Linux Audio

Check our new training course

Loading...
  1/*
  2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
  3 *
  4 * This software is available to you under a choice of one of two
  5 * licenses.  You may choose to be licensed under the terms of the GNU
  6 * General Public License (GPL) Version 2, available from the file
  7 * COPYING in the main directory of this source tree, or the
  8 * OpenIB.org BSD license below:
  9 *
 10 *     Redistribution and use in source and binary forms, with or
 11 *     without modification, are permitted provided that the following
 12 *     conditions are met:
 13 *
 14 *      - Redistributions of source code must retain the above
 15 *        copyright notice, this list of conditions and the following
 16 *        disclaimer.
 17 *
 18 *      - Redistributions in binary form must reproduce the above
 19 *        copyright notice, this list of conditions and the following
 20 *        disclaimer in the documentation and/or other materials
 21 *        provided with the distribution.
 22 *
 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 30 * SOFTWARE.
 31 *
 32 */
 33#include <linux/kernel.h>
 34#include <linux/slab.h>
 35#include <net/sock.h>
 36#include <linux/in.h>
 37#include <linux/export.h>
 38#include <linux/time.h>
 39#include <linux/rds.h>
 40
 41#include "rds.h"
 42
 43void rds_inc_init(struct rds_incoming *inc, struct rds_connection *conn,
 44		 struct in6_addr *saddr)
 45{
 46	refcount_set(&inc->i_refcount, 1);
 47	INIT_LIST_HEAD(&inc->i_item);
 48	inc->i_conn = conn;
 49	inc->i_saddr = *saddr;
 50	inc->i_usercopy.rdma_cookie = 0;
 51	inc->i_usercopy.rx_tstamp = ktime_set(0, 0);
 52
 53	memset(inc->i_rx_lat_trace, 0, sizeof(inc->i_rx_lat_trace));
 54}
 55EXPORT_SYMBOL_GPL(rds_inc_init);
 56
 57void rds_inc_path_init(struct rds_incoming *inc, struct rds_conn_path *cp,
 58		       struct in6_addr  *saddr)
 59{
 60	refcount_set(&inc->i_refcount, 1);
 61	INIT_LIST_HEAD(&inc->i_item);
 62	inc->i_conn = cp->cp_conn;
 63	inc->i_conn_path = cp;
 64	inc->i_saddr = *saddr;
 65	inc->i_usercopy.rdma_cookie = 0;
 66	inc->i_usercopy.rx_tstamp = ktime_set(0, 0);
 
 67}
 68EXPORT_SYMBOL_GPL(rds_inc_path_init);
 69
 70static void rds_inc_addref(struct rds_incoming *inc)
 71{
 72	rdsdebug("addref inc %p ref %d\n", inc, refcount_read(&inc->i_refcount));
 73	refcount_inc(&inc->i_refcount);
 74}
 75
 76void rds_inc_put(struct rds_incoming *inc)
 77{
 78	rdsdebug("put inc %p ref %d\n", inc, refcount_read(&inc->i_refcount));
 79	if (refcount_dec_and_test(&inc->i_refcount)) {
 80		BUG_ON(!list_empty(&inc->i_item));
 81
 82		inc->i_conn->c_trans->inc_free(inc);
 83	}
 84}
 85EXPORT_SYMBOL_GPL(rds_inc_put);
 86
 87static void rds_recv_rcvbuf_delta(struct rds_sock *rs, struct sock *sk,
 88				  struct rds_cong_map *map,
 89				  int delta, __be16 port)
 90{
 91	int now_congested;
 92
 93	if (delta == 0)
 94		return;
 95
 96	rs->rs_rcv_bytes += delta;
 97	if (delta > 0)
 98		rds_stats_add(s_recv_bytes_added_to_socket, delta);
 99	else
100		rds_stats_add(s_recv_bytes_removed_from_socket, -delta);
101
102	/* loop transport doesn't send/recv congestion updates */
103	if (rs->rs_transport->t_type == RDS_TRANS_LOOP)
104		return;
105
106	now_congested = rs->rs_rcv_bytes > rds_sk_rcvbuf(rs);
107
108	rdsdebug("rs %p (%pI6c:%u) recv bytes %d buf %d "
109	  "now_cong %d delta %d\n",
110	  rs, &rs->rs_bound_addr,
111	  ntohs(rs->rs_bound_port), rs->rs_rcv_bytes,
112	  rds_sk_rcvbuf(rs), now_congested, delta);
113
114	/* wasn't -> am congested */
115	if (!rs->rs_congested && now_congested) {
