Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Common interrupt code for 32 and 64 bit
  4 */
  5#include <linux/cpu.h>
  6#include <linux/interrupt.h>
  7#include <linux/kernel_stat.h>
  8#include <linux/of.h>
  9#include <linux/seq_file.h>
 10#include <linux/smp.h>
 11#include <linux/ftrace.h>
 12#include <linux/delay.h>
 13#include <linux/export.h>
 14#include <linux/irq.h>
 15
 16#include <asm/apic.h>
 17#include <asm/io_apic.h>
 18#include <asm/irq.h>
 19#include <asm/mce.h>
 20#include <asm/hw_irq.h>
 21#include <asm/desc.h>
 22
 23#define CREATE_TRACE_POINTS
 24#include <asm/trace/irq_vectors.h>
 25
 26DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
 27EXPORT_PER_CPU_SYMBOL(irq_stat);
 28
 29DEFINE_PER_CPU(struct pt_regs *, irq_regs);
 30EXPORT_PER_CPU_SYMBOL(irq_regs);
 31
 32atomic_t irq_err_count;
 33
 
 
 
 34/*
 35 * 'what should we do if we get a hw irq event on an illegal vector'.
 36 * each architecture has to answer this themselves.
 37 */
 38void ack_bad_irq(unsigned int irq)
 39{
 40	if (printk_ratelimit())
 41		pr_err("unexpected IRQ trap at vector %02x\n", irq);
 42
 43	/*
 44	 * Currently unexpected vectors happen only on SMP and APIC.
 45	 * We _must_ ack these because every local APIC has only N
 46	 * irq slots per priority level, and a 'hanging, unacked' IRQ
 47	 * holds up an irq slot - in excessive cases (when multiple
 48	 * unexpected vectors occur) that might lock up the APIC
 49	 * completely.
 50	 * But only ack when the APIC is enabled -AK
 51	 */
 52	ack_APIC_irq();
 53}
 54
 55#define irq_stats(x)		(&per_cpu(irq_stat, x))
 56/*
 57 * /proc/interrupts printing for arch specific interrupts
 58 */
 59int arch_show_interrupts(struct seq_file *p, int prec)
 60{
 61	int j;
 62
 63	seq_printf(p, "%*s: ", prec, "NMI");
 64	for_each_online_cpu(j)
 65		seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
 66	seq_puts(p, "  Non-maskable interrupts\n");
 67#ifdef CONFIG_X86_LOCAL_APIC
 68	seq_printf(p, "%*s: ", prec, "LOC");
 69	for_each_online_cpu(j)
 70		seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
 71	seq_puts(p, "  Local timer interrupts\n");
 72
 73	seq_printf(p, "%*s: ", prec, "SPU");
 74	for_each_online_cpu(j)
 75		seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
 76	seq_puts(p, "  Spurious interrupts\n");
 77	seq_printf(p, "%*s: ", prec, "PMI");
 78	for_each_online_cpu(j)
 79		seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
 80	seq_puts(p, "  Performance monitoring interrupts\n");
 81	seq_printf(p, "%*s: ", prec, "IWI");
 82	for_each_online_cpu(j)
 83		seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
 84	seq_puts(p, "  IRQ work interrupts\n");
 85	seq_printf(p, "%*s: ", prec, "RTR");
 86	for_each_online_cpu(j)
 87		seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
 88	seq_puts(p, "  APIC ICR read retries\n");
 
