Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
4 *
5 * Copyright (C) 2008 Atmel Corporation
6 *
7 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
8 * The only Atmel DMA Controller that is not covered by this driver is the one
9 * found on AT91SAM9263.
10 */
11
12#include <dt-bindings/dma/at91.h>
13#include <linux/clk.h>
14#include <linux/dmaengine.h>
15#include <linux/dma-mapping.h>
16#include <linux/dmapool.h>
17#include <linux/interrupt.h>
18#include <linux/module.h>
19#include <linux/platform_device.h>
20#include <linux/slab.h>
21#include <linux/of.h>
22#include <linux/of_device.h>
23#include <linux/of_dma.h>
24
25#include "at_hdmac_regs.h"
26#include "dmaengine.h"
27
28/*
29 * Glossary
30 * --------
31 *
32 * at_hdmac : Name of the ATmel AHB DMA Controller
33 * at_dma_ / atdma : ATmel DMA controller entity related
34 * atc_ / atchan : ATmel DMA Channel entity related
35 */
36
37#define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO)
38#define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \
39 |ATC_DIF(AT_DMA_MEM_IF))
40#define ATC_DMA_BUSWIDTHS\
41 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
42 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
43 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
44 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
45
46#define ATC_MAX_DSCR_TRIALS 10
47
48/*
49 * Initial number of descriptors to allocate for each channel. This could
50 * be increased during dma usage.
51 */
52static unsigned int init_nr_desc_per_channel = 64;
53module_param(init_nr_desc_per_channel, uint, 0644);
54MODULE_PARM_DESC(init_nr_desc_per_channel,
55 "initial descriptors per channel (default: 64)");
56
57
58/* prototypes */
59static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
60static void atc_issue_pending(struct dma_chan *chan);
61
62
63/*----------------------------------------------------------------------*/
64
65static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
66 size_t len)
67{
68 unsigned int width;
69
70 if (!((src | dst | len) & 3))
71 width = 2;
72 else if (!((src | dst | len) & 1))
73 width = 1;
74 else
75 width = 0;
76
77 return width;
78}
79
80static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
81{
82 return list_first_entry(&atchan->active_list,
83 struct at_desc, desc_node);
84}
85
86static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
87{
88 return list_first_entry(&atchan->queue,
89 struct at_desc, desc_node);
90}
91
92/**
93 * atc_alloc_descriptor - allocate and return an initialized descriptor
94 * @chan: the channel to allocate descriptors for
95 * @gfp_flags: GFP allocation flags
96 *
97 * Note: The ack-bit is positioned in the descriptor flag at creation time
98 * to make initial allocation more convenient. This bit will be cleared
99 * and control will be given to client at usage time (during
100 * preparation functions).
101 */
102static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
103 gfp_t gfp_flags)
104{
105 struct at_desc *desc = NULL;
106 struct at_dma *atdma = to_at_dma(chan->device);
107 dma_addr_t phys;
108
109 desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys);
110 if (desc) {
111 INIT_LIST_HEAD(&desc->tx_list);
112 dma_async_tx_descriptor_init(&desc->txd, chan);
113 /* txd.flags will be overwritten in prep functions */
114 desc->txd.flags = DMA_CTRL_ACK;
115 desc->txd.tx_submit = atc_tx_submit;
116 desc->txd.phys = phys;
117 }
118
119 return desc;
120}
121
122/**
123 * atc_desc_get - get an unused descriptor from free_list
124 * @atchan: channel we want a new descriptor for
125 */
126static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
127{
128 struct at_desc *desc, *_desc;
129 struct at_desc *ret = NULL;
130 unsigned long flags;
131 unsigned int i = 0;
132
133 spin_lock_irqsave(&atchan->lock, flags);
134 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
135 i++;
136 if (async_tx_test_ack(&desc->txd)) {
137 list_del(&desc->desc_node);
138 ret = desc;
139 break;
140 }
141 dev_dbg(chan2dev(&atchan->chan_common),
142 "desc %p not ACKed\n", desc);
143 }
144 spin_unlock_irqrestore(&atchan->lock, flags);
145 dev_vdbg(chan2dev(&atchan->chan_common),
146 "scanned %u descriptors on freelist\n", i);
147
148 /* no more descriptor available in initial pool: create one more */
149 if (!ret) {
150 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
151 if (ret) {
152 spin_lock_irqsave(&atchan->lock, flags);
153 atchan->descs_allocated++;
154 spin_unlock_irqrestore(&atchan->lock, flags);
155 } else {
156 dev_err(chan2dev(&atchan->chan_common),
157 "not enough descriptors available\n");
158 }
159 }
160
161 return ret;
162}
163
164/**
165 * atc_desc_put - move a descriptor, including any children, to the free list
166 * @atchan: channel we work on
167 * @desc: descriptor, at the head of a chain, to move to free list
168 */
169static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
170{
171 if (desc) {
172 struct at_desc *child;
173 unsigned long flags;
174
175 spin_lock_irqsave(&atchan->lock, flags);
176 list_for_each_entry(child, &desc->tx_list, desc_node)
177 dev_vdbg(chan2dev(&atchan->chan_common),
178 "moving child desc %p to freelist\n",
179 child);
180 list_splice_init(&desc->tx_list, &atchan->free_list);
181 dev_vdbg(chan2dev(&atchan->chan_common),
182 "moving desc %p to freelist\n", desc);
183 list_add(&desc->desc_node, &atchan->free_list);
184 spin_unlock_irqrestore(&atchan->lock, flags);
185 }
186}
187
188/**
189 * atc_desc_chain - build chain adding a descriptor
190 * @first: address of first descriptor of the chain
191 * @prev: address of previous descriptor of the chain
192 * @desc: descriptor to queue
193 *
194 * Called from prep_* functions
195 */
196static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
197 struct at_desc *desc)
198{
199 if (!(*first)) {
200 *first = desc;
201 } else {
202 /* inform the HW lli about chaining */
203 (*prev)->lli.dscr = desc->txd.phys;
204 /* insert the link descriptor to the LD ring */
205 list_add_tail(&desc->desc_node,
206 &(*first)->tx_list);
207 }
208 *prev = desc;
209}
210
211/**
212 * atc_dostart - starts the DMA engine for real
213 * @atchan: the channel we want to start
214 * @first: first descriptor in the list we want to begin with
215 *
216 * Called with atchan->lock held and bh disabled
217 */
218static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
219{
220 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
221
222 /* ASSERT: channel is idle */
223 if (atc_chan_is_enabled(atchan)) {
224 dev_err(chan2dev(&atchan->chan_common),
225 "BUG: Attempted to start non-idle channel\n");
226 dev_err(chan2dev(&atchan->chan_common),
227 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
228 channel_readl(atchan, SADDR),
229 channel_readl(atchan, DADDR),
230 channel_readl(atchan, CTRLA),
231 channel_readl(atchan, CTRLB),
232 channel_readl(atchan, DSCR));
233
234 /* The tasklet will hopefully advance the queue... */
235 return;
236 }
237
238 vdbg_dump_regs(atchan);
239
240 channel_writel(atchan, SADDR, 0);
241 channel_writel(atchan, DADDR, 0);
242 channel_writel(atchan, CTRLA, 0);
243 channel_writel(atchan, CTRLB, 0);
244 channel_writel(atchan, DSCR, first->txd.phys);
245 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
246 ATC_SPIP_BOUNDARY(first->boundary));
247 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
248 ATC_DPIP_BOUNDARY(first->boundary));
249 dma_writel(atdma, CHER, atchan->mask);
250
251 vdbg_dump_regs(atchan);
252}
253
254/*
255 * atc_get_desc_by_cookie - get the descriptor of a cookie
256 * @atchan: the DMA channel
257 * @cookie: the cookie to get the descriptor for
258 */
259static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
260 dma_cookie_t cookie)
261{
262 struct at_desc *desc, *_desc;
263
264 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
265 if (desc->txd.cookie == cookie)
266 return desc;
267 }
268
269 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
270 if (desc->txd.cookie == cookie)
271 return desc;
272 }
273
274 return NULL;
275}
276
277/**
278 * atc_calc_bytes_left - calculates the number of bytes left according to the
279 * value read from CTRLA.
280 *
281 * @current_len: the number of bytes left before reading CTRLA
282 * @ctrla: the value of CTRLA
283 */
284static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
285{
286 u32 btsize = (ctrla & ATC_BTSIZE_MAX);
287 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
288
289 /*
290 * According to the datasheet, when reading the Control A Register
291 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
292 * number of transfers completed on the Source Interface.
293 * So btsize is always a number of source width transfers.
294 */
295 return current_len - (btsize << src_width);
296}
297
298/**
299 * atc_get_bytes_left - get the number of bytes residue for a cookie
300 * @chan: DMA channel
301 * @cookie: transaction identifier to check status of
302 */
303static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
304{
305 struct at_dma_chan *atchan = to_at_dma_chan(chan);
306 struct at_desc *desc_first = atc_first_active(atchan);
307 struct at_desc *desc;
308 int ret;
309 u32 ctrla, dscr, trials;
310
311 /*
312 * If the cookie doesn't match to the currently running transfer then
313 * we can return the total length of the associated DMA transfer,
314 * because it is still queued.
315 */
316 desc = atc_get_desc_by_cookie(atchan, cookie);
317 if (desc == NULL)
318 return -EINVAL;
319 else if (desc != desc_first)
320 return desc->total_len;
321
322 /* cookie matches to the currently running transfer */
323 ret = desc_first->total_len;
324
325 if (desc_first->lli.dscr) {
326 /* hardware linked list transfer */
327
328 /*
329 * Calculate the residue by removing the length of the child
330 * descriptors already transferred from the total length.
331 * To get the current child descriptor we can use the value of
332 * the channel's DSCR register and compare it against the value
333 * of the hardware linked list structure of each child
334 * descriptor.
335 *
336 * The CTRLA register provides us with the amount of data
337 * already read from the source for the current child
338 * descriptor. So we can compute a more accurate residue by also
339 * removing the number of bytes corresponding to this amount of
340 * data.
341 *
342 * However, the DSCR and CTRLA registers cannot be read both
343 * atomically. Hence a race condition may occur: the first read
344 * register may refer to one child descriptor whereas the second
345 * read may refer to a later child descriptor in the list
346 * because of the DMA transfer progression inbetween the two
347 * reads.
348 *
349 * One solution could have been to pause the DMA transfer, read
350 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
351 * this approach presents some drawbacks:
352 * - If the DMA transfer is paused, RX overruns or TX underruns
353 * are more likey to occur depending on the system latency.
354 * Taking the USART driver as an example, it uses a cyclic DMA
355 * transfer to read data from the Receive Holding Register
356 * (RHR) to avoid RX overruns since the RHR is not protected
357 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer
358 * to compute the residue would break the USART driver design.
359 * - The atc_pause() function masks interrupts but we'd rather
360 * avoid to do so for system latency purpose.
361 *
362 * Then we'd rather use another solution: the DSCR is read a
363 * first time, the CTRLA is read in turn, next the DSCR is read
364 * a second time. If the two consecutive read values of the DSCR
365 * are the same then we assume both refers to the very same
366 * child descriptor as well as the CTRLA value read inbetween
367 * does. For cyclic tranfers, the assumption is that a full loop
368 * is "not so fast".
369 * If the two DSCR values are different, we read again the CTRLA
370 * then the DSCR till two consecutive read values from DSCR are
371 * equal or till the maxium trials is reach.
372 * This algorithm is very unlikely not to find a stable value for
373 * DSCR.
374 */
375
376 dscr = channel_readl(atchan, DSCR);
377 rmb(); /* ensure DSCR is read before CTRLA */
378 ctrla = channel_readl(atchan, CTRLA);
379 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
380 u32 new_dscr;
381
382 rmb(); /* ensure DSCR is read after CTRLA */
383 new_dscr = channel_readl(atchan, DSCR);
384
385 /*
386 * If the DSCR register value has not changed inside the
387 * DMA controller since the previous read, we assume
388 * that both the dscr and ctrla values refers to the
389 * very same descriptor.
390 */
391 if (likely(new_dscr == dscr))
392 break;
393
394 /*
395 * DSCR has changed inside the DMA controller, so the
396 * previouly read value of CTRLA may refer to an already
397 * processed descriptor hence could be outdated.
398 * We need to update ctrla to match the current
399 * descriptor.
400 */
401 dscr = new_dscr;
402 rmb(); /* ensure DSCR is read before CTRLA */
403 ctrla = channel_readl(atchan, CTRLA);
404 }
405 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
406 return -ETIMEDOUT;
407
408 /* for the first descriptor we can be more accurate */
409 if (desc_first->lli.dscr == dscr)
410 return atc_calc_bytes_left(ret, ctrla);
411
412 ret -= desc_first->len;
413 list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
414 if (desc->lli.dscr == dscr)
415 break;
416
417 ret -= desc->len;
418 }
419
420 /*
421 * For the current descriptor in the chain we can calculate
422 * the remaining bytes using the channel's register.
423 */
424 ret = atc_calc_bytes_left(ret, ctrla);
425 } else {
426 /* single transfer */
427 ctrla = channel_readl(atchan, CTRLA);
428 ret = atc_calc_bytes_left(ret, ctrla);
429 }
430
431 return ret;
432}
433
434/**
435 * atc_chain_complete - finish work for one transaction chain
436 * @atchan: channel we work on
437 * @desc: descriptor at the head of the chain we want do complete
438 *
439 * Called with atchan->lock held and bh disabled */
440static void
441atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
442{
443 struct dma_async_tx_descriptor *txd = &desc->txd;
444 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
445
446 dev_vdbg(chan2dev(&atchan->chan_common),
447 "descriptor %u complete\n", txd->cookie);
448
449 /* mark the descriptor as complete for non cyclic cases only */
450 if (!atc_chan_is_cyclic(atchan))
451 dma_cookie_complete(txd);
452
453 /* If the transfer was a memset, free our temporary buffer */
454 if (desc->memset_buffer) {
455 dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
456 desc->memset_paddr);
457 desc->memset_buffer = false;
458 }
459
460 /* move children to free_list */
461 list_splice_init(&desc->tx_list, &atchan->free_list);
462 /* move myself to free_list */
463 list_move(&desc->desc_node, &atchan->free_list);
464
465 dma_descriptor_unmap(txd);
466 /* for cyclic transfers,
467 * no need to replay callback function while stopping */
468 if (!atc_chan_is_cyclic(atchan)) {
469 /*
470 * The API requires that no submissions are done from a
471 * callback, so we don't need to drop the lock here
472 */
473 dmaengine_desc_get_callback_invoke(txd, NULL);
474 }
475
476 dma_run_dependencies(txd);
477}
478
479/**
480 * atc_complete_all - finish work for all transactions
481 * @atchan: channel to complete transactions for
482 *
483 * Eventually submit queued descriptors if any
484 *
485 * Assume channel is idle while calling this function
486 * Called with atchan->lock held and bh disabled
487 */
488static void atc_complete_all(struct at_dma_chan *atchan)
489{
490 struct at_desc *desc, *_desc;
491 LIST_HEAD(list);
492
493 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
494
495 /*
496 * Submit queued descriptors ASAP, i.e. before we go through
497 * the completed ones.
498 */
499 if (!list_empty(&atchan->queue))
500 atc_dostart(atchan, atc_first_queued(atchan));
501 /* empty active_list now it is completed */
502 list_splice_init(&atchan->active_list, &list);
503 /* empty queue list by moving descriptors (if any) to active_list */
504 list_splice_init(&atchan->queue, &atchan->active_list);
505
506 list_for_each_entry_safe(desc, _desc, &list, desc_node)
507 atc_chain_complete(atchan, desc);
508}
509
510/**
511 * atc_advance_work - at the end of a transaction, move forward
512 * @atchan: channel where the transaction ended
513 *
514 * Called with atchan->lock held and bh disabled
515 */
516static void atc_advance_work(struct at_dma_chan *atchan)
517{
518 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
519
520 if (atc_chan_is_enabled(atchan))
521 return;
522
523 if (list_empty(&atchan->active_list) ||
524 list_is_singular(&atchan->active_list)) {
525 atc_complete_all(atchan);
526 } else {
527 atc_chain_complete(atchan, atc_first_active(atchan));
528 /* advance work */
529 atc_dostart(atchan, atc_first_active(atchan));
530 }
531}
532
533
534/**
535 * atc_handle_error - handle errors reported by DMA controller
536 * @atchan: channel where error occurs
537 *
538 * Called with atchan->lock held and bh disabled
539 */
540static void atc_handle_error(struct at_dma_chan *atchan)
541{
542 struct at_desc *bad_desc;
543 struct at_desc *child;
544
545 /*
546 * The descriptor currently at the head of the active list is
547 * broked. Since we don't have any way to report errors, we'll
548 * just have to scream loudly and try to carry on.