116		rs->rs_congested = 1;
117		rds_cong_set_bit(map, port);
118		rds_cong_queue_updates(map);
119	}
120	/* was -> aren't congested */
121	/* Require more free space before reporting uncongested to prevent
122	   bouncing cong/uncong state too often */
123	else if (rs->rs_congested && (rs->rs_rcv_bytes < (rds_sk_rcvbuf(rs)/2))) {
124		rs->rs_congested = 0;
125		rds_cong_clear_bit(map, port);
126		rds_cong_queue_updates(map);
127	}
128
129	/* do nothing if no change in cong state */
130}
131
132static void rds_conn_peer_gen_update(struct rds_connection *conn,
133				     u32 peer_gen_num)
134{
135	int i;
136	struct rds_message *rm, *tmp;
137	unsigned long flags;
138
139	WARN_ON(conn->c_trans->t_type != RDS_TRANS_TCP);
140	if (peer_gen_num != 0) {
141		if (conn->c_peer_gen_num != 0 &&
142		    peer_gen_num != conn->c_peer_gen_num) {
143			for (i = 0; i < RDS_MPATH_WORKERS; i++) {
144				struct rds_conn_path *cp;
145
146				cp = &conn->c_path[i];
147				spin_lock_irqsave(&cp->cp_lock, flags);
148				cp->cp_next_tx_seq = 1;
149				cp->cp_next_rx_seq = 0;
150				list_for_each_entry_safe(rm, tmp,
151							 &cp->cp_retrans,
152							 m_conn_item) {
153					set_bit(RDS_MSG_FLUSH, &rm->m_flags);
154				}
155				spin_unlock_irqrestore(&cp->cp_lock, flags);
156			}
157		}
158		conn->c_peer_gen_num = peer_gen_num;
159	}
160}
161
162/*
163 * Process all extension headers that come with this message.
164 */
165static void rds_recv_incoming_exthdrs(struct rds_incoming *inc, struct rds_sock *rs)
166{
167	struct rds_header *hdr = &inc->i_hdr;
168	unsigned int pos = 0, type, len;
169	union {
170		struct rds_ext_header_version version;
171		struct rds_ext_header_rdma rdma;
172		struct rds_ext_header_rdma_dest rdma_dest;
173	} buffer;
174
175	while (1) {
176		len = sizeof(buffer);
177		type = rds_message_next_extension(hdr, &pos, &buffer, &len);
178		if (type == RDS_EXTHDR_NONE)
179			break;
180		/* Process extension header here */
181		switch (type) {
182		case RDS_EXTHDR_RDMA:
183			rds_rdma_unuse(rs, be32_to_cpu(buffer.rdma.h_rdma_rkey), 0);
184			break;
185
186		case RDS_EXTHDR_RDMA_DEST:
187			/* We ignore the size for now. We could stash it
188			 * somewhere and use it for error checking. */
189			inc->i_usercopy.rdma_cookie = rds_rdma_make_cookie(
190					be32_to_cpu(buffer.rdma_dest.h_rdma_rkey),
191					be32_to_cpu(buffer.rdma_dest.h_rdma_offset));
192
193			break;
194		}
195	}
196}
197
198static void rds_recv_hs_exthdrs(struct rds_header *hdr,
199				struct rds_connection *conn)
200{
201	unsigned int pos = 0, type, len;
202	union {
203		struct rds_ext_header_version version;
204		u16 rds_npaths;
205		u32 rds_gen_num;
206	} buffer;
207	u32 new_peer_gen_num = 0;
208
209	while (1) {
210		len = sizeof(buffer);
211		type = rds_message_next_extension(hdr, &pos, &buffer, &len);
212		if (type == RDS_EXTHDR_NONE)
213			break;
214		/* Process extension header here */
215		switch (type) {
216		case RDS_EXTHDR_NPATHS:
217			conn->c_npaths = min_t(int, RDS_MPATH_WORKERS,
218					       be16_to_cpu(buffer.rds_npaths));
219			break;
220		case RDS_EXTHDR_GEN_NUM:
221			new_peer_gen_num = be32_to_cpu(buffer.rds_gen_num);
222			break;
223		default:
224			pr_warn_ratelimited("ignoring unknown exthdr type "
225					     "0x%x\n", type);
226		}
227	}
228	/* if RDS_EXTHDR_NPATHS was not found, default to a single-path */
229	conn->c_npaths = max_t(int, conn->c_npaths, 1);
230	conn->c_ping_triggered = 0;
231	rds_conn_peer_gen_update(conn, new_peer_gen_num);
232}
233
234/* rds_start_mprds() will synchronously start multiple paths when appropriate.