 89	if (x86_platform_ipi_callback) {
 90		seq_printf(p, "%*s: ", prec, "PLT");
 91		for_each_online_cpu(j)
 92			seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
 93		seq_puts(p, "  Platform interrupts\n");
 94	}
 95#endif
 96#ifdef CONFIG_SMP
 97	seq_printf(p, "%*s: ", prec, "RES");
 98	for_each_online_cpu(j)
 99		seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
100	seq_puts(p, "  Rescheduling interrupts\n");
101	seq_printf(p, "%*s: ", prec, "CAL");
102	for_each_online_cpu(j)
103		seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
104	seq_puts(p, "  Function call interrupts\n");
105	seq_printf(p, "%*s: ", prec, "TLB");
106	for_each_online_cpu(j)
107		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
108	seq_puts(p, "  TLB shootdowns\n");
109#endif
110#ifdef CONFIG_X86_THERMAL_VECTOR
111	seq_printf(p, "%*s: ", prec, "TRM");
112	for_each_online_cpu(j)
113		seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
114	seq_puts(p, "  Thermal event interrupts\n");
115#endif
116#ifdef CONFIG_X86_MCE_THRESHOLD
117	seq_printf(p, "%*s: ", prec, "THR");
118	for_each_online_cpu(j)
119		seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
120	seq_puts(p, "  Threshold APIC interrupts\n");
121#endif
122#ifdef CONFIG_X86_MCE_AMD
123	seq_printf(p, "%*s: ", prec, "DFR");
124	for_each_online_cpu(j)
125		seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
126	seq_puts(p, "  Deferred Error APIC interrupts\n");
127#endif
128#ifdef CONFIG_X86_MCE
129	seq_printf(p, "%*s: ", prec, "MCE");
130	for_each_online_cpu(j)
131		seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
132	seq_puts(p, "  Machine check exceptions\n");
133	seq_printf(p, "%*s: ", prec, "MCP");
134	for_each_online_cpu(j)
135		seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
136	seq_puts(p, "  Machine check polls\n");
137#endif
138#ifdef CONFIG_X86_HV_CALLBACK_VECTOR
139	if (test_bit(HYPERVISOR_CALLBACK_VECTOR, system_vectors)) {
140		seq_printf(p, "%*s: ", prec, "HYP");
141		for_each_online_cpu(j)
142			seq_printf(p, "%10u ",
143				   irq_stats(j)->irq_hv_callback_count);
144		seq_puts(p, "  Hypervisor callback interrupts\n");
145	}
146#endif
147#if IS_ENABLED(CONFIG_HYPERV)
148	if (test_bit(HYPERV_REENLIGHTENMENT_VECTOR, system_vectors)) {
149		seq_printf(p, "%*s: ", prec, "HRE");
150		for_each_online_cpu(j)
151			seq_printf(p, "%10u ",
152				   irq_stats(j)->irq_hv_reenlightenment_count);
153		seq_puts(p, "  Hyper-V reenlightenment interrupts\n");
154	}
155	if (test_bit(HYPERV_STIMER0_VECTOR, system_vectors)) {
156		seq_printf(p, "%*s: ", prec, "HVS");
157		for_each_online_cpu(j)
158			seq_printf(p, "%10u ",
159				   irq_stats(j)->hyperv_stimer0_count);
160		seq_puts(p, "  Hyper-V stimer0 interrupts\n");
161	}
162#endif
163	seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
164#if defined(CONFIG_X86_IO_APIC)
165	seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
166#endif
167#ifdef CONFIG_HAVE_KVM
168	seq_printf(p, "%*s: ", prec, "PIN");
169	for_each_online_cpu(j)
170		seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
171	seq_puts(p, "  Posted-interrupt notification event\n");
172
173	seq_printf(p, "%*s: ", prec, "NPI");
174	for_each_online_cpu(j)
175		seq_printf(p, "%10u ",
176			   irq_stats(j)->kvm_posted_intr_nested_ipis);
177	seq_puts(p, "  Nested posted-interrupt event\n");
178
179	seq_printf(p, "%*s: ", prec, "PIW");
180	for_each_online_cpu(j)
181		seq_printf(p, "%10u ",
182			   irq_stats(j)->kvm_posted_intr_wakeup_ipis);
183	seq_puts(p, "  Posted-interrupt wakeup event\n");
184#endif
185	return 0;
186}
187
188/*
189 * /proc/stat helpers
190 */
191u64 arch_irq_stat_cpu(unsigned int cpu)
192{
193	u64 sum = irq_stats(cpu)->__nmi_count;
194
195#ifdef CONFIG_X86_LOCAL_APIC
196	sum += irq_stats(cpu)->apic_timer_irqs;
197	sum += irq_stats(cpu)->irq_spurious_count;
198	sum += irq_stats(cpu)->apic_perf_irqs;
199	sum += irq_stats(cpu)->apic_irq_work_irqs;
200	sum += irq_stats(cpu)->icr_read_retry_count;
 
