
1127
1128	if (adv_instance) {
1129		memcpy(ptr, adv_instance->adv_data,
1130		       adv_instance->adv_data_len);
1131		ad_len += adv_instance->adv_data_len;
1132		ptr += adv_instance->adv_data_len;
1133	}
1134
1135	/* Provide Tx Power only if we can provide a valid value for it */
1136	if (hdev->adv_tx_power != HCI_TX_POWER_INVALID &&
1137	    (instance_flags & MGMT_ADV_FLAG_TX_POWER)) {
1138		ptr[0] = 0x02;
1139		ptr[1] = EIR_TX_POWER;
1140		ptr[2] = (u8)hdev->adv_tx_power;
 
 
 
 
 
 
 
 
 
 
 
1141
1142		ad_len += 3;
1143		ptr += 3;
 
1144	}
1145
1146	return ad_len;
1147}
1148
1149void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1150{
1151	struct hci_dev *hdev = req->hdev;
1152	struct hci_cp_le_set_adv_data cp;
1153	u8 len;
1154
1155	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1156		return;
1157
1158	memset(&cp, 0, sizeof(cp));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1159
1160	len = create_instance_adv_data(hdev, instance, cp.data);
1161
1162	/* There's nothing to do if the data hasn't changed */
1163	if (hdev->adv_data_len == len &&
1164	    memcmp(cp.data, hdev->adv_data, len) == 0)
1165		return;
1166
1167	memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1168	hdev->adv_data_len = len;
1169
1170	cp.length = len;
1171
1172	hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
 
1173}
1174
1175int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1176{
1177	struct hci_request req;
1178
1179	hci_req_init(&req, hdev);
1180	__hci_req_update_adv_data(&req, instance);
1181
1182	return hci_req_run(&req, NULL);
1183}
1184
1185static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1186{
1187	BT_DBG("%s status %u", hdev->name, status);
1188}
1189
1190void hci_req_reenable_advertising(struct hci_dev *hdev)
1191{
1192	struct hci_request req;
1193
1194	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1195	    list_empty(&hdev->adv_instances))
1196		return;
1197
1198	hci_req_init(&req, hdev);
1199
1200	if (hdev->cur_adv_instance) {
1201		__hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1202						true);
1203	} else {
1204		__hci_req_update_adv_data(&req, 0x00);
1205		__hci_req_update_scan_rsp_data(&req, 0x00);
1206		__hci_req_enable_advertising(&req);
 
 
 
 
1207	}
1208
1209	hci_req_run(&req, adv_enable_complete);
1210}
1211
1212static void adv_timeout_expire(struct work_struct *work)
1213{
1214	struct hci_dev *hdev = container_of(work, struct hci_dev,
1215					    adv_instance_expire.work);
1216
1217	struct hci_request req;
1218	u8 instance;
1219
1220	BT_DBG("%s", hdev->name);
1221
1222	hci_dev_lock(hdev);
1223
1224	hdev->adv_instance_timeout = 0;
1225
1226	instance = hdev->cur_adv_instance;
1227	if (instance == 0x00)
1228		goto unlock;
1229
1230	hci_req_init(&req, hdev);
1231
1232	hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1233
1234	if (list_empty(&hdev->adv_instances))
1235		__hci_req_disable_advertising(&req);
1236
1237	hci_req_run(&req, NULL);
1238
1239unlock:
1240	hci_dev_unlock(hdev);
1241}
1242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
1244				    bool force)
1245{
1246	struct hci_dev *hdev = req->hdev;
1247	struct adv_info *adv_instance = NULL;
1248	u16 timeout;
1249
1250	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1251	    list_empty(&hdev->adv_instances))
1252		return -EPERM;
1253
1254	if (hdev->adv_instance_timeout)
1255		return -EBUSY;
1256
1257	adv_instance = hci_find_adv_instance(hdev, instance);
1258	if (!adv_instance)
1259		return -ENOENT;
1260
1261	/* A zero timeout means unlimited advertising. As long as there is
1262	 * only one instance, duration should be ignored. We still set a timeout
1263	 * in case further instances are being added later on.
1264	 *
1265	 * If the remaining lifetime of the instance is more than the duration
1266	 * then the timeout corresponds to the duration, otherwise it will be
1267	 * reduced to the remaining instance lifetime.
1268	 */
1269	if (adv_instance->timeout == 0 ||
1270	    adv_instance->duration <= adv_instance->remaining_time)
1271		timeout = adv_instance->duration;
1272	else
1273		timeout = adv_instance->remaining_time;
1274
1275	/* The remaining time is being reduced unless the instance is being
1276	 * advertised without time limit.
1277	 */
1278	if (adv_instance->timeout)
1279		adv_instance->remaining_time =
1280				adv_instance->remaining_time - timeout;
1281
1282	hdev->adv_instance_timeout = timeout;
1283	queue_delayed_work(hdev->req_workqueue,
 