235 * The scheme is based on the following rules:
236 *
237 * 1. rds_sendmsg on first connect attempt sends the probe ping, with the
238 *    sender's npaths (s_npaths)
239 * 2. rcvr of probe-ping knows the mprds_paths = min(s_npaths, r_npaths). It
240 *    sends back a probe-pong with r_npaths. After that, if rcvr is the
241 *    smaller ip addr, it starts rds_conn_path_connect_if_down on all
242 *    mprds_paths.
243 * 3. sender gets woken up, and can move to rds_conn_path_connect_if_down.
244 *    If it is the smaller ipaddr, rds_conn_path_connect_if_down can be
245 *    called after reception of the probe-pong on all mprds_paths.
246 *    Otherwise (sender of probe-ping is not the smaller ip addr): just call
247 *    rds_conn_path_connect_if_down on the hashed path. (see rule 4)
248 * 4. rds_connect_worker must only trigger a connection if laddr < faddr.
 
249 * 5. sender may end up queuing the packet on the cp. will get sent out later.
250 *    when connection is completed.
251 */
252static void rds_start_mprds(struct rds_connection *conn)
253{
254	int i;
255	struct rds_conn_path *cp;
256
257	if (conn->c_npaths > 1 &&
258	    rds_addr_cmp(&conn->c_laddr, &conn->c_faddr) < 0) {
259		for (i = 0; i < conn->c_npaths; i++) {
260			cp = &conn->c_path[i];
261			rds_conn_path_connect_if_down(cp);
262		}
263	}
264}
265
266/*
267 * The transport must make sure that this is serialized against other
268 * rx and conn reset on this specific conn.
269 *
270 * We currently assert that only one fragmented message will be sent
271 * down a connection at a time.  This lets us reassemble in the conn
272 * instead of per-flow which means that we don't have to go digging through
273 * flows to tear down partial reassembly progress on conn failure and
274 * we save flow lookup and locking for each frag arrival.  It does mean
275 * that small messages will wait behind large ones.  Fragmenting at all
276 * is only to reduce the memory consumption of pre-posted buffers.
277 *
278 * The caller passes in saddr and daddr instead of us getting it from the
279 * conn.  This lets loopback, who only has one conn for both directions,
280 * tell us which roles the addrs in the conn are playing for this message.
281 */
282void rds_recv_incoming(struct rds_connection *conn, struct in6_addr *saddr,
283		       struct in6_addr *daddr,
284		       struct rds_incoming *inc, gfp_t gfp)
285{
286	struct rds_sock *rs = NULL;
287	struct sock *sk;
288	unsigned long flags;
289	struct rds_conn_path *cp;
290
291	inc->i_conn = conn;
292	inc->i_rx_jiffies = jiffies;
293	if (conn->c_trans->t_mp_capable)
294		cp = inc->i_conn_path;
295	else
296		cp = &conn->c_path[0];
297
298	rdsdebug("conn %p next %llu inc %p seq %llu len %u sport %u dport %u "
299		 "flags 0x%x rx_jiffies %lu\n", conn,
300		 (unsigned long long)cp->cp_next_rx_seq,
301		 inc,
302		 (unsigned long long)be64_to_cpu(inc->i_hdr.h_sequence),
303		 be32_to_cpu(inc->i_hdr.h_len),
304		 be16_to_cpu(inc->i_hdr.h_sport),
305		 be16_to_cpu(inc->i_hdr.h_dport),
306		 inc->i_hdr.h_flags,
307		 inc->i_rx_jiffies);
308
309	/*
310	 * Sequence numbers should only increase.  Messages get their
311	 * sequence number as they're queued in a sending conn.  They
312	 * can be dropped, though, if the sending socket is closed before
313	 * they hit the wire.  So sequence numbers can skip forward
314	 * under normal operation.  They can also drop back in the conn
315	 * failover case as previously sent messages are resent down the
316	 * new instance of a conn.  We drop those, otherwise we have
317	 * to assume that the next valid seq does not come after a
318	 * hole in the fragment stream.
319	 *
320	 * The headers don't give us a way to realize if fragments of
321	 * a message have been dropped.  We assume that frags that arrive
322	 * to a flow are part of the current message on the flow that is
323	 * being reassembled.  This means that senders can't drop messages
324	 * from the sending conn until all their frags are sent.
325	 *
326	 * XXX we could spend more on the wire to get more robust failure
327	 * detection, arguably worth it to avoid data corruption.