201	if (x86_platform_ipi_callback)
202		sum += irq_stats(cpu)->x86_platform_ipis;
203#endif
204#ifdef CONFIG_SMP
205	sum += irq_stats(cpu)->irq_resched_count;
206	sum += irq_stats(cpu)->irq_call_count;
207#endif
208#ifdef CONFIG_X86_THERMAL_VECTOR
209	sum += irq_stats(cpu)->irq_thermal_count;
210#endif
211#ifdef CONFIG_X86_MCE_THRESHOLD
212	sum += irq_stats(cpu)->irq_threshold_count;
213#endif
214#ifdef CONFIG_X86_MCE
215	sum += per_cpu(mce_exception_count, cpu);
216	sum += per_cpu(mce_poll_count, cpu);
217#endif
218	return sum;
219}
220
221u64 arch_irq_stat(void)
222{
223	u64 sum = atomic_read(&irq_err_count);
224	return sum;
225}
226
227
228/*
229 * do_IRQ handles all normal device IRQ's (the special
230 * SMP cross-CPU interrupts have their own specific
231 * handlers).
232 */
233__visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
234{
235	struct pt_regs *old_regs = set_irq_regs(regs);
236	struct irq_desc * desc;
237	/* high bit used in ret_from_ code  */
238	unsigned vector = ~regs->orig_ax;
239
 
 
 
 
 
 
 
 
 
 
 
 
240	entering_irq();
241
242	/* entering_irq() tells RCU that we're not quiescent.  Check it. */
243	RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
244
245	desc = __this_cpu_read(vector_irq[vector]);
246	if (likely(!IS_ERR_OR_NULL(desc))) {
247		if (IS_ENABLED(CONFIG_X86_32))
248			handle_irq(desc, regs);
249		else
250			generic_handle_irq_desc(desc);
251	} else {
252		ack_APIC_irq();
253
254		if (desc == VECTOR_UNUSED) {
255			pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n",
256					     __func__, smp_processor_id(),
257					     vector);
258		} else {
259			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
260		}
261	}
262
263	exiting_irq();
264
265	set_irq_regs(old_regs);
266	return 1;
267}
268
269#ifdef CONFIG_X86_LOCAL_APIC
270/* Function pointer for generic interrupt vector handling */
271void (*x86_platform_ipi_callback)(void) = NULL;
272/*
273 * Handler for X86_PLATFORM_IPI_VECTOR.
274 */
275__visible void __irq_entry smp_x86_platform_ipi(struct pt_regs *regs)
276{
277	struct pt_regs *old_regs = set_irq_regs(regs);
278
279	entering_ack_irq();
280	trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
281	inc_irq_stat(x86_platform_ipis);
 
282	if (x86_platform_ipi_callback)
283		x86_platform_ipi_callback();
284	trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
 
 
 
 
 
 
 
285	exiting_irq();
286	set_irq_regs(old_regs);
287}
288#endif
289
290#ifdef CONFIG_HAVE_KVM
291static void dummy_handler(void) {}
292static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
293
294void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
295{
296	if (handler)
297		kvm_posted_intr_wakeup_handler = handler;
298	else
299		kvm_posted_intr_wakeup_handler = dummy_handler;
300}
301EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
302
303/*
304 * Handler for POSTED_INTERRUPT_VECTOR.
305 */
306__visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
307{
308	struct pt_regs *old_regs = set_irq_regs(regs);
309
310	entering_ack_irq();
311	inc_irq_stat(kvm_posted_intr_ipis);
312	exiting_irq();
313	set_irq_regs(old_regs);
314}
315
316/*
317 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
318 */
319__visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs)
320{
321	struct pt_regs *old_regs = set_irq_regs(regs);
322
323	entering_ack_irq();
324	inc_irq_stat(kvm_posted_intr_wakeup_ipis);
325	kvm_posted_intr_wakeup_handler();
326	exiting_irq();
327	set_irq_regs(old_regs);
328}
 
329
330/*
331 * Handler for POSTED_INTERRUPT_NESTED_VECTOR.
332 */
333__visible void smp_kvm_posted_intr_nested_ipi(struct pt_regs *regs)
334{
335	struct pt_regs *old_regs = set_irq_regs(regs);
336
337	entering_ack_irq();
338	inc_irq_stat(kvm_posted_intr_nested_ipis);
 