 
1284			   &hdev->adv_instance_expire,
1285			   msecs_to_jiffies(timeout * 1000));
 
1286
1287	/* If we're just re-scheduling the same instance again then do not
1288	 * execute any HCI commands. This happens when a single instance is
1289	 * being advertised.
1290	 */
1291	if (!force && hdev->cur_adv_instance == instance &&
1292	    hci_dev_test_flag(hdev, HCI_LE_ADV))
1293		return 0;
1294
1295	hdev->cur_adv_instance = instance;
1296	__hci_req_update_adv_data(req, instance);
1297	__hci_req_update_scan_rsp_data(req, instance);
1298	__hci_req_enable_advertising(req);
 
 
 
 
1299
1300	return 0;
1301}
1302
1303static void cancel_adv_timeout(struct hci_dev *hdev)
1304{
1305	if (hdev->adv_instance_timeout) {
1306		hdev->adv_instance_timeout = 0;
1307		cancel_delayed_work(&hdev->adv_instance_expire);
1308	}
1309}
1310
1311/* For a single instance:
1312 * - force == true: The instance will be removed even when its remaining
1313 *   lifetime is not zero.
1314 * - force == false: the instance will be deactivated but kept stored unless
1315 *   the remaining lifetime is zero.
1316 *
1317 * For instance == 0x00:
1318 * - force == true: All instances will be removed regardless of their timeout
1319 *   setting.
1320 * - force == false: Only instances that have a timeout will be removed.
1321 */
1322void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
1323				struct hci_request *req, u8 instance,
1324				bool force)
1325{
1326	struct adv_info *adv_instance, *n, *next_instance = NULL;
1327	int err;
1328	u8 rem_inst;
1329
1330	/* Cancel any timeout concerning the removed instance(s). */
1331	if (!instance || hdev->cur_adv_instance == instance)
1332		cancel_adv_timeout(hdev);
1333
1334	/* Get the next instance to advertise BEFORE we remove
1335	 * the current one. This can be the same instance again
1336	 * if there is only one instance.
1337	 */
1338	if (instance && hdev->cur_adv_instance == instance)
1339		next_instance = hci_get_next_instance(hdev, instance);
1340
1341	if (instance == 0x00) {
1342		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
1343					 list) {
1344			if (!(force || adv_instance->timeout))
1345				continue;
1346
1347			rem_inst = adv_instance->instance;
1348			err = hci_remove_adv_instance(hdev, rem_inst);
1349			if (!err)
1350				mgmt_advertising_removed(sk, hdev, rem_inst);
1351		}
1352	} else {
1353		adv_instance = hci_find_adv_instance(hdev, instance);
1354
1355		if (force || (adv_instance && adv_instance->timeout &&
1356			      !adv_instance->remaining_time)) {
1357			/* Don't advertise a removed instance. */
1358			if (next_instance &&
1359			    next_instance->instance == instance)
1360				next_instance = NULL;
1361
1362			err = hci_remove_adv_instance(hdev, instance);
1363			if (!err)
1364				mgmt_advertising_removed(sk, hdev, instance);
1365		}
1366	}
1367
1368	if (!req || !hdev_is_powered(hdev) ||
1369	    hci_dev_test_flag(hdev, HCI_ADVERTISING))
1370		return;
1371
1372	if (next_instance)
1373		__hci_req_schedule_adv_instance(req, next_instance->instance,
1374						false);
1375}
1376
1377static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
1378{
1379	struct hci_dev *hdev = req->hdev;
1380
1381	/* If we're advertising or initiating an LE connection we can't
1382	 * go ahead and change the random address at this time. This is
1383	 * because the eventual initiator address used for the
1384	 * subsequently created connection will be undefined (some
1385	 * controllers use the new address and others the one we had
1386	 * when the operation started).
1387	 *
1388	 * In this kind of scenario skip the update and let the random
1389	 * address be updated at the next cycle.
1390	 */
1391	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
1392	    hci_lookup_le_connect(hdev)) {
1393		BT_DBG("Deferring random address update");
1394		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1395		return;
1396	}
1397
1398	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
1399}
1400
1401int hci_update_random_address(struct hci_request *req, bool require_privacy,
1402			      bool use_rpa, u8 *own_addr_type)
1403{
1404	struct hci_dev *hdev = req->hdev;
1405	int err;
1406
1407	/* If privacy is enabled use a resolvable private address. If
1408	 * current RPA has expired or there is something else than
1409	 * the current RPA in use, then generate a new one.
1410	 */
1411	if (use_rpa) {
1412		int to;
1413
1414		*own_addr_type = ADDR_LE_DEV_RANDOM;
1415
1416		if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1417		    !bacmp(&hdev->random_addr, &hdev->rpa))