328	 */
329	if (be64_to_cpu(inc->i_hdr.h_sequence) < cp->cp_next_rx_seq &&
330	    (inc->i_hdr.h_flags & RDS_FLAG_RETRANSMITTED)) {
331		rds_stats_inc(s_recv_drop_old_seq);
332		goto out;
333	}
334	cp->cp_next_rx_seq = be64_to_cpu(inc->i_hdr.h_sequence) + 1;
335
336	if (rds_sysctl_ping_enable && inc->i_hdr.h_dport == 0) {
337		if (inc->i_hdr.h_sport == 0) {
338			rdsdebug("ignore ping with 0 sport from %pI6c\n",
339				 saddr);
340			goto out;
341		}
342		rds_stats_inc(s_recv_ping);
343		rds_send_pong(cp, inc->i_hdr.h_sport);
344		/* if this is a handshake ping, start multipath if necessary */
345		if (RDS_HS_PROBE(be16_to_cpu(inc->i_hdr.h_sport),
346				 be16_to_cpu(inc->i_hdr.h_dport))) {
347			rds_recv_hs_exthdrs(&inc->i_hdr, cp->cp_conn);
348			rds_start_mprds(cp->cp_conn);
349		}
350		goto out;
351	}
352
353	if (be16_to_cpu(inc->i_hdr.h_dport) ==  RDS_FLAG_PROBE_PORT &&
354	    inc->i_hdr.h_sport == 0) {
355		rds_recv_hs_exthdrs(&inc->i_hdr, cp->cp_conn);
356		/* if this is a handshake pong, start multipath if necessary */
357		rds_start_mprds(cp->cp_conn);
358		wake_up(&cp->cp_conn->c_hs_waitq);
359		goto out;
360	}
361
362	rs = rds_find_bound(daddr, inc->i_hdr.h_dport, conn->c_bound_if);
363	if (!rs) {
364		rds_stats_inc(s_recv_drop_no_sock);
365		goto out;
366	}
367
368	/* Process extension headers */
369	rds_recv_incoming_exthdrs(inc, rs);
370
371	/* We can be racing with rds_release() which marks the socket dead. */
372	sk = rds_rs_to_sk(rs);
373
374	/* serialize with rds_release -> sock_orphan */
375	write_lock_irqsave(&rs->rs_recv_lock, flags);
376	if (!sock_flag(sk, SOCK_DEAD)) {
377		rdsdebug("adding inc %p to rs %p's recv queue\n", inc, rs);
378		rds_stats_inc(s_recv_queued);
379		rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong,
380				      be32_to_cpu(inc->i_hdr.h_len),
381				      inc->i_hdr.h_dport);
382		if (sock_flag(sk, SOCK_RCVTSTAMP))
383			inc->i_usercopy.rx_tstamp = ktime_get_real();
384		rds_inc_addref(inc);
385		inc->i_rx_lat_trace[RDS_MSG_RX_END] = local_clock();
386		list_add_tail(&inc->i_item, &rs->rs_recv_queue);
387		__rds_wake_sk_sleep(sk);
388	} else {
389		rds_stats_inc(s_recv_drop_dead_sock);
390	}
391	write_unlock_irqrestore(&rs->rs_recv_lock, flags);
392
393out:
394	if (rs)
395		rds_sock_put(rs);
396}
397EXPORT_SYMBOL_GPL(rds_recv_incoming);
398
399/*
400 * be very careful here.  This is being called as the condition in
401 * wait_event_*() needs to cope with being called many times.
402 */
403static int rds_next_incoming(struct rds_sock *rs, struct rds_incoming **inc)
404{
405	unsigned long flags;
406
407	if (!*inc) {
408		read_lock_irqsave(&rs->rs_recv_lock, flags);
409		if (!list_empty(&rs->rs_recv_queue)) {
410			*inc = list_entry(rs->rs_recv_queue.next,
411					  struct rds_incoming,
412					  i_item);
413			rds_inc_addref(*inc);
414		}
415		read_unlock_irqrestore(&rs->rs_recv_lock, flags);
416	}
417
418	return *inc != NULL;
419}
420
421static int rds_still_queued(struct rds_sock *rs, struct rds_incoming *inc,
422			    int drop)
423{
424	struct sock *sk = rds_rs_to_sk(rs);
425	int ret = 0;
426	unsigned long flags;
427
428	write_lock_irqsave(&rs->rs_recv_lock, flags);
429	if (!list_empty(&inc->i_item)) {
430		ret = 1;
431		if (drop) {
432			/* XXX make sure this i_conn is reliable */
433			rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong,
434					      -be32_to_cpu(inc->i_hdr.h_len),
435					      inc->i_hdr.h_dport);
436			list_del_init(&inc->i_item);
437			rds_inc_put(inc);
438		}
439	}
440	write_unlock_irqrestore(&rs->rs_recv_lock, flags);
441
442	rdsdebug("inc %p rs %p still %d dropped %d\n", inc, rs, ret, drop);
443	return ret;
444}
445
446/*
447 * Pull errors off the error queue.
448 * If msghdr is NULL, we will just purge the error queue.