549 */
550 bad_desc = atc_first_active(atchan);
551 list_del_init(&bad_desc->desc_node);
552
553 /* As we are stopped, take advantage to push queued descriptors
554 * in active_list */
555 list_splice_init(&atchan->queue, atchan->active_list.prev);
556
557 /* Try to restart the controller */
558 if (!list_empty(&atchan->active_list))
559 atc_dostart(atchan, atc_first_active(atchan));
560
561 /*
562 * KERN_CRITICAL may seem harsh, but since this only happens
563 * when someone submits a bad physical address in a
564 * descriptor, we should consider ourselves lucky that the
565 * controller flagged an error instead of scribbling over
566 * random memory locations.
567 */
568 dev_crit(chan2dev(&atchan->chan_common),
569 "Bad descriptor submitted for DMA!\n");
570 dev_crit(chan2dev(&atchan->chan_common),
571 " cookie: %d\n", bad_desc->txd.cookie);
572 atc_dump_lli(atchan, &bad_desc->lli);
573 list_for_each_entry(child, &bad_desc->tx_list, desc_node)
574 atc_dump_lli(atchan, &child->lli);
575
576 /* Pretend the descriptor completed successfully */
577 atc_chain_complete(atchan, bad_desc);
578}
579
580/**
581 * atc_handle_cyclic - at the end of a period, run callback function
582 * @atchan: channel used for cyclic operations
583 *
584 * Called with atchan->lock held and bh disabled
585 */
586static void atc_handle_cyclic(struct at_dma_chan *atchan)
587{
588 struct at_desc *first = atc_first_active(atchan);
589 struct dma_async_tx_descriptor *txd = &first->txd;
590
591 dev_vdbg(chan2dev(&atchan->chan_common),
592 "new cyclic period llp 0x%08x\n",
593 channel_readl(atchan, DSCR));
594
595 dmaengine_desc_get_callback_invoke(txd, NULL);
596}
597
598/*-- IRQ & Tasklet ---------------------------------------------------*/
599
600static void atc_tasklet(unsigned long data)
601{
602 struct at_dma_chan *atchan = (struct at_dma_chan *)data;
603 unsigned long flags;
604
605 spin_lock_irqsave(&atchan->lock, flags);
606 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
607 atc_handle_error(atchan);
608 else if (atc_chan_is_cyclic(atchan))
609 atc_handle_cyclic(atchan);
610 else
611 atc_advance_work(atchan);
612
613 spin_unlock_irqrestore(&atchan->lock, flags);
614}
615
616static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
617{
618 struct at_dma *atdma = (struct at_dma *)dev_id;
619 struct at_dma_chan *atchan;
620 int i;
621 u32 status, pending, imr;
622 int ret = IRQ_NONE;
623
624 do {
625 imr = dma_readl(atdma, EBCIMR);
626 status = dma_readl(atdma, EBCISR);
627 pending = status & imr;
628
629 if (!pending)
630 break;
631
632 dev_vdbg(atdma->dma_common.dev,
633 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
634 status, imr, pending);
635
636 for (i = 0; i < atdma->dma_common.chancnt; i++) {
637 atchan = &atdma->chan[i];
638 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
639 if (pending & AT_DMA_ERR(i)) {
640 /* Disable channel on AHB error */
641 dma_writel(atdma, CHDR,
642 AT_DMA_RES(i) | atchan->mask);
643 /* Give information to tasklet */
644 set_bit(ATC_IS_ERROR, &atchan->status);
645 }
646 tasklet_schedule(&atchan->tasklet);
647 ret = IRQ_HANDLED;
648 }
649 }
650
651 } while (pending);
652
653 return ret;
654}
655
656
657/*-- DMA Engine API --------------------------------------------------*/
658
659/**
660 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
661 * @desc: descriptor at the head of the transaction chain
662 *
663 * Queue chain if DMA engine is working already
664 *
665 * Cookie increment and adding to active_list or queue must be atomic
666 */
667static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
668{
669 struct at_desc *desc = txd_to_at_desc(tx);
670 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan);
671 dma_cookie_t cookie;
672 unsigned long flags;
673
674 spin_lock_irqsave(&atchan->lock, flags);
675 cookie = dma_cookie_assign(tx);
676
677 if (list_empty(&atchan->active_list)) {
678 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
679 desc->txd.cookie);
680 atc_dostart(atchan, desc);
681 list_add_tail(&desc->desc_node, &atchan->active_list);
682 } else {
683 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
684 desc->txd.cookie);
685 list_add_tail(&desc->desc_node, &atchan->queue);
686 }
687
688 spin_unlock_irqrestore(&atchan->lock, flags);
689
690 return cookie;
691}
692
693/**
694 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
695 * @chan: the channel to prepare operation on
696 * @xt: Interleaved transfer template
697 * @flags: tx descriptor status flags
698 */
699static struct dma_async_tx_descriptor *
700atc_prep_dma_interleaved(struct dma_chan *chan,
701 struct dma_interleaved_template *xt,
702 unsigned long flags)
703{
704 struct at_dma_chan *atchan = to_at_dma_chan(chan);
705 struct data_chunk *first;
706 struct at_desc *desc = NULL;
707 size_t xfer_count;
708 unsigned int dwidth;
709 u32 ctrla;
710 u32 ctrlb;
711 size_t len = 0;
712 int i;
713
714 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
715 return NULL;
716
717 first = xt->sgl;
718
719 dev_info(chan2dev(chan),
720 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
721 __func__, &xt->src_start, &xt->dst_start, xt->numf,
722 xt->frame_size, flags);
723
724 /*
725 * The controller can only "skip" X bytes every Y bytes, so we
726 * need to make sure we are given a template that fit that
727 * description, ie a template with chunks that always have the
728 * same size, with the same ICGs.
729 */
730 for (i = 0; i < xt->frame_size; i++) {
731 struct data_chunk *chunk = xt->sgl + i;
732
733 if ((chunk->size != xt->sgl->size) ||
734 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
735 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
736 dev_err(chan2dev(chan),
737 "%s: the controller can transfer only identical chunks\n",
738 __func__);
739 return NULL;
740 }
741
742 len += chunk->size;
743 }
744
745 dwidth = atc_get_xfer_width(xt->src_start,
746 xt->dst_start, len);
747
748 xfer_count = len >> dwidth;
749 if (xfer_count > ATC_BTSIZE_MAX) {
750 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
751 return NULL;
752 }
753
754 ctrla = ATC_SRC_WIDTH(dwidth) |
755 ATC_DST_WIDTH(dwidth);
756
757 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
758 | ATC_SRC_ADDR_MODE_INCR
759 | ATC_DST_ADDR_MODE_INCR
760 | ATC_SRC_PIP
761 | ATC_DST_PIP
762 | ATC_FC_MEM2MEM;
763
764 /* create the transfer */
765 desc = atc_desc_get(atchan);
766 if (!desc) {
767 dev_err(chan2dev(chan),
768 "%s: couldn't allocate our descriptor\n", __func__);
769 return NULL;
770 }
771
772 desc->lli.saddr = xt->src_start;
773 desc->lli.daddr = xt->dst_start;
774 desc->lli.ctrla = ctrla | xfer_count;
775 desc->lli.ctrlb = ctrlb;
776
777 desc->boundary = first->size >> dwidth;
778 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
779 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
780
781 desc->txd.cookie = -EBUSY;
782 desc->total_len = desc->len = len;
783
784 /* set end-of-link to the last link descriptor of list*/
785 set_desc_eol(desc);
786
787 desc->txd.flags = flags; /* client is in control of this ack */
788
789 return &desc->txd;
790}
791
792/**
793 * atc_prep_dma_memcpy - prepare a memcpy operation
794 * @chan: the channel to prepare operation on
795 * @dest: operation virtual destination address
796 * @src: operation virtual source address
797 * @len: operation length
798 * @flags: tx descriptor status flags
799 */
800static struct dma_async_tx_descriptor *
801atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
802 size_t len, unsigned long flags)
803{
804 struct at_dma_chan *atchan = to_at_dma_chan(chan);
805 struct at_desc *desc = NULL;
806 struct at_desc *first = NULL;
807 struct at_desc *prev = NULL;
808 size_t xfer_count;
809 size_t offset;
810 unsigned int src_width;
811 unsigned int dst_width;
812 u32 ctrla;
813 u32 ctrlb;
814
815 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
816 &dest, &src, len, flags);
817
818 if (unlikely(!len)) {
819 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
820 return NULL;
821 }
822
823 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
824 | ATC_SRC_ADDR_MODE_INCR
825 | ATC_DST_ADDR_MODE_INCR
826 | ATC_FC_MEM2MEM;
827
828 /*
829 * We can be a lot more clever here, but this should take care
830 * of the most common optimization.
831 */
832 src_width = dst_width = atc_get_xfer_width(src, dest, len);
833
834 ctrla = ATC_SRC_WIDTH(src_width) |
835 ATC_DST_WIDTH(dst_width);
836
837 for (offset = 0; offset < len; offset += xfer_count << src_width) {
838 xfer_count = min_t(size_t, (len - offset) >> src_width,
839 ATC_BTSIZE_MAX);
840
841 desc = atc_desc_get(atchan);
842 if (!desc)
843 goto err_desc_get;
844
845 desc->lli.saddr = src + offset;
846 desc->lli.daddr = dest + offset;
847 desc->lli.ctrla = ctrla | xfer_count;
848 desc->lli.ctrlb = ctrlb;
849
850 desc->txd.cookie = 0;
851 desc->len = xfer_count << src_width;
852
853 atc_desc_chain(&first, &prev, desc);
854 }
855
856 /* First descriptor of the chain embedds additional information */
857 first->txd.cookie = -EBUSY;
858 first->total_len = len;
859
860 /* set end-of-link to the last link descriptor of list*/
861 set_desc_eol(desc);
862
863 first->txd.flags = flags; /* client is in control of this ack */
864
865 return &first->txd;
866
867err_desc_get:
868 atc_desc_put(atchan, first);
869 return NULL;
870}
871
872static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
873 dma_addr_t psrc,
874 dma_addr_t pdst,
875 size_t len)
876{
877 struct at_dma_chan *atchan = to_at_dma_chan(chan);
878 struct at_desc *desc;
879 size_t xfer_count;
880
881 u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
882 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
883 ATC_SRC_ADDR_MODE_FIXED |
884 ATC_DST_ADDR_MODE_INCR |
885 ATC_FC_MEM2MEM;
886
887 xfer_count = len >> 2;
888 if (xfer_count > ATC_BTSIZE_MAX) {
889 dev_err(chan2dev(chan), "%s: buffer is too big\n",
890 __func__);
891 return NULL;
892 }
893
894 desc = atc_desc_get(atchan);
895 if (!desc) {
896 dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
897 __func__);
898 return NULL;
899 }
900
901 desc->lli.saddr = psrc;
902 desc->lli.daddr = pdst;
903 desc->lli.ctrla = ctrla | xfer_count;
904 desc->lli.ctrlb = ctrlb;
905
906 desc->txd.cookie = 0;
907 desc->len = len;
908
909 return desc;
910}
911
912/**
913 * atc_prep_dma_memset - prepare a memcpy operation
914 * @chan: the channel to prepare operation on
915 * @dest: operation virtual destination address
916 * @value: value to set memory buffer to
917 * @len: operation length
918 * @flags: tx descriptor status flags
919 */
920static struct dma_async_tx_descriptor *
921atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
922 size_t len, unsigned long flags)
923{
924 struct at_dma *atdma = to_at_dma(chan->device);
925 struct at_desc *desc;
926 void __iomem *vaddr;
927 dma_addr_t paddr;
928
929 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
930 &dest, value, len, flags);
931
932 if (unlikely(!len)) {
933 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
934 return NULL;
935 }
936
937 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
938 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
939 __func__);
940 return NULL;
941 }
942
943 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
944 if (!vaddr) {
945 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
946 __func__);
947 return NULL;
948 }
949 *(u32*)vaddr = value;
950
951 desc = atc_create_memset_desc(chan, paddr, dest, len);
952 if (!desc) {
953 dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
954 __func__);
955 goto err_free_buffer;
956 }
957
958 desc->memset_paddr = paddr;
959 desc->memset_vaddr = vaddr;
960 desc->memset_buffer = true;
961
962 desc->txd.cookie = -EBUSY;
963 desc->total_len = len;
964
965 /* set end-of-link on the descriptor */
966 set_desc_eol(desc);
967
968 desc->txd.flags = flags;
969
970 return &desc->txd;
971
972err_free_buffer:
973 dma_pool_free(atdma->memset_pool, vaddr, paddr);
974 return NULL;
975}
976
977static struct dma_async_tx_descriptor *
978atc_prep_dma_memset_sg(struct dma_chan *chan,
979 struct scatterlist *sgl,
980 unsigned int sg_len, int value,
981 unsigned long flags)
982{
983 struct at_dma_chan *atchan = to_at_dma_chan(chan);
984 struct at_dma *atdma = to_at_dma(chan->device);
985 struct at_desc *desc = NULL, *first = NULL, *prev = NULL;
986 struct scatterlist *sg;
987 void __iomem *vaddr;
988 dma_addr_t paddr;
989 size_t total_len = 0;
990 int i;
991
992 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
993 value, sg_len, flags);
994
995 if (unlikely(!sgl || !sg_len)) {
996 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
997 __func__);
998 return NULL;
999 }
1000
1001 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
1002 if (!vaddr) {
1003 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1004 __func__);
1005 return NULL;
1006 }
1007 *(u32*)vaddr = value;
1008
1009 for_each_sg(sgl, sg, sg_len, i) {
1010 dma_addr_t dest = sg_dma_address(sg);
1011 size_t len = sg_dma_len(sg);
1012
1013 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1014 __func__, &dest, len);
1015
1016 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1017 dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1018 __func__);
1019 goto err_put_desc;
1020 }
1021
1022 desc = atc_create_memset_desc(chan, paddr, dest, len);
1023 if (!desc)
1024 goto err_put_desc;
1025
1026 atc_desc_chain(&first, &prev, desc);
1027
1028 total_len += len;
1029 }
1030
1031 /*
1032 * Only set the buffer pointers on the last descriptor to
1033 * avoid free'ing while we have our transfer still going
1034 */
1035 desc->memset_paddr = paddr;
1036 desc->memset_vaddr = vaddr;
1037 desc->memset_buffer = true;
1038
1039 first->txd.cookie = -EBUSY;
1040 first->total_len = total_len;
1041
1042 /* set end-of-link on the descriptor */
1043 set_desc_eol(desc);
1044
1045 first->txd.flags = flags;
1046
1047 return &first->txd;
1048
1049err_put_desc:
1050 atc_desc_put(atchan, first);
1051 return NULL;
1052}
1053
1054/**
1055 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1056 * @chan: DMA channel
1057 * @sgl: scatterlist to transfer to/from
1058 * @sg_len: number of entries in @scatterlist
1059 * @direction: DMA direction
1060 * @flags: tx descriptor status flags
1061 * @context: transaction context (ignored)
1062 */
1063static struct dma_async_tx_descriptor *
1064atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1065 unsigned int sg_len, enum dma_transfer_direction direction,
1066 unsigned long flags, void *context)
1067{
1068 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1069 struct at_dma_slave *atslave = chan->private;
1070 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1071 struct at_desc *first = NULL;
1072 struct at_desc *prev = NULL;
1073 u32 ctrla;
1074 u32 ctrlb;
1075 dma_addr_t reg;
1076 unsigned int reg_width;
1077 unsigned int mem_width;
1078 unsigned int i;
1079 struct scatterlist *sg;
1080 size_t total_len = 0;
1081
1082 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1083 sg_len,
1084 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1085 flags);
1086
1087 if (unlikely(!atslave || !sg_len)) {
1088 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1089 return NULL;
1090 }
1091
1092 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1093 | ATC_DCSIZE(sconfig->dst_maxburst);
1094 ctrlb = ATC_IEN;
1095
1096 switch (direction) {
1097 case DMA_MEM_TO_DEV:
1098 reg_width = convert_buswidth(sconfig->dst_addr_width);
1099 ctrla |= ATC_DST_WIDTH(reg_width);
1100 ctrlb |= ATC_DST_ADDR_MODE_FIXED
1101 | ATC_SRC_ADDR_MODE_INCR
1102 | ATC_FC_MEM2PER
1103 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1104 reg = sconfig->dst_addr;
1105 for_each_sg(sgl, sg, sg_len, i) {
1106 struct at_desc *desc;
1107 u32 len;
1108 u32 mem;
1109
1110 desc = atc_desc_get(atchan);
1111 if (!desc)
1112 goto err_desc_get;
1113
1114 mem = sg_dma_address(sg);
1115 len = sg_dma_len(sg);
1116 if (unlikely(!len)) {
1117 dev_dbg(chan2dev(chan),
1118 "prep_slave_sg: sg(%d) data length is zero\n", i);
1119 goto err;
1120 }
1121 mem_width = 2;
1122 if (unlikely(mem & 3 || len & 3))
1123 mem_width = 0;
1124
1125 desc->lli.saddr = mem;
1126 desc->lli.daddr = reg;
1127 desc->lli.ctrla = ctrla
1128 | ATC_SRC_WIDTH(mem_width)
1129 | len >> mem_width;
1130 desc->lli.ctrlb = ctrlb;
1131 desc->len = len;
1132
1133 atc_desc_chain(&first, &prev, desc);
1134 total_len += len;
