Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include <linux/prefetch.h>
   5#include <linux/bpf_trace.h>
   6#include <net/xdp.h>
   7#include "i40e.h"
   8#include "i40e_trace.h"
   9#include "i40e_prototype.h"
  10#include "i40e_txrx_common.h"
  11#include "i40e_xsk.h"
 
 
 
 
 
 
 
 
  12
  13#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  14/**
  15 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  16 * @tx_ring: Tx ring to send buffer on
  17 * @fdata: Flow director filter data
  18 * @add: Indicate if we are adding a rule or deleting one
  19 *
  20 **/
  21static void i40e_fdir(struct i40e_ring *tx_ring,
  22		      struct i40e_fdir_filter *fdata, bool add)
  23{
  24	struct i40e_filter_program_desc *fdir_desc;
  25	struct i40e_pf *pf = tx_ring->vsi->back;
  26	u32 flex_ptype, dtype_cmd;
  27	u16 i;
  28
  29	/* grab the next descriptor */
  30	i = tx_ring->next_to_use;
  31	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  32
  33	i++;
  34	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  35
  36	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
  37		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
  38
  39	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
  40		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  41
  42	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  43		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
  44
  45	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  46		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  47
  48	/* Use LAN VSI Id if not programmed by user */
  49	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
  50		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
  51		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
  52
  53	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  54
  55	dtype_cmd |= add ?
  56		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  57		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  58		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  59		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  60
  61	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
  62		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
  63
  64	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
  65		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
  66
  67	if (fdata->cnt_index) {
  68		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  69		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
  70			     ((u32)fdata->cnt_index <<
  71			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
  72	}
  73
  74	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
  75	fdir_desc->rsvd = cpu_to_le32(0);
  76	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
  77	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
  78}
  79
  80#define I40E_FD_CLEAN_DELAY 10
  81/**
  82 * i40e_program_fdir_filter - Program a Flow Director filter
  83 * @fdir_data: Packet data that will be filter parameters
  84 * @raw_packet: the pre-allocated packet buffer for FDir
  85 * @pf: The PF pointer
  86 * @add: True for add/update, False for remove
  87 **/
  88static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
  89				    u8 *raw_packet, struct i40e_pf *pf,
  90				    bool add)
  91{
  92	struct i40e_tx_buffer *tx_buf, *first;
  93	struct i40e_tx_desc *tx_desc;
  94	struct i40e_ring *tx_ring;
  95	struct i40e_vsi *vsi;
  96	struct device *dev;
  97	dma_addr_t dma;
  98	u32 td_cmd = 0;
  99	u16 i;
 100
 101	/* find existing FDIR VSI */
 102	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
 103	if (!vsi)
 104		return -ENOENT;
 105
 106	tx_ring = vsi->tx_rings[0];
 107	dev = tx_ring->dev;
 108
 109	/* we need two descriptors to add/del a filter and we can wait */
 110	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 111		if (!i)
 112			return -EAGAIN;
 113		msleep_interruptible(1);
 114	}
 115
 116	dma = dma_map_single(dev, raw_packet,
 117			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 118	if (dma_mapping_error(dev, dma))
 119		goto dma_fail;
 120
 121	/* grab the next descriptor */
 122	i = tx_ring->next_to_use;
 123	first = &tx_ring->tx_bi[i];
 124	i40e_fdir(tx_ring, fdir_data, add);
 125
 126	/* Now program a dummy descriptor */
 127	i = tx_ring->next_to_use;
 128	tx_desc = I40E_TX_DESC(tx_ring, i);
 129	tx_buf = &tx_ring->tx_bi[i];
 130
 131	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 132
 133	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 134
 135	/* record length, and DMA address */
 136	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 137	dma_unmap_addr_set(tx_buf, dma, dma);
 138
 139	tx_desc->buffer_addr = cpu_to_le64(dma);
 140	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 141
 142	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 143	tx_buf->raw_buf = (void *)raw_packet;
 144
 145	tx_desc->cmd_type_offset_bsz =
 146		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 147
 148	/* Force memory writes to complete before letting h/w
 149	 * know there are new descriptors to fetch.
 150	 */
 151	wmb();
 152
 153	/* Mark the data descriptor to be watched */
 154	first->next_to_watch = tx_desc;
 155
 156	writel(tx_ring->next_to_use, tx_ring->tail);
 157	return 0;
 158
 159dma_fail:
 160	return -1;
 161}
 162
 163#define IP_HEADER_OFFSET 14
 164#define I40E_UDPIP_DUMMY_PACKET_LEN 42
 165/**
 166 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 167 * @vsi: pointer to the targeted VSI
 168 * @fd_data: the flow director data required for the FDir descriptor
 169 * @add: true adds a filter, false removes it
 170 *
 171 * Returns 0 if the filters were successfully added or removed
 172 **/
 173static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
 174				   struct i40e_fdir_filter *fd_data,
 175				   bool add)
 176{
 177	struct i40e_pf *pf = vsi->back;
 178	struct udphdr *udp;
 179	struct iphdr *ip;
 
 180	u8 *raw_packet;
 181	int ret;
 182	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 183		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
 184		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 185
 186	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 187	if (!raw_packet)
 188		return -ENOMEM;
 189	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
 190
 191	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 192	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
 193	      + sizeof(struct iphdr));
 194
 195	ip->daddr = fd_data->dst_ip;
 196	udp->dest = fd_data->dst_port;
 197	ip->saddr = fd_data->src_ip;
 198	udp->source = fd_data->src_port;
 199
 200	if (fd_data->flex_filter) {
 201		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
 202		__be16 pattern = fd_data->flex_word;
 203		u16 off = fd_data->flex_offset;
 204
 205		*((__force __be16 *)(payload + off)) = pattern;
 206	}
 207
 208	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
 209	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 210	if (ret) {
 211		dev_info(&pf->pdev->dev,
 212			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 213			 fd_data->pctype, fd_data->fd_id, ret);
 214		/* Free the packet buffer since it wasn't added to the ring */
 215		kfree(raw_packet);
 216		return -EOPNOTSUPP;
 217	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 218		if (add)
 219			dev_info(&pf->pdev->dev,
 220				 "Filter OK for PCTYPE %d loc = %d\n",
 221				 fd_data->pctype, fd_data->fd_id);
 222		else
 223			dev_info(&pf->pdev->dev,
 224				 "Filter deleted for PCTYPE %d loc = %d\n",
 225				 fd_data->pctype, fd_data->fd_id);
 226	}
 
 
 227
 228	if (add)
 229		pf->fd_udp4_filter_cnt++;
 230	else
 231		pf->fd_udp4_filter_cnt--;
 232
 233	return 0;
 234}
 235
 236#define I40E_TCPIP_DUMMY_PACKET_LEN 54
 237/**
 238 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 239 * @vsi: pointer to the targeted VSI
 240 * @fd_data: the flow director data required for the FDir descriptor
 241 * @add: true adds a filter, false removes it
 242 *
 243 * Returns 0 if the filters were successfully added or removed
 244 **/
 245static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
 246				   struct i40e_fdir_filter *fd_data,
 247				   bool add)
 248{
 249	struct i40e_pf *pf = vsi->back;
 250	struct tcphdr *tcp;
 251	struct iphdr *ip;
 
 252	u8 *raw_packet;
 253	int ret;
 254	/* Dummy packet */
 255	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 256		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
 257		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
 258		0x0, 0x72, 0, 0, 0, 0};
 259
 260	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 261	if (!raw_packet)
 262		return -ENOMEM;
 263	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
 264
 265	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 266	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
 267	      + sizeof(struct iphdr));
 268
 269	ip->daddr = fd_data->dst_ip;
 270	tcp->dest = fd_data->dst_port;
 271	ip->saddr = fd_data->src_ip;
 272	tcp->source = fd_data->src_port;
 273
 274	if (fd_data->flex_filter) {
 275		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
 276		__be16 pattern = fd_data->flex_word;
 277		u16 off = fd_data->flex_offset;
 278
 279		*((__force __be16 *)(payload + off)) = pattern;
 280	}
 281
 282	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
 283	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 284	if (ret) {
 285		dev_info(&pf->pdev->dev,
 286			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 287			 fd_data->pctype, fd_data->fd_id, ret);
 288		/* Free the packet buffer since it wasn't added to the ring */
 289		kfree(raw_packet);
 290		return -EOPNOTSUPP;
 291	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 292		if (add)
 293			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
 294				 fd_data->pctype, fd_data->fd_id);
 295		else
 296			dev_info(&pf->pdev->dev,
 297				 "Filter deleted for PCTYPE %d loc = %d\n",
 298				 fd_data->pctype, fd_data->fd_id);
 299	}
 300
 301	if (add) {
 302		pf->fd_tcp4_filter_cnt++;
 303		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
 304		    I40E_DEBUG_FD & pf->hw.debug_mask)
 305			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 306		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 307	} else {
 308		pf->fd_tcp4_filter_cnt--;
 309	}
 310
 311	return 0;
 312}
 313
 314#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
 315/**
 316 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 317 * a specific flow spec
 318 * @vsi: pointer to the targeted VSI
 319 * @fd_data: the flow director data required for the FDir descriptor
 320 * @add: true adds a filter, false removes it
 321 *
 322 * Returns 0 if the filters were successfully added or removed
 323 **/
 324static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
 325				    struct i40e_fdir_filter *fd_data,
 326				    bool add)
 327{
 328	struct i40e_pf *pf = vsi->back;
 329	struct sctphdr *sctp;
 330	struct iphdr *ip;
 331	u8 *raw_packet;
 332	int ret;
 333	/* Dummy packet */
 334	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 335		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
 336		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 337
 338	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 339	if (!raw_packet)
 340		return -ENOMEM;
 341	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
 342
 343	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 344	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
 345	      + sizeof(struct iphdr));
 346
 347	ip->daddr = fd_data->dst_ip;
 348	sctp->dest = fd_data->dst_port;
 349	ip->saddr = fd_data->src_ip;
 350	sctp->source = fd_data->src_port;
 351
 352	if (fd_data->flex_filter) {
 353		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
 354		__be16 pattern = fd_data->flex_word;
 355		u16 off = fd_data->flex_offset;
 356
 357		*((__force __be16 *)(payload + off)) = pattern;
 358	}
 359
 360	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
 361	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 
 362	if (ret) {
 363		dev_info(&pf->pdev->dev,
 364			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 365			 fd_data->pctype, fd_data->fd_id, ret);
 366		/* Free the packet buffer since it wasn't added to the ring */
 367		kfree(raw_packet);
 368		return -EOPNOTSUPP;
 369	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 370		if (add)
 371			dev_info(&pf->pdev->dev,
 372				 "Filter OK for PCTYPE %d loc = %d\n",
 373				 fd_data->pctype, fd_data->fd_id);
 374		else
 375			dev_info(&pf->pdev->dev,
 376				 "Filter deleted for PCTYPE %d loc = %d\n",
 377				 fd_data->pctype, fd_data->fd_id);
 378	}
 379
 380	if (add)
 381		pf->fd_sctp4_filter_cnt++;
 382	else
 383		pf->fd_sctp4_filter_cnt--;
 384
 385	return 0;
 386}
 387
 388#define I40E_IP_DUMMY_PACKET_LEN 34
 389/**
 390 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 391 * a specific flow spec
 392 * @vsi: pointer to the targeted VSI
 393 * @fd_data: the flow director data required for the FDir descriptor
 394 * @add: true adds a filter, false removes it
 395 *
 396 * Returns 0 if the filters were successfully added or removed
 397 **/
 398static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
 399				  struct i40e_fdir_filter *fd_data,
 400				  bool add)
 401{
 402	struct i40e_pf *pf = vsi->back;
 403	struct iphdr *ip;
 
 404	u8 *raw_packet;
 405	int ret;
 406	int i;
 407	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 408		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
 409		0, 0, 0, 0};
 410
 411	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 412	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
 413		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 414		if (!raw_packet)
 415			return -ENOMEM;
 416		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
 417		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 418
 419		ip->saddr = fd_data->src_ip;
 420		ip->daddr = fd_data->dst_ip;
 421		ip->protocol = 0;
 422
 423		if (fd_data->flex_filter) {
 424			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
 425			__be16 pattern = fd_data->flex_word;
 426			u16 off = fd_data->flex_offset;
 427
 428			*((__force __be16 *)(payload + off)) = pattern;
 429		}
 430
 431		fd_data->pctype = i;
 432		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 
 433		if (ret) {
 434			dev_info(&pf->pdev->dev,
 435				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 436				 fd_data->pctype, fd_data->fd_id, ret);
 437			/* The packet buffer wasn't added to the ring so we
 438			 * need to free it now.
 439			 */
 440			kfree(raw_packet);
 441			return -EOPNOTSUPP;
 442		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 443			if (add)
 444				dev_info(&pf->pdev->dev,
 445					 "Filter OK for PCTYPE %d loc = %d\n",
 446					 fd_data->pctype, fd_data->fd_id);
 447			else
 448				dev_info(&pf->pdev->dev,
 449					 "Filter deleted for PCTYPE %d loc = %d\n",
 450					 fd_data->pctype, fd_data->fd_id);
 451		}
 452	}
 453
 454	if (add)
 455		pf->fd_ip4_filter_cnt++;
 456	else
 457		pf->fd_ip4_filter_cnt--;
 458
 459	return 0;
 460}
 461
 462/**
 463 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 464 * @vsi: pointer to the targeted VSI
 465 * @input: filter to add or delete
 466 * @add: true adds a filter, false removes it
 467 *
 468 **/
 469int i40e_add_del_fdir(struct i40e_vsi *vsi,
 470		      struct i40e_fdir_filter *input, bool add)
 471{
 472	struct i40e_pf *pf = vsi->back;
 473	int ret;
 474
 475	switch (input->flow_type & ~FLOW_EXT) {
 476	case TCP_V4_FLOW:
 477		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 478		break;
 479	case UDP_V4_FLOW:
 480		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 481		break;
 482	case SCTP_V4_FLOW:
 483		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 484		break;
 485	case IP_USER_FLOW:
 486		switch (input->ip4_proto) {
 487		case IPPROTO_TCP:
 488			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 489			break;
 490		case IPPROTO_UDP:
 491			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 492			break;
 493		case IPPROTO_SCTP:
 494			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 495			break;
 496		case IPPROTO_IP:
 497			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
 498			break;
 499		default:
 500			/* We cannot support masking based on protocol */
 501			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
 502				 input->ip4_proto);
 503			return -EINVAL;
 504		}
 505		break;
 506	default:
 507		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
 
 508			 input->flow_type);
 509		return -EINVAL;
 510	}
 511
 512	/* The buffer allocated here will be normally be freed by
 513	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
 514	 * completion. In the event of an error adding the buffer to the FDIR
 515	 * ring, it will immediately be freed. It may also be freed by
 516	 * i40e_clean_tx_ring() when closing the VSI.
 517	 */
 518	return ret;
 519}
 520
 521/**
 522 * i40e_fd_handle_status - check the Programming Status for FD
 523 * @rx_ring: the Rx ring for this descriptor
 524 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
 525 * @prog_id: the id originally used for programming
 526 *
 527 * This is used to verify if the FD programming or invalidation
 528 * requested by SW to the HW is successful or not and take actions accordingly.
 529 **/
 530void i40e_fd_handle_status(struct i40e_ring *rx_ring,
 531			   union i40e_rx_desc *rx_desc, u8 prog_id)
 532{
 533	struct i40e_pf *pf = rx_ring->vsi->back;
 534	struct pci_dev *pdev = pf->pdev;
 535	u32 fcnt_prog, fcnt_avail;
 536	u32 error;
 537	u64 qw;
 538
 539	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 540	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
 541		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
 542
 543	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 544		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
 545		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
 546		    (I40E_DEBUG_FD & pf->hw.debug_mask))
 547			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 548				 pf->fd_inv);
 549
 550		/* Check if the programming error is for ATR.
 551		 * If so, auto disable ATR and set a state for
 552		 * flush in progress. Next time we come here if flush is in
 553		 * progress do nothing, once flush is complete the state will
 554		 * be cleared.
 555		 */
 556		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
 557			return;
 558
 559		pf->fd_add_err++;
 560		/* store the current atr filter count */
 561		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 562
 563		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
 564		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
 565			/* These set_bit() calls aren't atomic with the
 566			 * test_bit() here, but worse case we potentially
 567			 * disable ATR and queue a flush right after SB
 568			 * support is re-enabled. That shouldn't cause an
 569			 * issue in practice
 570			 */
 571			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 572			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
 573		}
 574
 575		/* filter programming failed most likely due to table full */
 576		fcnt_prog = i40e_get_global_fd_count(pf);
 577		fcnt_avail = pf->fdir_pf_filter_count;
 578		/* If ATR is running fcnt_prog can quickly change,
 579		 * if we are very close to full, it makes sense to disable
 580		 * FD ATR/SB and then re-enable it when there is room.
 581		 */
 582		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 583			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
 584			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
 585					      pf->state))
 586				if (I40E_DEBUG_FD & pf->hw.debug_mask)
 587					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 
 
 
 588		}
 589	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 590		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 591			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 592				 rx_desc->wb.qword0.hi_dword.fd_id);
 593	}
 594}
 595
 596/**
 597 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 598 * @ring:      the ring that owns the buffer
 599 * @tx_buffer: the buffer to free
 600 **/
 601static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 602					    struct i40e_tx_buffer *tx_buffer)
 603{
 604	if (tx_buffer->skb) {
 605		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 606			kfree(tx_buffer->raw_buf);
 607		else if (ring_is_xdp(ring))
 608			xdp_return_frame(tx_buffer->xdpf);
 609		else
 610			dev_kfree_skb_any(tx_buffer->skb);
 611		if (dma_unmap_len(tx_buffer, len))
 612			dma_unmap_single(ring->dev,
 613					 dma_unmap_addr(tx_buffer, dma),
 614					 dma_unmap_len(tx_buffer, len),
 615					 DMA_TO_DEVICE);
 616	} else if (dma_unmap_len(tx_buffer, len)) {
 617		dma_unmap_page(ring->dev,
 618			       dma_unmap_addr(tx_buffer, dma),
 619			       dma_unmap_len(tx_buffer, len),
 620			       DMA_TO_DEVICE);
 621	}
 622
 623	tx_buffer->next_to_watch = NULL;
 624	tx_buffer->skb = NULL;
 625	dma_unmap_len_set(tx_buffer, len, 0);
 626	/* tx_buffer must be completely set up in the transmit path */
 627}
 628
 629/**
 630 * i40e_clean_tx_ring - Free any empty Tx buffers
 631 * @tx_ring: ring to be cleaned
 632 **/
 633void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 634{
 635	unsigned long bi_size;
 636	u16 i;
 637
 638	if (ring_is_xdp(tx_ring) && tx_ring->xsk_umem) {
 639		i40e_xsk_clean_tx_ring(tx_ring);
 640	} else {
 641		/* ring already cleared, nothing to do */
 642		if (!tx_ring->tx_bi)
 643			return;
 644
 645		/* Free all the Tx ring sk_buffs */
 646		for (i = 0; i < tx_ring->count; i++)
 647			i40e_unmap_and_free_tx_resource(tx_ring,
 648							&tx_ring->tx_bi[i]);
 649	}
 650
 651	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 652	memset(tx_ring->tx_bi, 0, bi_size);
 653
 654	/* Zero out the descriptor ring */
 655	memset(tx_ring->desc, 0, tx_ring->size);
 656
 657	tx_ring->next_to_use = 0;
 658	tx_ring->next_to_clean = 0;
 659
 660	if (!tx_ring->netdev)
 661		return;
 662
 663	/* cleanup Tx queue statistics */
 664	netdev_tx_reset_queue(txring_txq(tx_ring));
 665}
 666
 667/**
 668 * i40e_free_tx_resources - Free Tx resources per queue
 669 * @tx_ring: Tx descriptor ring for a specific queue
 670 *
 671 * Free all transmit software resources
 672 **/
 673void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 674{
 675	i40e_clean_tx_ring(tx_ring);
 676	kfree(tx_ring->tx_bi);
 677	tx_ring->tx_bi = NULL;
 678
 679	if (tx_ring->desc) {
 680		dma_free_coherent(tx_ring->dev, tx_ring->size,
 681				  tx_ring->desc, tx_ring->dma);
 682		tx_ring->desc = NULL;
 683	}
 684}
 685
 686/**
 687 * i40e_get_tx_pending - how many tx descriptors not processed
 688 * @ring: the ring of descriptors
 689 * @in_sw: use SW variables
 690 *
 691 * Since there is no access to the ring head register
 692 * in XL710, we need to use our local copies
 693 **/
 694u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 695{
 696	u32 head, tail;
 697
 698	if (!in_sw) {
 699		head = i40e_get_head(ring);
 700		tail = readl(ring->tail);
 701	} else {
 702		head = ring->next_to_clean;
 703		tail = ring->next_to_use;
 704	}
 705
 706	if (head != tail)
 707		return (head < tail) ?
 708			tail - head : (tail + ring->count - head);
 709
 710	return 0;
 711}
 712
 713/**
 714 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 715 * @vsi:  pointer to vsi struct with tx queues
 716 *
 717 * VSI has netdev and netdev has TX queues. This function is to check each of
 718 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 719 **/
 720void i40e_detect_recover_hung(struct i40e_vsi *vsi)
 721{
 722	struct i40e_ring *tx_ring = NULL;
 723	struct net_device *netdev;
 724	unsigned int i;
 725	int packets;
 726
 727	if (!vsi)
 728		return;
 729
 730	if (test_bit(__I40E_VSI_DOWN, vsi->state))
 731		return;
 732
 733	netdev = vsi->netdev;
 734	if (!netdev)
 735		return;
 736
 737	if (!netif_carrier_ok(netdev))
 738		return;
 739
 740	for (i = 0; i < vsi->num_queue_pairs; i++) {
 741		tx_ring = vsi->tx_rings[i];
 742		if (tx_ring && tx_ring->desc) {
 743			/* If packet counter has not changed the queue is
 744			 * likely stalled, so force an interrupt for this
 745			 * queue.
 746			 *
 747			 * prev_pkt_ctr would be negative if there was no
 748			 * pending work.
 749			 */
 750			packets = tx_ring->stats.packets & INT_MAX;
 751			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 752				i40e_force_wb(vsi, tx_ring->q_vector);
 753				continue;
 754			}
 755
 756			/* Memory barrier between read of packet count and call
 757			 * to i40e_get_tx_pending()
 758			 */
 759			smp_rmb();
 760			tx_ring->tx_stats.prev_pkt_ctr =
 761			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
 762		}
 763	}
 764}
 765
 766/**
 767 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 768 * @vsi: the VSI we care about
 769 * @tx_ring: Tx ring to clean
 770 * @napi_budget: Used to determine if we are in netpoll
 771 *
 772 * Returns true if there's any budget left (e.g. the clean is finished)
 773 **/
 774static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 775			      struct i40e_ring *tx_ring, int napi_budget)
 776{
 777	int i = tx_ring->next_to_clean;
 778	struct i40e_tx_buffer *tx_buf;
 779	struct i40e_tx_desc *tx_head;
 780	struct i40e_tx_desc *tx_desc;
 781	unsigned int total_bytes = 0, total_packets = 0;
 782	unsigned int budget = vsi->work_limit;
 783
 784	tx_buf = &tx_ring->tx_bi[i];
 785	tx_desc = I40E_TX_DESC(tx_ring, i);
 786	i -= tx_ring->count;
 787
 788	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 789
 790	do {
 791		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 792
 793		/* if next_to_watch is not set then there is no work pending */
 794		if (!eop_desc)
 795			break;
 796
 797		/* prevent any other reads prior to eop_desc */
 798		smp_rmb();
 799
 800		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 801		/* we have caught up to head, no work left to do */
 802		if (tx_head == tx_desc)
 803			break;
 804
 805		/* clear next_to_watch to prevent false hangs */
 806		tx_buf->next_to_watch = NULL;
 807
 808		/* update the statistics for this packet */
 809		total_bytes += tx_buf->bytecount;
 810		total_packets += tx_buf->gso_segs;
 811
 812		/* free the skb/XDP data */
 813		if (ring_is_xdp(tx_ring))
 814			xdp_return_frame(tx_buf->xdpf);
 815		else
 816			napi_consume_skb(tx_buf->skb, napi_budget);
 817
 818		/* unmap skb header data */
 819		dma_unmap_single(tx_ring->dev,
 820				 dma_unmap_addr(tx_buf, dma),
 821				 dma_unmap_len(tx_buf, len),
 822				 DMA_TO_DEVICE);
 823
 824		/* clear tx_buffer data */
 825		tx_buf->skb = NULL;
 826		dma_unmap_len_set(tx_buf, len, 0);
 827
 828		/* unmap remaining buffers */
 829		while (tx_desc != eop_desc) {
 830			i40e_trace(clean_tx_irq_unmap,
 831				   tx_ring, tx_desc, tx_buf);
 832
 833			tx_buf++;
 834			tx_desc++;
 835			i++;
 836			if (unlikely(!i)) {
 837				i -= tx_ring->count;
 838				tx_buf = tx_ring->tx_bi;
 839				tx_desc = I40E_TX_DESC(tx_ring, 0);
 840			}
 841
 842			/* unmap any remaining paged data */
 843			if (dma_unmap_len(tx_buf, len)) {
 844				dma_unmap_page(tx_ring->dev,
 845					       dma_unmap_addr(tx_buf, dma),
 846					       dma_unmap_len(tx_buf, len),
 847					       DMA_TO_DEVICE);
 848				dma_unmap_len_set(tx_buf, len, 0);
 849			}
 850		}
 851
 852		/* move us one more past the eop_desc for start of next pkt */
 853		tx_buf++;
 854		tx_desc++;
 855		i++;
 856		if (unlikely(!i)) {
 857			i -= tx_ring->count;
 858			tx_buf = tx_ring->tx_bi;
 859			tx_desc = I40E_TX_DESC(tx_ring, 0);
 860		}
 861
 862		prefetch(tx_desc);
 863
 864		/* update budget accounting */
 865		budget--;
 866	} while (likely(budget));
 867
 868	i += tx_ring->count;
 869	tx_ring->next_to_clean = i;
 870	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
 871	i40e_arm_wb(tx_ring, vsi, budget);
 
