Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
   4 *
   5 * Copyright (C) 2008 Atmel Corporation
   6 *
 
 
 
 
 
 
   7 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
   8 * The only Atmel DMA Controller that is not covered by this driver is the one
   9 * found on AT91SAM9263.
  10 */
  11
  12#include <dt-bindings/dma/at91.h>
  13#include <linux/clk.h>
  14#include <linux/dmaengine.h>
  15#include <linux/dma-mapping.h>
  16#include <linux/dmapool.h>
  17#include <linux/interrupt.h>
  18#include <linux/module.h>
  19#include <linux/platform_device.h>
  20#include <linux/slab.h>
  21#include <linux/of.h>
  22#include <linux/of_device.h>
  23#include <linux/of_dma.h>
  24
  25#include "at_hdmac_regs.h"
  26#include "dmaengine.h"
  27
  28/*
  29 * Glossary
  30 * --------
  31 *
  32 * at_hdmac		: Name of the ATmel AHB DMA Controller
  33 * at_dma_ / atdma	: ATmel DMA controller entity related
  34 * atc_	/ atchan	: ATmel DMA Channel entity related
  35 */
  36
  37#define	ATC_DEFAULT_CFG		(ATC_FIFOCFG_HALFFIFO)
  38#define	ATC_DEFAULT_CTRLB	(ATC_SIF(AT_DMA_MEM_IF) \
  39				|ATC_DIF(AT_DMA_MEM_IF))
  40#define ATC_DMA_BUSWIDTHS\
  41	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
  42	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
  43	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
  44	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
  45
  46#define ATC_MAX_DSCR_TRIALS	10
  47
  48/*
  49 * Initial number of descriptors to allocate for each channel. This could
  50 * be increased during dma usage.
  51 */
  52static unsigned int init_nr_desc_per_channel = 64;
  53module_param(init_nr_desc_per_channel, uint, 0644);
  54MODULE_PARM_DESC(init_nr_desc_per_channel,
  55		 "initial descriptors per channel (default: 64)");
  56
  57
  58/* prototypes */
  59static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
  60static void atc_issue_pending(struct dma_chan *chan);
  61
  62
  63/*----------------------------------------------------------------------*/
  64
  65static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
  66						size_t len)
  67{
  68	unsigned int width;
  69
  70	if (!((src | dst  | len) & 3))
  71		width = 2;
  72	else if (!((src | dst | len) & 1))
  73		width = 1;
  74	else
  75		width = 0;
  76
  77	return width;
  78}
  79
  80static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
  81{
  82	return list_first_entry(&atchan->active_list,
  83				struct at_desc, desc_node);
  84}
  85
  86static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
  87{
  88	return list_first_entry(&atchan->queue,
  89				struct at_desc, desc_node);
  90}
  91
  92/**
  93 * atc_alloc_descriptor - allocate and return an initialized descriptor
  94 * @chan: the channel to allocate descriptors for
  95 * @gfp_flags: GFP allocation flags
  96 *
  97 * Note: The ack-bit is positioned in the descriptor flag at creation time
  98 *       to make initial allocation more convenient. This bit will be cleared
  99 *       and control will be given to client at usage time (during
 100 *       preparation functions).
 101 */
 102static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
 103					    gfp_t gfp_flags)
 104{
 105	struct at_desc	*desc = NULL;
 106	struct at_dma	*atdma = to_at_dma(chan->device);
 107	dma_addr_t phys;
 108
 109	desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys);
 110	if (desc) {
 111		INIT_LIST_HEAD(&desc->tx_list);
 112		dma_async_tx_descriptor_init(&desc->txd, chan);
 113		/* txd.flags will be overwritten in prep functions */
 114		desc->txd.flags = DMA_CTRL_ACK;
 115		desc->txd.tx_submit = atc_tx_submit;
 116		desc->txd.phys = phys;
 117	}
 118
 119	return desc;
 120}
 121
 122/**
 123 * atc_desc_get - get an unused descriptor from free_list
 124 * @atchan: channel we want a new descriptor for
 125 */
 126static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
 127{
 128	struct at_desc *desc, *_desc;
 129	struct at_desc *ret = NULL;
 130	unsigned long flags;
 131	unsigned int i = 0;
 