 
339	exiting_irq();
340	set_irq_regs(old_regs);
341}
342#endif
343
 
344
345#ifdef CONFIG_HOTPLUG_CPU
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
346/* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
347void fixup_irqs(void)
348{
349	unsigned int irr, vector;
 
350	struct irq_desc *desc;
351	struct irq_data *data;
352	struct irq_chip *chip;
 
353
354	irq_migrate_all_off_this_cpu();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355
356	/*
357	 * We can remove mdelay() and then send spuriuous interrupts to
358	 * new cpu targets for all the irqs that were handled previously by
359	 * this cpu. While it works, I have seen spurious interrupt messages
360	 * (nothing wrong but still...).
361	 *
362	 * So for now, retain mdelay(1) and check the IRR and then send those
363	 * interrupts to new targets as this cpu is already offlined...
364	 */
365	mdelay(1);
366
367	/*
368	 * We can walk the vector array of this cpu without holding
369	 * vector_lock because the cpu is already marked !online, so
370	 * nothing else will touch it.
371	 */
372	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
 
 
373		if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
374			continue;
375
376		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
377		if (irr  & (1 << (vector % 32))) {
378			desc = __this_cpu_read(vector_irq[vector]);
379
380			raw_spin_lock(&desc->lock);
381			data = irq_desc_get_irq_data(desc);
382			chip = irq_data_get_irq_chip(data);
383			if (chip->irq_retrigger) {
384				chip->irq_retrigger(data);
385				__this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
386			}
387			raw_spin_unlock(&desc->lock);
388		}
389		if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
390			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
391	}
392}
393#endif
v4.10.11
 
  1/*
  2 * Common interrupt code for 32 and 64 bit
  3 */
  4#include <linux/cpu.h>
  5#include <linux/interrupt.h>
  6#include <linux/kernel_stat.h>
  7#include <linux/of.h>
  8#include <linux/seq_file.h>
  9#include <linux/smp.h>
 10#include <linux/ftrace.h>
 11#include <linux/delay.h>
 12#include <linux/export.h>
 
 13
 14#include <asm/apic.h>
 15#include <asm/io_apic.h>
 16#include <asm/irq.h>
 17#include <asm/mce.h>
 18#include <asm/hw_irq.h>
 19#include <asm/desc.h>
 20
 21#define CREATE_TRACE_POINTS
 22#include <asm/trace/irq_vectors.h>
 23
 24DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
 25EXPORT_PER_CPU_SYMBOL(irq_stat);
 26
 27DEFINE_PER_CPU(struct pt_regs *, irq_regs);
 28EXPORT_PER_CPU_SYMBOL(irq_regs);
 29
 30atomic_t irq_err_count;
 31
 32/* Function pointer for generic interrupt vector handling */
 33void (*x86_platform_ipi_callback)(void) = NULL;
 34
 35/*
 36 * 'what should we do if we get a hw irq event on an illegal vector'.
 37 * each architecture has to answer this themselves.
 38 */
 39void ack_bad_irq(unsigned int irq)
 40{
 41	if (printk_ratelimit())
 42		pr_err("unexpected IRQ trap at vector %02x\n", irq);
 43
 44	/*
 45	 * Currently unexpected vectors happen only on SMP and APIC.
 46	 * We _must_ ack these because every local APIC has only N
 47	 * irq slots per priority level, and a 'hanging, unacked' IRQ
 48	 * holds up an irq slot - in excessive cases (when multiple
 49	 * unexpected vectors occur) that might lock up the APIC
 50	 * completely.
 51	 * But only ack when the APIC is enabled -AK
 52	 */
 53	ack_APIC_irq();
 54}
 55
 56#define irq_stats(x)		(&per_cpu(irq_stat, x))
 57/*
 58 * /proc/interrupts printing for arch specific interrupts
 59 */
 60int arch_show_interrupts(struct seq_file *p, int prec)
 61{
 62	int j;
 63
 64	seq_printf(p, "%*s: ", prec, "NMI");
 65	for_each_online_cpu(j)
 66		seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
 67	seq_puts(p, "  Non-maskable interrupts\n");
 68#ifdef CONFIG_X86_LOCAL_APIC
 69	seq_printf(p, "%*s: ", prec, "LOC");
 70	for_each_online_cpu(j)
 71		seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
 72	seq_puts(p, "  Local timer interrupts\n");
 73
 74	seq_printf(p, "%*s: ", prec, "SPU");
 75	for_each_online_cpu(j)
 76		seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
 77	seq_puts(p, "  Spurious interrupts\n");
 78	seq_printf(p, "%*s: ", prec, "PMI");
 79	for_each_online_cpu(j)
 80		seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
 81	seq_puts(p, "  Performance monitoring interrupts\n");
 82	seq_printf(p, "%*s: ", prec, "IWI");
 83	for_each_online_cpu(j)
 84		seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
 85	seq_puts(p, "  IRQ work interrupts\n");
 86	seq_printf(p, "%*s: ", prec, "RTR");
 87	for_each_online_cpu(j)
 88		seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
 89	seq_puts(p, "  APIC ICR read retries\n");
 90#endif
 91	if (x86_platform_ipi_callback) {
 92		seq_printf(p, "%*s: ", prec, "PLT");
 93		for_each_online_cpu(j)
 94			seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
 95		seq_puts(p, "  Platform interrupts\n");
 96	}
 