 
 
 
 
 
 
 
 
 
 
 
 872
 873	if (ring_is_xdp(tx_ring))
 874		return !!budget;
 
 
 
 
 875
 876	/* notify netdev of completed buffers */
 877	netdev_tx_completed_queue(txring_txq(tx_ring),
 878				  total_packets, total_bytes);
 879
 880#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 881	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 882		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 883		/* Make sure that anybody stopping the queue after this
 884		 * sees the new next_to_clean.
 885		 */
 886		smp_mb();
 887		if (__netif_subqueue_stopped(tx_ring->netdev,
 888					     tx_ring->queue_index) &&
 889		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
 890			netif_wake_subqueue(tx_ring->netdev,
 891					    tx_ring->queue_index);
 892			++tx_ring->tx_stats.restart_queue;
 893		}
 894	}
 895
 896	return !!budget;
 897}
 898
 899/**
 900 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 901 * @vsi: the VSI we care about
 902 * @q_vector: the vector on which to enable writeback
 903 *
 904 **/
 905static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
 906				  struct i40e_q_vector *q_vector)
 907{
 908	u16 flags = q_vector->tx.ring[0].flags;
 909	u32 val;
 910
 911	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
 912		return;
 913
 914	if (q_vector->arm_wb_state)
 915		return;
 916
 917	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 918		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
 919		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
 920
 921		wr32(&vsi->back->hw,
 922		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
 923		     val);
 924	} else {
 925		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
 926		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
 927
 928		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 929	}
 930	q_vector->arm_wb_state = true;
 931}
 932
 933/**
 934 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 935 * @vsi: the VSI we care about
 936 * @q_vector: the vector  on which to force writeback
 937 *
 938 **/
 939void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
 940{
 941	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 942		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
 943			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
 944			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
 945			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
 946			  /* allow 00 to be written to the index */
 947
 948		wr32(&vsi->back->hw,
 949		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
 
 950	} else {
 951		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
 952			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
 953			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
 954			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
 955			/* allow 00 to be written to the index */
 956
 957		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 958	}
 959}
 960
 961static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
 962					struct i40e_ring_container *rc)
 963{
 964	return &q_vector->rx == rc;
 965}
 966
 967static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
 968{
 969	unsigned int divisor;
 970
 971	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
 972	case I40E_LINK_SPEED_40GB:
 973		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
 974		break;
 975	case I40E_LINK_SPEED_25GB:
 976	case I40E_LINK_SPEED_20GB:
 977		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
 978		break;
 979	default:
 980	case I40E_LINK_SPEED_10GB:
 981		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
 982		break;
 983	case I40E_LINK_SPEED_1GB:
 984	case I40E_LINK_SPEED_100MB:
 985		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
 986		break;
 987	}
 988
 989	return divisor;
 990}
 991
 992/**
 993 * i40e_update_itr - update the dynamic ITR value based on statistics
 994 * @q_vector: structure containing interrupt and ring information
 995 * @rc: structure containing ring performance data
 996 *
 997 * Stores a new ITR value based on packets and byte
 998 * counts during the last interrupt.  The advantage of per interrupt
 999 * computation is faster updates and more accurate ITR for the current
1000 * traffic pattern.  Constants in this function were computed
1001 * based on theoretical maximum wire speed and thresholds were set based
1002 * on testing data as well as attempting to minimize response time
 
 
1003 * while increasing bulk throughput.
1004 **/
1005static void i40e_update_itr(struct i40e_q_vector *q_vector,
1006			    struct i40e_ring_container *rc)
1007{
1008	unsigned int avg_wire_size, packets, bytes, itr;
1009	unsigned long next_update = jiffies;
1010
1011	/* If we don't have any rings just leave ourselves set for maximum
1012	 * possible latency so we take ourselves out of the equation.
1013	 */
1014	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1015		return;
1016
1017	/* For Rx we want to push the delay up and default to low latency.
1018	 * for Tx we want to pull the delay down and default to high latency.
1019	 */
1020	itr = i40e_container_is_rx(q_vector, rc) ?
1021	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1022	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1023
1024	/* If we didn't update within up to 1 - 2 jiffies we can assume
1025	 * that either packets are coming in so slow there hasn't been
1026	 * any work, or that there is so much work that NAPI is dealing
1027	 * with interrupt moderation and we don't need to do anything.
1028	 */
1029	if (time_after(next_update, rc->next_update))
1030		goto clear_counts;
1031
1032	/* If itr_countdown is set it means we programmed an ITR within
1033	 * the last 4 interrupt cycles. This has a side effect of us
1034	 * potentially firing an early interrupt. In order to work around
1035	 * this we need to throw out any data received for a few
1036	 * interrupts following the update.
1037	 */
1038	if (q_vector->itr_countdown) {
1039		itr = rc->target_itr;
1040		goto clear_counts;
1041	}
1042
1043	packets = rc->total_packets;
1044	bytes = rc->total_bytes;
1045
1046	if (i40e_container_is_rx(q_vector, rc)) {
1047		/* If Rx there are 1 to 4 packets and bytes are less than
1048		 * 9000 assume insufficient data to use bulk rate limiting
1049		 * approach unless Tx is already in bulk rate limiting. We
1050		 * are likely latency driven.
1051		 */
1052		if (packets && packets < 4 && bytes < 9000 &&
1053		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1054			itr = I40E_ITR_ADAPTIVE_LATENCY;
1055			goto adjust_by_size;
1056		}
1057	} else if (packets < 4) {
1058		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1059		 * bulk mode and we are receiving 4 or fewer packets just
1060		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1061		 * that the Rx can relax.
1062		 */
1063		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1064		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1065		     I40E_ITR_ADAPTIVE_MAX_USECS)
1066			goto clear_counts;
1067	} else if (packets > 32) {
1068		/* If we have processed over 32 packets in a single interrupt
1069		 * for Tx assume we need to switch over to "bulk" mode.
1070		 */
1071		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1072	}
1073
1074	/* We have no packets to actually measure against. This means
1075	 * either one of the other queues on this vector is active or
1076	 * we are a Tx queue doing TSO with too high of an interrupt rate.
 
 
1077	 *
1078	 * Between 4 and 56 we can assume that our current interrupt delay
1079	 * is only slightly too low. As such we should increase it by a small
1080	 * fixed amount.
1081	 */
1082	if (packets < 56) {
1083		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1084		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1085			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1086			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1087		}
1088		goto clear_counts;
1089	}
1090
1091	if (packets <= 256) {
1092		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1093		itr &= I40E_ITR_MASK;
1094
1095		/* Between 56 and 112 is our "goldilocks" zone where we are
1096		 * working out "just right". Just report that our current
1097		 * ITR is good for us.
1098		 */
1099		if (packets <= 112)
1100			goto clear_counts;
1101
1102		/* If packet count is 128 or greater we are likely looking
1103		 * at a slight overrun of the delay we want. Try halving
1104		 * our delay to see if that will cut the number of packets
1105		 * in half per interrupt.
1106		 */
1107		itr /= 2;
1108		itr &= I40E_ITR_MASK;
1109		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1110			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1111
1112		goto clear_counts;
1113	}
1114
1115	/* The paths below assume we are dealing with a bulk ITR since
1116	 * number of packets is greater than 256. We are just going to have
1117	 * to compute a value and try to bring the count under control,
1118	 * though for smaller packet sizes there isn't much we can do as
1119	 * NAPI polling will likely be kicking in sooner rather than later.
1120	 */
1121	itr = I40E_ITR_ADAPTIVE_BULK;
1122
1123adjust_by_size:
1124	/* If packet counts are 256 or greater we can assume we have a gross
1125	 * overestimation of what the rate should be. Instead of trying to fine
1126	 * tune it just use the formula below to try and dial in an exact value
1127	 * give the current packet size of the frame.
1128	 */
1129	avg_wire_size = bytes / packets;
1130
1131	/* The following is a crude approximation of:
1132	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1133	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1134	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1135	 *
1136	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1137	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1138	 * formula down to
1139	 *
1140	 *  (170 * (size + 24)) / (size + 640) = ITR
1141	 *
1142	 * We first do some math on the packet size and then finally bitshift
1143	 * by 8 after rounding up. We also have to account for PCIe link speed
1144	 * difference as ITR scales based on this.
1145	 */
1146	if (avg_wire_size <= 60) {
1147		/* Start at 250k ints/sec */
1148		avg_wire_size = 4096;
1149	} else if (avg_wire_size <= 380) {
1150		/* 250K ints/sec to 60K ints/sec */
1151		avg_wire_size *= 40;
1152		avg_wire_size += 1696;
1153	} else if (avg_wire_size <= 1084) {
1154		/* 60K ints/sec to 36K ints/sec */
1155		avg_wire_size *= 15;
1156		avg_wire_size += 11452;
1157	} else if (avg_wire_size <= 1980) {
1158		/* 36K ints/sec to 30K ints/sec */
1159		avg_wire_size *= 5;
1160		avg_wire_size += 22420;
1161	} else {
1162		/* plateau at a limit of 30K ints/sec */
1163		avg_wire_size = 32256;
1164	}
1165
1166	/* If we are in low latency mode halve our delay which doubles the
1167	 * rate to somewhere between 100K to 16K ints/sec
1168	 */
1169	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1170		avg_wire_size /= 2;
1171
1172	/* Resultant value is 256 times larger than it needs to be. This
1173	 * gives us room to adjust the value as needed to either increase
1174	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1175	 *
1176	 * Use addition as we have already recorded the new latency flag
1177	 * for the ITR value.
1178	 */
1179	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1180	       I40E_ITR_ADAPTIVE_MIN_INC;
1181
1182	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1183		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1184		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
 
 
 
 
 
 
 
 
 
1185	}
1186
1187clear_counts:
1188	/* write back value */
1189	rc->target_itr = itr;
1190
1191	/* next update should occur within next jiffy */
1192	rc->next_update = next_update + 1;
1193
1194	rc->total_bytes = 0;
1195	rc->total_packets = 0;
1196}
1197
1198/**
1199 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1200 * @rx_ring: rx descriptor ring to store buffers on
1201 * @old_buff: donor buffer to have page reused
1202 *
1203 * Synchronizes page for reuse by the adapter
1204 **/
1205static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1206			       struct i40e_rx_buffer *old_buff)
1207{
1208	struct i40e_rx_buffer *new_buff;
1209	u16 nta = rx_ring->next_to_alloc;
1210
1211	new_buff = &rx_ring->rx_bi[nta];
1212
1213	/* update, and store next to alloc */
1214	nta++;
1215	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1216
1217	/* transfer page from old buffer to new buffer */
1218	new_buff->dma		= old_buff->dma;
1219	new_buff->page		= old_buff->page;
1220	new_buff->page_offset	= old_buff->page_offset;
1221	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1222
1223	rx_ring->rx_stats.page_reuse_count++;
1224
1225	/* clear contents of buffer_info */
1226	old_buff->page = NULL;
1227}
1228
1229/**
1230 * i40e_rx_is_programming_status - check for programming status descriptor
1231 * @qw: qword representing status_error_len in CPU ordering
1232 *
1233 * The value of in the descriptor length field indicate if this
1234 * is a programming status descriptor for flow director or FCoE
1235 * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
1236 * it is a packet descriptor.
1237 **/
1238static inline bool i40e_rx_is_programming_status(u64 qw)
1239{
1240	/* The Rx filter programming status and SPH bit occupy the same
1241	 * spot in the descriptor. Since we don't support packet split we
1242	 * can just reuse the bit as an indication that this is a
1243	 * programming status descriptor.
1244	 */
1245	return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
1246}
1247
1248/**
1249 * i40e_clean_programming_status - try clean the programming status descriptor
1250 * @rx_ring: the rx ring that has this descriptor
1251 * @rx_desc: the rx descriptor written back by HW
1252 * @qw: qword representing status_error_len in CPU ordering
1253 *
1254 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1255 * status being successful or not and take actions accordingly. FCoE should
1256 * handle its context/filter programming/invalidation status and take actions.
1257 *
1258 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1259 **/
1260struct i40e_rx_buffer *i40e_clean_programming_status(
1261	struct i40e_ring *rx_ring,
1262	union i40e_rx_desc *rx_desc,
1263	u64 qw)
1264{
1265	struct i40e_rx_buffer *rx_buffer;
1266	u32 ntc;
1267	u8 id;
1268
1269	if (!i40e_rx_is_programming_status(qw))
1270		return NULL;
1271
1272	ntc = rx_ring->next_to_clean;
1273
1274	/* fetch, update, and store next to clean */
1275	rx_buffer = &rx_ring->rx_bi[ntc++];
1276	ntc = (ntc < rx_ring->count) ? ntc : 0;
1277	rx_ring->next_to_clean = ntc;
1278
1279	prefetch(I40E_RX_DESC(rx_ring, ntc));
1280
1281	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1282		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1283
1284	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1285		i40e_fd_handle_status(rx_ring, rx_desc, id);
1286
1287	return rx_buffer;
 
 
 
1288}
1289
1290/**
1291 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1292 * @tx_ring: the tx ring to set up
1293 *
1294 * Return 0 on success, negative on error
1295 **/
1296int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1297{
1298	struct device *dev = tx_ring->dev;
1299	int bi_size;
1300
1301	if (!dev)
1302		return -ENOMEM;
1303
1304	/* warn if we are about to overwrite the pointer */
1305	WARN_ON(tx_ring->tx_bi);
1306	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1307	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1308	if (!tx_ring->tx_bi)
1309		goto err;
1310
1311	u64_stats_init(&tx_ring->syncp);
1312
1313	/* round up to nearest 4K */
1314	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1315	/* add u32 for head writeback, align after this takes care of
1316	 * guaranteeing this is at least one cache line in size
1317	 */
1318	tx_ring->size += sizeof(u32);
1319	tx_ring->size = ALIGN(tx_ring->size, 4096);
1320	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1321					   &tx_ring->dma, GFP_KERNEL);
1322	if (!tx_ring->desc) {
1323		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1324			 tx_ring->size);
1325		goto err;
1326	}
1327
1328	tx_ring->next_to_use = 0;
1329	tx_ring->next_to_clean = 0;
1330	tx_ring->tx_stats.prev_pkt_ctr = -1;
1331	return 0;
1332
1333err:
1334	kfree(tx_ring->tx_bi);
1335	tx_ring->tx_bi = NULL;
1336	return -ENOMEM;
1337}
1338
1339/**
1340 * i40e_clean_rx_ring - Free Rx buffers
1341 * @rx_ring: ring to be cleaned
1342 **/
1343void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1344{
 
1345	unsigned long bi_size;
1346	u16 i;
1347
1348	/* ring already cleared, nothing to do */
1349	if (!rx_ring->rx_bi)
1350		return;
1351
1352	if (rx_ring->skb) {
1353		dev_kfree_skb(rx_ring->skb);
1354		rx_ring->skb = NULL;
1355	}
1356
1357	if (rx_ring->xsk_umem) {
1358		i40e_xsk_clean_rx_ring(rx_ring);
1359		goto skip_free;
1360	}
1361
1362	/* Free all the Rx ring sk_buffs */
1363	for (i = 0; i < rx_ring->count; i++) {
1364		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1365
 
 
 
 
1366		if (!rx_bi->page)
1367			continue;
1368
1369		/* Invalidate cache lines that may have been written to by
1370		 * device so that we avoid corrupting memory.
1371		 */
1372		dma_sync_single_range_for_cpu(rx_ring->dev,
1373					      rx_bi->dma,
1374					      rx_bi->page_offset,
1375					      rx_ring->rx_buf_len,
1376					      DMA_FROM_DEVICE);
1377
1378		/* free resources associated with mapping */
1379		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1380				     i40e_rx_pg_size(rx_ring),
1381				     DMA_FROM_DEVICE,
1382				     I40E_RX_DMA_ATTR);
1383
1384		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1385
1386		rx_bi->page = NULL;
1387		rx_bi->page_offset = 0;
1388	}
1389
1390skip_free:
1391	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1392	memset(rx_ring->rx_bi, 0, bi_size);
1393
1394	/* Zero out the descriptor ring */
1395	memset(rx_ring->desc, 0, rx_ring->size);
1396
1397	rx_ring->next_to_alloc = 0;
1398	rx_ring->next_to_clean = 0;
1399	rx_ring->next_to_use = 0;
1400}
1401
1402/**
1403 * i40e_free_rx_resources - Free Rx resources
1404 * @rx_ring: ring to clean the resources from
1405 *
1406 * Free all receive software resources
1407 **/
1408void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1409{
1410	i40e_clean_rx_ring(rx_ring);
1411	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1412		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1413	rx_ring->xdp_prog = NULL;
1414	kfree(rx_ring->rx_bi);
1415	rx_ring->rx_bi = NULL;
1416
1417	if (rx_ring->desc) {
1418		dma_free_coherent(rx_ring->dev, rx_ring->size,
1419				  rx_ring->desc, rx_ring->dma);
1420		rx_ring->desc = NULL;
1421	}
1422}
1423
1424/**
1425 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1426 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1427 *
1428 * Returns 0 on success, negative on failure
1429 **/
1430int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1431{
1432	struct device *dev = rx_ring->dev;
1433	int err = -ENOMEM;
1434	int bi_size;
1435
1436	/* warn if we are about to overwrite the pointer */
1437	WARN_ON(rx_ring->rx_bi);
1438	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1439	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1440	if (!rx_ring->rx_bi)
1441		goto err;
1442
1443	u64_stats_init(&rx_ring->syncp);
1444
1445	/* Round up to nearest 4K */
1446	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1447	rx_ring->size = ALIGN(rx_ring->size, 4096);
1448	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1449					   &rx_ring->dma, GFP_KERNEL);
1450
1451	if (!rx_ring->desc) {
1452		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1453			 rx_ring->size);
1454		goto err;
1455	}
1456
1457	rx_ring->next_to_alloc = 0;
1458	rx_ring->next_to_clean = 0;
1459	rx_ring->next_to_use = 0;
1460
1461	/* XDP RX-queue info only needed for RX rings exposed to XDP */
1462	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1463		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1464				       rx_ring->queue_index);
1465		if (err < 0)
1466			goto err;
1467	}
1468
1469	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1470
1471	return 0;
1472err:
1473	kfree(rx_ring->rx_bi);
1474	rx_ring->rx_bi = NULL;
1475	return err;
1476}
1477
1478/**
1479 * i40e_release_rx_desc - Store the new tail and head values
1480 * @rx_ring: ring to bump
1481 * @val: new head index
1482 **/
1483void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1484{
1485	rx_ring->next_to_use = val;
1486
1487	/* update next to alloc since we have filled the ring */
1488	rx_ring->next_to_alloc = val;
1489
1490	/* Force memory writes to complete before letting h/w
1491	 * know there are new descriptors to fetch.  (Only
1492	 * applicable for weak-ordered memory model archs,
1493	 * such as IA-64).
1494	 */
1495	wmb();
1496	writel(val, rx_ring->tail);
1497}
1498
1499/**
1500 * i40e_rx_offset - Return expected offset into page to access data
1501 * @rx_ring: Ring we are requesting offset of
1502 *
1503 * Returns the offset value for ring into the data buffer.
1504 */
1505static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1506{
1507	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1508}
1509
1510/**
1511 * i40e_alloc_mapped_page - recycle or make a new page
1512 * @rx_ring: ring to use
1513 * @bi: rx_buffer struct to modify
1514 *
1515 * Returns true if the page was successfully allocated or
1516 * reused.
1517 **/
1518static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1519				   struct i40e_rx_buffer *bi)
1520{
1521	struct page *page = bi->page;
1522	dma_addr_t dma;
1523
1524	/* since we are recycling buffers we should seldom need to alloc */
1525	if (likely(page)) {
1526		rx_ring->rx_stats.page_reuse_count++;
1527		return true;
1528	}
1529
1530	/* alloc new page for storage */
1531	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1532	if (unlikely(!page)) {
1533		rx_ring->rx_stats.alloc_page_failed++;
1534		return false;
1535	}
1536
1537	/* map page for use */
1538	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1539				 i40e_rx_pg_size(rx_ring),
1540				 DMA_FROM_DEVICE,
1541				 I40E_RX_DMA_ATTR);
1542
1543	/* if mapping failed free memory back to system since
1544	 * there isn't much point in holding memory we can't use
1545	 */
1546	if (dma_mapping_error(rx_ring->dev, dma)) {
1547		__free_pages(page, i40e_rx_pg_order(rx_ring));
1548		rx_ring->rx_stats.alloc_page_failed++;
1549		return false;
1550	}
1551
1552	bi->dma = dma;
1553	bi->page = page;
1554	bi->page_offset = i40e_rx_offset(rx_ring);
1555	page_ref_add(page, USHRT_MAX - 1);
1556	bi->pagecnt_bias = USHRT_MAX;
1557
1558	return true;
1559}
1560
1561/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1562 * i40e_alloc_rx_buffers - Replace used receive buffers
1563 * @rx_ring: ring to place buffers on
1564 * @cleaned_count: number of buffers to replace
1565 *
1566 * Returns false if all allocations were successful, true if any fail
1567 **/
1568bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1569{
1570	u16 ntu = rx_ring->next_to_use;
1571	union i40e_rx_desc *rx_desc;
1572	struct i40e_rx_buffer *bi;
1573
1574	/* do nothing if no valid netdev defined */
1575	if (!rx_ring->netdev || !cleaned_count)
1576		return false;
1577
1578	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1579	bi = &rx_ring->rx_bi[ntu];
1580
1581	do {
1582		if (!i40e_alloc_mapped_page(rx_ring, bi))
1583			goto no_buffers;
1584
1585		/* sync the buffer for use by the device */
1586		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1587						 bi->page_offset,
1588						 rx_ring->rx_buf_len,
1589						 DMA_FROM_DEVICE);
1590
1591		/* Refresh the desc even if buffer_addrs didn't change
1592		 * because each write-back erases this info.
1593		 */
1594		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1595
1596		rx_desc++;
1597		bi++;
1598		ntu++;
1599		if (unlikely(ntu == rx_ring->count)) {
1600			rx_desc = I40E_RX_DESC(rx_ring, 0);
1601			bi = rx_ring->rx_bi;
1602			ntu = 0;
1603		}
1604
1605		/* clear the status bits for the next_to_use descriptor */
1606		rx_desc->wb.qword1.status_error_len = 0;
1607
1608		cleaned_count--;
1609	} while (cleaned_count);
1610
1611	if (rx_ring->next_to_use != ntu)
1612		i40e_release_rx_desc(rx_ring, ntu);
1613
1614	return false;
1615
1616no_buffers:
1617	if (rx_ring->next_to_use != ntu)
1618		i40e_release_rx_desc(rx_ring, ntu);
1619
1620	/* make sure to come back via polling to try again after
1621	 * allocation failure
1622	 */
1623	return true;
1624}
1625
1626/**
1627 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1628 * @vsi: the VSI we care about
1629 * @skb: skb currently being received and modified
1630 * @rx_desc: the receive descriptor
 
 
1631 **/
1632static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1633				    struct sk_buff *skb,
1634				    union i40e_rx_desc *rx_desc)
1635{
1636	struct i40e_rx_ptype_decoded decoded;
1637	u32 rx_error, rx_status;
1638	bool ipv4, ipv6;
1639	u8 ptype;
1640	u64 qword;
1641
1642	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1643	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1644	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1645		   I40E_RXD_QW1_ERROR_SHIFT;
1646	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1647		    I40E_RXD_QW1_STATUS_SHIFT;
1648	decoded = decode_rx_desc_ptype(ptype);
1649
1650	skb->ip_summed = CHECKSUM_NONE;
1651
1652	skb_checksum_none_assert(skb);
1653
1654	/* Rx csum enabled and ip headers found? */
1655	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1656		return;
1657
1658	/* did the hardware decode the packet and checksum? */
1659	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1660		return;
1661
1662	/* both known and outer_ip must be set for the below code to work */
1663	if (!(decoded.known && decoded.outer_ip))
1664		return;
1665
1666	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1667	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1668	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1669	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1670
1671	if (ipv4 &&
1672	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1673			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1674		goto checksum_fail;
1675
1676	/* likely incorrect csum if alternate IP extension headers found */
1677	if (ipv6 &&
1678	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1679		/* don't increment checksum err here, non-fatal err */
1680		return;
1681
1682	/* there was some L4 error, count error and punt packet to the stack */
1683	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1684		goto checksum_fail;
1685
1686	/* handle packets that were not able to be checksummed due
1687	 * to arrival speed, in this case the stack can compute
1688	 * the csum.
1689	 */
1690	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1691		return;
1692
1693	/* If there is an outer header present that might contain a checksum
1694	 * we need to bump the checksum level by 1 to reflect the fact that
1695	 * we are indicating we validated the inner checksum.
1696	 */
1697	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1698		skb->csum_level = 1;
1699
1700	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1701	switch (decoded.inner_prot) {
1702	case I40E_RX_PTYPE_INNER_PROT_TCP:
1703	case I40E_RX_PTYPE_INNER_PROT_UDP:
1704	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1705		skb->ip_summed = CHECKSUM_UNNECESSARY;
1706		/* fall though */
1707	default:
1708		break;
1709	}
1710
1711	return;
1712
1713checksum_fail:
1714	vsi->back->hw_csum_rx_error++;
1715}
1716
1717/**
1718 * i40e_ptype_to_htype - get a hash type
1719 * @ptype: the ptype value from the descriptor
1720 *
1721 * Returns a hash type to be used by skb_set_hash
1722 **/
1723static inline int i40e_ptype_to_htype(u8 ptype)
1724{
1725	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1726
1727	if (!decoded.known)
1728		return PKT_HASH_TYPE_NONE;
1729
1730	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1731	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1732		return PKT_HASH_TYPE_L4;
1733	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1734		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1735		return PKT_HASH_TYPE_L3;
1736	else
1737		return PKT_HASH_TYPE_L2;
1738}
1739
1740/**
1741 * i40e_rx_hash - set the hash value in the skb
1742 * @ring: descriptor ring
1743 * @rx_desc: specific descriptor
1744 * @skb: skb currently being received and modified
1745 * @rx_ptype: Rx packet type
1746 **/
1747static inline void i40e_rx_hash(struct i40e_ring *ring,
1748				union i40e_rx_desc *rx_desc,
1749				struct sk_buff *skb,
1750				u8 rx_ptype)
1751{
1752	u32 hash;
1753	const __le64 rss_mask =
1754		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1755			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1756
1757	if (!(ring->netdev->features & NETIF_F_RXHASH))
1758		return;
1759
1760	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1761		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1762		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1763	}
1764}
1765
1766/**
1767 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1768 * @rx_ring: rx descriptor ring packet is being transacted on
1769 * @rx_desc: pointer to the EOP Rx descriptor
1770 * @skb: pointer to current skb being populated
1771 * @rx_ptype: the packet type decoded by hardware
1772 *
1773 * This function checks the ring, descriptor, and packet information in
1774 * order to populate the hash, checksum, VLAN, protocol, and
1775 * other fields within the skb.
1776 **/
 
