Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * processor_idle - idle state submodule to the ACPI processor driver
   4 *
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
   8 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   9 *  			- Added processor hotplug support
  10 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  11 *  			- Added support for C3 on SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  12 */
  13#define pr_fmt(fmt) "ACPI: " fmt
  14
  15#include <linux/module.h>
  16#include <linux/acpi.h>
  17#include <linux/dmi.h>
  18#include <linux/sched.h>       /* need_resched() */
  19#include <linux/tick.h>
  20#include <linux/cpuidle.h>
  21#include <linux/cpu.h>
  22#include <acpi/processor.h>
  23
  24/*
  25 * Include the apic definitions for x86 to have the APIC timer related defines
  26 * available also for UP (on SMP it gets magically included via linux/smp.h).
  27 * asm/acpi.h is not an option, as it would require more include magic. Also
  28 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  29 */
  30#ifdef CONFIG_X86
  31#include <asm/apic.h>
  32#endif
  33
  34#define ACPI_PROCESSOR_CLASS            "processor"
  35#define _COMPONENT              ACPI_PROCESSOR_COMPONENT
  36ACPI_MODULE_NAME("processor_idle");
  37
  38#define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
  39
  40static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  41module_param(max_cstate, uint, 0000);
  42static unsigned int nocst __read_mostly;
  43module_param(nocst, uint, 0000);
  44static int bm_check_disable __read_mostly;
  45module_param(bm_check_disable, uint, 0000);
  46
  47static unsigned int latency_factor __read_mostly = 2;
  48module_param(latency_factor, uint, 0644);
  49
  50static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
  51
  52struct cpuidle_driver acpi_idle_driver = {
  53	.name =		"acpi_idle",
  54	.owner =	THIS_MODULE,
  55};
  56
  57#ifdef CONFIG_ACPI_PROCESSOR_CSTATE
  58static
  59DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
  60
  61static int disabled_by_idle_boot_param(void)
  62{
  63	return boot_option_idle_override == IDLE_POLL ||
  64		boot_option_idle_override == IDLE_HALT;
  65}
  66
  67/*
  68 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  69 * For now disable this. Probably a bug somewhere else.
  70 *
  71 * To skip this limit, boot/load with a large max_cstate limit.
  72 */
  73static int set_max_cstate(const struct dmi_system_id *id)
  74{
  75	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  76		return 0;
  77
  78	pr_notice("%s detected - limiting to C%ld max_cstate."
  79		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
  80		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  81
  82	max_cstate = (long)id->driver_data;
  83
  84	return 0;
  85}
  86
  87static const struct dmi_system_id processor_power_dmi_table[] = {
  88	{ set_max_cstate, "Clevo 5600D", {
  89	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
  90	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
  91	 (void *)2},
  92	{ set_max_cstate, "Pavilion zv5000", {
  93	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
  94	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
  95	 (void *)1},
  96	{ set_max_cstate, "Asus L8400B", {
  97	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
  98	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
  99	 (void *)1},
 100	{},
 101};
 102
 103
 104/*
 105 * Callers should disable interrupts before the call and enable
 106 * interrupts after return.
 107 */
 108static void __cpuidle acpi_safe_halt(void)
 109{
 110	if (!tif_need_resched()) {
 111		safe_halt();
 112		local_irq_disable();
 113	}
 114}
 115
 116#ifdef ARCH_APICTIMER_STOPS_ON_C3
 117
 118/*
 119 * Some BIOS implementations switch to C3 in the published C2 state.
 120 * This seems to be a common problem on AMD boxen, but other vendors
 121 * are affected too. We pick the most conservative approach: we assume
 122 * that the local APIC stops in both C2 and C3.
 123 */
 124static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 125				   struct acpi_processor_cx *cx)
 126{
 127	struct acpi_processor_power *pwr = &pr->power;
 128	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 129
 130	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 131		return;
 132
 133	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
 134		type = ACPI_STATE_C1;
 135
 136	/*
 137	 * Check, if one of the previous states already marked the lapic
 138	 * unstable
 139	 */
 140	if (pwr->timer_broadcast_on_state < state)
 141		return;
 142
 143	if (cx->type >= type)
 144		pr->power.timer_broadcast_on_state = state;
 145}
 146
 147static void __lapic_timer_propagate_broadcast(void *arg)
 148{
 149	struct acpi_processor *pr = (struct acpi_processor *) arg;
 150
 151	if (pr->power.timer_broadcast_on_state < INT_MAX)
 152		tick_broadcast_enable();
 153	else
 154		tick_broadcast_disable();
 155}
 156
 157static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 158{
 159	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 160				 (void *)pr, 1);
 161}
 162
 163/* Power(C) State timer broadcast control */
 164static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 165				       struct acpi_processor_cx *cx,
 166				       int broadcast)
 167{
 168	int state = cx - pr->power.states;
 169
 170	if (state >= pr->power.timer_broadcast_on_state) {
 171		if (broadcast)
 172			tick_broadcast_enter();
 173		else
 174			tick_broadcast_exit();
 175	}
 176}
 177
 178#else
 179
 180static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 181				   struct acpi_processor_cx *cstate) { }
 182static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 183static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 184				       struct acpi_processor_cx *cx,
 185				       int broadcast)
 186{
 187}
 188
 189#endif
 190
 191#if defined(CONFIG_X86)
 192static void tsc_check_state(int state)
 193{
 194	switch (boot_cpu_data.x86_vendor) {
 195	case X86_VENDOR_HYGON:
 196	case X86_VENDOR_AMD:
 197	case X86_VENDOR_INTEL:
 198	case X86_VENDOR_CENTAUR:
 199	case X86_VENDOR_ZHAOXIN:
 200		/*
 201		 * AMD Fam10h TSC will tick in all
 202		 * C/P/S0/S1 states when this bit is set.
 203		 */
 204		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 205			return;
 206
 207		/*FALL THROUGH*/
 208	default:
 209		/* TSC could halt in idle, so notify users */
 210		if (state > ACPI_STATE_C1)
 211			mark_tsc_unstable("TSC halts in idle");
 212	}
 213}
 214#else
 215static void tsc_check_state(int state) { return; }
 216#endif
 217
 218static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 219{
 220
 221	if (!pr->pblk)
 222		return -ENODEV;
 223
 224	/* if info is obtained from pblk/fadt, type equals state */
 225	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 226	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 227
 228#ifndef CONFIG_HOTPLUG_CPU
 229	/*
 230	 * Check for P_LVL2_UP flag before entering C2 and above on
 231	 * an SMP system.
 232	 */
 233	if ((num_online_cpus() > 1) &&
 234	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 235		return -ENODEV;
 236#endif
 237
 238	/* determine C2 and C3 address from pblk */
 239	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 240	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 241
 242	/* determine latencies from FADT */
 243	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
 244	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
 245
 246	/*
 247	 * FADT specified C2 latency must be less than or equal to
 248	 * 100 microseconds.
 249	 */
 250	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 251		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 252			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
 253		/* invalidate C2 */
 254		pr->power.states[ACPI_STATE_C2].address = 0;
 255	}
 256
 257	/*
 258	 * FADT supplied C3 latency must be less than or equal to
 259	 * 1000 microseconds.
 260	 */
 261	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 262		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 263			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
 264		/* invalidate C3 */
 265		pr->power.states[ACPI_STATE_C3].address = 0;
 266	}
 267
 268	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 269			  "lvl2[0x%08x] lvl3[0x%08x]\n",
 270			  pr->power.states[ACPI_STATE_C2].address,
 271			  pr->power.states[ACPI_STATE_C3].address));
 272
 273	snprintf(pr->power.states[ACPI_STATE_C2].desc,
 274			 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
 275			 pr->power.states[ACPI_STATE_C2].address);
 276	snprintf(pr->power.states[ACPI_STATE_C3].desc,
 277			 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
 278			 pr->power.states[ACPI_STATE_C3].address);
 279
 280	return 0;
 281}
 282
 283static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 284{
 285	if (!pr->power.states[ACPI_STATE_C1].valid) {
 286		/* set the first C-State to C1 */
 287		/* all processors need to support C1 */
 288		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 289		pr->power.states[ACPI_STATE_C1].valid = 1;
 290		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 291
 292		snprintf(pr->power.states[ACPI_STATE_C1].desc,
 293			 ACPI_CX_DESC_LEN, "ACPI HLT");
 294	}
 295	/* the C0 state only exists as a filler in our array */
 296	pr->power.states[ACPI_STATE_C0].valid = 1;
 297	return 0;
 298}
 299
 300static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 301{
 302	acpi_status status;
 303	u64 count;
 304	int current_count;
 305	int i, ret = 0;
 306	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 307	union acpi_object *cst;
 308
 309	if (nocst)
 310		return -ENODEV;
 311
 312	current_count = 0;
 313
 314	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
 315	if (ACPI_FAILURE(status)) {
 316		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
 317		return -ENODEV;
 318	}
 319
 320	cst = buffer.pointer;
 321
 322	/* There must be at least 2 elements */
 323	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
 324		pr_err("not enough elements in _CST\n");
 325		ret = -EFAULT;
 326		goto end;
 327	}
 328
 329	count = cst->package.elements[0].integer.value;
 330
 331	/* Validate number of power states. */
 332	if (count < 1 || count != cst->package.count - 1) {
 333		pr_err("count given by _CST is not valid\n");
 334		ret = -EFAULT;
 335		goto end;
 336	}
 337
 338	/* Tell driver that at least _CST is supported. */
 339	pr->flags.has_cst = 1;
 340
 341	for (i = 1; i <= count; i++) {
 342		union acpi_object *element;
 343		union acpi_object *obj;
 344		struct acpi_power_register *reg;
 345		struct acpi_processor_cx cx;
 346
 347		memset(&cx, 0, sizeof(cx));
 348
 349		element = &(cst->package.elements[i]);
 350		if (element->type != ACPI_TYPE_PACKAGE)
 351			continue;
 352
 353		if (element->package.count != 4)
 354			continue;
 355
 356		obj = &(element->package.elements[0]);
 357
 358		if (obj->type != ACPI_TYPE_BUFFER)
 359			continue;
 360
 361		reg = (struct acpi_power_register *)obj->buffer.pointer;
 362
 363		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 364		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
 365			continue;
 366
 367		/* There should be an easy way to extract an integer... */
 368		obj = &(element->package.elements[1]);
 369		if (obj->type != ACPI_TYPE_INTEGER)
 370			continue;
 371
 372		cx.type = obj->integer.value;
 373		/*
 374		 * Some buggy BIOSes won't list C1 in _CST -
 375		 * Let acpi_processor_get_power_info_default() handle them later
 376		 */
 377		if (i == 1 && cx.type != ACPI_STATE_C1)
 378			current_count++;
 379
 380		cx.address = reg->address;
 381		cx.index = current_count + 1;
 382
 383		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
 384		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
 385			if (acpi_processor_ffh_cstate_probe
 386					(pr->id, &cx, reg) == 0) {
 387				cx.entry_method = ACPI_CSTATE_FFH;
 388			} else if (cx.type == ACPI_STATE_C1) {
 389				/*
 390				 * C1 is a special case where FIXED_HARDWARE
 391				 * can be handled in non-MWAIT way as well.