1135 }
1136 break;
1137 case DMA_DEV_TO_MEM:
1138 reg_width = convert_buswidth(sconfig->src_addr_width);
1139 ctrla |= ATC_SRC_WIDTH(reg_width);
1140 ctrlb |= ATC_DST_ADDR_MODE_INCR
1141 | ATC_SRC_ADDR_MODE_FIXED
1142 | ATC_FC_PER2MEM
1143 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1144
1145 reg = sconfig->src_addr;
1146 for_each_sg(sgl, sg, sg_len, i) {
1147 struct at_desc *desc;
1148 u32 len;
1149 u32 mem;
1150
1151 desc = atc_desc_get(atchan);
1152 if (!desc)
1153 goto err_desc_get;
1154
1155 mem = sg_dma_address(sg);
1156 len = sg_dma_len(sg);
1157 if (unlikely(!len)) {
1158 dev_dbg(chan2dev(chan),
1159 "prep_slave_sg: sg(%d) data length is zero\n", i);
1160 goto err;
1161 }
1162 mem_width = 2;
1163 if (unlikely(mem & 3 || len & 3))
1164 mem_width = 0;
1165
1166 desc->lli.saddr = reg;
1167 desc->lli.daddr = mem;
1168 desc->lli.ctrla = ctrla
1169 | ATC_DST_WIDTH(mem_width)
1170 | len >> reg_width;
1171 desc->lli.ctrlb = ctrlb;
1172 desc->len = len;
1173
1174 atc_desc_chain(&first, &prev, desc);
1175 total_len += len;
1176 }
1177 break;
1178 default:
1179 return NULL;
1180 }
1181
1182 /* set end-of-link to the last link descriptor of list*/
1183 set_desc_eol(prev);
1184
1185 /* First descriptor of the chain embedds additional information */
1186 first->txd.cookie = -EBUSY;
1187 first->total_len = total_len;
1188
1189 /* first link descriptor of list is responsible of flags */
1190 first->txd.flags = flags; /* client is in control of this ack */
1191
1192 return &first->txd;
1193
1194err_desc_get:
1195 dev_err(chan2dev(chan), "not enough descriptors available\n");
1196err:
1197 atc_desc_put(atchan, first);
1198 return NULL;
1199}
1200
1201/**
1202 * atc_dma_cyclic_check_values
1203 * Check for too big/unaligned periods and unaligned DMA buffer
1204 */
1205static int
1206atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1207 size_t period_len)
1208{
1209 if (period_len > (ATC_BTSIZE_MAX << reg_width))
1210 goto err_out;
1211 if (unlikely(period_len & ((1 << reg_width) - 1)))
1212 goto err_out;
1213 if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1214 goto err_out;
1215
1216 return 0;
1217
1218err_out:
1219 return -EINVAL;
1220}
1221
1222/**
1223 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1224 */
1225static int
1226atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1227 unsigned int period_index, dma_addr_t buf_addr,
1228 unsigned int reg_width, size_t period_len,
1229 enum dma_transfer_direction direction)
1230{
1231 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1232 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1233 u32 ctrla;
1234
1235 /* prepare common CRTLA value */
1236 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1237 | ATC_DCSIZE(sconfig->dst_maxburst)
1238 | ATC_DST_WIDTH(reg_width)
1239 | ATC_SRC_WIDTH(reg_width)
1240 | period_len >> reg_width;
1241
1242 switch (direction) {
1243 case DMA_MEM_TO_DEV:
1244 desc->lli.saddr = buf_addr + (period_len * period_index);
1245 desc->lli.daddr = sconfig->dst_addr;
1246 desc->lli.ctrla = ctrla;
1247 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1248 | ATC_SRC_ADDR_MODE_INCR
1249 | ATC_FC_MEM2PER
1250 | ATC_SIF(atchan->mem_if)
1251 | ATC_DIF(atchan->per_if);
1252 desc->len = period_len;
1253 break;
1254
1255 case DMA_DEV_TO_MEM:
1256 desc->lli.saddr = sconfig->src_addr;
1257 desc->lli.daddr = buf_addr + (period_len * period_index);
1258 desc->lli.ctrla = ctrla;
1259 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1260 | ATC_SRC_ADDR_MODE_FIXED
1261 | ATC_FC_PER2MEM
1262 | ATC_SIF(atchan->per_if)
1263 | ATC_DIF(atchan->mem_if);
1264 desc->len = period_len;
1265 break;
1266
1267 default:
1268 return -EINVAL;
1269 }
1270
1271 return 0;
1272}
1273
1274/**
1275 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1276 * @chan: the DMA channel to prepare
1277 * @buf_addr: physical DMA address where the buffer starts
1278 * @buf_len: total number of bytes for the entire buffer
1279 * @period_len: number of bytes for each period
1280 * @direction: transfer direction, to or from device
1281 * @flags: tx descriptor status flags
1282 */
1283static struct dma_async_tx_descriptor *
1284atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1285 size_t period_len, enum dma_transfer_direction direction,
1286 unsigned long flags)
1287{
1288 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1289 struct at_dma_slave *atslave = chan->private;
1290 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1291 struct at_desc *first = NULL;
1292 struct at_desc *prev = NULL;
1293 unsigned long was_cyclic;
1294 unsigned int reg_width;
1295 unsigned int periods = buf_len / period_len;
1296 unsigned int i;
1297
1298 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1299 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1300 &buf_addr,
1301 periods, buf_len, period_len);
1302
1303 if (unlikely(!atslave || !buf_len || !period_len)) {
1304 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1305 return NULL;
1306 }
1307
1308 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1309 if (was_cyclic) {
1310 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1311 return NULL;
1312 }
1313
1314 if (unlikely(!is_slave_direction(direction)))
1315 goto err_out;
1316
1317 if (direction == DMA_MEM_TO_DEV)
1318 reg_width = convert_buswidth(sconfig->dst_addr_width);
1319 else
1320 reg_width = convert_buswidth(sconfig->src_addr_width);
1321
1322 /* Check for too big/unaligned periods and unaligned DMA buffer */
1323 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1324 goto err_out;
1325
1326 /* build cyclic linked list */
1327 for (i = 0; i < periods; i++) {
1328 struct at_desc *desc;
1329
1330 desc = atc_desc_get(atchan);
1331 if (!desc)
1332 goto err_desc_get;
1333
1334 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1335 reg_width, period_len, direction))
1336 goto err_desc_get;
1337
1338 atc_desc_chain(&first, &prev, desc);
1339 }
1340
1341 /* lets make a cyclic list */
1342 prev->lli.dscr = first->txd.phys;
1343
1344 /* First descriptor of the chain embedds additional information */
1345 first->txd.cookie = -EBUSY;
1346 first->total_len = buf_len;
1347
1348 return &first->txd;
1349
1350err_desc_get:
1351 dev_err(chan2dev(chan), "not enough descriptors available\n");
1352 atc_desc_put(atchan, first);
1353err_out:
1354 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1355 return NULL;
1356}
1357
1358static int atc_config(struct dma_chan *chan,
1359 struct dma_slave_config *sconfig)
1360{
1361 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1362
1363 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1364
1365 /* Check if it is chan is configured for slave transfers */
1366 if (!chan->private)
1367 return -EINVAL;
1368
1369 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1370
1371 convert_burst(&atchan->dma_sconfig.src_maxburst);
1372 convert_burst(&atchan->dma_sconfig.dst_maxburst);
1373
1374 return 0;
1375}
1376
1377static int atc_pause(struct dma_chan *chan)
1378{
1379 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1380 struct at_dma *atdma = to_at_dma(chan->device);
1381 int chan_id = atchan->chan_common.chan_id;
1382 unsigned long flags;
1383
1384 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1385
1386 spin_lock_irqsave(&atchan->lock, flags);
1387
1388 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1389 set_bit(ATC_IS_PAUSED, &atchan->status);
1390
1391 spin_unlock_irqrestore(&atchan->lock, flags);
1392
1393 return 0;
1394}
1395
1396static int atc_resume(struct dma_chan *chan)
1397{
1398 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1399 struct at_dma *atdma = to_at_dma(chan->device);
1400 int chan_id = atchan->chan_common.chan_id;
1401 unsigned long flags;
1402
1403 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1404
1405 if (!atc_chan_is_paused(atchan))
1406 return 0;
1407
1408 spin_lock_irqsave(&atchan->lock, flags);
1409
1410 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1411 clear_bit(ATC_IS_PAUSED, &atchan->status);
1412
1413 spin_unlock_irqrestore(&atchan->lock, flags);
1414
1415 return 0;
1416}
1417
1418static int atc_terminate_all(struct dma_chan *chan)
1419{
1420 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1421 struct at_dma *atdma = to_at_dma(chan->device);
1422 int chan_id = atchan->chan_common.chan_id;
1423 struct at_desc *desc, *_desc;
1424 unsigned long flags;
1425
1426 LIST_HEAD(list);
1427
1428 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1429
1430 /*
1431 * This is only called when something went wrong elsewhere, so
1432 * we don't really care about the data. Just disable the
1433 * channel. We still have to poll the channel enable bit due
1434 * to AHB/HSB limitations.
1435 */
1436 spin_lock_irqsave(&atchan->lock, flags);
1437
1438 /* disabling channel: must also remove suspend state */
1439 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1440
1441 /* confirm that this channel is disabled */
1442 while (dma_readl(atdma, CHSR) & atchan->mask)
1443 cpu_relax();
1444
1445 /* active_list entries will end up before queued entries */
1446 list_splice_init(&atchan->queue, &list);
1447 list_splice_init(&atchan->active_list, &list);
1448
1449 /* Flush all pending and queued descriptors */
1450 list_for_each_entry_safe(desc, _desc, &list, desc_node)
1451 atc_chain_complete(atchan, desc);
1452
1453 clear_bit(ATC_IS_PAUSED, &atchan->status);
1454 /* if channel dedicated to cyclic operations, free it */
1455 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1456
1457 spin_unlock_irqrestore(&atchan->lock, flags);
1458
1459 return 0;
1460}
1461
1462/**
1463 * atc_tx_status - poll for transaction completion
1464 * @chan: DMA channel
1465 * @cookie: transaction identifier to check status of
1466 * @txstate: if not %NULL updated with transaction state
1467 *
1468 * If @txstate is passed in, upon return it reflect the driver
1469 * internal state and can be used with dma_async_is_complete() to check
1470 * the status of multiple cookies without re-checking hardware state.
1471 */
1472static enum dma_status
1473atc_tx_status(struct dma_chan *chan,
1474 dma_cookie_t cookie,
1475 struct dma_tx_state *txstate)
1476{
1477 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1478 unsigned long flags;
1479 enum dma_status ret;
1480 int bytes = 0;
1481
1482 ret = dma_cookie_status(chan, cookie, txstate);
1483 if (ret == DMA_COMPLETE)
1484 return ret;
1485 /*
1486 * There's no point calculating the residue if there's
1487 * no txstate to store the value.
1488 */
1489 if (!txstate)
1490 return DMA_ERROR;
1491
1492 spin_lock_irqsave(&atchan->lock, flags);
1493
1494 /* Get number of bytes left in the active transactions */
1495 bytes = atc_get_bytes_left(chan, cookie);
1496
1497 spin_unlock_irqrestore(&atchan->lock, flags);
1498
1499 if (unlikely(bytes < 0)) {
1500 dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1501 return DMA_ERROR;
1502 } else {
1503 dma_set_residue(txstate, bytes);
1504 }
1505
1506 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1507 ret, cookie, bytes);
1508
1509 return ret;
1510}
1511
1512/**
1513 * atc_issue_pending - try to finish work
1514 * @chan: target DMA channel
1515 */
1516static void atc_issue_pending(struct dma_chan *chan)
1517{
1518 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1519 unsigned long flags;
1520
1521 dev_vdbg(chan2dev(chan), "issue_pending\n");
1522
1523 /* Not needed for cyclic transfers */
1524 if (atc_chan_is_cyclic(atchan))
1525 return;
1526
1527 spin_lock_irqsave(&atchan->lock, flags);
1528 atc_advance_work(atchan);
1529 spin_unlock_irqrestore(&atchan->lock, flags);
1530}
1531
1532/**
1533 * atc_alloc_chan_resources - allocate resources for DMA channel
1534 * @chan: allocate descriptor resources for this channel
1535 * @client: current client requesting the channel be ready for requests
1536 *
1537 * return - the number of allocated descriptors
1538 */
1539static int atc_alloc_chan_resources(struct dma_chan *chan)
1540{
1541 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1542 struct at_dma *atdma = to_at_dma(chan->device);
1543 struct at_desc *desc;
1544 struct at_dma_slave *atslave;
1545 unsigned long flags;
1546 int i;
1547 u32 cfg;
1548 LIST_HEAD(tmp_list);
1549
1550 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1551
1552 /* ASSERT: channel is idle */
1553 if (atc_chan_is_enabled(atchan)) {
1554 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1555 return -EIO;
1556 }
1557
1558 cfg = ATC_DEFAULT_CFG;
1559
1560 atslave = chan->private;
1561 if (atslave) {
1562 /*
1563 * We need controller-specific data to set up slave
1564 * transfers.
1565 */
1566 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1567
1568 /* if cfg configuration specified take it instead of default */
1569 if (atslave->cfg)
1570 cfg = atslave->cfg;
1571 }
1572
1573 /* have we already been set up?
1574 * reconfigure channel but no need to reallocate descriptors */
1575 if (!list_empty(&atchan->free_list))
1576 return atchan->descs_allocated;
1577
1578 /* Allocate initial pool of descriptors */
1579 for (i = 0; i < init_nr_desc_per_channel; i++) {
1580 desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1581 if (!desc) {
1582 dev_err(atdma->dma_common.dev,
1583 "Only %d initial descriptors\n", i);
1584 break;
1585 }
1586 list_add_tail(&desc->desc_node, &tmp_list);
1587 }
1588
1589 spin_lock_irqsave(&atchan->lock, flags);
1590 atchan->descs_allocated = i;
1591 list_splice(&tmp_list, &atchan->free_list);
1592 dma_cookie_init(chan);
1593 spin_unlock_irqrestore(&atchan->lock, flags);
1594
1595 /* channel parameters */
1596 channel_writel(atchan, CFG, cfg);
1597
1598 dev_dbg(chan2dev(chan),
1599 "alloc_chan_resources: allocated %d descriptors\n",
1600 atchan->descs_allocated);
1601
1602 return atchan->descs_allocated;
1603}
1604
1605/**
1606 * atc_free_chan_resources - free all channel resources
1607 * @chan: DMA channel
1608 */
1609static void atc_free_chan_resources(struct dma_chan *chan)
1610{
1611 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1612 struct at_dma *atdma = to_at_dma(chan->device);
1613 struct at_desc *desc, *_desc;
1614 LIST_HEAD(list);
1615
1616 dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1617 atchan->descs_allocated);
1618
1619 /* ASSERT: channel is idle */
1620 BUG_ON(!list_empty(&atchan->active_list));
1621 BUG_ON(!list_empty(&atchan->queue));
1622 BUG_ON(atc_chan_is_enabled(atchan));
1623
1624 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1625 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc);
1626 list_del(&desc->desc_node);
1627 /* free link descriptor */
1628 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1629 }
1630 list_splice_init(&atchan->free_list, &list);
1631 atchan->descs_allocated = 0;
1632 atchan->status = 0;
1633
1634 /*
1635 * Free atslave allocated in at_dma_xlate()
1636 */
1637 kfree(chan->private);
1638 chan->private = NULL;
1639
1640 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1641}
1642
1643#ifdef CONFIG_OF
1644static bool at_dma_filter(struct dma_chan *chan, void *slave)
1645{
1646 struct at_dma_slave *atslave = slave;
1647
1648 if (atslave->dma_dev == chan->device->dev) {
1649 chan->private = atslave;
1650 return true;
1651 } else {
1652 return false;
1653 }
1654}
1655
1656static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1657 struct of_dma *of_dma)
1658{
1659 struct dma_chan *chan;
1660 struct at_dma_chan *atchan;
1661 struct at_dma_slave *atslave;
1662 dma_cap_mask_t mask;
1663 unsigned int per_id;
1664 struct platform_device *dmac_pdev;
1665
1666 if (dma_spec->args_count != 2)
1667 return NULL;
1668
1669 dmac_pdev = of_find_device_by_node(dma_spec->np);
1670
1671 dma_cap_zero(mask);
1672 dma_cap_set(DMA_SLAVE, mask);
1673
1674 atslave = kzalloc(sizeof(*atslave), GFP_KERNEL);
1675 if (!atslave)
1676 return NULL;
1677
1678 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1679 /*
1680 * We can fill both SRC_PER and DST_PER, one of these fields will be
1681 * ignored depending on DMA transfer direction.
1682 */
1683 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1684 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1685 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1686 /*
1687 * We have to translate the value we get from the device tree since
1688 * the half FIFO configuration value had to be 0 to keep backward
1689 * compatibility.