1777void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1778			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
 
1779{
1780	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1781	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1782			I40E_RXD_QW1_STATUS_SHIFT;
1783	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1784	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1785		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1786	u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1787		      I40E_RXD_QW1_PTYPE_SHIFT;
1788
1789	if (unlikely(tsynvalid))
1790		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1791
1792	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1793
 
 
 
1794	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1795
1796	skb_record_rx_queue(skb, rx_ring->queue_index);
 
1797
1798	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1799		u16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1800
1801		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1802				       le16_to_cpu(vlan_tag));
1803	}
 
 
1804
1805	/* modifies the skb - consumes the enet header */
1806	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
 
 
 
 
 
 
 
 
 
 
 
1807}
1808
1809/**
1810 * i40e_cleanup_headers - Correct empty headers
1811 * @rx_ring: rx descriptor ring packet is being transacted on
1812 * @skb: pointer to current skb being fixed
1813 * @rx_desc: pointer to the EOP Rx descriptor
1814 *
1815 * Also address the case where we are pulling data in on pages only
1816 * and as such no data is present in the skb header.
1817 *
1818 * In addition if skb is not at least 60 bytes we need to pad it so that
1819 * it is large enough to qualify as a valid Ethernet frame.
1820 *
1821 * Returns true if an error was encountered and skb was freed.
1822 **/
1823static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1824				 union i40e_rx_desc *rx_desc)
1825
1826{
1827	/* XDP packets use error pointer so abort at this point */
1828	if (IS_ERR(skb))
1829		return true;
1830
1831	/* ERR_MASK will only have valid bits if EOP set, and
1832	 * what we are doing here is actually checking
1833	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1834	 * the error field
1835	 */
1836	if (unlikely(i40e_test_staterr(rx_desc,
1837				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1838		dev_kfree_skb_any(skb);
1839		return true;
1840	}
1841
1842	/* if eth_skb_pad returns an error the skb was freed */
1843	if (eth_skb_pad(skb))
1844		return true;
1845
1846	return false;
1847}
1848
1849/**
1850 * i40e_page_is_reusable - check if any reuse is possible
1851 * @page: page struct to check
1852 *
1853 * A page is not reusable if it was allocated under low memory
1854 * conditions, or it's not in the same NUMA node as this CPU.
1855 */
1856static inline bool i40e_page_is_reusable(struct page *page)
1857{
1858	return (page_to_nid(page) == numa_mem_id()) &&
1859		!page_is_pfmemalloc(page);
1860}
1861
1862/**
1863 * i40e_can_reuse_rx_page - Determine if this page can be reused by
1864 * the adapter for another receive
1865 *
1866 * @rx_buffer: buffer containing the page
1867 *
1868 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1869 * an unused region in the page.
1870 *
1871 * For small pages, @truesize will be a constant value, half the size
1872 * of the memory at page.  We'll attempt to alternate between high and
1873 * low halves of the page, with one half ready for use by the hardware
1874 * and the other half being consumed by the stack.  We use the page
1875 * ref count to determine whether the stack has finished consuming the
1876 * portion of this page that was passed up with a previous packet.  If
1877 * the page ref count is >1, we'll assume the "other" half page is
1878 * still busy, and this page cannot be reused.
1879 *
1880 * For larger pages, @truesize will be the actual space used by the
1881 * received packet (adjusted upward to an even multiple of the cache
1882 * line size).  This will advance through the page by the amount
1883 * actually consumed by the received packets while there is still
1884 * space for a buffer.  Each region of larger pages will be used at
1885 * most once, after which the page will not be reused.
1886 *
1887 * In either case, if the page is reusable its refcount is increased.
1888 **/
1889static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
 
1890{
1891	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1892	struct page *page = rx_buffer->page;
1893
1894	/* Is any reuse possible? */
1895	if (unlikely(!i40e_page_is_reusable(page)))
1896		return false;
1897
1898#if (PAGE_SIZE < 8192)
1899	/* if we are only owner of page we can reuse it */
1900	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1901		return false;
1902#else
1903#define I40E_LAST_OFFSET \
1904	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1905	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1906		return false;
1907#endif
1908
1909	/* If we have drained the page fragment pool we need to update
1910	 * the pagecnt_bias and page count so that we fully restock the
1911	 * number of references the driver holds.
1912	 */
1913	if (unlikely(pagecnt_bias == 1)) {
1914		page_ref_add(page, USHRT_MAX - 1);
1915		rx_buffer->pagecnt_bias = USHRT_MAX;
1916	}
1917
1918	return true;
 
 
 
 
 
 
1919}
1920
1921/**
1922 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1923 * @rx_ring: rx descriptor ring to transact packets on
1924 * @rx_buffer: buffer containing page to add
 
1925 * @skb: sk_buff to place the data into
1926 * @size: packet length from rx_desc
1927 *
1928 * This function will add the data contained in rx_buffer->page to the skb.
1929 * It will just attach the page as a frag to the skb.
 
 
1930 *
1931 * The function will then update the page offset.
 
1932 **/
1933static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1934			     struct i40e_rx_buffer *rx_buffer,
1935			     struct sk_buff *skb,
1936			     unsigned int size)
1937{
 
 
 
 
1938#if (PAGE_SIZE < 8192)
1939	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1940#else
1941	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
 
1942#endif
1943
1944	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1945			rx_buffer->page_offset, size, truesize);
1946
1947	/* page is being used so we must update the page offset */
 
 
 
1948#if (PAGE_SIZE < 8192)
 
 
 
 
 
1949	rx_buffer->page_offset ^= truesize;
1950#else
 
1951	rx_buffer->page_offset += truesize;
 
 
 
1952#endif
 
 
 
 
 
 
 
1953}
1954
1955/**
1956 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1957 * @rx_ring: rx descriptor ring to transact packets on
1958 * @size: size of buffer to add to skb
1959 *
1960 * This function will pull an Rx buffer from the ring and synchronize it
1961 * for use by the CPU.
 
 
1962 */
1963static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1964						 const unsigned int size)
 
1965{
1966	struct i40e_rx_buffer *rx_buffer;
 
 
1967
1968	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1969	prefetchw(rx_buffer->page);
1970
1971	/* we are reusing so sync this buffer for CPU use */
1972	dma_sync_single_range_for_cpu(rx_ring->dev,
1973				      rx_buffer->dma,
1974				      rx_buffer->page_offset,
1975				      size,
1976				      DMA_FROM_DEVICE);
1977
1978	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1979	rx_buffer->pagecnt_bias--;
1980
1981	return rx_buffer;
1982}
1983
1984/**
1985 * i40e_construct_skb - Allocate skb and populate it
1986 * @rx_ring: rx descriptor ring to transact packets on
1987 * @rx_buffer: rx buffer to pull data from
1988 * @xdp: xdp_buff pointing to the data
1989 *
1990 * This function allocates an skb.  It then populates it with the page
1991 * data from the current receive descriptor, taking care to set up the
1992 * skb correctly.
1993 */
1994static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1995					  struct i40e_rx_buffer *rx_buffer,
1996					  struct xdp_buff *xdp)
1997{
1998	unsigned int size = xdp->data_end - xdp->data;
1999#if (PAGE_SIZE < 8192)
2000	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2001#else
2002	unsigned int truesize = SKB_DATA_ALIGN(size);
2003#endif
2004	unsigned int headlen;
2005	struct sk_buff *skb;
2006
2007	/* prefetch first cache line of first page */
2008	prefetch(xdp->data);
2009#if L1_CACHE_BYTES < 128
2010	prefetch(xdp->data + L1_CACHE_BYTES);
2011#endif
2012	/* Note, we get here by enabling legacy-rx via:
2013	 *
2014	 *    ethtool --set-priv-flags <dev> legacy-rx on
2015	 *
2016	 * In this mode, we currently get 0 extra XDP headroom as
2017	 * opposed to having legacy-rx off, where we process XDP
2018	 * packets going to stack via i40e_build_skb(). The latter
2019	 * provides us currently with 192 bytes of headroom.
2020	 *
2021	 * For i40e_construct_skb() mode it means that the
2022	 * xdp->data_meta will always point to xdp->data, since
2023	 * the helper cannot expand the head. Should this ever
2024	 * change in future for legacy-rx mode on, then lets also
2025	 * add xdp->data_meta handling here.
2026	 */
2027
2028	/* allocate a skb to store the frags */
2029	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2030			       I40E_RX_HDR_SIZE,
2031			       GFP_ATOMIC | __GFP_NOWARN);
2032	if (unlikely(!skb))
2033		return NULL;
2034
2035	/* Determine available headroom for copy */
2036	headlen = size;
2037	if (headlen > I40E_RX_HDR_SIZE)
2038		headlen = eth_get_headlen(skb->dev, xdp->data,
2039					  I40E_RX_HDR_SIZE);
2040
2041	/* align pull length to size of long to optimize memcpy performance */
2042	memcpy(__skb_put(skb, headlen), xdp->data,
2043	       ALIGN(headlen, sizeof(long)));
2044
2045	/* update all of the pointers */
2046	size -= headlen;
2047	if (size) {
2048		skb_add_rx_frag(skb, 0, rx_buffer->page,
2049				rx_buffer->page_offset + headlen,
2050				size, truesize);
 
 
2051
2052		/* buffer is used by skb, update page_offset */
2053#if (PAGE_SIZE < 8192)
2054		rx_buffer->page_offset ^= truesize;
2055#else
2056		rx_buffer->page_offset += truesize;
2057#endif
2058	} else {
2059		/* buffer is unused, reset bias back to rx_buffer */
2060		rx_buffer->pagecnt_bias++;
2061	}
2062
2063	return skb;
2064}
2065
2066/**
2067 * i40e_build_skb - Build skb around an existing buffer
2068 * @rx_ring: Rx descriptor ring to transact packets on
2069 * @rx_buffer: Rx buffer to pull data from
2070 * @xdp: xdp_buff pointing to the data
2071 *
2072 * This function builds an skb around an existing Rx buffer, taking care
2073 * to set up the skb correctly and avoid any memcpy overhead.
2074 */
2075static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2076				      struct i40e_rx_buffer *rx_buffer,
2077				      struct xdp_buff *xdp)
2078{
2079	unsigned int metasize = xdp->data - xdp->data_meta;
2080#if (PAGE_SIZE < 8192)
2081	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2082#else
2083	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2084				SKB_DATA_ALIGN(xdp->data_end -
2085					       xdp->data_hard_start);
2086#endif
2087	struct sk_buff *skb;
2088
2089	/* Prefetch first cache line of first page. If xdp->data_meta
2090	 * is unused, this points exactly as xdp->data, otherwise we
2091	 * likely have a consumer accessing first few bytes of meta
2092	 * data, and then actual data.
2093	 */
2094	prefetch(xdp->data_meta);
2095#if L1_CACHE_BYTES < 128
2096	prefetch(xdp->data_meta + L1_CACHE_BYTES);
2097#endif
2098	/* build an skb around the page buffer */
2099	skb = build_skb(xdp->data_hard_start, truesize);
2100	if (unlikely(!skb))
2101		return NULL;
2102
2103	/* update pointers within the skb to store the data */
2104	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2105	__skb_put(skb, xdp->data_end - xdp->data);
2106	if (metasize)
2107		skb_metadata_set(skb, metasize);
2108
2109	/* buffer is used by skb, update page_offset */
2110#if (PAGE_SIZE < 8192)
2111	rx_buffer->page_offset ^= truesize;
2112#else
2113	rx_buffer->page_offset += truesize;
2114#endif
2115
2116	return skb;
2117}
2118
2119/**
2120 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2121 * @rx_ring: rx descriptor ring to transact packets on
2122 * @rx_buffer: rx buffer to pull data from
2123 *
2124 * This function will clean up the contents of the rx_buffer.  It will
2125 * either recycle the buffer or unmap it and free the associated resources.
2126 */
2127static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2128			       struct i40e_rx_buffer *rx_buffer)
2129{
2130	if (i40e_can_reuse_rx_page(rx_buffer)) {
2131		/* hand second half of page back to the ring */
2132		i40e_reuse_rx_page(rx_ring, rx_buffer);
 
2133	} else {
2134		/* we are not reusing the buffer so unmap it */
2135		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2136				     i40e_rx_pg_size(rx_ring),
2137				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2138		__page_frag_cache_drain(rx_buffer->page,
2139					rx_buffer->pagecnt_bias);
2140		/* clear contents of buffer_info */
2141		rx_buffer->page = NULL;
2142	}
 
 
 
 
 
2143}
2144
2145/**
2146 * i40e_is_non_eop - process handling of non-EOP buffers
2147 * @rx_ring: Rx ring being processed
2148 * @rx_desc: Rx descriptor for current buffer
2149 * @skb: Current socket buffer containing buffer in progress
2150 *
2151 * This function updates next to clean.  If the buffer is an EOP buffer
2152 * this function exits returning false, otherwise it will place the
2153 * sk_buff in the next buffer to be chained and return true indicating
2154 * that this is in fact a non-EOP buffer.
2155 **/
2156static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2157			    union i40e_rx_desc *rx_desc,
2158			    struct sk_buff *skb)
2159{
2160	u32 ntc = rx_ring->next_to_clean + 1;
2161
2162	/* fetch, update, and store next to clean */
2163	ntc = (ntc < rx_ring->count) ? ntc : 0;
2164	rx_ring->next_to_clean = ntc;
2165
2166	prefetch(I40E_RX_DESC(rx_ring, ntc));
2167
 
 
 
 
 
 
2168	/* if we are the last buffer then there is nothing else to do */
2169#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2170	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2171		return false;
2172
 
 
2173	rx_ring->rx_stats.non_eop_descs++;
2174
2175	return true;
2176}
2177
2178static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2179			      struct i40e_ring *xdp_ring);
2180
2181int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2182{
2183	struct xdp_frame *xdpf = convert_to_xdp_frame(xdp);
2184
2185	if (unlikely(!xdpf))
2186		return I40E_XDP_CONSUMED;
2187
2188	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2189}
2190
2191/**
2192 * i40e_run_xdp - run an XDP program
2193 * @rx_ring: Rx ring being processed
2194 * @xdp: XDP buffer containing the frame
2195 **/
2196static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2197				    struct xdp_buff *xdp)
2198{
2199	int err, result = I40E_XDP_PASS;
2200	struct i40e_ring *xdp_ring;
2201	struct bpf_prog *xdp_prog;
2202	u32 act;
2203
2204	rcu_read_lock();
2205	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2206
2207	if (!xdp_prog)
2208		goto xdp_out;
2209
2210	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2211
2212	act = bpf_prog_run_xdp(xdp_prog, xdp);
2213	switch (act) {
2214	case XDP_PASS:
2215		break;
2216	case XDP_TX:
2217		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2218		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2219		break;
2220	case XDP_REDIRECT:
2221		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2222		result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
2223		break;
2224	default:
2225		bpf_warn_invalid_xdp_action(act);
2226		/* fall through */
2227	case XDP_ABORTED:
2228		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2229		/* fall through -- handle aborts by dropping packet */
2230	case XDP_DROP:
2231		result = I40E_XDP_CONSUMED;
2232		break;
2233	}
2234xdp_out:
2235	rcu_read_unlock();
2236	return ERR_PTR(-result);
2237}
2238
2239/**
2240 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2241 * @rx_ring: Rx ring
2242 * @rx_buffer: Rx buffer to adjust
2243 * @size: Size of adjustment
2244 **/
2245static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2246				struct i40e_rx_buffer *rx_buffer,
2247				unsigned int size)
2248{
2249#if (PAGE_SIZE < 8192)
2250	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2251
2252	rx_buffer->page_offset ^= truesize;
2253#else
2254	unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);
2255
2256	rx_buffer->page_offset += truesize;
2257#endif
2258}
2259
2260/**
2261 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2262 * @xdp_ring: XDP Tx ring
2263 *
2264 * This function updates the XDP Tx ring tail register.
2265 **/
2266void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2267{
2268	/* Force memory writes to complete before letting h/w
2269	 * know there are new descriptors to fetch.
2270	 */
2271	wmb();
2272	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2273}
2274
2275/**
2276 * i40e_update_rx_stats - Update Rx ring statistics
2277 * @rx_ring: rx descriptor ring
2278 * @total_rx_bytes: number of bytes received
2279 * @total_rx_packets: number of packets received
2280 *
2281 * This function updates the Rx ring statistics.
2282 **/
2283void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2284			  unsigned int total_rx_bytes,
2285			  unsigned int total_rx_packets)
2286{
2287	u64_stats_update_begin(&rx_ring->syncp);
2288	rx_ring->stats.packets += total_rx_packets;
2289	rx_ring->stats.bytes += total_rx_bytes;
2290	u64_stats_update_end(&rx_ring->syncp);
2291	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2292	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2293}
2294
2295/**
2296 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2297 * @rx_ring: Rx ring
2298 * @xdp_res: Result of the receive batch
2299 *
2300 * This function bumps XDP Tx tail and/or flush redirect map, and
2301 * should be called when a batch of packets has been processed in the
2302 * napi loop.
2303 **/
2304void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2305{
2306	if (xdp_res & I40E_XDP_REDIR)
2307		xdp_do_flush_map();
2308
2309	if (xdp_res & I40E_XDP_TX) {
2310		struct i40e_ring *xdp_ring =
2311			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2312
2313		i40e_xdp_ring_update_tail(xdp_ring);
2314	}
2315}
2316
2317/**
2318 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2319 * @rx_ring: rx descriptor ring to transact packets on
2320 * @budget: Total limit on number of packets to process
2321 *
2322 * This function provides a "bounce buffer" approach to Rx interrupt
2323 * processing.  The advantage to this is that on systems that have
2324 * expensive overhead for IOMMU access this provides a means of avoiding
2325 * it by maintaining the mapping of the page to the system.
2326 *
2327 * Returns amount of work completed
2328 **/
2329static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2330{
2331	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2332	struct sk_buff *skb = rx_ring->skb;
2333	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2334	unsigned int xdp_xmit = 0;
2335	bool failure = false;
2336	struct xdp_buff xdp;
2337
2338	xdp.rxq = &rx_ring->xdp_rxq;
2339
2340	while (likely(total_rx_packets < (unsigned int)budget)) {
2341		struct i40e_rx_buffer *rx_buffer;
2342		union i40e_rx_desc *rx_desc;
2343		unsigned int size;
 
 
2344		u64 qword;
2345
2346		/* return some buffers to hardware, one at a time is too slow */
2347		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2348			failure = failure ||
2349				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2350			cleaned_count = 0;
2351		}
2352
2353		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2354
2355		/* status_error_len will always be zero for unused descriptors
2356		 * because it's cleared in cleanup, and overlaps with hdr_addr
2357		 * which is always zero because packet split isn't used, if the
2358		 * hardware wrote DD then the length will be non-zero
2359		 */
2360		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 
 
2361
2362		/* This memory barrier is needed to keep us from reading
2363		 * any other fields out of the rx_desc until we have
2364		 * verified the descriptor has been written back.
2365		 */
2366		dma_rmb();
2367
2368		rx_buffer = i40e_clean_programming_status(rx_ring, rx_desc,
2369							  qword);
2370		if (unlikely(rx_buffer)) {
2371			i40e_reuse_rx_page(rx_ring, rx_buffer);
2372			cleaned_count++;
2373			continue;
2374		}
2375
2376		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2377		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2378		if (!size)
2379			break;
2380
2381		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2382		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2383
2384		/* retrieve a buffer from the ring */
2385		if (!skb) {
2386			xdp.data = page_address(rx_buffer->page) +
2387				   rx_buffer->page_offset;
2388			xdp.data_meta = xdp.data;
2389			xdp.data_hard_start = xdp.data -
2390					      i40e_rx_offset(rx_ring);
2391			xdp.data_end = xdp.data + size;
2392
2393			skb = i40e_run_xdp(rx_ring, &xdp);
2394		}
2395
2396		if (IS_ERR(skb)) {
2397			unsigned int xdp_res = -PTR_ERR(skb);
2398
2399			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2400				xdp_xmit |= xdp_res;
2401				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2402			} else {
2403				rx_buffer->pagecnt_bias++;
2404			}
2405			total_rx_bytes += size;
2406			total_rx_packets++;
2407		} else if (skb) {
2408			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2409		} else if (ring_uses_build_skb(rx_ring)) {
2410			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2411		} else {
2412			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2413		}
2414
2415		/* exit if we failed to retrieve a buffer */
2416		if (!skb) {
2417			rx_ring->rx_stats.alloc_buff_failed++;
2418			rx_buffer->pagecnt_bias++;
2419			break;
2420		}
2421
2422		i40e_put_rx_buffer(rx_ring, rx_buffer);
2423		cleaned_count++;
2424
2425		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2426			continue;
2427
2428		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2429			skb = NULL;
 
 
 
 
 
2430			continue;
2431		}
2432
 
 
 
2433		/* probably a little skewed due to removing CRC */
2434		total_rx_bytes += skb->len;
2435
 
 
 
 
2436		/* populate checksum, VLAN, and protocol */
2437		i40e_process_skb_fields(rx_ring, rx_desc, skb);
 
 
 
 
 
 
 
 
 
2438
2439		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2440		napi_gro_receive(&rx_ring->q_vector->napi, skb);
2441		skb = NULL;
 
2442
2443		/* update budget accounting */
2444		total_rx_packets++;
2445	}
2446
2447	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2448	rx_ring->skb = skb;
2449
2450	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
 
 
2451
2452	/* guarantee a trip back through this routine if there was a failure */
2453	return failure ? budget : (int)total_rx_packets;
2454}
2455
2456static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2457{
2458	u32 val;
2459
2460	/* We don't bother with setting the CLEARPBA bit as the data sheet
2461	 * points out doing so is "meaningless since it was already
2462	 * auto-cleared". The auto-clearing happens when the interrupt is
2463	 * asserted.
2464	 *
2465	 * Hardware errata 28 for also indicates that writing to a
2466	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2467	 * an event in the PBA anyway so we need to rely on the automask
2468	 * to hold pending events for us until the interrupt is re-enabled
2469	 *
2470	 * The itr value is reported in microseconds, and the register
2471	 * value is recorded in 2 microsecond units. For this reason we
2472	 * only need to shift by the interval shift - 1 instead of the
2473	 * full value.
2474	 */
2475	itr &= I40E_ITR_MASK;
2476
2477	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
 
 
 
2478	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2479	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2480
2481	return val;
2482}
2483
2484/* a small macro to shorten up some long lines */
2485#define INTREG I40E_PFINT_DYN_CTLN
 
 
 
 
2486
2487/* The act of updating the ITR will cause it to immediately trigger. In order
2488 * to prevent this from throwing off adaptive update statistics we defer the
2489 * update so that it can only happen so often. So after either Tx or Rx are
2490 * updated we make the adaptive scheme wait until either the ITR completely
2491 * expires via the next_update expiration or we have been through at least
2492 * 3 interrupts.
2493 */
2494#define ITR_COUNTDOWN_START 3
2495
2496/**
2497 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2498 * @vsi: the VSI we care about
2499 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2500 *
2501 **/
2502static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2503					  struct i40e_q_vector *q_vector)
2504{
2505	struct i40e_hw *hw = &vsi->back->hw;
2506	u32 intval;
 
 
 
 
2507
2508	/* If we don't have MSIX, then we only need to re-enable icr0 */
2509	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2510		i40e_irq_dynamic_enable_icr0(vsi->back);
2511		return;
 
 
 
 
 
 
 
 
 