449 */
450int rds_notify_queue_get(struct rds_sock *rs, struct msghdr *msghdr)
451{
452	struct rds_notifier *notifier;
453	struct rds_rdma_notify cmsg = { 0 }; /* fill holes with zero */
454	unsigned int count = 0, max_messages = ~0U;
455	unsigned long flags;
456	LIST_HEAD(copy);
457	int err = 0;
458
459
460	/* put_cmsg copies to user space and thus may sleep. We can't do this
461	 * with rs_lock held, so first grab as many notifications as we can stuff
462	 * in the user provided cmsg buffer. We don't try to copy more, to avoid
463	 * losing notifications - except when the buffer is so small that it wouldn't
464	 * even hold a single notification. Then we give him as much of this single
465	 * msg as we can squeeze in, and set MSG_CTRUNC.
466	 */
467	if (msghdr) {
468		max_messages = msghdr->msg_controllen / CMSG_SPACE(sizeof(cmsg));
469		if (!max_messages)
470			max_messages = 1;
471	}
472
473	spin_lock_irqsave(&rs->rs_lock, flags);
474	while (!list_empty(&rs->rs_notify_queue) && count < max_messages) {
475		notifier = list_entry(rs->rs_notify_queue.next,
476				struct rds_notifier, n_list);
477		list_move(&notifier->n_list, &copy);
478		count++;
479	}
480	spin_unlock_irqrestore(&rs->rs_lock, flags);
481
482	if (!count)
483		return 0;
484
485	while (!list_empty(&copy)) {
486		notifier = list_entry(copy.next, struct rds_notifier, n_list);
487
488		if (msghdr) {
489			cmsg.user_token = notifier->n_user_token;
490			cmsg.status = notifier->n_status;
491
492			err = put_cmsg(msghdr, SOL_RDS, RDS_CMSG_RDMA_STATUS,
493				       sizeof(cmsg), &cmsg);
494			if (err)
495				break;
496		}
497
498		list_del_init(&notifier->n_list);
499		kfree(notifier);
500	}
501
502	/* If we bailed out because of an error in put_cmsg,
503	 * we may be left with one or more notifications that we
504	 * didn't process. Return them to the head of the list. */
505	if (!list_empty(&copy)) {
506		spin_lock_irqsave(&rs->rs_lock, flags);
507		list_splice(&copy, &rs->rs_notify_queue);
508		spin_unlock_irqrestore(&rs->rs_lock, flags);
509	}
510
511	return err;
512}
513
514/*
515 * Queue a congestion notification
516 */
517static int rds_notify_cong(struct rds_sock *rs, struct msghdr *msghdr)
518{
519	uint64_t notify = rs->rs_cong_notify;
520	unsigned long flags;
521	int err;
522
523	err = put_cmsg(msghdr, SOL_RDS, RDS_CMSG_CONG_UPDATE,
524			sizeof(notify), &notify);
525	if (err)
526		return err;
527
528	spin_lock_irqsave(&rs->rs_lock, flags);
529	rs->rs_cong_notify &= ~notify;
530	spin_unlock_irqrestore(&rs->rs_lock, flags);
531
532	return 0;
533}
534
535/*
536 * Receive any control messages.
537 */
538static int rds_cmsg_recv(struct rds_incoming *inc, struct msghdr *msg,
539			 struct rds_sock *rs)
540{
541	int ret = 0;
542
543	if (inc->i_usercopy.rdma_cookie) {
544		ret = put_cmsg(msg, SOL_RDS, RDS_CMSG_RDMA_DEST,
545				sizeof(inc->i_usercopy.rdma_cookie),
546				&inc->i_usercopy.rdma_cookie);
547		if (ret)
548			goto out;
549	}
550
551	if ((inc->i_usercopy.rx_tstamp != 0) &&
552	    sock_flag(rds_rs_to_sk(rs), SOCK_RCVTSTAMP)) {
553		struct __kernel_old_timeval tv =
554			ns_to_kernel_old_timeval(inc->i_usercopy.rx_tstamp);
555
556		if (!sock_flag(rds_rs_to_sk(rs), SOCK_TSTAMP_NEW)) {
557			ret = put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
558				       sizeof(tv), &tv);
559		} else {
560			struct __kernel_sock_timeval sk_tv;
561
562			sk_tv.tv_sec = tv.tv_sec;
563			sk_tv.tv_usec = tv.tv_usec;
564
565			ret = put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
566				       sizeof(sk_tv), &sk_tv);
567		}
568
569		if (ret)
570			goto out;
571	}
572
573	if (rs->rs_rx_traces) {
574		struct rds_cmsg_rx_trace t;
