Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Compaq Hot Plug Controller Driver
4 *
5 * Copyright (C) 1995,2001 Compaq Computer Corporation
6 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
7 * Copyright (C) 2001 IBM Corp.
8 *
9 * All rights reserved.
10 *
11 * Send feedback to <greg@kroah.com>
12 *
13 */
14
15#include <linux/module.h>
16#include <linux/kernel.h>
17#include <linux/types.h>
18#include <linux/slab.h>
19#include <linux/workqueue.h>
20#include <linux/interrupt.h>
21#include <linux/delay.h>
22#include <linux/wait.h>
23#include <linux/pci.h>
24#include <linux/pci_hotplug.h>
25#include <linux/kthread.h>
26#include "cpqphp.h"
27
28static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
29 u8 behind_bridge, struct resource_lists *resources);
30static int configure_new_function(struct controller *ctrl, struct pci_func *func,
31 u8 behind_bridge, struct resource_lists *resources);
32static void interrupt_event_handler(struct controller *ctrl);
33
34
35static struct task_struct *cpqhp_event_thread;
36static struct timer_list *pushbutton_pending; /* = NULL */
37
38/* delay is in jiffies to wait for */
39static void long_delay(int delay)
40{
41 /*
42 * XXX(hch): if someone is bored please convert all callers
43 * to call msleep_interruptible directly. They really want
44 * to specify timeouts in natural units and spend a lot of
45 * effort converting them to jiffies..
46 */
47 msleep_interruptible(jiffies_to_msecs(delay));
48}
49
50
51/* FIXME: The following line needs to be somewhere else... */
52#define WRONG_BUS_FREQUENCY 0x07
53static u8 handle_switch_change(u8 change, struct controller *ctrl)
54{
55 int hp_slot;
56 u8 rc = 0;
57 u16 temp_word;
58 struct pci_func *func;
59 struct event_info *taskInfo;
60
61 if (!change)
62 return 0;
63
64 /* Switch Change */
65 dbg("cpqsbd: Switch interrupt received.\n");
66
67 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
68 if (change & (0x1L << hp_slot)) {
69 /*
70 * this one changed.
71 */
72 func = cpqhp_slot_find(ctrl->bus,
73 (hp_slot + ctrl->slot_device_offset), 0);
74
75 /* this is the structure that tells the worker thread
76 * what to do
77 */
78 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
79 ctrl->next_event = (ctrl->next_event + 1) % 10;
80 taskInfo->hp_slot = hp_slot;
81
82 rc++;
83
84 temp_word = ctrl->ctrl_int_comp >> 16;
85 func->presence_save = (temp_word >> hp_slot) & 0x01;
86 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
87
88 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
89 /*
90 * Switch opened
91 */
92
93 func->switch_save = 0;
94
95 taskInfo->event_type = INT_SWITCH_OPEN;
96 } else {
97 /*
98 * Switch closed
99 */
100
101 func->switch_save = 0x10;
102
103 taskInfo->event_type = INT_SWITCH_CLOSE;
104 }
105 }
106 }
107
108 return rc;
109}
110
111/**
112 * cpqhp_find_slot - find the struct slot of given device
113 * @ctrl: scan lots of this controller
114 * @device: the device id to find
115 */
116static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
117{
118 struct slot *slot = ctrl->slot;
119
120 while (slot && (slot->device != device))
121 slot = slot->next;
122
123 return slot;
124}
125
126
127static u8 handle_presence_change(u16 change, struct controller *ctrl)
128{
129 int hp_slot;
130 u8 rc = 0;
131 u8 temp_byte;
132 u16 temp_word;
133 struct pci_func *func;
134 struct event_info *taskInfo;
135 struct slot *p_slot;
136
137 if (!change)
138 return 0;
139
140 /*
141 * Presence Change
142 */
143 dbg("cpqsbd: Presence/Notify input change.\n");
144 dbg(" Changed bits are 0x%4.4x\n", change);
145
146 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
147 if (change & (0x0101 << hp_slot)) {
148 /*
149 * this one changed.
150 */
151 func = cpqhp_slot_find(ctrl->bus,
152 (hp_slot + ctrl->slot_device_offset), 0);
153
154 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
155 ctrl->next_event = (ctrl->next_event + 1) % 10;
156 taskInfo->hp_slot = hp_slot;
157
158 rc++;
159
160 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
161 if (!p_slot)
162 return 0;
163
164 /* If the switch closed, must be a button
165 * If not in button mode, nevermind
166 */
167 if (func->switch_save && (ctrl->push_button == 1)) {
168 temp_word = ctrl->ctrl_int_comp >> 16;
169 temp_byte = (temp_word >> hp_slot) & 0x01;
170 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
171
172 if (temp_byte != func->presence_save) {
173 /*
174 * button Pressed (doesn't do anything)
175 */
176 dbg("hp_slot %d button pressed\n", hp_slot);
177 taskInfo->event_type = INT_BUTTON_PRESS;
178 } else {
179 /*
180 * button Released - TAKE ACTION!!!!
181 */
182 dbg("hp_slot %d button released\n", hp_slot);
183 taskInfo->event_type = INT_BUTTON_RELEASE;
184
185 /* Cancel if we are still blinking */
186 if ((p_slot->state == BLINKINGON_STATE)
187 || (p_slot->state == BLINKINGOFF_STATE)) {
188 taskInfo->event_type = INT_BUTTON_CANCEL;
189 dbg("hp_slot %d button cancel\n", hp_slot);
190 } else if ((p_slot->state == POWERON_STATE)
191 || (p_slot->state == POWEROFF_STATE)) {
192 /* info(msg_button_ignore, p_slot->number); */
193 taskInfo->event_type = INT_BUTTON_IGNORE;
194 dbg("hp_slot %d button ignore\n", hp_slot);
195 }
196 }
197 } else {
198 /* Switch is open, assume a presence change
199 * Save the presence state
200 */
201 temp_word = ctrl->ctrl_int_comp >> 16;
202 func->presence_save = (temp_word >> hp_slot) & 0x01;
203 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
204
205 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
206 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
207 /* Present */
208 taskInfo->event_type = INT_PRESENCE_ON;
209 } else {
210 /* Not Present */
211 taskInfo->event_type = INT_PRESENCE_OFF;
212 }
213 }
214 }
215 }
216
217 return rc;
218}
219
220
221static u8 handle_power_fault(u8 change, struct controller *ctrl)
222{
223 int hp_slot;
224 u8 rc = 0;
225 struct pci_func *func;
226 struct event_info *taskInfo;
227
228 if (!change)
229 return 0;
230
231 /*
232 * power fault
233 */
234
235 info("power fault interrupt\n");
236
237 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
238 if (change & (0x01 << hp_slot)) {
239 /*
240 * this one changed.
241 */
242 func = cpqhp_slot_find(ctrl->bus,
243 (hp_slot + ctrl->slot_device_offset), 0);
244
245 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
246 ctrl->next_event = (ctrl->next_event + 1) % 10;
247 taskInfo->hp_slot = hp_slot;
248
249 rc++;
250
251 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
252 /*
253 * power fault Cleared
254 */
255 func->status = 0x00;
256
257 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
258 } else {
259 /*
260 * power fault
261 */
262 taskInfo->event_type = INT_POWER_FAULT;
263
264 if (ctrl->rev < 4) {
265 amber_LED_on(ctrl, hp_slot);
266 green_LED_off(ctrl, hp_slot);
267 set_SOGO(ctrl);
268
269 /* this is a fatal condition, we want
270 * to crash the machine to protect from
271 * data corruption. simulated_NMI
272 * shouldn't ever return */
273 /* FIXME
274 simulated_NMI(hp_slot, ctrl); */
275
276 /* The following code causes a software
277 * crash just in case simulated_NMI did
278 * return */
279 /*FIXME
280 panic(msg_power_fault); */
281 } else {
282 /* set power fault status for this board */
283 func->status = 0xFF;
284 info("power fault bit %x set\n", hp_slot);
285 }
286 }
287 }
288 }
289
290 return rc;
291}
292
293
294/**
295 * sort_by_size - sort nodes on the list by their length, smallest first.
296 * @head: list to sort
297 */
298static int sort_by_size(struct pci_resource **head)
299{
300 struct pci_resource *current_res;
301 struct pci_resource *next_res;
302 int out_of_order = 1;
303
304 if (!(*head))
305 return 1;
306
307 if (!((*head)->next))
308 return 0;
309
310 while (out_of_order) {
311 out_of_order = 0;
312
313 /* Special case for swapping list head */
314 if (((*head)->next) &&
315 ((*head)->length > (*head)->next->length)) {
316 out_of_order++;
317 current_res = *head;
318 *head = (*head)->next;
319 current_res->next = (*head)->next;
320 (*head)->next = current_res;
321 }
322
323 current_res = *head;
324
325 while (current_res->next && current_res->next->next) {
326 if (current_res->next->length > current_res->next->next->length) {
327 out_of_order++;
328 next_res = current_res->next;
329 current_res->next = current_res->next->next;
330 current_res = current_res->next;
331 next_res->next = current_res->next;
332 current_res->next = next_res;
333 } else
334 current_res = current_res->next;
335 }
336 } /* End of out_of_order loop */
337
338 return 0;
339}
340
341
342/**
343 * sort_by_max_size - sort nodes on the list by their length, largest first.
344 * @head: list to sort
345 */
346static int sort_by_max_size(struct pci_resource **head)
347{
348 struct pci_resource *current_res;
349 struct pci_resource *next_res;
350 int out_of_order = 1;
351
352 if (!(*head))
353 return 1;
354
355 if (!((*head)->next))
356 return 0;
357
358 while (out_of_order) {
359 out_of_order = 0;
360
361 /* Special case for swapping list head */
362 if (((*head)->next) &&
363 ((*head)->length < (*head)->next->length)) {
364 out_of_order++;
365 current_res = *head;
366 *head = (*head)->next;
367 current_res->next = (*head)->next;
368 (*head)->next = current_res;
369 }
370
371 current_res = *head;
372
373 while (current_res->next && current_res->next->next) {
374 if (current_res->next->length < current_res->next->next->length) {
375 out_of_order++;
376 next_res = current_res->next;
377 current_res->next = current_res->next->next;
378 current_res = current_res->next;
379 next_res->next = current_res->next;
380 current_res->next = next_res;
381 } else
382 current_res = current_res->next;
383 }
384 } /* End of out_of_order loop */
385
386 return 0;
387}
388
389
390/**
391 * do_pre_bridge_resource_split - find node of resources that are unused
392 * @head: new list head
393 * @orig_head: original list head
394 * @alignment: max node size (?)
395 */
396static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
397 struct pci_resource **orig_head, u32 alignment)
398{
399 struct pci_resource *prevnode = NULL;
400 struct pci_resource *node;
401 struct pci_resource *split_node;
402 u32 rc;
403 u32 temp_dword;
404 dbg("do_pre_bridge_resource_split\n");
405
406 if (!(*head) || !(*orig_head))
407 return NULL;
408
409 rc = cpqhp_resource_sort_and_combine(head);
410
411 if (rc)
412 return NULL;
413
414 if ((*head)->base != (*orig_head)->base)
415 return NULL;
416
417 if ((*head)->length == (*orig_head)->length)
418 return NULL;
419
420
421 /* If we got here, there the bridge requires some of the resource, but
422 * we may be able to split some off of the front
423 */
424
425 node = *head;
426
427 if (node->length & (alignment - 1)) {
428 /* this one isn't an aligned length, so we'll make a new entry
429 * and split it up.
430 */
431 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
432
433 if (!split_node)
434 return NULL;
435
436 temp_dword = (node->length | (alignment-1)) + 1 - alignment;
437
438 split_node->base = node->base;
439 split_node->length = temp_dword;
440
441 node->length -= temp_dword;
442 node->base += split_node->length;
443
444 /* Put it in the list */
445 *head = split_node;
446 split_node->next = node;
447 }
448
449 if (node->length < alignment)
450 return NULL;
451
452 /* Now unlink it */
453 if (*head == node) {
454 *head = node->next;
455 } else {
456 prevnode = *head;
457 while (prevnode->next != node)
458 prevnode = prevnode->next;
459
460 prevnode->next = node->next;
461 }
462 node->next = NULL;
463
464 return node;
465}
466
467
468/**
469 * do_bridge_resource_split - find one node of resources that aren't in use
470 * @head: list head
471 * @alignment: max node size (?)
472 */
473static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
474{
475 struct pci_resource *prevnode = NULL;
476 struct pci_resource *node;
477 u32 rc;
478 u32 temp_dword;
479
480 rc = cpqhp_resource_sort_and_combine(head);
481
482 if (rc)
483 return NULL;
484
485 node = *head;
486
487 while (node->next) {
488 prevnode = node;
489 node = node->next;
490 kfree(prevnode);
491 }
492
493 if (node->length < alignment)
494 goto error;
495
496 if (node->base & (alignment - 1)) {
497 /* Short circuit if adjusted size is too small */
498 temp_dword = (node->base | (alignment-1)) + 1;
499 if ((node->length - (temp_dword - node->base)) < alignment)
500 goto error;
501
502 node->length -= (temp_dword - node->base);
503 node->base = temp_dword;
504 }
505
506 if (node->length & (alignment - 1))
507 /* There's stuff in use after this node */
508 goto error;
509
510 return node;
511error:
512 kfree(node);
513 return NULL;
514}
515
516
517/**
518 * get_io_resource - find first node of given size not in ISA aliasing window.
519 * @head: list to search
520 * @size: size of node to find, must be a power of two.
521 *
522 * Description: This function sorts the resource list by size and then returns
523 * returns the first node of "size" length that is not in the ISA aliasing
524 * window. If it finds a node larger than "size" it will split it up.
525 */
526static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
527{
528 struct pci_resource *prevnode;
529 struct pci_resource *node;
530 struct pci_resource *split_node;
531 u32 temp_dword;
532
533 if (!(*head))
534 return NULL;
535
536 if (cpqhp_resource_sort_and_combine(head))
537 return NULL;
538
539 if (sort_by_size(head))
540 return NULL;
541
542 for (node = *head; node; node = node->next) {
543 if (node->length < size)
544 continue;
545
546 if (node->base & (size - 1)) {
547 /* this one isn't base aligned properly
548 * so we'll make a new entry and split it up
549 */
550 temp_dword = (node->base | (size-1)) + 1;
551
552 /* Short circuit if adjusted size is too small */
553 if ((node->length - (temp_dword - node->base)) < size)
554 continue;
555
556 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
557
558 if (!split_node)
559 return NULL;
560
561 split_node->base = node->base;
562 split_node->length = temp_dword - node->base;
563 node->base = temp_dword;
564 node->length -= split_node->length;
565
566 /* Put it in the list */
567 split_node->next = node->next;
568 node->next = split_node;
569 } /* End of non-aligned base */
570
571 /* Don't need to check if too small since we already did */
572 if (node->length > size) {
573 /* this one is longer than we need
574 * so we'll make a new entry and split it up
575 */
576 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
577
578 if (!split_node)
579 return NULL;
580
581 split_node->base = node->base + size;
582 split_node->length = node->length - size;
583 node->length = size;
584
585 /* Put it in the list */
586 split_node->next = node->next;
587 node->next = split_node;
588 } /* End of too big on top end */
589
590 /* For IO make sure it's not in the ISA aliasing space */
591 if (node->base & 0x300L)
592 continue;
593
594 /* If we got here, then it is the right size
595 * Now take it out of the list and break
596 */
597 if (*head == node) {
598 *head = node->next;
599 } else {
600 prevnode = *head;
601 while (prevnode->next != node)
602 prevnode = prevnode->next;
603
604 prevnode->next = node->next;
605 }
606 node->next = NULL;
607 break;
608 }
609
610 return node;
611}
612
613
614/**
615 * get_max_resource - get largest node which has at least the given size.
616 * @head: the list to search the node in
617 * @size: the minimum size of the node to find
618 *
619 * Description: Gets the largest node that is at least "size" big from the
620 * list pointed to by head. It aligns the node on top and bottom
621 * to "size" alignment before returning it.
622 */
623static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
624{
625 struct pci_resource *max;
626 struct pci_resource *temp;
627 struct pci_resource *split_node;
628 u32 temp_dword;
629
630 if (cpqhp_resource_sort_and_combine(head))
631 return NULL;
632
633 if (sort_by_max_size(head))
634 return NULL;
635
636 for (max = *head; max; max = max->next) {
637 /* If not big enough we could probably just bail,
638 * instead we'll continue to the next.
639 */
640 if (max->length < size)
641 continue;
642
643 if (max->base & (size - 1)) {
644 /* this one isn't base aligned properly
645 * so we'll make a new entry and split it up
646 */
647 temp_dword = (max->base | (size-1)) + 1;
648
649 /* Short circuit if adjusted size is too small */
650 if ((max->length - (temp_dword - max->base)) < size)
651 continue;
652
653 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
654
655 if (!split_node)
656 return NULL;
657
658 split_node->base = max->base;
659 split_node->length = temp_dword - max->base;
660 max->base = temp_dword;
661 max->length -= split_node->length;
662
663 split_node->next = max->next;
664 max->next = split_node;
665 }
666
667 if ((max->base + max->length) & (size - 1)) {
668 /* this one isn't end aligned properly at the top
669 * so we'll make a new entry and split it up
670 */
671 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
672
673 if (!split_node)
674 return NULL;
675 temp_dword = ((max->base + max->length) & ~(size - 1));
676 split_node->base = temp_dword;
677 split_node->length = max->length + max->base
678 - split_node->base;
679 max->length -= split_node->length;
680
681 split_node->next = max->next;
682 max->next = split_node;
683 }
684
685 /* Make sure it didn't shrink too much when we aligned it */
686 if (max->length < size)
687 continue;
688
689 /* Now take it out of the list */
690 temp = *head;
691 if (temp == max) {
692 *head = max->next;
693 } else {
694 while (temp && temp->next != max)
695 temp = temp->next;
696
697 if (temp)
698 temp->next = max->next;
699 }
700
701 max->next = NULL;
702 break;
703 }
704
705 return max;
706}
707
708
709/**
710 * get_resource - find resource of given size and split up larger ones.
711 * @head: the list to search for resources
712 * @size: the size limit to use
713 *
714 * Description: This function sorts the resource list by size and then
715 * returns the first node of "size" length. If it finds a node
716 * larger than "size" it will split it up.
717 *
718 * size must be a power of two.
719 */
720static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
721{
722 struct pci_resource *prevnode;
723 struct pci_resource *node;
724 struct pci_resource *split_node;
725 u32 temp_dword;
726
727 if (cpqhp_resource_sort_and_combine(head))
728 return NULL;
729
730 if (sort_by_size(head))
731 return NULL;
732
733 for (node = *head; node; node = node->next) {
734 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
735 __func__, size, node, node->base, node->length);
736 if (node->length < size)
737 continue;
738
739 if (node->base & (size - 1)) {
740 dbg("%s: not aligned\n", __func__);
741 /* this one isn't base aligned properly
742 * so we'll make a new entry and split it up
743 */
744 temp_dword = (node->base | (size-1)) + 1;
745
746 /* Short circuit if adjusted size is too small */
747 if ((node->length - (temp_dword - node->base)) < size)
748 continue;
749
750 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
751
752 if (!split_node)
753 return NULL;
754
755 split_node->base = node->base;
756 split_node->length = temp_dword - node->base;
757 node->base = temp_dword;
758 node->length -= split_node->length;
759
760 split_node->next = node->next;
761 node->next = split_node;
762 } /* End of non-aligned base */
763
764 /* Don't need to check if too small since we already did */
765 if (node->length > size) {
766 dbg("%s: too big\n", __func__);
767 /* this one is longer than we need
768 * so we'll make a new entry and split it up
769 */
770 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
771
772 if (!split_node)
773 return NULL;
774
775 split_node->base = node->base + size;
776 split_node->length = node->length - size;
777 node->length = size;
778
779 /* Put it in the list */
780 split_node->next = node->next;
781 node->next = split_node;
782 } /* End of too big on top end */
783
784 dbg("%s: got one!!!\n", __func__);
785 /* If we got here, then it is the right size
786 * Now take it out of the list */
787 if (*head == node) {
788 *head = node->next;
789 } else {
790 prevnode = *head;
791 while (prevnode->next != node)
792 prevnode = prevnode->next;
793
794 prevnode->next = node->next;
795 }
796 node->next = NULL;
797 break;
798 }
799 return node;
800}
801
802
803/**
804 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
805 * @head: the list to sort and clean up
806 *
807 * Description: Sorts all of the nodes in the list in ascending order by
808 * their base addresses. Also does garbage collection by
809 * combining adjacent nodes.
810 *
811 * Returns %0 if success.