1690 */
1691 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1692 case AT91_DMA_CFG_FIFOCFG_ALAP:
1693 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1694 break;
1695 case AT91_DMA_CFG_FIFOCFG_ASAP:
1696 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1697 break;
1698 case AT91_DMA_CFG_FIFOCFG_HALF:
1699 default:
1700 atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1701 }
1702 atslave->dma_dev = &dmac_pdev->dev;
1703
1704 chan = dma_request_channel(mask, at_dma_filter, atslave);
1705 if (!chan)
1706 return NULL;
1707
1708 atchan = to_at_dma_chan(chan);
1709 atchan->per_if = dma_spec->args[0] & 0xff;
1710 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1711
1712 return chan;
1713}
1714#else
1715static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1716 struct of_dma *of_dma)
1717{
1718 return NULL;
1719}
1720#endif
1721
1722/*-- Module Management -----------------------------------------------*/
1723
1724/* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1725static struct at_dma_platform_data at91sam9rl_config = {
1726 .nr_channels = 2,
1727};
1728static struct at_dma_platform_data at91sam9g45_config = {
1729 .nr_channels = 8,
1730};
1731
1732#if defined(CONFIG_OF)
1733static const struct of_device_id atmel_dma_dt_ids[] = {
1734 {
1735 .compatible = "atmel,at91sam9rl-dma",
1736 .data = &at91sam9rl_config,
1737 }, {
1738 .compatible = "atmel,at91sam9g45-dma",
1739 .data = &at91sam9g45_config,
1740 }, {
1741 /* sentinel */
1742 }
1743};
1744
1745MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1746#endif
1747
1748static const struct platform_device_id atdma_devtypes[] = {
1749 {
1750 .name = "at91sam9rl_dma",
1751 .driver_data = (unsigned long) &at91sam9rl_config,
1752 }, {
1753 .name = "at91sam9g45_dma",
1754 .driver_data = (unsigned long) &at91sam9g45_config,
1755 }, {
1756 /* sentinel */
1757 }
1758};
1759
1760static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1761 struct platform_device *pdev)
1762{
1763 if (pdev->dev.of_node) {
1764 const struct of_device_id *match;
1765 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1766 if (match == NULL)
1767 return NULL;
1768 return match->data;
1769 }
1770 return (struct at_dma_platform_data *)
1771 platform_get_device_id(pdev)->driver_data;
1772}
1773
1774/**
1775 * at_dma_off - disable DMA controller
1776 * @atdma: the Atmel HDAMC device
1777 */
1778static void at_dma_off(struct at_dma *atdma)
1779{
1780 dma_writel(atdma, EN, 0);
1781
1782 /* disable all interrupts */
1783 dma_writel(atdma, EBCIDR, -1L);
1784
1785 /* confirm that all channels are disabled */
1786 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1787 cpu_relax();
1788}
1789
1790static int __init at_dma_probe(struct platform_device *pdev)
1791{
1792 struct resource *io;
1793 struct at_dma *atdma;
1794 size_t size;
1795 int irq;
1796 int err;
1797 int i;
1798 const struct at_dma_platform_data *plat_dat;
1799
1800 /* setup platform data for each SoC */
1801 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1802 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1803 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1804 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1805 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1806 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1807 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1808
1809 /* get DMA parameters from controller type */
1810 plat_dat = at_dma_get_driver_data(pdev);
1811 if (!plat_dat)
1812 return -ENODEV;
1813
1814 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1815 if (!io)
1816 return -EINVAL;
1817
1818 irq = platform_get_irq(pdev, 0);
1819 if (irq < 0)
1820 return irq;
1821
1822 size = sizeof(struct at_dma);
1823 size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1824 atdma = kzalloc(size, GFP_KERNEL);
1825 if (!atdma)
1826 return -ENOMEM;
1827
1828 /* discover transaction capabilities */
1829 atdma->dma_common.cap_mask = plat_dat->cap_mask;
1830 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1831
1832 size = resource_size(io);
1833 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1834 err = -EBUSY;
1835 goto err_kfree;
1836 }
1837
1838 atdma->regs = ioremap(io->start, size);
1839 if (!atdma->regs) {
1840 err = -ENOMEM;
1841 goto err_release_r;
1842 }
1843
1844 atdma->clk = clk_get(&pdev->dev, "dma_clk");
1845 if (IS_ERR(atdma->clk)) {
1846 err = PTR_ERR(atdma->clk);
1847 goto err_clk;
1848 }
1849 err = clk_prepare_enable(atdma->clk);
1850 if (err)
1851 goto err_clk_prepare;
1852
1853 /* force dma off, just in case */
1854 at_dma_off(atdma);
1855
1856 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1857 if (err)
1858 goto err_irq;
1859
1860 platform_set_drvdata(pdev, atdma);
1861
1862 /* create a pool of consistent memory blocks for hardware descriptors */
1863 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
1864 &pdev->dev, sizeof(struct at_desc),
1865 4 /* word alignment */, 0);
1866 if (!atdma->dma_desc_pool) {
1867 dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1868 err = -ENOMEM;
1869 goto err_desc_pool_create;
1870 }
1871
1872 /* create a pool of consistent memory blocks for memset blocks */
1873 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
1874 &pdev->dev, sizeof(int), 4, 0);
1875 if (!atdma->memset_pool) {
1876 dev_err(&pdev->dev, "No memory for memset dma pool\n");
1877 err = -ENOMEM;
1878 goto err_memset_pool_create;
1879 }
1880
1881 /* clear any pending interrupt */
1882 while (dma_readl(atdma, EBCISR))
1883 cpu_relax();
1884
1885 /* initialize channels related values */
1886 INIT_LIST_HEAD(&atdma->dma_common.channels);
1887 for (i = 0; i < plat_dat->nr_channels; i++) {
1888 struct at_dma_chan *atchan = &atdma->chan[i];
1889
1890 atchan->mem_if = AT_DMA_MEM_IF;
1891 atchan->per_if = AT_DMA_PER_IF;
1892 atchan->chan_common.device = &atdma->dma_common;
1893 dma_cookie_init(&atchan->chan_common);
1894 list_add_tail(&atchan->chan_common.device_node,
1895 &atdma->dma_common.channels);
1896
1897 atchan->ch_regs = atdma->regs + ch_regs(i);
1898 spin_lock_init(&atchan->lock);
1899 atchan->mask = 1 << i;
1900
1901 INIT_LIST_HEAD(&atchan->active_list);
1902 INIT_LIST_HEAD(&atchan->queue);
1903 INIT_LIST_HEAD(&atchan->free_list);
1904
1905 tasklet_init(&atchan->tasklet, atc_tasklet,
1906 (unsigned long)atchan);
1907 atc_enable_chan_irq(atdma, i);
1908 }
1909
1910 /* set base routines */
1911 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
1912 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
1913 atdma->dma_common.device_tx_status = atc_tx_status;
1914 atdma->dma_common.device_issue_pending = atc_issue_pending;
1915 atdma->dma_common.dev = &pdev->dev;
1916
1917 /* set prep routines based on capability */
1918 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
1919 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
1920
1921 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
1922 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
1923
1924 if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
1925 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
1926 atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
1927 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
1928 }
1929
1930 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
1931 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
1932 /* controller can do slave DMA: can trigger cyclic transfers */
1933 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
1934 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
1935 atdma->dma_common.device_config = atc_config;
1936 atdma->dma_common.device_pause = atc_pause;
1937 atdma->dma_common.device_resume = atc_resume;
1938 atdma->dma_common.device_terminate_all = atc_terminate_all;
1939 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
1940 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
1941 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1942 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1943 }
1944
1945 dma_writel(atdma, EN, AT_DMA_ENABLE);
1946
1947 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
1948 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
1949 dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
1950 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "",
1951 plat_dat->nr_channels);
1952
1953 dma_async_device_register(&atdma->dma_common);
1954
1955 /*
1956 * Do not return an error if the dmac node is not present in order to
1957 * not break the existing way of requesting channel with
1958 * dma_request_channel().
1959 */
1960 if (pdev->dev.of_node) {
1961 err = of_dma_controller_register(pdev->dev.of_node,
1962 at_dma_xlate, atdma);
1963 if (err) {
1964 dev_err(&pdev->dev, "could not register of_dma_controller\n");
1965 goto err_of_dma_controller_register;
1966 }
1967 }
1968
1969 return 0;
1970
1971err_of_dma_controller_register:
1972 dma_async_device_unregister(&atdma->dma_common);
1973 dma_pool_destroy(atdma->memset_pool);
1974err_memset_pool_create:
1975 dma_pool_destroy(atdma->dma_desc_pool);
1976err_desc_pool_create:
1977 free_irq(platform_get_irq(pdev, 0), atdma);
1978err_irq:
1979 clk_disable_unprepare(atdma->clk);
1980err_clk_prepare:
1981 clk_put(atdma->clk);
1982err_clk:
1983 iounmap(atdma->regs);
1984 atdma->regs = NULL;
1985err_release_r:
1986 release_mem_region(io->start, size);
1987err_kfree:
1988 kfree(atdma);
1989 return err;
1990}
1991
1992static int at_dma_remove(struct platform_device *pdev)
1993{
1994 struct at_dma *atdma = platform_get_drvdata(pdev);
1995 struct dma_chan *chan, *_chan;
1996 struct resource *io;
1997
1998 at_dma_off(atdma);
1999 if (pdev->dev.of_node)
2000 of_dma_controller_free(pdev->dev.of_node);
2001 dma_async_device_unregister(&atdma->dma_common);
2002
2003 dma_pool_destroy(atdma->memset_pool);
2004 dma_pool_destroy(atdma->dma_desc_pool);
2005 free_irq(platform_get_irq(pdev, 0), atdma);
2006
2007 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2008 device_node) {
2009 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2010
2011 /* Disable interrupts */
2012 atc_disable_chan_irq(atdma, chan->chan_id);
2013
2014 tasklet_kill(&atchan->tasklet);
2015 list_del(&chan->device_node);
2016 }
2017
2018 clk_disable_unprepare(atdma->clk);
2019 clk_put(atdma->clk);
2020
2021 iounmap(atdma->regs);
2022 atdma->regs = NULL;
2023
2024 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2025 release_mem_region(io->start, resource_size(io));
2026
2027 kfree(atdma);
2028
2029 return 0;
2030}
2031
2032static void at_dma_shutdown(struct platform_device *pdev)
2033{
2034 struct at_dma *atdma = platform_get_drvdata(pdev);
2035
2036 at_dma_off(platform_get_drvdata(pdev));
2037 clk_disable_unprepare(atdma->clk);
2038}
2039
2040static int at_dma_prepare(struct device *dev)
2041{
2042 struct at_dma *atdma = dev_get_drvdata(dev);
2043 struct dma_chan *chan, *_chan;
2044
2045 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2046 device_node) {
2047 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2048 /* wait for transaction completion (except in cyclic case) */
2049 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2050 return -EAGAIN;
2051 }
2052 return 0;
2053}
2054
2055static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2056{
2057 struct dma_chan *chan = &atchan->chan_common;
2058
2059 /* Channel should be paused by user
2060 * do it anyway even if it is not done already */
2061 if (!atc_chan_is_paused(atchan)) {
2062 dev_warn(chan2dev(chan),
2063 "cyclic channel not paused, should be done by channel user\n");
2064 atc_pause(chan);
2065 }
2066
2067 /* now preserve additional data for cyclic operations */
2068 /* next descriptor address in the cyclic list */
2069 atchan->save_dscr = channel_readl(atchan, DSCR);
2070
2071 vdbg_dump_regs(atchan);
2072}
2073
2074static int at_dma_suspend_noirq(struct device *dev)
2075{
2076 struct at_dma *atdma = dev_get_drvdata(dev);
2077 struct dma_chan *chan, *_chan;
2078
2079 /* preserve data */
2080 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2081 device_node) {
2082 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2083
2084 if (atc_chan_is_cyclic(atchan))
2085 atc_suspend_cyclic(atchan);
2086 atchan->save_cfg = channel_readl(atchan, CFG);
2087 }
2088 atdma->save_imr = dma_readl(atdma, EBCIMR);
2089
2090 /* disable DMA controller */
2091 at_dma_off(atdma);
2092 clk_disable_unprepare(atdma->clk);
2093 return 0;
2094}
2095
2096static void atc_resume_cyclic(struct at_dma_chan *atchan)
2097{
2098 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
2099
2100 /* restore channel status for cyclic descriptors list:
2101 * next descriptor in the cyclic list at the time of suspend */
2102 channel_writel(atchan, SADDR, 0);
2103 channel_writel(atchan, DADDR, 0);
2104 channel_writel(atchan, CTRLA, 0);
2105 channel_writel(atchan, CTRLB, 0);
2106 channel_writel(atchan, DSCR, atchan->save_dscr);
2107 dma_writel(atdma, CHER, atchan->mask);
2108
2109 /* channel pause status should be removed by channel user
2110 * We cannot take the initiative to do it here */
2111
2112 vdbg_dump_regs(atchan);
2113}
2114
2115static int at_dma_resume_noirq(struct device *dev)
2116{
2117 struct at_dma *atdma = dev_get_drvdata(dev);
2118 struct dma_chan *chan, *_chan;
2119
2120 /* bring back DMA controller */
2121 clk_prepare_enable(atdma->clk);
2122 dma_writel(atdma, EN, AT_DMA_ENABLE);
2123
2124 /* clear any pending interrupt */
2125 while (dma_readl(atdma, EBCISR))
2126 cpu_relax();
2127
2128 /* restore saved data */
2129 dma_writel(atdma, EBCIER, atdma->save_imr);
2130 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2131 device_node) {
2132 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2133
2134 channel_writel(atchan, CFG, atchan->save_cfg);
2135 if (atc_chan_is_cyclic(atchan))
2136 atc_resume_cyclic(atchan);
2137 }
2138 return 0;
2139}
2140
2141static const struct dev_pm_ops at_dma_dev_pm_ops = {
2142 .prepare = at_dma_prepare,
2143 .suspend_noirq = at_dma_suspend_noirq,
2144 .resume_noirq = at_dma_resume_noirq,
2145};
2146
2147static struct platform_driver at_dma_driver = {
2148 .remove = at_dma_remove,
2149 .shutdown = at_dma_shutdown,
2150 .id_table = atdma_devtypes,
2151 .driver = {
2152 .name = "at_hdmac",
2153 .pm = &at_dma_dev_pm_ops,
2154 .of_match_table = of_match_ptr(atmel_dma_dt_ids),
2155 },
2156};
2157
2158static int __init at_dma_init(void)
2159{
2160 return platform_driver_probe(&at_dma_driver, at_dma_probe);
2161}
2162subsys_initcall(at_dma_init);
2163
2164static void __exit at_dma_exit(void)
2165{
2166 platform_driver_unregister(&at_dma_driver);
2167}
2168module_exit(at_dma_exit);
2169
2170MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2171MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2172MODULE_LICENSE("GPL");
2173MODULE_ALIAS("platform:at_hdmac");
1/*
2 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
3 *
4 * Copyright (C) 2008 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 *
12 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
13 * The only Atmel DMA Controller that is not covered by this driver is the one
14 * found on AT91SAM9263.
15 */
16
17#include <dt-bindings/dma/at91.h>
18#include <linux/clk.h>
19#include <linux/dmaengine.h>
20#include <linux/dma-mapping.h>
21#include <linux/dmapool.h>
22#include <linux/interrupt.h>
23#include <linux/module.h>
24#include <linux/platform_device.h>
25#include <linux/slab.h>
26#include <linux/of.h>
27#include <linux/of_device.h>
28#include <linux/of_dma.h>
29
30#include "at_hdmac_regs.h"
31#include "dmaengine.h"
32
33/*
34 * Glossary
35 * --------
36 *
37 * at_hdmac : Name of the ATmel AHB DMA Controller
38 * at_dma_ / atdma : ATmel DMA controller entity related
39 * atc_ / atchan : ATmel DMA Channel entity related
40 */
41
42#define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO)
43#define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \
44 |ATC_DIF(AT_DMA_MEM_IF))
45#define ATC_DMA_BUSWIDTHS\
46 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
47 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
48 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
49 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
50
51#define ATC_MAX_DSCR_TRIALS 10
52
53/*
54 * Initial number of descriptors to allocate for each channel. This could
55 * be increased during dma usage.
56 */
57static unsigned int init_nr_desc_per_channel = 64;
58module_param(init_nr_desc_per_channel, uint, 0644);
59MODULE_PARM_DESC(init_nr_desc_per_channel,
60 "initial descriptors per channel (default: 64)");
61
62
63/* prototypes */
64static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
65static void atc_issue_pending(struct dma_chan *chan);
66
67
68/*----------------------------------------------------------------------*/
69
70static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
71 size_t len)
72{
73 unsigned int width;
74
75 if (!((src | dst | len) & 3))
76 width = 2;
77 else if (!((src | dst | len) & 1))
78 width = 1;
79 else
80 width = 0;
81
82 return width;
83}
84
85static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
86{
87 return list_first_entry(&atchan->active_list,
88 struct at_desc, desc_node);
89}
90
91static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
92{
93 return list_first_entry(&atchan->queue,
94 struct at_desc, desc_node);
95}
96
97/**
98 * atc_alloc_descriptor - allocate and return an initialized descriptor
99 * @chan: the channel to allocate descriptors for
100 * @gfp_flags: GFP allocation flags
101 *
102 * Note: The ack-bit is positioned in the descriptor flag at creation time
103 * to make initial allocation more convenient. This bit will be cleared
104 * and control will be given to client at usage time (during
105 * preparation functions).