575		int i, j;
576
577		memset(&t, 0, sizeof(t));
578		inc->i_rx_lat_trace[RDS_MSG_RX_CMSG] = local_clock();
579		t.rx_traces =  rs->rs_rx_traces;
580		for (i = 0; i < rs->rs_rx_traces; i++) {
581			j = rs->rs_rx_trace[i];
582			t.rx_trace_pos[i] = j;
583			t.rx_trace[i] = inc->i_rx_lat_trace[j + 1] -
584					  inc->i_rx_lat_trace[j];
585		}
586
587		ret = put_cmsg(msg, SOL_RDS, RDS_CMSG_RXPATH_LATENCY,
588			       sizeof(t), &t);
589		if (ret)
590			goto out;
591	}
592
593out:
594	return ret;
595}
596
597static bool rds_recvmsg_zcookie(struct rds_sock *rs, struct msghdr *msg)
598{
599	struct rds_msg_zcopy_queue *q = &rs->rs_zcookie_queue;
600	struct rds_msg_zcopy_info *info = NULL;
601	struct rds_zcopy_cookies *done;
602	unsigned long flags;
603
604	if (!msg->msg_control)
605		return false;
606
607	if (!sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY) ||
608	    msg->msg_controllen < CMSG_SPACE(sizeof(*done)))
609		return false;
610
611	spin_lock_irqsave(&q->lock, flags);
612	if (!list_empty(&q->zcookie_head)) {
613		info = list_entry(q->zcookie_head.next,
614				  struct rds_msg_zcopy_info, rs_zcookie_next);
615		list_del(&info->rs_zcookie_next);
616	}
617	spin_unlock_irqrestore(&q->lock, flags);
618	if (!info)
619		return false;
620	done = &info->zcookies;
621	if (put_cmsg(msg, SOL_RDS, RDS_CMSG_ZCOPY_COMPLETION, sizeof(*done),
622		     done)) {
623		spin_lock_irqsave(&q->lock, flags);
624		list_add(&info->rs_zcookie_next, &q->zcookie_head);
625		spin_unlock_irqrestore(&q->lock, flags);
626		return false;
627	}
628	kfree(info);
629	return true;
630}
631
632int rds_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
633		int msg_flags)
634{
635	struct sock *sk = sock->sk;
636	struct rds_sock *rs = rds_sk_to_rs(sk);
637	long timeo;
638	int ret = 0, nonblock = msg_flags & MSG_DONTWAIT;
639	DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name);
640	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
641	struct rds_incoming *inc = NULL;
642
643	/* udp_recvmsg()->sock_recvtimeo() gets away without locking too.. */
644	timeo = sock_rcvtimeo(sk, nonblock);
645
646	rdsdebug("size %zu flags 0x%x timeo %ld\n", size, msg_flags, timeo);
647
648	if (msg_flags & MSG_OOB)
649		goto out;
650	if (msg_flags & MSG_ERRQUEUE)
651		return sock_recv_errqueue(sk, msg, size, SOL_IP, IP_RECVERR);
652
653	while (1) {
 
654		/* If there are pending notifications, do those - and nothing else */
655		if (!list_empty(&rs->rs_notify_queue)) {
656			ret = rds_notify_queue_get(rs, msg);
657			break;
658		}
659
660		if (rs->rs_cong_notify) {
661			ret = rds_notify_cong(rs, msg);
662			break;
663		}
664
665		if (!rds_next_incoming(rs, &inc)) {
666			if (nonblock) {
667				bool reaped = rds_recvmsg_zcookie(rs, msg);
668
669				ret = reaped ?  0 : -EAGAIN;
670				break;
671			}
672
673			timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
674					(!list_empty(&rs->rs_notify_queue) ||
675					 rs->rs_cong_notify ||
676					 rds_next_incoming(rs, &inc)), timeo);
677			rdsdebug("recvmsg woke inc %p timeo %ld\n", inc,
678				 timeo);
679			if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
680				continue;
681
682			ret = timeo;
683			if (ret == 0)
684				ret = -ETIMEDOUT;
685			break;
686		}
687
688		rdsdebug("copying inc %p from %pI6c:%u to user\n", inc,
689			 &inc->i_conn->c_faddr,
690			 ntohs(inc->i_hdr.h_sport));
 
691		ret = inc->i_conn->c_trans->inc_copy_to_user(inc, &msg->msg_iter);
692		if (ret < 0)
693			break;
694
695		/*
696		 * if the message we just copied isn't at the head of the
697		 * recv queue then someone else raced us to return it, try
698		 * to get the next message.