812 */
813int cpqhp_resource_sort_and_combine(struct pci_resource **head)
814{
815 struct pci_resource *node1;
816 struct pci_resource *node2;
817 int out_of_order = 1;
818
819 dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
820
821 if (!(*head))
822 return 1;
823
824 dbg("*head->next = %p\n", (*head)->next);
825
826 if (!(*head)->next)
827 return 0; /* only one item on the list, already sorted! */
828
829 dbg("*head->base = 0x%x\n", (*head)->base);
830 dbg("*head->next->base = 0x%x\n", (*head)->next->base);
831 while (out_of_order) {
832 out_of_order = 0;
833
834 /* Special case for swapping list head */
835 if (((*head)->next) &&
836 ((*head)->base > (*head)->next->base)) {
837 node1 = *head;
838 (*head) = (*head)->next;
839 node1->next = (*head)->next;
840 (*head)->next = node1;
841 out_of_order++;
842 }
843
844 node1 = (*head);
845
846 while (node1->next && node1->next->next) {
847 if (node1->next->base > node1->next->next->base) {
848 out_of_order++;
849 node2 = node1->next;
850 node1->next = node1->next->next;
851 node1 = node1->next;
852 node2->next = node1->next;
853 node1->next = node2;
854 } else
855 node1 = node1->next;
856 }
857 } /* End of out_of_order loop */
858
859 node1 = *head;
860
861 while (node1 && node1->next) {
862 if ((node1->base + node1->length) == node1->next->base) {
863 /* Combine */
864 dbg("8..\n");
865 node1->length += node1->next->length;
866 node2 = node1->next;
867 node1->next = node1->next->next;
868 kfree(node2);
869 } else
870 node1 = node1->next;
871 }
872
873 return 0;
874}
875
876
877irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
878{
879 struct controller *ctrl = data;
880 u8 schedule_flag = 0;
881 u8 reset;
882 u16 misc;
883 u32 Diff;
884 u32 temp_dword;
885
886
887 misc = readw(ctrl->hpc_reg + MISC);
888 /*
889 * Check to see if it was our interrupt
890 */
891 if (!(misc & 0x000C))
892 return IRQ_NONE;
893
894 if (misc & 0x0004) {
895 /*
896 * Serial Output interrupt Pending
897 */
898
899 /* Clear the interrupt */
900 misc |= 0x0004;
901 writew(misc, ctrl->hpc_reg + MISC);
902
903 /* Read to clear posted writes */
904 misc = readw(ctrl->hpc_reg + MISC);
905
906 dbg("%s - waking up\n", __func__);
907 wake_up_interruptible(&ctrl->queue);
908 }
909
910 if (misc & 0x0008) {
911 /* General-interrupt-input interrupt Pending */
912 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
913
914 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
915
916 /* Clear the interrupt */
917 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
918
919 /* Read it back to clear any posted writes */
920 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
921
922 if (!Diff)
923 /* Clear all interrupts */
924 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
925
926 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
927 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
928 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
929 }
930
931 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
932 if (reset & 0x40) {
933 /* Bus reset has completed */
934 reset &= 0xCF;
935 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
936 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
937 wake_up_interruptible(&ctrl->queue);
938 }
939
940 if (schedule_flag) {
941 wake_up_process(cpqhp_event_thread);
942 dbg("Waking even thread");
943 }
944 return IRQ_HANDLED;
945}
946
947
948/**
949 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
950 * @busnumber: bus where new node is to be located
951 *
952 * Returns pointer to the new node or %NULL if unsuccessful.
953 */
954struct pci_func *cpqhp_slot_create(u8 busnumber)
955{
956 struct pci_func *new_slot;
957 struct pci_func *next;
958
959 new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
960 if (new_slot == NULL)
961 return new_slot;
962
963 new_slot->next = NULL;
964 new_slot->configured = 1;
965
966 if (cpqhp_slot_list[busnumber] == NULL) {
967 cpqhp_slot_list[busnumber] = new_slot;
968 } else {
969 next = cpqhp_slot_list[busnumber];
970 while (next->next != NULL)
971 next = next->next;
972 next->next = new_slot;
973 }
974 return new_slot;
975}
976
977
978/**
979 * slot_remove - Removes a node from the linked list of slots.
980 * @old_slot: slot to remove
981 *
982 * Returns %0 if successful, !0 otherwise.
983 */
984static int slot_remove(struct pci_func *old_slot)
985{
986 struct pci_func *next;
987
988 if (old_slot == NULL)
989 return 1;
990
991 next = cpqhp_slot_list[old_slot->bus];
992 if (next == NULL)
993 return 1;
994
995 if (next == old_slot) {
996 cpqhp_slot_list[old_slot->bus] = old_slot->next;
997 cpqhp_destroy_board_resources(old_slot);
998 kfree(old_slot);
999 return 0;
1000 }
1001
1002 while ((next->next != old_slot) && (next->next != NULL))
1003 next = next->next;
1004
1005 if (next->next == old_slot) {
1006 next->next = old_slot->next;
1007 cpqhp_destroy_board_resources(old_slot);
1008 kfree(old_slot);
1009 return 0;
1010 } else
1011 return 2;
1012}
1013
1014
1015/**
1016 * bridge_slot_remove - Removes a node from the linked list of slots.
1017 * @bridge: bridge to remove
1018 *
1019 * Returns %0 if successful, !0 otherwise.
1020 */
1021static int bridge_slot_remove(struct pci_func *bridge)
1022{
1023 u8 subordinateBus, secondaryBus;
1024 u8 tempBus;
1025 struct pci_func *next;
1026
1027 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1028 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1029
1030 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1031 next = cpqhp_slot_list[tempBus];
1032
1033 while (!slot_remove(next))
1034 next = cpqhp_slot_list[tempBus];
1035 }
1036
1037 next = cpqhp_slot_list[bridge->bus];
1038
1039 if (next == NULL)
1040 return 1;
1041
1042 if (next == bridge) {
1043 cpqhp_slot_list[bridge->bus] = bridge->next;
1044 goto out;
1045 }
1046
1047 while ((next->next != bridge) && (next->next != NULL))
1048 next = next->next;
1049
1050 if (next->next != bridge)
1051 return 2;
1052 next->next = bridge->next;
1053out:
1054 kfree(bridge);
1055 return 0;
1056}
1057
1058
1059/**
1060 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1061 * @bus: bus to find
1062 * @device: device to find
1063 * @index: is %0 for first function found, %1 for the second...
1064 *
1065 * Returns pointer to the node if successful, %NULL otherwise.
1066 */
1067struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1068{
1069 int found = -1;
1070 struct pci_func *func;
1071
1072 func = cpqhp_slot_list[bus];
1073
1074 if ((func == NULL) || ((func->device == device) && (index == 0)))
1075 return func;
1076
1077 if (func->device == device)
1078 found++;
1079
1080 while (func->next != NULL) {
1081 func = func->next;
1082
1083 if (func->device == device)
1084 found++;
1085
1086 if (found == index)
1087 return func;
1088 }
1089
1090 return NULL;
1091}
1092
1093
1094/* DJZ: I don't think is_bridge will work as is.
1095 * FIXME */
1096static int is_bridge(struct pci_func *func)
1097{
1098 /* Check the header type */
1099 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1100 return 1;
1101 else
1102 return 0;
1103}
1104
1105
1106/**
1107 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1108 * @ctrl: controller to change frequency/mode for.
1109 * @adapter_speed: the speed of the adapter we want to match.
1110 * @hp_slot: the slot number where the adapter is installed.
1111 *
1112 * Returns %0 if we successfully change frequency and/or mode to match the
1113 * adapter speed.
1114 */
1115static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1116{
1117 struct slot *slot;
1118 struct pci_bus *bus = ctrl->pci_bus;
1119 u8 reg;
1120 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1121 u16 reg16;
1122 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1123
1124 if (bus->cur_bus_speed == adapter_speed)
1125 return 0;
1126
1127 /* We don't allow freq/mode changes if we find another adapter running
1128 * in another slot on this controller
1129 */
1130 for (slot = ctrl->slot; slot; slot = slot->next) {
1131 if (slot->device == (hp_slot + ctrl->slot_device_offset))
1132 continue;
1133 if (get_presence_status(ctrl, slot) == 0)
1134 continue;
1135 /* If another adapter is running on the same segment but at a
1136 * lower speed/mode, we allow the new adapter to function at
1137 * this rate if supported
1138 */
1139 if (bus->cur_bus_speed < adapter_speed)
1140 return 0;
1141
1142 return 1;
1143 }
1144
1145 /* If the controller doesn't support freq/mode changes and the
1146 * controller is running at a higher mode, we bail
1147 */
1148 if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1149 return 1;
1150
1151 /* But we allow the adapter to run at a lower rate if possible */
1152 if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1153 return 0;
1154
1155 /* We try to set the max speed supported by both the adapter and
1156 * controller
1157 */
1158 if (bus->max_bus_speed < adapter_speed) {
1159 if (bus->cur_bus_speed == bus->max_bus_speed)
1160 return 0;
1161 adapter_speed = bus->max_bus_speed;
1162 }
1163
1164 writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1165 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1166
1167 set_SOGO(ctrl);
1168 wait_for_ctrl_irq(ctrl);
1169
1170 if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1171 reg = 0xF5;
1172 else
1173 reg = 0xF4;
1174 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1175
1176 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1177 reg16 &= ~0x000F;
1178 switch (adapter_speed) {
1179 case(PCI_SPEED_133MHz_PCIX):
1180 reg = 0x75;
1181 reg16 |= 0xB;
1182 break;
1183 case(PCI_SPEED_100MHz_PCIX):
1184 reg = 0x74;
1185 reg16 |= 0xA;
1186 break;
1187 case(PCI_SPEED_66MHz_PCIX):
1188 reg = 0x73;
1189 reg16 |= 0x9;
1190 break;
1191 case(PCI_SPEED_66MHz):
1192 reg = 0x73;
1193 reg16 |= 0x1;
1194 break;
1195 default: /* 33MHz PCI 2.2 */
1196 reg = 0x71;
1197 break;
1198
1199 }
1200 reg16 |= 0xB << 12;
1201 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1202
1203 mdelay(5);
1204
1205 /* Reenable interrupts */
1206 writel(0, ctrl->hpc_reg + INT_MASK);
1207
1208 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1209
1210 /* Restart state machine */
1211 reg = ~0xF;
1212 pci_read_config_byte(ctrl->pci_dev, 0x43, ®);
1213 pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1214
1215 /* Only if mode change...*/
1216 if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1217 ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1218 set_SOGO(ctrl);
1219
1220 wait_for_ctrl_irq(ctrl);
1221 mdelay(1100);
1222
1223 /* Restore LED/Slot state */
1224 writel(leds, ctrl->hpc_reg + LED_CONTROL);
1225 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1226
1227 set_SOGO(ctrl);
1228 wait_for_ctrl_irq(ctrl);
1229
1230 bus->cur_bus_speed = adapter_speed;
1231 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1232
1233 info("Successfully changed frequency/mode for adapter in slot %d\n",
1234 slot->number);
1235 return 0;
1236}
1237
1238/* the following routines constitute the bulk of the
1239 * hotplug controller logic
1240 */
1241
1242
1243/**
1244 * board_replaced - Called after a board has been replaced in the system.
1245 * @func: PCI device/function information
1246 * @ctrl: hotplug controller
1247 *
1248 * This is only used if we don't have resources for hot add.
1249 * Turns power on for the board.
1250 * Checks to see if board is the same.
1251 * If board is same, reconfigures it.
1252 * If board isn't same, turns it back off.
1253 */
1254static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1255{
1256 struct pci_bus *bus = ctrl->pci_bus;
1257 u8 hp_slot;
1258 u8 temp_byte;
1259 u8 adapter_speed;
1260 u32 rc = 0;
1261
1262 hp_slot = func->device - ctrl->slot_device_offset;
1263
1264 /*
1265 * The switch is open.
1266 */
1267 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1268 rc = INTERLOCK_OPEN;
1269 /*
1270 * The board is already on
1271 */
1272 else if (is_slot_enabled(ctrl, hp_slot))
1273 rc = CARD_FUNCTIONING;
1274 else {
1275 mutex_lock(&ctrl->crit_sect);
1276
1277 /* turn on board without attaching to the bus */
1278 enable_slot_power(ctrl, hp_slot);
1279
1280 set_SOGO(ctrl);
1281
1282 /* Wait for SOBS to be unset */
1283 wait_for_ctrl_irq(ctrl);
1284
1285 /* Change bits in slot power register to force another shift out
1286 * NOTE: this is to work around the timer bug */
1287 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1288 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1289 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1290
1291 set_SOGO(ctrl);
1292
1293 /* Wait for SOBS to be unset */
1294 wait_for_ctrl_irq(ctrl);
1295
1296 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1297 if (bus->cur_bus_speed != adapter_speed)
1298 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1299 rc = WRONG_BUS_FREQUENCY;
1300
1301 /* turn off board without attaching to the bus */
1302 disable_slot_power(ctrl, hp_slot);
1303
1304 set_SOGO(ctrl);
1305
1306 /* Wait for SOBS to be unset */
1307 wait_for_ctrl_irq(ctrl);
1308
1309 mutex_unlock(&ctrl->crit_sect);
1310
1311 if (rc)
1312 return rc;
1313
1314 mutex_lock(&ctrl->crit_sect);
1315
1316 slot_enable(ctrl, hp_slot);
1317 green_LED_blink(ctrl, hp_slot);
1318
1319 amber_LED_off(ctrl, hp_slot);
1320
1321 set_SOGO(ctrl);
1322
1323 /* Wait for SOBS to be unset */
1324 wait_for_ctrl_irq(ctrl);
1325
1326 mutex_unlock(&ctrl->crit_sect);
1327
1328 /* Wait for ~1 second because of hot plug spec */
1329 long_delay(1*HZ);
1330
1331 /* Check for a power fault */
1332 if (func->status == 0xFF) {
1333 /* power fault occurred, but it was benign */
1334 rc = POWER_FAILURE;
1335 func->status = 0;
1336 } else
1337 rc = cpqhp_valid_replace(ctrl, func);
1338
1339 if (!rc) {
1340 /* It must be the same board */
1341
1342 rc = cpqhp_configure_board(ctrl, func);
1343
1344 /* If configuration fails, turn it off
1345 * Get slot won't work for devices behind
1346 * bridges, but in this case it will always be
1347 * called for the "base" bus/dev/func of an
1348 * adapter.
1349 */
1350
1351 mutex_lock(&ctrl->crit_sect);
1352
1353 amber_LED_on(ctrl, hp_slot);
1354 green_LED_off(ctrl, hp_slot);
1355 slot_disable(ctrl, hp_slot);
1356
1357 set_SOGO(ctrl);
1358
1359 /* Wait for SOBS to be unset */
1360 wait_for_ctrl_irq(ctrl);
1361
1362 mutex_unlock(&ctrl->crit_sect);
1363
1364 if (rc)
1365 return rc;
1366 else
1367 return 1;
1368
1369 } else {
1370 /* Something is wrong
1371
1372 * Get slot won't work for devices behind bridges, but
1373 * in this case it will always be called for the "base"
1374 * bus/dev/func of an adapter.
1375 */
1376
1377 mutex_lock(&ctrl->crit_sect);
1378
1379 amber_LED_on(ctrl, hp_slot);
1380 green_LED_off(ctrl, hp_slot);
1381 slot_disable(ctrl, hp_slot);
1382
1383 set_SOGO(ctrl);
1384
1385 /* Wait for SOBS to be unset */
1386 wait_for_ctrl_irq(ctrl);
1387
1388 mutex_unlock(&ctrl->crit_sect);
1389 }
1390
1391 }
1392 return rc;
1393
1394}
1395
1396
1397/**
1398 * board_added - Called after a board has been added to the system.
1399 * @func: PCI device/function info
1400 * @ctrl: hotplug controller
1401 *
1402 * Turns power on for the board.
1403 * Configures board.
1404 */
1405static u32 board_added(struct pci_func *func, struct controller *ctrl)
1406{
1407 u8 hp_slot;
1408 u8 temp_byte;
1409 u8 adapter_speed;
1410 int index;
1411 u32 temp_register = 0xFFFFFFFF;
1412 u32 rc = 0;
1413 struct pci_func *new_slot = NULL;
1414 struct pci_bus *bus = ctrl->pci_bus;
1415 struct slot *p_slot;
1416 struct resource_lists res_lists;
1417
1418 hp_slot = func->device - ctrl->slot_device_offset;
1419 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1420 __func__, func->device, ctrl->slot_device_offset, hp_slot);
1421
1422 mutex_lock(&ctrl->crit_sect);
1423
1424 /* turn on board without attaching to the bus */
1425 enable_slot_power(ctrl, hp_slot);
1426
1427 set_SOGO(ctrl);
1428
1429 /* Wait for SOBS to be unset */
1430 wait_for_ctrl_irq(ctrl);
1431
1432 /* Change bits in slot power register to force another shift out
1433 * NOTE: this is to work around the timer bug
1434 */
1435 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1436 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1437 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1438
1439 set_SOGO(ctrl);
1440
1441 /* Wait for SOBS to be unset */
1442 wait_for_ctrl_irq(ctrl);
1443
1444 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1445 if (bus->cur_bus_speed != adapter_speed)
1446 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1447 rc = WRONG_BUS_FREQUENCY;
1448
1449 /* turn off board without attaching to the bus */
1450 disable_slot_power(ctrl, hp_slot);
1451
1452 set_SOGO(ctrl);
1453
1454 /* Wait for SOBS to be unset */
1455 wait_for_ctrl_irq(ctrl);
1456
1457 mutex_unlock(&ctrl->crit_sect);
1458
1459 if (rc)
1460 return rc;
1461
1462 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1463
1464 /* turn on board and blink green LED */
1465
1466 dbg("%s: before down\n", __func__);
1467 mutex_lock(&ctrl->crit_sect);
1468 dbg("%s: after down\n", __func__);
1469
1470 dbg("%s: before slot_enable\n", __func__);
1471 slot_enable(ctrl, hp_slot);
1472
1473 dbg("%s: before green_LED_blink\n", __func__);
1474 green_LED_blink(ctrl, hp_slot);
1475
1476 dbg("%s: before amber_LED_blink\n", __func__);
1477 amber_LED_off(ctrl, hp_slot);
1478
1479 dbg("%s: before set_SOGO\n", __func__);
1480 set_SOGO(ctrl);
1481
1482 /* Wait for SOBS to be unset */
1483 dbg("%s: before wait_for_ctrl_irq\n", __func__);
1484 wait_for_ctrl_irq(ctrl);
1485 dbg("%s: after wait_for_ctrl_irq\n", __func__);
1486
1487 dbg("%s: before up\n", __func__);
1488 mutex_unlock(&ctrl->crit_sect);
1489 dbg("%s: after up\n", __func__);
1490
1491 /* Wait for ~1 second because of hot plug spec */
1492 dbg("%s: before long_delay\n", __func__);
1493 long_delay(1*HZ);
1494 dbg("%s: after long_delay\n", __func__);
1495
1496 dbg("%s: func status = %x\n", __func__, func->status);
1497 /* Check for a power fault */
1498 if (func->status == 0xFF) {
1499 /* power fault occurred, but it was benign */
1500 temp_register = 0xFFFFFFFF;
1501 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1502 rc = POWER_FAILURE;
1503 func->status = 0;
1504 } else {
1505 /* Get vendor/device ID u32 */
1506 ctrl->pci_bus->number = func->bus;
1507 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1508 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1509 dbg("%s: temp_register is %x\n", __func__, temp_register);
1510
1511 if (rc != 0) {
1512 /* Something's wrong here */
1513 temp_register = 0xFFFFFFFF;
1514 dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1515 }
1516 /* Preset return code. It will be changed later if things go okay. */
1517 rc = NO_ADAPTER_PRESENT;
1518 }
1519
1520 /* All F's is an empty slot or an invalid board */
1521 if (temp_register != 0xFFFFFFFF) {
1522 res_lists.io_head = ctrl->io_head;
1523 res_lists.mem_head = ctrl->mem_head;
1524 res_lists.p_mem_head = ctrl->p_mem_head;
1525 res_lists.bus_head = ctrl->bus_head;
1526 res_lists.irqs = NULL;
1527
1528 rc = configure_new_device(ctrl, func, 0, &res_lists);
1529
1530 dbg("%s: back from configure_new_device\n", __func__);
1531 ctrl->io_head = res_lists.io_head;
1532 ctrl->mem_head = res_lists.mem_head;
1533 ctrl->p_mem_head = res_lists.p_mem_head;
1534 ctrl->bus_head = res_lists.bus_head;
1535
1536 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1537 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1538 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1539 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1540
1541 if (rc) {
1542 mutex_lock(&ctrl->crit_sect);
1543
1544 amber_LED_on(ctrl, hp_slot);
1545 green_LED_off(ctrl, hp_slot);
1546 slot_disable(ctrl, hp_slot);
1547
1548 set_SOGO(ctrl);
1549
1550 /* Wait for SOBS to be unset */
1551 wait_for_ctrl_irq(ctrl);
1552
1553 mutex_unlock(&ctrl->crit_sect);
1554 return rc;
1555 } else {
1556 cpqhp_save_slot_config(ctrl, func);
1557 }
1558
1559
1560 func->status = 0;
1561 func->switch_save = 0x10;
1562 func->is_a_board = 0x01;
1563
1564 /* next, we will instantiate the linux pci_dev structures (with
1565 * appropriate driver notification, if already present) */
1566 dbg("%s: configure linux pci_dev structure\n", __func__);
1567 index = 0;
1568 do {
1569 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1570 if (new_slot && !new_slot->pci_dev)
1571 cpqhp_configure_device(ctrl, new_slot);
1572 } while (new_slot);
1573
1574 mutex_lock(&ctrl->crit_sect);
1575
1576 green_LED_on(ctrl, hp_slot);
1577
1578 set_SOGO(ctrl);
1579
1580 /* Wait for SOBS to be unset */
1581 wait_for_ctrl_irq(ctrl);
1582
1583 mutex_unlock(&ctrl->crit_sect);
1584 } else {
1585 mutex_lock(&ctrl->crit_sect);
1586
1587 amber_LED_on(ctrl, hp_slot);
1588 green_LED_off(ctrl, hp_slot);
1589 slot_disable(ctrl, hp_slot);
1590
1591 set_SOGO(ctrl);
1592
1593 /* Wait for SOBS to be unset */
1594 wait_for_ctrl_irq(ctrl);
1595
1596 mutex_unlock(&ctrl->crit_sect);
1597
1598 return rc;
1599 }
1600 return 0;
1601}
1602
1603
1604/**
1605 * remove_board - Turns off slot and LEDs
1606 * @func: PCI device/function info
1607 * @replace_flag: whether replacing or adding a new device
1608 * @ctrl: target controller
1609 */
1610static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl)
1611{
1612 int index;
1613 u8 skip = 0;
1614 u8 device;
1615 u8 hp_slot;
1616 u8 temp_byte;
1617 u32 rc;
1618 struct resource_lists res_lists;
1619 struct pci_func *temp_func;
1620
1621 if (cpqhp_unconfigure_device(func))
1622 return 1;
1623
1624 device = func->device;
1625
1626 hp_slot = func->device - ctrl->slot_device_offset;
1627 dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1628
1629 /* When we get here, it is safe to change base address registers.