106 */
107static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
108 gfp_t gfp_flags)
109{
110 struct at_desc *desc = NULL;
111 struct at_dma *atdma = to_at_dma(chan->device);
112 dma_addr_t phys;
113
114 desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys);
115 if (desc) {
116 INIT_LIST_HEAD(&desc->tx_list);
117 dma_async_tx_descriptor_init(&desc->txd, chan);
118 /* txd.flags will be overwritten in prep functions */
119 desc->txd.flags = DMA_CTRL_ACK;
120 desc->txd.tx_submit = atc_tx_submit;
121 desc->txd.phys = phys;
122 }
123
124 return desc;
125}
126
127/**
128 * atc_desc_get - get an unused descriptor from free_list
129 * @atchan: channel we want a new descriptor for
130 */
131static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
132{
133 struct at_desc *desc, *_desc;
134 struct at_desc *ret = NULL;
135 unsigned long flags;
136 unsigned int i = 0;
137 LIST_HEAD(tmp_list);
138
139 spin_lock_irqsave(&atchan->lock, flags);
140 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
141 i++;
142 if (async_tx_test_ack(&desc->txd)) {
143 list_del(&desc->desc_node);
144 ret = desc;
145 break;
146 }
147 dev_dbg(chan2dev(&atchan->chan_common),
148 "desc %p not ACKed\n", desc);
149 }
150 spin_unlock_irqrestore(&atchan->lock, flags);
151 dev_vdbg(chan2dev(&atchan->chan_common),
152 "scanned %u descriptors on freelist\n", i);
153
154 /* no more descriptor available in initial pool: create one more */
155 if (!ret) {
156 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
157 if (ret) {
158 spin_lock_irqsave(&atchan->lock, flags);
159 atchan->descs_allocated++;
160 spin_unlock_irqrestore(&atchan->lock, flags);
161 } else {
162 dev_err(chan2dev(&atchan->chan_common),
163 "not enough descriptors available\n");
164 }
165 }
166
167 return ret;
168}
169
170/**
171 * atc_desc_put - move a descriptor, including any children, to the free list
172 * @atchan: channel we work on
173 * @desc: descriptor, at the head of a chain, to move to free list
174 */
175static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
176{
177 if (desc) {
178 struct at_desc *child;
179 unsigned long flags;
180
181 spin_lock_irqsave(&atchan->lock, flags);
182 list_for_each_entry(child, &desc->tx_list, desc_node)
183 dev_vdbg(chan2dev(&atchan->chan_common),
184 "moving child desc %p to freelist\n",
185 child);
186 list_splice_init(&desc->tx_list, &atchan->free_list);
187 dev_vdbg(chan2dev(&atchan->chan_common),
188 "moving desc %p to freelist\n", desc);
189 list_add(&desc->desc_node, &atchan->free_list);
190 spin_unlock_irqrestore(&atchan->lock, flags);
191 }
192}
193
194/**
195 * atc_desc_chain - build chain adding a descriptor
196 * @first: address of first descriptor of the chain
197 * @prev: address of previous descriptor of the chain
198 * @desc: descriptor to queue
199 *
200 * Called from prep_* functions
201 */
202static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
203 struct at_desc *desc)
204{
205 if (!(*first)) {
206 *first = desc;
207 } else {
208 /* inform the HW lli about chaining */
209 (*prev)->lli.dscr = desc->txd.phys;
210 /* insert the link descriptor to the LD ring */
211 list_add_tail(&desc->desc_node,
212 &(*first)->tx_list);
213 }
214 *prev = desc;
215}
216
217/**
218 * atc_dostart - starts the DMA engine for real
219 * @atchan: the channel we want to start
220 * @first: first descriptor in the list we want to begin with
221 *
222 * Called with atchan->lock held and bh disabled
223 */
224static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
225{
226 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
227
228 /* ASSERT: channel is idle */
229 if (atc_chan_is_enabled(atchan)) {
230 dev_err(chan2dev(&atchan->chan_common),
231 "BUG: Attempted to start non-idle channel\n");
232 dev_err(chan2dev(&atchan->chan_common),
233 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
234 channel_readl(atchan, SADDR),
235 channel_readl(atchan, DADDR),
236 channel_readl(atchan, CTRLA),
237 channel_readl(atchan, CTRLB),
238 channel_readl(atchan, DSCR));
239
240 /* The tasklet will hopefully advance the queue... */
241 return;
242 }
243
244 vdbg_dump_regs(atchan);
245
246 channel_writel(atchan, SADDR, 0);
247 channel_writel(atchan, DADDR, 0);
248 channel_writel(atchan, CTRLA, 0);
249 channel_writel(atchan, CTRLB, 0);
250 channel_writel(atchan, DSCR, first->txd.phys);
251 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
252 ATC_SPIP_BOUNDARY(first->boundary));
253 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
254 ATC_DPIP_BOUNDARY(first->boundary));
255 dma_writel(atdma, CHER, atchan->mask);
256
257 vdbg_dump_regs(atchan);
258}
259
260/*
261 * atc_get_desc_by_cookie - get the descriptor of a cookie
262 * @atchan: the DMA channel
263 * @cookie: the cookie to get the descriptor for
264 */
265static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
266 dma_cookie_t cookie)
267{
268 struct at_desc *desc, *_desc;
269
270 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
271 if (desc->txd.cookie == cookie)
272 return desc;
273 }
274
275 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
276 if (desc->txd.cookie == cookie)
277 return desc;
278 }
279
280 return NULL;
281}
282
283/**
284 * atc_calc_bytes_left - calculates the number of bytes left according to the
285 * value read from CTRLA.
286 *
287 * @current_len: the number of bytes left before reading CTRLA
288 * @ctrla: the value of CTRLA
289 */
290static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
291{
292 u32 btsize = (ctrla & ATC_BTSIZE_MAX);
293 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
294
295 /*
296 * According to the datasheet, when reading the Control A Register
297 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
298 * number of transfers completed on the Source Interface.
299 * So btsize is always a number of source width transfers.
300 */
301 return current_len - (btsize << src_width);
302}
303
304/**
305 * atc_get_bytes_left - get the number of bytes residue for a cookie
306 * @chan: DMA channel
307 * @cookie: transaction identifier to check status of
308 */
309static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
310{
311 struct at_dma_chan *atchan = to_at_dma_chan(chan);
312 struct at_desc *desc_first = atc_first_active(atchan);
313 struct at_desc *desc;
314 int ret;
315 u32 ctrla, dscr, trials;
316
317 /*
318 * If the cookie doesn't match to the currently running transfer then
319 * we can return the total length of the associated DMA transfer,
320 * because it is still queued.
321 */
322 desc = atc_get_desc_by_cookie(atchan, cookie);
323 if (desc == NULL)
324 return -EINVAL;
325 else if (desc != desc_first)
326 return desc->total_len;
327
328 /* cookie matches to the currently running transfer */
329 ret = desc_first->total_len;
330
331 if (desc_first->lli.dscr) {
332 /* hardware linked list transfer */
333
334 /*
335 * Calculate the residue by removing the length of the child
336 * descriptors already transferred from the total length.
337 * To get the current child descriptor we can use the value of
338 * the channel's DSCR register and compare it against the value
339 * of the hardware linked list structure of each child
340 * descriptor.
341 *
342 * The CTRLA register provides us with the amount of data
343 * already read from the source for the current child
344 * descriptor. So we can compute a more accurate residue by also
345 * removing the number of bytes corresponding to this amount of
346 * data.
347 *
348 * However, the DSCR and CTRLA registers cannot be read both
349 * atomically. Hence a race condition may occur: the first read
350 * register may refer to one child descriptor whereas the second
351 * read may refer to a later child descriptor in the list
352 * because of the DMA transfer progression inbetween the two
353 * reads.
354 *
355 * One solution could have been to pause the DMA transfer, read
356 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
357 * this approach presents some drawbacks:
358 * - If the DMA transfer is paused, RX overruns or TX underruns
359 * are more likey to occur depending on the system latency.
360 * Taking the USART driver as an example, it uses a cyclic DMA
361 * transfer to read data from the Receive Holding Register
362 * (RHR) to avoid RX overruns since the RHR is not protected
363 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer
364 * to compute the residue would break the USART driver design.
365 * - The atc_pause() function masks interrupts but we'd rather
366 * avoid to do so for system latency purpose.
367 *
368 * Then we'd rather use another solution: the DSCR is read a
369 * first time, the CTRLA is read in turn, next the DSCR is read
370 * a second time. If the two consecutive read values of the DSCR
371 * are the same then we assume both refers to the very same
372 * child descriptor as well as the CTRLA value read inbetween
373 * does. For cyclic tranfers, the assumption is that a full loop
374 * is "not so fast".
375 * If the two DSCR values are different, we read again the CTRLA
376 * then the DSCR till two consecutive read values from DSCR are
377 * equal or till the maxium trials is reach.
378 * This algorithm is very unlikely not to find a stable value for
379 * DSCR.
380 */
381
382 dscr = channel_readl(atchan, DSCR);
383 rmb(); /* ensure DSCR is read before CTRLA */
384 ctrla = channel_readl(atchan, CTRLA);
385 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
386 u32 new_dscr;
387
388 rmb(); /* ensure DSCR is read after CTRLA */
389 new_dscr = channel_readl(atchan, DSCR);
390
391 /*
392 * If the DSCR register value has not changed inside the
393 * DMA controller since the previous read, we assume
394 * that both the dscr and ctrla values refers to the
395 * very same descriptor.
396 */
397 if (likely(new_dscr == dscr))
398 break;
399
400 /*
401 * DSCR has changed inside the DMA controller, so the
402 * previouly read value of CTRLA may refer to an already
403 * processed descriptor hence could be outdated.
404 * We need to update ctrla to match the current
405 * descriptor.
406 */
407 dscr = new_dscr;
408 rmb(); /* ensure DSCR is read before CTRLA */
409 ctrla = channel_readl(atchan, CTRLA);
410 }
411 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
412 return -ETIMEDOUT;
413
414 /* for the first descriptor we can be more accurate */
415 if (desc_first->lli.dscr == dscr)
416 return atc_calc_bytes_left(ret, ctrla);
417
418 ret -= desc_first->len;
419 list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
420 if (desc->lli.dscr == dscr)
421 break;
422
423 ret -= desc->len;
424 }
425
426 /*
427 * For the current descriptor in the chain we can calculate
428 * the remaining bytes using the channel's register.
429 */
430 ret = atc_calc_bytes_left(ret, ctrla);
431 } else {
432 /* single transfer */
433 ctrla = channel_readl(atchan, CTRLA);
434 ret = atc_calc_bytes_left(ret, ctrla);
435 }
436
437 return ret;
438}
439
440/**
441 * atc_chain_complete - finish work for one transaction chain
442 * @atchan: channel we work on
443 * @desc: descriptor at the head of the chain we want do complete
444 *
445 * Called with atchan->lock held and bh disabled */
446static void
447atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
448{
449 struct dma_async_tx_descriptor *txd = &desc->txd;
450 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
451
452 dev_vdbg(chan2dev(&atchan->chan_common),
453 "descriptor %u complete\n", txd->cookie);
454
455 /* mark the descriptor as complete for non cyclic cases only */
456 if (!atc_chan_is_cyclic(atchan))
457 dma_cookie_complete(txd);
458
459 /* If the transfer was a memset, free our temporary buffer */
460 if (desc->memset_buffer) {
461 dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
462 desc->memset_paddr);
463 desc->memset_buffer = false;
464 }
465
466 /* move children to free_list */
467 list_splice_init(&desc->tx_list, &atchan->free_list);
468 /* move myself to free_list */
469 list_move(&desc->desc_node, &atchan->free_list);
470
471 dma_descriptor_unmap(txd);
472 /* for cyclic transfers,
473 * no need to replay callback function while stopping */
474 if (!atc_chan_is_cyclic(atchan)) {
475 /*
476 * The API requires that no submissions are done from a
477 * callback, so we don't need to drop the lock here
478 */
479 dmaengine_desc_get_callback_invoke(txd, NULL);
480 }
481
482 dma_run_dependencies(txd);
483}
484
485/**
486 * atc_complete_all - finish work for all transactions
487 * @atchan: channel to complete transactions for
488 *
489 * Eventually submit queued descriptors if any
490 *
491 * Assume channel is idle while calling this function
492 * Called with atchan->lock held and bh disabled
493 */
494static void atc_complete_all(struct at_dma_chan *atchan)
495{
496 struct at_desc *desc, *_desc;
497 LIST_HEAD(list);
498
499 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
500
501 /*
502 * Submit queued descriptors ASAP, i.e. before we go through
503 * the completed ones.
504 */
505 if (!list_empty(&atchan->queue))
506 atc_dostart(atchan, atc_first_queued(atchan));
507 /* empty active_list now it is completed */
508 list_splice_init(&atchan->active_list, &list);
509 /* empty queue list by moving descriptors (if any) to active_list */
510 list_splice_init(&atchan->queue, &atchan->active_list);
511
512 list_for_each_entry_safe(desc, _desc, &list, desc_node)
513 atc_chain_complete(atchan, desc);
514}
515
516/**
517 * atc_advance_work - at the end of a transaction, move forward
518 * @atchan: channel where the transaction ended
519 *
520 * Called with atchan->lock held and bh disabled
521 */
522static void atc_advance_work(struct at_dma_chan *atchan)
523{
524 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
525
526 if (atc_chan_is_enabled(atchan))
527 return;
528
529 if (list_empty(&atchan->active_list) ||
530 list_is_singular(&atchan->active_list)) {
531 atc_complete_all(atchan);
532 } else {
533 atc_chain_complete(atchan, atc_first_active(atchan));
534 /* advance work */
535 atc_dostart(atchan, atc_first_active(atchan));
536 }
537}
538
539
540/**
541 * atc_handle_error - handle errors reported by DMA controller
542 * @atchan: channel where error occurs
543 *
544 * Called with atchan->lock held and bh disabled
545 */
546static void atc_handle_error(struct at_dma_chan *atchan)
547{
548 struct at_desc *bad_desc;
549 struct at_desc *child;
550
551 /*
552 * The descriptor currently at the head of the active list is
553 * broked. Since we don't have any way to report errors, we'll
554 * just have to scream loudly and try to carry on.
555 */
556 bad_desc = atc_first_active(atchan);
557 list_del_init(&bad_desc->desc_node);
558
559 /* As we are stopped, take advantage to push queued descriptors
560 * in active_list */
561 list_splice_init(&atchan->queue, atchan->active_list.prev);
562
563 /* Try to restart the controller */
564 if (!list_empty(&atchan->active_list))
565 atc_dostart(atchan, atc_first_active(atchan));
566
567 /*
568 * KERN_CRITICAL may seem harsh, but since this only happens
569 * when someone submits a bad physical address in a
570 * descriptor, we should consider ourselves lucky that the
571 * controller flagged an error instead of scribbling over
572 * random memory locations.