 97#ifdef CONFIG_SMP
 98	seq_printf(p, "%*s: ", prec, "RES");
 99	for_each_online_cpu(j)
100		seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
101	seq_puts(p, "  Rescheduling interrupts\n");
102	seq_printf(p, "%*s: ", prec, "CAL");
103	for_each_online_cpu(j)
104		seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
105	seq_puts(p, "  Function call interrupts\n");
106	seq_printf(p, "%*s: ", prec, "TLB");
107	for_each_online_cpu(j)
108		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
109	seq_puts(p, "  TLB shootdowns\n");
110#endif
111#ifdef CONFIG_X86_THERMAL_VECTOR
112	seq_printf(p, "%*s: ", prec, "TRM");
113	for_each_online_cpu(j)
114		seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
115	seq_puts(p, "  Thermal event interrupts\n");
116#endif
117#ifdef CONFIG_X86_MCE_THRESHOLD
118	seq_printf(p, "%*s: ", prec, "THR");
119	for_each_online_cpu(j)
120		seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
121	seq_puts(p, "  Threshold APIC interrupts\n");
122#endif
123#ifdef CONFIG_X86_MCE_AMD
124	seq_printf(p, "%*s: ", prec, "DFR");
125	for_each_online_cpu(j)
126		seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
127	seq_puts(p, "  Deferred Error APIC interrupts\n");
128#endif
129#ifdef CONFIG_X86_MCE
130	seq_printf(p, "%*s: ", prec, "MCE");
131	for_each_online_cpu(j)
132		seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
133	seq_puts(p, "  Machine check exceptions\n");
134	seq_printf(p, "%*s: ", prec, "MCP");
135	for_each_online_cpu(j)
136		seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
137	seq_puts(p, "  Machine check polls\n");
138#endif
139#if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
140	if (test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors)) {
141		seq_printf(p, "%*s: ", prec, "HYP");
142		for_each_online_cpu(j)
143			seq_printf(p, "%10u ",
144				   irq_stats(j)->irq_hv_callback_count);
145		seq_puts(p, "  Hypervisor callback interrupts\n");
146	}
147#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148	seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
149#if defined(CONFIG_X86_IO_APIC)
150	seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
151#endif
152#ifdef CONFIG_HAVE_KVM
153	seq_printf(p, "%*s: ", prec, "PIN");
154	for_each_online_cpu(j)
155		seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
156	seq_puts(p, "  Posted-interrupt notification event\n");
157
 
 
 
 
 
