Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * MIPS idle loop and WAIT instruction support.
  4 *
  5 * Copyright (C) xxxx  the Anonymous
  6 * Copyright (C) 1994 - 2006 Ralf Baechle
  7 * Copyright (C) 2003, 2004  Maciej W. Rozycki
  8 * Copyright (C) 2001, 2004, 2011, 2012	 MIPS Technologies, Inc.
 
 
 
 
 
  9 */
 10#include <linux/cpu.h>
 11#include <linux/export.h>
 12#include <linux/init.h>
 13#include <linux/irqflags.h>
 14#include <linux/printk.h>
 15#include <linux/sched.h>
 16#include <asm/cpu.h>
 17#include <asm/cpu-info.h>
 18#include <asm/cpu-type.h>
 19#include <asm/idle.h>
 20#include <asm/mipsregs.h>
 21
 22/*
 23 * Not all of the MIPS CPUs have the "wait" instruction available. Moreover,
 24 * the implementation of the "wait" feature differs between CPU families. This
 25 * points to the function that implements CPU specific wait.
 26 * The wait instruction stops the pipeline and reduces the power consumption of
 27 * the CPU very much.
 28 */
 29void (*cpu_wait)(void);
 30EXPORT_SYMBOL(cpu_wait);
 31
 32static void __cpuidle r3081_wait(void)
 33{
 34	unsigned long cfg = read_c0_conf();
 35	write_c0_conf(cfg | R30XX_CONF_HALT);
 36	local_irq_enable();
 37}
 38
 39static void __cpuidle r39xx_wait(void)
 40{
 41	if (!need_resched())
 42		write_c0_conf(read_c0_conf() | TX39_CONF_HALT);
 43	local_irq_enable();
 44}
 45
 46void __cpuidle r4k_wait(void)
 47{
 48	local_irq_enable();
 49	__r4k_wait();
 50}
 51
 52/*
 53 * This variant is preferable as it allows testing need_resched and going to
 54 * sleep depending on the outcome atomically.  Unfortunately the "It is
 55 * implementation-dependent whether the pipeline restarts when a non-enabled
 56 * interrupt is requested" restriction in the MIPS32/MIPS64 architecture makes
 57 * using this version a gamble.
 58 */
 59void __cpuidle r4k_wait_irqoff(void)
 60{
 61	if (!need_resched())
 62		__asm__(
 63		"	.set	push		\n"
 64		"	.set	arch=r4000	\n"
 65		"	wait			\n"
 66		"	.set	pop		\n");
 67	local_irq_enable();
 68}
 69
 70/*
 71 * The RM7000 variant has to handle erratum 38.	 The workaround is to not
 72 * have any pending stores when the WAIT instruction is executed.
 73 */
 74static void __cpuidle rm7k_wait_irqoff(void)
 75{
 76	if (!need_resched())
 77		__asm__(
 78		"	.set	push					\n"
 79		"	.set	arch=r4000				\n"
 80		"	.set	noat					\n"
 81		"	mfc0	$1, $12					\n"
 82		"	sync						\n"
 83		"	mtc0	$1, $12		# stalls until W stage	\n"
 84		"	wait						\n"
 85		"	mtc0	$1, $12		# stalls until W stage	\n"
 86		"	.set	pop					\n");
 87	local_irq_enable();
 88}
 89
 90/*
 91 * Au1 'wait' is only useful when the 32kHz counter is used as timer,
 92 * since coreclock (and the cp0 counter) stops upon executing it. Only an
 93 * interrupt can wake it, so they must be enabled before entering idle modes.
 94 */
 95static void __cpuidle au1k_wait(void)
 96{
 97	unsigned long c0status = read_c0_status() | 1;	/* irqs on */
 98
 99	__asm__(
100	"	.set	push			\n"
101	"	.set	arch=r4000		\n"
102	"	cache	0x14, 0(%0)		\n"
103	"	cache	0x14, 32(%0)		\n"
104	"	sync				\n"
105	"	mtc0	%1, $12			\n" /* wr c0status */
106	"	wait				\n"
107	"	nop				\n"
108	"	nop				\n"
109	"	nop				\n"
110	"	nop				\n"
111	"	.set	pop			\n"
112	: : "r" (au1k_wait), "r" (c0status));
113}
114
115static int __initdata nowait;
116
117static int __init wait_disable(char *s)
118{
119	nowait = 1;
120
121	return 1;
122}
123
124__setup("nowait", wait_disable);
125
126void __init check_wait(void)
127{
128	struct cpuinfo_mips *c = &current_cpu_data;
129
130	if (nowait) {
131		printk("Wait instruction disabled.\n");
132		return;
133	}
134
135	/*
136	 * MIPSr6 specifies that masked interrupts should unblock an executing
137	 * wait instruction, and thus that it is safe for us to use
138	 * r4k_wait_irqoff. Yippee!
139	 */
140	if (cpu_has_mips_r6) {
141		cpu_wait = r4k_wait_irqoff;
142		return;
143	}
144
145	switch (current_cpu_type()) {
146	case CPU_R3081:
147	case CPU_R3081E:
148		cpu_wait = r3081_wait;
149		break;
150	case CPU_TX3927:
151		cpu_wait = r39xx_wait;
152		break;
153	case CPU_R4200:
 