1418			return 0;
1419
1420		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1421		if (err < 0) {
1422			BT_ERR("%s failed to generate new RPA", hdev->name);
1423			return err;
1424		}
1425
1426		set_random_addr(req, &hdev->rpa);
1427
1428		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1429		queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
1430
1431		return 0;
1432	}
1433
1434	/* In case of required privacy without resolvable private address,
1435	 * use an non-resolvable private address. This is useful for active
1436	 * scanning and non-connectable advertising.
1437	 */
1438	if (require_privacy) {
1439		bdaddr_t nrpa;
1440
1441		while (true) {
1442			/* The non-resolvable private address is generated
1443			 * from random six bytes with the two most significant
1444			 * bits cleared.
1445			 */
1446			get_random_bytes(&nrpa, 6);
1447			nrpa.b[5] &= 0x3f;
1448
1449			/* The non-resolvable private address shall not be
1450			 * equal to the public address.
1451			 */
1452			if (bacmp(&hdev->bdaddr, &nrpa))
1453				break;
1454		}
1455
1456		*own_addr_type = ADDR_LE_DEV_RANDOM;
1457		set_random_addr(req, &nrpa);
1458		return 0;
1459	}
1460
1461	/* If forcing static address is in use or there is no public
1462	 * address use the static address as random address (but skip
1463	 * the HCI command if the current random address is already the
1464	 * static one.
1465	 *
1466	 * In case BR/EDR has been disabled on a dual-mode controller
1467	 * and a static address has been configured, then use that
1468	 * address instead of the public BR/EDR address.
1469	 */
1470	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1471	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1472	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1473	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
1474		*own_addr_type = ADDR_LE_DEV_RANDOM;
1475		if (bacmp(&hdev->static_addr, &hdev->random_addr))
1476			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
1477				    &hdev->static_addr);
1478		return 0;
1479	}
1480
1481	/* Neither privacy nor static address is being used so use a
1482	 * public address.
1483	 */
1484	*own_addr_type = ADDR_LE_DEV_PUBLIC;
1485
1486	return 0;
1487}
1488
1489static bool disconnected_whitelist_entries(struct hci_dev *hdev)
1490{
1491	struct bdaddr_list *b;
1492
1493	list_for_each_entry(b, &hdev->whitelist, list) {
1494		struct hci_conn *conn;
1495
1496		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
1497		if (!conn)
1498			return true;
1499
1500		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
1501			return true;
1502	}
1503
1504	return false;
1505}
1506
1507void __hci_req_update_scan(struct hci_request *req)
1508{
1509	struct hci_dev *hdev = req->hdev;
1510	u8 scan;
1511
1512	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1513		return;
1514
1515	if (!hdev_is_powered(hdev))
1516		return;
1517
1518	if (mgmt_powering_down(hdev))
1519		return;
1520
1521	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
1522	    disconnected_whitelist_entries(hdev))
1523		scan = SCAN_PAGE;
1524	else
1525		scan = SCAN_DISABLED;
1526
1527	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1528		scan |= SCAN_INQUIRY;
1529
1530	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
1531	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
1532		return;
1533
1534	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1535}
1536
1537static int update_scan(struct hci_request *req, unsigned long opt)
1538{
1539	hci_dev_lock(req->hdev);
1540	__hci_req_update_scan(req);
1541	hci_dev_unlock(req->hdev);
1542	return 0;
1543}
1544
1545static void scan_update_work(struct work_struct *work)
1546{
1547	struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
1548
1549	hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
1550}
1551
1552static int connectable_update(struct hci_request *req, unsigned long opt)
1553{
1554	struct hci_dev *hdev = req->hdev;
1555
1556	hci_dev_lock(hdev);
1557
1558	__hci_req_update_scan(req);
1559
1560	/* If BR/EDR is not enabled and we disable advertising as a
1561	 * by-product of disabling connectable, we need to update the
1562	 * advertising flags.
1563	 */
1564	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1565		__hci_req_update_adv_data(req, hdev->cur_adv_instance);
1566
1567	/* Update the advertising parameters if necessary */
1568	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1569	    !list_empty(&hdev->adv_instances))
1570		__hci_req_enable_advertising(req);
 
 
 