 132
 133	spin_lock_irqsave(&atchan->lock, flags);
 134	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
 135		i++;
 136		if (async_tx_test_ack(&desc->txd)) {
 137			list_del(&desc->desc_node);
 138			ret = desc;
 139			break;
 140		}
 141		dev_dbg(chan2dev(&atchan->chan_common),
 142				"desc %p not ACKed\n", desc);
 143	}
 144	spin_unlock_irqrestore(&atchan->lock, flags);
 145	dev_vdbg(chan2dev(&atchan->chan_common),
 146		"scanned %u descriptors on freelist\n", i);
 147
 148	/* no more descriptor available in initial pool: create one more */
 149	if (!ret) {
 150		ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
 151		if (ret) {
 152			spin_lock_irqsave(&atchan->lock, flags);
 153			atchan->descs_allocated++;
 154			spin_unlock_irqrestore(&atchan->lock, flags);
 155		} else {
 156			dev_err(chan2dev(&atchan->chan_common),
 157					"not enough descriptors available\n");
 158		}
 159	}
 160
 161	return ret;
 162}
 163
 164/**
 165 * atc_desc_put - move a descriptor, including any children, to the free list
 166 * @atchan: channel we work on
 167 * @desc: descriptor, at the head of a chain, to move to free list
 168 */
 169static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
 170{
 171	if (desc) {
 172		struct at_desc *child;
 173		unsigned long flags;
 174
 175		spin_lock_irqsave(&atchan->lock, flags);
 176		list_for_each_entry(child, &desc->tx_list, desc_node)
 177			dev_vdbg(chan2dev(&atchan->chan_common),
 178					"moving child desc %p to freelist\n",
 179					child);
 180		list_splice_init(&desc->tx_list, &atchan->free_list);
 181		dev_vdbg(chan2dev(&atchan->chan_common),
 182			 "moving desc %p to freelist\n", desc);
 183		list_add(&desc->desc_node, &atchan->free_list);
 184		spin_unlock_irqrestore(&atchan->lock, flags);
 185	}
 186}
 187
 188/**
 189 * atc_desc_chain - build chain adding a descriptor
 190 * @first: address of first descriptor of the chain
 191 * @prev: address of previous descriptor of the chain
 192 * @desc: descriptor to queue
 193 *
 194 * Called from prep_* functions
 195 */
 196static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
 197			   struct at_desc *desc)
 198{
 199	if (!(*first)) {
 200		*first = desc;
 201	} else {
 202		/* inform the HW lli about chaining */
 203		(*prev)->lli.dscr = desc->txd.phys;
 204		/* insert the link descriptor to the LD ring */
 205		list_add_tail(&desc->desc_node,
 206				&(*first)->tx_list);
 207	}
 208	*prev = desc;
 209}
 210
 211/**
 212 * atc_dostart - starts the DMA engine for real
 213 * @atchan: the channel we want to start
 214 * @first: first descriptor in the list we want to begin with
 215 *
 216 * Called with atchan->lock held and bh disabled
 217 */
 218static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
 219{
 220	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
 221
 222	/* ASSERT:  channel is idle */
 223	if (atc_chan_is_enabled(atchan)) {
 224		dev_err(chan2dev(&atchan->chan_common),
 225			"BUG: Attempted to start non-idle channel\n");
 226		dev_err(chan2dev(&atchan->chan_common),
 227			"  channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
 228			channel_readl(atchan, SADDR),
 229			channel_readl(atchan, DADDR),
 230			channel_readl(atchan, CTRLA),
 231			channel_readl(atchan, CTRLB),
 232			channel_readl(atchan, DSCR));
 233
 234		/* The tasklet will hopefully advance the queue... */
 235		return;
 236	}
 237
 238	vdbg_dump_regs(atchan);
 239
 240	channel_writel(atchan, SADDR, 0);
 241	channel_writel(atchan, DADDR, 0);
 242	channel_writel(atchan, CTRLA, 0);
 243	channel_writel(atchan, CTRLB, 0);
 244	channel_writel(atchan, DSCR, first->txd.phys);
 245	channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
 246		       ATC_SPIP_BOUNDARY(first->boundary));
 247	channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
 248		       ATC_DPIP_BOUNDARY(first->boundary));
 249	dma_writel(atdma, CHER, atchan->mask);
 250
 251	vdbg_dump_regs(atchan);
 252}
 253
 254/*
 255 * atc_get_desc_by_cookie - get the descriptor of a cookie
 256 * @atchan: the DMA channel
 257 * @cookie: the cookie to get the descriptor for
 258 */
 259static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
 260						dma_cookie_t cookie)
 261{
 262	struct at_desc *desc, *_desc;
 263
 264	list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
 265		if (desc->txd.cookie == cookie)
 266			return desc;
 267	}
 268
 269	list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
 270		if (desc->txd.cookie == cookie)
 271			return desc;
 272	}
 273
 274	return NULL;
 275}
 276
 277/**
 278 * atc_calc_bytes_left - calculates the number of bytes left according to the
 279 * value read from CTRLA.
 280 *
 281 * @current_len: the number of bytes left before reading CTRLA
 282 * @ctrla: the value of CTRLA
 283 */
 284static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
 285{
 286	u32 btsize = (ctrla & ATC_BTSIZE_MAX);
 287	u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
 288
 289	/*
 290	 * According to the datasheet, when reading the Control A Register
 291	 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
 292	 * number of transfers completed on the Source Interface.
 293	 * So btsize is always a number of source width transfers.
 294	 */
 295	return current_len - (btsize << src_width);
 296}
 297
 298/**
 299 * atc_get_bytes_left - get the number of bytes residue for a cookie
 300 * @chan: DMA channel
 301 * @cookie: transaction identifier to check status of
 302 */
 303static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
 304{
 305	struct at_dma_chan      *atchan = to_at_dma_chan(chan);
 306	struct at_desc *desc_first = atc_first_active(atchan);
 307	struct at_desc *desc;
 308	int ret;
 309	u32 ctrla, dscr, trials;
 310
 311	/*
 312	 * If the cookie doesn't match to the currently running transfer then
 313	 * we can return the total length of the associated DMA transfer,
 314	 * because it is still queued.
 315	 */
 316	desc = atc_get_desc_by_cookie(atchan, cookie);
 317	if (desc == NULL)
 318		return -EINVAL;
 319	else if (desc != desc_first)
 320		return desc->total_len;
 321
 322	/* cookie matches to the currently running transfer */
 323	ret = desc_first->total_len;
 324
 325	if (desc_first->lli.dscr) {
 326		/* hardware linked list transfer */
 327
 328		/*
 329		 * Calculate the residue by removing the length of the child
 330		 * descriptors already transferred from the total length.
 331		 * To get the current child descriptor we can use the value of
 332		 * the channel's DSCR register and compare it against the value
 333		 * of the hardware linked list structure of each child
 334		 * descriptor.
 335		 *
 336		 * The CTRLA register provides us with the amount of data
 337		 * already read from the source for the current child
 338		 * descriptor. So we can compute a more accurate residue by also
 339		 * removing the number of bytes corresponding to this amount of
 340		 * data.
 341		 *
 342		 * However, the DSCR and CTRLA registers cannot be read both
 343		 * atomically. Hence a race condition may occur: the first read
 344		 * register may refer to one child descriptor whereas the second
 345		 * read may refer to a later child descriptor in the list
 346		 * because of the DMA transfer progression inbetween the two
 347		 * reads.
 348		 *
 349		 * One solution could have been to pause the DMA transfer, read
 350		 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
 351		 * this approach presents some drawbacks:
 352		 * - If the DMA transfer is paused, RX overruns or TX underruns
 353		 *   are more likey to occur depending on the system latency.
 354		 *   Taking the USART driver as an example, it uses a cyclic DMA
 355		 *   transfer to read data from the Receive Holding Register
 356		 *   (RHR) to avoid RX overruns since the RHR is not protected
 357		 *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer
 358		 *   to compute the residue would break the USART driver design.
 359		 * - The atc_pause() function masks interrupts but we'd rather
 360		 *   avoid to do so for system latency purpose.
 361		 *
 362		 * Then we'd rather use another solution: the DSCR is read a
 363		 * first time, the CTRLA is read in turn, next the DSCR is read
 364		 * a second time. If the two consecutive read values of the DSCR
 365		 * are the same then we assume both refers to the very same
 366		 * child descriptor as well as the CTRLA value read inbetween
 367		 * does. For cyclic tranfers, the assumption is that a full loop
 368		 * is "not so fast".
 369		 * If the two DSCR values are different, we read again the CTRLA
 370		 * then the DSCR till two consecutive read values from DSCR are
 371		 * equal or till the maxium trials is reach.
 372		 * This algorithm is very unlikely not to find a stable value for
 373		 * DSCR.
 374		 */
 375
 376		dscr = channel_readl(atchan, DSCR);
 377		rmb(); /* ensure DSCR is read before CTRLA */
 378		ctrla = channel_readl(atchan, CTRLA);
 379		for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
 380			u32 new_dscr;
 381
 382			rmb(); /* ensure DSCR is read after CTRLA */
 383			new_dscr = channel_readl(atchan, DSCR);
 384
 385			/*
 386			 * If the DSCR register value has not changed inside the
 387			 * DMA controller since the previous read, we assume
 388			 * that both the dscr and ctrla values refers to the
 389			 * very same descriptor.
 390			 */
 391			if (likely(new_dscr == dscr))
 392				break;
 393
 394			/*
 395			 * DSCR has changed inside the DMA controller, so the
 396			 * previouly read value of CTRLA may refer to an already
 397			 * processed descriptor hence could be outdated.
 398			 * We need to update ctrla to match the current
 399			 * descriptor.
 400			 */
 401			dscr = new_dscr;
 402			rmb(); /* ensure DSCR is read before CTRLA */
 403			ctrla = channel_readl(atchan, CTRLA);
 404		}
 405		if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
 406			return -ETIMEDOUT;
 407
 408		/* for the first descriptor we can be more accurate */
 409		if (desc_first->lli.dscr == dscr)
 410			return atc_calc_bytes_left(ret, ctrla);
 411
 412		ret -= desc_first->len;
 413		list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
 414			if (desc->lli.dscr == dscr)
 415				break;
 416
 417			ret -= desc->len;
 418		}
 419
 420		/*
 421		 * For the current descriptor in the chain we can calculate
 422		 * the remaining bytes using the channel's register.
 423		 */
 424		ret = atc_calc_bytes_left(ret, ctrla);
 425	} else {
 426		/* single transfer */
 427		ctrla = channel_readl(atchan, CTRLA);
 428		ret = atc_calc_bytes_left(ret, ctrla);
 429	}
 430
 431	return ret;
 432}
 433
 434/**
 435 * atc_chain_complete - finish work for one transaction chain
 436 * @atchan: channel we work on
 437 * @desc: descriptor at the head of the chain we want do complete
 438 *
 439 * Called with atchan->lock held and bh disabled */
 440static void
 441atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
 442{
 443	struct dma_async_tx_descriptor	*txd = &desc->txd;
 444	struct at_dma			*atdma = to_at_dma(atchan->chan_common.device);
 445
 446	dev_vdbg(chan2dev(&atchan->chan_common),
 447		"descriptor %u complete\n", txd->cookie);
 448
 449	/* mark the descriptor as complete for non cyclic cases only */
 450	if (!atc_chan_is_cyclic(atchan))
 451		dma_cookie_complete(txd);
 452
 453	/* If the transfer was a memset, free our temporary buffer */
 454	if (desc->memset_buffer) {
 455		dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
 456			      desc->memset_paddr);
 457		desc->memset_buffer = false;
 458	}
 459
 460	/* move children to free_list */
 461	list_splice_init(&desc->tx_list, &atchan->free_list);
 462	/* move myself to free_list */
 463	list_move(&desc->desc_node, &atchan->free_list);
 464
 465	dma_descriptor_unmap(txd);
 466	/* for cyclic transfers,
 467	 * no need to replay callback function while stopping */
 468	if (!atc_chan_is_cyclic(atchan)) {
 469		/*
 470		 * The API requires that no submissions are done from a
 471		 * callback, so we don't need to drop the lock here
 472		 */
 473		dmaengine_desc_get_callback_invoke(txd, NULL);
 474	}
 475
 476	dma_run_dependencies(txd);
 477}
 478
 479/**
 480 * atc_complete_all - finish work for all transactions
 481 * @atchan: channel to complete transactions for
 482 *
 483 * Eventually submit queued descriptors if any
 484 *
 485 * Assume channel is idle while calling this function
 486 * Called with atchan->lock held and bh disabled
 487 */
 488static void atc_complete_all(struct at_dma_chan *atchan)
 489{
 490	struct at_desc *desc, *_desc;
 491	LIST_HEAD(list);
 492
 493	dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
 494
 495	/*
 496	 * Submit queued descriptors ASAP, i.e. before we go through
 497	 * the completed ones.
 498	 */
 499	if (!list_empty(&atchan->queue))
 500		atc_dostart(atchan, atc_first_queued(atchan));
 501	/* empty active_list now it is completed */
 502	list_splice_init(&atchan->active_list, &list);
 503	/* empty queue list by moving descriptors (if any) to active_list */
 504	list_splice_init(&atchan->queue, &atchan->active_list);
 505
 506	list_for_each_entry_safe(desc, _desc, &list, desc_node)
 507		atc_chain_complete(atchan, desc);
 508}
 509
 510/**
 511 * atc_advance_work - at the end of a transaction, move forward
 512 * @atchan: channel where the transaction ended
 513 *
 514 * Called with atchan->lock held and bh disabled
 515 */
 516static void atc_advance_work(struct at_dma_chan *atchan)
 517{
 518	dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
 519
 520	if (atc_chan_is_enabled(atchan))
 521		return;
 522
 523	if (list_empty(&atchan->active_list) ||
 524	    list_is_singular(&atchan->active_list)) {
 525		atc_complete_all(atchan);
 526	} else {
 527		atc_chain_complete(atchan, atc_first_active(atchan));
 528		/* advance work */
 529		atc_dostart(atchan, atc_first_active(atchan));
 530	}
 531}
 532
 533
 534/**
 535 * atc_handle_error - handle errors reported by DMA controller
 536 * @atchan: channel where error occurs
 537 *
 538 * Called with atchan->lock held and bh disabled
 539 */
 540static void atc_handle_error(struct at_dma_chan *atchan)
 541{
 542	struct at_desc *bad_desc;
 543	struct at_desc *child;
 544
 545	/*
 546	 * The descriptor currently at the head of the active list is
 547	 * broked. Since we don't have any way to report errors, we'll
 548	 * just have to scream loudly and try to carry on.
 549	 */
 550	bad_desc = atc_first_active(atchan);
 551	list_del_init(&bad_desc->desc_node);
 552
 553	/* As we are stopped, take advantage to push queued descriptors
 554	 * in active_list */
 555	list_splice_init(&atchan->queue, atchan->active_list.prev);
 556
 557	/* Try to restart the controller */
 558	if (!list_empty(&atchan->active_list))
 559		atc_dostart(atchan, atc_first_active(atchan));
 560
 561	/*
 562	 * KERN_CRITICAL may seem harsh, but since this only happens
 563	 * when someone submits a bad physical address in a
 564	 * descriptor, we should consider ourselves lucky that the
 565	 * controller flagged an error instead of scribbling over
 566	 * random memory locations.
 567	 */
 568	dev_crit(chan2dev(&atchan->chan_common),
 569			"Bad descriptor submitted for DMA!\n");
 570	dev_crit(chan2dev(&atchan->chan_common),
 571			"  cookie: %d\n", bad_desc->txd.cookie);
 572	atc_dump_lli(atchan, &bad_desc->lli);
 573	list_for_each_entry(child, &bad_desc->tx_list, desc_node)
 574		atc_dump_lli(atchan, &child->lli);
 575
 576	/* Pretend the descriptor completed successfully */
 577	atc_chain_complete(atchan, bad_desc);
 578}
 579
 580/**
 581 * atc_handle_cyclic - at the end of a period, run callback function
 582 * @atchan: channel used for cyclic operations
 583 *
 584 * Called with atchan->lock held and bh disabled
 585 */
 586static void atc_handle_cyclic(struct at_dma_chan *atchan)
 587{
 588	struct at_desc			*first = atc_first_active(atchan);
 589	struct dma_async_tx_descriptor	*txd = &first->txd;
 590
 591	dev_vdbg(chan2dev(&atchan->chan_common),
 592			"new cyclic period llp 0x%08x\n",
 593			channel_readl(atchan, DSCR));
 594
 595	dmaengine_desc_get_callback_invoke(txd, NULL);
 596}
 597
 598/*--  IRQ & Tasklet  ---------------------------------------------------*/
 599
 600static void atc_tasklet(unsigned long data)
 601{
 602	struct at_dma_chan *atchan = (struct at_dma_chan *)data;
 603	unsigned long flags;
 604
 605	spin_lock_irqsave(&atchan->lock, flags);
 606	if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
 607		atc_handle_error(atchan);
 608	else if (atc_chan_is_cyclic(atchan))
 609		atc_handle_cyclic(atchan);
 610	else
 611		atc_advance_work(atchan);
 612
 613	spin_unlock_irqrestore(&atchan->lock, flags);
 614}
 615
 616static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
 617{
 618	struct at_dma		*atdma = (struct at_dma *)dev_id;
 619	struct at_dma_chan	*atchan;
 620	int			i;
 621	u32			status, pending, imr;
 622	int			ret = IRQ_NONE;
 623
 624	do {
 625		imr = dma_readl(atdma, EBCIMR);
 626		status = dma_readl(atdma, EBCISR);
 627		pending = status & imr;
 628
 629		if (!pending)
 630			break;
 631
 632		dev_vdbg(atdma->dma_common.dev,
 633			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
 634			 status, imr, pending);
 635
 636		for (i = 0; i < atdma->dma_common.chancnt; i++) {
 637			atchan = &atdma->chan[i];
 638			if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
 639				if (pending & AT_DMA_ERR(i)) {
 640					/* Disable channel on AHB error */
 641					dma_writel(atdma, CHDR,
 642						AT_DMA_RES(i) | atchan->mask);
 643					/* Give information to tasklet */
 644					set_bit(ATC_IS_ERROR, &atchan->status);
 645				}
 646				tasklet_schedule(&atchan->tasklet);
 647				ret = IRQ_HANDLED;
 648			}
 649		}
 650
 651	} while (pending);
 652
 653	return ret;
 654}
 655
 656
 657/*--  DMA Engine API  --------------------------------------------------*/
 658
 659/**
 660 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
 661 * @desc: descriptor at the head of the transaction chain
 662 *
 663 * Queue chain if DMA engine is working already
 664 *
 665 * Cookie increment and adding to active_list or queue must be atomic
 666 */
 667static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
 668{
 669	struct at_desc		*desc = txd_to_at_desc(tx);
 670	struct at_dma_chan	*atchan = to_at_dma_chan(tx->chan);
 671	dma_cookie_t		cookie;
 672	unsigned long		flags;
 673
 674	spin_lock_irqsave(&atchan->lock, flags);
 675	cookie = dma_cookie_assign(tx);
 676
 677	if (list_empty(&atchan->active_list)) {
 678		dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
 679				desc->txd.cookie);
 680		atc_dostart(atchan, desc);
 681		list_add_tail(&desc->desc_node, &atchan->active_list);
 682	} else {
 683		dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
 684				desc->txd.cookie);
 685		list_add_tail(&desc->desc_node, &atchan->queue);
 686	}
 687
 688	spin_unlock_irqrestore(&atchan->lock, flags);
 689
 690	return cookie;
 691}
 692
 693/**
 694 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
 695 * @chan: the channel to prepare operation on
 696 * @xt: Interleaved transfer template
 697 * @flags: tx descriptor status flags
 698 */
 699static struct dma_async_tx_descriptor *
 700atc_prep_dma_interleaved(struct dma_chan *chan,
 701			 struct dma_interleaved_template *xt,
 702			 unsigned long flags)
 703{
 704	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
 705	struct data_chunk	*first;
 706	struct at_desc		*desc = NULL;
 707	size_t			xfer_count;
 708	unsigned int		dwidth;
 709	u32			ctrla;
 710	u32			ctrlb;