 392				 * In that case, save this _CST entry info.
 393				 * Otherwise, ignore this info and continue.
 394				 */
 395				cx.entry_method = ACPI_CSTATE_HALT;
 396				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 397			} else {
 398				continue;
 399			}
 400			if (cx.type == ACPI_STATE_C1 &&
 401			    (boot_option_idle_override == IDLE_NOMWAIT)) {
 402				/*
 403				 * In most cases the C1 space_id obtained from
 404				 * _CST object is FIXED_HARDWARE access mode.
 405				 * But when the option of idle=halt is added,
 406				 * the entry_method type should be changed from
 407				 * CSTATE_FFH to CSTATE_HALT.
 408				 * When the option of idle=nomwait is added,
 409				 * the C1 entry_method type should be
 410				 * CSTATE_HALT.
 411				 */
 412				cx.entry_method = ACPI_CSTATE_HALT;
 413				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 414			}
 415		} else {
 416			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
 417				 cx.address);
 418		}
 419
 420		if (cx.type == ACPI_STATE_C1) {
 421			cx.valid = 1;
 422		}
 423
 424		obj = &(element->package.elements[2]);
 425		if (obj->type != ACPI_TYPE_INTEGER)
 426			continue;
 427
 428		cx.latency = obj->integer.value;
 429
 430		obj = &(element->package.elements[3]);
 431		if (obj->type != ACPI_TYPE_INTEGER)
 432			continue;
 433
 434		current_count++;
 435		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
 436
 437		/*
 438		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
 439		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
 440		 */
 441		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
 442			pr_warn("Limiting number of power states to max (%d)\n",
 443				ACPI_PROCESSOR_MAX_POWER);
 444			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
 445			break;
 446		}
 447	}
 448
 449	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
 450			  current_count));
 451
 452	/* Validate number of power states discovered */
 453	if (current_count < 2)
 454		ret = -EFAULT;
 455
 456      end:
 457	kfree(buffer.pointer);
 458
 459	return ret;
 460}
 461
 462static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 463					   struct acpi_processor_cx *cx)
 464{
 465	static int bm_check_flag = -1;
 466	static int bm_control_flag = -1;
 467
 468
 469	if (!cx->address)
 470		return;
 471
 472	/*
 473	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 474	 * DMA transfers are used by any ISA device to avoid livelock.
 475	 * Note that we could disable Type-F DMA (as recommended by
 476	 * the erratum), but this is known to disrupt certain ISA
 477	 * devices thus we take the conservative approach.
 478	 */
 479	else if (errata.piix4.fdma) {
 480		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 481				  "C3 not supported on PIIX4 with Type-F DMA\n"));
 482		return;
 483	}
 484
 485	/* All the logic here assumes flags.bm_check is same across all CPUs */
 486	if (bm_check_flag == -1) {
 487		/* Determine whether bm_check is needed based on CPU  */
 488		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 489		bm_check_flag = pr->flags.bm_check;
 490		bm_control_flag = pr->flags.bm_control;
 491	} else {
 492		pr->flags.bm_check = bm_check_flag;
 493		pr->flags.bm_control = bm_control_flag;
 494	}
 495
 496	if (pr->flags.bm_check) {
 497		if (!pr->flags.bm_control) {
 498			if (pr->flags.has_cst != 1) {
 499				/* bus mastering control is necessary */
 500				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 501					"C3 support requires BM control\n"));
 502				return;
 503			} else {
 504				/* Here we enter C3 without bus mastering */
 505				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 506					"C3 support without BM control\n"));
 507			}
 508		}
 509	} else {
 510		/*
 511		 * WBINVD should be set in fadt, for C3 state to be
 512		 * supported on when bm_check is not required.
 513		 */
 514		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 515			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 516					  "Cache invalidation should work properly"
 517					  " for C3 to be enabled on SMP systems\n"));
 518			return;
 519		}
 520	}
 521
 522	/*
 523	 * Otherwise we've met all of our C3 requirements.
 524	 * Normalize the C3 latency to expidite policy.  Enable
 525	 * checking of bus mastering status (bm_check) so we can
 526	 * use this in our C3 policy
 527	 */
 528	cx->valid = 1;
 529
 530	/*
 531	 * On older chipsets, BM_RLD needs to be set
 532	 * in order for Bus Master activity to wake the
 533	 * system from C3.  Newer chipsets handle DMA
 534	 * during C3 automatically and BM_RLD is a NOP.
 535	 * In either case, the proper way to
 536	 * handle BM_RLD is to set it and leave it set.
 537	 */
 538	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 539
 540	return;
 541}
 542
 543static int acpi_processor_power_verify(struct acpi_processor *pr)
 544{
 545	unsigned int i;
 546	unsigned int working = 0;
 547
 548	pr->power.timer_broadcast_on_state = INT_MAX;
 549
 550	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 551		struct acpi_processor_cx *cx = &pr->power.states[i];
 552
 553		switch (cx->type) {
 554		case ACPI_STATE_C1:
 555			cx->valid = 1;
 556			break;
 557
 558		case ACPI_STATE_C2:
 559			if (!cx->address)
 560				break;
 561			cx->valid = 1;
 562			break;
 563
 564		case ACPI_STATE_C3:
 565			acpi_processor_power_verify_c3(pr, cx);
 566			break;
 567		}
 568		if (!cx->valid)
 569			continue;
 570
 571		lapic_timer_check_state(i, pr, cx);
 572		tsc_check_state(cx->type);
 573		working++;
 574	}
 575
 576	lapic_timer_propagate_broadcast(pr);
 577
 578	return (working);
 579}
 580
 581static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 582{
 583	unsigned int i;
 584	int result;
 585
 586
 587	/* NOTE: the idle thread may not be running while calling
 588	 * this function */
 589
 590	/* Zero initialize all the C-states info. */
 591	memset(pr->power.states, 0, sizeof(pr->power.states));
 592
 593	result = acpi_processor_get_power_info_cst(pr);
 594	if (result == -ENODEV)
 595		result = acpi_processor_get_power_info_fadt(pr);
 596
 597	if (result)
 598		return result;
 599
 600	acpi_processor_get_power_info_default(pr);
 601
 602	pr->power.count = acpi_processor_power_verify(pr);
 603
 604	/*
 605	 * if one state of type C2 or C3 is available, mark this
 606	 * CPU as being "idle manageable"
 607	 */
 608	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 609		if (pr->power.states[i].valid) {
 610			pr->power.count = i;
 611			if (pr->power.states[i].type >= ACPI_STATE_C2)
 612				pr->flags.power = 1;
 613		}
 614	}
 615
 616	return 0;
 617}
 618
 619/**
 620 * acpi_idle_bm_check - checks if bus master activity was detected
 621 */
 622static int acpi_idle_bm_check(void)
 623{
 624	u32 bm_status = 0;
 625
 626	if (bm_check_disable)
 627		return 0;
 628
 629	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 630	if (bm_status)
 631		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 632	/*
 633	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 634	 * the true state of bus mastering activity; forcing us to
 635	 * manually check the BMIDEA bit of each IDE channel.
 636	 */
 637	else if (errata.piix4.bmisx) {
 638		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 639		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 640			bm_status = 1;
 641	}
 642	return bm_status;
 643}
 644
 645/**
 646 * acpi_idle_do_entry - enter idle state using the appropriate method
 647 * @cx: cstate data
 648 *
 649 * Caller disables interrupt before call and enables interrupt after return.
 650 */
 651static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
 652{
 653	if (cx->entry_method == ACPI_CSTATE_FFH) {
 654		/* Call into architectural FFH based C-state */
 655		acpi_processor_ffh_cstate_enter(cx);
 656	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
 657		acpi_safe_halt();
 658	} else {
 659		/* IO port based C-state */
 660		inb(cx->address);
 661		/* Dummy wait op - must do something useless after P_LVL2 read
 662		   because chipsets cannot guarantee that STPCLK# signal
 663		   gets asserted in time to freeze execution properly. */
 664		inl(acpi_gbl_FADT.xpm_timer_block.address);
 665	}
 666}
 667
 668/**
 669 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
 670 * @dev: the target CPU
 671 * @index: the index of suggested state
 672 */
 673static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
 674{
 675	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 676
 677	ACPI_FLUSH_CPU_CACHE();
 678
 679	while (1) {
 680
 681		if (cx->entry_method == ACPI_CSTATE_HALT)
 682			safe_halt();
 683		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
 684			inb(cx->address);
 685			/* See comment in acpi_idle_do_entry() */
 686			inl(acpi_gbl_FADT.xpm_timer_block.address);
 687		} else
 688			return -ENODEV;
 689	}
 690
 691	/* Never reached */
 692	return 0;
 693}
 694
 695static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
 696{
 697	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
 698		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
 699}
 700
 701static int c3_cpu_count;
 702static DEFINE_RAW_SPINLOCK(c3_lock);
 703
 704/**
 705 * acpi_idle_enter_bm - enters C3 with proper BM handling
 706 * @pr: Target processor
 707 * @cx: Target state context
 708 * @timer_bc: Whether or not to change timer mode to broadcast
 709 */
 710static void acpi_idle_enter_bm(struct acpi_processor *pr,
 711			       struct acpi_processor_cx *cx, bool timer_bc)
 712{
 713	acpi_unlazy_tlb(smp_processor_id());
 714
 715	/*
 716	 * Must be done before busmaster disable as we might need to
 717	 * access HPET !
 718	 */
 719	if (timer_bc)
 720		lapic_timer_state_broadcast(pr, cx, 1);
 721
 722	/*
 723	 * disable bus master
 724	 * bm_check implies we need ARB_DIS
 725	 * bm_control implies whether we can do ARB_DIS
 726	 *
 727	 * That leaves a case where bm_check is set and bm_control is
 728	 * not set. In that case we cannot do much, we enter C3
 729	 * without doing anything.