 
1571
1572	__hci_update_background_scan(req);
1573
1574	hci_dev_unlock(hdev);
1575
1576	return 0;
1577}
1578
1579static void connectable_update_work(struct work_struct *work)
1580{
1581	struct hci_dev *hdev = container_of(work, struct hci_dev,
1582					    connectable_update);
1583	u8 status;
1584
1585	hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
1586	mgmt_set_connectable_complete(hdev, status);
1587}
1588
1589static u8 get_service_classes(struct hci_dev *hdev)
1590{
1591	struct bt_uuid *uuid;
1592	u8 val = 0;
1593
1594	list_for_each_entry(uuid, &hdev->uuids, list)
1595		val |= uuid->svc_hint;
1596
1597	return val;
1598}
1599
1600void __hci_req_update_class(struct hci_request *req)
1601{
1602	struct hci_dev *hdev = req->hdev;
1603	u8 cod[3];
1604
1605	BT_DBG("%s", hdev->name);
1606
1607	if (!hdev_is_powered(hdev))
1608		return;
1609
1610	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1611		return;
1612
1613	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
1614		return;
1615
1616	cod[0] = hdev->minor_class;
1617	cod[1] = hdev->major_class;
1618	cod[2] = get_service_classes(hdev);
1619
1620	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1621		cod[1] |= 0x20;
1622
1623	if (memcmp(cod, hdev->dev_class, 3) == 0)
1624		return;
1625
1626	hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
1627}
1628
1629static void write_iac(struct hci_request *req)
1630{
1631	struct hci_dev *hdev = req->hdev;
1632	struct hci_cp_write_current_iac_lap cp;
1633
1634	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1635		return;
1636
1637	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1638		/* Limited discoverable mode */
1639		cp.num_iac = min_t(u8, hdev->num_iac, 2);
1640		cp.iac_lap[0] = 0x00;	/* LIAC */
1641		cp.iac_lap[1] = 0x8b;
1642		cp.iac_lap[2] = 0x9e;
1643		cp.iac_lap[3] = 0x33;	/* GIAC */
1644		cp.iac_lap[4] = 0x8b;
1645		cp.iac_lap[5] = 0x9e;
1646	} else {
1647		/* General discoverable mode */
1648		cp.num_iac = 1;
1649		cp.iac_lap[0] = 0x33;	/* GIAC */
1650		cp.iac_lap[1] = 0x8b;
1651		cp.iac_lap[2] = 0x9e;
1652	}
1653
1654	hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
1655		    (cp.num_iac * 3) + 1, &cp);
1656}
1657
1658static int discoverable_update(struct hci_request *req, unsigned long opt)
1659{
1660	struct hci_dev *hdev = req->hdev;
1661
1662	hci_dev_lock(hdev);
1663
1664	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1665		write_iac(req);
1666		__hci_req_update_scan(req);
1667		__hci_req_update_class(req);
1668	}
1669
1670	/* Advertising instances don't use the global discoverable setting, so
1671	 * only update AD if advertising was enabled using Set Advertising.
1672	 */
1673	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
1674		__hci_req_update_adv_data(req, 0x00);
1675
1676		/* Discoverable mode affects the local advertising
1677		 * address in limited privacy mode.
1678		 */
1679		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
1680			__hci_req_enable_advertising(req);
 
 
 