 
2512	}
2513
2514	/* These will do nothing if dynamic updates are not enabled */
2515	i40e_update_itr(q_vector, &q_vector->tx);
2516	i40e_update_itr(q_vector, &q_vector->rx);
2517
2518	/* This block of logic allows us to get away with only updating
2519	 * one ITR value with each interrupt. The idea is to perform a
2520	 * pseudo-lazy update with the following criteria.
2521	 *
2522	 * 1. Rx is given higher priority than Tx if both are in same state
2523	 * 2. If we must reduce an ITR that is given highest priority.
2524	 * 3. We then give priority to increasing ITR based on amount.
2525	 */
2526	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2527		/* Rx ITR needs to be reduced, this is highest priority */
2528		intval = i40e_buildreg_itr(I40E_RX_ITR,
2529					   q_vector->rx.target_itr);
2530		q_vector->rx.current_itr = q_vector->rx.target_itr;
2531		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2532	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2533		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2534		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2535		/* Tx ITR needs to be reduced, this is second priority
2536		 * Tx ITR needs to be increased more than Rx, fourth priority
2537		 */
2538		intval = i40e_buildreg_itr(I40E_TX_ITR,
2539					   q_vector->tx.target_itr);
2540		q_vector->tx.current_itr = q_vector->tx.target_itr;
2541		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2542	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2543		/* Rx ITR needs to be increased, third priority */
2544		intval = i40e_buildreg_itr(I40E_RX_ITR,
2545					   q_vector->rx.target_itr);
2546		q_vector->rx.current_itr = q_vector->rx.target_itr;
2547		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2548	} else {
2549		/* No ITR update, lowest priority */
2550		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2551		if (q_vector->itr_countdown)
2552			q_vector->itr_countdown--;
 
 
 
 
 
2553	}
2554
2555	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2556		wr32(hw, INTREG(q_vector->reg_idx), intval);
 
 
 
 
 
 
2557}
2558
2559/**
2560 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2561 * @napi: napi struct with our devices info in it
2562 * @budget: amount of work driver is allowed to do this pass, in packets
2563 *
2564 * This function will clean all queues associated with a q_vector.
2565 *
2566 * Returns the amount of work done
2567 **/
2568int i40e_napi_poll(struct napi_struct *napi, int budget)
2569{
2570	struct i40e_q_vector *q_vector =
2571			       container_of(napi, struct i40e_q_vector, napi);
2572	struct i40e_vsi *vsi = q_vector->vsi;
2573	struct i40e_ring *ring;
2574	bool clean_complete = true;
2575	bool arm_wb = false;
2576	int budget_per_ring;
2577	int work_done = 0;
2578
2579	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2580		napi_complete(napi);
2581		return 0;
2582	}
2583
 
 
2584	/* Since the actual Tx work is minimal, we can give the Tx a larger
2585	 * budget and be more aggressive about cleaning up the Tx descriptors.
2586	 */
2587	i40e_for_each_ring(ring, q_vector->tx) {
2588		bool wd = ring->xsk_umem ?
2589			  i40e_clean_xdp_tx_irq(vsi, ring, budget) :
2590			  i40e_clean_tx_irq(vsi, ring, budget);
2591
2592		if (!wd) {
2593			clean_complete = false;
2594			continue;
2595		}
2596		arm_wb |= ring->arm_wb;
2597		ring->arm_wb = false;
2598	}
2599
2600	/* Handle case where we are called by netpoll with a budget of 0 */
2601	if (budget <= 0)
2602		goto tx_only;
2603
2604	/* We attempt to distribute budget to each Rx queue fairly, but don't
2605	 * allow the budget to go below 1 because that would exit polling early.
2606	 */
2607	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2608
2609	i40e_for_each_ring(ring, q_vector->rx) {
2610		int cleaned = ring->xsk_umem ?
2611			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2612			      i40e_clean_rx_irq(ring, budget_per_ring);
2613
2614		work_done += cleaned;
2615		/* if we clean as many as budgeted, we must not be done */
2616		if (cleaned >= budget_per_ring)
2617			clean_complete = false;
2618	}
2619
2620	/* If work not completed, return budget and polling will return */
2621	if (!clean_complete) {
 
2622		int cpu_id = smp_processor_id();
2623
2624		/* It is possible that the interrupt affinity has changed but,
2625		 * if the cpu is pegged at 100%, polling will never exit while
2626		 * traffic continues and the interrupt will be stuck on this
2627		 * cpu.  We check to make sure affinity is correct before we
2628		 * continue to poll, otherwise we must stop polling so the
2629		 * interrupt can move to the correct cpu.
2630		 */
2631		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2632			/* Tell napi that we are done polling */
2633			napi_complete_done(napi, work_done);
2634
2635			/* Force an interrupt */
2636			i40e_force_wb(vsi, q_vector);
2637
2638			/* Return budget-1 so that polling stops */
2639			return budget - 1;
2640		}
2641tx_only:
2642		if (arm_wb) {
2643			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2644			i40e_enable_wb_on_itr(vsi, q_vector);
 
 
2645		}
2646		return budget;
2647	}
2648
2649	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2650		q_vector->arm_wb_state = false;
2651
2652	/* Exit the polling mode, but don't re-enable interrupts if stack might
2653	 * poll us due to busy-polling
2654	 */
2655	if (likely(napi_complete_done(napi, work_done)))
 
 
 
 
 
 
 
 
2656		i40e_update_enable_itr(vsi, q_vector);
2657
2658	return min(work_done, budget - 1);
2659}
2660
2661/**
2662 * i40e_atr - Add a Flow Director ATR filter
2663 * @tx_ring:  ring to add programming descriptor to
2664 * @skb:      send buffer
2665 * @tx_flags: send tx flags
2666 **/
2667static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2668		     u32 tx_flags)
2669{
2670	struct i40e_filter_program_desc *fdir_desc;
2671	struct i40e_pf *pf = tx_ring->vsi->back;
2672	union {
2673		unsigned char *network;
2674		struct iphdr *ipv4;
2675		struct ipv6hdr *ipv6;
2676	} hdr;
2677	struct tcphdr *th;
2678	unsigned int hlen;
2679	u32 flex_ptype, dtype_cmd;
2680	int l4_proto;
2681	u16 i;
2682
2683	/* make sure ATR is enabled */
2684	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2685		return;
2686
2687	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2688		return;
2689
2690	/* if sampling is disabled do nothing */
2691	if (!tx_ring->atr_sample_rate)
2692		return;
2693
2694	/* Currently only IPv4/IPv6 with TCP is supported */
2695	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2696		return;
2697
2698	/* snag network header to get L4 type and address */
2699	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2700		      skb_inner_network_header(skb) : skb_network_header(skb);
2701
2702	/* Note: tx_flags gets modified to reflect inner protocols in
2703	 * tx_enable_csum function if encap is enabled.
2704	 */
2705	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2706		/* access ihl as u8 to avoid unaligned access on ia64 */
2707		hlen = (hdr.network[0] & 0x0F) << 2;
2708		l4_proto = hdr.ipv4->protocol;
2709	} else {
2710		/* find the start of the innermost ipv6 header */
2711		unsigned int inner_hlen = hdr.network - skb->data;
2712		unsigned int h_offset = inner_hlen;
2713
2714		/* this function updates h_offset to the end of the header */
2715		l4_proto =
2716		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2717		/* hlen will contain our best estimate of the tcp header */
2718		hlen = h_offset - inner_hlen;
2719	}
2720
2721	if (l4_proto != IPPROTO_TCP)
2722		return;
2723
2724	th = (struct tcphdr *)(hdr.network + hlen);
2725
2726	/* Due to lack of space, no more new filters can be programmed */
2727	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2728		return;
2729	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
 
2730		/* HW ATR eviction will take care of removing filters on FIN
2731		 * and RST packets.
2732		 */
2733		if (th->fin || th->rst)
2734			return;
2735	}
2736
2737	tx_ring->atr_count++;
2738
2739	/* sample on all syn/fin/rst packets or once every atr sample rate */
2740	if (!th->fin &&
2741	    !th->syn &&
2742	    !th->rst &&
2743	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2744		return;
2745
2746	tx_ring->atr_count = 0;
2747
2748	/* grab the next descriptor */
2749	i = tx_ring->next_to_use;
2750	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2751
2752	i++;
2753	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2754
2755	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2756		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2757	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2758		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2759		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2760		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2761		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2762
2763	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2764
2765	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2766
2767	dtype_cmd |= (th->fin || th->rst) ?
2768		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2769		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2770		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2771		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2772
2773	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2774		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2775
2776	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2777		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2778
2779	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2780	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2781		dtype_cmd |=
2782			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2783			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2784			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2785	else
2786		dtype_cmd |=
2787			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2788			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2789			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2790
2791	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
 
2792		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2793
2794	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2795	fdir_desc->rsvd = cpu_to_le32(0);
2796	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2797	fdir_desc->fd_id = cpu_to_le32(0);
2798}
2799
2800/**
2801 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2802 * @skb:     send buffer
2803 * @tx_ring: ring to send buffer on
2804 * @flags:   the tx flags to be set
2805 *
2806 * Checks the skb and set up correspondingly several generic transmit flags
2807 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2808 *
2809 * Returns error code indicate the frame should be dropped upon error and the
2810 * otherwise  returns 0 to indicate the flags has been set properly.
2811 **/
 
 
 
 
 
2812static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2813					     struct i40e_ring *tx_ring,
2814					     u32 *flags)
 
2815{
2816	__be16 protocol = skb->protocol;
2817	u32  tx_flags = 0;
2818
2819	if (protocol == htons(ETH_P_8021Q) &&
2820	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2821		/* When HW VLAN acceleration is turned off by the user the
2822		 * stack sets the protocol to 8021q so that the driver
2823		 * can take any steps required to support the SW only
2824		 * VLAN handling.  In our case the driver doesn't need
2825		 * to take any further steps so just set the protocol
2826		 * to the encapsulated ethertype.
2827		 */
2828		skb->protocol = vlan_get_protocol(skb);
2829		goto out;
2830	}
2831
2832	/* if we have a HW VLAN tag being added, default to the HW one */
2833	if (skb_vlan_tag_present(skb)) {
2834		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2835		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2836	/* else if it is a SW VLAN, check the next protocol and store the tag */
2837	} else if (protocol == htons(ETH_P_8021Q)) {
2838		struct vlan_hdr *vhdr, _vhdr;
2839
2840		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2841		if (!vhdr)
2842			return -EINVAL;
2843
2844		protocol = vhdr->h_vlan_encapsulated_proto;
2845		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2846		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2847	}
2848
2849	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2850		goto out;
2851
2852	/* Insert 802.1p priority into VLAN header */
2853	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2854	    (skb->priority != TC_PRIO_CONTROL)) {
2855		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2856		tx_flags |= (skb->priority & 0x7) <<
2857				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2858		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2859			struct vlan_ethhdr *vhdr;
2860			int rc;
2861
2862			rc = skb_cow_head(skb, 0);
2863			if (rc < 0)
2864				return rc;
2865			vhdr = (struct vlan_ethhdr *)skb->data;
2866			vhdr->h_vlan_TCI = htons(tx_flags >>
2867						 I40E_TX_FLAGS_VLAN_SHIFT);
2868		} else {
2869			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2870		}
2871	}
2872
2873out:
2874	*flags = tx_flags;
2875	return 0;
2876}
2877
2878/**
2879 * i40e_tso - set up the tso context descriptor
2880 * @first:    pointer to first Tx buffer for xmit
2881 * @hdr_len:  ptr to the size of the packet header
2882 * @cd_type_cmd_tso_mss: Quad Word 1
2883 *
2884 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2885 **/
2886static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2887		    u64 *cd_type_cmd_tso_mss)
2888{
2889	struct sk_buff *skb = first->skb;
2890	u64 cd_cmd, cd_tso_len, cd_mss;
2891	union {
2892		struct iphdr *v4;
2893		struct ipv6hdr *v6;
2894		unsigned char *hdr;
2895	} ip;
2896	union {
2897		struct tcphdr *tcp;
2898		struct udphdr *udp;
2899		unsigned char *hdr;
2900	} l4;
2901	u32 paylen, l4_offset;
2902	u16 gso_segs, gso_size;
2903	int err;
2904
2905	if (skb->ip_summed != CHECKSUM_PARTIAL)
2906		return 0;
2907
2908	if (!skb_is_gso(skb))
2909		return 0;
2910
2911	err = skb_cow_head(skb, 0);
2912	if (err < 0)
2913		return err;
2914
2915	ip.hdr = skb_network_header(skb);
2916	l4.hdr = skb_transport_header(skb);
2917
2918	/* initialize outer IP header fields */
2919	if (ip.v4->version == 4) {
2920		ip.v4->tot_len = 0;
2921		ip.v4->check = 0;
2922	} else {
2923		ip.v6->payload_len = 0;
2924	}
2925
2926	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2927					 SKB_GSO_GRE_CSUM |
2928					 SKB_GSO_IPXIP4 |
2929					 SKB_GSO_IPXIP6 |
2930					 SKB_GSO_UDP_TUNNEL |
2931					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2932		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2933		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2934			l4.udp->len = 0;
2935
2936			/* determine offset of outer transport header */
2937			l4_offset = l4.hdr - skb->data;
2938
2939			/* remove payload length from outer checksum */
2940			paylen = skb->len - l4_offset;
2941			csum_replace_by_diff(&l4.udp->check,
2942					     (__force __wsum)htonl(paylen));
2943		}
2944
2945		/* reset pointers to inner headers */
2946		ip.hdr = skb_inner_network_header(skb);
2947		l4.hdr = skb_inner_transport_header(skb);
2948
2949		/* initialize inner IP header fields */
2950		if (ip.v4->version == 4) {
2951			ip.v4->tot_len = 0;
2952			ip.v4->check = 0;
2953		} else {
2954			ip.v6->payload_len = 0;
2955		}
2956	}
2957
2958	/* determine offset of inner transport header */
2959	l4_offset = l4.hdr - skb->data;
2960
2961	/* remove payload length from inner checksum */
2962	paylen = skb->len - l4_offset;
2963	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2964
2965	/* compute length of segmentation header */
2966	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2967
2968	/* pull values out of skb_shinfo */
2969	gso_size = skb_shinfo(skb)->gso_size;
2970	gso_segs = skb_shinfo(skb)->gso_segs;
2971
2972	/* update GSO size and bytecount with header size */
2973	first->gso_segs = gso_segs;
2974	first->bytecount += (first->gso_segs - 1) * *hdr_len;
2975
2976	/* find the field values */
2977	cd_cmd = I40E_TX_CTX_DESC_TSO;
2978	cd_tso_len = skb->len - *hdr_len;
2979	cd_mss = gso_size;
2980	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2981				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2982				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2983	return 1;
2984}
2985
2986/**
2987 * i40e_tsyn - set up the tsyn context descriptor
2988 * @tx_ring:  ptr to the ring to send
2989 * @skb:      ptr to the skb we're sending
2990 * @tx_flags: the collected send information
2991 * @cd_type_cmd_tso_mss: Quad Word 1
2992 *
2993 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2994 **/
2995static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2996		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2997{
2998	struct i40e_pf *pf;
2999
3000	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3001		return 0;
3002
3003	/* Tx timestamps cannot be sampled when doing TSO */
3004	if (tx_flags & I40E_TX_FLAGS_TSO)
3005		return 0;
3006
3007	/* only timestamp the outbound packet if the user has requested it and
3008	 * we are not already transmitting a packet to be timestamped
3009	 */
3010	pf = i40e_netdev_to_pf(tx_ring->netdev);
3011	if (!(pf->flags & I40E_FLAG_PTP))
3012		return 0;
3013
3014	if (pf->ptp_tx &&
3015	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3016		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3017		pf->ptp_tx_start = jiffies;
3018		pf->ptp_tx_skb = skb_get(skb);
3019	} else {
3020		pf->tx_hwtstamp_skipped++;
3021		return 0;
3022	}
3023
3024	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3025				I40E_TXD_CTX_QW1_CMD_SHIFT;
3026
3027	return 1;
3028}
3029
3030/**
3031 * i40e_tx_enable_csum - Enable Tx checksum offloads
3032 * @skb: send buffer
3033 * @tx_flags: pointer to Tx flags currently set
3034 * @td_cmd: Tx descriptor command bits to set
3035 * @td_offset: Tx descriptor header offsets to set
3036 * @tx_ring: Tx descriptor ring
3037 * @cd_tunneling: ptr to context desc bits
3038 **/
3039static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3040			       u32 *td_cmd, u32 *td_offset,
3041			       struct i40e_ring *tx_ring,
3042			       u32 *cd_tunneling)
3043{
3044	union {
3045		struct iphdr *v4;
3046		struct ipv6hdr *v6;
3047		unsigned char *hdr;
3048	} ip;
3049	union {
3050		struct tcphdr *tcp;
3051		struct udphdr *udp;
3052		unsigned char *hdr;
3053	} l4;
3054	unsigned char *exthdr;
3055	u32 offset, cmd = 0;
3056	__be16 frag_off;
3057	u8 l4_proto = 0;
3058
3059	if (skb->ip_summed != CHECKSUM_PARTIAL)
3060		return 0;
3061
3062	ip.hdr = skb_network_header(skb);
3063	l4.hdr = skb_transport_header(skb);
3064
3065	/* compute outer L2 header size */
3066	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3067
3068	if (skb->encapsulation) {
3069		u32 tunnel = 0;
3070		/* define outer network header type */
3071		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3072			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3073				  I40E_TX_CTX_EXT_IP_IPV4 :
3074				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3075
3076			l4_proto = ip.v4->protocol;
3077		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3078			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3079
3080			exthdr = ip.hdr + sizeof(*ip.v6);
3081			l4_proto = ip.v6->nexthdr;
3082			if (l4.hdr != exthdr)
3083				ipv6_skip_exthdr(skb, exthdr - skb->data,
3084						 &l4_proto, &frag_off);
3085		}
3086
3087		/* define outer transport */
3088		switch (l4_proto) {
3089		case IPPROTO_UDP:
3090			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3091			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3092			break;
3093		case IPPROTO_GRE:
3094			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3095			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3096			break;
3097		case IPPROTO_IPIP:
3098		case IPPROTO_IPV6:
3099			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3100			l4.hdr = skb_inner_network_header(skb);
3101			break;
3102		default:
3103			if (*tx_flags & I40E_TX_FLAGS_TSO)
3104				return -1;
3105
3106			skb_checksum_help(skb);
3107			return 0;
3108		}
3109
3110		/* compute outer L3 header size */
3111		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3112			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3113
3114		/* switch IP header pointer from outer to inner header */
3115		ip.hdr = skb_inner_network_header(skb);
3116
3117		/* compute tunnel header size */
3118		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3119			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3120
3121		/* indicate if we need to offload outer UDP header */
3122		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3123		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3124		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3125			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3126
3127		/* record tunnel offload values */
3128		*cd_tunneling |= tunnel;
3129
3130		/* switch L4 header pointer from outer to inner */
3131		l4.hdr = skb_inner_transport_header(skb);
3132		l4_proto = 0;
3133
3134		/* reset type as we transition from outer to inner headers */
3135		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3136		if (ip.v4->version == 4)
3137			*tx_flags |= I40E_TX_FLAGS_IPV4;
3138		if (ip.v6->version == 6)
3139			*tx_flags |= I40E_TX_FLAGS_IPV6;
3140	}
3141
3142	/* Enable IP checksum offloads */
3143	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3144		l4_proto = ip.v4->protocol;
3145		/* the stack computes the IP header already, the only time we
3146		 * need the hardware to recompute it is in the case of TSO.
3147		 */
3148		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3149		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3150		       I40E_TX_DESC_CMD_IIPT_IPV4;
3151	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3152		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3153
3154		exthdr = ip.hdr + sizeof(*ip.v6);
3155		l4_proto = ip.v6->nexthdr;
3156		if (l4.hdr != exthdr)
3157			ipv6_skip_exthdr(skb, exthdr - skb->data,
3158					 &l4_proto, &frag_off);
3159	}
3160
3161	/* compute inner L3 header size */
3162	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3163
3164	/* Enable L4 checksum offloads */
3165	switch (l4_proto) {
3166	case IPPROTO_TCP:
3167		/* enable checksum offloads */
3168		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3169		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3170		break;
3171	case IPPROTO_SCTP:
3172		/* enable SCTP checksum offload */
3173		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3174		offset |= (sizeof(struct sctphdr) >> 2) <<
3175			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3176		break;
3177	case IPPROTO_UDP:
3178		/* enable UDP checksum offload */
3179		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3180		offset |= (sizeof(struct udphdr) >> 2) <<
3181			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3182		break;
3183	default:
3184		if (*tx_flags & I40E_TX_FLAGS_TSO)
3185			return -1;
3186		skb_checksum_help(skb);
3187		return 0;
3188	}
3189
3190	*td_cmd |= cmd;
3191	*td_offset |= offset;
3192
3193	return 1;
3194}
3195
3196/**
3197 * i40e_create_tx_ctx Build the Tx context descriptor
3198 * @tx_ring:  ring to create the descriptor on
3199 * @cd_type_cmd_tso_mss: Quad Word 1
3200 * @cd_tunneling: Quad Word 0 - bits 0-31
3201 * @cd_l2tag2: Quad Word 0 - bits 32-63
3202 **/
3203static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3204			       const u64 cd_type_cmd_tso_mss,
3205			       const u32 cd_tunneling, const u32 cd_l2tag2)
3206{
3207	struct i40e_tx_context_desc *context_desc;
3208	int i = tx_ring->next_to_use;
3209
3210	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3211	    !cd_tunneling && !cd_l2tag2)
3212		return;
3213
3214	/* grab the next descriptor */
3215	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3216
3217	i++;
3218	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3219
3220	/* cpu_to_le32 and assign to struct fields */
3221	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3222	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3223	context_desc->rsvd = cpu_to_le16(0);
3224	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3225}
3226
3227/**
3228 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3229 * @tx_ring: the ring to be checked
3230 * @size:    the size buffer we want to assure is available
3231 *
3232 * Returns -EBUSY if a stop is needed, else 0
3233 **/
3234int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3235{
3236	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3237	/* Memory barrier before checking head and tail */
3238	smp_mb();
3239
3240	/* Check again in a case another CPU has just made room available. */
3241	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3242		return -EBUSY;
3243
3244	/* A reprieve! - use start_queue because it doesn't call schedule */
3245	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3246	++tx_ring->tx_stats.restart_queue;
3247	return 0;
3248}
3249
3250/**
3251 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3252 * @skb:      send buffer
3253 *
3254 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3255 * and so we need to figure out the cases where we need to linearize the skb.
3256 *
3257 * For TSO we need to count the TSO header and segment payload separately.
3258 * As such we need to check cases where we have 7 fragments or more as we
3259 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3260 * the segment payload in the first descriptor, and another 7 for the
3261 * fragments.
3262 **/
3263bool __i40e_chk_linearize(struct sk_buff *skb)
3264{
3265	const skb_frag_t *frag, *stale;
3266	int nr_frags, sum;
3267
3268	/* no need to check if number of frags is less than 7 */
3269	nr_frags = skb_shinfo(skb)->nr_frags;
3270	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3271		return false;
3272
3273	/* We need to walk through the list and validate that each group
3274	 * of 6 fragments totals at least gso_size.
3275	 */
3276	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3277	frag = &skb_shinfo(skb)->frags[0];
3278
3279	/* Initialize size to the negative value of gso_size minus 1.  We
3280	 * use this as the worst case scenerio in which the frag ahead
3281	 * of us only provides one byte which is why we are limited to 6
3282	 * descriptors for a single transmit as the header and previous
3283	 * fragment are already consuming 2 descriptors.
3284	 */
3285	sum = 1 - skb_shinfo(skb)->gso_size;
3286
3287	/* Add size of frags 0 through 4 to create our initial sum */
3288	sum += skb_frag_size(frag++);
3289	sum += skb_frag_size(frag++);
3290	sum += skb_frag_size(frag++);
3291	sum += skb_frag_size(frag++);
3292	sum += skb_frag_size(frag++);
3293
3294	/* Walk through fragments adding latest fragment, testing it, and
3295	 * then removing stale fragments from the sum.
3296	 */
3297	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3298		int stale_size = skb_frag_size(stale);
3299
3300		sum += skb_frag_size(frag++);
3301
3302		/* The stale fragment may present us with a smaller
3303		 * descriptor than the actual fragment size. To account
3304		 * for that we need to remove all the data on the front and
3305		 * figure out what the remainder would be in the last
3306		 * descriptor associated with the fragment.
3307		 */
3308		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3309			int align_pad = -(skb_frag_off(stale)) &
3310					(I40E_MAX_READ_REQ_SIZE - 1);
3311
3312			sum -= align_pad;
3313			stale_size -= align_pad;
3314
3315			do {
3316				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3317				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3318			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3319		}
3320
3321		/* if sum is negative we failed to make sufficient progress */
3322		if (sum < 0)
3323			return true;
3324
3325		if (!nr_frags--)
3326			break;
3327
3328		sum -= stale_size;
3329	}
3330
3331	return false;
3332}
3333
3334/**
3335 * i40e_tx_map - Build the Tx descriptor
3336 * @tx_ring:  ring to send buffer on
3337 * @skb:      send buffer
3338 * @first:    first buffer info buffer to use
3339 * @tx_flags: collected send information
3340 * @hdr_len:  size of the packet header
3341 * @td_cmd:   the command field in the descriptor
3342 * @td_offset: offset for checksum or crc
3343 *
3344 * Returns 0 on success, -1 on failure to DMA
3345 **/
3346static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3347			      struct i40e_tx_buffer *first, u32 tx_flags,
3348			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
 
 
 
 
 
 
3349{
3350	unsigned int data_len = skb->data_len;
3351	unsigned int size = skb_headlen(skb);
3352	skb_frag_t *frag;
3353	struct i40e_tx_buffer *tx_bi;
3354	struct i40e_tx_desc *tx_desc;
3355	u16 i = tx_ring->next_to_use;
3356	u32 td_tag = 0;
3357	dma_addr_t dma;
 
3358	u16 desc_count = 1;
3359
3360	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3361		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3362		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3363			 I40E_TX_FLAGS_VLAN_SHIFT;
3364	}
3365
 
 
 
 
 
 
 
 
 
3366	first->tx_flags = tx_flags;
3367
3368	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3369
3370	tx_desc = I40E_TX_DESC(tx_ring, i);
3371	tx_bi = first;
3372
3373	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3374		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3375
3376		if (dma_mapping_error(tx_ring->dev, dma))
3377			goto dma_error;
3378
3379		/* record length, and DMA address */
3380		dma_unmap_len_set(tx_bi, len, size);
3381		dma_unmap_addr_set(tx_bi, dma, dma);
3382
3383		/* align size to end of page */
3384		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3385		tx_desc->buffer_addr = cpu_to_le64(dma);
3386
3387		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3388			tx_desc->cmd_type_offset_bsz =
3389				build_ctob(td_cmd, td_offset,
3390					   max_data, td_tag);
3391
3392			tx_desc++;
3393			i++;
3394			desc_count++;
3395
3396			if (i == tx_ring->count) {
3397				tx_desc = I40E_TX_DESC(tx_ring, 0);
3398				i = 0;
3399			}
3400
3401			dma += max_data;
3402			size -= max_data;
3403
3404			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3405			tx_desc->buffer_addr = cpu_to_le64(dma);
3406		}
3407
3408		if (likely(!data_len))
3409			break;
3410
3411		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3412							  size, td_tag);
3413
3414		tx_desc++;
3415		i++;
3416		desc_count++;
3417
3418		if (i == tx_ring->count) {
3419			tx_desc = I40E_TX_DESC(tx_ring, 0);
3420			i = 0;
3421		}
3422
3423		size = skb_frag_size(frag);
3424		data_len -= size;
3425
3426		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3427				       DMA_TO_DEVICE);
3428
3429		tx_bi = &tx_ring->tx_bi[i];
3430	}
3431
3432	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3433
3434	i++;
3435	if (i == tx_ring->count)
3436		i = 0;
3437
3438	tx_ring->next_to_use = i;
3439
3440	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3441
3442	/* write last descriptor with EOP bit */
3443	td_cmd |= I40E_TX_DESC_CMD_EOP;
3444
3445	/* We OR these values together to check both against 4 (WB_STRIDE)
3446	 * below. This is safe since we don't re-use desc_count afterwards.
 