1630 * We will attempt to save the base address register lengths */
1631 if (replace_flag || !ctrl->add_support)
1632 rc = cpqhp_save_base_addr_length(ctrl, func);
1633 else if (!func->bus_head && !func->mem_head &&
1634 !func->p_mem_head && !func->io_head) {
1635 /* Here we check to see if we've saved any of the board's
1636 * resources already. If so, we'll skip the attempt to
1637 * determine what's being used. */
1638 index = 0;
1639 temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1640 while (temp_func) {
1641 if (temp_func->bus_head || temp_func->mem_head
1642 || temp_func->p_mem_head || temp_func->io_head) {
1643 skip = 1;
1644 break;
1645 }
1646 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1647 }
1648
1649 if (!skip)
1650 rc = cpqhp_save_used_resources(ctrl, func);
1651 }
1652 /* Change status to shutdown */
1653 if (func->is_a_board)
1654 func->status = 0x01;
1655 func->configured = 0;
1656
1657 mutex_lock(&ctrl->crit_sect);
1658
1659 green_LED_off(ctrl, hp_slot);
1660 slot_disable(ctrl, hp_slot);
1661
1662 set_SOGO(ctrl);
1663
1664 /* turn off SERR for slot */
1665 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1666 temp_byte &= ~(0x01 << hp_slot);
1667 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1668
1669 /* Wait for SOBS to be unset */
1670 wait_for_ctrl_irq(ctrl);
1671
1672 mutex_unlock(&ctrl->crit_sect);
1673
1674 if (!replace_flag && ctrl->add_support) {
1675 while (func) {
1676 res_lists.io_head = ctrl->io_head;
1677 res_lists.mem_head = ctrl->mem_head;
1678 res_lists.p_mem_head = ctrl->p_mem_head;
1679 res_lists.bus_head = ctrl->bus_head;
1680
1681 cpqhp_return_board_resources(func, &res_lists);
1682
1683 ctrl->io_head = res_lists.io_head;
1684 ctrl->mem_head = res_lists.mem_head;
1685 ctrl->p_mem_head = res_lists.p_mem_head;
1686 ctrl->bus_head = res_lists.bus_head;
1687
1688 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1689 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1690 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1691 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1692
1693 if (is_bridge(func)) {
1694 bridge_slot_remove(func);
1695 } else
1696 slot_remove(func);
1697
1698 func = cpqhp_slot_find(ctrl->bus, device, 0);
1699 }
1700
1701 /* Setup slot structure with entry for empty slot */
1702 func = cpqhp_slot_create(ctrl->bus);
1703
1704 if (func == NULL)
1705 return 1;
1706
1707 func->bus = ctrl->bus;
1708 func->device = device;
1709 func->function = 0;
1710 func->configured = 0;
1711 func->switch_save = 0x10;
1712 func->is_a_board = 0;
1713 func->p_task_event = NULL;
1714 }
1715
1716 return 0;
1717}
1718
1719static void pushbutton_helper_thread(struct timer_list *t)
1720{
1721 pushbutton_pending = t;
1722
1723 wake_up_process(cpqhp_event_thread);
1724}
1725
1726
1727/* this is the main worker thread */
1728static int event_thread(void *data)
1729{
1730 struct controller *ctrl;
1731
1732 while (1) {
1733 dbg("!!!!event_thread sleeping\n");
1734 set_current_state(TASK_INTERRUPTIBLE);
1735 schedule();
1736
1737 if (kthread_should_stop())
1738 break;
1739 /* Do stuff here */
1740 if (pushbutton_pending)
1741 cpqhp_pushbutton_thread(pushbutton_pending);
1742 else
1743 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next)
1744 interrupt_event_handler(ctrl);
1745 }
1746 dbg("event_thread signals exit\n");
1747 return 0;
1748}
1749
1750int cpqhp_event_start_thread(void)
1751{
1752 cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1753 if (IS_ERR(cpqhp_event_thread)) {
1754 err("Can't start up our event thread\n");
1755 return PTR_ERR(cpqhp_event_thread);
1756 }
1757
1758 return 0;
1759}
1760
1761
1762void cpqhp_event_stop_thread(void)
1763{
1764 kthread_stop(cpqhp_event_thread);
1765}
1766
1767
1768static void interrupt_event_handler(struct controller *ctrl)
1769{
1770 int loop = 0;
1771 int change = 1;
1772 struct pci_func *func;
1773 u8 hp_slot;
1774 struct slot *p_slot;
1775
1776 while (change) {
1777 change = 0;
1778
1779 for (loop = 0; loop < 10; loop++) {
1780 /* dbg("loop %d\n", loop); */
1781 if (ctrl->event_queue[loop].event_type != 0) {
1782 hp_slot = ctrl->event_queue[loop].hp_slot;
1783
1784 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1785 if (!func)
1786 return;
1787
1788 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1789 if (!p_slot)
1790 return;
1791
1792 dbg("hp_slot %d, func %p, p_slot %p\n",
1793 hp_slot, func, p_slot);
1794
1795 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1796 dbg("button pressed\n");
1797 } else if (ctrl->event_queue[loop].event_type ==
1798 INT_BUTTON_CANCEL) {
1799 dbg("button cancel\n");
1800 del_timer(&p_slot->task_event);
1801
1802 mutex_lock(&ctrl->crit_sect);
1803
1804 if (p_slot->state == BLINKINGOFF_STATE) {
1805 /* slot is on */
1806 dbg("turn on green LED\n");
1807 green_LED_on(ctrl, hp_slot);
1808 } else if (p_slot->state == BLINKINGON_STATE) {
1809 /* slot is off */
1810 dbg("turn off green LED\n");
1811 green_LED_off(ctrl, hp_slot);
1812 }
1813
1814 info(msg_button_cancel, p_slot->number);
1815
1816 p_slot->state = STATIC_STATE;
1817
1818 amber_LED_off(ctrl, hp_slot);
1819
1820 set_SOGO(ctrl);
1821
1822 /* Wait for SOBS to be unset */
1823 wait_for_ctrl_irq(ctrl);
1824
1825 mutex_unlock(&ctrl->crit_sect);
1826 }
1827 /*** button Released (No action on press...) */
1828 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1829 dbg("button release\n");
1830
1831 if (is_slot_enabled(ctrl, hp_slot)) {
1832 dbg("slot is on\n");
1833 p_slot->state = BLINKINGOFF_STATE;
1834 info(msg_button_off, p_slot->number);
1835 } else {
1836 dbg("slot is off\n");
1837 p_slot->state = BLINKINGON_STATE;
1838 info(msg_button_on, p_slot->number);
1839 }
1840 mutex_lock(&ctrl->crit_sect);
1841
1842 dbg("blink green LED and turn off amber\n");
1843
1844 amber_LED_off(ctrl, hp_slot);
1845 green_LED_blink(ctrl, hp_slot);
1846
1847 set_SOGO(ctrl);
1848
1849 /* Wait for SOBS to be unset */
1850 wait_for_ctrl_irq(ctrl);
1851
1852 mutex_unlock(&ctrl->crit_sect);
1853 timer_setup(&p_slot->task_event,
1854 pushbutton_helper_thread,
1855 0);
1856 p_slot->hp_slot = hp_slot;
1857 p_slot->ctrl = ctrl;
1858/* p_slot->physical_slot = physical_slot; */
1859 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */
1860
1861 dbg("add_timer p_slot = %p\n", p_slot);
1862 add_timer(&p_slot->task_event);
1863 }
1864 /***********POWER FAULT */
1865 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1866 dbg("power fault\n");
1867 }
1868
1869 ctrl->event_queue[loop].event_type = 0;
1870
1871 change = 1;
1872 }
1873 } /* End of FOR loop */
1874 }
1875}
1876
1877
1878/**
1879 * cpqhp_pushbutton_thread - handle pushbutton events
1880 * @slot: target slot (struct)
1881 *
1882 * Scheduled procedure to handle blocking stuff for the pushbuttons.
1883 * Handles all pending events and exits.
1884 */
1885void cpqhp_pushbutton_thread(struct timer_list *t)
1886{
1887 u8 hp_slot;
1888 u8 device;
1889 struct pci_func *func;
1890 struct slot *p_slot = from_timer(p_slot, t, task_event);
1891 struct controller *ctrl = (struct controller *) p_slot->ctrl;
1892
1893 pushbutton_pending = NULL;
1894 hp_slot = p_slot->hp_slot;
1895
1896 device = p_slot->device;
1897
1898 if (is_slot_enabled(ctrl, hp_slot)) {
1899 p_slot->state = POWEROFF_STATE;
1900 /* power Down board */
1901 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1902 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1903 if (!func) {
1904 dbg("Error! func NULL in %s\n", __func__);
1905 return;
1906 }
1907
1908 if (cpqhp_process_SS(ctrl, func) != 0) {
1909 amber_LED_on(ctrl, hp_slot);
1910 green_LED_on(ctrl, hp_slot);
1911
1912 set_SOGO(ctrl);
1913
1914 /* Wait for SOBS to be unset */
1915 wait_for_ctrl_irq(ctrl);
1916 }
1917
1918 p_slot->state = STATIC_STATE;
1919 } else {
1920 p_slot->state = POWERON_STATE;
1921 /* slot is off */
1922
1923 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1924 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1925 if (!func) {
1926 dbg("Error! func NULL in %s\n", __func__);
1927 return;
1928 }
1929
1930 if (ctrl != NULL) {
1931 if (cpqhp_process_SI(ctrl, func) != 0) {
1932 amber_LED_on(ctrl, hp_slot);
1933 green_LED_off(ctrl, hp_slot);
1934
1935 set_SOGO(ctrl);
1936
1937 /* Wait for SOBS to be unset */
1938 wait_for_ctrl_irq(ctrl);
1939 }
1940 }
1941
1942 p_slot->state = STATIC_STATE;
1943 }
1944}
1945
1946
1947int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1948{
1949 u8 device, hp_slot;
1950 u16 temp_word;
1951 u32 tempdword;
1952 int rc;
1953 struct slot *p_slot;
1954 int physical_slot = 0;
1955
1956 tempdword = 0;
1957
1958 device = func->device;
1959 hp_slot = device - ctrl->slot_device_offset;
1960 p_slot = cpqhp_find_slot(ctrl, device);
1961 if (p_slot)
1962 physical_slot = p_slot->number;
1963
1964 /* Check to see if the interlock is closed */
1965 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
1966
1967 if (tempdword & (0x01 << hp_slot))
1968 return 1;
1969
1970 if (func->is_a_board) {
1971 rc = board_replaced(func, ctrl);
1972 } else {
1973 /* add board */
1974 slot_remove(func);
1975
1976 func = cpqhp_slot_create(ctrl->bus);
1977 if (func == NULL)
1978 return 1;
1979
1980 func->bus = ctrl->bus;
1981 func->device = device;
1982 func->function = 0;
1983 func->configured = 0;
1984 func->is_a_board = 1;
1985
1986 /* We have to save the presence info for these slots */
1987 temp_word = ctrl->ctrl_int_comp >> 16;
1988 func->presence_save = (temp_word >> hp_slot) & 0x01;
1989 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
1990
1991 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
1992 func->switch_save = 0;
1993 } else {
1994 func->switch_save = 0x10;
1995 }
1996
1997 rc = board_added(func, ctrl);
1998 if (rc) {
1999 if (is_bridge(func)) {
2000 bridge_slot_remove(func);
2001 } else
2002 slot_remove(func);
2003
2004 /* Setup slot structure with entry for empty slot */
2005 func = cpqhp_slot_create(ctrl->bus);
2006
2007 if (func == NULL)
2008 return 1;
2009
2010 func->bus = ctrl->bus;
2011 func->device = device;
2012 func->function = 0;
2013 func->configured = 0;
2014 func->is_a_board = 0;
2015
2016 /* We have to save the presence info for these slots */
2017 temp_word = ctrl->ctrl_int_comp >> 16;
2018 func->presence_save = (temp_word >> hp_slot) & 0x01;
2019 func->presence_save |=
2020 (temp_word >> (hp_slot + 7)) & 0x02;
2021
2022 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2023 func->switch_save = 0;
2024 } else {
2025 func->switch_save = 0x10;
2026 }
2027 }
2028 }
2029
2030 if (rc)
2031 dbg("%s: rc = %d\n", __func__, rc);
2032
2033 return rc;
2034}
2035
2036
2037int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2038{
2039 u8 device, class_code, header_type, BCR;
2040 u8 index = 0;
2041 u8 replace_flag;
2042 u32 rc = 0;
2043 unsigned int devfn;
2044 struct slot *p_slot;
2045 struct pci_bus *pci_bus = ctrl->pci_bus;
2046 int physical_slot = 0;
2047
2048 device = func->device;
2049 func = cpqhp_slot_find(ctrl->bus, device, index++);
2050 p_slot = cpqhp_find_slot(ctrl, device);
2051 if (p_slot)
2052 physical_slot = p_slot->number;
2053
2054 /* Make sure there are no video controllers here */
2055 while (func && !rc) {
2056 pci_bus->number = func->bus;
2057 devfn = PCI_DEVFN(func->device, func->function);
2058
2059 /* Check the Class Code */
2060 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2061 if (rc)
2062 return rc;
2063
2064 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2065 /* Display/Video adapter (not supported) */
2066 rc = REMOVE_NOT_SUPPORTED;
2067 } else {
2068 /* See if it's a bridge */
2069 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2070 if (rc)
2071 return rc;
2072
2073 /* If it's a bridge, check the VGA Enable bit */
2074 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2075 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2076 if (rc)
2077 return rc;
2078
2079 /* If the VGA Enable bit is set, remove isn't
2080 * supported */
2081 if (BCR & PCI_BRIDGE_CTL_VGA)
2082 rc = REMOVE_NOT_SUPPORTED;
2083 }
2084 }
2085
2086 func = cpqhp_slot_find(ctrl->bus, device, index++);
2087 }
2088
2089 func = cpqhp_slot_find(ctrl->bus, device, 0);
2090 if ((func != NULL) && !rc) {
2091 /* FIXME: Replace flag should be passed into process_SS */
2092 replace_flag = !(ctrl->add_support);
2093 rc = remove_board(func, replace_flag, ctrl);
2094 } else if (!rc) {
2095 rc = 1;
2096 }
2097
2098 return rc;
2099}
2100
2101/**
2102 * switch_leds - switch the leds, go from one site to the other.
2103 * @ctrl: controller to use
2104 * @num_of_slots: number of slots to use
2105 * @work_LED: LED control value
2106 * @direction: 1 to start from the left side, 0 to start right.
2107 */
2108static void switch_leds(struct controller *ctrl, const int num_of_slots,
2109 u32 *work_LED, const int direction)
2110{
2111 int loop;
2112
2113 for (loop = 0; loop < num_of_slots; loop++) {
2114 if (direction)
2115 *work_LED = *work_LED >> 1;
2116 else
2117 *work_LED = *work_LED << 1;
2118 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2119
2120 set_SOGO(ctrl);
2121
2122 /* Wait for SOGO interrupt */
2123 wait_for_ctrl_irq(ctrl);
2124
2125 /* Get ready for next iteration */
2126 long_delay((2*HZ)/10);
2127 }
2128}
2129
2130/**
2131 * cpqhp_hardware_test - runs hardware tests
2132 * @ctrl: target controller
2133 * @test_num: the number written to the "test" file in sysfs.
2134 *
2135 * For hot plug ctrl folks to play with.
2136 */
2137int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2138{
2139 u32 save_LED;
2140 u32 work_LED;
2141 int loop;
2142 int num_of_slots;
2143
2144 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2145
2146 switch (test_num) {
2147 case 1:
2148 /* Do stuff here! */
2149
2150 /* Do that funky LED thing */
2151 /* so we can restore them later */
2152 save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2153 work_LED = 0x01010101;
2154 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2155 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2156 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2157 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2158
2159 work_LED = 0x01010000;
2160 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2161 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2162 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2163 work_LED = 0x00000101;
2164 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2165 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2166 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2167
2168 work_LED = 0x01010000;
2169 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2170 for (loop = 0; loop < num_of_slots; loop++) {
2171 set_SOGO(ctrl);
2172
2173 /* Wait for SOGO interrupt */
2174 wait_for_ctrl_irq(ctrl);
2175
2176 /* Get ready for next iteration */
2177 long_delay((3*HZ)/10);
2178 work_LED = work_LED >> 16;
2179 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2180
2181 set_SOGO(ctrl);
2182
2183 /* Wait for SOGO interrupt */
2184 wait_for_ctrl_irq(ctrl);
2185
2186 /* Get ready for next iteration */
2187 long_delay((3*HZ)/10);
2188 work_LED = work_LED << 16;
2189 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2190 work_LED = work_LED << 1;
2191 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2192 }
2193
2194 /* put it back the way it was */
2195 writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2196
2197 set_SOGO(ctrl);
2198
2199 /* Wait for SOBS to be unset */
2200 wait_for_ctrl_irq(ctrl);
2201 break;
2202 case 2:
2203 /* Do other stuff here! */
2204 break;
2205 case 3:
2206 /* and more... */
2207 break;
2208 }
2209 return 0;
2210}
2211
2212
2213/**
2214 * configure_new_device - Configures the PCI header information of one board.
2215 * @ctrl: pointer to controller structure
2216 * @func: pointer to function structure
2217 * @behind_bridge: 1 if this is a recursive call, 0 if not
2218 * @resources: pointer to set of resource lists
2219 *
2220 * Returns 0 if success.
2221 */
2222static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
2223 u8 behind_bridge, struct resource_lists *resources)
2224{
2225 u8 temp_byte, function, max_functions, stop_it;
2226 int rc;
2227 u32 ID;
2228 struct pci_func *new_slot;
2229 int index;
2230
2231 new_slot = func;
2232
2233 dbg("%s\n", __func__);
2234 /* Check for Multi-function device */
2235 ctrl->pci_bus->number = func->bus;
2236 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2237 if (rc) {
2238 dbg("%s: rc = %d\n", __func__, rc);
2239 return rc;
2240 }
2241
2242 if (temp_byte & 0x80) /* Multi-function device */
2243 max_functions = 8;
2244 else
2245 max_functions = 1;
2246
2247 function = 0;
2248
2249 do {
2250 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2251
2252 if (rc) {
2253 dbg("configure_new_function failed %d\n", rc);
2254 index = 0;
2255
2256 while (new_slot) {
2257 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2258
2259 if (new_slot)
2260 cpqhp_return_board_resources(new_slot, resources);
2261 }
2262
2263 return rc;
2264 }
2265
2266 function++;
2267
2268 stop_it = 0;
2269
2270 /* The following loop skips to the next present function
2271 * and creates a board structure */
2272
2273 while ((function < max_functions) && (!stop_it)) {
2274 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2275
2276 if (ID == 0xFFFFFFFF) {
2277 function++;
2278 } else {
2279 /* Setup slot structure. */
2280 new_slot = cpqhp_slot_create(func->bus);
2281
2282 if (new_slot == NULL)
2283 return 1;
2284
2285 new_slot->bus = func->bus;
2286 new_slot->device = func->device;
2287 new_slot->function = function;
2288 new_slot->is_a_board = 1;
2289 new_slot->status = 0;
2290
2291 stop_it++;
2292 }
2293 }
2294
2295 } while (function < max_functions);
2296 dbg("returning from configure_new_device\n");
2297
2298 return 0;
2299}
2300
2301
2302/*
2303 * Configuration logic that involves the hotplug data structures and
2304 * their bookkeeping
2305 */
2306
2307
2308/**
2309 * configure_new_function - Configures the PCI header information of one device
2310 * @ctrl: pointer to controller structure
2311 * @func: pointer to function structure
2312 * @behind_bridge: 1 if this is a recursive call, 0 if not
2313 * @resources: pointer to set of resource lists
2314 *
2315 * Calls itself recursively for bridged devices.