 
1681	}
1682
1683	hci_dev_unlock(hdev);
1684
1685	return 0;
1686}
1687
1688static void discoverable_update_work(struct work_struct *work)
1689{
1690	struct hci_dev *hdev = container_of(work, struct hci_dev,
1691					    discoverable_update);
1692	u8 status;
1693
1694	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
1695	mgmt_set_discoverable_complete(hdev, status);
1696}
1697
1698void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
1699		      u8 reason)
1700{
1701	switch (conn->state) {
1702	case BT_CONNECTED:
1703	case BT_CONFIG:
1704		if (conn->type == AMP_LINK) {
1705			struct hci_cp_disconn_phy_link cp;
1706
1707			cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
1708			cp.reason = reason;
1709			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
1710				    &cp);
1711		} else {
1712			struct hci_cp_disconnect dc;
1713
1714			dc.handle = cpu_to_le16(conn->handle);
1715			dc.reason = reason;
1716			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
1717		}
1718
1719		conn->state = BT_DISCONN;
1720
1721		break;
1722	case BT_CONNECT:
1723		if (conn->type == LE_LINK) {
1724			if (test_bit(HCI_CONN_SCANNING, &conn->flags))
1725				break;
1726			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
1727				    0, NULL);
1728		} else if (conn->type == ACL_LINK) {
1729			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
1730				break;
1731			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
1732				    6, &conn->dst);
1733		}
1734		break;
1735	case BT_CONNECT2:
1736		if (conn->type == ACL_LINK) {
1737			struct hci_cp_reject_conn_req rej;
1738
1739			bacpy(&rej.bdaddr, &conn->dst);
1740			rej.reason = reason;
1741
1742			hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
1743				    sizeof(rej), &rej);
1744		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
1745			struct hci_cp_reject_sync_conn_req rej;
1746
1747			bacpy(&rej.bdaddr, &conn->dst);
1748
1749			/* SCO rejection has its own limited set of
1750			 * allowed error values (0x0D-0x0F) which isn't
1751			 * compatible with most values passed to this
1752			 * function. To be safe hard-code one of the
1753			 * values that's suitable for SCO.
1754			 */
1755			rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
1756
1757			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
1758				    sizeof(rej), &rej);
1759		}
1760		break;
1761	default:
1762		conn->state = BT_CLOSED;
1763		break;
1764	}
1765}
1766
1767static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1768{
1769	if (status)
1770		BT_DBG("Failed to abort connection: status 0x%2.2x", status);
1771}
1772
1773int hci_abort_conn(struct hci_conn *conn, u8 reason)
1774{
1775	struct hci_request req;
1776	int err;
1777
1778	hci_req_init(&req, conn->hdev);
1779
1780	__hci_abort_conn(&req, conn, reason);
1781
1782	err = hci_req_run(&req, abort_conn_complete);
1783	if (err && err != -ENODATA) {
1784		BT_ERR("Failed to run HCI request: err %d", err);
1785		return err;
1786	}
1787
1788	return 0;
1789}
1790
1791static int update_bg_scan(struct hci_request *req, unsigned long opt)
1792{
1793	hci_dev_lock(req->hdev);
1794	__hci_update_background_scan(req);
1795	hci_dev_unlock(req->hdev);
1796	return 0;
1797}
1798
1799static void bg_scan_update(struct work_struct *work)
1800{
1801	struct hci_dev *hdev = container_of(work, struct hci_dev,
1802					    bg_scan_update);
1803	struct hci_conn *conn;
1804	u8 status;
1805	int err;
1806
1807	err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
1808	if (!err)
1809		return;
1810
1811	hci_dev_lock(hdev);
1812
1813	conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
1814	if (conn)
1815		hci_le_conn_failed(conn, status);
1816
1817	hci_dev_unlock(hdev);
1818}
1819
1820static int le_scan_disable(struct hci_request *req, unsigned long opt)
1821{
1822	hci_req_add_le_scan_disable(req);
1823	return 0;
1824}
1825
1826static int bredr_inquiry(struct hci_request *req, unsigned long opt)
1827{
1828	u8 length = opt;
1829	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
1830	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
1831	struct hci_cp_inquiry cp;
1832
1833	BT_DBG("%s", req->hdev->name);
1834
1835	hci_dev_lock(req->hdev);
1836	hci_inquiry_cache_flush(req->hdev);
1837	hci_dev_unlock(req->hdev);
1838
1839	memset(&cp, 0, sizeof(cp));
1840
1841	if (req->hdev->discovery.limited)
1842		memcpy(&cp.lap, liac, sizeof(cp.lap));
1843	else
1844		memcpy(&cp.lap, giac, sizeof(cp.lap));
1845
1846	cp.length = length;
1847
1848	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1849
1850	return 0;
1851}
1852
1853static void le_scan_disable_work(struct work_struct *work)
1854{
1855	struct hci_dev *hdev = container_of(work, struct hci_dev,
1856					    le_scan_disable.work);
1857	u8 status;
1858
1859	BT_DBG("%s", hdev->name);
1860
1861	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1862		return;
1863
1864	cancel_delayed_work(&hdev->le_scan_restart);
1865
1866	hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
1867	if (status) {
1868		BT_ERR("Failed to disable LE scan: status 0x%02x", status);
 
1869		return;
1870	}
1871
1872	hdev->discovery.scan_start = 0;
1873
1874	/* If we were running LE only scan, change discovery state. If
1875	 * we were running both LE and BR/EDR inquiry simultaneously,
1876	 * and BR/EDR inquiry is already finished, stop discovery,
1877	 * otherwise BR/EDR inquiry will stop discovery when finished.
1878	 * If we will resolve remote device name, do not change
1879	 * discovery state.
1880	 */
1881
1882	if (hdev->discovery.type == DISCOV_TYPE_LE)
1883		goto discov_stopped;
1884
1885	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
1886		return;
1887
1888	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
1889		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
1890		    hdev->discovery.state != DISCOVERY_RESOLVING)
1891			goto discov_stopped;
1892
1893		return;
1894	}
1895
1896	hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
1897		     HCI_CMD_TIMEOUT, &status);
1898	if (status) {
1899		BT_ERR("Inquiry failed: status 0x%02x", status);
1900		goto discov_stopped;
1901	}
1902
1903	return;
1904
1905discov_stopped:
1906	hci_dev_lock(hdev);
1907	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1908	hci_dev_unlock(hdev);
1909}
1910
1911static int le_scan_restart(struct hci_request *req, unsigned long opt)
1912{
1913	struct hci_dev *hdev = req->hdev;
1914	struct hci_cp_le_set_scan_enable cp;
1915
1916	/* If controller is not scanning we are done. */
1917	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1918		return 0;
1919
1920	hci_req_add_le_scan_disable(req);
1921
1922	memset(&cp, 0, sizeof(cp));
1923	cp.enable = LE_SCAN_ENABLE;
1924	cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
1925	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
 