3447	 */
3448	desc_count |= ++tx_ring->packet_stride;
3449
3450	if (desc_count >= WB_STRIDE) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3451		/* write last descriptor with RS bit set */
3452		td_cmd |= I40E_TX_DESC_CMD_RS;
3453		tx_ring->packet_stride = 0;
3454	}
3455
3456	tx_desc->cmd_type_offset_bsz =
3457			build_ctob(td_cmd, td_offset, size, td_tag);
3458
3459	skb_tx_timestamp(skb);
3460
3461	/* Force memory writes to complete before letting h/w know there
3462	 * are new descriptors to fetch.
3463	 *
3464	 * We also use this memory barrier to make certain all of the
3465	 * status bits have been updated before next_to_watch is written.
3466	 */
3467	wmb();
3468
3469	/* set next_to_watch value indicating a packet is present */
3470	first->next_to_watch = tx_desc;
3471
3472	/* notify HW of packet */
3473	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3474		writel(i, tx_ring->tail);
 
 
 
 
 
3475	}
3476
3477	return 0;
3478
3479dma_error:
3480	dev_info(tx_ring->dev, "TX DMA map failed\n");
3481
3482	/* clear dma mappings for failed tx_bi map */
3483	for (;;) {
3484		tx_bi = &tx_ring->tx_bi[i];
3485		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3486		if (tx_bi == first)
3487			break;
3488		if (i == 0)
3489			i = tx_ring->count;
3490		i--;
3491	}
3492
3493	tx_ring->next_to_use = i;
3494
3495	return -1;
3496}
3497
3498/**
3499 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3500 * @xdp: data to transmit
3501 * @xdp_ring: XDP Tx ring
3502 **/
3503static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3504			      struct i40e_ring *xdp_ring)
3505{
3506	u16 i = xdp_ring->next_to_use;
3507	struct i40e_tx_buffer *tx_bi;
3508	struct i40e_tx_desc *tx_desc;
3509	void *data = xdpf->data;
3510	u32 size = xdpf->len;
3511	dma_addr_t dma;
3512
3513	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3514		xdp_ring->tx_stats.tx_busy++;
3515		return I40E_XDP_CONSUMED;
3516	}
3517	dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3518	if (dma_mapping_error(xdp_ring->dev, dma))
3519		return I40E_XDP_CONSUMED;
3520
3521	tx_bi = &xdp_ring->tx_bi[i];
3522	tx_bi->bytecount = size;
3523	tx_bi->gso_segs = 1;
3524	tx_bi->xdpf = xdpf;
3525
3526	/* record length, and DMA address */
3527	dma_unmap_len_set(tx_bi, len, size);
3528	dma_unmap_addr_set(tx_bi, dma, dma);
3529
3530	tx_desc = I40E_TX_DESC(xdp_ring, i);
3531	tx_desc->buffer_addr = cpu_to_le64(dma);
3532	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3533						  | I40E_TXD_CMD,
3534						  0, size, 0);
3535
3536	/* Make certain all of the status bits have been updated
3537	 * before next_to_watch is written.
3538	 */
3539	smp_wmb();
3540
3541	i++;
3542	if (i == xdp_ring->count)
3543		i = 0;
3544
3545	tx_bi->next_to_watch = tx_desc;
3546	xdp_ring->next_to_use = i;
3547
3548	return I40E_XDP_TX;
3549}
3550
3551/**
3552 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3553 * @skb:     send buffer
3554 * @tx_ring: ring to send buffer on
3555 *
3556 * Returns NETDEV_TX_OK if sent, else an error code
3557 **/
3558static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3559					struct i40e_ring *tx_ring)
3560{
3561	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3562	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3563	struct i40e_tx_buffer *first;
3564	u32 td_offset = 0;
3565	u32 tx_flags = 0;
3566	__be16 protocol;
3567	u32 td_cmd = 0;
3568	u8 hdr_len = 0;
3569	int tso, count;
3570	int tsyn;
3571
3572	/* prefetch the data, we'll need it later */
3573	prefetch(skb->data);
3574
3575	i40e_trace(xmit_frame_ring, skb, tx_ring);
3576
3577	count = i40e_xmit_descriptor_count(skb);
3578	if (i40e_chk_linearize(skb, count)) {
3579		if (__skb_linearize(skb)) {
3580			dev_kfree_skb_any(skb);
3581			return NETDEV_TX_OK;
3582		}
3583		count = i40e_txd_use_count(skb->len);
3584		tx_ring->tx_stats.tx_linearize++;
3585	}
3586
3587	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3588	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3589	 *       + 4 desc gap to avoid the cache line where head is,
3590	 *       + 1 desc for context descriptor,
3591	 * otherwise try next time
3592	 */
3593	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3594		tx_ring->tx_stats.tx_busy++;
3595		return NETDEV_TX_BUSY;
3596	}
3597
3598	/* record the location of the first descriptor for this packet */
3599	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3600	first->skb = skb;
3601	first->bytecount = skb->len;
3602	first->gso_segs = 1;
3603
3604	/* prepare the xmit flags */
3605	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3606		goto out_drop;
3607
3608	/* obtain protocol of skb */
3609	protocol = vlan_get_protocol(skb);
3610
 
 
 
3611	/* setup IPv4/IPv6 offloads */
3612	if (protocol == htons(ETH_P_IP))
3613		tx_flags |= I40E_TX_FLAGS_IPV4;
3614	else if (protocol == htons(ETH_P_IPV6))
3615		tx_flags |= I40E_TX_FLAGS_IPV6;
3616
3617	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3618
3619	if (tso < 0)
3620		goto out_drop;
3621	else if (tso)
3622		tx_flags |= I40E_TX_FLAGS_TSO;
3623
3624	/* Always offload the checksum, since it's in the data descriptor */
3625	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3626				  tx_ring, &cd_tunneling);
3627	if (tso < 0)
3628		goto out_drop;
3629
3630	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3631
3632	if (tsyn)
3633		tx_flags |= I40E_TX_FLAGS_TSYN;
3634
 
 
3635	/* always enable CRC insertion offload */
3636	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3637
3638	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3639			   cd_tunneling, cd_l2tag2);
3640
3641	/* Add Flow Director ATR if it's enabled.
3642	 *
3643	 * NOTE: this must always be directly before the data descriptor.
3644	 */
3645	i40e_atr(tx_ring, skb, tx_flags);
3646
3647	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3648			td_cmd, td_offset))
3649		goto cleanup_tx_tstamp;
3650
3651	return NETDEV_TX_OK;
3652
3653out_drop:
3654	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3655	dev_kfree_skb_any(first->skb);
3656	first->skb = NULL;
3657cleanup_tx_tstamp:
3658	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3659		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3660
3661		dev_kfree_skb_any(pf->ptp_tx_skb);
3662		pf->ptp_tx_skb = NULL;
3663		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3664	}
3665
3666	return NETDEV_TX_OK;
3667}
3668
3669/**
3670 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3671 * @skb:    send buffer
3672 * @netdev: network interface device structure
3673 *
3674 * Returns NETDEV_TX_OK if sent, else an error code
3675 **/
3676netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3677{
3678	struct i40e_netdev_priv *np = netdev_priv(netdev);
3679	struct i40e_vsi *vsi = np->vsi;
3680	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3681
3682	/* hardware can't handle really short frames, hardware padding works
3683	 * beyond this point
3684	 */
3685	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3686		return NETDEV_TX_OK;
3687
3688	return i40e_xmit_frame_ring(skb, tx_ring);
3689}
3690
3691/**
3692 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3693 * @dev: netdev
3694 * @xdp: XDP buffer
3695 *
3696 * Returns number of frames successfully sent. Frames that fail are
3697 * free'ed via XDP return API.
3698 *
3699 * For error cases, a negative errno code is returned and no-frames
3700 * are transmitted (caller must handle freeing frames).
3701 **/
3702int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3703		  u32 flags)
3704{
3705	struct i40e_netdev_priv *np = netdev_priv(dev);
3706	unsigned int queue_index = smp_processor_id();
3707	struct i40e_vsi *vsi = np->vsi;
3708	struct i40e_pf *pf = vsi->back;
3709	struct i40e_ring *xdp_ring;
3710	int drops = 0;
3711	int i;
3712
3713	if (test_bit(__I40E_VSI_DOWN, vsi->state))
3714		return -ENETDOWN;
3715
3716	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3717	    test_bit(__I40E_CONFIG_BUSY, pf->state))
3718		return -ENXIO;
3719
3720	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3721		return -EINVAL;
3722
3723	xdp_ring = vsi->xdp_rings[queue_index];
3724
3725	for (i = 0; i < n; i++) {
3726		struct xdp_frame *xdpf = frames[i];
3727		int err;
3728
3729		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3730		if (err != I40E_XDP_TX) {
3731			xdp_return_frame_rx_napi(xdpf);
3732			drops++;
3733		}
3734	}
3735
3736	if (unlikely(flags & XDP_XMIT_FLUSH))
3737		i40e_xdp_ring_update_tail(xdp_ring);
3738
3739	return n - drops;
3740}
v4.10.11
   1/*******************************************************************************
   2 *
   3 * Intel Ethernet Controller XL710 Family Linux Driver
   4 * Copyright(c) 2013 - 2016 Intel Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along
  16 * with this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * The full GNU General Public License is included in this distribution in
  19 * the file called "COPYING".
  20 *
  21 * Contact Information:
  22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24 *
  25 ******************************************************************************/
  26
  27#include <linux/prefetch.h>
  28#include <net/busy_poll.h>
 
  29#include "i40e.h"
 
  30#include "i40e_prototype.h"
  31
  32static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  33				u32 td_tag)
  34{
  35	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
  36			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
  37			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
  38			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
  39			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
  40}
  41
  42#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  43/**
  44 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  45 * @tx_ring: Tx ring to send buffer on
  46 * @fdata: Flow director filter data
  47 * @add: Indicate if we are adding a rule or deleting one
  48 *
  49 **/
  50static void i40e_fdir(struct i40e_ring *tx_ring,
  51		      struct i40e_fdir_filter *fdata, bool add)
  52{
  53	struct i40e_filter_program_desc *fdir_desc;
  54	struct i40e_pf *pf = tx_ring->vsi->back;
  55	u32 flex_ptype, dtype_cmd;
  56	u16 i;
  57
  58	/* grab the next descriptor */
  59	i = tx_ring->next_to_use;
  60	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  61
  62	i++;
  63	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  64
  65	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
  66		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
  67
  68	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
  69		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  70
  71	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  72		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
  73
 
 
 
  74	/* Use LAN VSI Id if not programmed by user */
  75	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
  76		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
  77		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
  78
  79	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  80
  81	dtype_cmd |= add ?
  82		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  83		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  84		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  85		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  86
  87	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
  88		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
  89
  90	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
  91		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
  92
  93	if (fdata->cnt_index) {
  94		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  95		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
  96			     ((u32)fdata->cnt_index <<
  97			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
  98	}
  99
 100	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
 101	fdir_desc->rsvd = cpu_to_le32(0);
 102	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
 103	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
 104}
 105
 106#define I40E_FD_CLEAN_DELAY 10
 107/**
 108 * i40e_program_fdir_filter - Program a Flow Director filter
 109 * @fdir_data: Packet data that will be filter parameters
 110 * @raw_packet: the pre-allocated packet buffer for FDir
 111 * @pf: The PF pointer
 112 * @add: True for add/update, False for remove
 113 **/
 114static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
 115				    u8 *raw_packet, struct i40e_pf *pf,
 116				    bool add)
 117{
 118	struct i40e_tx_buffer *tx_buf, *first;
 119	struct i40e_tx_desc *tx_desc;
 120	struct i40e_ring *tx_ring;
 121	struct i40e_vsi *vsi;
 122	struct device *dev;
 123	dma_addr_t dma;
 124	u32 td_cmd = 0;
 125	u16 i;
 126
 127	/* find existing FDIR VSI */
 128	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
 129	if (!vsi)
 130		return -ENOENT;
 131
 132	tx_ring = vsi->tx_rings[0];
 133	dev = tx_ring->dev;
 134
 135	/* we need two descriptors to add/del a filter and we can wait */
 136	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 137		if (!i)
 138			return -EAGAIN;
 139		msleep_interruptible(1);
 140	}
 141
 142	dma = dma_map_single(dev, raw_packet,
 143			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 144	if (dma_mapping_error(dev, dma))
 145		goto dma_fail;
 146
 147	/* grab the next descriptor */
 148	i = tx_ring->next_to_use;
 149	first = &tx_ring->tx_bi[i];
 150	i40e_fdir(tx_ring, fdir_data, add);
 151
 152	/* Now program a dummy descriptor */
 153	i = tx_ring->next_to_use;
 154	tx_desc = I40E_TX_DESC(tx_ring, i);
 155	tx_buf = &tx_ring->tx_bi[i];
 156
 157	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 158
 159	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 160
 161	/* record length, and DMA address */
 162	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 163	dma_unmap_addr_set(tx_buf, dma, dma);
 164
 165	tx_desc->buffer_addr = cpu_to_le64(dma);
 166	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 167
 168	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 169	tx_buf->raw_buf = (void *)raw_packet;
 170
 171	tx_desc->cmd_type_offset_bsz =
 172		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 173
 174	/* Force memory writes to complete before letting h/w
 175	 * know there are new descriptors to fetch.
 176	 */
 177	wmb();
 178
 179	/* Mark the data descriptor to be watched */
 180	first->next_to_watch = tx_desc;
 181
 182	writel(tx_ring->next_to_use, tx_ring->tail);
 183	return 0;
 184
 185dma_fail:
 186	return -1;
 187}
 188
 189#define IP_HEADER_OFFSET 14
 190#define I40E_UDPIP_DUMMY_PACKET_LEN 42
 191/**
 192 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 193 * @vsi: pointer to the targeted VSI
 194 * @fd_data: the flow director data required for the FDir descriptor
 195 * @add: true adds a filter, false removes it
 196 *
 197 * Returns 0 if the filters were successfully added or removed
 198 **/
 199static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
 200				   struct i40e_fdir_filter *fd_data,
 201				   bool add)
 202{
 203	struct i40e_pf *pf = vsi->back;
 204	struct udphdr *udp;
 205	struct iphdr *ip;
 206	bool err = false;
 207	u8 *raw_packet;
 208	int ret;
 209	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 210		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
 211		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 212
 213	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 214	if (!raw_packet)
 215		return -ENOMEM;
 216	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
 217
 218	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 219	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
 220	      + sizeof(struct iphdr));
 221
 222	ip->daddr = fd_data->dst_ip[0];
 223	udp->dest = fd_data->dst_port;
 224	ip->saddr = fd_data->src_ip[0];
 225	udp->source = fd_data->src_port;
 226
 
 
 
 
 
 
 
 
 227	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
 228	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 229	if (ret) {
 230		dev_info(&pf->pdev->dev,
 231			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 232			 fd_data->pctype, fd_data->fd_id, ret);
 233		err = true;
 
 
 234	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 235		if (add)
 236			dev_info(&pf->pdev->dev,
 237				 "Filter OK for PCTYPE %d loc = %d\n",
 238				 fd_data->pctype, fd_data->fd_id);
 239		else
 240			dev_info(&pf->pdev->dev,
 241				 "Filter deleted for PCTYPE %d loc = %d\n",
 242				 fd_data->pctype, fd_data->fd_id);
 243	}
 244	if (err)
 245		kfree(raw_packet);
 246
 247	return err ? -EOPNOTSUPP : 0;
 
 
 
 
 
 248}
 249
 250#define I40E_TCPIP_DUMMY_PACKET_LEN 54
 251/**
 252 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 253 * @vsi: pointer to the targeted VSI
 254 * @fd_data: the flow director data required for the FDir descriptor
 255 * @add: true adds a filter, false removes it
 256 *
 257 * Returns 0 if the filters were successfully added or removed
 258 **/
 259static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
 260				   struct i40e_fdir_filter *fd_data,
 261				   bool add)
 262{
 263	struct i40e_pf *pf = vsi->back;
 264	struct tcphdr *tcp;
 265	struct iphdr *ip;
 266	bool err = false;
 267	u8 *raw_packet;
 268	int ret;
 269	/* Dummy packet */
 270	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 271		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
 272		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
 273		0x0, 0x72, 0, 0, 0, 0};
 274
 275	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 276	if (!raw_packet)
 277		return -ENOMEM;
 278	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
 279
 280	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 281	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
 282	      + sizeof(struct iphdr));
 283
 284	ip->daddr = fd_data->dst_ip[0];
 285	tcp->dest = fd_data->dst_port;
 286	ip->saddr = fd_data->src_ip[0];
 287	tcp->source = fd_data->src_port;
 288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 289	if (add) {
 290		pf->fd_tcp_rule++;
 291		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
 292		    I40E_DEBUG_FD & pf->hw.debug_mask)
 293			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 294		pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
 295	} else {
 296		pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
 297				  (pf->fd_tcp_rule - 1) : 0;
 298		if (pf->fd_tcp_rule == 0) {
 299			if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
 300			    I40E_DEBUG_FD & pf->hw.debug_mask)
 301				dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
 302			pf->auto_disable_flags &= ~I40E_FLAG_FD_ATR_ENABLED;
 303		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 304	}
 305
 306	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
 307	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 308
 309	if (ret) {
 310		dev_info(&pf->pdev->dev,
 311			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 312			 fd_data->pctype, fd_data->fd_id, ret);
 313		err = true;
 
 
 314	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 315		if (add)
 316			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
 
 317				 fd_data->pctype, fd_data->fd_id);
 318		else
 319			dev_info(&pf->pdev->dev,
 320				 "Filter deleted for PCTYPE %d loc = %d\n",
 321				 fd_data->pctype, fd_data->fd_id);
 322	}
 323
 324	if (err)
 325		kfree(raw_packet);
 
 
 326
 327	return err ? -EOPNOTSUPP : 0;
 328}
 329
 330#define I40E_IP_DUMMY_PACKET_LEN 34
 331/**
 332 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 333 * a specific flow spec
 334 * @vsi: pointer to the targeted VSI
 335 * @fd_data: the flow director data required for the FDir descriptor
 336 * @add: true adds a filter, false removes it
 337 *
 338 * Returns 0 if the filters were successfully added or removed
 339 **/
 340static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
 341				  struct i40e_fdir_filter *fd_data,
 342				  bool add)
 343{
 344	struct i40e_pf *pf = vsi->back;
 345	struct iphdr *ip;
 346	bool err = false;
 347	u8 *raw_packet;
 348	int ret;
 349	int i;
 350	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 351		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
 352		0, 0, 0, 0};
 353
 354	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 355	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
 356		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 357		if (!raw_packet)
 358			return -ENOMEM;
 359		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
 360		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 361
 362		ip->saddr = fd_data->src_ip[0];
 363		ip->daddr = fd_data->dst_ip[0];
 364		ip->protocol = 0;
 365
 
 
 
 
 
 
 
 
 366		fd_data->pctype = i;
 367		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 368
 369		if (ret) {
 370			dev_info(&pf->pdev->dev,
 371				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 372				 fd_data->pctype, fd_data->fd_id, ret);
 373			err = true;
 
 
 
 
 374		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 375			if (add)
 376				dev_info(&pf->pdev->dev,
 377					 "Filter OK for PCTYPE %d loc = %d\n",
 378					 fd_data->pctype, fd_data->fd_id);
 379			else
 380				dev_info(&pf->pdev->dev,
 381					 "Filter deleted for PCTYPE %d loc = %d\n",
 382					 fd_data->pctype, fd_data->fd_id);
 383		}
 384	}
 385
 386	if (err)
 387		kfree(raw_packet);
 
 
 388
 389	return err ? -EOPNOTSUPP : 0;
 390}
 391
 392/**
 393 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 394 * @vsi: pointer to the targeted VSI
 395 * @cmd: command to get or set RX flow classification rules
 396 * @add: true adds a filter, false removes it
 397 *
 398 **/
 399int i40e_add_del_fdir(struct i40e_vsi *vsi,
 400		      struct i40e_fdir_filter *input, bool add)
 401{
 402	struct i40e_pf *pf = vsi->back;
 403	int ret;
 404
 405	switch (input->flow_type & ~FLOW_EXT) {
 406	case TCP_V4_FLOW:
 407		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 408		break;
 409	case UDP_V4_FLOW:
 410		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 411		break;
 
 
 
 412	case IP_USER_FLOW:
 413		switch (input->ip4_proto) {
 414		case IPPROTO_TCP:
 415			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 416			break;
 417		case IPPROTO_UDP:
 418			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 419			break;
 
 
 
 420		case IPPROTO_IP:
 421			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
 422			break;
 423		default:
 424			/* We cannot support masking based on protocol */
 425			goto unsupported_flow;
 
 
 426		}
 427		break;
 428	default:
 429unsupported_flow:
 430		dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
 431			 input->flow_type);
 432		ret = -EINVAL;
 433	}
 434
 435	/* The buffer allocated here is freed by the i40e_clean_tx_ring() */
 
 
 
 
 
 436	return ret;
 437}
 438
 439/**
 440 * i40e_fd_handle_status - check the Programming Status for FD
 441 * @rx_ring: the Rx ring for this descriptor
 442 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
 443 * @prog_id: the id originally used for programming
 444 *
 445 * This is used to verify if the FD programming or invalidation
 446 * requested by SW to the HW is successful or not and take actions accordingly.
 447 **/
 448static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
 449				  union i40e_rx_desc *rx_desc, u8 prog_id)
 450{
 451	struct i40e_pf *pf = rx_ring->vsi->back;
 452	struct pci_dev *pdev = pf->pdev;
 453	u32 fcnt_prog, fcnt_avail;
 454	u32 error;
 455	u64 qw;
 456
 457	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 458	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
 459		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
 460
 461	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 462		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
 463		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
 464		    (I40E_DEBUG_FD & pf->hw.debug_mask))
 465			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 466				 pf->fd_inv);
 467
 468		/* Check if the programming error is for ATR.
 469		 * If so, auto disable ATR and set a state for
 470		 * flush in progress. Next time we come here if flush is in
 471		 * progress do nothing, once flush is complete the state will
 472		 * be cleared.
 473		 */
 474		if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
 475			return;
 476
 477		pf->fd_add_err++;
 478		/* store the current atr filter count */
 479		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 480
 481		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
 482		    (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
 483			pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
 484			set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
 
 
 
 
 
 
 485		}
 486
 487		/* filter programming failed most likely due to table full */
 488		fcnt_prog = i40e_get_global_fd_count(pf);
 489		fcnt_avail = pf->fdir_pf_filter_count;
 490		/* If ATR is running fcnt_prog can quickly change,
 491		 * if we are very close to full, it makes sense to disable
 492		 * FD ATR/SB and then re-enable it when there is room.
 493		 */
 494		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 495			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
 496			    !(pf->auto_disable_flags &
 497				     I40E_FLAG_FD_SB_ENABLED)) {
 498				if (I40E_DEBUG_FD & pf->hw.debug_mask)
 499					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 500				pf->auto_disable_flags |=
 501							I40E_FLAG_FD_SB_ENABLED;
 502			}
 503		}
 504	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 505		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 506			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 507				 rx_desc->wb.qword0.hi_dword.fd_id);
 508	}
 509}
 510
 511/**
 512 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 513 * @ring:      the ring that owns the buffer
 514 * @tx_buffer: the buffer to free
 515 **/
 516static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 517					    struct i40e_tx_buffer *tx_buffer)
 518{
 519	if (tx_buffer->skb) {
 520		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 521			kfree(tx_buffer->raw_buf);
 