 730	 */
 731	if (pr->flags.bm_control) {
 732		raw_spin_lock(&c3_lock);
 733		c3_cpu_count++;
 734		/* Disable bus master arbitration when all CPUs are in C3 */
 735		if (c3_cpu_count == num_online_cpus())
 736			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 737		raw_spin_unlock(&c3_lock);
 738	}
 739
 740	acpi_idle_do_entry(cx);
 741
 742	/* Re-enable bus master arbitration */
 743	if (pr->flags.bm_control) {
 744		raw_spin_lock(&c3_lock);
 745		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 746		c3_cpu_count--;
 747		raw_spin_unlock(&c3_lock);
 748	}
 749
 750	if (timer_bc)
 751		lapic_timer_state_broadcast(pr, cx, 0);
 752}
 753
 754static int acpi_idle_enter(struct cpuidle_device *dev,
 755			   struct cpuidle_driver *drv, int index)
 756{
 757	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 758	struct acpi_processor *pr;
 759
 760	pr = __this_cpu_read(processors);
 761	if (unlikely(!pr))
 762		return -EINVAL;
 763
 764	if (cx->type != ACPI_STATE_C1) {
 765		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
 766			index = ACPI_IDLE_STATE_START;
 767			cx = per_cpu(acpi_cstate[index], dev->cpu);
 768		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
 769			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
 770				acpi_idle_enter_bm(pr, cx, true);
 771				return index;
 772			} else if (drv->safe_state_index >= 0) {
 773				index = drv->safe_state_index;
 774				cx = per_cpu(acpi_cstate[index], dev->cpu);
 775			} else {
 776				acpi_safe_halt();
 777				return -EBUSY;
 778			}
 779		}
 780	}
 781
 782	lapic_timer_state_broadcast(pr, cx, 1);
 783
 784	if (cx->type == ACPI_STATE_C3)
 785		ACPI_FLUSH_CPU_CACHE();
 786
 787	acpi_idle_do_entry(cx);
 788
 789	lapic_timer_state_broadcast(pr, cx, 0);
 790
 791	return index;
 792}
 793
 794static void acpi_idle_enter_s2idle(struct cpuidle_device *dev,
 795				   struct cpuidle_driver *drv, int index)
 796{
 797	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 798
 799	if (cx->type == ACPI_STATE_C3) {
 800		struct acpi_processor *pr = __this_cpu_read(processors);
 801
 802		if (unlikely(!pr))
 803			return;
 804
 805		if (pr->flags.bm_check) {
 806			acpi_idle_enter_bm(pr, cx, false);
 807			return;
 808		} else {
 809			ACPI_FLUSH_CPU_CACHE();
 810		}
 811	}
 812	acpi_idle_do_entry(cx);
 813}
 814
 815static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 816					   struct cpuidle_device *dev)
 817{
 818	int i, count = ACPI_IDLE_STATE_START;
 819	struct acpi_processor_cx *cx;
 820
 821	if (max_cstate == 0)
 822		max_cstate = 1;
 823
 824	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 825		cx = &pr->power.states[i];
 826
 827		if (!cx->valid)
 828			continue;
 829
 830		per_cpu(acpi_cstate[count], dev->cpu) = cx;
 831
 832		count++;
 833		if (count == CPUIDLE_STATE_MAX)
 834			break;
 835	}
 836
 837	if (!count)
 838		return -EINVAL;
 839
 840	return 0;
 841}
 842
 843static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 844{
 845	int i, count;
 846	struct acpi_processor_cx *cx;
 847	struct cpuidle_state *state;
 848	struct cpuidle_driver *drv = &acpi_idle_driver;
 849
 850	if (max_cstate == 0)
 851		max_cstate = 1;
 852
 853	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
 854		cpuidle_poll_state_init(drv);
 855		count = 1;
 856	} else {
 857		count = 0;
 858	}
 859
 860	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 861		cx = &pr->power.states[i];
 862
 863		if (!cx->valid)
 864			continue;
 865
 866		state = &drv->states[count];
 867		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
 868		strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
 869		state->exit_latency = cx->latency;
 870		state->target_residency = cx->latency * latency_factor;
 871		state->enter = acpi_idle_enter;
 872
 873		state->flags = 0;
 874		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
 875			state->enter_dead = acpi_idle_play_dead;
 876			drv->safe_state_index = count;
 877		}
 878		/*
 879		 * Halt-induced C1 is not good for ->enter_s2idle, because it
 880		 * re-enables interrupts on exit.  Moreover, C1 is generally not
 881		 * particularly interesting from the suspend-to-idle angle, so
 882		 * avoid C1 and the situations in which we may need to fall back
 883		 * to it altogether.
 884		 */
 885		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
 886			state->enter_s2idle = acpi_idle_enter_s2idle;
 887
 888		count++;
 889		if (count == CPUIDLE_STATE_MAX)
 890			break;
 891	}
 892
 893	drv->state_count = count;
 894
 895	if (!count)
 896		return -EINVAL;
 897
 898	return 0;
 899}
 900
 901static inline void acpi_processor_cstate_first_run_checks(void)
 902{
 903	acpi_status status;
 904	static int first_run;
 905
 906	if (first_run)
 907		return;
 908	dmi_check_system(processor_power_dmi_table);
 909	max_cstate = acpi_processor_cstate_check(max_cstate);
 910	if (max_cstate < ACPI_C_STATES_MAX)
 911		pr_notice("ACPI: processor limited to max C-state %d\n",
 912			  max_cstate);
 913	first_run++;
 914
 915	if (acpi_gbl_FADT.cst_control && !nocst) {
 916		status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
 917					    acpi_gbl_FADT.cst_control, 8);
 918		if (ACPI_FAILURE(status))
 919			ACPI_EXCEPTION((AE_INFO, status,
 920					"Notifying BIOS of _CST ability failed"));
 921	}
 922}
 923#else
 924
 925static inline int disabled_by_idle_boot_param(void) { return 0; }
 926static inline void acpi_processor_cstate_first_run_checks(void) { }
 927static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 928{
 929	return -ENODEV;
 930}
 931
 932static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 933					   struct cpuidle_device *dev)
 934{
 935	return -EINVAL;
 936}
 937
 938static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 939{
 940	return -EINVAL;
 941}
 942
 943#endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
 944
 945struct acpi_lpi_states_array {
 946	unsigned int size;
 947	unsigned int composite_states_size;
 948	struct acpi_lpi_state *entries;
 949	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
 950};
 951
 952static int obj_get_integer(union acpi_object *obj, u32 *value)
 953{
 954	if (obj->type != ACPI_TYPE_INTEGER)
 955		return -EINVAL;
 956
 957	*value = obj->integer.value;
 958	return 0;
 959}
 960
 961static int acpi_processor_evaluate_lpi(acpi_handle handle,
 962				       struct acpi_lpi_states_array *info)
 963{
 964	acpi_status status;
 965	int ret = 0;
 966	int pkg_count, state_idx = 1, loop;
 967	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 968	union acpi_object *lpi_data;
 969	struct acpi_lpi_state *lpi_state;
 970
 971	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
 972	if (ACPI_FAILURE(status)) {
 973		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
 974		return -ENODEV;
 975	}
 976
 977	lpi_data = buffer.pointer;
 978
 979	/* There must be at least 4 elements = 3 elements + 1 package */
 980	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
 981	    lpi_data->package.count < 4) {
 982		pr_debug("not enough elements in _LPI\n");
 983		ret = -ENODATA;
 984		goto end;
 985	}
 986
 987	pkg_count = lpi_data->package.elements[2].integer.value;
 988
 989	/* Validate number of power states. */
 990	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
 991		pr_debug("count given by _LPI is not valid\n");
 992		ret = -ENODATA;
 993		goto end;
 994	}
 995
 996	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
 997	if (!lpi_state) {
 998		ret = -ENOMEM;
 999		goto end;
1000	}
1001
1002	info->size = pkg_count;
1003	info->entries = lpi_state;
1004
1005	/* LPI States start at index 3 */
1006	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
1007		union acpi_object *element, *pkg_elem, *obj;
1008
1009		element = &lpi_data->package.elements[loop];
1010		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1011			continue;
1012
1013		pkg_elem = element->package.elements;
1014
1015		obj = pkg_elem + 6;
1016		if (obj->type == ACPI_TYPE_BUFFER) {
1017			struct acpi_power_register *reg;
1018
1019			reg = (struct acpi_power_register *)obj->buffer.pointer;
1020			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1021			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1022				continue;
1023
1024			lpi_state->address = reg->address;
1025			lpi_state->entry_method =
1026				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1027				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1028		} else if (obj->type == ACPI_TYPE_INTEGER) {
1029			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1030			lpi_state->address = obj->integer.value;
1031		} else {
1032			continue;
1033		}
1034
1035		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1036
1037		obj = pkg_elem + 9;
1038		if (obj->type == ACPI_TYPE_STRING)
1039			strlcpy(lpi_state->desc, obj->string.pointer,
1040				ACPI_CX_DESC_LEN);
1041
1042		lpi_state->index = state_idx;
1043		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1044			pr_debug("No min. residency found, assuming 10 us\n");
1045			lpi_state->min_residency = 10;
1046		}
1047
1048		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1049			pr_debug("No wakeup residency found, assuming 10 us\n");
1050			lpi_state->wake_latency = 10;
1051		}
1052
1053		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1054			lpi_state->flags = 0;
1055
1056		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1057			lpi_state->arch_flags = 0;
1058
1059		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1060			lpi_state->res_cnt_freq = 1;
1061
1062		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1063			lpi_state->enable_parent_state = 0;
1064	}
1065
1066	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1067end:
1068	kfree(buffer.pointer);
1069	return ret;
1070}
1071
1072/*
1073 * flat_state_cnt - the number of composite LPI states after the process of flattening
1074 */
1075static int flat_state_cnt;
1076
1077/**
1078 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1079 *
1080 * @local: local LPI state
1081 * @parent: parent LPI state
1082 * @result: composite LPI state
1083 */
1084static bool combine_lpi_states(struct acpi_lpi_state *local,
1085			       struct acpi_lpi_state *parent,
1086			       struct acpi_lpi_state *result)
1087{
1088	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1089		if (!parent->address) /* 0 means autopromotable */
1090			return false;
1091		result->address = local->address + parent->address;
1092	} else {
1093		result->address = parent->address;
1094	}
1095
1096	result->min_residency = max(local->min_residency, parent->min_residency);
1097	result->wake_latency = local->wake_latency + parent->wake_latency;
1098	result->enable_parent_state = parent->enable_parent_state;
1099	result->entry_method = local->entry_method;
1100
1101	result->flags = parent->flags;
1102	result->arch_flags = parent->arch_flags;
1103	result->index = parent->index;
1104
1105	strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1106	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1107	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1108	return true;
1109}
1110
1111#define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1112
1113static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1114				  struct acpi_lpi_state *t)