 
 
 
 
 
 
 
 
 
 
 
 
1926
1927	return 0;
1928}
1929
1930static void le_scan_restart_work(struct work_struct *work)
1931{
1932	struct hci_dev *hdev = container_of(work, struct hci_dev,
1933					    le_scan_restart.work);
1934	unsigned long timeout, duration, scan_start, now;
1935	u8 status;
1936
1937	BT_DBG("%s", hdev->name);
1938
1939	hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
1940	if (status) {
1941		BT_ERR("Failed to restart LE scan: status %d", status);
 
1942		return;
1943	}
1944
1945	hci_dev_lock(hdev);
1946
1947	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
1948	    !hdev->discovery.scan_start)
1949		goto unlock;
1950
1951	/* When the scan was started, hdev->le_scan_disable has been queued
1952	 * after duration from scan_start. During scan restart this job
1953	 * has been canceled, and we need to queue it again after proper
1954	 * timeout, to make sure that scan does not run indefinitely.
1955	 */
1956	duration = hdev->discovery.scan_duration;
1957	scan_start = hdev->discovery.scan_start;
1958	now = jiffies;
1959	if (now - scan_start <= duration) {
1960		int elapsed;
1961
1962		if (now >= scan_start)
1963			elapsed = now - scan_start;
1964		else
1965			elapsed = ULONG_MAX - scan_start + now;
1966
1967		timeout = duration - elapsed;
1968	} else {
1969		timeout = 0;
1970	}
1971
1972	queue_delayed_work(hdev->req_workqueue,
1973			   &hdev->le_scan_disable, timeout);
1974
1975unlock:
1976	hci_dev_unlock(hdev);
1977}
1978
1979static void disable_advertising(struct hci_request *req)
1980{
1981	u8 enable = 0x00;
1982
1983	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1984}
1985
1986static int active_scan(struct hci_request *req, unsigned long opt)
1987{
1988	uint16_t interval = opt;
1989	struct hci_dev *hdev = req->hdev;
1990	struct hci_cp_le_set_scan_param param_cp;
1991	struct hci_cp_le_set_scan_enable enable_cp;
1992	u8 own_addr_type;
1993	int err;
1994
1995	BT_DBG("%s", hdev->name);
1996
1997	if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
1998		hci_dev_lock(hdev);
1999
2000		/* Don't let discovery abort an outgoing connection attempt
2001		 * that's using directed advertising.
2002		 */
2003		if (hci_lookup_le_connect(hdev)) {
2004			hci_dev_unlock(hdev);
2005			return -EBUSY;
2006		}
2007
2008		cancel_adv_timeout(hdev);
2009		hci_dev_unlock(hdev);
2010
2011		disable_advertising(req);
2012	}
2013
2014	/* If controller is scanning, it means the background scanning is
2015	 * running. Thus, we should temporarily stop it in order to set the
2016	 * discovery scanning parameters.
2017	 */
2018	if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
2019		hci_req_add_le_scan_disable(req);
2020
2021	/* All active scans will be done with either a resolvable private
2022	 * address (when privacy feature has been enabled) or non-resolvable
2023	 * private address.
2024	 */
2025	err = hci_update_random_address(req, true, scan_use_rpa(hdev),
2026					&own_addr_type);
2027	if (err < 0)
2028		own_addr_type = ADDR_LE_DEV_PUBLIC;
2029
2030	memset(&param_cp, 0, sizeof(param_cp));
2031	param_cp.type = LE_SCAN_ACTIVE;
2032	param_cp.interval = cpu_to_le16(interval);
2033	param_cp.window = cpu_to_le16(DISCOV_LE_SCAN_WIN);
2034	param_cp.own_address_type = own_addr_type;
2035
2036	hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
2037		    &param_cp);
2038
2039	memset(&enable_cp, 0, sizeof(enable_cp));
2040	enable_cp.enable = LE_SCAN_ENABLE;
2041	enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2042
2043	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
2044		    &enable_cp);
2045
2046	return 0;
2047}
2048
2049static int interleaved_discov(struct hci_request *req, unsigned long opt)
2050{
2051	int err;
2052
2053	BT_DBG("%s", req->hdev->name);
2054
2055	err = active_scan(req, opt);
2056	if (err)
2057		return err;
2058
2059	return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2060}
2061
2062static void start_discovery(struct hci_dev *hdev, u8 *status)
2063{
2064	unsigned long timeout;
2065
2066	BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2067
2068	switch (hdev->discovery.type) {
2069	case DISCOV_TYPE_BREDR:
2070		if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2071			hci_req_sync(hdev, bredr_inquiry,
2072				     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2073				     status);
2074		return;
2075	case DISCOV_TYPE_INTERLEAVED:
2076		/* When running simultaneous discovery, the LE scanning time
2077		 * should occupy the whole discovery time sine BR/EDR inquiry
2078		 * and LE scanning are scheduled by the controller.
2079		 *