 
 522		else
 523			dev_kfree_skb_any(tx_buffer->skb);
 524		if (dma_unmap_len(tx_buffer, len))
 525			dma_unmap_single(ring->dev,
 526					 dma_unmap_addr(tx_buffer, dma),
 527					 dma_unmap_len(tx_buffer, len),
 528					 DMA_TO_DEVICE);
 529	} else if (dma_unmap_len(tx_buffer, len)) {
 530		dma_unmap_page(ring->dev,
 531			       dma_unmap_addr(tx_buffer, dma),
 532			       dma_unmap_len(tx_buffer, len),
 533			       DMA_TO_DEVICE);
 534	}
 535
 536	tx_buffer->next_to_watch = NULL;
 537	tx_buffer->skb = NULL;
 538	dma_unmap_len_set(tx_buffer, len, 0);
 539	/* tx_buffer must be completely set up in the transmit path */
 540}
 541
 542/**
 543 * i40e_clean_tx_ring - Free any empty Tx buffers
 544 * @tx_ring: ring to be cleaned
 545 **/
 546void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 547{
 548	unsigned long bi_size;
 549	u16 i;
 550
 551	/* ring already cleared, nothing to do */
 552	if (!tx_ring->tx_bi)
 553		return;
 
 
 
 554
 555	/* Free all the Tx ring sk_buffs */
 556	for (i = 0; i < tx_ring->count; i++)
 557		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
 
 
 558
 559	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 560	memset(tx_ring->tx_bi, 0, bi_size);
 561
 562	/* Zero out the descriptor ring */
 563	memset(tx_ring->desc, 0, tx_ring->size);
 564
 565	tx_ring->next_to_use = 0;
 566	tx_ring->next_to_clean = 0;
 567
 568	if (!tx_ring->netdev)
 569		return;
 570
 571	/* cleanup Tx queue statistics */
 572	netdev_tx_reset_queue(txring_txq(tx_ring));
 573}
 574
 575/**
 576 * i40e_free_tx_resources - Free Tx resources per queue
 577 * @tx_ring: Tx descriptor ring for a specific queue
 578 *
 579 * Free all transmit software resources
 580 **/
 581void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 582{
 583	i40e_clean_tx_ring(tx_ring);
 584	kfree(tx_ring->tx_bi);
 585	tx_ring->tx_bi = NULL;
 586
 587	if (tx_ring->desc) {
 588		dma_free_coherent(tx_ring->dev, tx_ring->size,
 589				  tx_ring->desc, tx_ring->dma);
 590		tx_ring->desc = NULL;
 591	}
 592}
 593
 594/**
 595 * i40e_get_tx_pending - how many tx descriptors not processed
 596 * @tx_ring: the ring of descriptors
 597 * @in_sw: is tx_pending being checked in SW or HW
 598 *
 599 * Since there is no access to the ring head register
 600 * in XL710, we need to use our local copies
 601 **/
 602u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 603{
 604	u32 head, tail;
 605
 606	if (!in_sw)
 607		head = i40e_get_head(ring);
 608	else
 
 609		head = ring->next_to_clean;
 610	tail = readl(ring->tail);
 
 611
 612	if (head != tail)
 613		return (head < tail) ?
 614			tail - head : (tail + ring->count - head);
 615
 616	return 0;
 617}
 618
 619#define WB_STRIDE 4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 620
 621/**
 622 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 623 * @vsi: the VSI we care about
 624 * @tx_ring: Tx ring to clean
 625 * @napi_budget: Used to determine if we are in netpoll
 626 *
 627 * Returns true if there's any budget left (e.g. the clean is finished)
 628 **/
 629static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 630			      struct i40e_ring *tx_ring, int napi_budget)
 631{
 632	u16 i = tx_ring->next_to_clean;
 633	struct i40e_tx_buffer *tx_buf;
 634	struct i40e_tx_desc *tx_head;
 635	struct i40e_tx_desc *tx_desc;
 636	unsigned int total_bytes = 0, total_packets = 0;
 637	unsigned int budget = vsi->work_limit;
 638
 639	tx_buf = &tx_ring->tx_bi[i];
 640	tx_desc = I40E_TX_DESC(tx_ring, i);
 641	i -= tx_ring->count;
 642
 643	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 644
 645	do {
 646		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 647
 648		/* if next_to_watch is not set then there is no work pending */
 649		if (!eop_desc)
 650			break;
 651
 652		/* prevent any other reads prior to eop_desc */
 653		read_barrier_depends();
 654
 
 655		/* we have caught up to head, no work left to do */
 656		if (tx_head == tx_desc)
 657			break;
 658
 659		/* clear next_to_watch to prevent false hangs */
 660		tx_buf->next_to_watch = NULL;
 661
 662		/* update the statistics for this packet */
 663		total_bytes += tx_buf->bytecount;
 664		total_packets += tx_buf->gso_segs;
 665
 666		/* free the skb */
 667		napi_consume_skb(tx_buf->skb, napi_budget);
 
 
 
 668
 669		/* unmap skb header data */
 670		dma_unmap_single(tx_ring->dev,
 671				 dma_unmap_addr(tx_buf, dma),
 672				 dma_unmap_len(tx_buf, len),
 673				 DMA_TO_DEVICE);
 674
 675		/* clear tx_buffer data */
 676		tx_buf->skb = NULL;
 677		dma_unmap_len_set(tx_buf, len, 0);
 678
 679		/* unmap remaining buffers */
 680		while (tx_desc != eop_desc) {
 
 
 681
 682			tx_buf++;
 683			tx_desc++;
 684			i++;
 685			if (unlikely(!i)) {
 686				i -= tx_ring->count;
 687				tx_buf = tx_ring->tx_bi;
 688				tx_desc = I40E_TX_DESC(tx_ring, 0);
 689			}
 690
 691			/* unmap any remaining paged data */
 692			if (dma_unmap_len(tx_buf, len)) {
 693				dma_unmap_page(tx_ring->dev,
 694					       dma_unmap_addr(tx_buf, dma),
 695					       dma_unmap_len(tx_buf, len),
 696					       DMA_TO_DEVICE);
 697				dma_unmap_len_set(tx_buf, len, 0);
 698			}
 699		}
 700
 701		/* move us one more past the eop_desc for start of next pkt */
 702		tx_buf++;
 703		tx_desc++;
 704		i++;
 705		if (unlikely(!i)) {
 706			i -= tx_ring->count;
 707			tx_buf = tx_ring->tx_bi;
 708			tx_desc = I40E_TX_DESC(tx_ring, 0);
 709		}
 710
 711		prefetch(tx_desc);
 712
 713		/* update budget accounting */
 714		budget--;
 715	} while (likely(budget));
 716
 717	i += tx_ring->count;
 718	tx_ring->next_to_clean = i;
 719	u64_stats_update_begin(&tx_ring->syncp);
 720	tx_ring->stats.bytes += total_bytes;
 721	tx_ring->stats.packets += total_packets;
 722	u64_stats_update_end(&tx_ring->syncp);
 723	tx_ring->q_vector->tx.total_bytes += total_bytes;
 724	tx_ring->q_vector->tx.total_packets += total_packets;
 725
 726	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
 727		/* check to see if there are < 4 descriptors
 728		 * waiting to be written back, then kick the hardware to force
 729		 * them to be written back in case we stay in NAPI.
 730		 * In this mode on X722 we do not enable Interrupt.
 731		 */
 732		unsigned int j = i40e_get_tx_pending(tx_ring, false);
 733
 734		if (budget &&
 735		    ((j / WB_STRIDE) == 0) && (j > 0) &&
 736		    !test_bit(__I40E_DOWN, &vsi->state) &&
 737		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
 738			tx_ring->arm_wb = true;
 739	}
 740
 741	/* notify netdev of completed buffers */
 742	netdev_tx_completed_queue(txring_txq(tx_ring),
 743				  total_packets, total_bytes);
 744
 745#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
 746	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 747		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 748		/* Make sure that anybody stopping the queue after this
 749		 * sees the new next_to_clean.
 750		 */
 751		smp_mb();
 752		if (__netif_subqueue_stopped(tx_ring->netdev,
 753					     tx_ring->queue_index) &&
 754		   !test_bit(__I40E_DOWN, &vsi->state)) {
 755			netif_wake_subqueue(tx_ring->netdev,
 756					    tx_ring->queue_index);
 757			++tx_ring->tx_stats.restart_queue;
 758		}
 759	}
 760
 761	return !!budget;
 762}
 763
 764/**
 765 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 766 * @vsi: the VSI we care about
 767 * @q_vector: the vector on which to enable writeback
 768 *
 769 **/
 770static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
 771				  struct i40e_q_vector *q_vector)
 772{
 773	u16 flags = q_vector->tx.ring[0].flags;
 774	u32 val;
 775
 776	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
 777		return;
 778
 779	if (q_vector->arm_wb_state)
 780		return;
 781
 782	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 783		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
 784		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
 785
 786		wr32(&vsi->back->hw,
 787		     I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
 788		     val);
 789	} else {
 790		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
 791		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
 792
 793		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 794	}
 795	q_vector->arm_wb_state = true;
 796}
 797
 798/**
 799 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 800 * @vsi: the VSI we care about
 801 * @q_vector: the vector  on which to force writeback
 802 *
 803 **/
 804void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
 805{
 806	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 807		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
 808			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
 809			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
 810			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
 811			  /* allow 00 to be written to the index */
 812
 813		wr32(&vsi->back->hw,
 814		     I40E_PFINT_DYN_CTLN(q_vector->v_idx +
 815					 vsi->base_vector - 1), val);
 816	} else {
 817		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
 818			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
 819			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
 820			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
 821			/* allow 00 to be written to the index */
 822
 823		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 824	}
 825}
 826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 827/**
 828 * i40e_set_new_dynamic_itr - Find new ITR level
 
 829 * @rc: structure containing ring performance data
 830 *
 831 * Returns true if ITR changed, false if not
 832 *
 833 * Stores a new ITR value based on packets and byte counts during
 834 * the last interrupt.  The advantage of per interrupt computation
 835 * is faster updates and more accurate ITR for the current traffic
 836 * pattern.  Constants in this function were computed based on
 837 * theoretical maximum wire speed and thresholds were set based on
 838 * testing data as well as attempting to minimize response time
 839 * while increasing bulk throughput.
 840 **/
 841static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
 
 842{
 843	enum i40e_latency_range new_latency_range = rc->latency_range;
 844	struct i40e_q_vector *qv = rc->ring->q_vector;
 845	u32 new_itr = rc->itr;
 846	int bytes_per_int;
 847	int usecs;
 
 
 
 848
 849	if (rc->total_packets == 0 || !rc->itr)
 850		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 851
 852	/* simple throttlerate management
 853	 *   0-10MB/s   lowest (50000 ints/s)
 854	 *  10-20MB/s   low    (20000 ints/s)
 855	 *  20-1249MB/s bulk   (18000 ints/s)
 856	 *  > 40000 Rx packets per second (8000 ints/s)
 857	 *
 858	 * The math works out because the divisor is in 10^(-6) which
 859	 * turns the bytes/us input value into MB/s values, but
 860	 * make sure to use usecs, as the register values written
 861	 * are in 2 usec increments in the ITR registers, and make sure
 862	 * to use the smoothed values that the countdown timer gives us.
 863	 */
 864	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
 865	bytes_per_int = rc->total_bytes / usecs;
 866
 867	switch (new_latency_range) {
 868	case I40E_LOWEST_LATENCY:
 869		if (bytes_per_int > 10)
 870			new_latency_range = I40E_LOW_LATENCY;
 871		break;
 872	case I40E_LOW_LATENCY:
 873		if (bytes_per_int > 20)
 874			new_latency_range = I40E_BULK_LATENCY;
 875		else if (bytes_per_int <= 10)
 876			new_latency_range = I40E_LOWEST_LATENCY;
 877		break;
 878	case I40E_BULK_LATENCY:
 879	case I40E_ULTRA_LATENCY:
 880	default:
 881		if (bytes_per_int <= 20)
 882			new_latency_range = I40E_LOW_LATENCY;
 883		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 884	}
 885
 886	/* this is to adjust RX more aggressively when streaming small
 887	 * packets.  The value of 40000 was picked as it is just beyond
 888	 * what the hardware can receive per second if in low latency
 889	 * mode.
 890	 */
 891#define RX_ULTRA_PACKET_RATE 40000
 892
 893	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
 894	    (&qv->rx == rc))
 895		new_latency_range = I40E_ULTRA_LATENCY;
 896
 897	rc->latency_range = new_latency_range;
 898
 899	switch (new_latency_range) {
 900	case I40E_LOWEST_LATENCY:
 901		new_itr = I40E_ITR_50K;
 902		break;
 903	case I40E_LOW_LATENCY:
 904		new_itr = I40E_ITR_20K;
 905		break;
 906	case I40E_BULK_LATENCY:
 907		new_itr = I40E_ITR_18K;
 908		break;
 909	case I40E_ULTRA_LATENCY:
 910		new_itr = I40E_ITR_8K;
 911		break;
 912	default:
 913		break;
 914	}
 915
 
 
 
 
 
 
 
 916	rc->total_bytes = 0;
 917	rc->total_packets = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918
 919	if (new_itr != rc->itr) {
 920		rc->itr = new_itr;
 921		return true;
 922	}
 
 923
 924	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 925}
 926
 927/**
 928 * i40e_clean_programming_status - clean the programming status descriptor
 929 * @rx_ring: the rx ring that has this descriptor
 930 * @rx_desc: the rx descriptor written back by HW
 
 931 *
 932 * Flow director should handle FD_FILTER_STATUS to check its filter programming
 933 * status being successful or not and take actions accordingly. FCoE should
 934 * handle its context/filter programming/invalidation status and take actions.
 935 *
 
 936 **/
 937static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
 938					  union i40e_rx_desc *rx_desc)
 
 
 939{
 940	u64 qw;
 
 941	u8 id;
 942
 943	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 
 
 
 
 
 
 
 
 
 
 
 944	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
 945		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
 946
 947	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
 948		i40e_fd_handle_status(rx_ring, rx_desc, id);
 949#ifdef I40E_FCOE
 950	else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
 951		 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
 952		i40e_fcoe_handle_status(rx_ring, rx_desc, id);
 953#endif
 954}
 955
 956/**
 957 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 958 * @tx_ring: the tx ring to set up
 959 *
 960 * Return 0 on success, negative on error
 961 **/
 962int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
 963{
 964	struct device *dev = tx_ring->dev;
 965	int bi_size;
 966
 967	if (!dev)
 968		return -ENOMEM;
 969
 970	/* warn if we are about to overwrite the pointer */
 971	WARN_ON(tx_ring->tx_bi);
 972	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 973	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
 974	if (!tx_ring->tx_bi)
 975		goto err;
 976
 
 
 977	/* round up to nearest 4K */
 978	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
 979	/* add u32 for head writeback, align after this takes care of
 980	 * guaranteeing this is at least one cache line in size
 981	 */
 982	tx_ring->size += sizeof(u32);
 983	tx_ring->size = ALIGN(tx_ring->size, 4096);
 984	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 985					   &tx_ring->dma, GFP_KERNEL);
 986	if (!tx_ring->desc) {
 987		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 988			 tx_ring->size);
 989		goto err;
 990	}
 991
 992	tx_ring->next_to_use = 0;
 993	tx_ring->next_to_clean = 0;
 
 994	return 0;
 995
 996err:
 997	kfree(tx_ring->tx_bi);
 998	tx_ring->tx_bi = NULL;
 999	return -ENOMEM;
1000}
1001
1002/**
1003 * i40e_clean_rx_ring - Free Rx buffers
1004 * @rx_ring: ring to be cleaned
1005 **/
1006void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1007{
1008	struct device *dev = rx_ring->dev;
1009	unsigned long bi_size;
1010	u16 i;
1011
1012	/* ring already cleared, nothing to do */
1013	if (!rx_ring->rx_bi)
1014		return;
1015
 
 
 
 
 
 
 
 
 
 
1016	/* Free all the Rx ring sk_buffs */
1017	for (i = 0; i < rx_ring->count; i++) {
1018		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1019
1020		if (rx_bi->skb) {
1021			dev_kfree_skb(rx_bi->skb);
1022			rx_bi->skb = NULL;
1023		}
1024		if (!rx_bi->page)
1025			continue;
1026
1027		dma_unmap_page(dev, rx_bi->dma, PAGE_SIZE, DMA_FROM_DEVICE);
1028		__free_pages(rx_bi->page, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029
1030		rx_bi->page = NULL;
1031		rx_bi->page_offset = 0;
1032	}
1033
 
1034	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1035	memset(rx_ring->rx_bi, 0, bi_size);
1036
1037	/* Zero out the descriptor ring */
1038	memset(rx_ring->desc, 0, rx_ring->size);
1039
1040	rx_ring->next_to_alloc = 0;
1041	rx_ring->next_to_clean = 0;
1042	rx_ring->next_to_use = 0;
1043}
1044
1045/**
1046 * i40e_free_rx_resources - Free Rx resources
1047 * @rx_ring: ring to clean the resources from
1048 *
1049 * Free all receive software resources
1050 **/
1051void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1052{
1053	i40e_clean_rx_ring(rx_ring);
 
 
 
1054	kfree(rx_ring->rx_bi);
1055	rx_ring->rx_bi = NULL;
1056
1057	if (rx_ring->desc) {
1058		dma_free_coherent(rx_ring->dev, rx_ring->size,
1059				  rx_ring->desc, rx_ring->dma);
1060		rx_ring->desc = NULL;
1061	}
1062}
1063
1064/**
1065 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1066 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1067 *
1068 * Returns 0 on success, negative on failure
1069 **/
1070int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1071{
1072	struct device *dev = rx_ring->dev;
 
1073	int bi_size;
1074
1075	/* warn if we are about to overwrite the pointer */
1076	WARN_ON(rx_ring->rx_bi);
1077	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1078	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1079	if (!rx_ring->rx_bi)
1080		goto err;
1081
1082	u64_stats_init(&rx_ring->syncp);
1083
1084	/* Round up to nearest 4K */
1085	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1086	rx_ring->size = ALIGN(rx_ring->size, 4096);
1087	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1088					   &rx_ring->dma, GFP_KERNEL);
1089
1090	if (!rx_ring->desc) {
1091		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1092			 rx_ring->size);
1093		goto err;
1094	}
1095
1096	rx_ring->next_to_alloc = 0;
1097	rx_ring->next_to_clean = 0;
1098	rx_ring->next_to_use = 0;
1099
 
 
 
 
 
 
 
 
 
 
1100	return 0;
1101err:
1102	kfree(rx_ring->rx_bi);
1103	rx_ring->rx_bi = NULL;
1104	return -ENOMEM;
1105}
1106
1107/**
1108 * i40e_release_rx_desc - Store the new tail and head values
1109 * @rx_ring: ring to bump
1110 * @val: new head index
1111 **/
1112static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1113{
1114	rx_ring->next_to_use = val;
1115
1116	/* update next to alloc since we have filled the ring */
1117	rx_ring->next_to_alloc = val;
1118
1119	/* Force memory writes to complete before letting h/w
1120	 * know there are new descriptors to fetch.  (Only
1121	 * applicable for weak-ordered memory model archs,
1122	 * such as IA-64).
1123	 */
1124	wmb();
1125	writel(val, rx_ring->tail);
1126}
1127
1128/**
 
 
 
 
 
 
 
 
 
 
 
1129 * i40e_alloc_mapped_page - recycle or make a new page
1130 * @rx_ring: ring to use
1131 * @bi: rx_buffer struct to modify
1132 *
1133 * Returns true if the page was successfully allocated or
1134 * reused.
1135 **/
1136static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1137				   struct i40e_rx_buffer *bi)
1138{
1139	struct page *page = bi->page;
1140	dma_addr_t dma;
1141
1142	/* since we are recycling buffers we should seldom need to alloc */
1143	if (likely(page)) {
1144		rx_ring->rx_stats.page_reuse_count++;
1145		return true;
1146	}
1147
1148	/* alloc new page for storage */
1149	page = dev_alloc_page();
1150	if (unlikely(!page)) {
1151		rx_ring->rx_stats.alloc_page_failed++;
1152		return false;
1153	}
1154
1155	/* map page for use */
1156	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
 
 
 
1157
1158	/* if mapping failed free memory back to system since
1159	 * there isn't much point in holding memory we can't use
1160	 */
1161	if (dma_mapping_error(rx_ring->dev, dma)) {
1162		__free_pages(page, 0);
1163		rx_ring->rx_stats.alloc_page_failed++;
1164		return false;
1165	}
1166
1167	bi->dma = dma;
1168	bi->page = page;
1169	bi->page_offset = 0;
 
 
1170
1171	return true;
1172}
1173
1174/**
1175 * i40e_receive_skb - Send a completed packet up the stack
1176 * @rx_ring:  rx ring in play
1177 * @skb: packet to send up
1178 * @vlan_tag: vlan tag for packet
1179 **/
1180static void i40e_receive_skb(struct i40e_ring *rx_ring,
1181			     struct sk_buff *skb, u16 vlan_tag)
1182{
1183	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1184
1185	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1186	    (vlan_tag & VLAN_VID_MASK))
1187		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1188
1189	napi_gro_receive(&q_vector->napi, skb);
1190}
1191
1192/**
1193 * i40e_alloc_rx_buffers - Replace used receive buffers
1194 * @rx_ring: ring to place buffers on
1195 * @cleaned_count: number of buffers to replace
1196 *
1197 * Returns false if all allocations were successful, true if any fail
1198 **/
1199bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1200{
1201	u16 ntu = rx_ring->next_to_use;
1202	union i40e_rx_desc *rx_desc;
1203	struct i40e_rx_buffer *bi;
1204
1205	/* do nothing if no valid netdev defined */
1206	if (!rx_ring->netdev || !cleaned_count)
1207		return false;
1208
1209	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1210	bi = &rx_ring->rx_bi[ntu];
1211
1212	do {
1213		if (!i40e_alloc_mapped_page(rx_ring, bi))
1214			goto no_buffers;
1215
 
 
 
 
 
 
1216		/* Refresh the desc even if buffer_addrs didn't change
1217		 * because each write-back erases this info.
1218		 */
1219		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1220
1221		rx_desc++;
1222		bi++;
1223		ntu++;
1224		if (unlikely(ntu == rx_ring->count)) {
1225			rx_desc = I40E_RX_DESC(rx_ring, 0);
1226			bi = rx_ring->rx_bi;
1227			ntu = 0;
1228		}
1229
1230		/* clear the status bits for the next_to_use descriptor */
1231		rx_desc->wb.qword1.status_error_len = 0;
1232
1233		cleaned_count--;
1234	} while (cleaned_count);
1235
1236	if (rx_ring->next_to_use != ntu)
1237		i40e_release_rx_desc(rx_ring, ntu);
1238
1239	return false;
1240
1241no_buffers:
1242	if (rx_ring->next_to_use != ntu)
1243		i40e_release_rx_desc(rx_ring, ntu);
1244
1245	/* make sure to come back via polling to try again after
1246	 * allocation failure
1247	 */
1248	return true;
1249}
1250
1251/**
1252 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1253 * @vsi: the VSI we care about
1254 * @skb: skb currently being received and modified
1255 * @rx_desc: the receive descriptor
1256 *
1257 * skb->protocol must be set before this function is called
1258 **/
1259static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1260				    struct sk_buff *skb,
1261				    union i40e_rx_desc *rx_desc)
1262{
1263	struct i40e_rx_ptype_decoded decoded;
1264	u32 rx_error, rx_status;
1265	bool ipv4, ipv6;
1266	u8 ptype;
1267	u64 qword;
1268
1269	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1270	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1271	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1272		   I40E_RXD_QW1_ERROR_SHIFT;
1273	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1274		    I40E_RXD_QW1_STATUS_SHIFT;
1275	decoded = decode_rx_desc_ptype(ptype);
1276
1277	skb->ip_summed = CHECKSUM_NONE;
1278
1279	skb_checksum_none_assert(skb);
1280
1281	/* Rx csum enabled and ip headers found? */
1282	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1283		return;
1284
1285	/* did the hardware decode the packet and checksum? */
1286	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1287		return;
1288
1289	/* both known and outer_ip must be set for the below code to work */
1290	if (!(decoded.known && decoded.outer_ip))
1291		return;
1292
1293	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1294	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1295	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1296	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1297
1298	if (ipv4 &&
1299	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1300			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1301		goto checksum_fail;
1302
1303	/* likely incorrect csum if alternate IP extension headers found */
1304	if (ipv6 &&
1305	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1306		/* don't increment checksum err here, non-fatal err */
1307		return;
1308
1309	/* there was some L4 error, count error and punt packet to the stack */
1310	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1311		goto checksum_fail;
1312
1313	/* handle packets that were not able to be checksummed due
1314	 * to arrival speed, in this case the stack can compute
1315	 * the csum.
1316	 */
1317	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1318		return;
1319
1320	/* If there is an outer header present that might contain a checksum
1321	 * we need to bump the checksum level by 1 to reflect the fact that
1322	 * we are indicating we validated the inner checksum.
1323	 */
1324	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1325		skb->csum_level = 1;
1326
1327	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1328	switch (decoded.inner_prot) {
1329	case I40E_RX_PTYPE_INNER_PROT_TCP:
1330	case I40E_RX_PTYPE_INNER_PROT_UDP:
1331	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1332		skb->ip_summed = CHECKSUM_UNNECESSARY;
1333		/* fall though */
1334	default:
1335		break;
1336	}
1337
1338	return;
1339
1340checksum_fail:
1341	vsi->back->hw_csum_rx_error++;
1342}
1343
1344/**
1345 * i40e_ptype_to_htype - get a hash type
1346 * @ptype: the ptype value from the descriptor
1347 *
1348 * Returns a hash type to be used by skb_set_hash
1349 **/
1350static inline int i40e_ptype_to_htype(u8 ptype)
1351{
1352	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1353
1354	if (!decoded.known)
1355		return PKT_HASH_TYPE_NONE;
1356
1357	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1358	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1359		return PKT_HASH_TYPE_L4;
1360	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1361		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1362		return PKT_HASH_TYPE_L3;
1363	else
1364		return PKT_HASH_TYPE_L2;
1365}
1366
1367/**
1368 * i40e_rx_hash - set the hash value in the skb
1369 * @ring: descriptor ring
1370 * @rx_desc: specific descriptor
 