 
158	seq_printf(p, "%*s: ", prec, "PIW");
159	for_each_online_cpu(j)
160		seq_printf(p, "%10u ",
161			   irq_stats(j)->kvm_posted_intr_wakeup_ipis);
162	seq_puts(p, "  Posted-interrupt wakeup event\n");
163#endif
164	return 0;
165}
166
167/*
168 * /proc/stat helpers
169 */
170u64 arch_irq_stat_cpu(unsigned int cpu)
171{
172	u64 sum = irq_stats(cpu)->__nmi_count;
173
174#ifdef CONFIG_X86_LOCAL_APIC
175	sum += irq_stats(cpu)->apic_timer_irqs;
176	sum += irq_stats(cpu)->irq_spurious_count;
177	sum += irq_stats(cpu)->apic_perf_irqs;
178	sum += irq_stats(cpu)->apic_irq_work_irqs;
179	sum += irq_stats(cpu)->icr_read_retry_count;
180#endif
181	if (x86_platform_ipi_callback)
182		sum += irq_stats(cpu)->x86_platform_ipis;
 
183#ifdef CONFIG_SMP
184	sum += irq_stats(cpu)->irq_resched_count;
185	sum += irq_stats(cpu)->irq_call_count;
186#endif
187#ifdef CONFIG_X86_THERMAL_VECTOR
188	sum += irq_stats(cpu)->irq_thermal_count;
189#endif
190#ifdef CONFIG_X86_MCE_THRESHOLD
191	sum += irq_stats(cpu)->irq_threshold_count;
192#endif
193#ifdef CONFIG_X86_MCE
194	sum += per_cpu(mce_exception_count, cpu);
195	sum += per_cpu(mce_poll_count, cpu);
196#endif
197	return sum;
198}
199
200u64 arch_irq_stat(void)
201{
202	u64 sum = atomic_read(&irq_err_count);
203	return sum;
204}
205
206
207/*
208 * do_IRQ handles all normal device IRQ's (the special
209 * SMP cross-CPU interrupts have their own specific
210 * handlers).
211 */
212__visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
213{
214	struct pt_regs *old_regs = set_irq_regs(regs);
215	struct irq_desc * desc;
216	/* high bit used in ret_from_ code  */
217	unsigned vector = ~regs->orig_ax;
218
219	/*
220	 * NB: Unlike exception entries, IRQ entries do not reliably
221	 * handle context tracking in the low-level entry code.  This is
222	 * because syscall entries execute briefly with IRQs on before
223	 * updating context tracking state, so we can take an IRQ from
224	 * kernel mode with CONTEXT_USER.  The low-level entry code only
225	 * updates the context if we came from user mode, so we won't
226	 * switch to CONTEXT_KERNEL.  We'll fix that once the syscall
227	 * code is cleaned up enough that we can cleanly defer enabling
228	 * IRQs.
229	 */
230
231	entering_irq();
232
233	/* entering_irq() tells RCU that we're not quiescent.  Check it. */
234	RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
235
236	desc = __this_cpu_read(vector_irq[vector]);
237
238	if (!handle_irq(desc, regs)) {
 
 
 
 
239		ack_APIC_irq();
240
241		if (desc != VECTOR_RETRIGGERED) {
242			pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n",
243					     __func__, smp_processor_id(),
244					     vector);
245		} else {
246			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
247		}
248	}
249
250	exiting_irq();
251
252	set_irq_regs(old_regs);
253	return 1;
254}
255
 
 
 
256/*
257 * Handler for X86_PLATFORM_IPI_VECTOR.
258 */
259void __smp_x86_platform_ipi(void)
260{
 
 
 
 
261	inc_irq_stat(x86_platform_ipis);
262
263	if (x86_platform_ipi_callback)
264		x86_platform_ipi_callback();
265}
266
267__visible void smp_x86_platform_ipi(struct pt_regs *regs)
268{
269	struct pt_regs *old_regs = set_irq_regs(regs);
270
271	entering_ack_irq();
272	__smp_x86_platform_ipi();
273	exiting_irq();
274	set_irq_regs(old_regs);
275}
 