 711	size_t			len = 0;
 712	int			i;
 713
 714	if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
 715		return NULL;
 716
 717	first = xt->sgl;
 718
 719	dev_info(chan2dev(chan),
 720		 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
 721		__func__, &xt->src_start, &xt->dst_start, xt->numf,
 722		xt->frame_size, flags);
 723
 724	/*
 725	 * The controller can only "skip" X bytes every Y bytes, so we
 726	 * need to make sure we are given a template that fit that
 727	 * description, ie a template with chunks that always have the
 728	 * same size, with the same ICGs.
 729	 */
 730	for (i = 0; i < xt->frame_size; i++) {
 731		struct data_chunk *chunk = xt->sgl + i;
 732
 733		if ((chunk->size != xt->sgl->size) ||
 734		    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
 735		    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
 736			dev_err(chan2dev(chan),
 737				"%s: the controller can transfer only identical chunks\n",
 738				__func__);
 739			return NULL;
 740		}
 741
 742		len += chunk->size;
 743	}
 744
 745	dwidth = atc_get_xfer_width(xt->src_start,
 746				    xt->dst_start, len);
 747
 748	xfer_count = len >> dwidth;
 749	if (xfer_count > ATC_BTSIZE_MAX) {
 750		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
 751		return NULL;
 752	}
 753
 754	ctrla = ATC_SRC_WIDTH(dwidth) |
 755		ATC_DST_WIDTH(dwidth);
 756
 757	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
 758		| ATC_SRC_ADDR_MODE_INCR
 759		| ATC_DST_ADDR_MODE_INCR
 760		| ATC_SRC_PIP
 761		| ATC_DST_PIP
 762		| ATC_FC_MEM2MEM;
 763
 764	/* create the transfer */
 765	desc = atc_desc_get(atchan);
 766	if (!desc) {
 767		dev_err(chan2dev(chan),
 768			"%s: couldn't allocate our descriptor\n", __func__);
 769		return NULL;
 770	}
 771
 772	desc->lli.saddr = xt->src_start;
 773	desc->lli.daddr = xt->dst_start;
 774	desc->lli.ctrla = ctrla | xfer_count;
 775	desc->lli.ctrlb = ctrlb;
 776
 777	desc->boundary = first->size >> dwidth;
 778	desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
 779	desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
 780
 781	desc->txd.cookie = -EBUSY;
 782	desc->total_len = desc->len = len;
 783
 784	/* set end-of-link to the last link descriptor of list*/
 785	set_desc_eol(desc);
 786
 787	desc->txd.flags = flags; /* client is in control of this ack */
 788
 789	return &desc->txd;
 790}
 791
 792/**
 793 * atc_prep_dma_memcpy - prepare a memcpy operation
 794 * @chan: the channel to prepare operation on
 795 * @dest: operation virtual destination address
 796 * @src: operation virtual source address
 797 * @len: operation length
 798 * @flags: tx descriptor status flags
 799 */
 800static struct dma_async_tx_descriptor *
 801atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
 802		size_t len, unsigned long flags)
 803{
 804	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
 805	struct at_desc		*desc = NULL;
 806	struct at_desc		*first = NULL;
 807	struct at_desc		*prev = NULL;
 808	size_t			xfer_count;
 809	size_t			offset;
 810	unsigned int		src_width;
 811	unsigned int		dst_width;
 812	u32			ctrla;
 813	u32			ctrlb;
 814
 815	dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
 816			&dest, &src, len, flags);
 817
 818	if (unlikely(!len)) {
 819		dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
 820		return NULL;
 821	}
 822
 823	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
 824		| ATC_SRC_ADDR_MODE_INCR
 825		| ATC_DST_ADDR_MODE_INCR
 826		| ATC_FC_MEM2MEM;
 827
 828	/*
 829	 * We can be a lot more clever here, but this should take care
 830	 * of the most common optimization.
 831	 */
 832	src_width = dst_width = atc_get_xfer_width(src, dest, len);
 833
 834	ctrla = ATC_SRC_WIDTH(src_width) |
 835		ATC_DST_WIDTH(dst_width);
 836
 837	for (offset = 0; offset < len; offset += xfer_count << src_width) {
 838		xfer_count = min_t(size_t, (len - offset) >> src_width,
 839				ATC_BTSIZE_MAX);
 840
 841		desc = atc_desc_get(atchan);
 842		if (!desc)
 843			goto err_desc_get;
 844
 845		desc->lli.saddr = src + offset;
 846		desc->lli.daddr = dest + offset;
 847		desc->lli.ctrla = ctrla | xfer_count;
 848		desc->lli.ctrlb = ctrlb;
 849
 850		desc->txd.cookie = 0;
 851		desc->len = xfer_count << src_width;
 852
 853		atc_desc_chain(&first, &prev, desc);
 854	}
 855
 856	/* First descriptor of the chain embedds additional information */
 857	first->txd.cookie = -EBUSY;
 858	first->total_len = len;
 859
 860	/* set end-of-link to the last link descriptor of list*/
 861	set_desc_eol(desc);
 862
 863	first->txd.flags = flags; /* client is in control of this ack */
 864
 865	return &first->txd;
 866
 867err_desc_get:
 868	atc_desc_put(atchan, first);
 869	return NULL;
 870}
 871
 872static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
 873					      dma_addr_t psrc,
 874					      dma_addr_t pdst,
 875					      size_t len)
 876{
 877	struct at_dma_chan *atchan = to_at_dma_chan(chan);
 878	struct at_desc *desc;
 879	size_t xfer_count;
 880
 881	u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
 882	u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
 883		ATC_SRC_ADDR_MODE_FIXED |
 884		ATC_DST_ADDR_MODE_INCR |
 885		ATC_FC_MEM2MEM;
 886
 887	xfer_count = len >> 2;
 888	if (xfer_count > ATC_BTSIZE_MAX) {
 889		dev_err(chan2dev(chan), "%s: buffer is too big\n",
 890			__func__);
 891		return NULL;
 892	}
 893
 894	desc = atc_desc_get(atchan);
 895	if (!desc) {
 896		dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
 897			__func__);
 898		return NULL;
 899	}
 900
 901	desc->lli.saddr = psrc;
 902	desc->lli.daddr = pdst;
 903	desc->lli.ctrla = ctrla | xfer_count;
 904	desc->lli.ctrlb = ctrlb;
 905
 906	desc->txd.cookie = 0;
 907	desc->len = len;
 908
 909	return desc;
 910}
 911
 912/**
 913 * atc_prep_dma_memset - prepare a memcpy operation
 914 * @chan: the channel to prepare operation on
 915 * @dest: operation virtual destination address
 916 * @value: value to set memory buffer to
 917 * @len: operation length
 918 * @flags: tx descriptor status flags
 919 */
 920static struct dma_async_tx_descriptor *
 921atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
 922		    size_t len, unsigned long flags)
 923{
 924	struct at_dma		*atdma = to_at_dma(chan->device);
 925	struct at_desc		*desc;
 926	void __iomem		*vaddr;
 927	dma_addr_t		paddr;
 928
 929	dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
 930		&dest, value, len, flags);
 931
 932	if (unlikely(!len)) {
 933		dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
 934		return NULL;
 935	}
 936
 937	if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
 938		dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
 939			__func__);
 940		return NULL;
 941	}
 942
 943	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
 944	if (!vaddr) {
 945		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
 946			__func__);
 947		return NULL;
 948	}
 949	*(u32*)vaddr = value;
 950
 951	desc = atc_create_memset_desc(chan, paddr, dest, len);
 952	if (!desc) {
 953		dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
 954			__func__);
 955		goto err_free_buffer;
 956	}
 957
 958	desc->memset_paddr = paddr;
 959	desc->memset_vaddr = vaddr;
 960	desc->memset_buffer = true;
 961
 962	desc->txd.cookie = -EBUSY;
 963	desc->total_len = len;
 964
 965	/* set end-of-link on the descriptor */
 966	set_desc_eol(desc);
 967
 968	desc->txd.flags = flags;
 969
 970	return &desc->txd;
 971
 972err_free_buffer:
 973	dma_pool_free(atdma->memset_pool, vaddr, paddr);
 974	return NULL;
 975}
 976
 977static struct dma_async_tx_descriptor *
 978atc_prep_dma_memset_sg(struct dma_chan *chan,
 979		       struct scatterlist *sgl,
 980		       unsigned int sg_len, int value,
 981		       unsigned long flags)
 982{
 983	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
 984	struct at_dma		*atdma = to_at_dma(chan->device);
 985	struct at_desc		*desc = NULL, *first = NULL, *prev = NULL;
 986	struct scatterlist	*sg;
 987	void __iomem		*vaddr;
 988	dma_addr_t		paddr;
 989	size_t			total_len = 0;
 990	int			i;
 991
 992	dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
 993		 value, sg_len, flags);
 994
 995	if (unlikely(!sgl || !sg_len)) {
 996		dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
 997			__func__);
 998		return NULL;
 999	}
1000
1001	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
1002	if (!vaddr) {
1003		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1004			__func__);
1005		return NULL;
1006	}
1007	*(u32*)vaddr = value;
1008
1009	for_each_sg(sgl, sg, sg_len, i) {
1010		dma_addr_t dest = sg_dma_address(sg);
1011		size_t len = sg_dma_len(sg);
1012
1013		dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1014			 __func__, &dest, len);
1015
1016		if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1017			dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1018				__func__);
1019			goto err_put_desc;
1020		}
1021
1022		desc = atc_create_memset_desc(chan, paddr, dest, len);
1023		if (!desc)
1024			goto err_put_desc;
1025
1026		atc_desc_chain(&first, &prev, desc);
1027
1028		total_len += len;
1029	}
1030
1031	/*
1032	 * Only set the buffer pointers on the last descriptor to
1033	 * avoid free'ing while we have our transfer still going
1034	 */
1035	desc->memset_paddr = paddr;
1036	desc->memset_vaddr = vaddr;
1037	desc->memset_buffer = true;
1038
1039	first->txd.cookie = -EBUSY;
1040	first->total_len = total_len;
1041
1042	/* set end-of-link on the descriptor */
1043	set_desc_eol(desc);
1044
1045	first->txd.flags = flags;
1046
1047	return &first->txd;
1048
1049err_put_desc:
1050	atc_desc_put(atchan, first);
1051	return NULL;
1052}
1053
1054/**
1055 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1056 * @chan: DMA channel
1057 * @sgl: scatterlist to transfer to/from
1058 * @sg_len: number of entries in @scatterlist
1059 * @direction: DMA direction
1060 * @flags: tx descriptor status flags
1061 * @context: transaction context (ignored)
1062 */
1063static struct dma_async_tx_descriptor *
1064atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1065		unsigned int sg_len, enum dma_transfer_direction direction,
1066		unsigned long flags, void *context)
1067{
1068	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1069	struct at_dma_slave	*atslave = chan->private;
1070	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1071	struct at_desc		*first = NULL;
1072	struct at_desc		*prev = NULL;
1073	u32			ctrla;
1074	u32			ctrlb;
1075	dma_addr_t		reg;
1076	unsigned int		reg_width;
1077	unsigned int		mem_width;
1078	unsigned int		i;
1079	struct scatterlist	*sg;
1080	size_t			total_len = 0;
1081
1082	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1083			sg_len,
1084			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1085			flags);
1086
1087	if (unlikely(!atslave || !sg_len)) {
1088		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1089		return NULL;
1090	}
1091
1092	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1093		| ATC_DCSIZE(sconfig->dst_maxburst);
1094	ctrlb = ATC_IEN;
1095
1096	switch (direction) {
1097	case DMA_MEM_TO_DEV:
1098		reg_width = convert_buswidth(sconfig->dst_addr_width);
1099		ctrla |=  ATC_DST_WIDTH(reg_width);
1100		ctrlb |=  ATC_DST_ADDR_MODE_FIXED
1101			| ATC_SRC_ADDR_MODE_INCR
1102			| ATC_FC_MEM2PER
1103			| ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1104		reg = sconfig->dst_addr;
1105		for_each_sg(sgl, sg, sg_len, i) {
1106			struct at_desc	*desc;
1107			u32		len;
1108			u32		mem;
1109
1110			desc = atc_desc_get(atchan);
1111			if (!desc)
1112				goto err_desc_get;
1113
1114			mem = sg_dma_address(sg);
1115			len = sg_dma_len(sg);
1116			if (unlikely(!len)) {
1117				dev_dbg(chan2dev(chan),
1118					"prep_slave_sg: sg(%d) data length is zero\n", i);
1119				goto err;
1120			}
1121			mem_width = 2;
1122			if (unlikely(mem & 3 || len & 3))
1123				mem_width = 0;
1124
1125			desc->lli.saddr = mem;
1126			desc->lli.daddr = reg;
1127			desc->lli.ctrla = ctrla
1128					| ATC_SRC_WIDTH(mem_width)
1129					| len >> mem_width;
1130			desc->lli.ctrlb = ctrlb;
1131			desc->len = len;
1132
1133			atc_desc_chain(&first, &prev, desc);
1134			total_len += len;
1135		}
1136		break;
1137	case DMA_DEV_TO_MEM:
1138		reg_width = convert_buswidth(sconfig->src_addr_width);
1139		ctrla |=  ATC_SRC_WIDTH(reg_width);
1140		ctrlb |=  ATC_DST_ADDR_MODE_INCR
1141			| ATC_SRC_ADDR_MODE_FIXED
1142			| ATC_FC_PER2MEM
1143			| ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1144
1145		reg = sconfig->src_addr;
1146		for_each_sg(sgl, sg, sg_len, i) {
1147			struct at_desc	*desc;
1148			u32		len;
1149			u32		mem;
1150
1151			desc = atc_desc_get(atchan);
1152			if (!desc)
1153				goto err_desc_get;
1154
1155			mem = sg_dma_address(sg);
1156			len = sg_dma_len(sg);
1157			if (unlikely(!len)) {
1158				dev_dbg(chan2dev(chan),
1159					"prep_slave_sg: sg(%d) data length is zero\n", i);
1160				goto err;
1161			}
1162			mem_width = 2;
1163			if (unlikely(mem & 3 || len & 3))
1164				mem_width = 0;
1165
1166			desc->lli.saddr = reg;
1167			desc->lli.daddr = mem;
1168			desc->lli.ctrla = ctrla
1169					| ATC_DST_WIDTH(mem_width)
1170					| len >> reg_width;
1171			desc->lli.ctrlb = ctrlb;
1172			desc->len = len;
1173
1174			atc_desc_chain(&first, &prev, desc);
1175			total_len += len;
1176		}
1177		break;
1178	default:
1179		return NULL;
1180	}
1181
1182	/* set end-of-link to the last link descriptor of list*/
1183	set_desc_eol(prev);
1184
1185	/* First descriptor of the chain embedds additional information */
1186	first->txd.cookie = -EBUSY;
1187	first->total_len = total_len;
1188
1189	/* first link descriptor of list is responsible of flags */
1190	first->txd.flags = flags; /* client is in control of this ack */
1191
1192	return &first->txd;
1193
1194err_desc_get:
1195	dev_err(chan2dev(chan), "not enough descriptors available\n");
1196err:
1197	atc_desc_put(atchan, first);
1198	return NULL;
1199}
1200
1201/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1202 * atc_dma_cyclic_check_values
1203 * Check for too big/unaligned periods and unaligned DMA buffer
1204 */
1205static int
1206atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1207		size_t period_len)
1208{
1209	if (period_len > (ATC_BTSIZE_MAX << reg_width))
1210		goto err_out;
1211	if (unlikely(period_len & ((1 << reg_width) - 1)))
1212		goto err_out;
1213	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1214		goto err_out;
1215
1216	return 0;
1217
1218err_out:
1219	return -EINVAL;
1220}
1221
1222/**
1223 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1224 */
1225static int
1226atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1227		unsigned int period_index, dma_addr_t buf_addr,
1228		unsigned int reg_width, size_t period_len,
1229		enum dma_transfer_direction direction)
1230{
1231	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1232	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1233	u32			ctrla;
1234
1235	/* prepare common CRTLA value */
1236	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1237		| ATC_DCSIZE(sconfig->dst_maxburst)
1238		| ATC_DST_WIDTH(reg_width)
1239		| ATC_SRC_WIDTH(reg_width)
1240		| period_len >> reg_width;
1241
1242	switch (direction) {
1243	case DMA_MEM_TO_DEV:
1244		desc->lli.saddr = buf_addr + (period_len * period_index);
1245		desc->lli.daddr = sconfig->dst_addr;
1246		desc->lli.ctrla = ctrla;
1247		desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1248				| ATC_SRC_ADDR_MODE_INCR
1249				| ATC_FC_MEM2PER
1250				| ATC_SIF(atchan->mem_if)
1251				| ATC_DIF(atchan->per_if);
1252		desc->len = period_len;
1253		break;
1254
1255	case DMA_DEV_TO_MEM:
1256		desc->lli.saddr = sconfig->src_addr;
1257		desc->lli.daddr = buf_addr + (period_len * period_index);
1258		desc->lli.ctrla = ctrla;
1259		desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1260				| ATC_SRC_ADDR_MODE_FIXED
1261				| ATC_FC_PER2MEM
1262				| ATC_SIF(atchan->per_if)
1263				| ATC_DIF(atchan->mem_if);
1264		desc->len = period_len;
1265		break;
1266
1267	default:
1268		return -EINVAL;
1269	}
1270
1271	return 0;
1272}
1273
1274/**
1275 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1276 * @chan: the DMA channel to prepare
1277 * @buf_addr: physical DMA address where the buffer starts
1278 * @buf_len: total number of bytes for the entire buffer
1279 * @period_len: number of bytes for each period
1280 * @direction: transfer direction, to or from device
1281 * @flags: tx descriptor status flags
1282 */
1283static struct dma_async_tx_descriptor *
1284atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1285		size_t period_len, enum dma_transfer_direction direction,
1286		unsigned long flags)
1287{
1288	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1289	struct at_dma_slave	*atslave = chan->private;
1290	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1291	struct at_desc		*first = NULL;
1292	struct at_desc		*prev = NULL;
1293	unsigned long		was_cyclic;
1294	unsigned int		reg_width;
1295	unsigned int		periods = buf_len / period_len;
1296	unsigned int		i;
1297
1298	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1299			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1300			&buf_addr,
1301			periods, buf_len, period_len);
1302
1303	if (unlikely(!atslave || !buf_len || !period_len)) {
1304		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1305		return NULL;
1306	}
1307
1308	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1309	if (was_cyclic) {
1310		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1311		return NULL;
1312	}
1313
1314	if (unlikely(!is_slave_direction(direction)))
1315		goto err_out;
1316
1317	if (direction == DMA_MEM_TO_DEV)
1318		reg_width = convert_buswidth(sconfig->dst_addr_width);
1319	else
1320		reg_width = convert_buswidth(sconfig->src_addr_width);
1321
1322	/* Check for too big/unaligned periods and unaligned DMA buffer */
1323	if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1324		goto err_out;
1325
1326	/* build cyclic linked list */
1327	for (i = 0; i < periods; i++) {
1328		struct at_desc	*desc;
1329
1330		desc = atc_desc_get(atchan);
1331		if (!desc)
1332			goto err_desc_get;
1333
1334		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1335					     reg_width, period_len, direction))
1336			goto err_desc_get;
1337
1338		atc_desc_chain(&first, &prev, desc);
1339	}
1340
1341	/* lets make a cyclic list */
1342	prev->lli.dscr = first->txd.phys;
1343
1344	/* First descriptor of the chain embedds additional information */
1345	first->txd.cookie = -EBUSY;
1346	first->total_len = buf_len;
1347
1348	return &first->txd;
1349
1350err_desc_get:
1351	dev_err(chan2dev(chan), "not enough descriptors available\n");
1352	atc_desc_put(atchan, first);
1353err_out:
1354	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1355	return NULL;
1356}
1357
1358static int atc_config(struct dma_chan *chan,
1359		      struct dma_slave_config *sconfig)
1360{
1361	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1362
1363	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1364
1365	/* Check if it is chan is configured for slave transfers */
1366	if (!chan->private)
1367		return -EINVAL;
1368
1369	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1370
1371	convert_burst(&atchan->dma_sconfig.src_maxburst);
1372	convert_burst(&atchan->dma_sconfig.dst_maxburst);
1373
1374	return 0;
1375}
1376
1377static int atc_pause(struct dma_chan *chan)
1378{
1379	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1380	struct at_dma		*atdma = to_at_dma(chan->device);
1381	int			chan_id = atchan->chan_common.chan_id;
1382	unsigned long		flags;
1383
 