1115{
1116	curr_level->composite_states[curr_level->composite_states_size++] = t;
1117}
1118
1119static int flatten_lpi_states(struct acpi_processor *pr,
1120			      struct acpi_lpi_states_array *curr_level,
1121			      struct acpi_lpi_states_array *prev_level)
1122{
1123	int i, j, state_count = curr_level->size;
1124	struct acpi_lpi_state *p, *t = curr_level->entries;
1125
1126	curr_level->composite_states_size = 0;
1127	for (j = 0; j < state_count; j++, t++) {
1128		struct acpi_lpi_state *flpi;
1129
1130		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1131			continue;
1132
1133		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1134			pr_warn("Limiting number of LPI states to max (%d)\n",
1135				ACPI_PROCESSOR_MAX_POWER);
1136			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1137			break;
1138		}
1139
1140		flpi = &pr->power.lpi_states[flat_state_cnt];
1141
1142		if (!prev_level) { /* leaf/processor node */
1143			memcpy(flpi, t, sizeof(*t));
1144			stash_composite_state(curr_level, flpi);
1145			flat_state_cnt++;
1146			continue;
1147		}
1148
1149		for (i = 0; i < prev_level->composite_states_size; i++) {
1150			p = prev_level->composite_states[i];
1151			if (t->index <= p->enable_parent_state &&
1152			    combine_lpi_states(p, t, flpi)) {
1153				stash_composite_state(curr_level, flpi);
1154				flat_state_cnt++;
1155				flpi++;
1156			}
1157		}
1158	}
1159
1160	kfree(curr_level->entries);
1161	return 0;
1162}
1163
1164static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1165{
1166	int ret, i;
1167	acpi_status status;
1168	acpi_handle handle = pr->handle, pr_ahandle;
1169	struct acpi_device *d = NULL;
1170	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1171
1172	if (!osc_pc_lpi_support_confirmed)
1173		return -EOPNOTSUPP;
1174
1175	if (!acpi_has_method(handle, "_LPI"))
1176		return -EINVAL;
1177
1178	flat_state_cnt = 0;
1179	prev = &info[0];
1180	curr = &info[1];
1181	handle = pr->handle;
1182	ret = acpi_processor_evaluate_lpi(handle, prev);
1183	if (ret)
1184		return ret;
1185	flatten_lpi_states(pr, prev, NULL);
1186
1187	status = acpi_get_parent(handle, &pr_ahandle);
1188	while (ACPI_SUCCESS(status)) {
1189		acpi_bus_get_device(pr_ahandle, &d);
1190		handle = pr_ahandle;
1191
1192		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1193			break;
1194
1195		/* can be optional ? */
1196		if (!acpi_has_method(handle, "_LPI"))
1197			break;
1198
1199		ret = acpi_processor_evaluate_lpi(handle, curr);
1200		if (ret)
1201			break;
1202
1203		/* flatten all the LPI states in this level of hierarchy */
1204		flatten_lpi_states(pr, curr, prev);
1205
1206		tmp = prev, prev = curr, curr = tmp;
1207
1208		status = acpi_get_parent(handle, &pr_ahandle);
1209	}
1210
1211	pr->power.count = flat_state_cnt;
1212	/* reset the index after flattening */
1213	for (i = 0; i < pr->power.count; i++)
1214		pr->power.lpi_states[i].index = i;
1215
1216	/* Tell driver that _LPI is supported. */
1217	pr->flags.has_lpi = 1;
1218	pr->flags.power = 1;
1219
1220	return 0;
1221}
1222
1223int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1224{
1225	return -ENODEV;
1226}
1227
1228int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1229{
1230	return -ENODEV;
1231}
1232
1233/**
1234 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1235 * @dev: the target CPU
1236 * @drv: cpuidle driver containing cpuidle state info
1237 * @index: index of target state
1238 *
1239 * Return: 0 for success or negative value for error
1240 */
1241static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1242			       struct cpuidle_driver *drv, int index)
1243{
1244	struct acpi_processor *pr;
1245	struct acpi_lpi_state *lpi;
1246
1247	pr = __this_cpu_read(processors);
1248
1249	if (unlikely(!pr))
1250		return -EINVAL;
1251
1252	lpi = &pr->power.lpi_states[index];
1253	if (lpi->entry_method == ACPI_CSTATE_FFH)
1254		return acpi_processor_ffh_lpi_enter(lpi);
1255
1256	return -EINVAL;
1257}
1258
1259static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1260{
1261	int i;
1262	struct acpi_lpi_state *lpi;
1263	struct cpuidle_state *state;
1264	struct cpuidle_driver *drv = &acpi_idle_driver;
1265
1266	if (!pr->flags.has_lpi)
1267		return -EOPNOTSUPP;
1268
1269	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1270		lpi = &pr->power.lpi_states[i];
1271
1272		state = &drv->states[i];
1273		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1274		strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1275		state->exit_latency = lpi->wake_latency;
1276		state->target_residency = lpi->min_residency;
1277		if (lpi->arch_flags)
1278			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1279		state->enter = acpi_idle_lpi_enter;
1280		drv->safe_state_index = i;
1281	}
1282
1283	drv->state_count = i;
1284
1285	return 0;
1286}
1287
1288/**
1289 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1290 * global state data i.e. idle routines
1291 *
1292 * @pr: the ACPI processor
1293 */
1294static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1295{
1296	int i;
1297	struct cpuidle_driver *drv = &acpi_idle_driver;
1298
1299	if (!pr->flags.power_setup_done || !pr->flags.power)
1300		return -EINVAL;
1301
1302	drv->safe_state_index = -1;
1303	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1304		drv->states[i].name[0] = '\0';
1305		drv->states[i].desc[0] = '\0';
1306	}
1307
1308	if (pr->flags.has_lpi)
1309		return acpi_processor_setup_lpi_states(pr);
1310
1311	return acpi_processor_setup_cstates(pr);
1312}
1313
1314/**
1315 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1316 * device i.e. per-cpu data
1317 *
1318 * @pr: the ACPI processor
1319 * @dev : the cpuidle device
1320 */
1321static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1322					    struct cpuidle_device *dev)
1323{
1324	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1325		return -EINVAL;
1326
1327	dev->cpu = pr->id;
1328	if (pr->flags.has_lpi)
1329		return acpi_processor_ffh_lpi_probe(pr->id);
1330
1331	return acpi_processor_setup_cpuidle_cx(pr, dev);
1332}
1333
1334static int acpi_processor_get_power_info(struct acpi_processor *pr)
1335{
1336	int ret;
1337
1338	ret = acpi_processor_get_lpi_info(pr);
1339	if (ret)
1340		ret = acpi_processor_get_cstate_info(pr);
1341
1342	return ret;
1343}
1344
1345int acpi_processor_hotplug(struct acpi_processor *pr)
1346{
1347	int ret = 0;
1348	struct cpuidle_device *dev;
1349
1350	if (disabled_by_idle_boot_param())
1351		return 0;
1352
1353	if (!pr->flags.power_setup_done)
1354		return -ENODEV;
1355
1356	dev = per_cpu(acpi_cpuidle_device, pr->id);
1357	cpuidle_pause_and_lock();
1358	cpuidle_disable_device(dev);
1359	ret = acpi_processor_get_power_info(pr);
1360	if (!ret && pr->flags.power) {
1361		acpi_processor_setup_cpuidle_dev(pr, dev);
1362		ret = cpuidle_enable_device(dev);
1363	}
1364	cpuidle_resume_and_unlock();
1365
1366	return ret;
1367}
1368
1369int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1370{
1371	int cpu;
1372	struct acpi_processor *_pr;
1373	struct cpuidle_device *dev;
1374
1375	if (disabled_by_idle_boot_param())
1376		return 0;
1377
1378	if (!pr->flags.power_setup_done)
1379		return -ENODEV;
1380
1381	/*
1382	 * FIXME:  Design the ACPI notification to make it once per
1383	 * system instead of once per-cpu.  This condition is a hack
1384	 * to make the code that updates C-States be called once.
1385	 */
1386
1387	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1388
1389		/* Protect against cpu-hotplug */
1390		get_online_cpus();
1391		cpuidle_pause_and_lock();
1392
1393		/* Disable all cpuidle devices */
1394		for_each_online_cpu(cpu) {
1395			_pr = per_cpu(processors, cpu);
1396			if (!_pr || !_pr->flags.power_setup_done)
1397				continue;
1398			dev = per_cpu(acpi_cpuidle_device, cpu);
1399			cpuidle_disable_device(dev);
1400		}
1401
1402		/* Populate Updated C-state information */
1403		acpi_processor_get_power_info(pr);
1404		acpi_processor_setup_cpuidle_states(pr);
1405
1406		/* Enable all cpuidle devices */
1407		for_each_online_cpu(cpu) {
1408			_pr = per_cpu(processors, cpu);
1409			if (!_pr || !_pr->flags.power_setup_done)
1410				continue;
1411			acpi_processor_get_power_info(_pr);
1412			if (_pr->flags.power) {
1413				dev = per_cpu(acpi_cpuidle_device, cpu);
1414				acpi_processor_setup_cpuidle_dev(_pr, dev);
1415				cpuidle_enable_device(dev);
1416			}
1417		}
1418		cpuidle_resume_and_unlock();
1419		put_online_cpus();
1420	}
1421
1422	return 0;
1423}
1424
1425static int acpi_processor_registered;
1426
1427int acpi_processor_power_init(struct acpi_processor *pr)
1428{
1429	int retval;
1430	struct cpuidle_device *dev;
1431
1432	if (disabled_by_idle_boot_param())
1433		return 0;
1434
1435	acpi_processor_cstate_first_run_checks();
1436
1437	if (!acpi_processor_get_power_info(pr))
1438		pr->flags.power_setup_done = 1;
1439
1440	/*
1441	 * Install the idle handler if processor power management is supported.
1442	 * Note that we use previously set idle handler will be used on
1443	 * platforms that only support C1.
1444	 */
1445	if (pr->flags.power) {
1446		/* Register acpi_idle_driver if not already registered */
1447		if (!acpi_processor_registered) {
1448			acpi_processor_setup_cpuidle_states(pr);
1449			retval = cpuidle_register_driver(&acpi_idle_driver);
1450			if (retval)
1451				return retval;
1452			pr_debug("%s registered with cpuidle\n",
1453				 acpi_idle_driver.name);
1454		}
1455
1456		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1457		if (!dev)
1458			return -ENOMEM;
1459		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1460
1461		acpi_processor_setup_cpuidle_dev(pr, dev);
1462
1463		/* Register per-cpu cpuidle_device. Cpuidle driver
1464		 * must already be registered before registering device
1465		 */
1466		retval = cpuidle_register_device(dev);
1467		if (retval) {
1468			if (acpi_processor_registered == 0)
1469				cpuidle_unregister_driver(&acpi_idle_driver);
1470			return retval;
1471		}
1472		acpi_processor_registered++;
1473	}
1474	return 0;
1475}
1476
1477int acpi_processor_power_exit(struct acpi_processor *pr)
1478{
1479	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1480
1481	if (disabled_by_idle_boot_param())
1482		return 0;
1483
1484	if (pr->flags.power) {
1485		cpuidle_unregister_device(dev);
1486		acpi_processor_registered--;
1487		if (acpi_processor_registered == 0)
1488			cpuidle_unregister_driver(&acpi_idle_driver);
1489	}
1490
1491	pr->flags.power_setup_done = 0;
1492	return 0;
1493}
v4.10.11
 
   1/*
   2 * processor_idle - idle state submodule to the ACPI processor driver
   3 *
   4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   6 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
   7 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   8 *  			- Added processor hotplug support
   9 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10 *  			- Added support for C3 on SMP
  11 *
  12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13 *
  14 *  This program is free software; you can redistribute it and/or modify
  15 *  it under the terms of the GNU General Public License as published by
  16 *  the Free Software Foundation; either version 2 of the License, or (at
  17 *  your option) any later version.