699		 */
700		if (!rds_still_queued(rs, inc, !(msg_flags & MSG_PEEK))) {
701			rds_inc_put(inc);
702			inc = NULL;
703			rds_stats_inc(s_recv_deliver_raced);
704			iov_iter_revert(&msg->msg_iter, ret);
705			continue;
706		}
707
708		if (ret < be32_to_cpu(inc->i_hdr.h_len)) {
709			if (msg_flags & MSG_TRUNC)
710				ret = be32_to_cpu(inc->i_hdr.h_len);
711			msg->msg_flags |= MSG_TRUNC;
712		}
713
714		if (rds_cmsg_recv(inc, msg, rs)) {
715			ret = -EFAULT;
716			goto out;
717		}
718		rds_recvmsg_zcookie(rs, msg);
719
720		rds_stats_inc(s_recv_delivered);
721
722		if (msg->msg_name) {
723			if (ipv6_addr_v4mapped(&inc->i_saddr)) {
724				sin = (struct sockaddr_in *)msg->msg_name;
725
726				sin->sin_family = AF_INET;
727				sin->sin_port = inc->i_hdr.h_sport;
728				sin->sin_addr.s_addr =
729				    inc->i_saddr.s6_addr32[3];
730				memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
731				msg->msg_namelen = sizeof(*sin);
732			} else {
733				sin6 = (struct sockaddr_in6 *)msg->msg_name;
734
735				sin6->sin6_family = AF_INET6;
736				sin6->sin6_port = inc->i_hdr.h_sport;
737				sin6->sin6_addr = inc->i_saddr;
738				sin6->sin6_flowinfo = 0;
739				sin6->sin6_scope_id = rs->rs_bound_scope_id;
740				msg->msg_namelen = sizeof(*sin6);
741			}
742		}
743		break;
744	}
745
746	if (inc)
747		rds_inc_put(inc);
748
749out:
750	return ret;
751}
752
753/*
754 * The socket is being shut down and we're asked to drop messages that were
755 * queued for recvmsg.  The caller has unbound the socket so the receive path
756 * won't queue any more incoming fragments or messages on the socket.
757 */
758void rds_clear_recv_queue(struct rds_sock *rs)
759{
760	struct sock *sk = rds_rs_to_sk(rs);
761	struct rds_incoming *inc, *tmp;
762	unsigned long flags;
763
764	write_lock_irqsave(&rs->rs_recv_lock, flags);
765	list_for_each_entry_safe(inc, tmp, &rs->rs_recv_queue, i_item) {
766		rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong,
767				      -be32_to_cpu(inc->i_hdr.h_len),
768				      inc->i_hdr.h_dport);
769		list_del_init(&inc->i_item);
770		rds_inc_put(inc);
771	}
772	write_unlock_irqrestore(&rs->rs_recv_lock, flags);
773}
774
775/*
776 * inc->i_saddr isn't used here because it is only set in the receive
777 * path.
778 */
779void rds_inc_info_copy(struct rds_incoming *inc,
780		       struct rds_info_iterator *iter,
781		       __be32 saddr, __be32 daddr, int flip)
782{
783	struct rds_info_message minfo;
784
785	minfo.seq = be64_to_cpu(inc->i_hdr.h_sequence);
786	minfo.len = be32_to_cpu(inc->i_hdr.h_len);
787	minfo.tos = inc->i_conn->c_tos;
788
789	if (flip) {
790		minfo.laddr = daddr;
791		minfo.faddr = saddr;
792		minfo.lport = inc->i_hdr.h_dport;
793		minfo.fport = inc->i_hdr.h_sport;
794	} else {
795		minfo.laddr = saddr;
796		minfo.faddr = daddr;
797		minfo.lport = inc->i_hdr.h_sport;
798		minfo.fport = inc->i_hdr.h_dport;
799	}
800
801	minfo.flags = 0;
802
803	rds_info_copy(iter, &minfo, sizeof(minfo));
804}
805
806#if IS_ENABLED(CONFIG_IPV6)
807void rds6_inc_info_copy(struct rds_incoming *inc,
808			struct rds_info_iterator *iter,
809			struct in6_addr *saddr, struct in6_addr *daddr,
810			int flip)
811{
812	struct rds6_info_message minfo6;
813
814	minfo6.seq = be64_to_cpu(inc->i_hdr.h_sequence);
815	minfo6.len = be32_to_cpu(inc->i_hdr.h_len);
816	minfo6.tos = inc->i_conn->c_tos;
817
818	if (flip) {
819		minfo6.laddr = *daddr;
820		minfo6.faddr = *saddr;
821		minfo6.lport = inc->i_hdr.h_dport;
822		minfo6.fport = inc->i_hdr.h_sport;
823	} else {
824		minfo6.laddr = *saddr;
825		minfo6.faddr = *daddr;
826		minfo6.lport = inc->i_hdr.h_sport;
827		minfo6.fport = inc->i_hdr.h_dport;
828	}
829
830	minfo6.flags = 0;
831
832	rds_info_copy(iter, &minfo6, sizeof(minfo6));
833}
834#endif
  1/*
  2 * Copyright (c) 2006 Oracle.  All rights reserved.