573 */
574 dev_crit(chan2dev(&atchan->chan_common),
575 "Bad descriptor submitted for DMA!\n");
576 dev_crit(chan2dev(&atchan->chan_common),
577 " cookie: %d\n", bad_desc->txd.cookie);
578 atc_dump_lli(atchan, &bad_desc->lli);
579 list_for_each_entry(child, &bad_desc->tx_list, desc_node)
580 atc_dump_lli(atchan, &child->lli);
581
582 /* Pretend the descriptor completed successfully */
583 atc_chain_complete(atchan, bad_desc);
584}
585
586/**
587 * atc_handle_cyclic - at the end of a period, run callback function
588 * @atchan: channel used for cyclic operations
589 *
590 * Called with atchan->lock held and bh disabled
591 */
592static void atc_handle_cyclic(struct at_dma_chan *atchan)
593{
594 struct at_desc *first = atc_first_active(atchan);
595 struct dma_async_tx_descriptor *txd = &first->txd;
596
597 dev_vdbg(chan2dev(&atchan->chan_common),
598 "new cyclic period llp 0x%08x\n",
599 channel_readl(atchan, DSCR));
600
601 dmaengine_desc_get_callback_invoke(txd, NULL);
602}
603
604/*-- IRQ & Tasklet ---------------------------------------------------*/
605
606static void atc_tasklet(unsigned long data)
607{
608 struct at_dma_chan *atchan = (struct at_dma_chan *)data;
609 unsigned long flags;
610
611 spin_lock_irqsave(&atchan->lock, flags);
612 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
613 atc_handle_error(atchan);
614 else if (atc_chan_is_cyclic(atchan))
615 atc_handle_cyclic(atchan);
616 else
617 atc_advance_work(atchan);
618
619 spin_unlock_irqrestore(&atchan->lock, flags);
620}
621
622static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
623{
624 struct at_dma *atdma = (struct at_dma *)dev_id;
625 struct at_dma_chan *atchan;
626 int i;
627 u32 status, pending, imr;
628 int ret = IRQ_NONE;
629
630 do {
631 imr = dma_readl(atdma, EBCIMR);
632 status = dma_readl(atdma, EBCISR);
633 pending = status & imr;
634
635 if (!pending)
636 break;
637
638 dev_vdbg(atdma->dma_common.dev,
639 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
640 status, imr, pending);
641
642 for (i = 0; i < atdma->dma_common.chancnt; i++) {
643 atchan = &atdma->chan[i];
644 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
645 if (pending & AT_DMA_ERR(i)) {
646 /* Disable channel on AHB error */
647 dma_writel(atdma, CHDR,
648 AT_DMA_RES(i) | atchan->mask);
649 /* Give information to tasklet */
650 set_bit(ATC_IS_ERROR, &atchan->status);
651 }
652 tasklet_schedule(&atchan->tasklet);
653 ret = IRQ_HANDLED;
654 }
655 }
656
657 } while (pending);
658
659 return ret;
660}
661
662
663/*-- DMA Engine API --------------------------------------------------*/
664
665/**
666 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
667 * @desc: descriptor at the head of the transaction chain
668 *
669 * Queue chain if DMA engine is working already
670 *
671 * Cookie increment and adding to active_list or queue must be atomic
672 */
673static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
674{
675 struct at_desc *desc = txd_to_at_desc(tx);
676 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan);
677 dma_cookie_t cookie;
678 unsigned long flags;
679
680 spin_lock_irqsave(&atchan->lock, flags);
681 cookie = dma_cookie_assign(tx);
682
683 if (list_empty(&atchan->active_list)) {
684 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
685 desc->txd.cookie);
686 atc_dostart(atchan, desc);
687 list_add_tail(&desc->desc_node, &atchan->active_list);
688 } else {
689 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
690 desc->txd.cookie);
691 list_add_tail(&desc->desc_node, &atchan->queue);
692 }
693
694 spin_unlock_irqrestore(&atchan->lock, flags);
695
696 return cookie;
697}
698
699/**
700 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
701 * @chan: the channel to prepare operation on
702 * @xt: Interleaved transfer template
703 * @flags: tx descriptor status flags
704 */
705static struct dma_async_tx_descriptor *
706atc_prep_dma_interleaved(struct dma_chan *chan,
707 struct dma_interleaved_template *xt,
708 unsigned long flags)
709{
710 struct at_dma_chan *atchan = to_at_dma_chan(chan);
711 struct data_chunk *first = xt->sgl;
712 struct at_desc *desc = NULL;
713 size_t xfer_count;
714 unsigned int dwidth;
715 u32 ctrla;
716 u32 ctrlb;
717 size_t len = 0;
718 int i;
719
720 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
721 return NULL;
722
723 dev_info(chan2dev(chan),
724 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
725 __func__, &xt->src_start, &xt->dst_start, xt->numf,
726 xt->frame_size, flags);
727
728 /*
729 * The controller can only "skip" X bytes every Y bytes, so we
730 * need to make sure we are given a template that fit that
731 * description, ie a template with chunks that always have the
732 * same size, with the same ICGs.
733 */
734 for (i = 0; i < xt->frame_size; i++) {
735 struct data_chunk *chunk = xt->sgl + i;
736
737 if ((chunk->size != xt->sgl->size) ||
738 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
739 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
740 dev_err(chan2dev(chan),
741 "%s: the controller can transfer only identical chunks\n",
742 __func__);
743 return NULL;
744 }
745
746 len += chunk->size;
747 }
748
749 dwidth = atc_get_xfer_width(xt->src_start,
750 xt->dst_start, len);
751
752 xfer_count = len >> dwidth;
753 if (xfer_count > ATC_BTSIZE_MAX) {
754 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
755 return NULL;
756 }
757
758 ctrla = ATC_SRC_WIDTH(dwidth) |
759 ATC_DST_WIDTH(dwidth);
760
761 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
762 | ATC_SRC_ADDR_MODE_INCR
763 | ATC_DST_ADDR_MODE_INCR
764 | ATC_SRC_PIP
765 | ATC_DST_PIP
766 | ATC_FC_MEM2MEM;
767
768 /* create the transfer */
769 desc = atc_desc_get(atchan);
770 if (!desc) {
771 dev_err(chan2dev(chan),
772 "%s: couldn't allocate our descriptor\n", __func__);
773 return NULL;
774 }
775
776 desc->lli.saddr = xt->src_start;
777 desc->lli.daddr = xt->dst_start;
778 desc->lli.ctrla = ctrla | xfer_count;
779 desc->lli.ctrlb = ctrlb;
780
781 desc->boundary = first->size >> dwidth;
782 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
783 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
784
785 desc->txd.cookie = -EBUSY;
786 desc->total_len = desc->len = len;
787
788 /* set end-of-link to the last link descriptor of list*/
789 set_desc_eol(desc);
790
791 desc->txd.flags = flags; /* client is in control of this ack */
792
793 return &desc->txd;
794}
795
796/**
797 * atc_prep_dma_memcpy - prepare a memcpy operation
798 * @chan: the channel to prepare operation on
799 * @dest: operation virtual destination address
800 * @src: operation virtual source address
801 * @len: operation length
802 * @flags: tx descriptor status flags
803 */
804static struct dma_async_tx_descriptor *
805atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
806 size_t len, unsigned long flags)
807{
808 struct at_dma_chan *atchan = to_at_dma_chan(chan);
809 struct at_desc *desc = NULL;
810 struct at_desc *first = NULL;
811 struct at_desc *prev = NULL;
812 size_t xfer_count;
813 size_t offset;
814 unsigned int src_width;
815 unsigned int dst_width;
816 u32 ctrla;
817 u32 ctrlb;
818
819 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
820 &dest, &src, len, flags);
821
822 if (unlikely(!len)) {
823 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
824 return NULL;
825 }
826
827 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
828 | ATC_SRC_ADDR_MODE_INCR
829 | ATC_DST_ADDR_MODE_INCR
830 | ATC_FC_MEM2MEM;
831
832 /*
833 * We can be a lot more clever here, but this should take care
834 * of the most common optimization.
835 */
836 src_width = dst_width = atc_get_xfer_width(src, dest, len);
837
838 ctrla = ATC_SRC_WIDTH(src_width) |
839 ATC_DST_WIDTH(dst_width);
840
841 for (offset = 0; offset < len; offset += xfer_count << src_width) {
842 xfer_count = min_t(size_t, (len - offset) >> src_width,
843 ATC_BTSIZE_MAX);
844
845 desc = atc_desc_get(atchan);
846 if (!desc)
847 goto err_desc_get;
848
849 desc->lli.saddr = src + offset;
850 desc->lli.daddr = dest + offset;
851 desc->lli.ctrla = ctrla | xfer_count;
852 desc->lli.ctrlb = ctrlb;
853
854 desc->txd.cookie = 0;
855 desc->len = xfer_count << src_width;
856
857 atc_desc_chain(&first, &prev, desc);
858 }
859
860 /* First descriptor of the chain embedds additional information */
861 first->txd.cookie = -EBUSY;
862 first->total_len = len;
863
864 /* set end-of-link to the last link descriptor of list*/
865 set_desc_eol(desc);
866
867 first->txd.flags = flags; /* client is in control of this ack */
868
869 return &first->txd;
870
871err_desc_get:
872 atc_desc_put(atchan, first);
873 return NULL;
874}
875
876static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
877 dma_addr_t psrc,
878 dma_addr_t pdst,
879 size_t len)
880{
881 struct at_dma_chan *atchan = to_at_dma_chan(chan);
882 struct at_desc *desc;
883 size_t xfer_count;
884
885 u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
886 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
887 ATC_SRC_ADDR_MODE_FIXED |
888 ATC_DST_ADDR_MODE_INCR |
889 ATC_FC_MEM2MEM;
890
891 xfer_count = len >> 2;
892 if (xfer_count > ATC_BTSIZE_MAX) {
893 dev_err(chan2dev(chan), "%s: buffer is too big\n",
894 __func__);
895 return NULL;
896 }
897
898 desc = atc_desc_get(atchan);
899 if (!desc) {
900 dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
901 __func__);
902 return NULL;
903 }
904
905 desc->lli.saddr = psrc;
906 desc->lli.daddr = pdst;
907 desc->lli.ctrla = ctrla | xfer_count;
908 desc->lli.ctrlb = ctrlb;
909
910 desc->txd.cookie = 0;
911 desc->len = len;
912
913 return desc;
914}
915
916/**
917 * atc_prep_dma_memset - prepare a memcpy operation
918 * @chan: the channel to prepare operation on
919 * @dest: operation virtual destination address
920 * @value: value to set memory buffer to
921 * @len: operation length
922 * @flags: tx descriptor status flags
923 */
924static struct dma_async_tx_descriptor *
925atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
926 size_t len, unsigned long flags)
927{
928 struct at_dma *atdma = to_at_dma(chan->device);
929 struct at_desc *desc;
930 void __iomem *vaddr;
931 dma_addr_t paddr;
932
933 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
934 &dest, value, len, flags);
935
936 if (unlikely(!len)) {
937 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
938 return NULL;
939 }
940
941 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
942 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
943 __func__);
944 return NULL;
945 }
946
947 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
948 if (!vaddr) {
949 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
950 __func__);
951 return NULL;
952 }
953 *(u32*)vaddr = value;
954
955 desc = atc_create_memset_desc(chan, paddr, dest, len);
956 if (!desc) {
957 dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
958 __func__);
959 goto err_free_buffer;
960 }
961
962 desc->memset_paddr = paddr;
963 desc->memset_vaddr = vaddr;
964 desc->memset_buffer = true;
965
966 desc->txd.cookie = -EBUSY;
967 desc->total_len = len;
968
969 /* set end-of-link on the descriptor */
970 set_desc_eol(desc);
971
972 desc->txd.flags = flags;
973
974 return &desc->txd;
975
976err_free_buffer:
977 dma_pool_free(atdma->memset_pool, vaddr, paddr);
978 return NULL;
979}
980
981static struct dma_async_tx_descriptor *
982atc_prep_dma_memset_sg(struct dma_chan *chan,
983 struct scatterlist *sgl,
984 unsigned int sg_len, int value,
985 unsigned long flags)
986{
987 struct at_dma_chan *atchan = to_at_dma_chan(chan);
988 struct at_dma *atdma = to_at_dma(chan->device);
989 struct at_desc *desc = NULL, *first = NULL, *prev = NULL;
990 struct scatterlist *sg;
991 void __iomem *vaddr;
992 dma_addr_t paddr;
993 size_t total_len = 0;
994 int i;
995
996 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
997 value, sg_len, flags);
998
999 if (unlikely(!sgl || !sg_len)) {
1000 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1001 __func__);
1002 return NULL;
1003 }
1004
1005 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
1006 if (!vaddr) {
1007 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1008 __func__);
1009 return NULL;
1010 }
1011 *(u32*)vaddr = value;
1012
1013 for_each_sg(sgl, sg, sg_len, i) {
1014 dma_addr_t dest = sg_dma_address(sg);
1015 size_t len = sg_dma_len(sg);
1016
1017 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1018 __func__, &dest, len);
1019
1020 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1021 dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1022 __func__);
1023 goto err_put_desc;
1024 }
1025
1026 desc = atc_create_memset_desc(chan, paddr, dest, len);
1027 if (!desc)
1028 goto err_put_desc;
1029
1030 atc_desc_chain(&first, &prev, desc);
1031
1032 total_len += len;
1033 }
1034
1035 /*
1036 * Only set the buffer pointers on the last descriptor to
1037 * avoid free'ing while we have our transfer still going
1038 */
1039 desc->memset_paddr = paddr;
1040 desc->memset_vaddr = vaddr;
1041 desc->memset_buffer = true;
1042
1043 first->txd.cookie = -EBUSY;
1044 first->total_len = total_len;
1045
1046 /* set end-of-link on the descriptor */
1047 set_desc_eol(desc);
1048
1049 first->txd.flags = flags;
1050
1051 return &first->txd;
1052
1053err_put_desc:
1054 atc_desc_put(atchan, first);
1055 return NULL;
1056}
1057
1058/**
1059 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1060 * @chan: DMA channel
1061 * @sgl: scatterlist to transfer to/from
1062 * @sg_len: number of entries in @scatterlist
1063 * @direction: DMA direction
1064 * @flags: tx descriptor status flags
1065 * @context: transaction context (ignored)
1066 */
1067static struct dma_async_tx_descriptor *
1068atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1069 unsigned int sg_len, enum dma_transfer_direction direction,
1070 unsigned long flags, void *context)
1071{
1072 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1073 struct at_dma_slave *atslave = chan->private;
1074 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1075 struct at_desc *first = NULL;
1076 struct at_desc *prev = NULL;
1077 u32 ctrla;
1078 u32 ctrlb;
1079 dma_addr_t reg;
1080 unsigned int reg_width;
1081 unsigned int mem_width;
1082 unsigned int i;
1083 struct scatterlist *sg;
1084 size_t total_len = 0;
1085
1086 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1087 sg_len,
1088 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1089 flags);
1090
1091 if (unlikely(!atslave || !sg_len)) {
1092 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1093 return NULL;
1094 }
1095
1096 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1097 | ATC_DCSIZE(sconfig->dst_maxburst);
1098 ctrlb = ATC_IEN;
1099
1100 switch (direction) {
1101 case DMA_MEM_TO_DEV:
1102 reg_width = convert_buswidth(sconfig->dst_addr_width);
1103 ctrla |= ATC_DST_WIDTH(reg_width);
1104 ctrlb |= ATC_DST_ADDR_MODE_FIXED
1105 | ATC_SRC_ADDR_MODE_INCR
1106 | ATC_FC_MEM2PER
1107 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1108 reg = sconfig->dst_addr;
1109 for_each_sg(sgl, sg, sg_len, i) {
1110 struct at_desc *desc;
1111 u32 len;
1112 u32 mem;
1113
1114 desc = atc_desc_get(atchan);
1115 if (!desc)
1116 goto err_desc_get;
1117
1118 mem = sg_dma_address(sg);
1119 len = sg_dma_len(sg);
1120 if (unlikely(!len)) {
1121 dev_dbg(chan2dev(chan),
1122 "prep_slave_sg: sg(%d) data length is zero\n", i);
1123 goto err;
1124 }
1125 mem_width = 2;
1126 if (unlikely(mem & 3 || len & 3))
1127 mem_width = 0;
1128
1129 desc->lli.saddr = mem;
1130 desc->lli.daddr = reg;
1131 desc->lli.ctrla = ctrla
1132 | ATC_SRC_WIDTH(mem_width)
1133 | len >> mem_width;
1134 desc->lli.ctrlb = ctrlb;
1135 desc->len = len;
1136
1137 atc_desc_chain(&first, &prev, desc);
1138 total_len += len;
1139 }
1140 break;
1141 case DMA_DEV_TO_MEM:
1142 reg_width = convert_buswidth(sconfig->src_addr_width);
1143 ctrla |= ATC_SRC_WIDTH(reg_width);
1144 ctrlb |= ATC_DST_ADDR_MODE_INCR
1145 | ATC_SRC_ADDR_MODE_FIXED
1146 | ATC_FC_PER2MEM
1147 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1148
1149 reg = sconfig->src_addr;
1150 for_each_sg(sgl, sg, sg_len, i) {
1151 struct at_desc *desc;
1152 u32 len;
1153 u32 mem;
1154
1155 desc = atc_desc_get(atchan);
1156 if (!desc)
1157 goto err_desc_get;
1158
1159 mem = sg_dma_address(sg);
1160 len = sg_dma_len(sg);
1161 if (unlikely(!len)) {
1162 dev_dbg(chan2dev(chan),
1163 "prep_slave_sg: sg(%d) data length is zero\n", i);
1164 goto err;
1165 }
1166 mem_width = 2;
1167 if (unlikely(mem & 3 || len & 3))
1168 mem_width = 0;
1169
1170 desc->lli.saddr = reg;
1171 desc->lli.daddr = mem;
1172 desc->lli.ctrla = ctrla
1173 | ATC_DST_WIDTH(mem_width)
1174 | len >> reg_width;
1175 desc->lli.ctrlb = ctrlb;
1176 desc->len = len;
1177
1178 atc_desc_chain(&first, &prev, desc);
1179 total_len += len;
1180 }
1181 break;
1182 default:
1183 return NULL;
1184 }
1185
1186 /* set end-of-link to the last link descriptor of list*/
1187 set_desc_eol(prev);
1188
1189 /* First descriptor of the chain embedds additional information */
1190 first->txd.cookie = -EBUSY;
1191 first->total_len = total_len;
1192
1193 /* first link descriptor of list is responsible of flags */
1194 first->txd.flags = flags; /* client is in control of this ack */
1195
1196 return &first->txd;
1197
1198err_desc_get:
1199 dev_err(chan2dev(chan), "not enough descriptors available\n");
1200err:
1201 atc_desc_put(atchan, first);
1202 return NULL;
1203}
1204
1205/**
1206 * atc_prep_dma_sg - prepare memory to memory scather-gather operation
1207 * @chan: the channel to prepare operation on
1208 * @dst_sg: destination scatterlist
1209 * @dst_nents: number of destination scatterlist entries
1210 * @src_sg: source scatterlist
1211 * @src_nents: number of source scatterlist entries
1212 * @flags: tx descriptor status flags
1213 */
1214static struct dma_async_tx_descriptor *
1215atc_prep_dma_sg(struct dma_chan *chan,
1216 struct scatterlist *dst_sg, unsigned int dst_nents,
1217 struct scatterlist *src_sg, unsigned int src_nents,
1218 unsigned long flags)
1219{
1220 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1221 struct at_desc *desc = NULL;
1222 struct at_desc *first = NULL;
1223 struct at_desc *prev = NULL;
1224 unsigned int src_width;
1225 unsigned int dst_width;
1226 size_t xfer_count;
1227 u32 ctrla;
1228 u32 ctrlb;
1229 size_t dst_len = 0, src_len = 0;
1230 dma_addr_t dst = 0, src = 0;
1231 size_t len = 0, total_len = 0;
1232
1233 if (unlikely(dst_nents == 0 || src_nents == 0))
1234 return NULL;
1235
1236 if (unlikely(dst_sg == NULL || src_sg == NULL))
1237 return NULL;
1238
1239 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
1240 | ATC_SRC_ADDR_MODE_INCR
1241 | ATC_DST_ADDR_MODE_INCR
1242 | ATC_FC_MEM2MEM;
1243
1244 /*
1245 * loop until there is either no more source or no more destination
1246 * scatterlist entry
1247 */
1248 while (true) {
1249
1250 /* prepare the next transfer */
1251 if (dst_len == 0) {
1252
1253 /* no more destination scatterlist entries */
1254 if (!dst_sg || !dst_nents)
1255 break;
1256
1257 dst = sg_dma_address(dst_sg);
1258 dst_len = sg_dma_len(dst_sg);
1259
1260 dst_sg = sg_next(dst_sg);
1261 dst_nents--;
1262 }
1263
1264 if (src_len == 0) {
1265
1266 /* no more source scatterlist entries */
1267 if (!src_sg || !src_nents)
1268 break;
1269
1270 src = sg_dma_address(src_sg);
1271 src_len = sg_dma_len(src_sg);
1272
1273 src_sg = sg_next(src_sg);
1274 src_nents--;
1275 }
1276
1277 len = min_t(size_t, src_len, dst_len);
1278 if (len == 0)
1279 continue;
1280
1281 /* take care for the alignment */
1282 src_width = dst_width = atc_get_xfer_width(src, dst, len);
1283
1284 ctrla = ATC_SRC_WIDTH(src_width) |
1285 ATC_DST_WIDTH(dst_width);
1286
1287 /*
1288 * The number of transfers to set up refer to the source width
1289 * that depends on the alignment.