276
277#ifdef CONFIG_HAVE_KVM
278static void dummy_handler(void) {}
279static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
280
281void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
282{
283	if (handler)
284		kvm_posted_intr_wakeup_handler = handler;
285	else
286		kvm_posted_intr_wakeup_handler = dummy_handler;
287}
288EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
289
290/*
291 * Handler for POSTED_INTERRUPT_VECTOR.
292 */
293__visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
294{
295	struct pt_regs *old_regs = set_irq_regs(regs);
296
297	entering_ack_irq();
298	inc_irq_stat(kvm_posted_intr_ipis);
299	exiting_irq();
300	set_irq_regs(old_regs);
301}
302
303/*
304 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
305 */
306__visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs)
307{
308	struct pt_regs *old_regs = set_irq_regs(regs);
309
310	entering_ack_irq();
311	inc_irq_stat(kvm_posted_intr_wakeup_ipis);
312	kvm_posted_intr_wakeup_handler();
313	exiting_irq();
314	set_irq_regs(old_regs);
315}
316#endif
317
318__visible void smp_trace_x86_platform_ipi(struct pt_regs *regs)
 
 
 
319{
320	struct pt_regs *old_regs = set_irq_regs(regs);
321
322	entering_ack_irq();
323	trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
324	__smp_x86_platform_ipi();
325	trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
326	exiting_irq();
327	set_irq_regs(old_regs);
328}
 