 
1371 **/
1372static inline void i40e_rx_hash(struct i40e_ring *ring,
1373				union i40e_rx_desc *rx_desc,
1374				struct sk_buff *skb,
1375				u8 rx_ptype)
1376{
1377	u32 hash;
1378	const __le64 rss_mask =
1379		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1380			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1381
1382	if (!(ring->netdev->features & NETIF_F_RXHASH))
1383		return;
1384
1385	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1386		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1387		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1388	}
1389}
1390
1391/**
1392 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1393 * @rx_ring: rx descriptor ring packet is being transacted on
1394 * @rx_desc: pointer to the EOP Rx descriptor
1395 * @skb: pointer to current skb being populated
1396 * @rx_ptype: the packet type decoded by hardware
1397 *
1398 * This function checks the ring, descriptor, and packet information in
1399 * order to populate the hash, checksum, VLAN, protocol, and
1400 * other fields within the skb.
1401 **/
1402static inline
1403void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1404			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1405			     u8 rx_ptype)
1406{
1407	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1408	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1409			I40E_RXD_QW1_STATUS_SHIFT;
1410	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1411	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1412		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
 
 
1413
1414	if (unlikely(tsynvalid))
1415		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1416
1417	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1418
1419	/* modifies the skb - consumes the enet header */
1420	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1421
1422	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1423
1424	skb_record_rx_queue(skb, rx_ring->queue_index);
1425}
1426
1427/**
1428 * i40e_pull_tail - i40e specific version of skb_pull_tail
1429 * @rx_ring: rx descriptor ring packet is being transacted on
1430 * @skb: pointer to current skb being adjusted
1431 *
1432 * This function is an i40e specific version of __pskb_pull_tail.  The
1433 * main difference between this version and the original function is that
1434 * this function can make several assumptions about the state of things
1435 * that allow for significant optimizations versus the standard function.
1436 * As a result we can do things like drop a frag and maintain an accurate
1437 * truesize for the skb.
1438 */
1439static void i40e_pull_tail(struct i40e_ring *rx_ring, struct sk_buff *skb)
1440{
1441	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
1442	unsigned char *va;
1443	unsigned int pull_len;
1444
1445	/* it is valid to use page_address instead of kmap since we are
1446	 * working with pages allocated out of the lomem pool per
1447	 * alloc_page(GFP_ATOMIC)
1448	 */
1449	va = skb_frag_address(frag);
1450
1451	/* we need the header to contain the greater of either ETH_HLEN or
1452	 * 60 bytes if the skb->len is less than 60 for skb_pad.
1453	 */
1454	pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1455
1456	/* align pull length to size of long to optimize memcpy performance */
1457	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
1458
1459	/* update all of the pointers */
1460	skb_frag_size_sub(frag, pull_len);
1461	frag->page_offset += pull_len;
1462	skb->data_len -= pull_len;
1463	skb->tail += pull_len;
1464}
1465
1466/**
1467 * i40e_cleanup_headers - Correct empty headers
1468 * @rx_ring: rx descriptor ring packet is being transacted on
1469 * @skb: pointer to current skb being fixed
 
1470 *
1471 * Also address the case where we are pulling data in on pages only
1472 * and as such no data is present in the skb header.
1473 *
1474 * In addition if skb is not at least 60 bytes we need to pad it so that
1475 * it is large enough to qualify as a valid Ethernet frame.
1476 *
1477 * Returns true if an error was encountered and skb was freed.
1478 **/
1479static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
 
 
1480{
1481	/* place header in linear portion of buffer */
1482	if (skb_is_nonlinear(skb))
1483		i40e_pull_tail(rx_ring, skb);
 
 
 
 
 
 
 
 
 
 
 
1484
1485	/* if eth_skb_pad returns an error the skb was freed */
1486	if (eth_skb_pad(skb))
1487		return true;
1488
1489	return false;
1490}
1491
1492/**
1493 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1494 * @rx_ring: rx descriptor ring to store buffers on
1495 * @old_buff: donor buffer to have page reused
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1496 *
1497 * Synchronizes page for reuse by the adapter
1498 **/
1499static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1500			       struct i40e_rx_buffer *old_buff)
1501{
1502	struct i40e_rx_buffer *new_buff;
1503	u16 nta = rx_ring->next_to_alloc;
1504
1505	new_buff = &rx_ring->rx_bi[nta];
 
 
1506
1507	/* update, and store next to alloc */
1508	nta++;
1509	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 
 
 
 
 
 
 
1510
1511	/* transfer page from old buffer to new buffer */
1512	*new_buff = *old_buff;
1513}
 
 
 
 
 
1514
1515/**
1516 * i40e_page_is_reserved - check if reuse is possible
1517 * @page: page struct to check
1518 */
1519static inline bool i40e_page_is_reserved(struct page *page)
1520{
1521	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1522}
1523
1524/**
1525 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1526 * @rx_ring: rx descriptor ring to transact packets on
1527 * @rx_buffer: buffer containing page to add
1528 * @rx_desc: descriptor containing length of buffer written by hardware
1529 * @skb: sk_buff to place the data into
 
1530 *
1531 * This function will add the data contained in rx_buffer->page to the skb.
1532 * This is done either through a direct copy if the data in the buffer is
1533 * less than the skb header size, otherwise it will just attach the page as
1534 * a frag to the skb.
1535 *
1536 * The function will then update the page offset if necessary and return
1537 * true if the buffer can be reused by the adapter.
1538 **/
1539static bool i40e_add_rx_frag(struct i40e_ring *rx_ring,
1540			     struct i40e_rx_buffer *rx_buffer,
1541			     union i40e_rx_desc *rx_desc,
1542			     struct sk_buff *skb)
1543{
1544	struct page *page = rx_buffer->page;
1545	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1546	unsigned int size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1547			    I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1548#if (PAGE_SIZE < 8192)
1549	unsigned int truesize = I40E_RXBUFFER_2048;
1550#else
1551	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
1552	unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
1553#endif
1554
1555	/* will the data fit in the skb we allocated? if so, just
1556	 * copy it as it is pretty small anyway
1557	 */
1558	if ((size <= I40E_RX_HDR_SIZE) && !skb_is_nonlinear(skb)) {
1559		unsigned char *va = page_address(page) + rx_buffer->page_offset;
1560
1561		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
1562
1563		/* page is not reserved, we can reuse buffer as-is */
1564		if (likely(!i40e_page_is_reserved(page)))
1565			return true;
1566
1567		/* this page cannot be reused so discard it */
1568		__free_pages(page, 0);
1569		return false;
1570	}
1571
1572	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1573			rx_buffer->page_offset, size, truesize);
1574
1575	/* avoid re-using remote pages */
1576	if (unlikely(i40e_page_is_reserved(page)))
1577		return false;
1578
1579#if (PAGE_SIZE < 8192)
1580	/* if we are only owner of page we can reuse it */
1581	if (unlikely(page_count(page) != 1))
1582		return false;
1583
1584	/* flip page offset to other buffer */
1585	rx_buffer->page_offset ^= truesize;
1586#else
1587	/* move offset up to the next cache line */
1588	rx_buffer->page_offset += truesize;
1589
1590	if (rx_buffer->page_offset > last_offset)
1591		return false;
1592#endif
1593
1594	/* Even if we own the page, we are not allowed to use atomic_set()
1595	 * This would break get_page_unless_zero() users.
1596	 */
1597	get_page(rx_buffer->page);
1598
1599	return true;
1600}
1601
1602/**
1603 * i40e_fetch_rx_buffer - Allocate skb and populate it
1604 * @rx_ring: rx descriptor ring to transact packets on
1605 * @rx_desc: descriptor containing info written by hardware
1606 *
1607 * This function allocates an skb on the fly, and populates it with the page
1608 * data from the current receive descriptor, taking care to set up the skb
1609 * correctly, as well as handling calling the page recycle function if
1610 * necessary.
1611 */
1612static inline
1613struct sk_buff *i40e_fetch_rx_buffer(struct i40e_ring *rx_ring,
1614				     union i40e_rx_desc *rx_desc)
1615{
1616	struct i40e_rx_buffer *rx_buffer;
1617	struct sk_buff *skb;
1618	struct page *page;
1619
1620	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1621	page = rx_buffer->page;
1622	prefetchw(page);
 
 
 
 
 
 
1623
1624	skb = rx_buffer->skb;
 
 
 
 
1625
1626	if (likely(!skb)) {
1627		void *page_addr = page_address(page) + rx_buffer->page_offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1628
1629		/* prefetch first cache line of first page */
1630		prefetch(page_addr);
1631#if L1_CACHE_BYTES < 128
1632		prefetch(page_addr + L1_CACHE_BYTES);
1633#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1634
1635		/* allocate a skb to store the frags */
1636		skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1637				       I40E_RX_HDR_SIZE,
1638				       GFP_ATOMIC | __GFP_NOWARN);
1639		if (unlikely(!skb)) {
1640			rx_ring->rx_stats.alloc_buff_failed++;
1641			return NULL;
1642		}
1643
1644		/* we will be copying header into skb->data in
1645		 * pskb_may_pull so it is in our interest to prefetch
1646		 * it now to avoid a possible cache miss
1647		 */
1648		prefetchw(skb->data);
 
1649	} else {
1650		rx_buffer->skb = NULL;
 
1651	}
1652
1653	/* we are reusing so sync this buffer for CPU use */
1654	dma_sync_single_range_for_cpu(rx_ring->dev,
1655				      rx_buffer->dma,
1656				      rx_buffer->page_offset,
1657				      I40E_RXBUFFER_2048,
1658				      DMA_FROM_DEVICE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1659
1660	/* pull page into skb */
1661	if (i40e_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
 
 
 
 
 
 
 
 
 
 
1662		/* hand second half of page back to the ring */
1663		i40e_reuse_rx_page(rx_ring, rx_buffer);
1664		rx_ring->rx_stats.page_reuse_count++;
1665	} else {
1666		/* we are not reusing the buffer so unmap it */
1667		dma_unmap_page(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
1668			       DMA_FROM_DEVICE);
 
 
 
 
 
1669	}
1670
1671	/* clear contents of buffer_info */
1672	rx_buffer->page = NULL;
1673
1674	return skb;
1675}
1676
1677/**
1678 * i40e_is_non_eop - process handling of non-EOP buffers
1679 * @rx_ring: Rx ring being processed
1680 * @rx_desc: Rx descriptor for current buffer
1681 * @skb: Current socket buffer containing buffer in progress
1682 *
1683 * This function updates next to clean.  If the buffer is an EOP buffer
1684 * this function exits returning false, otherwise it will place the
1685 * sk_buff in the next buffer to be chained and return true indicating
1686 * that this is in fact a non-EOP buffer.
1687 **/
1688static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1689			    union i40e_rx_desc *rx_desc,
1690			    struct sk_buff *skb)
1691{
1692	u32 ntc = rx_ring->next_to_clean + 1;
1693
1694	/* fetch, update, and store next to clean */
1695	ntc = (ntc < rx_ring->count) ? ntc : 0;
1696	rx_ring->next_to_clean = ntc;
1697
1698	prefetch(I40E_RX_DESC(rx_ring, ntc));
1699
1700#define staterrlen rx_desc->wb.qword1.status_error_len
1701	if (unlikely(i40e_rx_is_programming_status(le64_to_cpu(staterrlen)))) {
1702		i40e_clean_programming_status(rx_ring, rx_desc);
1703		rx_ring->rx_bi[ntc].skb = skb;
1704		return true;
1705	}
1706	/* if we are the last buffer then there is nothing else to do */
1707#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1708	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1709		return false;
1710
1711	/* place skb in next buffer to be received */
1712	rx_ring->rx_bi[ntc].skb = skb;
1713	rx_ring->rx_stats.non_eop_descs++;
1714
1715	return true;
1716}
1717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1718/**
1719 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1720 * @rx_ring: rx descriptor ring to transact packets on
1721 * @budget: Total limit on number of packets to process
1722 *
1723 * This function provides a "bounce buffer" approach to Rx interrupt
1724 * processing.  The advantage to this is that on systems that have
1725 * expensive overhead for IOMMU access this provides a means of avoiding
1726 * it by maintaining the mapping of the page to the system.
1727 *
1728 * Returns amount of work completed
1729 **/
1730static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1731{
1732	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 
1733	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
 
1734	bool failure = false;
 
 
 
1735
1736	while (likely(total_rx_packets < budget)) {
 
1737		union i40e_rx_desc *rx_desc;
1738		struct sk_buff *skb;
1739		u16 vlan_tag;
1740		u8 rx_ptype;
1741		u64 qword;
1742
1743		/* return some buffers to hardware, one at a time is too slow */
1744		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1745			failure = failure ||
1746				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1747			cleaned_count = 0;
1748		}
1749
1750		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
1751
1752		/* status_error_len will always be zero for unused descriptors
1753		 * because it's cleared in cleanup, and overlaps with hdr_addr
1754		 * which is always zero because packet split isn't used, if the
1755		 * hardware wrote DD then it will be non-zero
1756		 */
1757		if (!i40e_test_staterr(rx_desc,
1758				       BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1759			break;
1760
1761		/* This memory barrier is needed to keep us from reading
1762		 * any other fields out of the rx_desc until we know the
1763		 * DD bit is set.
1764		 */
1765		dma_rmb();
1766
1767		skb = i40e_fetch_rx_buffer(rx_ring, rx_desc);
1768		if (!skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1769			break;
 
1770
 
1771		cleaned_count++;
1772
1773		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1774			continue;
1775
1776		/* ERR_MASK will only have valid bits if EOP set, and
1777		 * what we are doing here is actually checking
1778		 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1779		 * the error field
1780		 */
1781		if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1782			dev_kfree_skb_any(skb);
1783			continue;
1784		}
1785
1786		if (i40e_cleanup_headers(rx_ring, skb))
1787			continue;
1788
1789		/* probably a little skewed due to removing CRC */
1790		total_rx_bytes += skb->len;
1791
1792		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1793		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1794			   I40E_RXD_QW1_PTYPE_SHIFT;
1795
1796		/* populate checksum, VLAN, and protocol */
1797		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1798
1799#ifdef I40E_FCOE
1800		if (unlikely(
1801		    i40e_rx_is_fcoe(rx_ptype) &&
1802		    !i40e_fcoe_handle_offload(rx_ring, rx_desc, skb))) {
1803			dev_kfree_skb_any(skb);
1804			continue;
1805		}
1806#endif
1807
1808		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1809			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1810
1811		i40e_receive_skb(rx_ring, skb, vlan_tag);
1812
1813		/* update budget accounting */
1814		total_rx_packets++;
1815	}
1816
1817	u64_stats_update_begin(&rx_ring->syncp);
1818	rx_ring->stats.packets += total_rx_packets;
1819	rx_ring->stats.bytes += total_rx_bytes;
1820	u64_stats_update_end(&rx_ring->syncp);
1821	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1822	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1823
1824	/* guarantee a trip back through this routine if there was a failure */
1825	return failure ? budget : total_rx_packets;
1826}
1827
1828static u32 i40e_buildreg_itr(const int type, const u16 itr)
1829{
1830	u32 val;
1831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1832	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1833	      /* Don't clear PBA because that can cause lost interrupts that
1834	       * came in while we were cleaning/polling
1835	       */
1836	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1837	      (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1838
1839	return val;
1840}
1841
1842/* a small macro to shorten up some long lines */
1843#define INTREG I40E_PFINT_DYN_CTLN
1844static inline int get_rx_itr_enabled(struct i40e_vsi *vsi, int idx)
1845{
1846	return !!(vsi->rx_rings[idx]->rx_itr_setting);
1847}
1848
1849static inline int get_tx_itr_enabled(struct i40e_vsi *vsi, int idx)
1850{
1851	return !!(vsi->tx_rings[idx]->tx_itr_setting);
1852}
 
 
 
 
1853
1854/**
1855 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1856 * @vsi: the VSI we care about
1857 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1858 *
1859 **/
1860static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1861					  struct i40e_q_vector *q_vector)
1862{
1863	struct i40e_hw *hw = &vsi->back->hw;
1864	bool rx = false, tx = false;
1865	u32 rxval, txval;
1866	int vector;
1867	int idx = q_vector->v_idx;
1868	int rx_itr_setting, tx_itr_setting;
1869
1870	vector = (q_vector->v_idx + vsi->base_vector);
1871
1872	/* avoid dynamic calculation if in countdown mode OR if
1873	 * all dynamic is disabled
1874	 */
1875	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1876
1877	rx_itr_setting = get_rx_itr_enabled(vsi, idx);
1878	tx_itr_setting = get_tx_itr_enabled(vsi, idx);
1879
1880	if (q_vector->itr_countdown > 0 ||
1881	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
1882	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
1883		goto enable_int;
1884	}
1885
1886	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1887		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1888		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1889	}
1890
1891	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1892		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1893		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1894	}
1895
1896	if (rx || tx) {
1897		/* get the higher of the two ITR adjustments and
1898		 * use the same value for both ITR registers
1899		 * when in adaptive mode (Rx and/or Tx)
 
 
 
 
 
 
 
 
 
1900		 */
1901		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1902
1903		q_vector->tx.itr = q_vector->rx.itr = itr;
1904		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1905		tx = true;
1906		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1907		rx = true;
1908	}
1909
1910	/* only need to enable the interrupt once, but need
1911	 * to possibly update both ITR values
1912	 */
1913	if (rx) {
1914		/* set the INTENA_MSK_MASK so that this first write
1915		 * won't actually enable the interrupt, instead just
1916		 * updating the ITR (it's bit 31 PF and VF)
1917		 */
1918		rxval |= BIT(31);
1919		/* don't check _DOWN because interrupt isn't being enabled */
1920		wr32(hw, INTREG(vector - 1), rxval);
1921	}
1922
1923enable_int:
1924	if (!test_bit(__I40E_DOWN, &vsi->state))
1925		wr32(hw, INTREG(vector - 1), txval);
1926
1927	if (q_vector->itr_countdown)
1928		q_vector->itr_countdown--;
1929	else
1930		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1931}
1932
1933/**
1934 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1935 * @napi: napi struct with our devices info in it
1936 * @budget: amount of work driver is allowed to do this pass, in packets
1937 *
1938 * This function will clean all queues associated with a q_vector.
1939 *
1940 * Returns the amount of work done
1941 **/
1942int i40e_napi_poll(struct napi_struct *napi, int budget)
1943{
1944	struct i40e_q_vector *q_vector =
1945			       container_of(napi, struct i40e_q_vector, napi);
1946	struct i40e_vsi *vsi = q_vector->vsi;
1947	struct i40e_ring *ring;
1948	bool clean_complete = true;
1949	bool arm_wb = false;
1950	int budget_per_ring;
1951	int work_done = 0;
1952
1953	if (test_bit(__I40E_DOWN, &vsi->state)) {
1954		napi_complete(napi);
1955		return 0;
1956	}
1957
1958	/* Clear hung_detected bit */
1959	clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
1960	/* Since the actual Tx work is minimal, we can give the Tx a larger
1961	 * budget and be more aggressive about cleaning up the Tx descriptors.
1962	 */
1963	i40e_for_each_ring(ring, q_vector->tx) {
1964		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
 
 
 
 
1965			clean_complete = false;
1966			continue;
1967		}
1968		arm_wb |= ring->arm_wb;
1969		ring->arm_wb = false;
1970	}
1971
1972	/* Handle case where we are called by netpoll with a budget of 0 */
1973	if (budget <= 0)
1974		goto tx_only;
1975
1976	/* We attempt to distribute budget to each Rx queue fairly, but don't
1977	 * allow the budget to go below 1 because that would exit polling early.
1978	 */
1979	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1980
1981	i40e_for_each_ring(ring, q_vector->rx) {
1982		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
 
 
1983
1984		work_done += cleaned;
1985		/* if we clean as many as budgeted, we must not be done */
1986		if (cleaned >= budget_per_ring)
1987			clean_complete = false;
1988	}
1989
1990	/* If work not completed, return budget and polling will return */
1991	if (!clean_complete) {
1992		const cpumask_t *aff_mask = &q_vector->affinity_mask;
1993		int cpu_id = smp_processor_id();
1994
1995		/* It is possible that the interrupt affinity has changed but,
1996		 * if the cpu is pegged at 100%, polling will never exit while
1997		 * traffic continues and the interrupt will be stuck on this
1998		 * cpu.  We check to make sure affinity is correct before we
1999		 * continue to poll, otherwise we must stop polling so the
2000		 * interrupt can move to the correct cpu.
2001		 */
2002		if (likely(cpumask_test_cpu(cpu_id, aff_mask) ||
2003			   !(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))) {
 
 
 
 
 
 
 
 
2004tx_only:
2005			if (arm_wb) {
2006				q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2007				i40e_enable_wb_on_itr(vsi, q_vector);
2008			}
2009			return budget;
2010		}
 
2011	}
2012
2013	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2014		q_vector->arm_wb_state = false;
2015
2016	/* Work is done so exit the polling mode and re-enable the interrupt */
2017	napi_complete_done(napi, work_done);
2018
2019	/* If we're prematurely stopping polling to fix the interrupt
2020	 * affinity we want to make sure polling starts back up so we
2021	 * issue a call to i40e_force_wb which triggers a SW interrupt.
2022	 */
2023	if (!clean_complete)
2024		i40e_force_wb(vsi, q_vector);
2025	else if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))
2026		i40e_irq_dynamic_enable_icr0(vsi->back, false);
2027	else
2028		i40e_update_enable_itr(vsi, q_vector);
2029
2030	return min(work_done, budget - 1);
2031}
2032
2033/**
2034 * i40e_atr - Add a Flow Director ATR filter
2035 * @tx_ring:  ring to add programming descriptor to
2036 * @skb:      send buffer
2037 * @tx_flags: send tx flags
2038 **/
2039static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2040		     u32 tx_flags)
2041{
2042	struct i40e_filter_program_desc *fdir_desc;
2043	struct i40e_pf *pf = tx_ring->vsi->back;
2044	union {
2045		unsigned char *network;
2046		struct iphdr *ipv4;
2047		struct ipv6hdr *ipv6;
2048	} hdr;
2049	struct tcphdr *th;
2050	unsigned int hlen;
2051	u32 flex_ptype, dtype_cmd;
2052	int l4_proto;
2053	u16 i;
2054
2055	/* make sure ATR is enabled */
2056	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2057		return;
2058
2059	if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2060		return;
2061
2062	/* if sampling is disabled do nothing */
2063	if (!tx_ring->atr_sample_rate)
2064		return;
2065
2066	/* Currently only IPv4/IPv6 with TCP is supported */
2067	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2068		return;
2069
2070	/* snag network header to get L4 type and address */
2071	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2072		      skb_inner_network_header(skb) : skb_network_header(skb);
2073
2074	/* Note: tx_flags gets modified to reflect inner protocols in
2075	 * tx_enable_csum function if encap is enabled.
2076	 */
2077	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2078		/* access ihl as u8 to avoid unaligned access on ia64 */
2079		hlen = (hdr.network[0] & 0x0F) << 2;
2080		l4_proto = hdr.ipv4->protocol;
2081	} else {
2082		hlen = hdr.network - skb->data;
2083		l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
2084		hlen -= hdr.network - skb->data;
 
 
 
 
 