1290 */
1291 xfer_count = len >> src_width;
1292 if (xfer_count > ATC_BTSIZE_MAX) {
1293 xfer_count = ATC_BTSIZE_MAX;
1294 len = ATC_BTSIZE_MAX << src_width;
1295 }
1296
1297 /* create the transfer */
1298 desc = atc_desc_get(atchan);
1299 if (!desc)
1300 goto err_desc_get;
1301
1302 desc->lli.saddr = src;
1303 desc->lli.daddr = dst;
1304 desc->lli.ctrla = ctrla | xfer_count;
1305 desc->lli.ctrlb = ctrlb;
1306
1307 desc->txd.cookie = 0;
1308 desc->len = len;
1309
1310 atc_desc_chain(&first, &prev, desc);
1311
1312 /* update the lengths and addresses for the next loop cycle */
1313 dst_len -= len;
1314 src_len -= len;
1315 dst += len;
1316 src += len;
1317
1318 total_len += len;
1319 }
1320
1321 /* First descriptor of the chain embedds additional information */
1322 first->txd.cookie = -EBUSY;
1323 first->total_len = total_len;
1324
1325 /* set end-of-link to the last link descriptor of list*/
1326 set_desc_eol(desc);
1327
1328 first->txd.flags = flags; /* client is in control of this ack */
1329
1330 return &first->txd;
1331
1332err_desc_get:
1333 atc_desc_put(atchan, first);
1334 return NULL;
1335}
1336
1337/**
1338 * atc_dma_cyclic_check_values
1339 * Check for too big/unaligned periods and unaligned DMA buffer
1340 */
1341static int
1342atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1343 size_t period_len)
1344{
1345 if (period_len > (ATC_BTSIZE_MAX << reg_width))
1346 goto err_out;
1347 if (unlikely(period_len & ((1 << reg_width) - 1)))
1348 goto err_out;
1349 if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1350 goto err_out;
1351
1352 return 0;
1353
1354err_out:
1355 return -EINVAL;
1356}
1357
1358/**
1359 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1360 */
1361static int
1362atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1363 unsigned int period_index, dma_addr_t buf_addr,
1364 unsigned int reg_width, size_t period_len,
1365 enum dma_transfer_direction direction)
1366{
1367 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1368 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1369 u32 ctrla;
1370
1371 /* prepare common CRTLA value */
1372 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1373 | ATC_DCSIZE(sconfig->dst_maxburst)
1374 | ATC_DST_WIDTH(reg_width)
1375 | ATC_SRC_WIDTH(reg_width)
1376 | period_len >> reg_width;
1377
1378 switch (direction) {
1379 case DMA_MEM_TO_DEV:
1380 desc->lli.saddr = buf_addr + (period_len * period_index);
1381 desc->lli.daddr = sconfig->dst_addr;
1382 desc->lli.ctrla = ctrla;
1383 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1384 | ATC_SRC_ADDR_MODE_INCR
1385 | ATC_FC_MEM2PER
1386 | ATC_SIF(atchan->mem_if)
1387 | ATC_DIF(atchan->per_if);
1388 desc->len = period_len;
1389 break;
1390
1391 case DMA_DEV_TO_MEM:
1392 desc->lli.saddr = sconfig->src_addr;
1393 desc->lli.daddr = buf_addr + (period_len * period_index);
1394 desc->lli.ctrla = ctrla;
1395 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1396 | ATC_SRC_ADDR_MODE_FIXED
1397 | ATC_FC_PER2MEM
1398 | ATC_SIF(atchan->per_if)
1399 | ATC_DIF(atchan->mem_if);
1400 desc->len = period_len;
1401 break;
1402
1403 default:
1404 return -EINVAL;
1405 }
1406
1407 return 0;
1408}
1409
1410/**
1411 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1412 * @chan: the DMA channel to prepare
1413 * @buf_addr: physical DMA address where the buffer starts
1414 * @buf_len: total number of bytes for the entire buffer
1415 * @period_len: number of bytes for each period
1416 * @direction: transfer direction, to or from device
1417 * @flags: tx descriptor status flags
1418 */
1419static struct dma_async_tx_descriptor *
1420atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1421 size_t period_len, enum dma_transfer_direction direction,
1422 unsigned long flags)
1423{
1424 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1425 struct at_dma_slave *atslave = chan->private;
1426 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1427 struct at_desc *first = NULL;
1428 struct at_desc *prev = NULL;
1429 unsigned long was_cyclic;
1430 unsigned int reg_width;
1431 unsigned int periods = buf_len / period_len;
1432 unsigned int i;
1433
1434 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1435 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1436 &buf_addr,
1437 periods, buf_len, period_len);
1438
1439 if (unlikely(!atslave || !buf_len || !period_len)) {
1440 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1441 return NULL;
1442 }
1443
1444 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1445 if (was_cyclic) {
1446 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1447 return NULL;
1448 }
1449
1450 if (unlikely(!is_slave_direction(direction)))
1451 goto err_out;
1452
1453 if (sconfig->direction == DMA_MEM_TO_DEV)
1454 reg_width = convert_buswidth(sconfig->dst_addr_width);
1455 else
1456 reg_width = convert_buswidth(sconfig->src_addr_width);
1457
1458 /* Check for too big/unaligned periods and unaligned DMA buffer */
1459 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1460 goto err_out;
1461
1462 /* build cyclic linked list */
1463 for (i = 0; i < periods; i++) {
1464 struct at_desc *desc;
1465
1466 desc = atc_desc_get(atchan);
1467 if (!desc)
1468 goto err_desc_get;
1469
1470 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1471 reg_width, period_len, direction))
1472 goto err_desc_get;
1473
1474 atc_desc_chain(&first, &prev, desc);
1475 }
1476
1477 /* lets make a cyclic list */
1478 prev->lli.dscr = first->txd.phys;
1479
1480 /* First descriptor of the chain embedds additional information */
1481 first->txd.cookie = -EBUSY;
1482 first->total_len = buf_len;
1483
1484 return &first->txd;
1485
1486err_desc_get:
1487 dev_err(chan2dev(chan), "not enough descriptors available\n");
1488 atc_desc_put(atchan, first);
1489err_out:
1490 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1491 return NULL;
1492}
1493
1494static int atc_config(struct dma_chan *chan,
1495 struct dma_slave_config *sconfig)
1496{
1497 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1498
1499 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1500
1501 /* Check if it is chan is configured for slave transfers */
1502 if (!chan->private)
1503 return -EINVAL;
1504
1505 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1506
1507 convert_burst(&atchan->dma_sconfig.src_maxburst);
1508 convert_burst(&atchan->dma_sconfig.dst_maxburst);
1509
1510 return 0;
1511}
1512
1513static int atc_pause(struct dma_chan *chan)
1514{
1515 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1516 struct at_dma *atdma = to_at_dma(chan->device);
1517 int chan_id = atchan->chan_common.chan_id;
1518 unsigned long flags;
1519
1520 LIST_HEAD(list);
1521
1522 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1523
1524 spin_lock_irqsave(&atchan->lock, flags);
1525
1526 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1527 set_bit(ATC_IS_PAUSED, &atchan->status);
1528
1529 spin_unlock_irqrestore(&atchan->lock, flags);
1530
1531 return 0;
1532}
1533
1534static int atc_resume(struct dma_chan *chan)
1535{
1536 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1537 struct at_dma *atdma = to_at_dma(chan->device);
1538 int chan_id = atchan->chan_common.chan_id;
1539 unsigned long flags;
1540
1541 LIST_HEAD(list);
1542
1543 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1544
1545 if (!atc_chan_is_paused(atchan))
1546 return 0;
1547
1548 spin_lock_irqsave(&atchan->lock, flags);
1549
1550 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1551 clear_bit(ATC_IS_PAUSED, &atchan->status);
1552
1553 spin_unlock_irqrestore(&atchan->lock, flags);
1554
1555 return 0;
1556}
1557
1558static int atc_terminate_all(struct dma_chan *chan)
1559{
1560 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1561 struct at_dma *atdma = to_at_dma(chan->device);
1562 int chan_id = atchan->chan_common.chan_id;
1563 struct at_desc *desc, *_desc;
1564 unsigned long flags;
1565
1566 LIST_HEAD(list);
1567
1568 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1569
1570 /*
1571 * This is only called when something went wrong elsewhere, so
1572 * we don't really care about the data. Just disable the
1573 * channel. We still have to poll the channel enable bit due
1574 * to AHB/HSB limitations.
1575 */
1576 spin_lock_irqsave(&atchan->lock, flags);
1577
1578 /* disabling channel: must also remove suspend state */
1579 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1580
1581 /* confirm that this channel is disabled */
1582 while (dma_readl(atdma, CHSR) & atchan->mask)
1583 cpu_relax();
1584
1585 /* active_list entries will end up before queued entries */
1586 list_splice_init(&atchan->queue, &list);
1587 list_splice_init(&atchan->active_list, &list);
1588
1589 /* Flush all pending and queued descriptors */
1590 list_for_each_entry_safe(desc, _desc, &list, desc_node)
1591 atc_chain_complete(atchan, desc);
1592
1593 clear_bit(ATC_IS_PAUSED, &atchan->status);
1594 /* if channel dedicated to cyclic operations, free it */
1595 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1596
1597 spin_unlock_irqrestore(&atchan->lock, flags);
1598
1599 return 0;
1600}
1601
1602/**
1603 * atc_tx_status - poll for transaction completion
1604 * @chan: DMA channel
1605 * @cookie: transaction identifier to check status of
1606 * @txstate: if not %NULL updated with transaction state
1607 *
1608 * If @txstate is passed in, upon return it reflect the driver
1609 * internal state and can be used with dma_async_is_complete() to check
1610 * the status of multiple cookies without re-checking hardware state.
1611 */
1612static enum dma_status
1613atc_tx_status(struct dma_chan *chan,
1614 dma_cookie_t cookie,
1615 struct dma_tx_state *txstate)
1616{
1617 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1618 unsigned long flags;
1619 enum dma_status ret;
1620 int bytes = 0;
1621
1622 ret = dma_cookie_status(chan, cookie, txstate);
1623 if (ret == DMA_COMPLETE)
1624 return ret;
1625 /*
1626 * There's no point calculating the residue if there's
1627 * no txstate to store the value.
1628 */
1629 if (!txstate)
1630 return DMA_ERROR;
1631
1632 spin_lock_irqsave(&atchan->lock, flags);
1633
1634 /* Get number of bytes left in the active transactions */
1635 bytes = atc_get_bytes_left(chan, cookie);
1636
1637 spin_unlock_irqrestore(&atchan->lock, flags);
1638
1639 if (unlikely(bytes < 0)) {
1640 dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1641 return DMA_ERROR;
1642 } else {
1643 dma_set_residue(txstate, bytes);
1644 }
1645
1646 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1647 ret, cookie, bytes);
1648
1649 return ret;
1650}
1651
1652/**
1653 * atc_issue_pending - try to finish work
1654 * @chan: target DMA channel
1655 */
1656static void atc_issue_pending(struct dma_chan *chan)
1657{
1658 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1659 unsigned long flags;
1660
1661 dev_vdbg(chan2dev(chan), "issue_pending\n");
1662
1663 /* Not needed for cyclic transfers */
1664 if (atc_chan_is_cyclic(atchan))
1665 return;
1666
1667 spin_lock_irqsave(&atchan->lock, flags);
1668 atc_advance_work(atchan);
1669 spin_unlock_irqrestore(&atchan->lock, flags);
1670}
1671
1672/**
1673 * atc_alloc_chan_resources - allocate resources for DMA channel
1674 * @chan: allocate descriptor resources for this channel
1675 * @client: current client requesting the channel be ready for requests
1676 *
1677 * return - the number of allocated descriptors
1678 */
1679static int atc_alloc_chan_resources(struct dma_chan *chan)
1680{
1681 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1682 struct at_dma *atdma = to_at_dma(chan->device);
1683 struct at_desc *desc;
1684 struct at_dma_slave *atslave;
1685 unsigned long flags;
1686 int i;
1687 u32 cfg;
1688 LIST_HEAD(tmp_list);
1689
1690 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1691
1692 /* ASSERT: channel is idle */
1693 if (atc_chan_is_enabled(atchan)) {
1694 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1695 return -EIO;
1696 }
1697
1698 cfg = ATC_DEFAULT_CFG;
1699
1700 atslave = chan->private;
1701 if (atslave) {
1702 /*
1703 * We need controller-specific data to set up slave
1704 * transfers.
1705 */
1706 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1707
1708 /* if cfg configuration specified take it instead of default */
1709 if (atslave->cfg)
1710 cfg = atslave->cfg;
1711 }
1712
1713 /* have we already been set up?
1714 * reconfigure channel but no need to reallocate descriptors */
1715 if (!list_empty(&atchan->free_list))
1716 return atchan->descs_allocated;
1717
1718 /* Allocate initial pool of descriptors */
1719 for (i = 0; i < init_nr_desc_per_channel; i++) {
1720 desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1721 if (!desc) {
1722 dev_err(atdma->dma_common.dev,
1723 "Only %d initial descriptors\n", i);
1724 break;
1725 }
1726 list_add_tail(&desc->desc_node, &tmp_list);
1727 }
1728
1729 spin_lock_irqsave(&atchan->lock, flags);
1730 atchan->descs_allocated = i;
1731 list_splice(&tmp_list, &atchan->free_list);
1732 dma_cookie_init(chan);
1733 spin_unlock_irqrestore(&atchan->lock, flags);
1734
1735 /* channel parameters */
1736 channel_writel(atchan, CFG, cfg);
1737
1738 dev_dbg(chan2dev(chan),
1739 "alloc_chan_resources: allocated %d descriptors\n",
1740 atchan->descs_allocated);
1741
1742 return atchan->descs_allocated;
1743}
1744
1745/**
1746 * atc_free_chan_resources - free all channel resources
1747 * @chan: DMA channel
1748 */
1749static void atc_free_chan_resources(struct dma_chan *chan)
1750{
1751 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1752 struct at_dma *atdma = to_at_dma(chan->device);
1753 struct at_desc *desc, *_desc;
1754 LIST_HEAD(list);
1755
1756 dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1757 atchan->descs_allocated);
1758
1759 /* ASSERT: channel is idle */
1760 BUG_ON(!list_empty(&atchan->active_list));
1761 BUG_ON(!list_empty(&atchan->queue));
1762 BUG_ON(atc_chan_is_enabled(atchan));
1763
1764 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1765 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc);
1766 list_del(&desc->desc_node);
1767 /* free link descriptor */
1768 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1769 }
1770 list_splice_init(&atchan->free_list, &list);
1771 atchan->descs_allocated = 0;
1772 atchan->status = 0;
1773
1774 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1775}
1776
1777#ifdef CONFIG_OF
1778static bool at_dma_filter(struct dma_chan *chan, void *slave)
1779{
1780 struct at_dma_slave *atslave = slave;
1781
1782 if (atslave->dma_dev == chan->device->dev) {
1783 chan->private = atslave;
1784 return true;
1785 } else {
1786 return false;
1787 }
1788}
1789
1790static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1791 struct of_dma *of_dma)
1792{
1793 struct dma_chan *chan;
1794 struct at_dma_chan *atchan;
1795 struct at_dma_slave *atslave;
1796 dma_cap_mask_t mask;
1797 unsigned int per_id;
1798 struct platform_device *dmac_pdev;
1799
1800 if (dma_spec->args_count != 2)
1801 return NULL;
1802
1803 dmac_pdev = of_find_device_by_node(dma_spec->np);
1804
1805 dma_cap_zero(mask);
1806 dma_cap_set(DMA_SLAVE, mask);
1807
1808 atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL);
1809 if (!atslave)
1810 return NULL;
1811
1812 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1813 /*
1814 * We can fill both SRC_PER and DST_PER, one of these fields will be
1815 * ignored depending on DMA transfer direction.