2316 * Returns 0 if success.
2317 */
2318static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2319 u8 behind_bridge,
2320 struct resource_lists *resources)
2321{
2322 int cloop;
2323 u8 IRQ = 0;
2324 u8 temp_byte;
2325 u8 device;
2326 u8 class_code;
2327 u16 command;
2328 u16 temp_word;
2329 u32 temp_dword;
2330 u32 rc;
2331 u32 temp_register;
2332 u32 base;
2333 u32 ID;
2334 unsigned int devfn;
2335 struct pci_resource *mem_node;
2336 struct pci_resource *p_mem_node;
2337 struct pci_resource *io_node;
2338 struct pci_resource *bus_node;
2339 struct pci_resource *hold_mem_node;
2340 struct pci_resource *hold_p_mem_node;
2341 struct pci_resource *hold_IO_node;
2342 struct pci_resource *hold_bus_node;
2343 struct irq_mapping irqs;
2344 struct pci_func *new_slot;
2345 struct pci_bus *pci_bus;
2346 struct resource_lists temp_resources;
2347
2348 pci_bus = ctrl->pci_bus;
2349 pci_bus->number = func->bus;
2350 devfn = PCI_DEVFN(func->device, func->function);
2351
2352 /* Check for Bridge */
2353 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2354 if (rc)
2355 return rc;
2356
2357 if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2358 /* set Primary bus */
2359 dbg("set Primary bus = %d\n", func->bus);
2360 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2361 if (rc)
2362 return rc;
2363
2364 /* find range of buses to use */
2365 dbg("find ranges of buses to use\n");
2366 bus_node = get_max_resource(&(resources->bus_head), 1);
2367
2368 /* If we don't have any buses to allocate, we can't continue */
2369 if (!bus_node)
2370 return -ENOMEM;
2371
2372 /* set Secondary bus */
2373 temp_byte = bus_node->base;
2374 dbg("set Secondary bus = %d\n", bus_node->base);
2375 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2376 if (rc)
2377 return rc;
2378
2379 /* set subordinate bus */
2380 temp_byte = bus_node->base + bus_node->length - 1;
2381 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2382 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2383 if (rc)
2384 return rc;
2385
2386 /* set subordinate Latency Timer and base Latency Timer */
2387 temp_byte = 0x40;
2388 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2389 if (rc)
2390 return rc;
2391 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2392 if (rc)
2393 return rc;
2394
2395 /* set Cache Line size */
2396 temp_byte = 0x08;
2397 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2398 if (rc)
2399 return rc;
2400
2401 /* Setup the IO, memory, and prefetchable windows */
2402 io_node = get_max_resource(&(resources->io_head), 0x1000);
2403 if (!io_node)
2404 return -ENOMEM;
2405 mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2406 if (!mem_node)
2407 return -ENOMEM;
2408 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2409 if (!p_mem_node)
2410 return -ENOMEM;
2411 dbg("Setup the IO, memory, and prefetchable windows\n");
2412 dbg("io_node\n");
2413 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2414 io_node->length, io_node->next);
2415 dbg("mem_node\n");
2416 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2417 mem_node->length, mem_node->next);
2418 dbg("p_mem_node\n");
2419 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2420 p_mem_node->length, p_mem_node->next);
2421
2422 /* set up the IRQ info */
2423 if (!resources->irqs) {
2424 irqs.barber_pole = 0;
2425 irqs.interrupt[0] = 0;
2426 irqs.interrupt[1] = 0;
2427 irqs.interrupt[2] = 0;
2428 irqs.interrupt[3] = 0;
2429 irqs.valid_INT = 0;
2430 } else {
2431 irqs.barber_pole = resources->irqs->barber_pole;
2432 irqs.interrupt[0] = resources->irqs->interrupt[0];
2433 irqs.interrupt[1] = resources->irqs->interrupt[1];
2434 irqs.interrupt[2] = resources->irqs->interrupt[2];
2435 irqs.interrupt[3] = resources->irqs->interrupt[3];
2436 irqs.valid_INT = resources->irqs->valid_INT;
2437 }
2438
2439 /* set up resource lists that are now aligned on top and bottom
2440 * for anything behind the bridge. */
2441 temp_resources.bus_head = bus_node;
2442 temp_resources.io_head = io_node;
2443 temp_resources.mem_head = mem_node;
2444 temp_resources.p_mem_head = p_mem_node;
2445 temp_resources.irqs = &irqs;
2446
2447 /* Make copies of the nodes we are going to pass down so that
2448 * if there is a problem,we can just use these to free resources
2449 */
2450 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2451 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2452 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2453 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2454
2455 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2456 kfree(hold_bus_node);
2457 kfree(hold_IO_node);
2458 kfree(hold_mem_node);
2459 kfree(hold_p_mem_node);
2460
2461 return 1;
2462 }
2463
2464 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2465
2466 bus_node->base += 1;
2467 bus_node->length -= 1;
2468 bus_node->next = NULL;
2469
2470 /* If we have IO resources copy them and fill in the bridge's
2471 * IO range registers */
2472 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2473 io_node->next = NULL;
2474
2475 /* set IO base and Limit registers */
2476 temp_byte = io_node->base >> 8;
2477 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2478
2479 temp_byte = (io_node->base + io_node->length - 1) >> 8;
2480 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2481
2482 /* Copy the memory resources and fill in the bridge's memory
2483 * range registers.
2484 */
2485 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2486 mem_node->next = NULL;
2487
2488 /* set Mem base and Limit registers */
2489 temp_word = mem_node->base >> 16;
2490 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2491
2492 temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2493 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2494
2495 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2496 p_mem_node->next = NULL;
2497
2498 /* set Pre Mem base and Limit registers */
2499 temp_word = p_mem_node->base >> 16;
2500 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2501
2502 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2503 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2504
2505 /* Adjust this to compensate for extra adjustment in first loop
2506 */
2507 irqs.barber_pole--;
2508
2509 rc = 0;
2510
2511 /* Here we actually find the devices and configure them */
2512 for (device = 0; (device <= 0x1F) && !rc; device++) {
2513 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2514
2515 ID = 0xFFFFFFFF;
2516 pci_bus->number = hold_bus_node->base;
2517 pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2518 pci_bus->number = func->bus;
2519
2520 if (ID != 0xFFFFFFFF) { /* device present */
2521 /* Setup slot structure. */
2522 new_slot = cpqhp_slot_create(hold_bus_node->base);
2523
2524 if (new_slot == NULL) {
2525 rc = -ENOMEM;
2526 continue;
2527 }
2528
2529 new_slot->bus = hold_bus_node->base;
2530 new_slot->device = device;
2531 new_slot->function = 0;
2532 new_slot->is_a_board = 1;
2533 new_slot->status = 0;
2534
2535 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2536 dbg("configure_new_device rc=0x%x\n", rc);
2537 } /* End of IF (device in slot?) */
2538 } /* End of FOR loop */
2539
2540 if (rc)
2541 goto free_and_out;
2542 /* save the interrupt routing information */
2543 if (resources->irqs) {
2544 resources->irqs->interrupt[0] = irqs.interrupt[0];
2545 resources->irqs->interrupt[1] = irqs.interrupt[1];
2546 resources->irqs->interrupt[2] = irqs.interrupt[2];
2547 resources->irqs->interrupt[3] = irqs.interrupt[3];
2548 resources->irqs->valid_INT = irqs.valid_INT;
2549 } else if (!behind_bridge) {
2550 /* We need to hook up the interrupts here */
2551 for (cloop = 0; cloop < 4; cloop++) {
2552 if (irqs.valid_INT & (0x01 << cloop)) {
2553 rc = cpqhp_set_irq(func->bus, func->device,
2554 cloop + 1, irqs.interrupt[cloop]);
2555 if (rc)
2556 goto free_and_out;
2557 }
2558 } /* end of for loop */
2559 }
2560 /* Return unused bus resources
2561 * First use the temporary node to store information for
2562 * the board */
2563 if (bus_node && temp_resources.bus_head) {
2564 hold_bus_node->length = bus_node->base - hold_bus_node->base;
2565
2566 hold_bus_node->next = func->bus_head;
2567 func->bus_head = hold_bus_node;
2568
2569 temp_byte = temp_resources.bus_head->base - 1;
2570
2571 /* set subordinate bus */
2572 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2573
2574 if (temp_resources.bus_head->length == 0) {
2575 kfree(temp_resources.bus_head);
2576 temp_resources.bus_head = NULL;
2577 } else {
2578 return_resource(&(resources->bus_head), temp_resources.bus_head);
2579 }
2580 }
2581
2582 /* If we have IO space available and there is some left,
2583 * return the unused portion */
2584 if (hold_IO_node && temp_resources.io_head) {
2585 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2586 &hold_IO_node, 0x1000);
2587
2588 /* Check if we were able to split something off */
2589 if (io_node) {
2590 hold_IO_node->base = io_node->base + io_node->length;
2591
2592 temp_byte = (hold_IO_node->base) >> 8;
2593 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2594
2595 return_resource(&(resources->io_head), io_node);
2596 }
2597
2598 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2599
2600 /* Check if we were able to split something off */
2601 if (io_node) {
2602 /* First use the temporary node to store
2603 * information for the board */
2604 hold_IO_node->length = io_node->base - hold_IO_node->base;
2605
2606 /* If we used any, add it to the board's list */
2607 if (hold_IO_node->length) {
2608 hold_IO_node->next = func->io_head;
2609 func->io_head = hold_IO_node;
2610
2611 temp_byte = (io_node->base - 1) >> 8;
2612 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2613
2614 return_resource(&(resources->io_head), io_node);
2615 } else {
2616 /* it doesn't need any IO */
2617 temp_word = 0x0000;
2618 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2619
2620 return_resource(&(resources->io_head), io_node);
2621 kfree(hold_IO_node);
2622 }
2623 } else {
2624 /* it used most of the range */
2625 hold_IO_node->next = func->io_head;
2626 func->io_head = hold_IO_node;
2627 }
2628 } else if (hold_IO_node) {
2629 /* it used the whole range */
2630 hold_IO_node->next = func->io_head;
2631 func->io_head = hold_IO_node;
2632 }
2633 /* If we have memory space available and there is some left,
2634 * return the unused portion */
2635 if (hold_mem_node && temp_resources.mem_head) {
2636 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head),
2637 &hold_mem_node, 0x100000);
2638
2639 /* Check if we were able to split something off */
2640 if (mem_node) {
2641 hold_mem_node->base = mem_node->base + mem_node->length;
2642
2643 temp_word = (hold_mem_node->base) >> 16;
2644 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2645
2646 return_resource(&(resources->mem_head), mem_node);
2647 }
2648
2649 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2650
2651 /* Check if we were able to split something off */
2652 if (mem_node) {
2653 /* First use the temporary node to store
2654 * information for the board */
2655 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2656
2657 if (hold_mem_node->length) {
2658 hold_mem_node->next = func->mem_head;
2659 func->mem_head = hold_mem_node;
2660
2661 /* configure end address */
2662 temp_word = (mem_node->base - 1) >> 16;
2663 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2664
2665 /* Return unused resources to the pool */
2666 return_resource(&(resources->mem_head), mem_node);
2667 } else {
2668 /* it doesn't need any Mem */
2669 temp_word = 0x0000;
2670 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2671
2672 return_resource(&(resources->mem_head), mem_node);
2673 kfree(hold_mem_node);
2674 }
2675 } else {
2676 /* it used most of the range */
2677 hold_mem_node->next = func->mem_head;
2678 func->mem_head = hold_mem_node;
2679 }
2680 } else if (hold_mem_node) {
2681 /* it used the whole range */
2682 hold_mem_node->next = func->mem_head;
2683 func->mem_head = hold_mem_node;
2684 }
2685 /* If we have prefetchable memory space available and there
2686 * is some left at the end, return the unused portion */
2687 if (temp_resources.p_mem_head) {
2688 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2689 &hold_p_mem_node, 0x100000);
2690
2691 /* Check if we were able to split something off */
2692 if (p_mem_node) {
2693 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2694
2695 temp_word = (hold_p_mem_node->base) >> 16;
2696 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2697
2698 return_resource(&(resources->p_mem_head), p_mem_node);
2699 }
2700
2701 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2702
2703 /* Check if we were able to split something off */
2704 if (p_mem_node) {
2705 /* First use the temporary node to store
2706 * information for the board */
2707 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2708
2709 /* If we used any, add it to the board's list */
2710 if (hold_p_mem_node->length) {
2711 hold_p_mem_node->next = func->p_mem_head;
2712 func->p_mem_head = hold_p_mem_node;
2713
2714 temp_word = (p_mem_node->base - 1) >> 16;
2715 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2716
2717 return_resource(&(resources->p_mem_head), p_mem_node);
2718 } else {
2719 /* it doesn't need any PMem */
2720 temp_word = 0x0000;
2721 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2722
2723 return_resource(&(resources->p_mem_head), p_mem_node);
2724 kfree(hold_p_mem_node);
2725 }
2726 } else {
2727 /* it used the most of the range */
2728 hold_p_mem_node->next = func->p_mem_head;
2729 func->p_mem_head = hold_p_mem_node;
2730 }
2731 } else if (hold_p_mem_node) {
2732 /* it used the whole range */
2733 hold_p_mem_node->next = func->p_mem_head;
2734 func->p_mem_head = hold_p_mem_node;
2735 }
2736 /* We should be configuring an IRQ and the bridge's base address
2737 * registers if it needs them. Although we have never seen such
2738 * a device */
2739
2740 /* enable card */
2741 command = 0x0157; /* = PCI_COMMAND_IO |
2742 * PCI_COMMAND_MEMORY |
2743 * PCI_COMMAND_MASTER |
2744 * PCI_COMMAND_INVALIDATE |
2745 * PCI_COMMAND_PARITY |
2746 * PCI_COMMAND_SERR */
2747 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
2748
2749 /* set Bridge Control Register */
2750 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY |
2751 * PCI_BRIDGE_CTL_SERR |
2752 * PCI_BRIDGE_CTL_NO_ISA */
2753 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2754 } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2755 /* Standard device */
2756 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2757
2758 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2759 /* Display (video) adapter (not supported) */
2760 return DEVICE_TYPE_NOT_SUPPORTED;
2761 }
2762 /* Figure out IO and memory needs */
2763 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2764 temp_register = 0xFFFFFFFF;
2765
2766 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2767 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
2768
2769 rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register);
2770 dbg("CND: base = 0x%x\n", temp_register);
2771
2772 if (temp_register) { /* If this register is implemented */
2773 if ((temp_register & 0x03L) == 0x01) {
2774 /* Map IO */
2775
2776 /* set base = amount of IO space */
2777 base = temp_register & 0xFFFFFFFC;
2778 base = ~base + 1;
2779
2780 dbg("CND: length = 0x%x\n", base);
2781 io_node = get_io_resource(&(resources->io_head), base);
2782 if (!io_node)
2783 return -ENOMEM;
2784 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2785 io_node->base, io_node->length, io_node->next);
2786 dbg("func (%p) io_head (%p)\n", func, func->io_head);
2787
2788 /* allocate the resource to the board */
2789 base = io_node->base;
2790 io_node->next = func->io_head;
2791 func->io_head = io_node;
2792 } else if ((temp_register & 0x0BL) == 0x08) {
2793 /* Map prefetchable memory */
2794 base = temp_register & 0xFFFFFFF0;
2795 base = ~base + 1;
2796
2797 dbg("CND: length = 0x%x\n", base);
2798 p_mem_node = get_resource(&(resources->p_mem_head), base);
2799
2800 /* allocate the resource to the board */
2801 if (p_mem_node) {
2802 base = p_mem_node->base;
2803
2804 p_mem_node->next = func->p_mem_head;
2805 func->p_mem_head = p_mem_node;
2806 } else
2807 return -ENOMEM;
2808 } else if ((temp_register & 0x0BL) == 0x00) {
2809 /* Map memory */
2810 base = temp_register & 0xFFFFFFF0;
2811 base = ~base + 1;
2812
2813 dbg("CND: length = 0x%x\n", base);
2814 mem_node = get_resource(&(resources->mem_head), base);
2815
2816 /* allocate the resource to the board */
2817 if (mem_node) {
2818 base = mem_node->base;
2819
2820 mem_node->next = func->mem_head;
2821 func->mem_head = mem_node;
2822 } else
2823 return -ENOMEM;
2824 } else {
2825 /* Reserved bits or requesting space below 1M */
2826 return NOT_ENOUGH_RESOURCES;
2827 }
2828
2829 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2830
2831 /* Check for 64-bit base */
2832 if ((temp_register & 0x07L) == 0x04) {
2833 cloop += 4;
2834
2835 /* Upper 32 bits of address always zero
2836 * on today's systems */
2837 /* FIXME this is probably not true on
2838 * Alpha and ia64??? */
2839 base = 0;
2840 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2841 }
2842 }
2843 } /* End of base register loop */
2844 if (cpqhp_legacy_mode) {
2845 /* Figure out which interrupt pin this function uses */
2846 rc = pci_bus_read_config_byte(pci_bus, devfn,
2847 PCI_INTERRUPT_PIN, &temp_byte);
2848
2849 /* If this function needs an interrupt and we are behind
2850 * a bridge and the pin is tied to something that's
2851 * already mapped, set this one the same */
2852 if (temp_byte && resources->irqs &&
2853 (resources->irqs->valid_INT &
2854 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2855 /* We have to share with something already set up */
2856 IRQ = resources->irqs->interrupt[(temp_byte +
2857 resources->irqs->barber_pole - 1) & 0x03];
2858 } else {
2859 /* Program IRQ based on card type */
2860 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2861
2862 if (class_code == PCI_BASE_CLASS_STORAGE)
2863 IRQ = cpqhp_disk_irq;
2864 else
2865 IRQ = cpqhp_nic_irq;
2866 }
2867
2868 /* IRQ Line */
2869 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2870 }
2871
2872 if (!behind_bridge) {
2873 rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2874 if (rc)
2875 return 1;
2876 } else {
2877 /* TBD - this code may also belong in the other clause
2878 * of this If statement */
2879 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2880 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2881 }
2882
2883 /* Latency Timer */
2884 temp_byte = 0x40;
2885 rc = pci_bus_write_config_byte(pci_bus, devfn,
2886 PCI_LATENCY_TIMER, temp_byte);
2887
2888 /* Cache Line size */
2889 temp_byte = 0x08;
2890 rc = pci_bus_write_config_byte(pci_bus, devfn,
2891 PCI_CACHE_LINE_SIZE, temp_byte);
2892
2893 /* disable ROM base Address */
2894 temp_dword = 0x00L;
2895 rc = pci_bus_write_config_word(pci_bus, devfn,
2896 PCI_ROM_ADDRESS, temp_dword);
2897
2898 /* enable card */
2899 temp_word = 0x0157; /* = PCI_COMMAND_IO |
2900 * PCI_COMMAND_MEMORY |
2901 * PCI_COMMAND_MASTER |
2902 * PCI_COMMAND_INVALIDATE |
2903 * PCI_COMMAND_PARITY |
2904 * PCI_COMMAND_SERR */
2905 rc = pci_bus_write_config_word(pci_bus, devfn,
2906 PCI_COMMAND, temp_word);
2907 } else { /* End of Not-A-Bridge else */
2908 /* It's some strange type of PCI adapter (Cardbus?) */
2909 return DEVICE_TYPE_NOT_SUPPORTED;
2910 }
2911
2912 func->configured = 1;
2913
2914 return 0;
2915free_and_out:
2916 cpqhp_destroy_resource_list(&temp_resources);
2917
2918 return_resource(&(resources->bus_head), hold_bus_node);
2919 return_resource(&(resources->io_head), hold_IO_node);
2920 return_resource(&(resources->mem_head), hold_mem_node);
2921 return_resource(&(resources->p_mem_head), hold_p_mem_node);
2922 return rc;
2923}
1/*
2 * Compaq Hot Plug Controller Driver
3 *
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
7 *
8 * All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT. See the GNU General Public License for more
19 * details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Send feedback to <greg@kroah.com>
26 *
27 */
28
29#include <linux/module.h>
30#include <linux/kernel.h>
31#include <linux/types.h>
32#include <linux/slab.h>
33#include <linux/workqueue.h>
34#include <linux/interrupt.h>
35#include <linux/delay.h>
36#include <linux/wait.h>
37#include <linux/pci.h>
38#include <linux/pci_hotplug.h>
39#include <linux/kthread.h>
40#include "cpqphp.h"
41
42static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
43 u8 behind_bridge, struct resource_lists *resources);
44static int configure_new_function(struct controller *ctrl, struct pci_func *func,
45 u8 behind_bridge, struct resource_lists *resources);
46static void interrupt_event_handler(struct controller *ctrl);
47
48
49static struct task_struct *cpqhp_event_thread;
50static unsigned long pushbutton_pending; /* = 0 */
51
52/* delay is in jiffies to wait for */
53static void long_delay(int delay)
54{
55 /*
56 * XXX(hch): if someone is bored please convert all callers
57 * to call msleep_interruptible directly. They really want
58 * to specify timeouts in natural units and spend a lot of
59 * effort converting them to jiffies..