 
2085	}
2086
2087	if (l4_proto != IPPROTO_TCP)
2088		return;
2089
2090	th = (struct tcphdr *)(hdr.network + hlen);
2091
2092	/* Due to lack of space, no more new filters can be programmed */
2093	if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2094		return;
2095	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2096	    (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE))) {
2097		/* HW ATR eviction will take care of removing filters on FIN
2098		 * and RST packets.
2099		 */
2100		if (th->fin || th->rst)
2101			return;
2102	}
2103
2104	tx_ring->atr_count++;
2105
2106	/* sample on all syn/fin/rst packets or once every atr sample rate */
2107	if (!th->fin &&
2108	    !th->syn &&
2109	    !th->rst &&
2110	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2111		return;
2112
2113	tx_ring->atr_count = 0;
2114
2115	/* grab the next descriptor */
2116	i = tx_ring->next_to_use;
2117	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2118
2119	i++;
2120	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2121
2122	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2123		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2124	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2125		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2126		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2127		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2128		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2129
2130	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2131
2132	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2133
2134	dtype_cmd |= (th->fin || th->rst) ?
2135		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2136		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2137		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2138		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2139
2140	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2141		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2142
2143	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2144		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2145
2146	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2147	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2148		dtype_cmd |=
2149			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2150			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2151			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2152	else
2153		dtype_cmd |=
2154			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2155			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2156			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2157
2158	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2159	    (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)))
2160		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2161
2162	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2163	fdir_desc->rsvd = cpu_to_le32(0);
2164	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2165	fdir_desc->fd_id = cpu_to_le32(0);
2166}
2167
2168/**
2169 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2170 * @skb:     send buffer
2171 * @tx_ring: ring to send buffer on
2172 * @flags:   the tx flags to be set
2173 *
2174 * Checks the skb and set up correspondingly several generic transmit flags
2175 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2176 *
2177 * Returns error code indicate the frame should be dropped upon error and the
2178 * otherwise  returns 0 to indicate the flags has been set properly.
2179 **/
2180#ifdef I40E_FCOE
2181inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2182				      struct i40e_ring *tx_ring,
2183				      u32 *flags)
2184#else
2185static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2186					     struct i40e_ring *tx_ring,
2187					     u32 *flags)
2188#endif
2189{
2190	__be16 protocol = skb->protocol;
2191	u32  tx_flags = 0;
2192
2193	if (protocol == htons(ETH_P_8021Q) &&
2194	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2195		/* When HW VLAN acceleration is turned off by the user the
2196		 * stack sets the protocol to 8021q so that the driver
2197		 * can take any steps required to support the SW only
2198		 * VLAN handling.  In our case the driver doesn't need
2199		 * to take any further steps so just set the protocol
2200		 * to the encapsulated ethertype.
2201		 */
2202		skb->protocol = vlan_get_protocol(skb);
2203		goto out;
2204	}
2205
2206	/* if we have a HW VLAN tag being added, default to the HW one */
2207	if (skb_vlan_tag_present(skb)) {
2208		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2209		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2210	/* else if it is a SW VLAN, check the next protocol and store the tag */
2211	} else if (protocol == htons(ETH_P_8021Q)) {
2212		struct vlan_hdr *vhdr, _vhdr;
2213
2214		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2215		if (!vhdr)
2216			return -EINVAL;
2217
2218		protocol = vhdr->h_vlan_encapsulated_proto;
2219		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2220		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2221	}
2222
2223	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2224		goto out;
2225
2226	/* Insert 802.1p priority into VLAN header */
2227	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2228	    (skb->priority != TC_PRIO_CONTROL)) {
2229		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2230		tx_flags |= (skb->priority & 0x7) <<
2231				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2232		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2233			struct vlan_ethhdr *vhdr;
2234			int rc;
2235
2236			rc = skb_cow_head(skb, 0);
2237			if (rc < 0)
2238				return rc;
2239			vhdr = (struct vlan_ethhdr *)skb->data;
2240			vhdr->h_vlan_TCI = htons(tx_flags >>
2241						 I40E_TX_FLAGS_VLAN_SHIFT);
2242		} else {
2243			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2244		}
2245	}
2246
2247out:
2248	*flags = tx_flags;
2249	return 0;
2250}
2251
2252/**
2253 * i40e_tso - set up the tso context descriptor
2254 * @skb:      ptr to the skb we're sending
2255 * @hdr_len:  ptr to the size of the packet header
2256 * @cd_type_cmd_tso_mss: Quad Word 1
2257 *
2258 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2259 **/
2260static int i40e_tso(struct sk_buff *skb, u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
 
2261{
 
2262	u64 cd_cmd, cd_tso_len, cd_mss;
2263	union {
2264		struct iphdr *v4;
2265		struct ipv6hdr *v6;
2266		unsigned char *hdr;
2267	} ip;
2268	union {
2269		struct tcphdr *tcp;
2270		struct udphdr *udp;
2271		unsigned char *hdr;
2272	} l4;
2273	u32 paylen, l4_offset;
 
2274	int err;
2275
2276	if (skb->ip_summed != CHECKSUM_PARTIAL)
2277		return 0;
2278
2279	if (!skb_is_gso(skb))
2280		return 0;
2281
2282	err = skb_cow_head(skb, 0);
2283	if (err < 0)
2284		return err;
2285
2286	ip.hdr = skb_network_header(skb);
2287	l4.hdr = skb_transport_header(skb);
2288
2289	/* initialize outer IP header fields */
2290	if (ip.v4->version == 4) {
2291		ip.v4->tot_len = 0;
2292		ip.v4->check = 0;
2293	} else {
2294		ip.v6->payload_len = 0;
2295	}
2296
2297	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2298					 SKB_GSO_GRE_CSUM |
2299					 SKB_GSO_IPXIP4 |
2300					 SKB_GSO_IPXIP6 |
2301					 SKB_GSO_UDP_TUNNEL |
2302					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2303		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2304		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2305			l4.udp->len = 0;
2306
2307			/* determine offset of outer transport header */
2308			l4_offset = l4.hdr - skb->data;
2309
2310			/* remove payload length from outer checksum */
2311			paylen = skb->len - l4_offset;
2312			csum_replace_by_diff(&l4.udp->check, htonl(paylen));
 
2313		}
2314
2315		/* reset pointers to inner headers */
2316		ip.hdr = skb_inner_network_header(skb);
2317		l4.hdr = skb_inner_transport_header(skb);
2318
2319		/* initialize inner IP header fields */
2320		if (ip.v4->version == 4) {
2321			ip.v4->tot_len = 0;
2322			ip.v4->check = 0;
2323		} else {
2324			ip.v6->payload_len = 0;
2325		}
2326	}
2327
2328	/* determine offset of inner transport header */
2329	l4_offset = l4.hdr - skb->data;
2330
2331	/* remove payload length from inner checksum */
2332	paylen = skb->len - l4_offset;
2333	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2334
2335	/* compute length of segmentation header */
2336	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2337
 
 
 
 
 
 
 
 
2338	/* find the field values */
2339	cd_cmd = I40E_TX_CTX_DESC_TSO;
2340	cd_tso_len = skb->len - *hdr_len;
2341	cd_mss = skb_shinfo(skb)->gso_size;
2342	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2343				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2344				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2345	return 1;
2346}
2347
2348/**
2349 * i40e_tsyn - set up the tsyn context descriptor
2350 * @tx_ring:  ptr to the ring to send
2351 * @skb:      ptr to the skb we're sending
2352 * @tx_flags: the collected send information
2353 * @cd_type_cmd_tso_mss: Quad Word 1
2354 *
2355 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2356 **/
2357static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2358		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2359{
2360	struct i40e_pf *pf;
2361
2362	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2363		return 0;
2364
2365	/* Tx timestamps cannot be sampled when doing TSO */
2366	if (tx_flags & I40E_TX_FLAGS_TSO)
2367		return 0;
2368
2369	/* only timestamp the outbound packet if the user has requested it and
2370	 * we are not already transmitting a packet to be timestamped
2371	 */
2372	pf = i40e_netdev_to_pf(tx_ring->netdev);
2373	if (!(pf->flags & I40E_FLAG_PTP))
2374		return 0;
2375
2376	if (pf->ptp_tx &&
2377	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2378		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 
2379		pf->ptp_tx_skb = skb_get(skb);
2380	} else {
 
2381		return 0;
2382	}
2383
2384	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2385				I40E_TXD_CTX_QW1_CMD_SHIFT;
2386
2387	return 1;
2388}
2389
2390/**
2391 * i40e_tx_enable_csum - Enable Tx checksum offloads
2392 * @skb: send buffer
2393 * @tx_flags: pointer to Tx flags currently set
2394 * @td_cmd: Tx descriptor command bits to set
2395 * @td_offset: Tx descriptor header offsets to set
2396 * @tx_ring: Tx descriptor ring
2397 * @cd_tunneling: ptr to context desc bits
2398 **/
2399static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2400			       u32 *td_cmd, u32 *td_offset,
2401			       struct i40e_ring *tx_ring,
2402			       u32 *cd_tunneling)
2403{
2404	union {
2405		struct iphdr *v4;
2406		struct ipv6hdr *v6;
2407		unsigned char *hdr;
2408	} ip;
2409	union {
2410		struct tcphdr *tcp;
2411		struct udphdr *udp;
2412		unsigned char *hdr;
2413	} l4;
2414	unsigned char *exthdr;
2415	u32 offset, cmd = 0;
2416	__be16 frag_off;
2417	u8 l4_proto = 0;
2418
2419	if (skb->ip_summed != CHECKSUM_PARTIAL)
2420		return 0;
2421
2422	ip.hdr = skb_network_header(skb);
2423	l4.hdr = skb_transport_header(skb);
2424
2425	/* compute outer L2 header size */
2426	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2427
2428	if (skb->encapsulation) {
2429		u32 tunnel = 0;
2430		/* define outer network header type */
2431		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2432			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2433				  I40E_TX_CTX_EXT_IP_IPV4 :
2434				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2435
2436			l4_proto = ip.v4->protocol;
2437		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2438			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2439
2440			exthdr = ip.hdr + sizeof(*ip.v6);
2441			l4_proto = ip.v6->nexthdr;
2442			if (l4.hdr != exthdr)
2443				ipv6_skip_exthdr(skb, exthdr - skb->data,
2444						 &l4_proto, &frag_off);
2445		}
2446
2447		/* define outer transport */
2448		switch (l4_proto) {
2449		case IPPROTO_UDP:
2450			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2451			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2452			break;
2453		case IPPROTO_GRE:
2454			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2455			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2456			break;
2457		case IPPROTO_IPIP:
2458		case IPPROTO_IPV6:
2459			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2460			l4.hdr = skb_inner_network_header(skb);
2461			break;
2462		default:
2463			if (*tx_flags & I40E_TX_FLAGS_TSO)
2464				return -1;
2465
2466			skb_checksum_help(skb);
2467			return 0;
2468		}
2469
2470		/* compute outer L3 header size */
2471		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2472			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2473
2474		/* switch IP header pointer from outer to inner header */
2475		ip.hdr = skb_inner_network_header(skb);
2476
2477		/* compute tunnel header size */
2478		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2479			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2480
2481		/* indicate if we need to offload outer UDP header */
2482		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2483		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2484		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2485			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2486
2487		/* record tunnel offload values */
2488		*cd_tunneling |= tunnel;
2489
2490		/* switch L4 header pointer from outer to inner */
2491		l4.hdr = skb_inner_transport_header(skb);
2492		l4_proto = 0;
2493
2494		/* reset type as we transition from outer to inner headers */
2495		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
2496		if (ip.v4->version == 4)
2497			*tx_flags |= I40E_TX_FLAGS_IPV4;
2498		if (ip.v6->version == 6)
2499			*tx_flags |= I40E_TX_FLAGS_IPV6;
2500	}
2501
2502	/* Enable IP checksum offloads */
2503	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2504		l4_proto = ip.v4->protocol;
2505		/* the stack computes the IP header already, the only time we
2506		 * need the hardware to recompute it is in the case of TSO.
2507		 */
2508		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2509		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
2510		       I40E_TX_DESC_CMD_IIPT_IPV4;
2511	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2512		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2513
2514		exthdr = ip.hdr + sizeof(*ip.v6);
2515		l4_proto = ip.v6->nexthdr;
2516		if (l4.hdr != exthdr)
2517			ipv6_skip_exthdr(skb, exthdr - skb->data,
2518					 &l4_proto, &frag_off);
2519	}
2520
2521	/* compute inner L3 header size */
2522	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2523
2524	/* Enable L4 checksum offloads */
2525	switch (l4_proto) {
2526	case IPPROTO_TCP:
2527		/* enable checksum offloads */
2528		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2529		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2530		break;
2531	case IPPROTO_SCTP:
2532		/* enable SCTP checksum offload */
2533		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2534		offset |= (sizeof(struct sctphdr) >> 2) <<
2535			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2536		break;
2537	case IPPROTO_UDP:
2538		/* enable UDP checksum offload */
2539		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2540		offset |= (sizeof(struct udphdr) >> 2) <<
2541			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2542		break;
2543	default:
2544		if (*tx_flags & I40E_TX_FLAGS_TSO)
2545			return -1;
2546		skb_checksum_help(skb);
2547		return 0;
2548	}
2549
2550	*td_cmd |= cmd;
2551	*td_offset |= offset;
2552
2553	return 1;
2554}
2555
2556/**
2557 * i40e_create_tx_ctx Build the Tx context descriptor
2558 * @tx_ring:  ring to create the descriptor on
2559 * @cd_type_cmd_tso_mss: Quad Word 1
2560 * @cd_tunneling: Quad Word 0 - bits 0-31
2561 * @cd_l2tag2: Quad Word 0 - bits 32-63
2562 **/
2563static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2564			       const u64 cd_type_cmd_tso_mss,
2565			       const u32 cd_tunneling, const u32 cd_l2tag2)
2566{
2567	struct i40e_tx_context_desc *context_desc;
2568	int i = tx_ring->next_to_use;
2569
2570	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2571	    !cd_tunneling && !cd_l2tag2)
2572		return;
2573
2574	/* grab the next descriptor */
2575	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2576
2577	i++;
2578	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2579
2580	/* cpu_to_le32 and assign to struct fields */
2581	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2582	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2583	context_desc->rsvd = cpu_to_le16(0);
2584	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2585}
2586
2587/**
2588 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2589 * @tx_ring: the ring to be checked
2590 * @size:    the size buffer we want to assure is available
2591 *
2592 * Returns -EBUSY if a stop is needed, else 0
2593 **/
2594int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2595{
2596	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2597	/* Memory barrier before checking head and tail */
2598	smp_mb();
2599
2600	/* Check again in a case another CPU has just made room available. */
2601	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2602		return -EBUSY;
2603
2604	/* A reprieve! - use start_queue because it doesn't call schedule */
2605	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2606	++tx_ring->tx_stats.restart_queue;
2607	return 0;
2608}
2609
2610/**
2611 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
2612 * @skb:      send buffer
2613 *
2614 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2615 * and so we need to figure out the cases where we need to linearize the skb.
2616 *
2617 * For TSO we need to count the TSO header and segment payload separately.
2618 * As such we need to check cases where we have 7 fragments or more as we
2619 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2620 * the segment payload in the first descriptor, and another 7 for the
2621 * fragments.
2622 **/
2623bool __i40e_chk_linearize(struct sk_buff *skb)
2624{
2625	const struct skb_frag_struct *frag, *stale;
2626	int nr_frags, sum;
2627
2628	/* no need to check if number of frags is less than 7 */
2629	nr_frags = skb_shinfo(skb)->nr_frags;
2630	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2631		return false;
2632
2633	/* We need to walk through the list and validate that each group
2634	 * of 6 fragments totals at least gso_size.
2635	 */
2636	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2637	frag = &skb_shinfo(skb)->frags[0];
2638
2639	/* Initialize size to the negative value of gso_size minus 1.  We
2640	 * use this as the worst case scenerio in which the frag ahead
2641	 * of us only provides one byte which is why we are limited to 6
2642	 * descriptors for a single transmit as the header and previous
2643	 * fragment are already consuming 2 descriptors.
2644	 */
2645	sum = 1 - skb_shinfo(skb)->gso_size;
2646
2647	/* Add size of frags 0 through 4 to create our initial sum */
2648	sum += skb_frag_size(frag++);
2649	sum += skb_frag_size(frag++);
2650	sum += skb_frag_size(frag++);
2651	sum += skb_frag_size(frag++);
2652	sum += skb_frag_size(frag++);
2653
2654	/* Walk through fragments adding latest fragment, testing it, and
2655	 * then removing stale fragments from the sum.
2656	 */
2657	stale = &skb_shinfo(skb)->frags[0];
2658	for (;;) {
 
2659		sum += skb_frag_size(frag++);
2660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2661		/* if sum is negative we failed to make sufficient progress */
2662		if (sum < 0)
2663			return true;
2664
2665		if (!nr_frags--)
2666			break;
2667
2668		sum -= skb_frag_size(stale++);
2669	}
2670
2671	return false;
2672}
2673
2674/**
2675 * i40e_tx_map - Build the Tx descriptor
2676 * @tx_ring:  ring to send buffer on
2677 * @skb:      send buffer
2678 * @first:    first buffer info buffer to use
2679 * @tx_flags: collected send information
2680 * @hdr_len:  size of the packet header
2681 * @td_cmd:   the command field in the descriptor
2682 * @td_offset: offset for checksum or crc
 
 
2683 **/
2684#ifdef I40E_FCOE
2685inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2686			struct i40e_tx_buffer *first, u32 tx_flags,
2687			const u8 hdr_len, u32 td_cmd, u32 td_offset)
2688#else
2689static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2690			       struct i40e_tx_buffer *first, u32 tx_flags,
2691			       const u8 hdr_len, u32 td_cmd, u32 td_offset)
2692#endif
2693{
2694	unsigned int data_len = skb->data_len;
2695	unsigned int size = skb_headlen(skb);
2696	struct skb_frag_struct *frag;
2697	struct i40e_tx_buffer *tx_bi;
2698	struct i40e_tx_desc *tx_desc;
2699	u16 i = tx_ring->next_to_use;
2700	u32 td_tag = 0;
2701	dma_addr_t dma;
2702	u16 gso_segs;
2703	u16 desc_count = 1;
2704
2705	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2706		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2707		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2708			 I40E_TX_FLAGS_VLAN_SHIFT;
2709	}
2710
2711	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2712		gso_segs = skb_shinfo(skb)->gso_segs;
2713	else
2714		gso_segs = 1;
2715
2716	/* multiply data chunks by size of headers */
2717	first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2718	first->gso_segs = gso_segs;
2719	first->skb = skb;
2720	first->tx_flags = tx_flags;
2721
2722	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2723
2724	tx_desc = I40E_TX_DESC(tx_ring, i);
2725	tx_bi = first;
2726
2727	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2728		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2729
2730		if (dma_mapping_error(tx_ring->dev, dma))
2731			goto dma_error;
2732
2733		/* record length, and DMA address */
2734		dma_unmap_len_set(tx_bi, len, size);
2735		dma_unmap_addr_set(tx_bi, dma, dma);
2736
2737		/* align size to end of page */
2738		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
2739		tx_desc->buffer_addr = cpu_to_le64(dma);
2740
2741		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2742			tx_desc->cmd_type_offset_bsz =
2743				build_ctob(td_cmd, td_offset,
2744					   max_data, td_tag);
2745
2746			tx_desc++;
2747			i++;
2748			desc_count++;
2749
2750			if (i == tx_ring->count) {
2751				tx_desc = I40E_TX_DESC(tx_ring, 0);
2752				i = 0;
2753			}
2754
2755			dma += max_data;
2756			size -= max_data;
2757
2758			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2759			tx_desc->buffer_addr = cpu_to_le64(dma);
2760		}
2761
2762		if (likely(!data_len))
2763			break;
2764
2765		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2766							  size, td_tag);
2767
2768		tx_desc++;
2769		i++;
2770		desc_count++;
2771
2772		if (i == tx_ring->count) {
2773			tx_desc = I40E_TX_DESC(tx_ring, 0);
2774			i = 0;
2775		}
2776
2777		size = skb_frag_size(frag);
2778		data_len -= size;
2779
2780		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2781				       DMA_TO_DEVICE);
2782
2783		tx_bi = &tx_ring->tx_bi[i];
2784	}
2785
2786	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2787
2788	i++;
2789	if (i == tx_ring->count)
2790		i = 0;
2791
2792	tx_ring->next_to_use = i;
2793
2794	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2795
2796	/* write last descriptor with EOP bit */
2797	td_cmd |= I40E_TX_DESC_CMD_EOP;
2798
2799	/* We can OR these values together as they both are checked against
2800	 * 4 below and at this point desc_count will be used as a boolean value
2801	 * after this if/else block.
2802	 */
2803	desc_count |= ++tx_ring->packet_stride;
2804
2805	/* Algorithm to optimize tail and RS bit setting:
2806	 * if queue is stopped
2807	 *	mark RS bit
2808	 *	reset packet counter
2809	 * else if xmit_more is supported and is true
2810	 *	advance packet counter to 4
2811	 *	reset desc_count to 0
2812	 *
2813	 * if desc_count >= 4
2814	 *	mark RS bit
2815	 *	reset packet counter
2816	 * if desc_count > 0
2817	 *	update tail
2818	 *
2819	 * Note: If there are less than 4 descriptors
2820	 * pending and interrupts were disabled the service task will
2821	 * trigger a force WB.
2822	 */
2823	if (netif_xmit_stopped(txring_txq(tx_ring))) {
2824		goto do_rs;
2825	} else if (skb->xmit_more) {
2826		/* set stride to arm on next packet and reset desc_count */
2827		tx_ring->packet_stride = WB_STRIDE;
2828		desc_count = 0;
2829	} else if (desc_count >= WB_STRIDE) {
2830do_rs:
2831		/* write last descriptor with RS bit set */
2832		td_cmd |= I40E_TX_DESC_CMD_RS;
2833		tx_ring->packet_stride = 0;
2834	}
2835
2836	tx_desc->cmd_type_offset_bsz =
2837			build_ctob(td_cmd, td_offset, size, td_tag);
2838
 
 
2839	/* Force memory writes to complete before letting h/w know there
2840	 * are new descriptors to fetch.
2841	 *
2842	 * We also use this memory barrier to make certain all of the
2843	 * status bits have been updated before next_to_watch is written.
2844	 */
2845	wmb();
2846
2847	/* set next_to_watch value indicating a packet is present */
2848	first->next_to_watch = tx_desc;
2849
2850	/* notify HW of packet */
2851	if (desc_count) {
2852		writel(i, tx_ring->tail);
2853
2854		/* we need this if more than one processor can write to our tail
2855		 * at a time, it synchronizes IO on IA64/Altix systems
2856		 */
2857		mmiowb();
2858	}
2859
2860	return;
2861
2862dma_error:
2863	dev_info(tx_ring->dev, "TX DMA map failed\n");
2864
2865	/* clear dma mappings for failed tx_bi map */
2866	for (;;) {
2867		tx_bi = &tx_ring->tx_bi[i];
2868		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2869		if (tx_bi == first)
2870			break;
2871		if (i == 0)
2872			i = tx_ring->count;
2873		i--;
2874	}
2875
2876	tx_ring->next_to_use = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2877}
2878
2879/**
2880 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2881 * @skb:     send buffer
2882 * @tx_ring: ring to send buffer on
2883 *
2884 * Returns NETDEV_TX_OK if sent, else an error code
2885 **/
2886static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2887					struct i40e_ring *tx_ring)
2888{
2889	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2890	u32 cd_tunneling = 0, cd_l2tag2 = 0;
2891	struct i40e_tx_buffer *first;
2892	u32 td_offset = 0;
2893	u32 tx_flags = 0;
2894	__be16 protocol;
2895	u32 td_cmd = 0;
2896	u8 hdr_len = 0;
2897	int tso, count;
2898	int tsyn;
2899
2900	/* prefetch the data, we'll need it later */
2901	prefetch(skb->data);
2902
 
 
2903	count = i40e_xmit_descriptor_count(skb);
2904	if (i40e_chk_linearize(skb, count)) {
2905		if (__skb_linearize(skb))
2906			goto out_drop;
 
 
2907		count = i40e_txd_use_count(skb->len);
2908		tx_ring->tx_stats.tx_linearize++;
2909	}
2910
2911	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2912	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2913	 *       + 4 desc gap to avoid the cache line where head is,
2914	 *       + 1 desc for context descriptor,
2915	 * otherwise try next time
2916	 */
2917	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2918		tx_ring->tx_stats.tx_busy++;
2919		return NETDEV_TX_BUSY;
2920	}
2921
 
 
 
 
 
 
2922	/* prepare the xmit flags */
2923	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2924		goto out_drop;
2925
2926	/* obtain protocol of skb */
2927	protocol = vlan_get_protocol(skb);
2928
2929	/* record the location of the first descriptor for this packet */
2930	first = &tx_ring->tx_bi[tx_ring->next_to_use];
2931
2932	/* setup IPv4/IPv6 offloads */
2933	if (protocol == htons(ETH_P_IP))
2934		tx_flags |= I40E_TX_FLAGS_IPV4;
2935	else if (protocol == htons(ETH_P_IPV6))
2936		tx_flags |= I40E_TX_FLAGS_IPV6;
2937
2938	tso = i40e_tso(skb, &hdr_len, &cd_type_cmd_tso_mss);
2939
2940	if (tso < 0)
2941		goto out_drop;
2942	else if (tso)
2943		tx_flags |= I40E_TX_FLAGS_TSO;
2944
2945	/* Always offload the checksum, since it's in the data descriptor */
2946	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2947				  tx_ring, &cd_tunneling);
2948	if (tso < 0)
2949		goto out_drop;
2950
2951	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2952
2953	if (tsyn)
2954		tx_flags |= I40E_TX_FLAGS_TSYN;
2955
2956	skb_tx_timestamp(skb);
2957
2958	/* always enable CRC insertion offload */
2959	td_cmd |= I40E_TX_DESC_CMD_ICRC;
2960
2961	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2962			   cd_tunneling, cd_l2tag2);
2963
2964	/* Add Flow Director ATR if it's enabled.
2965	 *
2966	 * NOTE: this must always be directly before the data descriptor.
2967	 */
2968	i40e_atr(tx_ring, skb, tx_flags);
2969
2970	i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2971		    td_cmd, td_offset);
 
2972
2973	return NETDEV_TX_OK;
2974
2975out_drop:
2976	dev_kfree_skb_any(skb);
 
 
 
 
 
 
 
 
 
 
 
2977	return NETDEV_TX_OK;
2978}
2979
2980/**
2981 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2982 * @skb:    send buffer
2983 * @netdev: network interface device structure
2984 *
2985 * Returns NETDEV_TX_OK if sent, else an error code
2986 **/
2987netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2988{
2989	struct i40e_netdev_priv *np = netdev_priv(netdev);
2990	struct i40e_vsi *vsi = np->vsi;
2991	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2992
2993	/* hardware can't handle really short frames, hardware padding works
2994	 * beyond this point
2995	 */
2996	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2997		return NETDEV_TX_OK;
2998
2999	return i40e_xmit_frame_ring(skb, tx_ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3000}