 
1384	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1385
1386	spin_lock_irqsave(&atchan->lock, flags);
1387
1388	dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1389	set_bit(ATC_IS_PAUSED, &atchan->status);
1390
1391	spin_unlock_irqrestore(&atchan->lock, flags);
1392
1393	return 0;
1394}
1395
1396static int atc_resume(struct dma_chan *chan)
1397{
1398	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1399	struct at_dma		*atdma = to_at_dma(chan->device);
1400	int			chan_id = atchan->chan_common.chan_id;
1401	unsigned long		flags;
1402
 
 
1403	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1404
1405	if (!atc_chan_is_paused(atchan))
1406		return 0;
1407
1408	spin_lock_irqsave(&atchan->lock, flags);
1409
1410	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1411	clear_bit(ATC_IS_PAUSED, &atchan->status);
1412
1413	spin_unlock_irqrestore(&atchan->lock, flags);
1414
1415	return 0;
1416}
1417
1418static int atc_terminate_all(struct dma_chan *chan)
1419{
1420	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1421	struct at_dma		*atdma = to_at_dma(chan->device);
1422	int			chan_id = atchan->chan_common.chan_id;
1423	struct at_desc		*desc, *_desc;
1424	unsigned long		flags;
1425
1426	LIST_HEAD(list);
1427
1428	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1429
1430	/*
1431	 * This is only called when something went wrong elsewhere, so
1432	 * we don't really care about the data. Just disable the
1433	 * channel. We still have to poll the channel enable bit due
1434	 * to AHB/HSB limitations.
1435	 */
1436	spin_lock_irqsave(&atchan->lock, flags);
1437
1438	/* disabling channel: must also remove suspend state */
1439	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1440
1441	/* confirm that this channel is disabled */
1442	while (dma_readl(atdma, CHSR) & atchan->mask)
1443		cpu_relax();
1444
1445	/* active_list entries will end up before queued entries */
1446	list_splice_init(&atchan->queue, &list);
1447	list_splice_init(&atchan->active_list, &list);
1448
1449	/* Flush all pending and queued descriptors */
1450	list_for_each_entry_safe(desc, _desc, &list, desc_node)
1451		atc_chain_complete(atchan, desc);
1452
1453	clear_bit(ATC_IS_PAUSED, &atchan->status);
1454	/* if channel dedicated to cyclic operations, free it */
1455	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1456
1457	spin_unlock_irqrestore(&atchan->lock, flags);
1458
1459	return 0;
1460}
1461
1462/**
1463 * atc_tx_status - poll for transaction completion
1464 * @chan: DMA channel
1465 * @cookie: transaction identifier to check status of
1466 * @txstate: if not %NULL updated with transaction state
1467 *
1468 * If @txstate is passed in, upon return it reflect the driver
1469 * internal state and can be used with dma_async_is_complete() to check
1470 * the status of multiple cookies without re-checking hardware state.
1471 */
1472static enum dma_status
1473atc_tx_status(struct dma_chan *chan,
1474		dma_cookie_t cookie,
1475		struct dma_tx_state *txstate)
1476{
1477	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1478	unsigned long		flags;
1479	enum dma_status		ret;
1480	int bytes = 0;
1481
1482	ret = dma_cookie_status(chan, cookie, txstate);
1483	if (ret == DMA_COMPLETE)
1484		return ret;
1485	/*
1486	 * There's no point calculating the residue if there's
1487	 * no txstate to store the value.
1488	 */
1489	if (!txstate)
1490		return DMA_ERROR;
1491
1492	spin_lock_irqsave(&atchan->lock, flags);
1493
1494	/*  Get number of bytes left in the active transactions */
1495	bytes = atc_get_bytes_left(chan, cookie);
1496
1497	spin_unlock_irqrestore(&atchan->lock, flags);
1498
1499	if (unlikely(bytes < 0)) {
1500		dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1501		return DMA_ERROR;
1502	} else {
1503		dma_set_residue(txstate, bytes);
1504	}
1505
1506	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1507		 ret, cookie, bytes);
1508
1509	return ret;
1510}
1511
1512/**
1513 * atc_issue_pending - try to finish work
1514 * @chan: target DMA channel
1515 */
1516static void atc_issue_pending(struct dma_chan *chan)
1517{
1518	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1519	unsigned long		flags;
1520
1521	dev_vdbg(chan2dev(chan), "issue_pending\n");
1522
1523	/* Not needed for cyclic transfers */
1524	if (atc_chan_is_cyclic(atchan))
1525		return;
1526
1527	spin_lock_irqsave(&atchan->lock, flags);
1528	atc_advance_work(atchan);
1529	spin_unlock_irqrestore(&atchan->lock, flags);
1530}
1531
1532/**
1533 * atc_alloc_chan_resources - allocate resources for DMA channel
1534 * @chan: allocate descriptor resources for this channel
1535 * @client: current client requesting the channel be ready for requests
1536 *
1537 * return - the number of allocated descriptors
1538 */
1539static int atc_alloc_chan_resources(struct dma_chan *chan)
1540{
1541	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1542	struct at_dma		*atdma = to_at_dma(chan->device);
1543	struct at_desc		*desc;
1544	struct at_dma_slave	*atslave;
1545	unsigned long		flags;
1546	int			i;
1547	u32			cfg;
1548	LIST_HEAD(tmp_list);
1549
1550	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1551
1552	/* ASSERT:  channel is idle */
1553	if (atc_chan_is_enabled(atchan)) {
1554		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1555		return -EIO;
1556	}
1557
1558	cfg = ATC_DEFAULT_CFG;
1559
1560	atslave = chan->private;
1561	if (atslave) {
1562		/*
1563		 * We need controller-specific data to set up slave
1564		 * transfers.
1565		 */
1566		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1567
1568		/* if cfg configuration specified take it instead of default */
1569		if (atslave->cfg)
1570			cfg = atslave->cfg;
1571	}
1572
1573	/* have we already been set up?
1574	 * reconfigure channel but no need to reallocate descriptors */
1575	if (!list_empty(&atchan->free_list))
1576		return atchan->descs_allocated;
1577
1578	/* Allocate initial pool of descriptors */
1579	for (i = 0; i < init_nr_desc_per_channel; i++) {
1580		desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1581		if (!desc) {
1582			dev_err(atdma->dma_common.dev,
1583				"Only %d initial descriptors\n", i);
1584			break;
1585		}
1586		list_add_tail(&desc->desc_node, &tmp_list);
1587	}
1588
1589	spin_lock_irqsave(&atchan->lock, flags);
1590	atchan->descs_allocated = i;
1591	list_splice(&tmp_list, &atchan->free_list);
1592	dma_cookie_init(chan);
1593	spin_unlock_irqrestore(&atchan->lock, flags);
1594
1595	/* channel parameters */
1596	channel_writel(atchan, CFG, cfg);
1597
1598	dev_dbg(chan2dev(chan),
1599		"alloc_chan_resources: allocated %d descriptors\n",
1600		atchan->descs_allocated);
1601
1602	return atchan->descs_allocated;
1603}
1604
1605/**
1606 * atc_free_chan_resources - free all channel resources
1607 * @chan: DMA channel
1608 */
1609static void atc_free_chan_resources(struct dma_chan *chan)
1610{
1611	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1612	struct at_dma		*atdma = to_at_dma(chan->device);
1613	struct at_desc		*desc, *_desc;
1614	LIST_HEAD(list);
1615
1616	dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1617		atchan->descs_allocated);
1618
1619	/* ASSERT:  channel is idle */
1620	BUG_ON(!list_empty(&atchan->active_list));
1621	BUG_ON(!list_empty(&atchan->queue));
1622	BUG_ON(atc_chan_is_enabled(atchan));
1623
1624	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1625		dev_vdbg(chan2dev(chan), "  freeing descriptor %p\n", desc);
1626		list_del(&desc->desc_node);
1627		/* free link descriptor */
1628		dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1629	}
1630	list_splice_init(&atchan->free_list, &list);
1631	atchan->descs_allocated = 0;
1632	atchan->status = 0;
1633
1634	/*
1635	 * Free atslave allocated in at_dma_xlate()
1636	 */
1637	kfree(chan->private);
1638	chan->private = NULL;
1639
1640	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1641}
1642
1643#ifdef CONFIG_OF
1644static bool at_dma_filter(struct dma_chan *chan, void *slave)
1645{
1646	struct at_dma_slave *atslave = slave;
1647
1648	if (atslave->dma_dev == chan->device->dev) {
1649		chan->private = atslave;
1650		return true;
1651	} else {
1652		return false;
1653	}
1654}
1655
1656static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1657				     struct of_dma *of_dma)
1658{
1659	struct dma_chan *chan;
1660	struct at_dma_chan *atchan;
1661	struct at_dma_slave *atslave;
1662	dma_cap_mask_t mask;
1663	unsigned int per_id;
1664	struct platform_device *dmac_pdev;
1665
1666	if (dma_spec->args_count != 2)
1667		return NULL;
1668
1669	dmac_pdev = of_find_device_by_node(dma_spec->np);
1670
1671	dma_cap_zero(mask);
1672	dma_cap_set(DMA_SLAVE, mask);
1673
1674	atslave = kzalloc(sizeof(*atslave), GFP_KERNEL);
1675	if (!atslave)
1676		return NULL;
1677
1678	atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1679	/*
1680	 * We can fill both SRC_PER and DST_PER, one of these fields will be
1681	 * ignored depending on DMA transfer direction.
1682	 */
1683	per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1684	atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1685		     | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1686	/*
1687	 * We have to translate the value we get from the device tree since
1688	 * the half FIFO configuration value had to be 0 to keep backward
1689	 * compatibility.
1690	 */
1691	switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1692	case AT91_DMA_CFG_FIFOCFG_ALAP:
1693		atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1694		break;
1695	case AT91_DMA_CFG_FIFOCFG_ASAP:
1696		atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1697		break;
1698	case AT91_DMA_CFG_FIFOCFG_HALF:
1699	default:
1700		atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1701	}
1702	atslave->dma_dev = &dmac_pdev->dev;
1703
1704	chan = dma_request_channel(mask, at_dma_filter, atslave);
1705	if (!chan)
1706		return NULL;
1707
1708	atchan = to_at_dma_chan(chan);
1709	atchan->per_if = dma_spec->args[0] & 0xff;
1710	atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1711
1712	return chan;
1713}
1714#else
1715static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1716				     struct of_dma *of_dma)
1717{
1718	return NULL;
1719}
1720#endif
1721
1722/*--  Module Management  -----------------------------------------------*/
1723
1724/* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1725static struct at_dma_platform_data at91sam9rl_config = {
1726	.nr_channels = 2,
1727};
1728static struct at_dma_platform_data at91sam9g45_config = {
1729	.nr_channels = 8,
1730};
1731
1732#if defined(CONFIG_OF)
1733static const struct of_device_id atmel_dma_dt_ids[] = {
1734	{
1735		.compatible = "atmel,at91sam9rl-dma",
1736		.data = &at91sam9rl_config,
1737	}, {
1738		.compatible = "atmel,at91sam9g45-dma",
1739		.data = &at91sam9g45_config,
1740	}, {
1741		/* sentinel */
1742	}
1743};
1744
1745MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1746#endif
1747
1748static const struct platform_device_id atdma_devtypes[] = {
1749	{
1750		.name = "at91sam9rl_dma",
1751		.driver_data = (unsigned long) &at91sam9rl_config,
1752	}, {
1753		.name = "at91sam9g45_dma",
1754		.driver_data = (unsigned long) &at91sam9g45_config,
1755	}, {
1756		/* sentinel */
1757	}
1758};
1759
1760static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1761						struct platform_device *pdev)
1762{
1763	if (pdev->dev.of_node) {
1764		const struct of_device_id *match;
1765		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1766		if (match == NULL)
1767			return NULL;
1768		return match->data;
1769	}
1770	return (struct at_dma_platform_data *)
1771			platform_get_device_id(pdev)->driver_data;
1772}
1773
1774/**
1775 * at_dma_off - disable DMA controller
1776 * @atdma: the Atmel HDAMC device
1777 */
1778static void at_dma_off(struct at_dma *atdma)
1779{
1780	dma_writel(atdma, EN, 0);
1781
1782	/* disable all interrupts */
1783	dma_writel(atdma, EBCIDR, -1L);
1784
1785	/* confirm that all channels are disabled */
1786	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1787		cpu_relax();
1788}
1789
1790static int __init at_dma_probe(struct platform_device *pdev)
1791{
1792	struct resource		*io;
1793	struct at_dma		*atdma;
1794	size_t			size;
1795	int			irq;
1796	int			err;
1797	int			i;
1798	const struct at_dma_platform_data *plat_dat;
1799
1800	/* setup platform data for each SoC */
1801	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
 