  18 *
  19 *  This program is distributed in the hope that it will be useful, but
  20 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  21 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  22 *  General Public License for more details.
  23 *
  24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  25 */
  26#define pr_fmt(fmt) "ACPI: " fmt
  27
  28#include <linux/module.h>
  29#include <linux/acpi.h>
  30#include <linux/dmi.h>
  31#include <linux/sched.h>       /* need_resched() */
  32#include <linux/tick.h>
  33#include <linux/cpuidle.h>
  34#include <linux/cpu.h>
  35#include <acpi/processor.h>
  36
  37/*
  38 * Include the apic definitions for x86 to have the APIC timer related defines
  39 * available also for UP (on SMP it gets magically included via linux/smp.h).
  40 * asm/acpi.h is not an option, as it would require more include magic. Also
  41 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  42 */
  43#ifdef CONFIG_X86
  44#include <asm/apic.h>
  45#endif
  46
  47#define ACPI_PROCESSOR_CLASS            "processor"
  48#define _COMPONENT              ACPI_PROCESSOR_COMPONENT
  49ACPI_MODULE_NAME("processor_idle");
  50
 
 
  51static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  52module_param(max_cstate, uint, 0000);
  53static unsigned int nocst __read_mostly;
  54module_param(nocst, uint, 0000);
  55static int bm_check_disable __read_mostly;
  56module_param(bm_check_disable, uint, 0000);
  57
  58static unsigned int latency_factor __read_mostly = 2;
  59module_param(latency_factor, uint, 0644);
  60
  61static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
  62
  63struct cpuidle_driver acpi_idle_driver = {
  64	.name =		"acpi_idle",
  65	.owner =	THIS_MODULE,
  66};
  67
  68#ifdef CONFIG_ACPI_PROCESSOR_CSTATE
  69static
  70DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
  71
  72static int disabled_by_idle_boot_param(void)
  73{
  74	return boot_option_idle_override == IDLE_POLL ||
  75		boot_option_idle_override == IDLE_HALT;
  76}
  77
  78/*
  79 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  80 * For now disable this. Probably a bug somewhere else.
  81 *
  82 * To skip this limit, boot/load with a large max_cstate limit.
  83 */
  84static int set_max_cstate(const struct dmi_system_id *id)
  85{
  86	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  87		return 0;
  88
  89	pr_notice("%s detected - limiting to C%ld max_cstate."
  90		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
  91		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  92
  93	max_cstate = (long)id->driver_data;
  94
  95	return 0;
  96}
  97
  98static const struct dmi_system_id processor_power_dmi_table[] = {
  99	{ set_max_cstate, "Clevo 5600D", {
 100	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
 101	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
 102	 (void *)2},
 103	{ set_max_cstate, "Pavilion zv5000", {
 104	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
 105	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
 106	 (void *)1},
 107	{ set_max_cstate, "Asus L8400B", {
 108	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
 109	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
 110	 (void *)1},
 111	{},
 112};
 113
 114
 115/*
 116 * Callers should disable interrupts before the call and enable
 117 * interrupts after return.
 118 */
 119static void __cpuidle acpi_safe_halt(void)
 120{
 121	if (!tif_need_resched()) {
 122		safe_halt();
 123		local_irq_disable();
 124	}
 125}
 126
 127#ifdef ARCH_APICTIMER_STOPS_ON_C3
 128
 129/*
 130 * Some BIOS implementations switch to C3 in the published C2 state.
 131 * This seems to be a common problem on AMD boxen, but other vendors
 132 * are affected too. We pick the most conservative approach: we assume
 133 * that the local APIC stops in both C2 and C3.
 134 */
 135static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 136				   struct acpi_processor_cx *cx)
 137{
 138	struct acpi_processor_power *pwr = &pr->power;
 139	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 140
 141	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 142		return;
 143
 144	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
 145		type = ACPI_STATE_C1;
 146
 147	/*
 148	 * Check, if one of the previous states already marked the lapic
 149	 * unstable
 150	 */
 151	if (pwr->timer_broadcast_on_state < state)
 152		return;
 153
 154	if (cx->type >= type)
 155		pr->power.timer_broadcast_on_state = state;
 156}
 157
 158static void __lapic_timer_propagate_broadcast(void *arg)
 159{
 160	struct acpi_processor *pr = (struct acpi_processor *) arg;
 161
 162	if (pr->power.timer_broadcast_on_state < INT_MAX)
 163		tick_broadcast_enable();
 164	else
 165		tick_broadcast_disable();
 166}
 167
 168static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 169{
 170	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 171				 (void *)pr, 1);
 172}
 173
 174/* Power(C) State timer broadcast control */
 175static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 176				       struct acpi_processor_cx *cx,
 177				       int broadcast)
 178{
 179	int state = cx - pr->power.states;
 180
 181	if (state >= pr->power.timer_broadcast_on_state) {
 182		if (broadcast)
 183			tick_broadcast_enter();
 184		else
 185			tick_broadcast_exit();
 186	}
 187}
 188
 189#else
 190
 191static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 192				   struct acpi_processor_cx *cstate) { }
 193static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 194static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 195				       struct acpi_processor_cx *cx,
 196				       int broadcast)
 197{
 198}
 199
 200#endif
 201
 202#if defined(CONFIG_X86)
 203static void tsc_check_state(int state)
 204{
 205	switch (boot_cpu_data.x86_vendor) {
 
 206	case X86_VENDOR_AMD:
 207	case X86_VENDOR_INTEL:
 
 
 208		/*
 209		 * AMD Fam10h TSC will tick in all
 210		 * C/P/S0/S1 states when this bit is set.
 211		 */
 212		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 213			return;
 214
 215		/*FALL THROUGH*/
 216	default:
 217		/* TSC could halt in idle, so notify users */
 218		if (state > ACPI_STATE_C1)
 219			mark_tsc_unstable("TSC halts in idle");
 220	}
 221}
 222#else
 223static void tsc_check_state(int state) { return; }
 224#endif
 225
 226static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 227{
 228
 229	if (!pr->pblk)
 230		return -ENODEV;
 231
 232	/* if info is obtained from pblk/fadt, type equals state */
 233	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 234	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 235
 236#ifndef CONFIG_HOTPLUG_CPU
 237	/*
 238	 * Check for P_LVL2_UP flag before entering C2 and above on
 239	 * an SMP system.
 240	 */
 241	if ((num_online_cpus() > 1) &&
 242	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 243		return -ENODEV;
 244#endif
 245
 246	/* determine C2 and C3 address from pblk */
 247	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 248	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 249
 250	/* determine latencies from FADT */
 251	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
 252	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
 253
 254	/*
 255	 * FADT specified C2 latency must be less than or equal to
 256	 * 100 microseconds.
 257	 */
 258	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 259		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 260			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
 261		/* invalidate C2 */
 262		pr->power.states[ACPI_STATE_C2].address = 0;
 263	}
 264
 265	/*
 266	 * FADT supplied C3 latency must be less than or equal to
 267	 * 1000 microseconds.
 268	 */
 269	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 270		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 271			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
 272		/* invalidate C3 */
 273		pr->power.states[ACPI_STATE_C3].address = 0;
 274	}
 275
 276	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 277			  "lvl2[0x%08x] lvl3[0x%08x]\n",
 278			  pr->power.states[ACPI_STATE_C2].address,
 279			  pr->power.states[ACPI_STATE_C3].address));
 280
 
 
 
 
 
 
 
 281	return 0;
 282}
 283
 284static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 285{
 286	if (!pr->power.states[ACPI_STATE_C1].valid) {
 287		/* set the first C-State to C1 */
 288		/* all processors need to support C1 */
 289		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 290		pr->power.states[ACPI_STATE_C1].valid = 1;
 291		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 
 
 
 292	}
 293	/* the C0 state only exists as a filler in our array */
 294	pr->power.states[ACPI_STATE_C0].valid = 1;
 295	return 0;
 296}
 297
 298static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 299{
 300	acpi_status status;
 301	u64 count;
 302	int current_count;
 303	int i, ret = 0;
 304	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 305	union acpi_object *cst;
 306
 307	if (nocst)
 308		return -ENODEV;
 309
 310	current_count = 0;
 311
 312	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
 313	if (ACPI_FAILURE(status)) {
 314		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
 315		return -ENODEV;
 316	}
 317
 318	cst = buffer.pointer;
 319
 320	/* There must be at least 2 elements */
 321	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
 322		pr_err("not enough elements in _CST\n");
 323		ret = -EFAULT;
 324		goto end;
 325	}
 326
 327	count = cst->package.elements[0].integer.value;
 328
 329	/* Validate number of power states. */
 330	if (count < 1 || count != cst->package.count - 1) {
 331		pr_err("count given by _CST is not valid\n");
 332		ret = -EFAULT;
 333		goto end;
 334	}
 335
 336	/* Tell driver that at least _CST is supported. */
 337	pr->flags.has_cst = 1;
 338
 339	for (i = 1; i <= count; i++) {
 340		union acpi_object *element;
 341		union acpi_object *obj;
 342		struct acpi_power_register *reg;
 343		struct acpi_processor_cx cx;
 344
 345		memset(&cx, 0, sizeof(cx));
 346
 347		element = &(cst->package.elements[i]);
 348		if (element->type != ACPI_TYPE_PACKAGE)
 349			continue;
 350
 351		if (element->package.count != 4)
 352			continue;
 353
 354		obj = &(element->package.elements[0]);
 355
 356		if (obj->type != ACPI_TYPE_BUFFER)
 357			continue;
 358
 359		reg = (struct acpi_power_register *)obj->buffer.pointer;
 360
 361		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 362		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
 363			continue;
 364
 365		/* There should be an easy way to extract an integer... */
 366		obj = &(element->package.elements[1]);
 367		if (obj->type != ACPI_TYPE_INTEGER)
 368			continue;
 369
 370		cx.type = obj->integer.value;
 371		/*
 372		 * Some buggy BIOSes won't list C1 in _CST -
 373		 * Let acpi_processor_get_power_info_default() handle them later
 374		 */
 375		if (i == 1 && cx.type != ACPI_STATE_C1)
 376			current_count++;
 377
 378		cx.address = reg->address;
 379		cx.index = current_count + 1;
 380
 381		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
 382		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
 383			if (acpi_processor_ffh_cstate_probe
 384					(pr->id, &cx, reg) == 0) {
 385				cx.entry_method = ACPI_CSTATE_FFH;
 386			} else if (cx.type == ACPI_STATE_C1) {
 387				/*
 388				 * C1 is a special case where FIXED_HARDWARE
 389				 * can be handled in non-MWAIT way as well.