60 */
61 msleep_interruptible(jiffies_to_msecs(delay));
62}
63
64
65/* FIXME: The following line needs to be somewhere else... */
66#define WRONG_BUS_FREQUENCY 0x07
67static u8 handle_switch_change(u8 change, struct controller *ctrl)
68{
69 int hp_slot;
70 u8 rc = 0;
71 u16 temp_word;
72 struct pci_func *func;
73 struct event_info *taskInfo;
74
75 if (!change)
76 return 0;
77
78 /* Switch Change */
79 dbg("cpqsbd: Switch interrupt received.\n");
80
81 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
82 if (change & (0x1L << hp_slot)) {
83 /*
84 * this one changed.
85 */
86 func = cpqhp_slot_find(ctrl->bus,
87 (hp_slot + ctrl->slot_device_offset), 0);
88
89 /* this is the structure that tells the worker thread
90 * what to do
91 */
92 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
93 ctrl->next_event = (ctrl->next_event + 1) % 10;
94 taskInfo->hp_slot = hp_slot;
95
96 rc++;
97
98 temp_word = ctrl->ctrl_int_comp >> 16;
99 func->presence_save = (temp_word >> hp_slot) & 0x01;
100 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
101
102 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
103 /*
104 * Switch opened
105 */
106
107 func->switch_save = 0;
108
109 taskInfo->event_type = INT_SWITCH_OPEN;
110 } else {
111 /*
112 * Switch closed
113 */
114
115 func->switch_save = 0x10;
116
117 taskInfo->event_type = INT_SWITCH_CLOSE;
118 }
119 }
120 }
121
122 return rc;
123}
124
125/**
126 * cpqhp_find_slot - find the struct slot of given device
127 * @ctrl: scan lots of this controller
128 * @device: the device id to find
129 */
130static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
131{
132 struct slot *slot = ctrl->slot;
133
134 while (slot && (slot->device != device))
135 slot = slot->next;
136
137 return slot;
138}
139
140
141static u8 handle_presence_change(u16 change, struct controller *ctrl)
142{
143 int hp_slot;
144 u8 rc = 0;
145 u8 temp_byte;
146 u16 temp_word;
147 struct pci_func *func;
148 struct event_info *taskInfo;
149 struct slot *p_slot;
150
151 if (!change)
152 return 0;
153
154 /*
155 * Presence Change
156 */
157 dbg("cpqsbd: Presence/Notify input change.\n");
158 dbg(" Changed bits are 0x%4.4x\n", change);
159
160 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
161 if (change & (0x0101 << hp_slot)) {
162 /*
163 * this one changed.
164 */
165 func = cpqhp_slot_find(ctrl->bus,
166 (hp_slot + ctrl->slot_device_offset), 0);
167
168 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
169 ctrl->next_event = (ctrl->next_event + 1) % 10;
170 taskInfo->hp_slot = hp_slot;
171
172 rc++;
173
174 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
175 if (!p_slot)
176 return 0;
177
178 /* If the switch closed, must be a button
179 * If not in button mode, nevermind
180 */
181 if (func->switch_save && (ctrl->push_button == 1)) {
182 temp_word = ctrl->ctrl_int_comp >> 16;
183 temp_byte = (temp_word >> hp_slot) & 0x01;
184 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
185
186 if (temp_byte != func->presence_save) {
187 /*
188 * button Pressed (doesn't do anything)
189 */
190 dbg("hp_slot %d button pressed\n", hp_slot);
191 taskInfo->event_type = INT_BUTTON_PRESS;
192 } else {
193 /*
194 * button Released - TAKE ACTION!!!!
195 */
196 dbg("hp_slot %d button released\n", hp_slot);
197 taskInfo->event_type = INT_BUTTON_RELEASE;
198
199 /* Cancel if we are still blinking */
200 if ((p_slot->state == BLINKINGON_STATE)
201 || (p_slot->state == BLINKINGOFF_STATE)) {
202 taskInfo->event_type = INT_BUTTON_CANCEL;
203 dbg("hp_slot %d button cancel\n", hp_slot);
204 } else if ((p_slot->state == POWERON_STATE)
205 || (p_slot->state == POWEROFF_STATE)) {
206 /* info(msg_button_ignore, p_slot->number); */
207 taskInfo->event_type = INT_BUTTON_IGNORE;
208 dbg("hp_slot %d button ignore\n", hp_slot);
209 }
210 }
211 } else {
212 /* Switch is open, assume a presence change
213 * Save the presence state
214 */
215 temp_word = ctrl->ctrl_int_comp >> 16;
216 func->presence_save = (temp_word >> hp_slot) & 0x01;
217 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
218
219 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
220 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
221 /* Present */
222 taskInfo->event_type = INT_PRESENCE_ON;
223 } else {
224 /* Not Present */
225 taskInfo->event_type = INT_PRESENCE_OFF;
226 }
227 }
228 }
229 }
230
231 return rc;
232}
233
234
235static u8 handle_power_fault(u8 change, struct controller *ctrl)
236{
237 int hp_slot;
238 u8 rc = 0;
239 struct pci_func *func;
240 struct event_info *taskInfo;
241
242 if (!change)
243 return 0;
244
245 /*
246 * power fault
247 */
248
249 info("power fault interrupt\n");
250
251 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
252 if (change & (0x01 << hp_slot)) {
253 /*
254 * this one changed.
255 */
256 func = cpqhp_slot_find(ctrl->bus,
257 (hp_slot + ctrl->slot_device_offset), 0);
258
259 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
260 ctrl->next_event = (ctrl->next_event + 1) % 10;
261 taskInfo->hp_slot = hp_slot;
262
263 rc++;
264
265 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
266 /*
267 * power fault Cleared
268 */
269 func->status = 0x00;
270
271 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
272 } else {
273 /*
274 * power fault
275 */
276 taskInfo->event_type = INT_POWER_FAULT;
277
278 if (ctrl->rev < 4) {
279 amber_LED_on(ctrl, hp_slot);
280 green_LED_off(ctrl, hp_slot);
281 set_SOGO(ctrl);
282
283 /* this is a fatal condition, we want
284 * to crash the machine to protect from
285 * data corruption. simulated_NMI
286 * shouldn't ever return */
287 /* FIXME
288 simulated_NMI(hp_slot, ctrl); */
289
290 /* The following code causes a software
291 * crash just in case simulated_NMI did
292 * return */
293 /*FIXME
294 panic(msg_power_fault); */
295 } else {
296 /* set power fault status for this board */
297 func->status = 0xFF;
298 info("power fault bit %x set\n", hp_slot);
299 }
300 }
301 }
302 }
303
304 return rc;
305}
306
307
308/**
309 * sort_by_size - sort nodes on the list by their length, smallest first.
310 * @head: list to sort
311 */
312static int sort_by_size(struct pci_resource **head)
313{
314 struct pci_resource *current_res;
315 struct pci_resource *next_res;
316 int out_of_order = 1;
317
318 if (!(*head))
319 return 1;
320
321 if (!((*head)->next))
322 return 0;
323
324 while (out_of_order) {
325 out_of_order = 0;
326
327 /* Special case for swapping list head */
328 if (((*head)->next) &&
329 ((*head)->length > (*head)->next->length)) {
330 out_of_order++;
331 current_res = *head;
332 *head = (*head)->next;
333 current_res->next = (*head)->next;
334 (*head)->next = current_res;
335 }
336
337 current_res = *head;
338
339 while (current_res->next && current_res->next->next) {
340 if (current_res->next->length > current_res->next->next->length) {
341 out_of_order++;
342 next_res = current_res->next;
343 current_res->next = current_res->next->next;
344 current_res = current_res->next;
345 next_res->next = current_res->next;
346 current_res->next = next_res;
347 } else
348 current_res = current_res->next;
349 }
350 } /* End of out_of_order loop */
351
352 return 0;
353}
354
355
356/**
357 * sort_by_max_size - sort nodes on the list by their length, largest first.
358 * @head: list to sort
359 */
360static int sort_by_max_size(struct pci_resource **head)
361{
362 struct pci_resource *current_res;
363 struct pci_resource *next_res;
364 int out_of_order = 1;
365
366 if (!(*head))
367 return 1;
368
369 if (!((*head)->next))
370 return 0;
371
372 while (out_of_order) {
373 out_of_order = 0;
374
375 /* Special case for swapping list head */
376 if (((*head)->next) &&
377 ((*head)->length < (*head)->next->length)) {
378 out_of_order++;
379 current_res = *head;
380 *head = (*head)->next;
381 current_res->next = (*head)->next;
382 (*head)->next = current_res;
383 }
384
385 current_res = *head;
386
387 while (current_res->next && current_res->next->next) {
388 if (current_res->next->length < current_res->next->next->length) {
389 out_of_order++;
390 next_res = current_res->next;
391 current_res->next = current_res->next->next;
392 current_res = current_res->next;
393 next_res->next = current_res->next;
394 current_res->next = next_res;
395 } else
396 current_res = current_res->next;
397 }
398 } /* End of out_of_order loop */
399
400 return 0;
401}
402
403
404/**
405 * do_pre_bridge_resource_split - find node of resources that are unused
406 * @head: new list head
407 * @orig_head: original list head
408 * @alignment: max node size (?)
409 */
410static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
411 struct pci_resource **orig_head, u32 alignment)
412{
413 struct pci_resource *prevnode = NULL;
414 struct pci_resource *node;
415 struct pci_resource *split_node;
416 u32 rc;
417 u32 temp_dword;
418 dbg("do_pre_bridge_resource_split\n");
419
420 if (!(*head) || !(*orig_head))
421 return NULL;
422
423 rc = cpqhp_resource_sort_and_combine(head);
424
425 if (rc)
426 return NULL;
427
428 if ((*head)->base != (*orig_head)->base)
429 return NULL;
430
431 if ((*head)->length == (*orig_head)->length)
432 return NULL;
433
434
435 /* If we got here, there the bridge requires some of the resource, but
436 * we may be able to split some off of the front
437 */
438
439 node = *head;
440
441 if (node->length & (alignment - 1)) {
442 /* this one isn't an aligned length, so we'll make a new entry
443 * and split it up.
444 */
445 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
446
447 if (!split_node)
448 return NULL;
449
450 temp_dword = (node->length | (alignment-1)) + 1 - alignment;
451
452 split_node->base = node->base;
453 split_node->length = temp_dword;
454
455 node->length -= temp_dword;
456 node->base += split_node->length;
457
458 /* Put it in the list */
459 *head = split_node;
460 split_node->next = node;
461 }
462
463 if (node->length < alignment)
464 return NULL;
465
466 /* Now unlink it */
467 if (*head == node) {
468 *head = node->next;
469 } else {
470 prevnode = *head;
471 while (prevnode->next != node)
472 prevnode = prevnode->next;
473
474 prevnode->next = node->next;
475 }
476 node->next = NULL;
477
478 return node;
479}
480
481
482/**
483 * do_bridge_resource_split - find one node of resources that aren't in use
484 * @head: list head
485 * @alignment: max node size (?)
486 */
487static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
488{
489 struct pci_resource *prevnode = NULL;
490 struct pci_resource *node;
491 u32 rc;
492 u32 temp_dword;
493
494 rc = cpqhp_resource_sort_and_combine(head);
495
496 if (rc)
497 return NULL;
498
499 node = *head;
500
501 while (node->next) {
502 prevnode = node;
503 node = node->next;
504 kfree(prevnode);
505 }
506
507 if (node->length < alignment)
508 goto error;
509
510 if (node->base & (alignment - 1)) {
511 /* Short circuit if adjusted size is too small */
512 temp_dword = (node->base | (alignment-1)) + 1;
513 if ((node->length - (temp_dword - node->base)) < alignment)
514 goto error;
515
516 node->length -= (temp_dword - node->base);
517 node->base = temp_dword;
518 }
519
520 if (node->length & (alignment - 1))
521 /* There's stuff in use after this node */
522 goto error;
523
524 return node;
525error:
526 kfree(node);
527 return NULL;
528}
529
530
531/**
532 * get_io_resource - find first node of given size not in ISA aliasing window.
533 * @head: list to search
534 * @size: size of node to find, must be a power of two.
535 *
536 * Description: This function sorts the resource list by size and then returns
537 * returns the first node of "size" length that is not in the ISA aliasing
538 * window. If it finds a node larger than "size" it will split it up.
539 */
540static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
541{
542 struct pci_resource *prevnode;
543 struct pci_resource *node;
544 struct pci_resource *split_node;
545 u32 temp_dword;
546
547 if (!(*head))
548 return NULL;
549
550 if (cpqhp_resource_sort_and_combine(head))
551 return NULL;
552
553 if (sort_by_size(head))
554 return NULL;
555
556 for (node = *head; node; node = node->next) {
557 if (node->length < size)
558 continue;
559
560 if (node->base & (size - 1)) {
561 /* this one isn't base aligned properly
562 * so we'll make a new entry and split it up
563 */
564 temp_dword = (node->base | (size-1)) + 1;
565
566 /* Short circuit if adjusted size is too small */
567 if ((node->length - (temp_dword - node->base)) < size)
568 continue;
569
570 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
571
572 if (!split_node)
573 return NULL;
574
575 split_node->base = node->base;
576 split_node->length = temp_dword - node->base;
577 node->base = temp_dword;
578 node->length -= split_node->length;
579
580 /* Put it in the list */
581 split_node->next = node->next;
582 node->next = split_node;
583 } /* End of non-aligned base */
584
585 /* Don't need to check if too small since we already did */
586 if (node->length > size) {
587 /* this one is longer than we need
588 * so we'll make a new entry and split it up
589 */
590 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
591
592 if (!split_node)
593 return NULL;
594
595 split_node->base = node->base + size;
596 split_node->length = node->length - size;
597 node->length = size;
598
599 /* Put it in the list */
600 split_node->next = node->next;
601 node->next = split_node;
602 } /* End of too big on top end */
603
604 /* For IO make sure it's not in the ISA aliasing space */
605 if (node->base & 0x300L)
606 continue;
607
608 /* If we got here, then it is the right size
609 * Now take it out of the list and break
610 */
611 if (*head == node) {
612 *head = node->next;
613 } else {
614 prevnode = *head;
615 while (prevnode->next != node)
616 prevnode = prevnode->next;
617
618 prevnode->next = node->next;
619 }
620 node->next = NULL;
621 break;
622 }
623
624 return node;
625}
626
627
628/**
629 * get_max_resource - get largest node which has at least the given size.
630 * @head: the list to search the node in
631 * @size: the minimum size of the node to find
632 *
633 * Description: Gets the largest node that is at least "size" big from the
634 * list pointed to by head. It aligns the node on top and bottom
635 * to "size" alignment before returning it.
636 */
637static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
638{
639 struct pci_resource *max;
640 struct pci_resource *temp;
641 struct pci_resource *split_node;
642 u32 temp_dword;
643
644 if (cpqhp_resource_sort_and_combine(head))
645 return NULL;
646
647 if (sort_by_max_size(head))
648 return NULL;
649
650 for (max = *head; max; max = max->next) {
651 /* If not big enough we could probably just bail,
652 * instead we'll continue to the next.
653 */
654 if (max->length < size)
655 continue;
656
657 if (max->base & (size - 1)) {
658 /* this one isn't base aligned properly
659 * so we'll make a new entry and split it up
660 */
661 temp_dword = (max->base | (size-1)) + 1;
662
663 /* Short circuit if adjusted size is too small */
664 if ((max->length - (temp_dword - max->base)) < size)
665 continue;
666
667 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
668
669 if (!split_node)
670 return NULL;
671
672 split_node->base = max->base;
673 split_node->length = temp_dword - max->base;
674 max->base = temp_dword;
675 max->length -= split_node->length;
676
677 split_node->next = max->next;
678 max->next = split_node;
679 }
680
681 if ((max->base + max->length) & (size - 1)) {
682 /* this one isn't end aligned properly at the top
683 * so we'll make a new entry and split it up
684 */
685 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
686
687 if (!split_node)
688 return NULL;
689 temp_dword = ((max->base + max->length) & ~(size - 1));
690 split_node->base = temp_dword;
691 split_node->length = max->length + max->base
692 - split_node->base;
693 max->length -= split_node->length;
694
695 split_node->next = max->next;
696 max->next = split_node;
697 }
698
699 /* Make sure it didn't shrink too much when we aligned it */
700 if (max->length < size)
701 continue;
702
703 /* Now take it out of the list */
704 temp = *head;
705 if (temp == max) {
706 *head = max->next;
707 } else {
708 while (temp && temp->next != max)
709 temp = temp->next;
710
711 if (temp)
712 temp->next = max->next;
713 }
714
715 max->next = NULL;
716 break;
717 }
718
719 return max;
720}
721
722
723/**
724 * get_resource - find resource of given size and split up larger ones.
725 * @head: the list to search for resources
726 * @size: the size limit to use
727 *
728 * Description: This function sorts the resource list by size and then
729 * returns the first node of "size" length. If it finds a node
730 * larger than "size" it will split it up.
731 *
732 * size must be a power of two.
733 */
734static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
735{
736 struct pci_resource *prevnode;
737 struct pci_resource *node;
738 struct pci_resource *split_node;
739 u32 temp_dword;
740
741 if (cpqhp_resource_sort_and_combine(head))
742 return NULL;
743
744 if (sort_by_size(head))
745 return NULL;
746
747 for (node = *head; node; node = node->next) {
748 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
749 __func__, size, node, node->base, node->length);
750 if (node->length < size)
751 continue;
752
753 if (node->base & (size - 1)) {
754 dbg("%s: not aligned\n", __func__);
755 /* this one isn't base aligned properly
756 * so we'll make a new entry and split it up
757 */
758 temp_dword = (node->base | (size-1)) + 1;
759
760 /* Short circuit if adjusted size is too small */
761 if ((node->length - (temp_dword - node->base)) < size)
762 continue;
763
764 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
765
766 if (!split_node)
767 return NULL;
768
769 split_node->base = node->base;
770 split_node->length = temp_dword - node->base;
771 node->base = temp_dword;
772 node->length -= split_node->length;
773
774 split_node->next = node->next;
775 node->next = split_node;
776 } /* End of non-aligned base */
777
778 /* Don't need to check if too small since we already did */
779 if (node->length > size) {
780 dbg("%s: too big\n", __func__);
781 /* this one is longer than we need
782 * so we'll make a new entry and split it up
783 */
784 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
785
786 if (!split_node)
787 return NULL;
788
789 split_node->base = node->base + size;
790 split_node->length = node->length - size;
791 node->length = size;
792
793 /* Put it in the list */
794 split_node->next = node->next;
795 node->next = split_node;
796 } /* End of too big on top end */
797
798 dbg("%s: got one!!!\n", __func__);
799 /* If we got here, then it is the right size
800 * Now take it out of the list */
801 if (*head == node) {
802 *head = node->next;
803 } else {
804 prevnode = *head;
805 while (prevnode->next != node)
806 prevnode = prevnode->next;
807
808 prevnode->next = node->next;
809 }
810 node->next = NULL;
811 break;
812 }
813 return node;
814}
815
816
817/**
818 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
819 * @head: the list to sort and clean up
820 *
821 * Description: Sorts all of the nodes in the list in ascending order by
822 * their base addresses. Also does garbage collection by
823 * combining adjacent nodes.
824 *
825 * Returns %0 if success.