1816 */
1817 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1818 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1819 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1820 /*
1821 * We have to translate the value we get from the device tree since
1822 * the half FIFO configuration value had to be 0 to keep backward
1823 * compatibility.
1824 */
1825 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1826 case AT91_DMA_CFG_FIFOCFG_ALAP:
1827 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1828 break;
1829 case AT91_DMA_CFG_FIFOCFG_ASAP:
1830 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1831 break;
1832 case AT91_DMA_CFG_FIFOCFG_HALF:
1833 default:
1834 atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1835 }
1836 atslave->dma_dev = &dmac_pdev->dev;
1837
1838 chan = dma_request_channel(mask, at_dma_filter, atslave);
1839 if (!chan)
1840 return NULL;
1841
1842 atchan = to_at_dma_chan(chan);
1843 atchan->per_if = dma_spec->args[0] & 0xff;
1844 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1845
1846 return chan;
1847}
1848#else
1849static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1850 struct of_dma *of_dma)
1851{
1852 return NULL;
1853}
1854#endif
1855
1856/*-- Module Management -----------------------------------------------*/
1857
1858/* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1859static struct at_dma_platform_data at91sam9rl_config = {
1860 .nr_channels = 2,
1861};
1862static struct at_dma_platform_data at91sam9g45_config = {
1863 .nr_channels = 8,
1864};
1865
1866#if defined(CONFIG_OF)
1867static const struct of_device_id atmel_dma_dt_ids[] = {
1868 {
1869 .compatible = "atmel,at91sam9rl-dma",
1870 .data = &at91sam9rl_config,
1871 }, {
1872 .compatible = "atmel,at91sam9g45-dma",
1873 .data = &at91sam9g45_config,
1874 }, {
1875 /* sentinel */
1876 }
1877};
1878
1879MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1880#endif
1881
1882static const struct platform_device_id atdma_devtypes[] = {
1883 {
1884 .name = "at91sam9rl_dma",
1885 .driver_data = (unsigned long) &at91sam9rl_config,
1886 }, {
1887 .name = "at91sam9g45_dma",
1888 .driver_data = (unsigned long) &at91sam9g45_config,
1889 }, {
1890 /* sentinel */
1891 }
1892};
1893
1894static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1895 struct platform_device *pdev)
1896{
1897 if (pdev->dev.of_node) {
1898 const struct of_device_id *match;
1899 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1900 if (match == NULL)
1901 return NULL;
1902 return match->data;
1903 }
1904 return (struct at_dma_platform_data *)
1905 platform_get_device_id(pdev)->driver_data;
1906}
1907
1908/**
1909 * at_dma_off - disable DMA controller
1910 * @atdma: the Atmel HDAMC device
1911 */
1912static void at_dma_off(struct at_dma *atdma)
1913{
1914 dma_writel(atdma, EN, 0);
1915
1916 /* disable all interrupts */
1917 dma_writel(atdma, EBCIDR, -1L);
1918
1919 /* confirm that all channels are disabled */
1920 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1921 cpu_relax();
1922}
1923
1924static int __init at_dma_probe(struct platform_device *pdev)
1925{
1926 struct resource *io;
1927 struct at_dma *atdma;
1928 size_t size;
1929 int irq;
1930 int err;
1931 int i;
1932 const struct at_dma_platform_data *plat_dat;
1933
1934 /* setup platform data for each SoC */
1935 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1936 dma_cap_set(DMA_SG, at91sam9rl_config.cap_mask);
1937 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1938 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1939 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1940 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1941 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1942 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1943 dma_cap_set(DMA_SG, at91sam9g45_config.cap_mask);
1944
1945 /* get DMA parameters from controller type */
1946 plat_dat = at_dma_get_driver_data(pdev);
1947 if (!plat_dat)
1948 return -ENODEV;
1949
1950 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1951 if (!io)
1952 return -EINVAL;
1953
1954 irq = platform_get_irq(pdev, 0);
1955 if (irq < 0)
1956 return irq;
1957
1958 size = sizeof(struct at_dma);
1959 size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1960 atdma = kzalloc(size, GFP_KERNEL);
1961 if (!atdma)
1962 return -ENOMEM;
1963
1964 /* discover transaction capabilities */
1965 atdma->dma_common.cap_mask = plat_dat->cap_mask;
1966 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1967
1968 size = resource_size(io);
1969 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1970 err = -EBUSY;
1971 goto err_kfree;
1972 }
1973
1974 atdma->regs = ioremap(io->start, size);
1975 if (!atdma->regs) {
1976 err = -ENOMEM;
1977 goto err_release_r;
1978 }
1979
1980 atdma->clk = clk_get(&pdev->dev, "dma_clk");
1981 if (IS_ERR(atdma->clk)) {
1982 err = PTR_ERR(atdma->clk);
1983 goto err_clk;
1984 }
1985 err = clk_prepare_enable(atdma->clk);
1986 if (err)
1987 goto err_clk_prepare;
1988
1989 /* force dma off, just in case */
1990 at_dma_off(atdma);
1991
1992 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1993 if (err)
1994 goto err_irq;
1995
1996 platform_set_drvdata(pdev, atdma);
1997
1998 /* create a pool of consistent memory blocks for hardware descriptors */
1999 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
2000 &pdev->dev, sizeof(struct at_desc),
2001 4 /* word alignment */, 0);
2002 if (!atdma->dma_desc_pool) {
2003 dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
2004 err = -ENOMEM;
2005 goto err_desc_pool_create;
2006 }
2007
2008 /* create a pool of consistent memory blocks for memset blocks */
2009 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
2010 &pdev->dev, sizeof(int), 4, 0);
2011 if (!atdma->memset_pool) {
2012 dev_err(&pdev->dev, "No memory for memset dma pool\n");
2013 err = -ENOMEM;
2014 goto err_memset_pool_create;
2015 }
2016
2017 /* clear any pending interrupt */
2018 while (dma_readl(atdma, EBCISR))
2019 cpu_relax();
2020
2021 /* initialize channels related values */
2022 INIT_LIST_HEAD(&atdma->dma_common.channels);
2023 for (i = 0; i < plat_dat->nr_channels; i++) {
2024 struct at_dma_chan *atchan = &atdma->chan[i];
2025
2026 atchan->mem_if = AT_DMA_MEM_IF;
2027 atchan->per_if = AT_DMA_PER_IF;
2028 atchan->chan_common.device = &atdma->dma_common;
2029 dma_cookie_init(&atchan->chan_common);
2030 list_add_tail(&atchan->chan_common.device_node,
2031 &atdma->dma_common.channels);
2032
2033 atchan->ch_regs = atdma->regs + ch_regs(i);
2034 spin_lock_init(&atchan->lock);
2035 atchan->mask = 1 << i;
2036
2037 INIT_LIST_HEAD(&atchan->active_list);
2038 INIT_LIST_HEAD(&atchan->queue);
2039 INIT_LIST_HEAD(&atchan->free_list);
2040
2041 tasklet_init(&atchan->tasklet, atc_tasklet,
2042 (unsigned long)atchan);
2043 atc_enable_chan_irq(atdma, i);
2044 }
2045
2046 /* set base routines */
2047 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
2048 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
2049 atdma->dma_common.device_tx_status = atc_tx_status;
2050 atdma->dma_common.device_issue_pending = atc_issue_pending;
2051 atdma->dma_common.dev = &pdev->dev;
2052
2053 /* set prep routines based on capability */
2054 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
2055 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
2056
2057 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
2058 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
2059
2060 if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
2061 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
2062 atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
2063 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
2064 }
2065
2066 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
2067 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
2068 /* controller can do slave DMA: can trigger cyclic transfers */
2069 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
2070 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
2071 atdma->dma_common.device_config = atc_config;
2072 atdma->dma_common.device_pause = atc_pause;
2073 atdma->dma_common.device_resume = atc_resume;
2074 atdma->dma_common.device_terminate_all = atc_terminate_all;
2075 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
2076 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
2077 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2078 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2079 }
2080
2081 if (dma_has_cap(DMA_SG, atdma->dma_common.cap_mask))
2082 atdma->dma_common.device_prep_dma_sg = atc_prep_dma_sg;
2083
2084 dma_writel(atdma, EN, AT_DMA_ENABLE);
2085
2086 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s%s), %d channels\n",
2087 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
2088 dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
2089 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "",
2090 dma_has_cap(DMA_SG, atdma->dma_common.cap_mask) ? "sg-cpy " : "",
2091 plat_dat->nr_channels);
2092
2093 dma_async_device_register(&atdma->dma_common);
2094
2095 /*
2096 * Do not return an error if the dmac node is not present in order to
2097 * not break the existing way of requesting channel with
2098 * dma_request_channel().
2099 */
2100 if (pdev->dev.of_node) {
2101 err = of_dma_controller_register(pdev->dev.of_node,
2102 at_dma_xlate, atdma);
2103 if (err) {
2104 dev_err(&pdev->dev, "could not register of_dma_controller\n");
2105 goto err_of_dma_controller_register;
2106 }
2107 }
2108
2109 return 0;
2110
2111err_of_dma_controller_register:
2112 dma_async_device_unregister(&atdma->dma_common);
2113 dma_pool_destroy(atdma->memset_pool);
2114err_memset_pool_create:
2115 dma_pool_destroy(atdma->dma_desc_pool);
2116err_desc_pool_create:
2117 free_irq(platform_get_irq(pdev, 0), atdma);
2118err_irq:
2119 clk_disable_unprepare(atdma->clk);
2120err_clk_prepare:
2121 clk_put(atdma->clk);
2122err_clk:
2123 iounmap(atdma->regs);
2124 atdma->regs = NULL;
2125err_release_r:
2126 release_mem_region(io->start, size);
2127err_kfree:
2128 kfree(atdma);
2129 return err;
2130}
2131
2132static int at_dma_remove(struct platform_device *pdev)
2133{
2134 struct at_dma *atdma = platform_get_drvdata(pdev);
2135 struct dma_chan *chan, *_chan;
2136 struct resource *io;
2137
2138 at_dma_off(atdma);
2139 dma_async_device_unregister(&atdma->dma_common);
2140
2141 dma_pool_destroy(atdma->memset_pool);
2142 dma_pool_destroy(atdma->dma_desc_pool);
2143 free_irq(platform_get_irq(pdev, 0), atdma);
2144
2145 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2146 device_node) {
2147 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2148
2149 /* Disable interrupts */
2150 atc_disable_chan_irq(atdma, chan->chan_id);
2151
2152 tasklet_kill(&atchan->tasklet);
2153 list_del(&chan->device_node);
2154 }
2155
2156 clk_disable_unprepare(atdma->clk);
2157 clk_put(atdma->clk);
2158
2159 iounmap(atdma->regs);
2160 atdma->regs = NULL;
2161
2162 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2163 release_mem_region(io->start, resource_size(io));
2164
2165 kfree(atdma);
2166
2167 return 0;
2168}
2169
2170static void at_dma_shutdown(struct platform_device *pdev)
2171{
2172 struct at_dma *atdma = platform_get_drvdata(pdev);
2173
2174 at_dma_off(platform_get_drvdata(pdev));
2175 clk_disable_unprepare(atdma->clk);
2176}
2177
2178static int at_dma_prepare(struct device *dev)
2179{
2180 struct platform_device *pdev = to_platform_device(dev);
2181 struct at_dma *atdma = platform_get_drvdata(pdev);
2182 struct dma_chan *chan, *_chan;
2183
2184 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2185 device_node) {
2186 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2187 /* wait for transaction completion (except in cyclic case) */
2188 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2189 return -EAGAIN;
2190 }
2191 return 0;
2192}
2193
2194static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2195{
2196 struct dma_chan *chan = &atchan->chan_common;
2197
2198 /* Channel should be paused by user
2199 * do it anyway even if it is not done already */
2200 if (!atc_chan_is_paused(atchan)) {
2201 dev_warn(chan2dev(chan),
2202 "cyclic channel not paused, should be done by channel user\n");
2203 atc_pause(chan);
2204 }
2205
2206 /* now preserve additional data for cyclic operations */
2207 /* next descriptor address in the cyclic list */
2208 atchan->save_dscr = channel_readl(atchan, DSCR);
2209
2210 vdbg_dump_regs(atchan);
2211}
2212
2213static int at_dma_suspend_noirq(struct device *dev)
2214{
2215 struct platform_device *pdev = to_platform_device(dev);
2216 struct at_dma *atdma = platform_get_drvdata(pdev);
2217 struct dma_chan *chan, *_chan;
2218
2219 /* preserve data */
2220 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2221 device_node) {
2222 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2223
2224 if (atc_chan_is_cyclic(atchan))
2225 atc_suspend_cyclic(atchan);
2226 atchan->save_cfg = channel_readl(atchan, CFG);
2227 }
2228 atdma->save_imr = dma_readl(atdma, EBCIMR);
2229
2230 /* disable DMA controller */
2231 at_dma_off(atdma);
2232 clk_disable_unprepare(atdma->clk);
2233 return 0;
2234}
2235
2236static void atc_resume_cyclic(struct at_dma_chan *atchan)
2237{
2238 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
2239
2240 /* restore channel status for cyclic descriptors list:
2241 * next descriptor in the cyclic list at the time of suspend */
2242 channel_writel(atchan, SADDR, 0);
2243 channel_writel(atchan, DADDR, 0);
2244 channel_writel(atchan, CTRLA, 0);
2245 channel_writel(atchan, CTRLB, 0);
2246 channel_writel(atchan, DSCR, atchan->save_dscr);
2247 dma_writel(atdma, CHER, atchan->mask);
2248
2249 /* channel pause status should be removed by channel user
2250 * We cannot take the initiative to do it here */
2251
2252 vdbg_dump_regs(atchan);
2253}
2254
2255static int at_dma_resume_noirq(struct device *dev)
2256{
2257 struct platform_device *pdev = to_platform_device(dev);
2258 struct at_dma *atdma = platform_get_drvdata(pdev);
2259 struct dma_chan *chan, *_chan;
2260
2261 /* bring back DMA controller */
2262 clk_prepare_enable(atdma->clk);
2263 dma_writel(atdma, EN, AT_DMA_ENABLE);
2264
2265 /* clear any pending interrupt */
2266 while (dma_readl(atdma, EBCISR))
2267 cpu_relax();
2268
2269 /* restore saved data */
2270 dma_writel(atdma, EBCIER, atdma->save_imr);
2271 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2272 device_node) {
2273 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2274
2275 channel_writel(atchan, CFG, atchan->save_cfg);
2276 if (atc_chan_is_cyclic(atchan))
2277 atc_resume_cyclic(atchan);
2278 }
2279 return 0;
2280}
2281
2282static const struct dev_pm_ops at_dma_dev_pm_ops = {
2283 .prepare = at_dma_prepare,
2284 .suspend_noirq = at_dma_suspend_noirq,
2285 .resume_noirq = at_dma_resume_noirq,
2286};
2287
2288static struct platform_driver at_dma_driver = {
2289 .remove = at_dma_remove,
2290 .shutdown = at_dma_shutdown,
2291 .id_table = atdma_devtypes,
2292 .driver = {
2293 .name = "at_hdmac",
2294 .pm = &at_dma_dev_pm_ops,
2295 .of_match_table = of_match_ptr(atmel_dma_dt_ids),
2296 },
2297};
2298
2299static int __init at_dma_init(void)
2300{
2301 return platform_driver_probe(&at_dma_driver, at_dma_probe);
2302}
2303subsys_initcall(at_dma_init);
2304
2305static void __exit at_dma_exit(void)
2306{
2307 platform_driver_unregister(&at_dma_driver);
2308}
2309module_exit(at_dma_exit);
2310
2311MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2312MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2313MODULE_LICENSE("GPL");
2314MODULE_ALIAS("platform:at_hdmac");