154	case CPU_R4600:
155	case CPU_R4640:
156	case CPU_R4650:
157	case CPU_R4700:
158	case CPU_R5000:
159	case CPU_R5500:
160	case CPU_NEVADA:
161	case CPU_4KC:
162	case CPU_4KEC:
163	case CPU_4KSC:
164	case CPU_5KC:
165	case CPU_5KE:
166	case CPU_25KF:
167	case CPU_PR4450:
168	case CPU_BMIPS3300:
169	case CPU_BMIPS4350:
170	case CPU_BMIPS4380:
171	case CPU_CAVIUM_OCTEON:
172	case CPU_CAVIUM_OCTEON_PLUS:
173	case CPU_CAVIUM_OCTEON2:
174	case CPU_CAVIUM_OCTEON3:
175	case CPU_XBURST:
176	case CPU_LOONGSON1:
177	case CPU_XLR:
178	case CPU_XLP:
179		cpu_wait = r4k_wait;
180		break;
181	case CPU_LOONGSON3:
182		if ((c->processor_id & PRID_REV_MASK) >= PRID_REV_LOONGSON3A_R2_0)
183			cpu_wait = r4k_wait;
184		break;
185
186	case CPU_BMIPS5000:
187		cpu_wait = r4k_wait_irqoff;
188		break;
189	case CPU_RM7000:
190		cpu_wait = rm7k_wait_irqoff;
191		break;
192
193	case CPU_PROAPTIV:
194	case CPU_P5600:
195		/*
196		 * Incoming Fast Debug Channel (FDC) data during a wait
197		 * instruction causes the wait never to resume, even if an
198		 * interrupt is received. Avoid using wait at all if FDC data is
199		 * likely to be received.
200		 */
201		if (IS_ENABLED(CONFIG_MIPS_EJTAG_FDC_TTY))
202			break;
203		/* fall through */
204	case CPU_M14KC:
205	case CPU_M14KEC:
206	case CPU_24K:
207	case CPU_34K:
208	case CPU_1004K:
209	case CPU_1074K:
210	case CPU_INTERAPTIV:
211	case CPU_M5150:
212	case CPU_QEMU_GENERIC:
213		cpu_wait = r4k_wait;
214		if (read_c0_config7() & MIPS_CONF7_WII)
215			cpu_wait = r4k_wait_irqoff;
216		break;
217
218	case CPU_74K:
219		cpu_wait = r4k_wait;
220		if ((c->processor_id & 0xff) >= PRID_REV_ENCODE_332(2, 1, 0))
221			cpu_wait = r4k_wait_irqoff;
222		break;
223
224	case CPU_TX49XX:
225		cpu_wait = r4k_wait_irqoff;
226		break;
227	case CPU_ALCHEMY:
228		cpu_wait = au1k_wait;
229		break;
230	case CPU_20KC:
231		/*
232		 * WAIT on Rev1.0 has E1, E2, E3 and E16.
233		 * WAIT on Rev2.0 and Rev3.0 has E16.
234		 * Rev3.1 WAIT is nop, why bother
235		 */
236		if ((c->processor_id & 0xff) <= 0x64)
237			break;
238
239		/*
240		 * Another rev is incremeting c0_count at a reduced clock
241		 * rate while in WAIT mode.  So we basically have the choice
242		 * between using the cp0 timer as clocksource or avoiding
243		 * the WAIT instruction.  Until more details are known,
244		 * disable the use of WAIT for 20Kc entirely.
245		   cpu_wait = r4k_wait;
246		 */
247		break;
248	default:
249		break;
250	}
251}
252
253void arch_cpu_idle(void)
254{
255	if (cpu_wait)
256		cpu_wait();
257	else
258		local_irq_enable();
259}
260
261#ifdef CONFIG_CPU_IDLE
262
263int mips_cpuidle_wait_enter(struct cpuidle_device *dev,
264			    struct cpuidle_driver *drv, int index)
265{
266	arch_cpu_idle();
267	return index;
268}
269
270#endif
v4.10.11
 