329
330EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq);
331
332#ifdef CONFIG_HOTPLUG_CPU
333
334/* These two declarations are only used in check_irq_vectors_for_cpu_disable()
335 * below, which is protected by stop_machine().  Putting them on the stack
336 * results in a stack frame overflow.  Dynamically allocating could result in a
337 * failure so declare these two cpumasks as global.
338 */
339static struct cpumask affinity_new, online_new;
340
341/*
342 * This cpu is going to be removed and its vectors migrated to the remaining
343 * online cpus.  Check to see if there are enough vectors in the remaining cpus.
344 * This function is protected by stop_machine().
345 */
346int check_irq_vectors_for_cpu_disable(void)
347{
348	unsigned int this_cpu, vector, this_count, count;
349	struct irq_desc *desc;
350	struct irq_data *data;
351	int cpu;
352
353	this_cpu = smp_processor_id();
354	cpumask_copy(&online_new, cpu_online_mask);
355	cpumask_clear_cpu(this_cpu, &online_new);
356
357	this_count = 0;
358	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
359		desc = __this_cpu_read(vector_irq[vector]);
360		if (IS_ERR_OR_NULL(desc))
361			continue;
362		/*
363		 * Protect against concurrent action removal, affinity
364		 * changes etc.
365		 */
366		raw_spin_lock(&desc->lock);
367		data = irq_desc_get_irq_data(desc);
368		cpumask_copy(&affinity_new,
369			     irq_data_get_affinity_mask(data));
370		cpumask_clear_cpu(this_cpu, &affinity_new);
371
372		/* Do not count inactive or per-cpu irqs. */
373		if (!irq_desc_has_action(desc) || irqd_is_per_cpu(data)) {
374			raw_spin_unlock(&desc->lock);
375			continue;
376		}
377
378		raw_spin_unlock(&desc->lock);
379		/*
380		 * A single irq may be mapped to multiple cpu's
381		 * vector_irq[] (for example IOAPIC cluster mode).  In
382		 * this case we have two possibilities:
383		 *
384		 * 1) the resulting affinity mask is empty; that is
385		 * this the down'd cpu is the last cpu in the irq's
386		 * affinity mask, or
387		 *
388		 * 2) the resulting affinity mask is no longer a
389		 * subset of the online cpus but the affinity mask is
390		 * not zero; that is the down'd cpu is the last online
391		 * cpu in a user set affinity mask.
392		 */
393		if (cpumask_empty(&affinity_new) ||
394		    !cpumask_subset(&affinity_new, &online_new))
395			this_count++;
396	}
397
398	count = 0;
399	for_each_online_cpu(cpu) {
400		if (cpu == this_cpu)
401			continue;
402		/*
403		 * We scan from FIRST_EXTERNAL_VECTOR to first system
404		 * vector. If the vector is marked in the used vectors
405		 * bitmap or an irq is assigned to it, we don't count
406		 * it as available.
407		 *
408		 * As this is an inaccurate snapshot anyway, we can do
409		 * this w/o holding vector_lock.
410		 */
411		for (vector = FIRST_EXTERNAL_VECTOR;
412		     vector < first_system_vector; vector++) {
413			if (!test_bit(vector, used_vectors) &&
414			    IS_ERR_OR_NULL(per_cpu(vector_irq, cpu)[vector]))
415			    count++;
416		}
417	}
418
419	if (count < this_count) {
420		pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n",
421			this_cpu, this_count, count);
422		return -ERANGE;
423	}
424	return 0;
425}
426
427/* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
428void fixup_irqs(void)
429{
430	unsigned int irq, vector;
431	static int warned;
432	struct irq_desc *desc;
433	struct irq_data *data;
434	struct irq_chip *chip;
435	int ret;
436
437	for_each_irq_desc(irq, desc) {
438		int break_affinity = 0;
439		int set_affinity = 1;
440		const struct cpumask *affinity;
441
442		if (!desc)
443			continue;
444		if (irq == 2)
445			continue;
446
447		/* interrupt's are disabled at this point */
448		raw_spin_lock(&desc->lock);
449
450		data = irq_desc_get_irq_data(desc);
451		affinity = irq_data_get_affinity_mask(data);
452		if (!irq_has_action(irq) || irqd_is_per_cpu(data) ||
453		    cpumask_subset(affinity, cpu_online_mask)) {
454			raw_spin_unlock(&desc->lock);
455			continue;
456		}
457
458		/*
459		 * Complete the irq move. This cpu is going down and for
460		 * non intr-remapping case, we can't wait till this interrupt
461		 * arrives at this cpu before completing the irq move.
462		 */
463		irq_force_complete_move(desc);
464
465		if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) {
466			break_affinity = 1;
467			affinity = cpu_online_mask;
468		}
469
470		chip = irq_data_get_irq_chip(data);
471		/*
472		 * The interrupt descriptor might have been cleaned up
473		 * already, but it is not yet removed from the radix tree
474		 */
475		if (!chip) {
476			raw_spin_unlock(&desc->lock);
477			continue;
478		}
479
480		if (!irqd_can_move_in_process_context(data) && chip->irq_mask)
481			chip->irq_mask(data);
482
483		if (chip->irq_set_affinity) {
484			ret = chip->irq_set_affinity(data, affinity, true);
485			if (ret == -ENOSPC)
486				pr_crit("IRQ %d set affinity failed because there are no available vectors.  The device assigned to this IRQ is unstable.\n", irq);
487		} else {
488			if (!(warned++))
489				set_affinity = 0;
490		}
491
492		/*
493		 * We unmask if the irq was not marked masked by the
494		 * core code. That respects the lazy irq disable
495		 * behaviour.
496		 */
497		if (!irqd_can_move_in_process_context(data) &&
498		    !irqd_irq_masked(data) && chip->irq_unmask)
499			chip->irq_unmask(data);
500
501		raw_spin_unlock(&desc->lock);
502
503		if (break_affinity && set_affinity)
504			pr_notice("Broke affinity for irq %i\n", irq);
505		else if (!set_affinity)
506			pr_notice("Cannot set affinity for irq %i\n", irq);
507	}
508
509	/*
510	 * We can remove mdelay() and then send spuriuous interrupts to
511	 * new cpu targets for all the irqs that were handled previously by
512	 * this cpu. While it works, I have seen spurious interrupt messages
513	 * (nothing wrong but still...).
514	 *
515	 * So for now, retain mdelay(1) and check the IRR and then send those
516	 * interrupts to new targets as this cpu is already offlined...
517	 */
518	mdelay(1);
519
520	/*
521	 * We can walk the vector array of this cpu without holding
522	 * vector_lock because the cpu is already marked !online, so
523	 * nothing else will touch it.
524	 */
525	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
526		unsigned int irr;
527
528		if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
529			continue;
530
531		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
532		if (irr  & (1 << (vector % 32))) {
533			desc = __this_cpu_read(vector_irq[vector]);
534
535			raw_spin_lock(&desc->lock);
536			data = irq_desc_get_irq_data(desc);
537			chip = irq_data_get_irq_chip(data);
538			if (chip->irq_retrigger) {
539				chip->irq_retrigger(data);
540				__this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
541			}
542			raw_spin_unlock(&desc->lock);
543		}
544		if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
545			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
546	}
547}
548#endif