1802	dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1803	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1804	dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1805	dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1806	dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1807	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
 
1808
1809	/* get DMA parameters from controller type */
1810	plat_dat = at_dma_get_driver_data(pdev);
1811	if (!plat_dat)
1812		return -ENODEV;
1813
1814	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1815	if (!io)
1816		return -EINVAL;
1817
1818	irq = platform_get_irq(pdev, 0);
1819	if (irq < 0)
1820		return irq;
1821
1822	size = sizeof(struct at_dma);
1823	size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1824	atdma = kzalloc(size, GFP_KERNEL);
1825	if (!atdma)
1826		return -ENOMEM;
1827
1828	/* discover transaction capabilities */
1829	atdma->dma_common.cap_mask = plat_dat->cap_mask;
1830	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1831
1832	size = resource_size(io);
1833	if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1834		err = -EBUSY;
1835		goto err_kfree;
1836	}
1837
1838	atdma->regs = ioremap(io->start, size);
1839	if (!atdma->regs) {
1840		err = -ENOMEM;
1841		goto err_release_r;
1842	}
1843
1844	atdma->clk = clk_get(&pdev->dev, "dma_clk");
1845	if (IS_ERR(atdma->clk)) {
1846		err = PTR_ERR(atdma->clk);
1847		goto err_clk;
1848	}
1849	err = clk_prepare_enable(atdma->clk);
1850	if (err)
1851		goto err_clk_prepare;
1852
1853	/* force dma off, just in case */
1854	at_dma_off(atdma);
1855
1856	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1857	if (err)
1858		goto err_irq;
1859
1860	platform_set_drvdata(pdev, atdma);
1861
1862	/* create a pool of consistent memory blocks for hardware descriptors */
1863	atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
1864			&pdev->dev, sizeof(struct at_desc),
1865			4 /* word alignment */, 0);
1866	if (!atdma->dma_desc_pool) {
1867		dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1868		err = -ENOMEM;
1869		goto err_desc_pool_create;
1870	}
1871
1872	/* create a pool of consistent memory blocks for memset blocks */
1873	atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
1874					     &pdev->dev, sizeof(int), 4, 0);
1875	if (!atdma->memset_pool) {
1876		dev_err(&pdev->dev, "No memory for memset dma pool\n");
1877		err = -ENOMEM;
1878		goto err_memset_pool_create;
1879	}
1880
1881	/* clear any pending interrupt */
1882	while (dma_readl(atdma, EBCISR))
1883		cpu_relax();
1884
1885	/* initialize channels related values */
1886	INIT_LIST_HEAD(&atdma->dma_common.channels);
1887	for (i = 0; i < plat_dat->nr_channels; i++) {
1888		struct at_dma_chan	*atchan = &atdma->chan[i];
1889
1890		atchan->mem_if = AT_DMA_MEM_IF;
1891		atchan->per_if = AT_DMA_PER_IF;
1892		atchan->chan_common.device = &atdma->dma_common;
1893		dma_cookie_init(&atchan->chan_common);
1894		list_add_tail(&atchan->chan_common.device_node,
1895				&atdma->dma_common.channels);
1896
1897		atchan->ch_regs = atdma->regs + ch_regs(i);
1898		spin_lock_init(&atchan->lock);
1899		atchan->mask = 1 << i;
1900
1901		INIT_LIST_HEAD(&atchan->active_list);
1902		INIT_LIST_HEAD(&atchan->queue);
1903		INIT_LIST_HEAD(&atchan->free_list);
1904
1905		tasklet_init(&atchan->tasklet, atc_tasklet,
1906				(unsigned long)atchan);
1907		atc_enable_chan_irq(atdma, i);
1908	}
1909
1910	/* set base routines */
1911	atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
1912	atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
1913	atdma->dma_common.device_tx_status = atc_tx_status;
1914	atdma->dma_common.device_issue_pending = atc_issue_pending;
1915	atdma->dma_common.dev = &pdev->dev;
1916
1917	/* set prep routines based on capability */
1918	if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
1919		atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
1920
1921	if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
1922		atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
1923
1924	if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
1925		atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
1926		atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
1927		atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
1928	}
1929
1930	if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
1931		atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
1932		/* controller can do slave DMA: can trigger cyclic transfers */
1933		dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
1934		atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
1935		atdma->dma_common.device_config = atc_config;
1936		atdma->dma_common.device_pause = atc_pause;
1937		atdma->dma_common.device_resume = atc_resume;
1938		atdma->dma_common.device_terminate_all = atc_terminate_all;
1939		atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
1940		atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
1941		atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1942		atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1943	}
1944
 
 
 
1945	dma_writel(atdma, EN, AT_DMA_ENABLE);
1946
1947	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
1948	  dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
1949	  dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
1950	  dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)  ? "slave " : "",
 
1951	  plat_dat->nr_channels);
1952
1953	dma_async_device_register(&atdma->dma_common);
1954
1955	/*
1956	 * Do not return an error if the dmac node is not present in order to
1957	 * not break the existing way of requesting channel with
1958	 * dma_request_channel().
1959	 */
1960	if (pdev->dev.of_node) {
1961		err = of_dma_controller_register(pdev->dev.of_node,
1962						 at_dma_xlate, atdma);
1963		if (err) {
1964			dev_err(&pdev->dev, "could not register of_dma_controller\n");
1965			goto err_of_dma_controller_register;
1966		}
1967	}
1968
1969	return 0;
1970
1971err_of_dma_controller_register:
1972	dma_async_device_unregister(&atdma->dma_common);
1973	dma_pool_destroy(atdma->memset_pool);
1974err_memset_pool_create:
1975	dma_pool_destroy(atdma->dma_desc_pool);
1976err_desc_pool_create:
1977	free_irq(platform_get_irq(pdev, 0), atdma);
1978err_irq:
1979	clk_disable_unprepare(atdma->clk);
1980err_clk_prepare:
1981	clk_put(atdma->clk);
1982err_clk:
1983	iounmap(atdma->regs);
1984	atdma->regs = NULL;
1985err_release_r:
1986	release_mem_region(io->start, size);
1987err_kfree:
1988	kfree(atdma);
1989	return err;
1990}
1991
1992static int at_dma_remove(struct platform_device *pdev)
1993{
1994	struct at_dma		*atdma = platform_get_drvdata(pdev);
1995	struct dma_chan		*chan, *_chan;
1996	struct resource		*io;
1997
1998	at_dma_off(atdma);
1999	if (pdev->dev.of_node)
2000		of_dma_controller_free(pdev->dev.of_node);
2001	dma_async_device_unregister(&atdma->dma_common);
2002
2003	dma_pool_destroy(atdma->memset_pool);
2004	dma_pool_destroy(atdma->dma_desc_pool);
2005	free_irq(platform_get_irq(pdev, 0), atdma);
2006
2007	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2008			device_node) {
2009		struct at_dma_chan	*atchan = to_at_dma_chan(chan);
2010
2011		/* Disable interrupts */
2012		atc_disable_chan_irq(atdma, chan->chan_id);
2013
2014		tasklet_kill(&atchan->tasklet);
2015		list_del(&chan->device_node);
2016	}
2017
2018	clk_disable_unprepare(atdma->clk);
2019	clk_put(atdma->clk);
2020
2021	iounmap(atdma->regs);
2022	atdma->regs = NULL;
2023
2024	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2025	release_mem_region(io->start, resource_size(io));
2026
2027	kfree(atdma);
2028
2029	return 0;
2030}
2031
2032static void at_dma_shutdown(struct platform_device *pdev)
2033{
2034	struct at_dma	*atdma = platform_get_drvdata(pdev);
2035
2036	at_dma_off(platform_get_drvdata(pdev));
2037	clk_disable_unprepare(atdma->clk);
2038}
2039
2040static int at_dma_prepare(struct device *dev)
2041{
2042	struct at_dma *atdma = dev_get_drvdata(dev);
 
2043	struct dma_chan *chan, *_chan;
2044
2045	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2046			device_node) {
2047		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2048		/* wait for transaction completion (except in cyclic case) */
2049		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2050			return -EAGAIN;
2051	}
2052	return 0;
2053}
2054
2055static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2056{
2057	struct dma_chan	*chan = &atchan->chan_common;
2058
2059	/* Channel should be paused by user
2060	 * do it anyway even if it is not done already */
2061	if (!atc_chan_is_paused(atchan)) {
2062		dev_warn(chan2dev(chan),
2063		"cyclic channel not paused, should be done by channel user\n");
2064		atc_pause(chan);
2065	}
2066
2067	/* now preserve additional data for cyclic operations */
2068	/* next descriptor address in the cyclic list */
2069	atchan->save_dscr = channel_readl(atchan, DSCR);
2070
2071	vdbg_dump_regs(atchan);
2072}
2073
2074static int at_dma_suspend_noirq(struct device *dev)
2075{
2076	struct at_dma *atdma = dev_get_drvdata(dev);
 
2077	struct dma_chan *chan, *_chan;
2078
2079	/* preserve data */
2080	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2081			device_node) {
2082		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2083
2084		if (atc_chan_is_cyclic(atchan))
2085			atc_suspend_cyclic(atchan);
2086		atchan->save_cfg = channel_readl(atchan, CFG);
2087	}
2088	atdma->save_imr = dma_readl(atdma, EBCIMR);
2089
2090	/* disable DMA controller */
2091	at_dma_off(atdma);
2092	clk_disable_unprepare(atdma->clk);
2093	return 0;
2094}
2095
2096static void atc_resume_cyclic(struct at_dma_chan *atchan)
2097{
2098	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
2099
2100	/* restore channel status for cyclic descriptors list:
2101	 * next descriptor in the cyclic list at the time of suspend */
2102	channel_writel(atchan, SADDR, 0);
2103	channel_writel(atchan, DADDR, 0);
2104	channel_writel(atchan, CTRLA, 0);
2105	channel_writel(atchan, CTRLB, 0);
2106	channel_writel(atchan, DSCR, atchan->save_dscr);
2107	dma_writel(atdma, CHER, atchan->mask);
2108
2109	/* channel pause status should be removed by channel user
2110	 * We cannot take the initiative to do it here */
2111
2112	vdbg_dump_regs(atchan);
2113}
2114
2115static int at_dma_resume_noirq(struct device *dev)
2116{
2117	struct at_dma *atdma = dev_get_drvdata(dev);
 
2118	struct dma_chan *chan, *_chan;
2119
2120	/* bring back DMA controller */
2121	clk_prepare_enable(atdma->clk);
2122	dma_writel(atdma, EN, AT_DMA_ENABLE);
2123
2124	/* clear any pending interrupt */
2125	while (dma_readl(atdma, EBCISR))
2126		cpu_relax();
2127
2128	/* restore saved data */
2129	dma_writel(atdma, EBCIER, atdma->save_imr);
2130	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2131			device_node) {
2132		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2133
2134		channel_writel(atchan, CFG, atchan->save_cfg);
2135		if (atc_chan_is_cyclic(atchan))
2136			atc_resume_cyclic(atchan);
2137	}
2138	return 0;
2139}
2140
2141static const struct dev_pm_ops at_dma_dev_pm_ops = {
2142	.prepare = at_dma_prepare,
2143	.suspend_noirq = at_dma_suspend_noirq,
2144	.resume_noirq = at_dma_resume_noirq,
2145};
2146
2147static struct platform_driver at_dma_driver = {
2148	.remove		= at_dma_remove,
2149	.shutdown	= at_dma_shutdown,
2150	.id_table	= atdma_devtypes,
2151	.driver = {
2152		.name	= "at_hdmac",
2153		.pm	= &at_dma_dev_pm_ops,
2154		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
2155	},
2156};
2157
2158static int __init at_dma_init(void)
2159{
2160	return platform_driver_probe(&at_dma_driver, at_dma_probe);
2161}
2162subsys_initcall(at_dma_init);
2163
2164static void __exit at_dma_exit(void)
2165{
2166	platform_driver_unregister(&at_dma_driver);
2167}
2168module_exit(at_dma_exit);
2169
2170MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2171MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2172MODULE_LICENSE("GPL");
2173MODULE_ALIAS("platform:at_hdmac");
v4.10.11
 