2080		 * For interleaving discovery in comparison, BR/EDR inquiry
2081		 * and LE scanning are done sequentially with separate
2082		 * timeouts.
2083		 */
2084		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2085			     &hdev->quirks)) {
2086			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2087			/* During simultaneous discovery, we double LE scan
2088			 * interval. We must leave some time for the controller
2089			 * to do BR/EDR inquiry.
2090			 */
2091			hci_req_sync(hdev, interleaved_discov,
2092				     DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
2093				     status);
2094			break;
2095		}
2096
2097		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2098		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2099			     HCI_CMD_TIMEOUT, status);
2100		break;
2101	case DISCOV_TYPE_LE:
2102		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2103		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2104			     HCI_CMD_TIMEOUT, status);
2105		break;
2106	default:
2107		*status = HCI_ERROR_UNSPECIFIED;
2108		return;
2109	}
2110
2111	if (*status)
2112		return;
2113
2114	BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2115
2116	/* When service discovery is used and the controller has a
2117	 * strict duplicate filter, it is important to remember the
2118	 * start and duration of the scan. This is required for
2119	 * restarting scanning during the discovery phase.
2120	 */
2121	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
2122		     hdev->discovery.result_filtering) {
2123		hdev->discovery.scan_start = jiffies;
2124		hdev->discovery.scan_duration = timeout;
2125	}
2126
2127	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
2128			   timeout);
2129}
2130
2131bool hci_req_stop_discovery(struct hci_request *req)
2132{
2133	struct hci_dev *hdev = req->hdev;
2134	struct discovery_state *d = &hdev->discovery;
2135	struct hci_cp_remote_name_req_cancel cp;
2136	struct inquiry_entry *e;
2137	bool ret = false;
2138
2139	BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
2140
2141	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
2142		if (test_bit(HCI_INQUIRY, &hdev->flags))
2143			hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2144
2145		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2146			cancel_delayed_work(&hdev->le_scan_disable);
2147			hci_req_add_le_scan_disable(req);
2148		}
2149
2150		ret = true;
2151	} else {
2152		/* Passive scanning */
2153		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2154			hci_req_add_le_scan_disable(req);
2155			ret = true;
2156		}
2157	}
2158
2159	/* No further actions needed for LE-only discovery */
2160	if (d->type == DISCOV_TYPE_LE)
2161		return ret;
2162
2163	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
2164		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
2165						     NAME_PENDING);
2166		if (!e)
2167			return ret;
2168
2169		bacpy(&cp.bdaddr, &e->data.bdaddr);
2170		hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
2171			    &cp);
2172		ret = true;
2173	}
2174
2175	return ret;
2176}
2177
2178static int stop_discovery(struct hci_request *req, unsigned long opt)
2179{
2180	hci_dev_lock(req->hdev);
2181	hci_req_stop_discovery(req);
2182	hci_dev_unlock(req->hdev);
2183
2184	return 0;
2185}
2186
2187static void discov_update(struct work_struct *work)
2188{
2189	struct hci_dev *hdev = container_of(work, struct hci_dev,
2190					    discov_update);
2191	u8 status = 0;
2192
2193	switch (hdev->discovery.state) {
2194	case DISCOVERY_STARTING:
2195		start_discovery(hdev, &status);
2196		mgmt_start_discovery_complete(hdev, status);
2197		if (status)
2198			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2199		else
2200			hci_discovery_set_state(hdev, DISCOVERY_FINDING);
2201		break;
2202	case DISCOVERY_STOPPING:
2203		hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
2204		mgmt_stop_discovery_complete(hdev, status);
2205		if (!status)
2206			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2207		break;
2208	case DISCOVERY_STOPPED:
2209	default:
2210		return;
2211	}
2212}
2213
2214static void discov_off(struct work_struct *work)
2215{
2216	struct hci_dev *hdev = container_of(work, struct hci_dev,
2217					    discov_off.work);
2218
2219	BT_DBG("%s", hdev->name);
2220
2221	hci_dev_lock(hdev);
2222
2223	/* When discoverable timeout triggers, then just make sure
2224	 * the limited discoverable flag is cleared. Even in the case
2225	 * of a timeout triggered from general discoverable, it is
2226	 * safe to unconditionally clear the flag.
2227	 */