  1/*
  2 * MIPS idle loop and WAIT instruction support.
  3 *
  4 * Copyright (C) xxxx  the Anonymous
  5 * Copyright (C) 1994 - 2006 Ralf Baechle
  6 * Copyright (C) 2003, 2004  Maciej W. Rozycki
  7 * Copyright (C) 2001, 2004, 2011, 2012	 MIPS Technologies, Inc.
  8 *
  9 * This program is free software; you can redistribute it and/or
 10 * modify it under the terms of the GNU General Public License
 11 * as published by the Free Software Foundation; either version
 12 * 2 of the License, or (at your option) any later version.
 13 */
 
 14#include <linux/export.h>
 15#include <linux/init.h>
 16#include <linux/irqflags.h>
 17#include <linux/printk.h>
 18#include <linux/sched.h>
 19#include <asm/cpu.h>
 20#include <asm/cpu-info.h>
 21#include <asm/cpu-type.h>
 22#include <asm/idle.h>
 23#include <asm/mipsregs.h>
 24
 25/*
 26 * Not all of the MIPS CPUs have the "wait" instruction available. Moreover,
 27 * the implementation of the "wait" feature differs between CPU families. This
 28 * points to the function that implements CPU specific wait.
 29 * The wait instruction stops the pipeline and reduces the power consumption of
 30 * the CPU very much.
 31 */
 32void (*cpu_wait)(void);
 33EXPORT_SYMBOL(cpu_wait);
 34
 35static void r3081_wait(void)
 36{
 37	unsigned long cfg = read_c0_conf();
 38	write_c0_conf(cfg | R30XX_CONF_HALT);
 39	local_irq_enable();
 40}
 41
 42static void r39xx_wait(void)
 43{
 44	if (!need_resched())
 45		write_c0_conf(read_c0_conf() | TX39_CONF_HALT);
 46	local_irq_enable();
 47}
 48
 49void r4k_wait(void)
 50{
 51	local_irq_enable();
 52	__r4k_wait();
 53}
 54
 55/*
 56 * This variant is preferable as it allows testing need_resched and going to
 57 * sleep depending on the outcome atomically.  Unfortunately the "It is
 58 * implementation-dependent whether the pipeline restarts when a non-enabled
 59 * interrupt is requested" restriction in the MIPS32/MIPS64 architecture makes
 60 * using this version a gamble.
 61 */
 62void r4k_wait_irqoff(void)
 63{
 64	if (!need_resched())
 65		__asm__(
 66		"	.set	push		\n"
 67		"	.set	arch=r4000	\n"
 68		"	wait			\n"
 69		"	.set	pop		\n");
 70	local_irq_enable();
 71}
 72
 73/*
 74 * The RM7000 variant has to handle erratum 38.	 The workaround is to not
 75 * have any pending stores when the WAIT instruction is executed.
 76 */
 77static void rm7k_wait_irqoff(void)
 78{
 79	if (!need_resched())
 80		__asm__(
 81		"	.set	push					\n"
 82		"	.set	arch=r4000				\n"
 83		"	.set	noat					\n"
 84		"	mfc0	$1, $12					\n"
 85		"	sync						\n"
 86		"	mtc0	$1, $12		# stalls until W stage	\n"
 87		"	wait						\n"
 88		"	mtc0	$1, $12		# stalls until W stage	\n"
 89		"	.set	pop					\n");
 90	local_irq_enable();
 91}
 92
 93/*
 94 * Au1 'wait' is only useful when the 32kHz counter is used as timer,
 95 * since coreclock (and the cp0 counter) stops upon executing it. Only an
 96 * interrupt can wake it, so they must be enabled before entering idle modes.
 97 */
 98static void au1k_wait(void)
 99{
100	unsigned long c0status = read_c0_status() | 1;	/* irqs on */
101
102	__asm__(
103	"	.set	arch=r4000			\n"
 