   1/*
   2 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
   3 *
   4 * Copyright (C) 2008 Atmel Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 *
  12 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
  13 * The only Atmel DMA Controller that is not covered by this driver is the one
  14 * found on AT91SAM9263.
  15 */
  16
  17#include <dt-bindings/dma/at91.h>
  18#include <linux/clk.h>
  19#include <linux/dmaengine.h>
  20#include <linux/dma-mapping.h>
  21#include <linux/dmapool.h>
  22#include <linux/interrupt.h>
  23#include <linux/module.h>
  24#include <linux/platform_device.h>
  25#include <linux/slab.h>
  26#include <linux/of.h>
  27#include <linux/of_device.h>
  28#include <linux/of_dma.h>
  29
  30#include "at_hdmac_regs.h"
  31#include "dmaengine.h"
  32
  33/*
  34 * Glossary
  35 * --------
  36 *
  37 * at_hdmac		: Name of the ATmel AHB DMA Controller
  38 * at_dma_ / atdma	: ATmel DMA controller entity related
  39 * atc_	/ atchan	: ATmel DMA Channel entity related
  40 */
  41
  42#define	ATC_DEFAULT_CFG		(ATC_FIFOCFG_HALFFIFO)
  43#define	ATC_DEFAULT_CTRLB	(ATC_SIF(AT_DMA_MEM_IF) \
  44				|ATC_DIF(AT_DMA_MEM_IF))
  45#define ATC_DMA_BUSWIDTHS\
  46	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
  47	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
  48	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
  49	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
  50
  51#define ATC_MAX_DSCR_TRIALS	10
  52
  53/*
  54 * Initial number of descriptors to allocate for each channel. This could
  55 * be increased during dma usage.
  56 */
  57static unsigned int init_nr_desc_per_channel = 64;
  58module_param(init_nr_desc_per_channel, uint, 0644);
  59MODULE_PARM_DESC(init_nr_desc_per_channel,
  60		 "initial descriptors per channel (default: 64)");
  61
  62
  63/* prototypes */
  64static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
  65static void atc_issue_pending(struct dma_chan *chan);
  66
  67
  68/*----------------------------------------------------------------------*/
  69
  70static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
  71						size_t len)
  72{
  73	unsigned int width;
  74
  75	if (!((src | dst  | len) & 3))
  76		width = 2;
  77	else if (!((src | dst | len) & 1))
  78		width = 1;
  79	else
  80		width = 0;
  81
  82	return width;
  83}
  84
  85static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
  86{
  87	return list_first_entry(&atchan->active_list,
  88				struct at_desc, desc_node);
  89}
  90
  91static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
  92{
  93	return list_first_entry(&atchan->queue,
  94				struct at_desc, desc_node);
  95}
  96
  97/**
  98 * atc_alloc_descriptor - allocate and return an initialized descriptor
  99 * @chan: the channel to allocate descriptors for
 100 * @gfp_flags: GFP allocation flags
 101 *
 102 * Note: The ack-bit is positioned in the descriptor flag at creation time
 103 *       to make initial allocation more convenient. This bit will be cleared
 104 *       and control will be given to client at usage time (during
 105 *       preparation functions).
 106 */
 107static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
 108					    gfp_t gfp_flags)
 109{
 110	struct at_desc	*desc = NULL;
 111	struct at_dma	*atdma = to_at_dma(chan->device);
 112	dma_addr_t phys;
 113
 114	desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys);
 115	if (desc) {
 116		INIT_LIST_HEAD(&desc->tx_list);
 117		dma_async_tx_descriptor_init(&desc->txd, chan);
 118		/* txd.flags will be overwritten in prep functions */
 119		desc->txd.flags = DMA_CTRL_ACK;
 120		desc->txd.tx_submit = atc_tx_submit;
 121		desc->txd.phys = phys;
 122	}
 123
 124	return desc;
 125}
 126
 127/**
 128 * atc_desc_get - get an unused descriptor from free_list
 129 * @atchan: channel we want a new descriptor for
 130 */
 131static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
 132{
 133	struct at_desc *desc, *_desc;
 134	struct at_desc *ret = NULL;
 135	unsigned long flags;
 136	unsigned int i = 0;
 137	LIST_HEAD(tmp_list);
 138
 139	spin_lock_irqsave(&atchan->lock, flags);
 140	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
 141		i++;
 142		if (async_tx_test_ack(&desc->txd)) {
 143			list_del(&desc->desc_node);
 144			ret = desc;
 145			break;
 146		}
 147		dev_dbg(chan2dev(&atchan->chan_common),
 148				"desc %p not ACKed\n", desc);
 149	}
 150	spin_unlock_irqrestore(&atchan->lock, flags);
 151	dev_vdbg(chan2dev(&atchan->chan_common),
 152		"scanned %u descriptors on freelist\n", i);
 153
 154	/* no more descriptor available in initial pool: create one more */
 155	if (!ret) {
 156		ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
 157		if (ret) {
 158			spin_lock_irqsave(&atchan->lock, flags);
 159			atchan->descs_allocated++;
 160			spin_unlock_irqrestore(&atchan->lock, flags);
 161		} else {
 162			dev_err(chan2dev(&atchan->chan_common),
 163					"not enough descriptors available\n");
 164		}
 165	}
 166
 167	return ret;
 168}
 169
 170/**
 171 * atc_desc_put - move a descriptor, including any children, to the free list
 172 * @atchan: channel we work on
 173 * @desc: descriptor, at the head of a chain, to move to free list
 174 */
 175static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
 176{
 177	if (desc) {
 178		struct at_desc *child;
 179		unsigned long flags;
 180
 181		spin_lock_irqsave(&atchan->lock, flags);
 182		list_for_each_entry(child, &desc->tx_list, desc_node)
 183			dev_vdbg(chan2dev(&atchan->chan_common),
 184					"moving child desc %p to freelist\n",
 185					child);
 186		list_splice_init(&desc->tx_list, &atchan->free_list);
 187		dev_vdbg(chan2dev(&atchan->chan_common),
 188			 "moving desc %p to freelist\n", desc);
 189		list_add(&desc->desc_node, &atchan->free_list);
 190		spin_unlock_irqrestore(&atchan->lock, flags);
 191	}
 192}
 193
 194/**
 195 * atc_desc_chain - build chain adding a descriptor
 196 * @first: address of first descriptor of the chain
 197 * @prev: address of previous descriptor of the chain
 198 * @desc: descriptor to queue
 199 *
 200 * Called from prep_* functions
 201 */
 202static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
 203			   struct at_desc *desc)
 204{
 205	if (!(*first)) {
 206		*first = desc;
 207	} else {
 208		/* inform the HW lli about chaining */
 209		(*prev)->lli.dscr = desc->txd.phys;
 210		/* insert the link descriptor to the LD ring */
 211		list_add_tail(&desc->desc_node,
 212				&(*first)->tx_list);
 213	}
 214	*prev = desc;
 215}
 216
 217/**
 218 * atc_dostart - starts the DMA engine for real
 219 * @atchan: the channel we want to start
 220 * @first: first descriptor in the list we want to begin with
 221 *
 222 * Called with atchan->lock held and bh disabled
 223 */
 224static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
 225{
 226	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
 227
 228	/* ASSERT:  channel is idle */
 229	if (atc_chan_is_enabled(atchan)) {
 230		dev_err(chan2dev(&atchan->chan_common),
 231			"BUG: Attempted to start non-idle channel\n");
 232		dev_err(chan2dev(&atchan->chan_common),
 233			"  channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
 234			channel_readl(atchan, SADDR),
 235			channel_readl(atchan, DADDR),
 236			channel_readl(atchan, CTRLA),
 237			channel_readl(atchan, CTRLB),
 238			channel_readl(atchan, DSCR));
 239
 240		/* The tasklet will hopefully advance the queue... */
 241		return;
 242	}
 243
 244	vdbg_dump_regs(atchan);
 245
 246	channel_writel(atchan, SADDR, 0);
 247	channel_writel(atchan, DADDR, 0);
 248	channel_writel(atchan, CTRLA, 0);
 249	channel_writel(atchan, CTRLB, 0);
 250	channel_writel(atchan, DSCR, first->txd.phys);
 251	channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
 252		       ATC_SPIP_BOUNDARY(first->boundary));
 253	channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
 254		       ATC_DPIP_BOUNDARY(first->boundary));
 255	dma_writel(atdma, CHER, atchan->mask);
 256
 257	vdbg_dump_regs(atchan);
 258}
 259
 260/*
 261 * atc_get_desc_by_cookie - get the descriptor of a cookie
 262 * @atchan: the DMA channel
 263 * @cookie: the cookie to get the descriptor for
 264 */
 265static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
 266						dma_cookie_t cookie)
 267{
 268	struct at_desc *desc, *_desc;
 269
 270	list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
 271		if (desc->txd.cookie == cookie)
 272			return desc;
 273	}
 274
 275	list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
 276		if (desc->txd.cookie == cookie)
 277			return desc;
 278	}
 279
 280	return NULL;
 281}
 282
 283/**
 284 * atc_calc_bytes_left - calculates the number of bytes left according to the
 285 * value read from CTRLA.
 286 *
 287 * @current_len: the number of bytes left before reading CTRLA
 288 * @ctrla: the value of CTRLA
 289 */
 290static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
 291{
 292	u32 btsize = (ctrla & ATC_BTSIZE_MAX);
 293	u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
 294
 295	/*
 296	 * According to the datasheet, when reading the Control A Register
 297	 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
 298	 * number of transfers completed on the Source Interface.
 299	 * So btsize is always a number of source width transfers.
 300	 */
 301	return current_len - (btsize << src_width);
 302}
 303
 304/**
 305 * atc_get_bytes_left - get the number of bytes residue for a cookie
 306 * @chan: DMA channel
 307 * @cookie: transaction identifier to check status of
 308 */
 309static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
 310{
 311	struct at_dma_chan      *atchan = to_at_dma_chan(chan);
 312	struct at_desc *desc_first = atc_first_active(atchan);
 313	struct at_desc *desc;
 314	int ret;
 315	u32 ctrla, dscr, trials;
 316
 317	/*
 318	 * If the cookie doesn't match to the currently running transfer then
 319	 * we can return the total length of the associated DMA transfer,
 320	 * because it is still queued.
 321	 */
 322	desc = atc_get_desc_by_cookie(atchan, cookie);
 323	if (desc == NULL)
 324		return -EINVAL;
 325	else if (desc != desc_first)
 326		return desc->total_len;
 327
 328	/* cookie matches to the currently running transfer */
 329	ret = desc_first->total_len;
 330
 331	if (desc_first->lli.dscr) {
 332		/* hardware linked list transfer */
 333
 334		/*
 335		 * Calculate the residue by removing the length of the child
 336		 * descriptors already transferred from the total length.
 337		 * To get the current child descriptor we can use the value of
 338		 * the channel's DSCR register and compare it against the value
 339		 * of the hardware linked list structure of each child
 340		 * descriptor.
 341		 *
 342		 * The CTRLA register provides us with the amount of data
 343		 * already read from the source for the current child
 344		 * descriptor. So we can compute a more accurate residue by also
 345		 * removing the number of bytes corresponding to this amount of
 346		 * data.
 347		 *
 348		 * However, the DSCR and CTRLA registers cannot be read both
 349		 * atomically. Hence a race condition may occur: the first read
 350		 * register may refer to one child descriptor whereas the second
 351		 * read may refer to a later child descriptor in the list
 352		 * because of the DMA transfer progression inbetween the two
 353		 * reads.
 354		 *
 355		 * One solution could have been to pause the DMA transfer, read
 356		 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
 357		 * this approach presents some drawbacks:
 358		 * - If the DMA transfer is paused, RX overruns or TX underruns
 359		 *   are more likey to occur depending on the system latency.
 360		 *   Taking the USART driver as an example, it uses a cyclic DMA
 361		 *   transfer to read data from the Receive Holding Register
 362		 *   (RHR) to avoid RX overruns since the RHR is not protected
 363		 *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer
 364		 *   to compute the residue would break the USART driver design.
 365		 * - The atc_pause() function masks interrupts but we'd rather
 366		 *   avoid to do so for system latency purpose.
 367		 *
 368		 * Then we'd rather use another solution: the DSCR is read a
 369		 * first time, the CTRLA is read in turn, next the DSCR is read
 370		 * a second time. If the two consecutive read values of the DSCR
 371		 * are the same then we assume both refers to the very same
 372		 * child descriptor as well as the CTRLA value read inbetween
 373		 * does. For cyclic tranfers, the assumption is that a full loop
 374		 * is "not so fast".
 375		 * If the two DSCR values are different, we read again the CTRLA
 376		 * then the DSCR till two consecutive read values from DSCR are
 377		 * equal or till the maxium trials is reach.
 378		 * This algorithm is very unlikely not to find a stable value for
 379		 * DSCR.
 380		 */
 381
 382		dscr = channel_readl(atchan, DSCR);
 383		rmb(); /* ensure DSCR is read before CTRLA */
 384		ctrla = channel_readl(atchan, CTRLA);
 385		for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
 386			u32 new_dscr;
 387
 388			rmb(); /* ensure DSCR is read after CTRLA */
 389			new_dscr = channel_readl(atchan, DSCR);
 390
 391			/*
 392			 * If the DSCR register value has not changed inside the
 393			 * DMA controller since the previous read, we assume
 394			 * that both the dscr and ctrla values refers to the
 395			 * very same descriptor.
 396			 */
 397			if (likely(new_dscr == dscr))
 398				break;
 399
 400			/*
 401			 * DSCR has changed inside the DMA controller, so the
 402			 * previouly read value of CTRLA may refer to an already
 403			 * processed descriptor hence could be outdated.
 404			 * We need to update ctrla to match the current
 405			 * descriptor.
 406			 */
 407			dscr = new_dscr;
 408			rmb(); /* ensure DSCR is read before CTRLA */
 409			ctrla = channel_readl(atchan, CTRLA);
 410		}
 411		if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
 412			return -ETIMEDOUT;
 413
 414		/* for the first descriptor we can be more accurate */
 415		if (desc_first->lli.dscr == dscr)
 416			return atc_calc_bytes_left(ret, ctrla);
 417
 418		ret -= desc_first->len;
 419		list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
 420			if (desc->lli.dscr == dscr)
 421				break;
 422
 423			ret -= desc->len;
 424		}
 425
 426		/*
 427		 * For the current descriptor in the chain we can calculate
 428		 * the remaining bytes using the channel's register.
 429		 */
 430		ret = atc_calc_bytes_left(ret, ctrla);
 431	} else {
 432		/* single transfer */
 433		ctrla = channel_readl(atchan, CTRLA);
 434		ret = atc_calc_bytes_left(ret, ctrla);
 435	}
 436
 437	return ret;
 438}
 439
 440/**
 441 * atc_chain_complete - finish work for one transaction chain
 442 * @atchan: channel we work on
 443 * @desc: descriptor at the head of the chain we want do complete
 444 *
 445 * Called with atchan->lock held and bh disabled */
 446static void
 447atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
 448{
 449	struct dma_async_tx_descriptor	*txd = &desc->txd;
 450	struct at_dma			*atdma = to_at_dma(atchan->chan_common.device);
 451
 452	dev_vdbg(chan2dev(&atchan->chan_common),
 453		"descriptor %u complete\n", txd->cookie);
 454
 455	/* mark the descriptor as complete for non cyclic cases only */
 456	if (!atc_chan_is_cyclic(atchan))
 457		dma_cookie_complete(txd);
 458
 459	/* If the transfer was a memset, free our temporary buffer */
 460	if (desc->memset_buffer) {
 461		dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
 462			      desc->memset_paddr);
 463		desc->memset_buffer = false;
 464	}
 465
 466	/* move children to free_list */
 467	list_splice_init(&desc->tx_list, &atchan->free_list);
 468	/* move myself to free_list */
 469	list_move(&desc->desc_node, &atchan->free_list);
 470
 471	dma_descriptor_unmap(txd);
 472	/* for cyclic transfers,
 473	 * no need to replay callback function while stopping */
 474	if (!atc_chan_is_cyclic(atchan)) {
 475		/*
 476		 * The API requires that no submissions are done from a
 477		 * callback, so we don't need to drop the lock here
 478		 */
 479		dmaengine_desc_get_callback_invoke(txd, NULL);
 480	}
 481
 482	dma_run_dependencies(txd);
 483}
 484
 485/**
 486 * atc_complete_all - finish work for all transactions
 487 * @atchan: channel to complete transactions for
 488 *
 489 * Eventually submit queued descriptors if any
 490 *
 491 * Assume channel is idle while calling this function
 492 * Called with atchan->lock held and bh disabled
 493 */
 494static void atc_complete_all(struct at_dma_chan *atchan)
 495{
 496	struct at_desc *desc, *_desc;
 497	LIST_HEAD(list);
 498
 499	dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
 500
 501	/*
 502	 * Submit queued descriptors ASAP, i.e. before we go through
 503	 * the completed ones.
 504	 */
 505	if (!list_empty(&atchan->queue))
 506		atc_dostart(atchan, atc_first_queued(atchan));
 507	/* empty active_list now it is completed */
 508	list_splice_init(&atchan->active_list, &list);
 509	/* empty queue list by moving descriptors (if any) to active_list */
 510	list_splice_init(&atchan->queue, &atchan->active_list);
 511
 512	list_for_each_entry_safe(desc, _desc, &list, desc_node)
 513		atc_chain_complete(atchan, desc);
 514}
 515
 516/**
 517 * atc_advance_work - at the end of a transaction, move forward
 518 * @atchan: channel where the transaction ended
 519 *
 520 * Called with atchan->lock held and bh disabled
 521 */
 522static void atc_advance_work(struct at_dma_chan *atchan)
 523{
 524	dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
 525
 526	if (atc_chan_is_enabled(atchan))
 527		return;
 528
 529	if (list_empty(&atchan->active_list) ||
 530	    list_is_singular(&atchan->active_list)) {
 531		atc_complete_all(atchan);
 532	} else {
 533		atc_chain_complete(atchan, atc_first_active(atchan));
 534		/* advance work */
 535		atc_dostart(atchan, atc_first_active(atchan));
 536	}
 537}
 538
 539
 540/**
 541 * atc_handle_error - handle errors reported by DMA controller
 542 * @atchan: channel where error occurs
 543 *
 544 * Called with atchan->lock held and bh disabled
 545 */
 546static void atc_handle_error(struct at_dma_chan *atchan)
 547{
 548	struct at_desc *bad_desc;
 549	struct at_desc *child;
 550
 551	/*
 552	 * The descriptor currently at the head of the active list is
 553	 * broked. Since we don't have any way to report errors, we'll
 554	 * just have to scream loudly and try to carry on.
 555	 */
 556	bad_desc = atc_first_active(atchan);
 557	list_del_init(&bad_desc->desc_node);
 558
 559	/* As we are stopped, take advantage to push queued descriptors
 560	 * in active_list */
 561	list_splice_init(&atchan->queue, atchan->active_list.prev);
 562
 563	/* Try to restart the controller */
 564	if (!list_empty(&atchan->active_list))
 565		atc_dostart(atchan, atc_first_active(atchan));
 566
 567	/*
 568	 * KERN_CRITICAL may seem harsh, but since this only happens
 569	 * when someone submits a bad physical address in a
 570	 * descriptor, we should consider ourselves lucky that the
 571	 * controller flagged an error instead of scribbling over
 572	 * random memory locations.
 573	 */
 574	dev_crit(chan2dev(&atchan->chan_common),
 575			"Bad descriptor submitted for DMA!\n");
 576	dev_crit(chan2dev(&atchan->chan_common),
 577			"  cookie: %d\n", bad_desc->txd.cookie);
 578	atc_dump_lli(atchan, &bad_desc->lli);
 579	list_for_each_entry(child, &bad_desc->tx_list, desc_node)
 580		atc_dump_lli(atchan, &child->lli);
 581
 582	/* Pretend the descriptor completed successfully */
 583	atc_chain_complete(atchan, bad_desc);
 584}
 585
 586/**
 587 * atc_handle_cyclic - at the end of a period, run callback function
 588 * @atchan: channel used for cyclic operations
 589 *
 590 * Called with atchan->lock held and bh disabled
 591 */
 592static void atc_handle_cyclic(struct at_dma_chan *atchan)
 593{
 594	struct at_desc			*first = atc_first_active(atchan);
 595	struct dma_async_tx_descriptor	*txd = &first->txd;
 596
 597	dev_vdbg(chan2dev(&atchan->chan_common),
 598			"new cyclic period llp 0x%08x\n",
 599			channel_readl(atchan, DSCR));
 600
 601	dmaengine_desc_get_callback_invoke(txd, NULL);
 602}
 603
 604/*--  IRQ & Tasklet  ---------------------------------------------------*/
 605
 606static void atc_tasklet(unsigned long data)
 607{
 608	struct at_dma_chan *atchan = (struct at_dma_chan *)data;
 609	unsigned long flags;
 610
 611	spin_lock_irqsave(&atchan->lock, flags);
 612	if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
 613		atc_handle_error(atchan);
 614	else if (atc_chan_is_cyclic(atchan))
 615		atc_handle_cyclic(atchan);
 616	else
 617		atc_advance_work(atchan);
 618
 619	spin_unlock_irqrestore(&atchan->lock, flags);
 620}
 621
 622static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
 623{
 624	struct at_dma		*atdma = (struct at_dma *)dev_id;
 625	struct at_dma_chan	*atchan;
 626	int			i;
 627	u32			status, pending, imr;
 628	int			ret = IRQ_NONE;
 629
 630	do {
 631		imr = dma_readl(atdma, EBCIMR);
 632		status = dma_readl(atdma, EBCISR);
 633		pending = status & imr;
 634
 635		if (!pending)
 636			break;
 637
 638		dev_vdbg(atdma->dma_common.dev,
 639			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
 640			 status, imr, pending);
 641
 642		for (i = 0; i < atdma->dma_common.chancnt; i++) {
 643			atchan = &atdma->chan[i];
 644			if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
 645				if (pending & AT_DMA_ERR(i)) {
 646					/* Disable channel on AHB error */
 647					dma_writel(atdma, CHDR,
 648						AT_DMA_RES(i) | atchan->mask);
 649					/* Give information to tasklet */
 650					set_bit(ATC_IS_ERROR, &atchan->status);
 651				}
 652				tasklet_schedule(&atchan->tasklet);
 653				ret = IRQ_HANDLED;
 654			}
 655		}
 656
 657	} while (pending);
 658
 659	return ret;
 660}
 661
 662
 663/*--  DMA Engine API  --------------------------------------------------*/
 664
 665/**
 666 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
 667 * @desc: descriptor at the head of the transaction chain
 668 *
 669 * Queue chain if DMA engine is working already
 670 *
 671 * Cookie increment and adding to active_list or queue must be atomic
 672 */
 673static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
 674{
 675	struct at_desc		*desc = txd_to_at_desc(tx);
 676	struct at_dma_chan	*atchan = to_at_dma_chan(tx->chan);
 677	dma_cookie_t		cookie;
 678	unsigned long		flags;
 679
 680	spin_lock_irqsave(&atchan->lock, flags);
 681	cookie = dma_cookie_assign(tx);
 682
 683	if (list_empty(&atchan->active_list)) {
 684		dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
 685				desc->txd.cookie);
 686		atc_dostart(atchan, desc);
 687		list_add_tail(&desc->desc_node, &atchan->active_list);
 688	} else {
 689		dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
 690				desc->txd.cookie);
 691		list_add_tail(&desc->desc_node, &atchan->queue);
 692	}
 693
 694	spin_unlock_irqrestore(&atchan->lock, flags);
 695
 696	return cookie;
 697}
 698
 699/**
 700 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
 701 * @chan: the channel to prepare operation on
 702 * @xt: Interleaved transfer template
 703 * @flags: tx descriptor status flags
 704 */
 705static struct dma_async_tx_descriptor *
 706atc_prep_dma_interleaved(struct dma_chan *chan,
 707			 struct dma_interleaved_template *xt,
 708			 unsigned long flags)
 709{
 710	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
 711	struct data_chunk	*first = xt->sgl;
 712	struct at_desc		*desc = NULL;
 713	size_t			xfer_count;
 714	unsigned int		dwidth;
 715	u32			ctrla;
 716	u32			ctrlb;
 717	size_t			len = 0;
 718	int			i;
 719
 720	if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
 721		return NULL;
 722
 