826 */
827int cpqhp_resource_sort_and_combine(struct pci_resource **head)
828{
829 struct pci_resource *node1;
830 struct pci_resource *node2;
831 int out_of_order = 1;
832
833 dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
834
835 if (!(*head))
836 return 1;
837
838 dbg("*head->next = %p\n", (*head)->next);
839
840 if (!(*head)->next)
841 return 0; /* only one item on the list, already sorted! */
842
843 dbg("*head->base = 0x%x\n", (*head)->base);
844 dbg("*head->next->base = 0x%x\n", (*head)->next->base);
845 while (out_of_order) {
846 out_of_order = 0;
847
848 /* Special case for swapping list head */
849 if (((*head)->next) &&
850 ((*head)->base > (*head)->next->base)) {
851 node1 = *head;
852 (*head) = (*head)->next;
853 node1->next = (*head)->next;
854 (*head)->next = node1;
855 out_of_order++;
856 }
857
858 node1 = (*head);
859
860 while (node1->next && node1->next->next) {
861 if (node1->next->base > node1->next->next->base) {
862 out_of_order++;
863 node2 = node1->next;
864 node1->next = node1->next->next;
865 node1 = node1->next;
866 node2->next = node1->next;
867 node1->next = node2;
868 } else
869 node1 = node1->next;
870 }
871 } /* End of out_of_order loop */
872
873 node1 = *head;
874
875 while (node1 && node1->next) {
876 if ((node1->base + node1->length) == node1->next->base) {
877 /* Combine */
878 dbg("8..\n");
879 node1->length += node1->next->length;
880 node2 = node1->next;
881 node1->next = node1->next->next;
882 kfree(node2);
883 } else
884 node1 = node1->next;
885 }
886
887 return 0;
888}
889
890
891irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
892{
893 struct controller *ctrl = data;
894 u8 schedule_flag = 0;
895 u8 reset;
896 u16 misc;
897 u32 Diff;
898 u32 temp_dword;
899
900
901 misc = readw(ctrl->hpc_reg + MISC);
902 /*
903 * Check to see if it was our interrupt
904 */
905 if (!(misc & 0x000C))
906 return IRQ_NONE;
907
908 if (misc & 0x0004) {
909 /*
910 * Serial Output interrupt Pending
911 */
912
913 /* Clear the interrupt */
914 misc |= 0x0004;
915 writew(misc, ctrl->hpc_reg + MISC);
916
917 /* Read to clear posted writes */
918 misc = readw(ctrl->hpc_reg + MISC);
919
920 dbg("%s - waking up\n", __func__);
921 wake_up_interruptible(&ctrl->queue);
922 }
923
924 if (misc & 0x0008) {
925 /* General-interrupt-input interrupt Pending */
926 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
927
928 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
929
930 /* Clear the interrupt */
931 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
932
933 /* Read it back to clear any posted writes */
934 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
935
936 if (!Diff)
937 /* Clear all interrupts */
938 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
939
940 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
941 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
942 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
943 }
944
945 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
946 if (reset & 0x40) {
947 /* Bus reset has completed */
948 reset &= 0xCF;
949 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
950 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
951 wake_up_interruptible(&ctrl->queue);
952 }
953
954 if (schedule_flag) {
955 wake_up_process(cpqhp_event_thread);
956 dbg("Waking even thread");
957 }
958 return IRQ_HANDLED;
959}
960
961
962/**
963 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
964 * @busnumber: bus where new node is to be located
965 *
966 * Returns pointer to the new node or %NULL if unsuccessful.
967 */
968struct pci_func *cpqhp_slot_create(u8 busnumber)
969{
970 struct pci_func *new_slot;
971 struct pci_func *next;
972
973 new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
974 if (new_slot == NULL)
975 return new_slot;
976
977 new_slot->next = NULL;
978 new_slot->configured = 1;
979
980 if (cpqhp_slot_list[busnumber] == NULL) {
981 cpqhp_slot_list[busnumber] = new_slot;
982 } else {
983 next = cpqhp_slot_list[busnumber];
984 while (next->next != NULL)
985 next = next->next;
986 next->next = new_slot;
987 }
988 return new_slot;
989}
990
991
992/**
993 * slot_remove - Removes a node from the linked list of slots.
994 * @old_slot: slot to remove
995 *
996 * Returns %0 if successful, !0 otherwise.
997 */
998static int slot_remove(struct pci_func *old_slot)
999{
1000 struct pci_func *next;
1001
1002 if (old_slot == NULL)
1003 return 1;
1004
1005 next = cpqhp_slot_list[old_slot->bus];
1006 if (next == NULL)
1007 return 1;
1008
1009 if (next == old_slot) {
1010 cpqhp_slot_list[old_slot->bus] = old_slot->next;
1011 cpqhp_destroy_board_resources(old_slot);
1012 kfree(old_slot);
1013 return 0;
1014 }
1015
1016 while ((next->next != old_slot) && (next->next != NULL))
1017 next = next->next;
1018
1019 if (next->next == old_slot) {
1020 next->next = old_slot->next;
1021 cpqhp_destroy_board_resources(old_slot);
1022 kfree(old_slot);
1023 return 0;
1024 } else
1025 return 2;
1026}
1027
1028
1029/**
1030 * bridge_slot_remove - Removes a node from the linked list of slots.
1031 * @bridge: bridge to remove
1032 *
1033 * Returns %0 if successful, !0 otherwise.
1034 */
1035static int bridge_slot_remove(struct pci_func *bridge)
1036{
1037 u8 subordinateBus, secondaryBus;
1038 u8 tempBus;
1039 struct pci_func *next;
1040
1041 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1042 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1043
1044 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1045 next = cpqhp_slot_list[tempBus];
1046
1047 while (!slot_remove(next))
1048 next = cpqhp_slot_list[tempBus];
1049 }
1050
1051 next = cpqhp_slot_list[bridge->bus];
1052
1053 if (next == NULL)
1054 return 1;
1055
1056 if (next == bridge) {
1057 cpqhp_slot_list[bridge->bus] = bridge->next;
1058 goto out;
1059 }
1060
1061 while ((next->next != bridge) && (next->next != NULL))
1062 next = next->next;
1063
1064 if (next->next != bridge)
1065 return 2;
1066 next->next = bridge->next;
1067out:
1068 kfree(bridge);
1069 return 0;
1070}
1071
1072
1073/**
1074 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1075 * @bus: bus to find
1076 * @device: device to find
1077 * @index: is %0 for first function found, %1 for the second...
1078 *
1079 * Returns pointer to the node if successful, %NULL otherwise.
1080 */
1081struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1082{
1083 int found = -1;
1084 struct pci_func *func;
1085
1086 func = cpqhp_slot_list[bus];
1087
1088 if ((func == NULL) || ((func->device == device) && (index == 0)))
1089 return func;
1090
1091 if (func->device == device)
1092 found++;
1093
1094 while (func->next != NULL) {
1095 func = func->next;
1096
1097 if (func->device == device)
1098 found++;
1099
1100 if (found == index)
1101 return func;
1102 }
1103
1104 return NULL;
1105}
1106
1107
1108/* DJZ: I don't think is_bridge will work as is.
1109 * FIXME */
1110static int is_bridge(struct pci_func *func)
1111{
1112 /* Check the header type */
1113 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1114 return 1;
1115 else
1116 return 0;
1117}
1118
1119
1120/**
1121 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1122 * @ctrl: controller to change frequency/mode for.
1123 * @adapter_speed: the speed of the adapter we want to match.
1124 * @hp_slot: the slot number where the adapter is installed.
1125 *
1126 * Returns %0 if we successfully change frequency and/or mode to match the
1127 * adapter speed.
1128 */
1129static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1130{
1131 struct slot *slot;
1132 struct pci_bus *bus = ctrl->pci_bus;
1133 u8 reg;
1134 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1135 u16 reg16;
1136 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1137
1138 if (bus->cur_bus_speed == adapter_speed)
1139 return 0;
1140
1141 /* We don't allow freq/mode changes if we find another adapter running
1142 * in another slot on this controller
1143 */
1144 for (slot = ctrl->slot; slot; slot = slot->next) {
1145 if (slot->device == (hp_slot + ctrl->slot_device_offset))
1146 continue;
1147 if (!slot->hotplug_slot || !slot->hotplug_slot->info)
1148 continue;
1149 if (slot->hotplug_slot->info->adapter_status == 0)
1150 continue;
1151 /* If another adapter is running on the same segment but at a
1152 * lower speed/mode, we allow the new adapter to function at
1153 * this rate if supported
1154 */
1155 if (bus->cur_bus_speed < adapter_speed)
1156 return 0;
1157
1158 return 1;
1159 }
1160
1161 /* If the controller doesn't support freq/mode changes and the
1162 * controller is running at a higher mode, we bail
1163 */
1164 if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1165 return 1;
1166
1167 /* But we allow the adapter to run at a lower rate if possible */
1168 if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1169 return 0;
1170
1171 /* We try to set the max speed supported by both the adapter and
1172 * controller
1173 */
1174 if (bus->max_bus_speed < adapter_speed) {
1175 if (bus->cur_bus_speed == bus->max_bus_speed)
1176 return 0;
1177 adapter_speed = bus->max_bus_speed;
1178 }
1179
1180 writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1181 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1182
1183 set_SOGO(ctrl);
1184 wait_for_ctrl_irq(ctrl);
1185
1186 if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1187 reg = 0xF5;
1188 else
1189 reg = 0xF4;
1190 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1191
1192 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1193 reg16 &= ~0x000F;
1194 switch (adapter_speed) {
1195 case(PCI_SPEED_133MHz_PCIX):
1196 reg = 0x75;
1197 reg16 |= 0xB;
1198 break;
1199 case(PCI_SPEED_100MHz_PCIX):
1200 reg = 0x74;
1201 reg16 |= 0xA;
1202 break;
1203 case(PCI_SPEED_66MHz_PCIX):
1204 reg = 0x73;
1205 reg16 |= 0x9;
1206 break;
1207 case(PCI_SPEED_66MHz):
1208 reg = 0x73;
1209 reg16 |= 0x1;
1210 break;
1211 default: /* 33MHz PCI 2.2 */
1212 reg = 0x71;
1213 break;
1214
1215 }
1216 reg16 |= 0xB << 12;
1217 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1218
1219 mdelay(5);
1220
1221 /* Reenable interrupts */
1222 writel(0, ctrl->hpc_reg + INT_MASK);
1223
1224 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1225
1226 /* Restart state machine */
1227 reg = ~0xF;
1228 pci_read_config_byte(ctrl->pci_dev, 0x43, ®);
1229 pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1230
1231 /* Only if mode change...*/
1232 if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1233 ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1234 set_SOGO(ctrl);
1235
1236 wait_for_ctrl_irq(ctrl);
1237 mdelay(1100);
1238
1239 /* Restore LED/Slot state */
1240 writel(leds, ctrl->hpc_reg + LED_CONTROL);
1241 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1242
1243 set_SOGO(ctrl);
1244 wait_for_ctrl_irq(ctrl);
1245
1246 bus->cur_bus_speed = adapter_speed;
1247 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1248
1249 info("Successfully changed frequency/mode for adapter in slot %d\n",
1250 slot->number);
1251 return 0;
1252}
1253
1254/* the following routines constitute the bulk of the
1255 * hotplug controller logic
1256 */
1257
1258
1259/**
1260 * board_replaced - Called after a board has been replaced in the system.
1261 * @func: PCI device/function information
1262 * @ctrl: hotplug controller
1263 *
1264 * This is only used if we don't have resources for hot add.
1265 * Turns power on for the board.
1266 * Checks to see if board is the same.
1267 * If board is same, reconfigures it.
1268 * If board isn't same, turns it back off.
1269 */
1270static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1271{
1272 struct pci_bus *bus = ctrl->pci_bus;
1273 u8 hp_slot;
1274 u8 temp_byte;
1275 u8 adapter_speed;
1276 u32 rc = 0;
1277
1278 hp_slot = func->device - ctrl->slot_device_offset;
1279
1280 /*
1281 * The switch is open.
1282 */
1283 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1284 rc = INTERLOCK_OPEN;
1285 /*
1286 * The board is already on
1287 */
1288 else if (is_slot_enabled(ctrl, hp_slot))
1289 rc = CARD_FUNCTIONING;
1290 else {
1291 mutex_lock(&ctrl->crit_sect);
1292
1293 /* turn on board without attaching to the bus */
1294 enable_slot_power(ctrl, hp_slot);
1295
1296 set_SOGO(ctrl);
1297
1298 /* Wait for SOBS to be unset */
1299 wait_for_ctrl_irq(ctrl);
1300
1301 /* Change bits in slot power register to force another shift out
1302 * NOTE: this is to work around the timer bug */
1303 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1304 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1305 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1306
1307 set_SOGO(ctrl);
1308
1309 /* Wait for SOBS to be unset */
1310 wait_for_ctrl_irq(ctrl);
1311
1312 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1313 if (bus->cur_bus_speed != adapter_speed)
1314 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1315 rc = WRONG_BUS_FREQUENCY;
1316
1317 /* turn off board without attaching to the bus */
1318 disable_slot_power(ctrl, hp_slot);
1319
1320 set_SOGO(ctrl);
1321
1322 /* Wait for SOBS to be unset */
1323 wait_for_ctrl_irq(ctrl);
1324
1325 mutex_unlock(&ctrl->crit_sect);
1326
1327 if (rc)
1328 return rc;
1329
1330 mutex_lock(&ctrl->crit_sect);
1331
1332 slot_enable(ctrl, hp_slot);
1333 green_LED_blink(ctrl, hp_slot);
1334
1335 amber_LED_off(ctrl, hp_slot);
1336
1337 set_SOGO(ctrl);
1338
1339 /* Wait for SOBS to be unset */
1340 wait_for_ctrl_irq(ctrl);
1341
1342 mutex_unlock(&ctrl->crit_sect);
1343
1344 /* Wait for ~1 second because of hot plug spec */
1345 long_delay(1*HZ);
1346
1347 /* Check for a power fault */
1348 if (func->status == 0xFF) {
1349 /* power fault occurred, but it was benign */
1350 rc = POWER_FAILURE;
1351 func->status = 0;
1352 } else
1353 rc = cpqhp_valid_replace(ctrl, func);
1354
1355 if (!rc) {
1356 /* It must be the same board */
1357
1358 rc = cpqhp_configure_board(ctrl, func);
1359
1360 /* If configuration fails, turn it off
1361 * Get slot won't work for devices behind
1362 * bridges, but in this case it will always be
1363 * called for the "base" bus/dev/func of an
1364 * adapter.
1365 */
1366
1367 mutex_lock(&ctrl->crit_sect);
1368
1369 amber_LED_on(ctrl, hp_slot);
1370 green_LED_off(ctrl, hp_slot);
1371 slot_disable(ctrl, hp_slot);
1372
1373 set_SOGO(ctrl);
1374
1375 /* Wait for SOBS to be unset */
1376 wait_for_ctrl_irq(ctrl);
1377
1378 mutex_unlock(&ctrl->crit_sect);
1379
1380 if (rc)
1381 return rc;
1382 else
1383 return 1;
1384
1385 } else {
1386 /* Something is wrong
1387
1388 * Get slot won't work for devices behind bridges, but
1389 * in this case it will always be called for the "base"
1390 * bus/dev/func of an adapter.
1391 */
1392
1393 mutex_lock(&ctrl->crit_sect);
1394
1395 amber_LED_on(ctrl, hp_slot);
1396 green_LED_off(ctrl, hp_slot);
1397 slot_disable(ctrl, hp_slot);
1398
1399 set_SOGO(ctrl);
1400
1401 /* Wait for SOBS to be unset */
1402 wait_for_ctrl_irq(ctrl);
1403
1404 mutex_unlock(&ctrl->crit_sect);
1405 }
1406
1407 }
1408 return rc;
1409
1410}
1411
1412
1413/**
1414 * board_added - Called after a board has been added to the system.
1415 * @func: PCI device/function info
1416 * @ctrl: hotplug controller
1417 *
1418 * Turns power on for the board.
1419 * Configures board.
1420 */
1421static u32 board_added(struct pci_func *func, struct controller *ctrl)
1422{
1423 u8 hp_slot;
1424 u8 temp_byte;
1425 u8 adapter_speed;
1426 int index;
1427 u32 temp_register = 0xFFFFFFFF;
1428 u32 rc = 0;
1429 struct pci_func *new_slot = NULL;
1430 struct pci_bus *bus = ctrl->pci_bus;
1431 struct slot *p_slot;
1432 struct resource_lists res_lists;
1433
1434 hp_slot = func->device - ctrl->slot_device_offset;
1435 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1436 __func__, func->device, ctrl->slot_device_offset, hp_slot);
1437
1438 mutex_lock(&ctrl->crit_sect);
1439
1440 /* turn on board without attaching to the bus */
1441 enable_slot_power(ctrl, hp_slot);
1442
1443 set_SOGO(ctrl);
1444
1445 /* Wait for SOBS to be unset */
1446 wait_for_ctrl_irq(ctrl);
1447
1448 /* Change bits in slot power register to force another shift out
1449 * NOTE: this is to work around the timer bug
1450 */
1451 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1452 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1453 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1454
1455 set_SOGO(ctrl);
1456
1457 /* Wait for SOBS to be unset */
1458 wait_for_ctrl_irq(ctrl);
1459
1460 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1461 if (bus->cur_bus_speed != adapter_speed)
1462 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1463 rc = WRONG_BUS_FREQUENCY;
1464
1465 /* turn off board without attaching to the bus */
1466 disable_slot_power(ctrl, hp_slot);
1467
1468 set_SOGO(ctrl);
1469
1470 /* Wait for SOBS to be unset */
1471 wait_for_ctrl_irq(ctrl);
1472
1473 mutex_unlock(&ctrl->crit_sect);
1474
1475 if (rc)
1476 return rc;
1477
1478 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1479
1480 /* turn on board and blink green LED */
1481
1482 dbg("%s: before down\n", __func__);
1483 mutex_lock(&ctrl->crit_sect);
1484 dbg("%s: after down\n", __func__);
1485
1486 dbg("%s: before slot_enable\n", __func__);
1487 slot_enable(ctrl, hp_slot);
1488
1489 dbg("%s: before green_LED_blink\n", __func__);
1490 green_LED_blink(ctrl, hp_slot);
1491
1492 dbg("%s: before amber_LED_blink\n", __func__);
1493 amber_LED_off(ctrl, hp_slot);
1494
1495 dbg("%s: before set_SOGO\n", __func__);
1496 set_SOGO(ctrl);
1497
1498 /* Wait for SOBS to be unset */
1499 dbg("%s: before wait_for_ctrl_irq\n", __func__);
1500 wait_for_ctrl_irq(ctrl);
1501 dbg("%s: after wait_for_ctrl_irq\n", __func__);
1502
1503 dbg("%s: before up\n", __func__);
1504 mutex_unlock(&ctrl->crit_sect);
1505 dbg("%s: after up\n", __func__);
1506
1507 /* Wait for ~1 second because of hot plug spec */
1508 dbg("%s: before long_delay\n", __func__);
1509 long_delay(1*HZ);
1510 dbg("%s: after long_delay\n", __func__);
1511
1512 dbg("%s: func status = %x\n", __func__, func->status);
1513 /* Check for a power fault */
1514 if (func->status == 0xFF) {
1515 /* power fault occurred, but it was benign */
1516 temp_register = 0xFFFFFFFF;
1517 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1518 rc = POWER_FAILURE;
1519 func->status = 0;
1520 } else {
1521 /* Get vendor/device ID u32 */
1522 ctrl->pci_bus->number = func->bus;
1523 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1524 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1525 dbg("%s: temp_register is %x\n", __func__, temp_register);
1526
1527 if (rc != 0) {
1528 /* Something's wrong here */
1529 temp_register = 0xFFFFFFFF;
1530 dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1531 }
1532 /* Preset return code. It will be changed later if things go okay. */
1533 rc = NO_ADAPTER_PRESENT;
1534 }
1535
1536 /* All F's is an empty slot or an invalid board */
1537 if (temp_register != 0xFFFFFFFF) {
1538 res_lists.io_head = ctrl->io_head;
1539 res_lists.mem_head = ctrl->mem_head;
1540 res_lists.p_mem_head = ctrl->p_mem_head;
1541 res_lists.bus_head = ctrl->bus_head;
1542 res_lists.irqs = NULL;
1543
1544 rc = configure_new_device(ctrl, func, 0, &res_lists);
1545
1546 dbg("%s: back from configure_new_device\n", __func__);
1547 ctrl->io_head = res_lists.io_head;
1548 ctrl->mem_head = res_lists.mem_head;
1549 ctrl->p_mem_head = res_lists.p_mem_head;
1550 ctrl->bus_head = res_lists.bus_head;
1551
1552 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1553 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1554 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1555 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1556
1557 if (rc) {
1558 mutex_lock(&ctrl->crit_sect);
1559
1560 amber_LED_on(ctrl, hp_slot);
1561 green_LED_off(ctrl, hp_slot);
1562 slot_disable(ctrl, hp_slot);
1563
1564 set_SOGO(ctrl);
1565
1566 /* Wait for SOBS to be unset */
1567 wait_for_ctrl_irq(ctrl);
1568
1569 mutex_unlock(&ctrl->crit_sect);
1570 return rc;
1571 } else {
1572 cpqhp_save_slot_config(ctrl, func);
1573 }
1574
1575
1576 func->status = 0;
1577 func->switch_save = 0x10;
1578 func->is_a_board = 0x01;
1579
1580 /* next, we will instantiate the linux pci_dev structures (with
1581 * appropriate driver notification, if already present) */
1582 dbg("%s: configure linux pci_dev structure\n", __func__);
1583 index = 0;
1584 do {
1585 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1586 if (new_slot && !new_slot->pci_dev)
1587 cpqhp_configure_device(ctrl, new_slot);
1588 } while (new_slot);
1589
1590 mutex_lock(&ctrl->crit_sect);
1591
1592 green_LED_on(ctrl, hp_slot);
1593
1594 set_SOGO(ctrl);
1595
1596 /* Wait for SOBS to be unset */
1597 wait_for_ctrl_irq(ctrl);
1598
1599 mutex_unlock(&ctrl->crit_sect);
1600 } else {
1601 mutex_lock(&ctrl->crit_sect);
1602
1603 amber_LED_on(ctrl, hp_slot);
1604 green_LED_off(ctrl, hp_slot);
1605 slot_disable(ctrl, hp_slot);
1606
1607 set_SOGO(ctrl);
1608
1609 /* Wait for SOBS to be unset */
1610 wait_for_ctrl_irq(ctrl);
1611
1612 mutex_unlock(&ctrl->crit_sect);
1613
1614 return rc;
1615 }
1616 return 0;
1617}
1618
1619
1620/**
1621 * remove_board - Turns off slot and LEDs
1622 * @func: PCI device/function info
1623 * @replace_flag: whether replacing or adding a new device
1624 * @ctrl: target controller
1625 */
1626static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl)
1627{
1628 int index;
1629 u8 skip = 0;
1630 u8 device;
1631 u8 hp_slot;
1632 u8 temp_byte;
1633 u32 rc;
1634 struct resource_lists res_lists;
1635 struct pci_func *temp_func;
1636
1637 if (cpqhp_unconfigure_device(func))
1638 return 1;
1639
1640 device = func->device;
1641
1642 hp_slot = func->device - ctrl->slot_device_offset;
1643 dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1644
1645 /* When we get here, it is safe to change base address registers.