2228	hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2229	hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2230	hdev->discov_timeout = 0;
2231
2232	hci_dev_unlock(hdev);
2233
2234	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
2235	mgmt_new_settings(hdev);
2236}
2237
2238static int powered_update_hci(struct hci_request *req, unsigned long opt)
2239{
2240	struct hci_dev *hdev = req->hdev;
2241	u8 link_sec;
2242
2243	hci_dev_lock(hdev);
2244
2245	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
2246	    !lmp_host_ssp_capable(hdev)) {
2247		u8 mode = 0x01;
2248
2249		hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
2250
2251		if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
2252			u8 support = 0x01;
2253
2254			hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
2255				    sizeof(support), &support);
2256		}
2257	}
2258
2259	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
2260	    lmp_bredr_capable(hdev)) {
2261		struct hci_cp_write_le_host_supported cp;
2262
2263		cp.le = 0x01;
2264		cp.simul = 0x00;
2265
2266		/* Check first if we already have the right
2267		 * host state (host features set)
2268		 */
2269		if (cp.le != lmp_host_le_capable(hdev) ||
2270		    cp.simul != lmp_host_le_br_capable(hdev))
2271			hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2272				    sizeof(cp), &cp);
2273	}
2274
2275	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2276		/* Make sure the controller has a good default for
2277		 * advertising data. This also applies to the case
2278		 * where BR/EDR was toggled during the AUTO_OFF phase.
2279		 */
2280		if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2281		    list_empty(&hdev->adv_instances)) {
2282			__hci_req_update_adv_data(req, 0x00);
2283			__hci_req_update_scan_rsp_data(req, 0x00);
2284
2285			if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2286				__hci_req_enable_advertising(req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2287		} else if (!list_empty(&hdev->adv_instances)) {
2288			struct adv_info *adv_instance;
2289
2290			adv_instance = list_first_entry(&hdev->adv_instances,
2291							struct adv_info, list);
2292			__hci_req_schedule_adv_instance(req,
2293							adv_instance->instance,
2294							true);
2295		}
2296	}
2297
2298	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2299	if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
2300		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
2301			    sizeof(link_sec), &link_sec);
2302
2303	if (lmp_bredr_capable(hdev)) {
2304		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2305			__hci_req_write_fast_connectable(req, true);
2306		else
2307			__hci_req_write_fast_connectable(req, false);
2308		__hci_req_update_scan(req);
2309		__hci_req_update_class(req);
2310		__hci_req_update_name(req);
2311		__hci_req_update_eir(req);
2312	}
2313
2314	hci_dev_unlock(hdev);
2315	return 0;
2316}
2317
2318int __hci_req_hci_power_on(struct hci_dev *hdev)
2319{
2320	/* Register the available SMP channels (BR/EDR and LE) only when
2321	 * successfully powering on the controller. This late
2322	 * registration is required so that LE SMP can clearly decide if
2323	 * the public address or static address is used.
2324	 */
2325	smp_register(hdev);
2326
2327	return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
2328			      NULL);
2329}
2330
2331void hci_request_setup(struct hci_dev *hdev)
2332{
2333	INIT_WORK(&hdev->discov_update, discov_update);
2334	INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
2335	INIT_WORK(&hdev->scan_update, scan_update_work);
2336	INIT_WORK(&hdev->connectable_update, connectable_update_work);
2337	INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
2338	INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
2339	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2340	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
2341	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
2342}
2343
2344void hci_request_cancel_all(struct hci_dev *hdev)
2345{
2346	hci_req_sync_cancel(hdev, ENODEV);
2347
2348	cancel_work_sync(&hdev->discov_update);
2349	cancel_work_sync(&hdev->bg_scan_update);
2350	cancel_work_sync(&hdev->scan_update);
2351	cancel_work_sync(&hdev->connectable_update);
2352	cancel_work_sync(&hdev->discoverable_update);
2353	cancel_delayed_work_sync(&hdev->discov_off);
2354	cancel_delayed_work_sync(&hdev->le_scan_disable);
2355	cancel_delayed_work_sync(&hdev->le_scan_restart);
2356
2357	if (hdev->adv_instance_timeout) {
2358		cancel_delayed_work_sync(&hdev->adv_instance_expire);
2359		hdev->adv_instance_timeout = 0;
2360	}
2361}