 
 723	dev_info(chan2dev(chan),
 724		 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
 725		__func__, &xt->src_start, &xt->dst_start, xt->numf,
 726		xt->frame_size, flags);
 727
 728	/*
 729	 * The controller can only "skip" X bytes every Y bytes, so we
 730	 * need to make sure we are given a template that fit that
 731	 * description, ie a template with chunks that always have the
 732	 * same size, with the same ICGs.
 733	 */
 734	for (i = 0; i < xt->frame_size; i++) {
 735		struct data_chunk *chunk = xt->sgl + i;
 736
 737		if ((chunk->size != xt->sgl->size) ||
 738		    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
 739		    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
 740			dev_err(chan2dev(chan),
 741				"%s: the controller can transfer only identical chunks\n",
 742				__func__);
 743			return NULL;
 744		}
 745
 746		len += chunk->size;
 747	}
 748
 749	dwidth = atc_get_xfer_width(xt->src_start,
 750				    xt->dst_start, len);
 751
 752	xfer_count = len >> dwidth;
 753	if (xfer_count > ATC_BTSIZE_MAX) {
 754		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
 755		return NULL;
 756	}
 757
 758	ctrla = ATC_SRC_WIDTH(dwidth) |
 759		ATC_DST_WIDTH(dwidth);
 760
 761	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
 762		| ATC_SRC_ADDR_MODE_INCR
 763		| ATC_DST_ADDR_MODE_INCR
 764		| ATC_SRC_PIP
 765		| ATC_DST_PIP
 766		| ATC_FC_MEM2MEM;
 767
 768	/* create the transfer */
 769	desc = atc_desc_get(atchan);
 770	if (!desc) {
 771		dev_err(chan2dev(chan),
 772			"%s: couldn't allocate our descriptor\n", __func__);
 773		return NULL;
 774	}
 775
 776	desc->lli.saddr = xt->src_start;
 777	desc->lli.daddr = xt->dst_start;
 778	desc->lli.ctrla = ctrla | xfer_count;
 779	desc->lli.ctrlb = ctrlb;
 780
 781	desc->boundary = first->size >> dwidth;
 782	desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
 783	desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
 784
 785	desc->txd.cookie = -EBUSY;
 786	desc->total_len = desc->len = len;
 787
 788	/* set end-of-link to the last link descriptor of list*/
 789	set_desc_eol(desc);
 790
 791	desc->txd.flags = flags; /* client is in control of this ack */
 792
 793	return &desc->txd;
 794}
 795
 796/**
 797 * atc_prep_dma_memcpy - prepare a memcpy operation
 798 * @chan: the channel to prepare operation on
 799 * @dest: operation virtual destination address
 800 * @src: operation virtual source address
 801 * @len: operation length
 802 * @flags: tx descriptor status flags
 803 */
 804static struct dma_async_tx_descriptor *
 805atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
 806		size_t len, unsigned long flags)
 807{
 808	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
 809	struct at_desc		*desc = NULL;
 810	struct at_desc		*first = NULL;
 811	struct at_desc		*prev = NULL;
 812	size_t			xfer_count;
 813	size_t			offset;
 814	unsigned int		src_width;
 815	unsigned int		dst_width;
 816	u32			ctrla;
 817	u32			ctrlb;
 818
 819	dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
 820			&dest, &src, len, flags);
 821
 822	if (unlikely(!len)) {
 823		dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
 824		return NULL;
 825	}
 826
 827	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
 828		| ATC_SRC_ADDR_MODE_INCR
 829		| ATC_DST_ADDR_MODE_INCR
 830		| ATC_FC_MEM2MEM;
 831
 832	/*
 833	 * We can be a lot more clever here, but this should take care
 834	 * of the most common optimization.
 835	 */
 836	src_width = dst_width = atc_get_xfer_width(src, dest, len);
 837
 838	ctrla = ATC_SRC_WIDTH(src_width) |
 839		ATC_DST_WIDTH(dst_width);
 840
 841	for (offset = 0; offset < len; offset += xfer_count << src_width) {
 842		xfer_count = min_t(size_t, (len - offset) >> src_width,
 843				ATC_BTSIZE_MAX);
 844
 845		desc = atc_desc_get(atchan);
 846		if (!desc)
 847			goto err_desc_get;
 848
 849		desc->lli.saddr = src + offset;
 850		desc->lli.daddr = dest + offset;
 851		desc->lli.ctrla = ctrla | xfer_count;
 852		desc->lli.ctrlb = ctrlb;
 853
 854		desc->txd.cookie = 0;
 855		desc->len = xfer_count << src_width;
 856
 857		atc_desc_chain(&first, &prev, desc);
 858	}
 859
 860	/* First descriptor of the chain embedds additional information */
 861	first->txd.cookie = -EBUSY;
 862	first->total_len = len;
 863
 864	/* set end-of-link to the last link descriptor of list*/
 865	set_desc_eol(desc);
 866
 867	first->txd.flags = flags; /* client is in control of this ack */
 868
 869	return &first->txd;
 870
 871err_desc_get:
 872	atc_desc_put(atchan, first);
 873	return NULL;
 874}
 875
 876static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
 877					      dma_addr_t psrc,
 878					      dma_addr_t pdst,
 879					      size_t len)
 880{
 881	struct at_dma_chan *atchan = to_at_dma_chan(chan);
 882	struct at_desc *desc;
 883	size_t xfer_count;
 884
 885	u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
 886	u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
 887		ATC_SRC_ADDR_MODE_FIXED |
 888		ATC_DST_ADDR_MODE_INCR |
 889		ATC_FC_MEM2MEM;
 890
 891	xfer_count = len >> 2;
 892	if (xfer_count > ATC_BTSIZE_MAX) {
 893		dev_err(chan2dev(chan), "%s: buffer is too big\n",
 894			__func__);
 895		return NULL;
 896	}
 897
 898	desc = atc_desc_get(atchan);
 899	if (!desc) {
 900		dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
 901			__func__);
 902		return NULL;
 903	}
 904
 905	desc->lli.saddr = psrc;
 906	desc->lli.daddr = pdst;
 907	desc->lli.ctrla = ctrla | xfer_count;
 908	desc->lli.ctrlb = ctrlb;
 909
 910	desc->txd.cookie = 0;
 911	desc->len = len;
 912
 913	return desc;
 914}
 915
 916/**
 917 * atc_prep_dma_memset - prepare a memcpy operation
 918 * @chan: the channel to prepare operation on
 919 * @dest: operation virtual destination address
 920 * @value: value to set memory buffer to
 921 * @len: operation length
 922 * @flags: tx descriptor status flags
 923 */
 924static struct dma_async_tx_descriptor *
 925atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
 926		    size_t len, unsigned long flags)
 927{
 928	struct at_dma		*atdma = to_at_dma(chan->device);
 929	struct at_desc		*desc;
 930	void __iomem		*vaddr;
 931	dma_addr_t		paddr;
 932
 933	dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
 934		&dest, value, len, flags);
 935
 936	if (unlikely(!len)) {
 937		dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
 938		return NULL;
 939	}
 940
 941	if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
 942		dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
 943			__func__);
 944		return NULL;
 945	}
 946
 947	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
 948	if (!vaddr) {
 949		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
 950			__func__);
 951		return NULL;
 952	}
 953	*(u32*)vaddr = value;
 954
 955	desc = atc_create_memset_desc(chan, paddr, dest, len);
 956	if (!desc) {
 957		dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
 958			__func__);
 959		goto err_free_buffer;
 960	}
 961
 962	desc->memset_paddr = paddr;
 963	desc->memset_vaddr = vaddr;
 964	desc->memset_buffer = true;
 965
 966	desc->txd.cookie = -EBUSY;
 967	desc->total_len = len;
 968
 969	/* set end-of-link on the descriptor */
 970	set_desc_eol(desc);
 971
 972	desc->txd.flags = flags;
 973
 974	return &desc->txd;
 975
 976err_free_buffer:
 977	dma_pool_free(atdma->memset_pool, vaddr, paddr);
 978	return NULL;
 979}
 980
 981static struct dma_async_tx_descriptor *
 982atc_prep_dma_memset_sg(struct dma_chan *chan,
 983		       struct scatterlist *sgl,
 984		       unsigned int sg_len, int value,
 985		       unsigned long flags)
 986{
 987	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
 988	struct at_dma		*atdma = to_at_dma(chan->device);
 989	struct at_desc		*desc = NULL, *first = NULL, *prev = NULL;
 990	struct scatterlist	*sg;
 991	void __iomem		*vaddr;
 992	dma_addr_t		paddr;
 993	size_t			total_len = 0;
 994	int			i;
 995
 996	dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
 997		 value, sg_len, flags);
 998
 999	if (unlikely(!sgl || !sg_len)) {
1000		dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1001			__func__);
1002		return NULL;
1003	}
1004
1005	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
1006	if (!vaddr) {
1007		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1008			__func__);
1009		return NULL;
1010	}
1011	*(u32*)vaddr = value;
1012
1013	for_each_sg(sgl, sg, sg_len, i) {
1014		dma_addr_t dest = sg_dma_address(sg);
1015		size_t len = sg_dma_len(sg);
1016
1017		dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1018			 __func__, &dest, len);
1019
1020		if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1021			dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1022				__func__);
1023			goto err_put_desc;
1024		}
1025
1026		desc = atc_create_memset_desc(chan, paddr, dest, len);
1027		if (!desc)
1028			goto err_put_desc;
1029
1030		atc_desc_chain(&first, &prev, desc);
1031
1032		total_len += len;
1033	}
1034
1035	/*
1036	 * Only set the buffer pointers on the last descriptor to
1037	 * avoid free'ing while we have our transfer still going
1038	 */
1039	desc->memset_paddr = paddr;
1040	desc->memset_vaddr = vaddr;
1041	desc->memset_buffer = true;
1042
1043	first->txd.cookie = -EBUSY;
1044	first->total_len = total_len;
1045
1046	/* set end-of-link on the descriptor */
1047	set_desc_eol(desc);
1048
1049	first->txd.flags = flags;
1050
1051	return &first->txd;
1052
1053err_put_desc:
1054	atc_desc_put(atchan, first);
1055	return NULL;
1056}
1057
1058/**
1059 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1060 * @chan: DMA channel
1061 * @sgl: scatterlist to transfer to/from
1062 * @sg_len: number of entries in @scatterlist
1063 * @direction: DMA direction
1064 * @flags: tx descriptor status flags
1065 * @context: transaction context (ignored)
1066 */
1067static struct dma_async_tx_descriptor *
1068atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1069		unsigned int sg_len, enum dma_transfer_direction direction,
1070		unsigned long flags, void *context)
1071{
1072	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1073	struct at_dma_slave	*atslave = chan->private;
1074	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1075	struct at_desc		*first = NULL;
1076	struct at_desc		*prev = NULL;
1077	u32			ctrla;
1078	u32			ctrlb;
1079	dma_addr_t		reg;
1080	unsigned int		reg_width;
1081	unsigned int		mem_width;
1082	unsigned int		i;
1083	struct scatterlist	*sg;
1084	size_t			total_len = 0;
1085
1086	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1087			sg_len,
1088			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1089			flags);
1090
1091	if (unlikely(!atslave || !sg_len)) {
1092		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1093		return NULL;
1094	}
1095
1096	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1097		| ATC_DCSIZE(sconfig->dst_maxburst);
1098	ctrlb = ATC_IEN;
1099
1100	switch (direction) {
1101	case DMA_MEM_TO_DEV:
1102		reg_width = convert_buswidth(sconfig->dst_addr_width);
1103		ctrla |=  ATC_DST_WIDTH(reg_width);
1104		ctrlb |=  ATC_DST_ADDR_MODE_FIXED
1105			| ATC_SRC_ADDR_MODE_INCR
1106			| ATC_FC_MEM2PER
1107			| ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1108		reg = sconfig->dst_addr;
1109		for_each_sg(sgl, sg, sg_len, i) {
1110			struct at_desc	*desc;
1111			u32		len;
1112			u32		mem;
1113
1114			desc = atc_desc_get(atchan);
1115			if (!desc)
1116				goto err_desc_get;
1117
1118			mem = sg_dma_address(sg);
1119			len = sg_dma_len(sg);
1120			if (unlikely(!len)) {
1121				dev_dbg(chan2dev(chan),
1122					"prep_slave_sg: sg(%d) data length is zero\n", i);
1123				goto err;
1124			}
1125			mem_width = 2;
1126			if (unlikely(mem & 3 || len & 3))
1127				mem_width = 0;
1128
1129			desc->lli.saddr = mem;
1130			desc->lli.daddr = reg;
1131			desc->lli.ctrla = ctrla
1132					| ATC_SRC_WIDTH(mem_width)
1133					| len >> mem_width;
1134			desc->lli.ctrlb = ctrlb;
1135			desc->len = len;
1136
1137			atc_desc_chain(&first, &prev, desc);
1138			total_len += len;
1139		}
1140		break;
1141	case DMA_DEV_TO_MEM:
1142		reg_width = convert_buswidth(sconfig->src_addr_width);
1143		ctrla |=  ATC_SRC_WIDTH(reg_width);
1144		ctrlb |=  ATC_DST_ADDR_MODE_INCR
1145			| ATC_SRC_ADDR_MODE_FIXED
1146			| ATC_FC_PER2MEM
1147			| ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1148
1149		reg = sconfig->src_addr;
1150		for_each_sg(sgl, sg, sg_len, i) {
1151			struct at_desc	*desc;
1152			u32		len;
1153			u32		mem;
1154
1155			desc = atc_desc_get(atchan);
1156			if (!desc)
1157				goto err_desc_get;
1158
1159			mem = sg_dma_address(sg);
1160			len = sg_dma_len(sg);
1161			if (unlikely(!len)) {
1162				dev_dbg(chan2dev(chan),
1163					"prep_slave_sg: sg(%d) data length is zero\n", i);
1164				goto err;
1165			}
1166			mem_width = 2;
1167			if (unlikely(mem & 3 || len & 3))
1168				mem_width = 0;
1169
1170			desc->lli.saddr = reg;
1171			desc->lli.daddr = mem;
1172			desc->lli.ctrla = ctrla
1173					| ATC_DST_WIDTH(mem_width)
1174					| len >> reg_width;
1175			desc->lli.ctrlb = ctrlb;
1176			desc->len = len;
1177
1178			atc_desc_chain(&first, &prev, desc);
1179			total_len += len;
1180		}
1181		break;
1182	default:
1183		return NULL;
1184	}
1185
1186	/* set end-of-link to the last link descriptor of list*/
1187	set_desc_eol(prev);
1188
1189	/* First descriptor of the chain embedds additional information */
1190	first->txd.cookie = -EBUSY;
1191	first->total_len = total_len;
1192
1193	/* first link descriptor of list is responsible of flags */
1194	first->txd.flags = flags; /* client is in control of this ack */
1195
1196	return &first->txd;
1197
1198err_desc_get:
1199	dev_err(chan2dev(chan), "not enough descriptors available\n");
1200err:
1201	atc_desc_put(atchan, first);
1202	return NULL;
1203}
1204
1205/**
1206 * atc_prep_dma_sg - prepare memory to memory scather-gather operation
1207 * @chan: the channel to prepare operation on
1208 * @dst_sg: destination scatterlist
1209 * @dst_nents: number of destination scatterlist entries
1210 * @src_sg: source scatterlist
1211 * @src_nents: number of source scatterlist entries
1212 * @flags: tx descriptor status flags
1213 */
1214static struct dma_async_tx_descriptor *
1215atc_prep_dma_sg(struct dma_chan *chan,
1216		struct scatterlist *dst_sg, unsigned int dst_nents,
1217		struct scatterlist *src_sg, unsigned int src_nents,
1218		unsigned long flags)
1219{
1220	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1221	struct at_desc		*desc = NULL;
1222	struct at_desc		*first = NULL;
1223	struct at_desc		*prev = NULL;
1224	unsigned int		src_width;
1225	unsigned int		dst_width;
1226	size_t			xfer_count;
1227	u32			ctrla;
1228	u32			ctrlb;
1229	size_t			dst_len = 0, src_len = 0;
1230	dma_addr_t		dst = 0, src = 0;
1231	size_t			len = 0, total_len = 0;
1232
1233	if (unlikely(dst_nents == 0 || src_nents == 0))
1234		return NULL;
1235
1236	if (unlikely(dst_sg == NULL || src_sg == NULL))
1237		return NULL;
1238
1239	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
1240		| ATC_SRC_ADDR_MODE_INCR
1241		| ATC_DST_ADDR_MODE_INCR
1242		| ATC_FC_MEM2MEM;
1243
1244	/*
1245	 * loop until there is either no more source or no more destination
1246	 * scatterlist entry
1247	 */
1248	while (true) {
1249
1250		/* prepare the next transfer */
1251		if (dst_len == 0) {
1252
1253			/* no more destination scatterlist entries */
1254			if (!dst_sg || !dst_nents)
1255				break;
1256
1257			dst = sg_dma_address(dst_sg);
1258			dst_len = sg_dma_len(dst_sg);
1259
1260			dst_sg = sg_next(dst_sg);
1261			dst_nents--;
1262		}
1263
1264		if (src_len == 0) {
1265
1266			/* no more source scatterlist entries */
1267			if (!src_sg || !src_nents)
1268				break;
1269
1270			src = sg_dma_address(src_sg);
1271			src_len = sg_dma_len(src_sg);
1272
1273			src_sg = sg_next(src_sg);
1274			src_nents--;
1275		}
1276
1277		len = min_t(size_t, src_len, dst_len);
1278		if (len == 0)
1279			continue;
1280
1281		/* take care for the alignment */
1282		src_width = dst_width = atc_get_xfer_width(src, dst, len);
1283
1284		ctrla = ATC_SRC_WIDTH(src_width) |
1285			ATC_DST_WIDTH(dst_width);
1286
1287		/*
1288		 * The number of transfers to set up refer to the source width
1289		 * that depends on the alignment.
1290		 */
1291		xfer_count = len >> src_width;
1292		if (xfer_count > ATC_BTSIZE_MAX) {
1293			xfer_count = ATC_BTSIZE_MAX;
1294			len = ATC_BTSIZE_MAX << src_width;
1295		}
1296
1297		/* create the transfer */
1298		desc = atc_desc_get(atchan);
1299		if (!desc)
1300			goto err_desc_get;
1301
1302		desc->lli.saddr = src;
1303		desc->lli.daddr = dst;
1304		desc->lli.ctrla = ctrla | xfer_count;
1305		desc->lli.ctrlb = ctrlb;
1306
1307		desc->txd.cookie = 0;
1308		desc->len = len;
1309
1310		atc_desc_chain(&first, &prev, desc);
1311
1312		/* update the lengths and addresses for the next loop cycle */
1313		dst_len -= len;
1314		src_len -= len;
1315		dst += len;
1316		src += len;
1317
1318		total_len += len;
1319	}
1320
1321	/* First descriptor of the chain embedds additional information */
1322	first->txd.cookie = -EBUSY;
1323	first->total_len = total_len;
1324
1325	/* set end-of-link to the last link descriptor of list*/
1326	set_desc_eol(desc);
1327
1328	first->txd.flags = flags; /* client is in control of this ack */
1329
1330	return &first->txd;
1331
1332err_desc_get:
1333	atc_desc_put(atchan, first);
1334	return NULL;
1335}
1336
1337/**
1338 * atc_dma_cyclic_check_values
1339 * Check for too big/unaligned periods and unaligned DMA buffer
1340 */
1341static int
1342atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1343		size_t period_len)
1344{
1345	if (period_len > (ATC_BTSIZE_MAX << reg_width))
1346		goto err_out;
1347	if (unlikely(period_len & ((1 << reg_width) - 1)))
1348		goto err_out;
1349	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1350		goto err_out;
1351
1352	return 0;
1353
1354err_out:
1355	return -EINVAL;
1356}
1357
1358/**
1359 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1360 */
1361static int
1362atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1363		unsigned int period_index, dma_addr_t buf_addr,
1364		unsigned int reg_width, size_t period_len,
1365		enum dma_transfer_direction direction)
1366{
1367	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1368	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1369	u32			ctrla;
1370
1371	/* prepare common CRTLA value */
1372	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1373		| ATC_DCSIZE(sconfig->dst_maxburst)
1374		| ATC_DST_WIDTH(reg_width)
1375		| ATC_SRC_WIDTH(reg_width)
1376		| period_len >> reg_width;
1377
1378	switch (direction) {
1379	case DMA_MEM_TO_DEV:
1380		desc->lli.saddr = buf_addr + (period_len * period_index);
1381		desc->lli.daddr = sconfig->dst_addr;
1382		desc->lli.ctrla = ctrla;
1383		desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1384				| ATC_SRC_ADDR_MODE_INCR
1385				| ATC_FC_MEM2PER
1386				| ATC_SIF(atchan->mem_if)
1387				| ATC_DIF(atchan->per_if);
1388		desc->len = period_len;
1389		break;
1390
1391	case DMA_DEV_TO_MEM:
1392		desc->lli.saddr = sconfig->src_addr;
1393		desc->lli.daddr = buf_addr + (period_len * period_index);
1394		desc->lli.ctrla = ctrla;
1395		desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1396				| ATC_SRC_ADDR_MODE_FIXED
1397				| ATC_FC_PER2MEM
1398				| ATC_SIF(atchan->per_if)
1399				| ATC_DIF(atchan->mem_if);
1400		desc->len = period_len;
1401		break;
1402
1403	default:
1404		return -EINVAL;
1405	}
1406
1407	return 0;
1408}
1409
1410/**
1411 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1412 * @chan: the DMA channel to prepare
1413 * @buf_addr: physical DMA address where the buffer starts
1414 * @buf_len: total number of bytes for the entire buffer
1415 * @period_len: number of bytes for each period
1416 * @direction: transfer direction, to or from device
1417 * @flags: tx descriptor status flags
1418 */
1419static struct dma_async_tx_descriptor *
1420atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1421		size_t period_len, enum dma_transfer_direction direction,
1422		unsigned long flags)
1423{
1424	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1425	struct at_dma_slave	*atslave = chan->private;
1426	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1427	struct at_desc		*first = NULL;
1428	struct at_desc		*prev = NULL;
1429	unsigned long		was_cyclic;
1430	unsigned int		reg_width;
1431	unsigned int		periods = buf_len / period_len;
1432	unsigned int		i;
1433
1434	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1435			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1436			&buf_addr,
1437			periods, buf_len, period_len);
1438
1439	if (unlikely(!atslave || !buf_len || !period_len)) {
1440		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1441		return NULL;
1442	}
1443
1444	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1445	if (was_cyclic) {
1446		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1447		return NULL;
1448	}
1449
1450	if (unlikely(!is_slave_direction(direction)))
1451		goto err_out;
1452
1453	if (sconfig->direction == DMA_MEM_TO_DEV)
1454		reg_width = convert_buswidth(sconfig->dst_addr_width);
1455	else
1456		reg_width = convert_buswidth(sconfig->src_addr_width);
1457
1458	/* Check for too big/unaligned periods and unaligned DMA buffer */
1459	if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1460		goto err_out;
1461
1462	/* build cyclic linked list */
1463	for (i = 0; i < periods; i++) {
1464		struct at_desc	*desc;
1465
1466		desc = atc_desc_get(atchan);
1467		if (!desc)
1468			goto err_desc_get;
1469
1470		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1471					     reg_width, period_len, direction))
1472			goto err_desc_get;
1473
1474		atc_desc_chain(&first, &prev, desc);
1475	}
1476
1477	/* lets make a cyclic list */
1478	prev->lli.dscr = first->txd.phys;
1479
1480	/* First descriptor of the chain embedds additional information */
1481	first->txd.cookie = -EBUSY;
1482	first->total_len = buf_len;
1483
1484	return &first->txd;
1485
1486err_desc_get:
1487	dev_err(chan2dev(chan), "not enough descriptors available\n");
1488	atc_desc_put(atchan, first);
1489err_out:
1490	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1491	return NULL;
1492}
1493
1494static int atc_config(struct dma_chan *chan,
1495		      struct dma_slave_config *sconfig)
1496{
1497	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1498
1499	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1500
1501	/* Check if it is chan is configured for slave transfers */
1502	if (!chan->private)
1503		return -EINVAL;
1504
1505	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1506
1507	convert_burst(&atchan->dma_sconfig.src_maxburst);
1508	convert_burst(&atchan->dma_sconfig.dst_maxburst);
1509
1510	return 0;
1511}
1512
1513static int atc_pause(struct dma_chan *chan)
1514{
1515	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1516	struct at_dma		*atdma = to_at_dma(chan->device);
1517	int			chan_id = atchan->chan_common.chan_id;
1518	unsigned long		flags;
1519
1520	LIST_HEAD(list);
1521
1522	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1523
1524	spin_lock_irqsave(&atchan->lock, flags);
1525
1526	dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1527	set_bit(ATC_IS_PAUSED, &atchan->status);
1528
1529	spin_unlock_irqrestore(&atchan->lock, flags);
1530
1531	return 0;
1532}
1533
1534static int atc_resume(struct dma_chan *chan)
1535{
1536	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1537	struct at_dma		*atdma = to_at_dma(chan->device);
1538	int			chan_id = atchan->chan_common.chan_id;
1539	unsigned long		flags;
1540
1541	LIST_HEAD(list);
1542
1543	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1544
1545	if (!atc_chan_is_paused(atchan))
1546		return 0;
1547
1548	spin_lock_irqsave(&atchan->lock, flags);
1549
1550	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1551	clear_bit(ATC_IS_PAUSED, &atchan->status);
1552
1553	spin_unlock_irqrestore(&atchan->lock, flags);
1554
1555	return 0;
1556}
1557
1558static int atc_terminate_all(struct dma_chan *chan)
1559{
1560	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1561	struct at_dma		*atdma = to_at_dma(chan->device);
1562	int			chan_id = atchan->chan_common.chan_id;
1563	struct at_desc		*desc, *_desc;
1564	unsigned long		flags;
1565
1566	LIST_HEAD(list);
1567
1568	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1569
1570	/*
1571	 * This is only called when something went wrong elsewhere, so
1572	 * we don't really care about the data. Just disable the
1573	 * channel. We still have to poll the channel enable bit due
1574	 * to AHB/HSB limitations.
1575	 */
1576	spin_lock_irqsave(&atchan->lock, flags);
1577
1578	/* disabling channel: must also remove suspend state */
1579	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1580
1581	/* confirm that this channel is disabled */
1582	while (dma_readl(atdma, CHSR) & atchan->mask)
1583		cpu_relax();
1584
1585	/* active_list entries will end up before queued entries */
1586	list_splice_init(&atchan->queue, &list);
1587	list_splice_init(&atchan->active_list, &list);
1588
1589	/* Flush all pending and queued descriptors */
1590	list_for_each_entry_safe(desc, _desc, &list, desc_node)
1591		atc_chain_complete(atchan, desc);
1592
1593	clear_bit(ATC_IS_PAUSED, &atchan->status);
1594	/* if channel dedicated to cyclic operations, free it */
1595	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1596
1597	spin_unlock_irqrestore(&atchan->lock, flags);
1598
1599	return 0;
1600}
1601
1602/**
1603 * atc_tx_status - poll for transaction completion
1604 * @chan: DMA channel
1605 * @cookie: transaction identifier to check status of
1606 * @txstate: if not %NULL updated with transaction state
1607 *
1608 * If @txstate is passed in, upon return it reflect the driver
1609 * internal state and can be used with dma_async_is_complete() to check
1610 * the status of multiple cookies without re-checking hardware state.
1611 */
1612static enum dma_status
1613atc_tx_status(struct dma_chan *chan,
1614		dma_cookie_t cookie,
1615		struct dma_tx_state *txstate)
1616{
1617	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1618	unsigned long		flags;
1619	enum dma_status		ret;
1620	int bytes = 0;
1621
1622	ret = dma_cookie_status(chan, cookie, txstate);
1623	if (ret == DMA_COMPLETE)
1624		return ret;
1625	/*
1626	 * There's no point calculating the residue if there's
1627	 * no txstate to store the value.
1628	 */
1629	if (!txstate)
1630		return DMA_ERROR;
1631
1632	spin_lock_irqsave(&atchan->lock, flags);
1633
1634	/*  Get number of bytes left in the active transactions */
1635	bytes = atc_get_bytes_left(chan, cookie);
1636
1637	spin_unlock_irqrestore(&atchan->lock, flags);
1638
1639	if (unlikely(bytes < 0)) {
1640		dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1641		return DMA_ERROR;
1642	} else {
1643		dma_set_residue(txstate, bytes);
1644	}
1645
1646	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1647		 ret, cookie, bytes);
1648
1649	return ret;
1650}
1651
1652/**
1653 * atc_issue_pending - try to finish work
1654 * @chan: target DMA channel
1655 */
1656static void atc_issue_pending(struct dma_chan *chan)
1657{
1658	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1659	unsigned long		flags;
1660
1661	dev_vdbg(chan2dev(chan), "issue_pending\n");
1662
1663	/* Not needed for cyclic transfers */
1664	if (atc_chan_is_cyclic(atchan))
1665		return;
1666
1667	spin_lock_irqsave(&atchan->lock, flags);
1668	atc_advance_work(atchan);
1669	spin_unlock_irqrestore(&atchan->lock, flags);
1670}
1671
1672/**
1673 * atc_alloc_chan_resources - allocate resources for DMA channel
1674 * @chan: allocate descriptor resources for this channel
1675 * @client: current client requesting the channel be ready for requests
1676 *
1677 * return - the number of allocated descriptors
1678 */
1679static int atc_alloc_chan_resources(struct dma_chan *chan)
1680{
1681	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1682	struct at_dma		*atdma = to_at_dma(chan->device);
1683	struct at_desc		*desc;
1684	struct at_dma_slave	*atslave;
1685	unsigned long		flags;
1686	int			i;
1687	u32			cfg;
1688	LIST_HEAD(tmp_list);
1689
1690	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1691
1692	/* ASSERT:  channel is idle */
1693	if (atc_chan_is_enabled(atchan)) {
1694		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1695		return -EIO;
1696	}
1697
1698	cfg = ATC_DEFAULT_CFG;
1699
1700	atslave = chan->private;
1701	if (atslave) {
1702		/*
1703		 * We need controller-specific data to set up slave
1704		 * transfers.
1705		 */
1706		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1707
1708		/* if cfg configuration specified take it instead of default */
1709		if (atslave->cfg)
1710			cfg = atslave->cfg;
1711	}
1712
1713	/* have we already been set up?
1714	 * reconfigure channel but no need to reallocate descriptors */
1715	if (!list_empty(&atchan->free_list))
1716		return atchan->descs_allocated;
1717
1718	/* Allocate initial pool of descriptors */
1719	for (i = 0; i < init_nr_desc_per_channel; i++) {
1720		desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1721		if (!desc) {
1722			dev_err(atdma->dma_common.dev,
1723				"Only %d initial descriptors\n", i);
1724			break;
1725		}
1726		list_add_tail(&desc->desc_node, &tmp_list);
1727	}
1728
1729	spin_lock_irqsave(&atchan->lock, flags);
1730	atchan->descs_allocated = i;
1731	list_splice(&tmp_list, &atchan->free_list);
1732	dma_cookie_init(chan);
1733	spin_unlock_irqrestore(&atchan->lock, flags);
1734
1735	/* channel parameters */
1736	channel_writel(atchan, CFG, cfg);
1737
1738	dev_dbg(chan2dev(chan),
1739		"alloc_chan_resources: allocated %d descriptors\n",
1740		atchan->descs_allocated);
1741
1742	return atchan->descs_allocated;
1743}
1744
1745/**
1746 * atc_free_chan_resources - free all channel resources
1747 * @chan: DMA channel
1748 */
1749static void atc_free_chan_resources(struct dma_chan *chan)
1750{
1751	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1752	struct at_dma		*atdma = to_at_dma(chan->device);
1753	struct at_desc		*desc, *_desc;
1754	LIST_HEAD(list);
1755
1756	dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1757		atchan->descs_allocated);
1758
1759	/* ASSERT:  channel is idle */
1760	BUG_ON(!list_empty(&atchan->active_list));
1761	BUG_ON(!list_empty(&atchan->queue));
1762	BUG_ON(atc_chan_is_enabled(atchan));
1763
1764	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1765		dev_vdbg(chan2dev(chan), "  freeing descriptor %p\n", desc);
1766		list_del(&desc->desc_node);
1767		/* free link descriptor */
1768		dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1769	}
1770	list_splice_init(&atchan->free_list, &list);
1771	atchan->descs_allocated = 0;
1772	atchan->status = 0;
1773
 