104	"	cache	0x14, 0(%0)		\n"
105	"	cache	0x14, 32(%0)		\n"
106	"	sync				\n"
107	"	mtc0	%1, $12			\n" /* wr c0status */
108	"	wait				\n"
109	"	nop				\n"
110	"	nop				\n"
111	"	nop				\n"
112	"	nop				\n"
113	"	.set	mips0			\n"
114	: : "r" (au1k_wait), "r" (c0status));
115}
116
117static int __initdata nowait;
118
119static int __init wait_disable(char *s)
120{
121	nowait = 1;
122
123	return 1;
124}
125
126__setup("nowait", wait_disable);
127
128void __init check_wait(void)
129{
130	struct cpuinfo_mips *c = &current_cpu_data;
131
132	if (nowait) {
133		printk("Wait instruction disabled.\n");
134		return;
135	}
136
137	/*
138	 * MIPSr6 specifies that masked interrupts should unblock an executing
139	 * wait instruction, and thus that it is safe for us to use
140	 * r4k_wait_irqoff. Yippee!
141	 */
142	if (cpu_has_mips_r6) {
143		cpu_wait = r4k_wait_irqoff;
144		return;
145	}
146
147	switch (current_cpu_type()) {
148	case CPU_R3081:
149	case CPU_R3081E:
150		cpu_wait = r3081_wait;
151		break;
152	case CPU_TX3927:
153		cpu_wait = r39xx_wait;
154		break;
155	case CPU_R4200:
156/*	case CPU_R4300: */
157	case CPU_R4600:
158	case CPU_R4640:
159	case CPU_R4650:
160	case CPU_R4700:
161	case CPU_R5000:
162	case CPU_R5500:
163	case CPU_NEVADA:
164	case CPU_4KC:
165	case CPU_4KEC:
166	case CPU_4KSC:
167	case CPU_5KC:
168	case CPU_5KE:
169	case CPU_25KF:
170	case CPU_PR4450:
171	case CPU_BMIPS3300:
172	case CPU_BMIPS4350:
173	case CPU_BMIPS4380:
174	case CPU_CAVIUM_OCTEON:
175	case CPU_CAVIUM_OCTEON_PLUS:
176	case CPU_CAVIUM_OCTEON2:
177	case CPU_CAVIUM_OCTEON3:
178	case CPU_JZRISC:
179	case CPU_LOONGSON1:
180	case CPU_XLR:
181	case CPU_XLP:
182		cpu_wait = r4k_wait;
183		break;
184	case CPU_LOONGSON3:
185		if ((c->processor_id & PRID_REV_MASK) >= PRID_REV_LOONGSON3A_R2)
186			cpu_wait = r4k_wait;
187		break;
188
189	case CPU_BMIPS5000:
190		cpu_wait = r4k_wait_irqoff;
191		break;
192	case CPU_RM7000:
193		cpu_wait = rm7k_wait_irqoff;
194		break;
195
196	case CPU_PROAPTIV:
197	case CPU_P5600:
198		/*
199		 * Incoming Fast Debug Channel (FDC) data during a wait
200		 * instruction causes the wait never to resume, even if an
201		 * interrupt is received. Avoid using wait at all if FDC data is
202		 * likely to be received.
203		 */
204		if (IS_ENABLED(CONFIG_MIPS_EJTAG_FDC_TTY))
205			break;
206		/* fall through */
207	case CPU_M14KC:
208	case CPU_M14KEC:
209	case CPU_24K:
210	case CPU_34K:
211	case CPU_1004K:
212	case CPU_1074K:
213	case CPU_INTERAPTIV:
214	case CPU_M5150:
215	case CPU_QEMU_GENERIC:
216		cpu_wait = r4k_wait;
217		if (read_c0_config7() & MIPS_CONF7_WII)
218			cpu_wait = r4k_wait_irqoff;
219		break;
220
221	case CPU_74K:
222		cpu_wait = r4k_wait;
223		if ((c->processor_id & 0xff) >= PRID_REV_ENCODE_332(2, 1, 0))
224			cpu_wait = r4k_wait_irqoff;
225		break;
226
227	case CPU_TX49XX:
228		cpu_wait = r4k_wait_irqoff;
229		break;
230	case CPU_ALCHEMY:
231		cpu_wait = au1k_wait;
232		break;
233	case CPU_20KC:
234		/*
235		 * WAIT on Rev1.0 has E1, E2, E3 and E16.
236		 * WAIT on Rev2.0 and Rev3.0 has E16.
237		 * Rev3.1 WAIT is nop, why bother
238		 */
239		if ((c->processor_id & 0xff) <= 0x64)
240			break;
241
242		/*
243		 * Another rev is incremeting c0_count at a reduced clock
244		 * rate while in WAIT mode.  So we basically have the choice
245		 * between using the cp0 timer as clocksource or avoiding
246		 * the WAIT instruction.  Until more details are known,
247		 * disable the use of WAIT for 20Kc entirely.
248		   cpu_wait = r4k_wait;
249		 */
250		break;
251	default:
252		break;
253	}
254}
255
256void arch_cpu_idle(void)
257{
258	if (cpu_wait)
259		cpu_wait();
260	else
261		local_irq_enable();
262}
263
264#ifdef CONFIG_CPU_IDLE
265
266int mips_cpuidle_wait_enter(struct cpuidle_device *dev,
267			    struct cpuidle_driver *drv, int index)
268{
269	arch_cpu_idle();
270	return index;
271}
272
273#endif