1646 * We will attempt to save the base address register lengths */
1647 if (replace_flag || !ctrl->add_support)
1648 rc = cpqhp_save_base_addr_length(ctrl, func);
1649 else if (!func->bus_head && !func->mem_head &&
1650 !func->p_mem_head && !func->io_head) {
1651 /* Here we check to see if we've saved any of the board's
1652 * resources already. If so, we'll skip the attempt to
1653 * determine what's being used. */
1654 index = 0;
1655 temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1656 while (temp_func) {
1657 if (temp_func->bus_head || temp_func->mem_head
1658 || temp_func->p_mem_head || temp_func->io_head) {
1659 skip = 1;
1660 break;
1661 }
1662 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1663 }
1664
1665 if (!skip)
1666 rc = cpqhp_save_used_resources(ctrl, func);
1667 }
1668 /* Change status to shutdown */
1669 if (func->is_a_board)
1670 func->status = 0x01;
1671 func->configured = 0;
1672
1673 mutex_lock(&ctrl->crit_sect);
1674
1675 green_LED_off(ctrl, hp_slot);
1676 slot_disable(ctrl, hp_slot);
1677
1678 set_SOGO(ctrl);
1679
1680 /* turn off SERR for slot */
1681 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1682 temp_byte &= ~(0x01 << hp_slot);
1683 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1684
1685 /* Wait for SOBS to be unset */
1686 wait_for_ctrl_irq(ctrl);
1687
1688 mutex_unlock(&ctrl->crit_sect);
1689
1690 if (!replace_flag && ctrl->add_support) {
1691 while (func) {
1692 res_lists.io_head = ctrl->io_head;
1693 res_lists.mem_head = ctrl->mem_head;
1694 res_lists.p_mem_head = ctrl->p_mem_head;
1695 res_lists.bus_head = ctrl->bus_head;
1696
1697 cpqhp_return_board_resources(func, &res_lists);
1698
1699 ctrl->io_head = res_lists.io_head;
1700 ctrl->mem_head = res_lists.mem_head;
1701 ctrl->p_mem_head = res_lists.p_mem_head;
1702 ctrl->bus_head = res_lists.bus_head;
1703
1704 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1705 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1706 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1707 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1708
1709 if (is_bridge(func)) {
1710 bridge_slot_remove(func);
1711 } else
1712 slot_remove(func);
1713
1714 func = cpqhp_slot_find(ctrl->bus, device, 0);
1715 }
1716
1717 /* Setup slot structure with entry for empty slot */
1718 func = cpqhp_slot_create(ctrl->bus);
1719
1720 if (func == NULL)
1721 return 1;
1722
1723 func->bus = ctrl->bus;
1724 func->device = device;
1725 func->function = 0;
1726 func->configured = 0;
1727 func->switch_save = 0x10;
1728 func->is_a_board = 0;
1729 func->p_task_event = NULL;
1730 }
1731
1732 return 0;
1733}
1734
1735static void pushbutton_helper_thread(unsigned long data)
1736{
1737 pushbutton_pending = data;
1738 wake_up_process(cpqhp_event_thread);
1739}
1740
1741
1742/* this is the main worker thread */
1743static int event_thread(void *data)
1744{
1745 struct controller *ctrl;
1746
1747 while (1) {
1748 dbg("!!!!event_thread sleeping\n");
1749 set_current_state(TASK_INTERRUPTIBLE);
1750 schedule();
1751
1752 if (kthread_should_stop())
1753 break;
1754 /* Do stuff here */
1755 if (pushbutton_pending)
1756 cpqhp_pushbutton_thread(pushbutton_pending);
1757 else
1758 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next)
1759 interrupt_event_handler(ctrl);
1760 }
1761 dbg("event_thread signals exit\n");
1762 return 0;
1763}
1764
1765int cpqhp_event_start_thread(void)
1766{
1767 cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1768 if (IS_ERR(cpqhp_event_thread)) {
1769 err("Can't start up our event thread\n");
1770 return PTR_ERR(cpqhp_event_thread);
1771 }
1772
1773 return 0;
1774}
1775
1776
1777void cpqhp_event_stop_thread(void)
1778{
1779 kthread_stop(cpqhp_event_thread);
1780}
1781
1782
1783static int update_slot_info(struct controller *ctrl, struct slot *slot)
1784{
1785 struct hotplug_slot_info *info;
1786 int result;
1787
1788 info = kmalloc(sizeof(*info), GFP_KERNEL);
1789 if (!info)
1790 return -ENOMEM;
1791
1792 info->power_status = get_slot_enabled(ctrl, slot);
1793 info->attention_status = cpq_get_attention_status(ctrl, slot);
1794 info->latch_status = cpq_get_latch_status(ctrl, slot);
1795 info->adapter_status = get_presence_status(ctrl, slot);
1796 result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1797 kfree(info);
1798 return result;
1799}
1800
1801static void interrupt_event_handler(struct controller *ctrl)
1802{
1803 int loop = 0;
1804 int change = 1;
1805 struct pci_func *func;
1806 u8 hp_slot;
1807 struct slot *p_slot;
1808
1809 while (change) {
1810 change = 0;
1811
1812 for (loop = 0; loop < 10; loop++) {
1813 /* dbg("loop %d\n", loop); */
1814 if (ctrl->event_queue[loop].event_type != 0) {
1815 hp_slot = ctrl->event_queue[loop].hp_slot;
1816
1817 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1818 if (!func)
1819 return;
1820
1821 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1822 if (!p_slot)
1823 return;
1824
1825 dbg("hp_slot %d, func %p, p_slot %p\n",
1826 hp_slot, func, p_slot);
1827
1828 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1829 dbg("button pressed\n");
1830 } else if (ctrl->event_queue[loop].event_type ==
1831 INT_BUTTON_CANCEL) {
1832 dbg("button cancel\n");
1833 del_timer(&p_slot->task_event);
1834
1835 mutex_lock(&ctrl->crit_sect);
1836
1837 if (p_slot->state == BLINKINGOFF_STATE) {
1838 /* slot is on */
1839 dbg("turn on green LED\n");
1840 green_LED_on(ctrl, hp_slot);
1841 } else if (p_slot->state == BLINKINGON_STATE) {
1842 /* slot is off */
1843 dbg("turn off green LED\n");
1844 green_LED_off(ctrl, hp_slot);
1845 }
1846
1847 info(msg_button_cancel, p_slot->number);
1848
1849 p_slot->state = STATIC_STATE;
1850
1851 amber_LED_off(ctrl, hp_slot);
1852
1853 set_SOGO(ctrl);
1854
1855 /* Wait for SOBS to be unset */
1856 wait_for_ctrl_irq(ctrl);
1857
1858 mutex_unlock(&ctrl->crit_sect);
1859 }
1860 /*** button Released (No action on press...) */
1861 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1862 dbg("button release\n");
1863
1864 if (is_slot_enabled(ctrl, hp_slot)) {
1865 dbg("slot is on\n");
1866 p_slot->state = BLINKINGOFF_STATE;
1867 info(msg_button_off, p_slot->number);
1868 } else {
1869 dbg("slot is off\n");
1870 p_slot->state = BLINKINGON_STATE;
1871 info(msg_button_on, p_slot->number);
1872 }
1873 mutex_lock(&ctrl->crit_sect);
1874
1875 dbg("blink green LED and turn off amber\n");
1876
1877 amber_LED_off(ctrl, hp_slot);
1878 green_LED_blink(ctrl, hp_slot);
1879
1880 set_SOGO(ctrl);
1881
1882 /* Wait for SOBS to be unset */
1883 wait_for_ctrl_irq(ctrl);
1884
1885 mutex_unlock(&ctrl->crit_sect);
1886 init_timer(&p_slot->task_event);
1887 p_slot->hp_slot = hp_slot;
1888 p_slot->ctrl = ctrl;
1889/* p_slot->physical_slot = physical_slot; */
1890 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */
1891 p_slot->task_event.function = pushbutton_helper_thread;
1892 p_slot->task_event.data = (u32) p_slot;
1893
1894 dbg("add_timer p_slot = %p\n", p_slot);
1895 add_timer(&p_slot->task_event);
1896 }
1897 /***********POWER FAULT */
1898 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1899 dbg("power fault\n");
1900 } else {
1901 /* refresh notification */
1902 update_slot_info(ctrl, p_slot);
1903 }
1904
1905 ctrl->event_queue[loop].event_type = 0;
1906
1907 change = 1;
1908 }
1909 } /* End of FOR loop */
1910 }
1911
1912 return;
1913}
1914
1915
1916/**
1917 * cpqhp_pushbutton_thread - handle pushbutton events
1918 * @slot: target slot (struct)
1919 *
1920 * Scheduled procedure to handle blocking stuff for the pushbuttons.
1921 * Handles all pending events and exits.
1922 */
1923void cpqhp_pushbutton_thread(unsigned long slot)
1924{
1925 u8 hp_slot;
1926 u8 device;
1927 struct pci_func *func;
1928 struct slot *p_slot = (struct slot *) slot;
1929 struct controller *ctrl = (struct controller *) p_slot->ctrl;
1930
1931 pushbutton_pending = 0;
1932 hp_slot = p_slot->hp_slot;
1933
1934 device = p_slot->device;
1935
1936 if (is_slot_enabled(ctrl, hp_slot)) {
1937 p_slot->state = POWEROFF_STATE;
1938 /* power Down board */
1939 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1940 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1941 if (!func) {
1942 dbg("Error! func NULL in %s\n", __func__);
1943 return;
1944 }
1945
1946 if (cpqhp_process_SS(ctrl, func) != 0) {
1947 amber_LED_on(ctrl, hp_slot);
1948 green_LED_on(ctrl, hp_slot);
1949
1950 set_SOGO(ctrl);
1951
1952 /* Wait for SOBS to be unset */
1953 wait_for_ctrl_irq(ctrl);
1954 }
1955
1956 p_slot->state = STATIC_STATE;
1957 } else {
1958 p_slot->state = POWERON_STATE;
1959 /* slot is off */
1960
1961 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1962 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1963 if (!func) {
1964 dbg("Error! func NULL in %s\n", __func__);
1965 return;
1966 }
1967
1968 if (ctrl != NULL) {
1969 if (cpqhp_process_SI(ctrl, func) != 0) {
1970 amber_LED_on(ctrl, hp_slot);
1971 green_LED_off(ctrl, hp_slot);
1972
1973 set_SOGO(ctrl);
1974
1975 /* Wait for SOBS to be unset */
1976 wait_for_ctrl_irq(ctrl);
1977 }
1978 }
1979
1980 p_slot->state = STATIC_STATE;
1981 }
1982
1983 return;
1984}
1985
1986
1987int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1988{
1989 u8 device, hp_slot;
1990 u16 temp_word;
1991 u32 tempdword;
1992 int rc;
1993 struct slot *p_slot;
1994 int physical_slot = 0;
1995
1996 tempdword = 0;
1997
1998 device = func->device;
1999 hp_slot = device - ctrl->slot_device_offset;
2000 p_slot = cpqhp_find_slot(ctrl, device);
2001 if (p_slot)
2002 physical_slot = p_slot->number;
2003
2004 /* Check to see if the interlock is closed */
2005 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
2006
2007 if (tempdword & (0x01 << hp_slot))
2008 return 1;
2009
2010 if (func->is_a_board) {
2011 rc = board_replaced(func, ctrl);
2012 } else {
2013 /* add board */
2014 slot_remove(func);
2015
2016 func = cpqhp_slot_create(ctrl->bus);
2017 if (func == NULL)
2018 return 1;
2019
2020 func->bus = ctrl->bus;
2021 func->device = device;
2022 func->function = 0;
2023 func->configured = 0;
2024 func->is_a_board = 1;
2025
2026 /* We have to save the presence info for these slots */
2027 temp_word = ctrl->ctrl_int_comp >> 16;
2028 func->presence_save = (temp_word >> hp_slot) & 0x01;
2029 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2030
2031 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2032 func->switch_save = 0;
2033 } else {
2034 func->switch_save = 0x10;
2035 }
2036
2037 rc = board_added(func, ctrl);
2038 if (rc) {
2039 if (is_bridge(func)) {
2040 bridge_slot_remove(func);
2041 } else
2042 slot_remove(func);
2043
2044 /* Setup slot structure with entry for empty slot */
2045 func = cpqhp_slot_create(ctrl->bus);
2046
2047 if (func == NULL)
2048 return 1;
2049
2050 func->bus = ctrl->bus;
2051 func->device = device;
2052 func->function = 0;
2053 func->configured = 0;
2054 func->is_a_board = 0;
2055
2056 /* We have to save the presence info for these slots */
2057 temp_word = ctrl->ctrl_int_comp >> 16;
2058 func->presence_save = (temp_word >> hp_slot) & 0x01;
2059 func->presence_save |=
2060 (temp_word >> (hp_slot + 7)) & 0x02;
2061
2062 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2063 func->switch_save = 0;
2064 } else {
2065 func->switch_save = 0x10;
2066 }
2067 }
2068 }
2069
2070 if (rc)
2071 dbg("%s: rc = %d\n", __func__, rc);
2072
2073 if (p_slot)
2074 update_slot_info(ctrl, p_slot);
2075
2076 return rc;
2077}
2078
2079
2080int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2081{
2082 u8 device, class_code, header_type, BCR;
2083 u8 index = 0;
2084 u8 replace_flag;
2085 u32 rc = 0;
2086 unsigned int devfn;
2087 struct slot *p_slot;
2088 struct pci_bus *pci_bus = ctrl->pci_bus;
2089 int physical_slot = 0;
2090
2091 device = func->device;
2092 func = cpqhp_slot_find(ctrl->bus, device, index++);
2093 p_slot = cpqhp_find_slot(ctrl, device);
2094 if (p_slot)
2095 physical_slot = p_slot->number;
2096
2097 /* Make sure there are no video controllers here */
2098 while (func && !rc) {
2099 pci_bus->number = func->bus;
2100 devfn = PCI_DEVFN(func->device, func->function);
2101
2102 /* Check the Class Code */
2103 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2104 if (rc)
2105 return rc;
2106
2107 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2108 /* Display/Video adapter (not supported) */
2109 rc = REMOVE_NOT_SUPPORTED;
2110 } else {
2111 /* See if it's a bridge */
2112 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2113 if (rc)
2114 return rc;
2115
2116 /* If it's a bridge, check the VGA Enable bit */
2117 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2118 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2119 if (rc)
2120 return rc;
2121
2122 /* If the VGA Enable bit is set, remove isn't
2123 * supported */
2124 if (BCR & PCI_BRIDGE_CTL_VGA)
2125 rc = REMOVE_NOT_SUPPORTED;
2126 }
2127 }
2128
2129 func = cpqhp_slot_find(ctrl->bus, device, index++);
2130 }
2131
2132 func = cpqhp_slot_find(ctrl->bus, device, 0);
2133 if ((func != NULL) && !rc) {
2134 /* FIXME: Replace flag should be passed into process_SS */
2135 replace_flag = !(ctrl->add_support);
2136 rc = remove_board(func, replace_flag, ctrl);
2137 } else if (!rc) {
2138 rc = 1;
2139 }
2140
2141 if (p_slot)
2142 update_slot_info(ctrl, p_slot);
2143
2144 return rc;
2145}
2146
2147/**
2148 * switch_leds - switch the leds, go from one site to the other.
2149 * @ctrl: controller to use
2150 * @num_of_slots: number of slots to use
2151 * @work_LED: LED control value
2152 * @direction: 1 to start from the left side, 0 to start right.
2153 */
2154static void switch_leds(struct controller *ctrl, const int num_of_slots,
2155 u32 *work_LED, const int direction)
2156{
2157 int loop;
2158
2159 for (loop = 0; loop < num_of_slots; loop++) {
2160 if (direction)
2161 *work_LED = *work_LED >> 1;
2162 else
2163 *work_LED = *work_LED << 1;
2164 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2165
2166 set_SOGO(ctrl);
2167
2168 /* Wait for SOGO interrupt */
2169 wait_for_ctrl_irq(ctrl);
2170
2171 /* Get ready for next iteration */
2172 long_delay((2*HZ)/10);
2173 }
2174}
2175
2176/**
2177 * cpqhp_hardware_test - runs hardware tests
2178 * @ctrl: target controller
2179 * @test_num: the number written to the "test" file in sysfs.
2180 *
2181 * For hot plug ctrl folks to play with.
2182 */
2183int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2184{
2185 u32 save_LED;
2186 u32 work_LED;
2187 int loop;
2188 int num_of_slots;
2189
2190 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2191
2192 switch (test_num) {
2193 case 1:
2194 /* Do stuff here! */
2195
2196 /* Do that funky LED thing */
2197 /* so we can restore them later */
2198 save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2199 work_LED = 0x01010101;
2200 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2201 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2202 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2203 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2204
2205 work_LED = 0x01010000;
2206 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2207 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2208 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2209 work_LED = 0x00000101;
2210 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2211 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2212 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2213
2214 work_LED = 0x01010000;
2215 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2216 for (loop = 0; loop < num_of_slots; loop++) {
2217 set_SOGO(ctrl);
2218
2219 /* Wait for SOGO interrupt */
2220 wait_for_ctrl_irq(ctrl);
2221
2222 /* Get ready for next iteration */
2223 long_delay((3*HZ)/10);
2224 work_LED = work_LED >> 16;
2225 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2226
2227 set_SOGO(ctrl);
2228
2229 /* Wait for SOGO interrupt */
2230 wait_for_ctrl_irq(ctrl);
2231
2232 /* Get ready for next iteration */
2233 long_delay((3*HZ)/10);
2234 work_LED = work_LED << 16;
2235 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2236 work_LED = work_LED << 1;
2237 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2238 }
2239
2240 /* put it back the way it was */
2241 writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2242
2243 set_SOGO(ctrl);
2244
2245 /* Wait for SOBS to be unset */
2246 wait_for_ctrl_irq(ctrl);
2247 break;
2248 case 2:
2249 /* Do other stuff here! */
2250 break;
2251 case 3:
2252 /* and more... */
2253 break;
2254 }
2255 return 0;
2256}
2257
2258
2259/**
2260 * configure_new_device - Configures the PCI header information of one board.
2261 * @ctrl: pointer to controller structure
2262 * @func: pointer to function structure
2263 * @behind_bridge: 1 if this is a recursive call, 0 if not
2264 * @resources: pointer to set of resource lists
2265 *
2266 * Returns 0 if success.