 390				 * In that case, save this _CST entry info.
 391				 * Otherwise, ignore this info and continue.
 392				 */
 393				cx.entry_method = ACPI_CSTATE_HALT;
 394				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 395			} else {
 396				continue;
 397			}
 398			if (cx.type == ACPI_STATE_C1 &&
 399			    (boot_option_idle_override == IDLE_NOMWAIT)) {
 400				/*
 401				 * In most cases the C1 space_id obtained from
 402				 * _CST object is FIXED_HARDWARE access mode.
 403				 * But when the option of idle=halt is added,
 404				 * the entry_method type should be changed from
 405				 * CSTATE_FFH to CSTATE_HALT.
 406				 * When the option of idle=nomwait is added,
 407				 * the C1 entry_method type should be
 408				 * CSTATE_HALT.
 409				 */
 410				cx.entry_method = ACPI_CSTATE_HALT;
 411				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 412			}
 413		} else {
 414			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
 415				 cx.address);
 416		}
 417
 418		if (cx.type == ACPI_STATE_C1) {
 419			cx.valid = 1;
 420		}
 421
 422		obj = &(element->package.elements[2]);
 423		if (obj->type != ACPI_TYPE_INTEGER)
 424			continue;
 425
 426		cx.latency = obj->integer.value;
 427
 428		obj = &(element->package.elements[3]);
 429		if (obj->type != ACPI_TYPE_INTEGER)
 430			continue;
 431
 432		current_count++;
 433		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
 434
 435		/*
 436		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
 437		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
 438		 */
 439		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
 440			pr_warn("Limiting number of power states to max (%d)\n",
 441				ACPI_PROCESSOR_MAX_POWER);
 442			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
 443			break;
 444		}
 445	}
 446
 447	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
 448			  current_count));
 449
 450	/* Validate number of power states discovered */
 451	if (current_count < 2)
 452		ret = -EFAULT;
 453
 454      end:
 455	kfree(buffer.pointer);
 456
 457	return ret;
 458}
 459
 460static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 461					   struct acpi_processor_cx *cx)
 462{
 463	static int bm_check_flag = -1;
 464	static int bm_control_flag = -1;
 465
 466
 467	if (!cx->address)
 468		return;
 469
 470	/*
 471	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 472	 * DMA transfers are used by any ISA device to avoid livelock.
 473	 * Note that we could disable Type-F DMA (as recommended by
 474	 * the erratum), but this is known to disrupt certain ISA
 475	 * devices thus we take the conservative approach.
 476	 */
 477	else if (errata.piix4.fdma) {
 478		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 479				  "C3 not supported on PIIX4 with Type-F DMA\n"));
 480		return;
 481	}
 482
 483	/* All the logic here assumes flags.bm_check is same across all CPUs */
 484	if (bm_check_flag == -1) {
 485		/* Determine whether bm_check is needed based on CPU  */
 486		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 487		bm_check_flag = pr->flags.bm_check;
 488		bm_control_flag = pr->flags.bm_control;
 489	} else {
 490		pr->flags.bm_check = bm_check_flag;
 491		pr->flags.bm_control = bm_control_flag;
 492	}
 493
 494	if (pr->flags.bm_check) {
 495		if (!pr->flags.bm_control) {
 496			if (pr->flags.has_cst != 1) {
 497				/* bus mastering control is necessary */
 498				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 499					"C3 support requires BM control\n"));
 500				return;
 501			} else {
 502				/* Here we enter C3 without bus mastering */
 503				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 504					"C3 support without BM control\n"));
 505			}
 506		}
 507	} else {
 508		/*
 509		 * WBINVD should be set in fadt, for C3 state to be
 510		 * supported on when bm_check is not required.
 511		 */
 512		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 513			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 514					  "Cache invalidation should work properly"
 515					  " for C3 to be enabled on SMP systems\n"));
 516			return;
 517		}
 518	}
 519
 520	/*
 521	 * Otherwise we've met all of our C3 requirements.
 522	 * Normalize the C3 latency to expidite policy.  Enable
 523	 * checking of bus mastering status (bm_check) so we can
 524	 * use this in our C3 policy
 525	 */
 526	cx->valid = 1;
 527
 528	/*
 529	 * On older chipsets, BM_RLD needs to be set
 530	 * in order for Bus Master activity to wake the
 531	 * system from C3.  Newer chipsets handle DMA
 532	 * during C3 automatically and BM_RLD is a NOP.
 533	 * In either case, the proper way to
 534	 * handle BM_RLD is to set it and leave it set.
 535	 */
 536	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 537
 538	return;
 539}
 540
 541static int acpi_processor_power_verify(struct acpi_processor *pr)
 542{
 543	unsigned int i;
 544	unsigned int working = 0;
 545
 546	pr->power.timer_broadcast_on_state = INT_MAX;
 547
 548	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 549		struct acpi_processor_cx *cx = &pr->power.states[i];
 550
 551		switch (cx->type) {
 552		case ACPI_STATE_C1:
 553			cx->valid = 1;
 554			break;
 555
 556		case ACPI_STATE_C2:
 557			if (!cx->address)
 558				break;
 559			cx->valid = 1;
 560			break;
 561
 562		case ACPI_STATE_C3:
 563			acpi_processor_power_verify_c3(pr, cx);
 564			break;
 565		}
 566		if (!cx->valid)
 567			continue;
 568
 569		lapic_timer_check_state(i, pr, cx);
 570		tsc_check_state(cx->type);
 571		working++;
 572	}
 573
 574	lapic_timer_propagate_broadcast(pr);
 575
 576	return (working);
 577}
 578
 579static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 580{
 581	unsigned int i;
 582	int result;
 583
 584
 585	/* NOTE: the idle thread may not be running while calling
 586	 * this function */
 587
 588	/* Zero initialize all the C-states info. */
 589	memset(pr->power.states, 0, sizeof(pr->power.states));
 590
 591	result = acpi_processor_get_power_info_cst(pr);
 592	if (result == -ENODEV)
 593		result = acpi_processor_get_power_info_fadt(pr);
 594
 595	if (result)
 596		return result;
 597
 598	acpi_processor_get_power_info_default(pr);
 599
 600	pr->power.count = acpi_processor_power_verify(pr);
 601
 602	/*
 603	 * if one state of type C2 or C3 is available, mark this
 604	 * CPU as being "idle manageable"
 605	 */
 606	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 607		if (pr->power.states[i].valid) {
 608			pr->power.count = i;
 609			if (pr->power.states[i].type >= ACPI_STATE_C2)
 610				pr->flags.power = 1;
 611		}
 612	}
 613
 614	return 0;
 615}
 616
 617/**
 618 * acpi_idle_bm_check - checks if bus master activity was detected
 619 */
 620static int acpi_idle_bm_check(void)
 621{
 622	u32 bm_status = 0;
 623
 624	if (bm_check_disable)
 625		return 0;
 626
 627	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 628	if (bm_status)
 629		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 630	/*
 631	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 632	 * the true state of bus mastering activity; forcing us to
 633	 * manually check the BMIDEA bit of each IDE channel.
 634	 */
 635	else if (errata.piix4.bmisx) {
 636		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 637		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 638			bm_status = 1;
 639	}
 640	return bm_status;
 641}
 642
 643/**
 644 * acpi_idle_do_entry - enter idle state using the appropriate method
 645 * @cx: cstate data
 646 *
 647 * Caller disables interrupt before call and enables interrupt after return.
 648 */
 649static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
 650{
 651	if (cx->entry_method == ACPI_CSTATE_FFH) {
 652		/* Call into architectural FFH based C-state */
 653		acpi_processor_ffh_cstate_enter(cx);
 654	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
 655		acpi_safe_halt();
 656	} else {
 657		/* IO port based C-state */
 658		inb(cx->address);
 659		/* Dummy wait op - must do something useless after P_LVL2 read
 660		   because chipsets cannot guarantee that STPCLK# signal
 661		   gets asserted in time to freeze execution properly. */
 662		inl(acpi_gbl_FADT.xpm_timer_block.address);
 663	}
 664}
 665
 666/**
 667 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
 668 * @dev: the target CPU
 669 * @index: the index of suggested state
 670 */
 671static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
 672{
 673	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 674
 675	ACPI_FLUSH_CPU_CACHE();
 676
 677	while (1) {
 678
 679		if (cx->entry_method == ACPI_CSTATE_HALT)
 680			safe_halt();
 681		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
 682			inb(cx->address);
 683			/* See comment in acpi_idle_do_entry() */
 684			inl(acpi_gbl_FADT.xpm_timer_block.address);
 685		} else
 686			return -ENODEV;
 687	}
 688
 689	/* Never reached */
 690	return 0;
 691}
 692
 693static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
 694{
 695	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
 696		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
 697}
 698
 699static int c3_cpu_count;
 700static DEFINE_RAW_SPINLOCK(c3_lock);
 701
 702/**
 703 * acpi_idle_enter_bm - enters C3 with proper BM handling
 704 * @pr: Target processor
 705 * @cx: Target state context
 706 * @timer_bc: Whether or not to change timer mode to broadcast
 707 */
 708static void acpi_idle_enter_bm(struct acpi_processor *pr,
 709			       struct acpi_processor_cx *cx, bool timer_bc)
 710{
 711	acpi_unlazy_tlb(smp_processor_id());
 712
 713	/*
 714	 * Must be done before busmaster disable as we might need to
 715	 * access HPET !
 716	 */
 717	if (timer_bc)
 718		lapic_timer_state_broadcast(pr, cx, 1);
 719
 720	/*
 721	 * disable bus master
 722	 * bm_check implies we need ARB_DIS
 723	 * bm_control implies whether we can do ARB_DIS
 724	 *
 725	 * That leaves a case where bm_check is set and bm_control is
 726	 * not set. In that case we cannot do much, we enter C3
 727	 * without doing anything.