 
 
 
 
 
1774	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1775}
1776
1777#ifdef CONFIG_OF
1778static bool at_dma_filter(struct dma_chan *chan, void *slave)
1779{
1780	struct at_dma_slave *atslave = slave;
1781
1782	if (atslave->dma_dev == chan->device->dev) {
1783		chan->private = atslave;
1784		return true;
1785	} else {
1786		return false;
1787	}
1788}
1789
1790static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1791				     struct of_dma *of_dma)
1792{
1793	struct dma_chan *chan;
1794	struct at_dma_chan *atchan;
1795	struct at_dma_slave *atslave;
1796	dma_cap_mask_t mask;
1797	unsigned int per_id;
1798	struct platform_device *dmac_pdev;
1799
1800	if (dma_spec->args_count != 2)
1801		return NULL;
1802
1803	dmac_pdev = of_find_device_by_node(dma_spec->np);
1804
1805	dma_cap_zero(mask);
1806	dma_cap_set(DMA_SLAVE, mask);
1807
1808	atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL);
1809	if (!atslave)
1810		return NULL;
1811
1812	atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1813	/*
1814	 * We can fill both SRC_PER and DST_PER, one of these fields will be
1815	 * ignored depending on DMA transfer direction.
1816	 */
1817	per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1818	atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1819		     | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1820	/*
1821	 * We have to translate the value we get from the device tree since
1822	 * the half FIFO configuration value had to be 0 to keep backward
1823	 * compatibility.
1824	 */
1825	switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1826	case AT91_DMA_CFG_FIFOCFG_ALAP:
1827		atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1828		break;
1829	case AT91_DMA_CFG_FIFOCFG_ASAP:
1830		atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1831		break;
1832	case AT91_DMA_CFG_FIFOCFG_HALF:
1833	default:
1834		atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1835	}
1836	atslave->dma_dev = &dmac_pdev->dev;
1837
1838	chan = dma_request_channel(mask, at_dma_filter, atslave);
1839	if (!chan)
1840		return NULL;
1841
1842	atchan = to_at_dma_chan(chan);
1843	atchan->per_if = dma_spec->args[0] & 0xff;
1844	atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1845
1846	return chan;
1847}
1848#else
1849static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1850				     struct of_dma *of_dma)
1851{
1852	return NULL;
1853}
1854#endif
1855
1856/*--  Module Management  -----------------------------------------------*/
1857
1858/* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1859static struct at_dma_platform_data at91sam9rl_config = {
1860	.nr_channels = 2,
1861};
1862static struct at_dma_platform_data at91sam9g45_config = {
1863	.nr_channels = 8,
1864};
1865
1866#if defined(CONFIG_OF)
1867static const struct of_device_id atmel_dma_dt_ids[] = {
1868	{
1869		.compatible = "atmel,at91sam9rl-dma",
1870		.data = &at91sam9rl_config,
1871	}, {
1872		.compatible = "atmel,at91sam9g45-dma",
1873		.data = &at91sam9g45_config,
1874	}, {
1875		/* sentinel */
1876	}
1877};
1878
1879MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1880#endif
1881
1882static const struct platform_device_id atdma_devtypes[] = {
1883	{
1884		.name = "at91sam9rl_dma",
1885		.driver_data = (unsigned long) &at91sam9rl_config,
1886	}, {
1887		.name = "at91sam9g45_dma",
1888		.driver_data = (unsigned long) &at91sam9g45_config,
1889	}, {
1890		/* sentinel */
1891	}
1892};
1893
1894static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1895						struct platform_device *pdev)
1896{
1897	if (pdev->dev.of_node) {
1898		const struct of_device_id *match;
1899		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1900		if (match == NULL)
1901			return NULL;
1902		return match->data;
1903	}
1904	return (struct at_dma_platform_data *)
1905			platform_get_device_id(pdev)->driver_data;
1906}
1907
1908/**
1909 * at_dma_off - disable DMA controller
1910 * @atdma: the Atmel HDAMC device
1911 */
1912static void at_dma_off(struct at_dma *atdma)
1913{
1914	dma_writel(atdma, EN, 0);
1915
1916	/* disable all interrupts */
1917	dma_writel(atdma, EBCIDR, -1L);
1918
1919	/* confirm that all channels are disabled */
1920	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1921		cpu_relax();
1922}
1923
1924static int __init at_dma_probe(struct platform_device *pdev)
1925{
1926	struct resource		*io;
1927	struct at_dma		*atdma;
1928	size_t			size;
1929	int			irq;
1930	int			err;
1931	int			i;
1932	const struct at_dma_platform_data *plat_dat;
1933
1934	/* setup platform data for each SoC */
1935	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1936	dma_cap_set(DMA_SG, at91sam9rl_config.cap_mask);
1937	dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1938	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1939	dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1940	dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1941	dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1942	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1943	dma_cap_set(DMA_SG, at91sam9g45_config.cap_mask);
1944
1945	/* get DMA parameters from controller type */
1946	plat_dat = at_dma_get_driver_data(pdev);
1947	if (!plat_dat)
1948		return -ENODEV;
1949
1950	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1951	if (!io)
1952		return -EINVAL;
1953
1954	irq = platform_get_irq(pdev, 0);
1955	if (irq < 0)
1956		return irq;
1957
1958	size = sizeof(struct at_dma);
1959	size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1960	atdma = kzalloc(size, GFP_KERNEL);
1961	if (!atdma)
1962		return -ENOMEM;
1963
1964	/* discover transaction capabilities */
1965	atdma->dma_common.cap_mask = plat_dat->cap_mask;
1966	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1967
1968	size = resource_size(io);
1969	if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1970		err = -EBUSY;
1971		goto err_kfree;
1972	}
1973
1974	atdma->regs = ioremap(io->start, size);
1975	if (!atdma->regs) {
1976		err = -ENOMEM;
1977		goto err_release_r;
1978	}
1979
1980	atdma->clk = clk_get(&pdev->dev, "dma_clk");
1981	if (IS_ERR(atdma->clk)) {
1982		err = PTR_ERR(atdma->clk);
1983		goto err_clk;
1984	}
1985	err = clk_prepare_enable(atdma->clk);
1986	if (err)
1987		goto err_clk_prepare;
1988
1989	/* force dma off, just in case */
1990	at_dma_off(atdma);
1991
1992	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1993	if (err)
1994		goto err_irq;
1995
1996	platform_set_drvdata(pdev, atdma);
1997
1998	/* create a pool of consistent memory blocks for hardware descriptors */
1999	atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
2000			&pdev->dev, sizeof(struct at_desc),
2001			4 /* word alignment */, 0);
2002	if (!atdma->dma_desc_pool) {
2003		dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
2004		err = -ENOMEM;
2005		goto err_desc_pool_create;
2006	}
2007
2008	/* create a pool of consistent memory blocks for memset blocks */
2009	atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
2010					     &pdev->dev, sizeof(int), 4, 0);
2011	if (!atdma->memset_pool) {
2012		dev_err(&pdev->dev, "No memory for memset dma pool\n");
2013		err = -ENOMEM;
2014		goto err_memset_pool_create;
2015	}
2016
2017	/* clear any pending interrupt */
2018	while (dma_readl(atdma, EBCISR))
2019		cpu_relax();
2020
2021	/* initialize channels related values */
2022	INIT_LIST_HEAD(&atdma->dma_common.channels);
2023	for (i = 0; i < plat_dat->nr_channels; i++) {
2024		struct at_dma_chan	*atchan = &atdma->chan[i];
2025
2026		atchan->mem_if = AT_DMA_MEM_IF;
2027		atchan->per_if = AT_DMA_PER_IF;
2028		atchan->chan_common.device = &atdma->dma_common;
2029		dma_cookie_init(&atchan->chan_common);
2030		list_add_tail(&atchan->chan_common.device_node,
2031				&atdma->dma_common.channels);
2032
2033		atchan->ch_regs = atdma->regs + ch_regs(i);
2034		spin_lock_init(&atchan->lock);
2035		atchan->mask = 1 << i;
2036
2037		INIT_LIST_HEAD(&atchan->active_list);
2038		INIT_LIST_HEAD(&atchan->queue);
2039		INIT_LIST_HEAD(&atchan->free_list);
2040
2041		tasklet_init(&atchan->tasklet, atc_tasklet,
2042				(unsigned long)atchan);
2043		atc_enable_chan_irq(atdma, i);
2044	}
2045
2046	/* set base routines */
2047	atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
2048	atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
2049	atdma->dma_common.device_tx_status = atc_tx_status;
2050	atdma->dma_common.device_issue_pending = atc_issue_pending;
2051	atdma->dma_common.dev = &pdev->dev;
2052
2053	/* set prep routines based on capability */
2054	if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
2055		atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
2056
2057	if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
2058		atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
2059
2060	if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
2061		atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
2062		atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
2063		atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
2064	}
2065
2066	if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
2067		atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
2068		/* controller can do slave DMA: can trigger cyclic transfers */
2069		dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
2070		atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
2071		atdma->dma_common.device_config = atc_config;
2072		atdma->dma_common.device_pause = atc_pause;
2073		atdma->dma_common.device_resume = atc_resume;
2074		atdma->dma_common.device_terminate_all = atc_terminate_all;
2075		atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
2076		atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
2077		atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2078		atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2079	}
2080
2081	if (dma_has_cap(DMA_SG, atdma->dma_common.cap_mask))
2082		atdma->dma_common.device_prep_dma_sg = atc_prep_dma_sg;
2083
2084	dma_writel(atdma, EN, AT_DMA_ENABLE);
2085
2086	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s%s), %d channels\n",
2087	  dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
2088	  dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
2089	  dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)  ? "slave " : "",
2090	  dma_has_cap(DMA_SG, atdma->dma_common.cap_mask)  ? "sg-cpy " : "",
2091	  plat_dat->nr_channels);
2092
2093	dma_async_device_register(&atdma->dma_common);
2094
2095	/*
2096	 * Do not return an error if the dmac node is not present in order to
2097	 * not break the existing way of requesting channel with
2098	 * dma_request_channel().
2099	 */
2100	if (pdev->dev.of_node) {
2101		err = of_dma_controller_register(pdev->dev.of_node,
2102						 at_dma_xlate, atdma);
2103		if (err) {
2104			dev_err(&pdev->dev, "could not register of_dma_controller\n");
2105			goto err_of_dma_controller_register;
2106		}
2107	}
2108
2109	return 0;
2110
2111err_of_dma_controller_register:
2112	dma_async_device_unregister(&atdma->dma_common);
2113	dma_pool_destroy(atdma->memset_pool);
2114err_memset_pool_create:
2115	dma_pool_destroy(atdma->dma_desc_pool);
2116err_desc_pool_create:
2117	free_irq(platform_get_irq(pdev, 0), atdma);
2118err_irq:
2119	clk_disable_unprepare(atdma->clk);
2120err_clk_prepare:
2121	clk_put(atdma->clk);
2122err_clk:
2123	iounmap(atdma->regs);
2124	atdma->regs = NULL;
2125err_release_r:
2126	release_mem_region(io->start, size);
2127err_kfree:
2128	kfree(atdma);
2129	return err;
2130}
2131
2132static int at_dma_remove(struct platform_device *pdev)
2133{
2134	struct at_dma		*atdma = platform_get_drvdata(pdev);
2135	struct dma_chan		*chan, *_chan;
2136	struct resource		*io;
2137
2138	at_dma_off(atdma);
 
 
2139	dma_async_device_unregister(&atdma->dma_common);
2140
2141	dma_pool_destroy(atdma->memset_pool);
2142	dma_pool_destroy(atdma->dma_desc_pool);
2143	free_irq(platform_get_irq(pdev, 0), atdma);
2144
2145	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2146			device_node) {
2147		struct at_dma_chan	*atchan = to_at_dma_chan(chan);
2148
2149		/* Disable interrupts */
2150		atc_disable_chan_irq(atdma, chan->chan_id);
2151
2152		tasklet_kill(&atchan->tasklet);
2153		list_del(&chan->device_node);
2154	}
2155
2156	clk_disable_unprepare(atdma->clk);
2157	clk_put(atdma->clk);
2158
2159	iounmap(atdma->regs);
2160	atdma->regs = NULL;
2161
2162	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2163	release_mem_region(io->start, resource_size(io));
2164
2165	kfree(atdma);
2166
2167	return 0;
2168}
2169
2170static void at_dma_shutdown(struct platform_device *pdev)
2171{
2172	struct at_dma	*atdma = platform_get_drvdata(pdev);
2173
2174	at_dma_off(platform_get_drvdata(pdev));
2175	clk_disable_unprepare(atdma->clk);
2176}
2177
2178static int at_dma_prepare(struct device *dev)
2179{
2180	struct platform_device *pdev = to_platform_device(dev);
2181	struct at_dma *atdma = platform_get_drvdata(pdev);
2182	struct dma_chan *chan, *_chan;
2183
2184	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2185			device_node) {
2186		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2187		/* wait for transaction completion (except in cyclic case) */
2188		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2189			return -EAGAIN;
2190	}
2191	return 0;
2192}
2193
2194static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2195{
2196	struct dma_chan	*chan = &atchan->chan_common;
2197
2198	/* Channel should be paused by user
2199	 * do it anyway even if it is not done already */
2200	if (!atc_chan_is_paused(atchan)) {
2201		dev_warn(chan2dev(chan),
2202		"cyclic channel not paused, should be done by channel user\n");
2203		atc_pause(chan);
2204	}
2205
2206	/* now preserve additional data for cyclic operations */
2207	/* next descriptor address in the cyclic list */
2208	atchan->save_dscr = channel_readl(atchan, DSCR);
2209
2210	vdbg_dump_regs(atchan);
2211}
2212
2213static int at_dma_suspend_noirq(struct device *dev)
2214{
2215	struct platform_device *pdev = to_platform_device(dev);
2216	struct at_dma *atdma = platform_get_drvdata(pdev);
2217	struct dma_chan *chan, *_chan;
2218
2219	/* preserve data */
2220	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2221			device_node) {
2222		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2223
2224		if (atc_chan_is_cyclic(atchan))
2225			atc_suspend_cyclic(atchan);
2226		atchan->save_cfg = channel_readl(atchan, CFG);
2227	}
2228	atdma->save_imr = dma_readl(atdma, EBCIMR);
2229
2230	/* disable DMA controller */
2231	at_dma_off(atdma);
2232	clk_disable_unprepare(atdma->clk);
2233	return 0;
2234}
2235
2236static void atc_resume_cyclic(struct at_dma_chan *atchan)
2237{
2238	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
2239
2240	/* restore channel status for cyclic descriptors list:
2241	 * next descriptor in the cyclic list at the time of suspend */
2242	channel_writel(atchan, SADDR, 0);
2243	channel_writel(atchan, DADDR, 0);
2244	channel_writel(atchan, CTRLA, 0);
2245	channel_writel(atchan, CTRLB, 0);
2246	channel_writel(atchan, DSCR, atchan->save_dscr);
2247	dma_writel(atdma, CHER, atchan->mask);
2248
2249	/* channel pause status should be removed by channel user
2250	 * We cannot take the initiative to do it here */
2251
2252	vdbg_dump_regs(atchan);
2253}
2254
2255static int at_dma_resume_noirq(struct device *dev)
2256{
2257	struct platform_device *pdev = to_platform_device(dev);
2258	struct at_dma *atdma = platform_get_drvdata(pdev);
2259	struct dma_chan *chan, *_chan;
2260
2261	/* bring back DMA controller */
2262	clk_prepare_enable(atdma->clk);
2263	dma_writel(atdma, EN, AT_DMA_ENABLE);
2264
2265	/* clear any pending interrupt */
2266	while (dma_readl(atdma, EBCISR))
2267		cpu_relax();
2268
2269	/* restore saved data */
2270	dma_writel(atdma, EBCIER, atdma->save_imr);
2271	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2272			device_node) {
2273		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2274
2275		channel_writel(atchan, CFG, atchan->save_cfg);
2276		if (atc_chan_is_cyclic(atchan))
2277			atc_resume_cyclic(atchan);
2278	}
2279	return 0;
2280}
2281
2282static const struct dev_pm_ops at_dma_dev_pm_ops = {
2283	.prepare = at_dma_prepare,
2284	.suspend_noirq = at_dma_suspend_noirq,
2285	.resume_noirq = at_dma_resume_noirq,
2286};
2287
2288static struct platform_driver at_dma_driver = {
2289	.remove		= at_dma_remove,
2290	.shutdown	= at_dma_shutdown,
2291	.id_table	= atdma_devtypes,
2292	.driver = {
2293		.name	= "at_hdmac",
2294		.pm	= &at_dma_dev_pm_ops,
2295		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
2296	},
2297};
2298
2299static int __init at_dma_init(void)
2300{
2301	return platform_driver_probe(&at_dma_driver, at_dma_probe);
2302}
2303subsys_initcall(at_dma_init);
2304
2305static void __exit at_dma_exit(void)
2306{
2307	platform_driver_unregister(&at_dma_driver);
2308}
2309module_exit(at_dma_exit);
2310
2311MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2312MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2313MODULE_LICENSE("GPL");
2314MODULE_ALIAS("platform:at_hdmac");