2267 */
2268static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
2269 u8 behind_bridge, struct resource_lists *resources)
2270{
2271 u8 temp_byte, function, max_functions, stop_it;
2272 int rc;
2273 u32 ID;
2274 struct pci_func *new_slot;
2275 int index;
2276
2277 new_slot = func;
2278
2279 dbg("%s\n", __func__);
2280 /* Check for Multi-function device */
2281 ctrl->pci_bus->number = func->bus;
2282 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2283 if (rc) {
2284 dbg("%s: rc = %d\n", __func__, rc);
2285 return rc;
2286 }
2287
2288 if (temp_byte & 0x80) /* Multi-function device */
2289 max_functions = 8;
2290 else
2291 max_functions = 1;
2292
2293 function = 0;
2294
2295 do {
2296 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2297
2298 if (rc) {
2299 dbg("configure_new_function failed %d\n", rc);
2300 index = 0;
2301
2302 while (new_slot) {
2303 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2304
2305 if (new_slot)
2306 cpqhp_return_board_resources(new_slot, resources);
2307 }
2308
2309 return rc;
2310 }
2311
2312 function++;
2313
2314 stop_it = 0;
2315
2316 /* The following loop skips to the next present function
2317 * and creates a board structure */
2318
2319 while ((function < max_functions) && (!stop_it)) {
2320 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2321
2322 if (ID == 0xFFFFFFFF) {
2323 function++;
2324 } else {
2325 /* Setup slot structure. */
2326 new_slot = cpqhp_slot_create(func->bus);
2327
2328 if (new_slot == NULL)
2329 return 1;
2330
2331 new_slot->bus = func->bus;
2332 new_slot->device = func->device;
2333 new_slot->function = function;
2334 new_slot->is_a_board = 1;
2335 new_slot->status = 0;
2336
2337 stop_it++;
2338 }
2339 }
2340
2341 } while (function < max_functions);
2342 dbg("returning from configure_new_device\n");
2343
2344 return 0;
2345}
2346
2347
2348/*
2349 * Configuration logic that involves the hotplug data structures and
2350 * their bookkeeping
2351 */
2352
2353
2354/**
2355 * configure_new_function - Configures the PCI header information of one device
2356 * @ctrl: pointer to controller structure
2357 * @func: pointer to function structure
2358 * @behind_bridge: 1 if this is a recursive call, 0 if not
2359 * @resources: pointer to set of resource lists
2360 *
2361 * Calls itself recursively for bridged devices.
2362 * Returns 0 if success.
2363 */
2364static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2365 u8 behind_bridge,
2366 struct resource_lists *resources)
2367{
2368 int cloop;
2369 u8 IRQ = 0;
2370 u8 temp_byte;
2371 u8 device;
2372 u8 class_code;
2373 u16 command;
2374 u16 temp_word;
2375 u32 temp_dword;
2376 u32 rc;
2377 u32 temp_register;
2378 u32 base;
2379 u32 ID;
2380 unsigned int devfn;
2381 struct pci_resource *mem_node;
2382 struct pci_resource *p_mem_node;
2383 struct pci_resource *io_node;
2384 struct pci_resource *bus_node;
2385 struct pci_resource *hold_mem_node;
2386 struct pci_resource *hold_p_mem_node;
2387 struct pci_resource *hold_IO_node;
2388 struct pci_resource *hold_bus_node;
2389 struct irq_mapping irqs;
2390 struct pci_func *new_slot;
2391 struct pci_bus *pci_bus;
2392 struct resource_lists temp_resources;
2393
2394 pci_bus = ctrl->pci_bus;
2395 pci_bus->number = func->bus;
2396 devfn = PCI_DEVFN(func->device, func->function);
2397
2398 /* Check for Bridge */
2399 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2400 if (rc)
2401 return rc;
2402
2403 if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2404 /* set Primary bus */
2405 dbg("set Primary bus = %d\n", func->bus);
2406 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2407 if (rc)
2408 return rc;
2409
2410 /* find range of buses to use */
2411 dbg("find ranges of buses to use\n");
2412 bus_node = get_max_resource(&(resources->bus_head), 1);
2413
2414 /* If we don't have any buses to allocate, we can't continue */
2415 if (!bus_node)
2416 return -ENOMEM;
2417
2418 /* set Secondary bus */
2419 temp_byte = bus_node->base;
2420 dbg("set Secondary bus = %d\n", bus_node->base);
2421 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2422 if (rc)
2423 return rc;
2424
2425 /* set subordinate bus */
2426 temp_byte = bus_node->base + bus_node->length - 1;
2427 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2428 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2429 if (rc)
2430 return rc;
2431
2432 /* set subordinate Latency Timer and base Latency Timer */
2433 temp_byte = 0x40;
2434 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2435 if (rc)
2436 return rc;
2437 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2438 if (rc)
2439 return rc;
2440
2441 /* set Cache Line size */
2442 temp_byte = 0x08;
2443 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2444 if (rc)
2445 return rc;
2446
2447 /* Setup the IO, memory, and prefetchable windows */
2448 io_node = get_max_resource(&(resources->io_head), 0x1000);
2449 if (!io_node)
2450 return -ENOMEM;
2451 mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2452 if (!mem_node)
2453 return -ENOMEM;
2454 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2455 if (!p_mem_node)
2456 return -ENOMEM;
2457 dbg("Setup the IO, memory, and prefetchable windows\n");
2458 dbg("io_node\n");
2459 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2460 io_node->length, io_node->next);
2461 dbg("mem_node\n");
2462 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2463 mem_node->length, mem_node->next);
2464 dbg("p_mem_node\n");
2465 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2466 p_mem_node->length, p_mem_node->next);
2467
2468 /* set up the IRQ info */
2469 if (!resources->irqs) {
2470 irqs.barber_pole = 0;
2471 irqs.interrupt[0] = 0;
2472 irqs.interrupt[1] = 0;
2473 irqs.interrupt[2] = 0;
2474 irqs.interrupt[3] = 0;
2475 irqs.valid_INT = 0;
2476 } else {
2477 irqs.barber_pole = resources->irqs->barber_pole;
2478 irqs.interrupt[0] = resources->irqs->interrupt[0];
2479 irqs.interrupt[1] = resources->irqs->interrupt[1];
2480 irqs.interrupt[2] = resources->irqs->interrupt[2];
2481 irqs.interrupt[3] = resources->irqs->interrupt[3];
2482 irqs.valid_INT = resources->irqs->valid_INT;
2483 }
2484
2485 /* set up resource lists that are now aligned on top and bottom
2486 * for anything behind the bridge. */
2487 temp_resources.bus_head = bus_node;
2488 temp_resources.io_head = io_node;
2489 temp_resources.mem_head = mem_node;
2490 temp_resources.p_mem_head = p_mem_node;
2491 temp_resources.irqs = &irqs;
2492
2493 /* Make copies of the nodes we are going to pass down so that
2494 * if there is a problem,we can just use these to free resources
2495 */
2496 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2497 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2498 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2499 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2500
2501 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2502 kfree(hold_bus_node);
2503 kfree(hold_IO_node);
2504 kfree(hold_mem_node);
2505 kfree(hold_p_mem_node);
2506
2507 return 1;
2508 }
2509
2510 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2511
2512 bus_node->base += 1;
2513 bus_node->length -= 1;
2514 bus_node->next = NULL;
2515
2516 /* If we have IO resources copy them and fill in the bridge's
2517 * IO range registers */
2518 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2519 io_node->next = NULL;
2520
2521 /* set IO base and Limit registers */
2522 temp_byte = io_node->base >> 8;
2523 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2524
2525 temp_byte = (io_node->base + io_node->length - 1) >> 8;
2526 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2527
2528 /* Copy the memory resources and fill in the bridge's memory
2529 * range registers.
2530 */
2531 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2532 mem_node->next = NULL;
2533
2534 /* set Mem base and Limit registers */
2535 temp_word = mem_node->base >> 16;
2536 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2537
2538 temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2539 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2540
2541 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2542 p_mem_node->next = NULL;
2543
2544 /* set Pre Mem base and Limit registers */
2545 temp_word = p_mem_node->base >> 16;
2546 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2547
2548 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2549 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2550
2551 /* Adjust this to compensate for extra adjustment in first loop
2552 */
2553 irqs.barber_pole--;
2554
2555 rc = 0;
2556
2557 /* Here we actually find the devices and configure them */
2558 for (device = 0; (device <= 0x1F) && !rc; device++) {
2559 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2560
2561 ID = 0xFFFFFFFF;
2562 pci_bus->number = hold_bus_node->base;
2563 pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2564 pci_bus->number = func->bus;
2565
2566 if (ID != 0xFFFFFFFF) { /* device present */
2567 /* Setup slot structure. */
2568 new_slot = cpqhp_slot_create(hold_bus_node->base);
2569
2570 if (new_slot == NULL) {
2571 rc = -ENOMEM;
2572 continue;
2573 }
2574
2575 new_slot->bus = hold_bus_node->base;
2576 new_slot->device = device;
2577 new_slot->function = 0;
2578 new_slot->is_a_board = 1;
2579 new_slot->status = 0;
2580
2581 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2582 dbg("configure_new_device rc=0x%x\n", rc);
2583 } /* End of IF (device in slot?) */
2584 } /* End of FOR loop */
2585
2586 if (rc)
2587 goto free_and_out;
2588 /* save the interrupt routing information */
2589 if (resources->irqs) {
2590 resources->irqs->interrupt[0] = irqs.interrupt[0];
2591 resources->irqs->interrupt[1] = irqs.interrupt[1];
2592 resources->irqs->interrupt[2] = irqs.interrupt[2];
2593 resources->irqs->interrupt[3] = irqs.interrupt[3];
2594 resources->irqs->valid_INT = irqs.valid_INT;
2595 } else if (!behind_bridge) {
2596 /* We need to hook up the interrupts here */
2597 for (cloop = 0; cloop < 4; cloop++) {
2598 if (irqs.valid_INT & (0x01 << cloop)) {
2599 rc = cpqhp_set_irq(func->bus, func->device,
2600 cloop + 1, irqs.interrupt[cloop]);
2601 if (rc)
2602 goto free_and_out;
2603 }
2604 } /* end of for loop */
2605 }
2606 /* Return unused bus resources
2607 * First use the temporary node to store information for
2608 * the board */
2609 if (bus_node && temp_resources.bus_head) {
2610 hold_bus_node->length = bus_node->base - hold_bus_node->base;
2611
2612 hold_bus_node->next = func->bus_head;
2613 func->bus_head = hold_bus_node;
2614
2615 temp_byte = temp_resources.bus_head->base - 1;
2616
2617 /* set subordinate bus */
2618 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2619
2620 if (temp_resources.bus_head->length == 0) {
2621 kfree(temp_resources.bus_head);
2622 temp_resources.bus_head = NULL;
2623 } else {
2624 return_resource(&(resources->bus_head), temp_resources.bus_head);
2625 }
2626 }
2627
2628 /* If we have IO space available and there is some left,
2629 * return the unused portion */
2630 if (hold_IO_node && temp_resources.io_head) {
2631 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2632 &hold_IO_node, 0x1000);
2633
2634 /* Check if we were able to split something off */
2635 if (io_node) {
2636 hold_IO_node->base = io_node->base + io_node->length;
2637
2638 temp_byte = (hold_IO_node->base) >> 8;
2639 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2640
2641 return_resource(&(resources->io_head), io_node);
2642 }
2643
2644 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2645
2646 /* Check if we were able to split something off */
2647 if (io_node) {
2648 /* First use the temporary node to store
2649 * information for the board */
2650 hold_IO_node->length = io_node->base - hold_IO_node->base;
2651
2652 /* If we used any, add it to the board's list */
2653 if (hold_IO_node->length) {
2654 hold_IO_node->next = func->io_head;
2655 func->io_head = hold_IO_node;
2656
2657 temp_byte = (io_node->base - 1) >> 8;
2658 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2659
2660 return_resource(&(resources->io_head), io_node);
2661 } else {
2662 /* it doesn't need any IO */
2663 temp_word = 0x0000;
2664 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2665
2666 return_resource(&(resources->io_head), io_node);
2667 kfree(hold_IO_node);
2668 }
2669 } else {
2670 /* it used most of the range */
2671 hold_IO_node->next = func->io_head;
2672 func->io_head = hold_IO_node;
2673 }
2674 } else if (hold_IO_node) {
2675 /* it used the whole range */
2676 hold_IO_node->next = func->io_head;
2677 func->io_head = hold_IO_node;
2678 }
2679 /* If we have memory space available and there is some left,
2680 * return the unused portion */
2681 if (hold_mem_node && temp_resources.mem_head) {
2682 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head),
2683 &hold_mem_node, 0x100000);
2684
2685 /* Check if we were able to split something off */
2686 if (mem_node) {
2687 hold_mem_node->base = mem_node->base + mem_node->length;
2688
2689 temp_word = (hold_mem_node->base) >> 16;
2690 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2691
2692 return_resource(&(resources->mem_head), mem_node);
2693 }
2694
2695 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2696
2697 /* Check if we were able to split something off */
2698 if (mem_node) {
2699 /* First use the temporary node to store
2700 * information for the board */
2701 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2702
2703 if (hold_mem_node->length) {
2704 hold_mem_node->next = func->mem_head;
2705 func->mem_head = hold_mem_node;
2706
2707 /* configure end address */
2708 temp_word = (mem_node->base - 1) >> 16;
2709 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2710
2711 /* Return unused resources to the pool */
2712 return_resource(&(resources->mem_head), mem_node);
2713 } else {
2714 /* it doesn't need any Mem */
2715 temp_word = 0x0000;
2716 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2717
2718 return_resource(&(resources->mem_head), mem_node);
2719 kfree(hold_mem_node);
2720 }
2721 } else {
2722 /* it used most of the range */
2723 hold_mem_node->next = func->mem_head;
2724 func->mem_head = hold_mem_node;
2725 }
2726 } else if (hold_mem_node) {
2727 /* it used the whole range */
2728 hold_mem_node->next = func->mem_head;
2729 func->mem_head = hold_mem_node;
2730 }
2731 /* If we have prefetchable memory space available and there
2732 * is some left at the end, return the unused portion */
2733 if (temp_resources.p_mem_head) {
2734 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2735 &hold_p_mem_node, 0x100000);
2736
2737 /* Check if we were able to split something off */
2738 if (p_mem_node) {
2739 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2740
2741 temp_word = (hold_p_mem_node->base) >> 16;
2742 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2743
2744 return_resource(&(resources->p_mem_head), p_mem_node);
2745 }
2746
2747 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2748
2749 /* Check if we were able to split something off */
2750 if (p_mem_node) {
2751 /* First use the temporary node to store
2752 * information for the board */
2753 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2754
2755 /* If we used any, add it to the board's list */
2756 if (hold_p_mem_node->length) {
2757 hold_p_mem_node->next = func->p_mem_head;
2758 func->p_mem_head = hold_p_mem_node;
2759
2760 temp_word = (p_mem_node->base - 1) >> 16;
2761 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2762
2763 return_resource(&(resources->p_mem_head), p_mem_node);
2764 } else {
2765 /* it doesn't need any PMem */
2766 temp_word = 0x0000;
2767 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2768
2769 return_resource(&(resources->p_mem_head), p_mem_node);
2770 kfree(hold_p_mem_node);
2771 }
2772 } else {
2773 /* it used the most of the range */
2774 hold_p_mem_node->next = func->p_mem_head;
2775 func->p_mem_head = hold_p_mem_node;
2776 }
2777 } else if (hold_p_mem_node) {
2778 /* it used the whole range */
2779 hold_p_mem_node->next = func->p_mem_head;
2780 func->p_mem_head = hold_p_mem_node;
2781 }
2782 /* We should be configuring an IRQ and the bridge's base address
2783 * registers if it needs them. Although we have never seen such
2784 * a device */
2785
2786 /* enable card */
2787 command = 0x0157; /* = PCI_COMMAND_IO |
2788 * PCI_COMMAND_MEMORY |
2789 * PCI_COMMAND_MASTER |
2790 * PCI_COMMAND_INVALIDATE |
2791 * PCI_COMMAND_PARITY |
2792 * PCI_COMMAND_SERR */
2793 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
2794
2795 /* set Bridge Control Register */
2796 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY |
2797 * PCI_BRIDGE_CTL_SERR |
2798 * PCI_BRIDGE_CTL_NO_ISA */
2799 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2800 } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2801 /* Standard device */
2802 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2803
2804 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2805 /* Display (video) adapter (not supported) */
2806 return DEVICE_TYPE_NOT_SUPPORTED;
2807 }
2808 /* Figure out IO and memory needs */
2809 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2810 temp_register = 0xFFFFFFFF;
2811
2812 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2813 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
2814
2815 rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register);
2816 dbg("CND: base = 0x%x\n", temp_register);
2817
2818 if (temp_register) { /* If this register is implemented */
2819 if ((temp_register & 0x03L) == 0x01) {
2820 /* Map IO */
2821
2822 /* set base = amount of IO space */
2823 base = temp_register & 0xFFFFFFFC;
2824 base = ~base + 1;
2825
2826 dbg("CND: length = 0x%x\n", base);
2827 io_node = get_io_resource(&(resources->io_head), base);
2828 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2829 io_node->base, io_node->length, io_node->next);
2830 dbg("func (%p) io_head (%p)\n", func, func->io_head);
2831
2832 /* allocate the resource to the board */
2833 if (io_node) {
2834 base = io_node->base;
2835
2836 io_node->next = func->io_head;
2837 func->io_head = io_node;
2838 } else
2839 return -ENOMEM;
2840 } else if ((temp_register & 0x0BL) == 0x08) {
2841 /* Map prefetchable memory */
2842 base = temp_register & 0xFFFFFFF0;
2843 base = ~base + 1;
2844
2845 dbg("CND: length = 0x%x\n", base);
2846 p_mem_node = get_resource(&(resources->p_mem_head), base);
2847
2848 /* allocate the resource to the board */
2849 if (p_mem_node) {
2850 base = p_mem_node->base;
2851
2852 p_mem_node->next = func->p_mem_head;
2853 func->p_mem_head = p_mem_node;
2854 } else
2855 return -ENOMEM;
2856 } else if ((temp_register & 0x0BL) == 0x00) {
2857 /* Map memory */
2858 base = temp_register & 0xFFFFFFF0;
2859 base = ~base + 1;
2860
2861 dbg("CND: length = 0x%x\n", base);
2862 mem_node = get_resource(&(resources->mem_head), base);
2863
2864 /* allocate the resource to the board */
2865 if (mem_node) {
2866 base = mem_node->base;
2867
2868 mem_node->next = func->mem_head;
2869 func->mem_head = mem_node;
2870 } else
2871 return -ENOMEM;
2872 } else {
2873 /* Reserved bits or requesting space below 1M */
2874 return NOT_ENOUGH_RESOURCES;
2875 }
2876
2877 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2878
2879 /* Check for 64-bit base */
2880 if ((temp_register & 0x07L) == 0x04) {
2881 cloop += 4;
2882
2883 /* Upper 32 bits of address always zero
2884 * on today's systems */
2885 /* FIXME this is probably not true on
2886 * Alpha and ia64??? */
2887 base = 0;
2888 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2889 }
2890 }
2891 } /* End of base register loop */
2892 if (cpqhp_legacy_mode) {
2893 /* Figure out which interrupt pin this function uses */
2894 rc = pci_bus_read_config_byte(pci_bus, devfn,
2895 PCI_INTERRUPT_PIN, &temp_byte);
2896
2897 /* If this function needs an interrupt and we are behind
2898 * a bridge and the pin is tied to something that's
2899 * already mapped, set this one the same */
2900 if (temp_byte && resources->irqs &&
2901 (resources->irqs->valid_INT &
2902 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2903 /* We have to share with something already set up */
2904 IRQ = resources->irqs->interrupt[(temp_byte +
2905 resources->irqs->barber_pole - 1) & 0x03];
2906 } else {
2907 /* Program IRQ based on card type */
2908 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2909
2910 if (class_code == PCI_BASE_CLASS_STORAGE)
2911 IRQ = cpqhp_disk_irq;
2912 else
2913 IRQ = cpqhp_nic_irq;
2914 }
2915
2916 /* IRQ Line */
2917 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2918 }
2919
2920 if (!behind_bridge) {
2921 rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2922 if (rc)
2923 return 1;
2924 } else {
2925 /* TBD - this code may also belong in the other clause
2926 * of this If statement */
2927 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2928 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2929 }
2930
2931 /* Latency Timer */
2932 temp_byte = 0x40;
2933 rc = pci_bus_write_config_byte(pci_bus, devfn,
2934 PCI_LATENCY_TIMER, temp_byte);
2935
2936 /* Cache Line size */
2937 temp_byte = 0x08;
2938 rc = pci_bus_write_config_byte(pci_bus, devfn,
2939 PCI_CACHE_LINE_SIZE, temp_byte);
2940
2941 /* disable ROM base Address */
2942 temp_dword = 0x00L;
2943 rc = pci_bus_write_config_word(pci_bus, devfn,
2944 PCI_ROM_ADDRESS, temp_dword);
2945
2946 /* enable card */
2947 temp_word = 0x0157; /* = PCI_COMMAND_IO |
2948 * PCI_COMMAND_MEMORY |
2949 * PCI_COMMAND_MASTER |
2950 * PCI_COMMAND_INVALIDATE |
2951 * PCI_COMMAND_PARITY |
2952 * PCI_COMMAND_SERR */
2953 rc = pci_bus_write_config_word(pci_bus, devfn,
2954 PCI_COMMAND, temp_word);
2955 } else { /* End of Not-A-Bridge else */
2956 /* It's some strange type of PCI adapter (Cardbus?) */
2957 return DEVICE_TYPE_NOT_SUPPORTED;
2958 }
2959
2960 func->configured = 1;
2961
2962 return 0;
2963free_and_out:
2964 cpqhp_destroy_resource_list(&temp_resources);
2965
2966 return_resource(&(resources->bus_head), hold_bus_node);
2967 return_resource(&(resources->io_head), hold_IO_node);
2968 return_resource(&(resources->mem_head), hold_mem_node);
2969 return_resource(&(resources->p_mem_head), hold_p_mem_node);
2970 return rc;
2971}