 728	 */
 729	if (pr->flags.bm_control) {
 730		raw_spin_lock(&c3_lock);
 731		c3_cpu_count++;
 732		/* Disable bus master arbitration when all CPUs are in C3 */
 733		if (c3_cpu_count == num_online_cpus())
 734			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 735		raw_spin_unlock(&c3_lock);
 736	}
 737
 738	acpi_idle_do_entry(cx);
 739
 740	/* Re-enable bus master arbitration */
 741	if (pr->flags.bm_control) {
 742		raw_spin_lock(&c3_lock);
 743		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 744		c3_cpu_count--;
 745		raw_spin_unlock(&c3_lock);
 746	}
 747
 748	if (timer_bc)
 749		lapic_timer_state_broadcast(pr, cx, 0);
 750}
 751
 752static int acpi_idle_enter(struct cpuidle_device *dev,
 753			   struct cpuidle_driver *drv, int index)
 754{
 755	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 756	struct acpi_processor *pr;
 757
 758	pr = __this_cpu_read(processors);
 759	if (unlikely(!pr))
 760		return -EINVAL;
 761
 762	if (cx->type != ACPI_STATE_C1) {
 763		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
 764			index = CPUIDLE_DRIVER_STATE_START;
 765			cx = per_cpu(acpi_cstate[index], dev->cpu);
 766		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
 767			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
 768				acpi_idle_enter_bm(pr, cx, true);
 769				return index;
 770			} else if (drv->safe_state_index >= 0) {
 771				index = drv->safe_state_index;
 772				cx = per_cpu(acpi_cstate[index], dev->cpu);
 773			} else {
 774				acpi_safe_halt();
 775				return -EBUSY;
 776			}
 777		}
 778	}
 779
 780	lapic_timer_state_broadcast(pr, cx, 1);
 781
 782	if (cx->type == ACPI_STATE_C3)
 783		ACPI_FLUSH_CPU_CACHE();
 784
 785	acpi_idle_do_entry(cx);
 786
 787	lapic_timer_state_broadcast(pr, cx, 0);
 788
 789	return index;
 790}
 791
 792static void acpi_idle_enter_freeze(struct cpuidle_device *dev,
 793				   struct cpuidle_driver *drv, int index)
 794{
 795	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 796
 797	if (cx->type == ACPI_STATE_C3) {
 798		struct acpi_processor *pr = __this_cpu_read(processors);
 799
 800		if (unlikely(!pr))
 801			return;
 802
 803		if (pr->flags.bm_check) {
 804			acpi_idle_enter_bm(pr, cx, false);
 805			return;
 806		} else {
 807			ACPI_FLUSH_CPU_CACHE();
 808		}
 809	}
 810	acpi_idle_do_entry(cx);
 811}
 812
 813static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 814					   struct cpuidle_device *dev)
 815{
 816	int i, count = CPUIDLE_DRIVER_STATE_START;
 817	struct acpi_processor_cx *cx;
 818
 819	if (max_cstate == 0)
 820		max_cstate = 1;
 821
 822	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 823		cx = &pr->power.states[i];
 824
 825		if (!cx->valid)
 826			continue;
 827
 828		per_cpu(acpi_cstate[count], dev->cpu) = cx;
 829
 830		count++;
 831		if (count == CPUIDLE_STATE_MAX)
 832			break;
 833	}
 834
 835	if (!count)
 836		return -EINVAL;
 837
 838	return 0;
 839}
 840
 841static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 842{
 843	int i, count = CPUIDLE_DRIVER_STATE_START;
 844	struct acpi_processor_cx *cx;
 845	struct cpuidle_state *state;
 846	struct cpuidle_driver *drv = &acpi_idle_driver;
 847
 848	if (max_cstate == 0)
 849		max_cstate = 1;
 850
 
 
 
 
 
 
 
 851	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 852		cx = &pr->power.states[i];
 853
 854		if (!cx->valid)
 855			continue;
 856
 857		state = &drv->states[count];
 858		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
 859		strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
 860		state->exit_latency = cx->latency;
 861		state->target_residency = cx->latency * latency_factor;
 862		state->enter = acpi_idle_enter;
 863
 864		state->flags = 0;
 865		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
 866			state->enter_dead = acpi_idle_play_dead;
 867			drv->safe_state_index = count;
 868		}
 869		/*
 870		 * Halt-induced C1 is not good for ->enter_freeze, because it
 871		 * re-enables interrupts on exit.  Moreover, C1 is generally not
 872		 * particularly interesting from the suspend-to-idle angle, so
 873		 * avoid C1 and the situations in which we may need to fall back
 874		 * to it altogether.
 875		 */
 876		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
 877			state->enter_freeze = acpi_idle_enter_freeze;
 878
 879		count++;
 880		if (count == CPUIDLE_STATE_MAX)
 881			break;
 882	}
 883
 884	drv->state_count = count;
 885
 886	if (!count)
 887		return -EINVAL;
 888
 889	return 0;
 890}
 891
 892static inline void acpi_processor_cstate_first_run_checks(void)
 893{
 894	acpi_status status;
 895	static int first_run;
 896
 897	if (first_run)
 898		return;
 899	dmi_check_system(processor_power_dmi_table);
 900	max_cstate = acpi_processor_cstate_check(max_cstate);
 901	if (max_cstate < ACPI_C_STATES_MAX)
 902		pr_notice("ACPI: processor limited to max C-state %d\n",
 903			  max_cstate);
 904	first_run++;
 905
 906	if (acpi_gbl_FADT.cst_control && !nocst) {
 907		status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
 908					    acpi_gbl_FADT.cst_control, 8);
 909		if (ACPI_FAILURE(status))
 910			ACPI_EXCEPTION((AE_INFO, status,
 911					"Notifying BIOS of _CST ability failed"));
 912	}
 913}
 914#else
 915
 916static inline int disabled_by_idle_boot_param(void) { return 0; }
 917static inline void acpi_processor_cstate_first_run_checks(void) { }
 918static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 919{
 920	return -ENODEV;
 921}
 922
 923static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 924					   struct cpuidle_device *dev)
 925{
 926	return -EINVAL;
 927}
 928
 929static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 930{
 931	return -EINVAL;
 932}
 933
 934#endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
 935
 936struct acpi_lpi_states_array {
 937	unsigned int size;
 938	unsigned int composite_states_size;
 939	struct acpi_lpi_state *entries;
 940	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
 941};
 942
 943static int obj_get_integer(union acpi_object *obj, u32 *value)
 944{
 945	if (obj->type != ACPI_TYPE_INTEGER)
 946		return -EINVAL;
 947
 948	*value = obj->integer.value;
 949	return 0;
 950}
 951
 952static int acpi_processor_evaluate_lpi(acpi_handle handle,
 953				       struct acpi_lpi_states_array *info)
 954{
 955	acpi_status status;
 956	int ret = 0;
 957	int pkg_count, state_idx = 1, loop;
 958	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 959	union acpi_object *lpi_data;
 960	struct acpi_lpi_state *lpi_state;
 961
 962	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
 963	if (ACPI_FAILURE(status)) {
 964		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
 965		return -ENODEV;
 966	}
 967
 968	lpi_data = buffer.pointer;
 969
 970	/* There must be at least 4 elements = 3 elements + 1 package */
 971	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
 972	    lpi_data->package.count < 4) {
 973		pr_debug("not enough elements in _LPI\n");
 974		ret = -ENODATA;
 975		goto end;
 976	}
 977
 978	pkg_count = lpi_data->package.elements[2].integer.value;
 979
 980	/* Validate number of power states. */
 981	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
 982		pr_debug("count given by _LPI is not valid\n");
 983		ret = -ENODATA;
 984		goto end;
 985	}
 986
 987	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
 988	if (!lpi_state) {
 989		ret = -ENOMEM;
 990		goto end;
 991	}
 992
 993	info->size = pkg_count;
 994	info->entries = lpi_state;
 995
 996	/* LPI States start at index 3 */
 997	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
 998		union acpi_object *element, *pkg_elem, *obj;
 999
1000		element = &lpi_data->package.elements[loop];
1001		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1002			continue;
1003
1004		pkg_elem = element->package.elements;
1005
1006		obj = pkg_elem + 6;
1007		if (obj->type == ACPI_TYPE_BUFFER) {
1008			struct acpi_power_register *reg;
1009
1010			reg = (struct acpi_power_register *)obj->buffer.pointer;
1011			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1012			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1013				continue;
1014
1015			lpi_state->address = reg->address;
1016			lpi_state->entry_method =
1017				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1018				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1019		} else if (obj->type == ACPI_TYPE_INTEGER) {
1020			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1021			lpi_state->address = obj->integer.value;
1022		} else {
1023			continue;
1024		}
1025
1026		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1027
1028		obj = pkg_elem + 9;
1029		if (obj->type == ACPI_TYPE_STRING)
1030			strlcpy(lpi_state->desc, obj->string.pointer,
1031				ACPI_CX_DESC_LEN);
1032
1033		lpi_state->index = state_idx;
1034		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1035			pr_debug("No min. residency found, assuming 10 us\n");
1036			lpi_state->min_residency = 10;
1037		}
1038
1039		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1040			pr_debug("No wakeup residency found, assuming 10 us\n");
1041			lpi_state->wake_latency = 10;
1042		}
1043
1044		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1045			lpi_state->flags = 0;
1046
1047		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1048			lpi_state->arch_flags = 0;
1049
1050		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1051			lpi_state->res_cnt_freq = 1;
1052
1053		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1054			lpi_state->enable_parent_state = 0;
1055	}
1056
1057	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1058end:
1059	kfree(buffer.pointer);
1060	return ret;
1061}
1062
1063/*
1064 * flat_state_cnt - the number of composite LPI states after the process of flattening
1065 */
1066static int flat_state_cnt;
1067
1068/**
1069 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1070 *
1071 * @local: local LPI state
1072 * @parent: parent LPI state
1073 * @result: composite LPI state
1074 */
1075static bool combine_lpi_states(struct acpi_lpi_state *local,
1076			       struct acpi_lpi_state *parent,
1077			       struct acpi_lpi_state *result)
1078{
1079	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1080		if (!parent->address) /* 0 means autopromotable */
1081			return false;
1082		result->address = local->address + parent->address;
1083	} else {
1084		result->address = parent->address;
1085	}
1086
1087	result->min_residency = max(local->min_residency, parent->min_residency);
1088	result->wake_latency = local->wake_latency + parent->wake_latency;
1089	result->enable_parent_state = parent->enable_parent_state;
1090	result->entry_method = local->entry_method;
1091
1092	result->flags = parent->flags;
1093	result->arch_flags = parent->arch_flags;
1094	result->index = parent->index;
1095
1096	strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1097	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1098	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1099	return true;
1100}
1101
1102#define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1103
1104static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1105				  struct acpi_lpi_state *t)
1106{
1107	curr_level->composite_states[curr_level->composite_states_size++] = t;
1108}
1109
1110static int flatten_lpi_states(struct acpi_processor *pr,
1111			      struct acpi_lpi_states_array *curr_level,
1112			      struct acpi_lpi_states_array *prev_level)
1113{
1114	int i, j, state_count = curr_level->size;
1115	struct acpi_lpi_state *p, *t = curr_level->entries;
1116
1117	curr_level->composite_states_size = 0;
1118	for (j = 0; j < state_count; j++, t++) {
1119		struct acpi_lpi_state *flpi;
1120
1121		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1122			continue;
1123
1124		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1125			pr_warn("Limiting number of LPI states to max (%d)\n",
1126				ACPI_PROCESSOR_MAX_POWER);
1127			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1128			break;
1129		}
1130
1131		flpi = &pr->power.lpi_states[flat_state_cnt];
1132
1133		if (!prev_level) { /* leaf/processor node */
1134			memcpy(flpi, t, sizeof(*t));
1135			stash_composite_state(curr_level, flpi);
1136			flat_state_cnt++;
1137			continue;
1138		}
1139
1140		for (i = 0; i < prev_level->composite_states_size; i++) {
1141			p = prev_level->composite_states[i];
1142			if (t->index <= p->enable_parent_state &&
1143			    combine_lpi_states(p, t, flpi)) {
1144				stash_composite_state(curr_level, flpi);
1145				flat_state_cnt++;
1146				flpi++;
1147			}
1148		}
1149	}
1150
1151	kfree(curr_level->entries);
1152	return 0;
1153}
1154
1155static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1156{
1157	int ret, i;
1158	acpi_status status;
1159	acpi_handle handle = pr->handle, pr_ahandle;
1160	struct acpi_device *d = NULL;
1161	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1162
1163	if (!osc_pc_lpi_support_confirmed)
1164		return -EOPNOTSUPP;
1165
1166	if (!acpi_has_method(handle, "_LPI"))
1167		return -EINVAL;
1168
1169	flat_state_cnt = 0;
1170	prev = &info[0];
1171	curr = &info[1];
1172	handle = pr->handle;
1173	ret = acpi_processor_evaluate_lpi(handle, prev);
1174	if (ret)
1175		return ret;
1176	flatten_lpi_states(pr, prev, NULL);
1177
1178	status = acpi_get_parent(handle, &pr_ahandle);
1179	while (ACPI_SUCCESS(status)) {
1180		acpi_bus_get_device(pr_ahandle, &d);
1181		handle = pr_ahandle;
1182
1183		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1184			break;
1185
1186		/* can be optional ? */
1187		if (!acpi_has_method(handle, "_LPI"))
1188			break;
1189
1190		ret = acpi_processor_evaluate_lpi(handle, curr);
1191		if (ret)
1192			break;
1193
1194		/* flatten all the LPI states in this level of hierarchy */
1195		flatten_lpi_states(pr, curr, prev);
1196
1197		tmp = prev, prev = curr, curr = tmp;
1198
1199		status = acpi_get_parent(handle, &pr_ahandle);
1200	}
1201
1202	pr->power.count = flat_state_cnt;
1203	/* reset the index after flattening */
1204	for (i = 0; i < pr->power.count; i++)
1205		pr->power.lpi_states[i].index = i;
1206
1207	/* Tell driver that _LPI is supported. */
1208	pr->flags.has_lpi = 1;
1209	pr->flags.power = 1;
1210
1211	return 0;
1212}
1213
1214int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1215{
1216	return -ENODEV;
1217}
1218
1219int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1220{
1221	return -ENODEV;
1222}
1223
1224/**
1225 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1226 * @dev: the target CPU
1227 * @drv: cpuidle driver containing cpuidle state info
1228 * @index: index of target state
1229 *
1230 * Return: 0 for success or negative value for error
1231 */
1232static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1233			       struct cpuidle_driver *drv, int index)
1234{
1235	struct acpi_processor *pr;
1236	struct acpi_lpi_state *lpi;
1237
1238	pr = __this_cpu_read(processors);
1239
1240	if (unlikely(!pr))
1241		return -EINVAL;
1242
1243	lpi = &pr->power.lpi_states[index];
1244	if (lpi->entry_method == ACPI_CSTATE_FFH)
1245		return acpi_processor_ffh_lpi_enter(lpi);
1246
1247	return -EINVAL;
1248}
1249
1250static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1251{
1252	int i;
1253	struct acpi_lpi_state *lpi;
1254	struct cpuidle_state *state;
1255	struct cpuidle_driver *drv = &acpi_idle_driver;
1256
1257	if (!pr->flags.has_lpi)
1258		return -EOPNOTSUPP;
1259
1260	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1261		lpi = &pr->power.lpi_states[i];
1262
1263		state = &drv->states[i];
1264		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1265		strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1266		state->exit_latency = lpi->wake_latency;
1267		state->target_residency = lpi->min_residency;
1268		if (lpi->arch_flags)
1269			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1270		state->enter = acpi_idle_lpi_enter;
1271		drv->safe_state_index = i;
1272	}
1273
1274	drv->state_count = i;
1275
1276	return 0;
1277}
1278
1279/**
1280 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1281 * global state data i.e. idle routines
1282 *
1283 * @pr: the ACPI processor
1284 */
1285static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1286{
1287	int i;
1288	struct cpuidle_driver *drv = &acpi_idle_driver;
1289
1290	if (!pr->flags.power_setup_done || !pr->flags.power)
1291		return -EINVAL;
1292
1293	drv->safe_state_index = -1;
1294	for (i = CPUIDLE_DRIVER_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1295		drv->states[i].name[0] = '\0';
1296		drv->states[i].desc[0] = '\0';
1297	}
1298
1299	if (pr->flags.has_lpi)
1300		return acpi_processor_setup_lpi_states(pr);
1301
1302	return acpi_processor_setup_cstates(pr);
1303}
1304
1305/**
1306 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1307 * device i.e. per-cpu data
1308 *
1309 * @pr: the ACPI processor
1310 * @dev : the cpuidle device
1311 */
1312static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1313					    struct cpuidle_device *dev)
1314{
1315	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1316		return -EINVAL;
1317
1318	dev->cpu = pr->id;
1319	if (pr->flags.has_lpi)
1320		return acpi_processor_ffh_lpi_probe(pr->id);
1321
1322	return acpi_processor_setup_cpuidle_cx(pr, dev);
1323}
1324
1325static int acpi_processor_get_power_info(struct acpi_processor *pr)
1326{
1327	int ret;
1328
1329	ret = acpi_processor_get_lpi_info(pr);
1330	if (ret)
1331		ret = acpi_processor_get_cstate_info(pr);
1332
1333	return ret;
1334}
1335
1336int acpi_processor_hotplug(struct acpi_processor *pr)
1337{
1338	int ret = 0;
1339	struct cpuidle_device *dev;
1340
1341	if (disabled_by_idle_boot_param())
1342		return 0;
1343
1344	if (!pr->flags.power_setup_done)
1345		return -ENODEV;
1346
1347	dev = per_cpu(acpi_cpuidle_device, pr->id);
1348	cpuidle_pause_and_lock();
1349	cpuidle_disable_device(dev);
1350	ret = acpi_processor_get_power_info(pr);
1351	if (!ret && pr->flags.power) {
1352		acpi_processor_setup_cpuidle_dev(pr, dev);
1353		ret = cpuidle_enable_device(dev);
1354	}
1355	cpuidle_resume_and_unlock();
1356
1357	return ret;
1358}
1359
1360int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1361{
1362	int cpu;
1363	struct acpi_processor *_pr;
1364	struct cpuidle_device *dev;
1365
1366	if (disabled_by_idle_boot_param())
1367		return 0;
1368
1369	if (!pr->flags.power_setup_done)
1370		return -ENODEV;
1371
1372	/*
1373	 * FIXME:  Design the ACPI notification to make it once per
1374	 * system instead of once per-cpu.  This condition is a hack
1375	 * to make the code that updates C-States be called once.
1376	 */
1377
1378	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1379
1380		/* Protect against cpu-hotplug */
1381		get_online_cpus();
1382		cpuidle_pause_and_lock();
1383
1384		/* Disable all cpuidle devices */
1385		for_each_online_cpu(cpu) {
1386			_pr = per_cpu(processors, cpu);
1387			if (!_pr || !_pr->flags.power_setup_done)
1388				continue;
1389			dev = per_cpu(acpi_cpuidle_device, cpu);
1390			cpuidle_disable_device(dev);
1391		}
1392
1393		/* Populate Updated C-state information */
1394		acpi_processor_get_power_info(pr);
1395		acpi_processor_setup_cpuidle_states(pr);
1396
1397		/* Enable all cpuidle devices */
1398		for_each_online_cpu(cpu) {
1399			_pr = per_cpu(processors, cpu);
1400			if (!_pr || !_pr->flags.power_setup_done)
1401				continue;
1402			acpi_processor_get_power_info(_pr);
1403			if (_pr->flags.power) {
1404				dev = per_cpu(acpi_cpuidle_device, cpu);
1405				acpi_processor_setup_cpuidle_dev(_pr, dev);
1406				cpuidle_enable_device(dev);
1407			}
1408		}
1409		cpuidle_resume_and_unlock();
1410		put_online_cpus();
1411	}
1412
1413	return 0;
1414}
1415
1416static int acpi_processor_registered;
1417
1418int acpi_processor_power_init(struct acpi_processor *pr)
1419{
1420	int retval;
1421	struct cpuidle_device *dev;
1422
1423	if (disabled_by_idle_boot_param())
1424		return 0;
1425
1426	acpi_processor_cstate_first_run_checks();
1427
1428	if (!acpi_processor_get_power_info(pr))
1429		pr->flags.power_setup_done = 1;
1430
1431	/*
1432	 * Install the idle handler if processor power management is supported.
1433	 * Note that we use previously set idle handler will be used on
1434	 * platforms that only support C1.
1435	 */
1436	if (pr->flags.power) {
1437		/* Register acpi_idle_driver if not already registered */
1438		if (!acpi_processor_registered) {
1439			acpi_processor_setup_cpuidle_states(pr);
1440			retval = cpuidle_register_driver(&acpi_idle_driver);
1441			if (retval)
1442				return retval;
1443			pr_debug("%s registered with cpuidle\n",
1444				 acpi_idle_driver.name);
1445		}
1446
1447		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1448		if (!dev)
1449			return -ENOMEM;
1450		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1451
1452		acpi_processor_setup_cpuidle_dev(pr, dev);
1453
1454		/* Register per-cpu cpuidle_device. Cpuidle driver
1455		 * must already be registered before registering device
1456		 */
1457		retval = cpuidle_register_device(dev);
1458		if (retval) {
1459			if (acpi_processor_registered == 0)
1460				cpuidle_unregister_driver(&acpi_idle_driver);
1461			return retval;
1462		}
1463		acpi_processor_registered++;
1464	}
1465	return 0;
1466}
1467
1468int acpi_processor_power_exit(struct acpi_processor *pr)
1469{
1470	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1471
1472	if (disabled_by_idle_boot_param())
1473		return 0;
1474
1475	if (pr->flags.power) {
1476		cpuidle_unregister_device(dev);
1477		acpi_processor_registered--;
1478		if (acpi_processor_registered == 0)
1479			cpuidle_unregister_driver(&acpi_idle_driver);
1480	}
1481
1482	pr->flags.power_setup_done = 0;
1483	return 0;
1484}