  3 *
  4 * This software is available to you under a choice of one of two
  5 * licenses.  You may choose to be licensed under the terms of the GNU
  6 * General Public License (GPL) Version 2, available from the file
  7 * COPYING in the main directory of this source tree, or the
  8 * OpenIB.org BSD license below:
  9 *
 10 *     Redistribution and use in source and binary forms, with or
 11 *     without modification, are permitted provided that the following
 12 *     conditions are met:
 13 *
 14 *      - Redistributions of source code must retain the above
 15 *        copyright notice, this list of conditions and the following
 16 *        disclaimer.
 17 *
 18 *      - Redistributions in binary form must reproduce the above
 19 *        copyright notice, this list of conditions and the following
 20 *        disclaimer in the documentation and/or other materials
 21 *        provided with the distribution.
 22 *
 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 30 * SOFTWARE.
 31 *
 32 */
 33#include <linux/kernel.h>
 34#include <linux/slab.h>
 35#include <net/sock.h>
 36#include <linux/in.h>
 37#include <linux/export.h>
 38#include <linux/time.h>
 39#include <linux/rds.h>
 40
 41#include "rds.h"
 42
 43void rds_inc_init(struct rds_incoming *inc, struct rds_connection *conn,
 44		  __be32 saddr)
 45{
 46	atomic_set(&inc->i_refcount, 1);
 47	INIT_LIST_HEAD(&inc->i_item);
 48	inc->i_conn = conn;
 49	inc->i_saddr = saddr;
 50	inc->i_rdma_cookie = 0;
 51	inc->i_rx_tstamp.tv_sec = 0;
 52	inc->i_rx_tstamp.tv_usec = 0;
 
 53}
 54EXPORT_SYMBOL_GPL(rds_inc_init);
 55
 56void rds_inc_path_init(struct rds_incoming *inc, struct rds_conn_path *cp,
 57		       __be32 saddr)
 58{
 59	atomic_set(&inc->i_refcount, 1);
 60	INIT_LIST_HEAD(&inc->i_item);
 61	inc->i_conn = cp->cp_conn;
 62	inc->i_conn_path = cp;
 63	inc->i_saddr = saddr;
 64	inc->i_rdma_cookie = 0;
 65	inc->i_rx_tstamp.tv_sec = 0;
 66	inc->i_rx_tstamp.tv_usec = 0;
 67}
 68EXPORT_SYMBOL_GPL(rds_inc_path_init);
 69
 70static void rds_inc_addref(struct rds_incoming *inc)
 71{
 72	rdsdebug("addref inc %p ref %d\n", inc, atomic_read(&inc->i_refcount));
 73	atomic_inc(&inc->i_refcount);
 74}
 75
 76void rds_inc_put(struct rds_incoming *inc)
 77{
 78	rdsdebug("put inc %p ref %d\n", inc, atomic_read(&inc->i_refcount));
 79	if (atomic_dec_and_test(&inc->i_refcount)) {
 80		BUG_ON(!list_empty(&inc->i_item));
 81
 82		inc->i_conn->c_trans->inc_free(inc);
 83	}
 84}
 85EXPORT_SYMBOL_GPL(rds_inc_put);
 86
 87static void rds_recv_rcvbuf_delta(struct rds_sock *rs, struct sock *sk,
 88				  struct rds_cong_map *map,
 89				  int delta, __be16 port)
 90{
 91	int now_congested;
 92
 93	if (delta == 0)
 94		return;
 95
 96	rs->rs_rcv_bytes += delta;
 
 
 
 
 
 
 
 
 
 97	now_congested = rs->rs_rcv_bytes > rds_sk_rcvbuf(rs);
 98
 99	rdsdebug("rs %p (%pI4:%u) recv bytes %d buf %d "
100	  "now_cong %d delta %d\n",
101	  rs, &rs->rs_bound_addr,
102	  ntohs(rs->rs_bound_port), rs->rs_rcv_bytes,
103	  rds_sk_rcvbuf(rs), now_congested, delta);
104
105	/* wasn't -> am congested */
106	if (!rs->rs_congested && now_congested) {
107		rs->rs_congested = 1;
108		rds_cong_set_bit(map, port);
109		rds_cong_queue_updates(map);
110	}
111	/* was -> aren't congested */
112	/* Require more free space before reporting uncongested to prevent
113	   bouncing cong/uncong state too often */
114	else if (rs->rs_congested && (rs->rs_rcv_bytes < (rds_sk_rcvbuf(rs)/2))) {
115		rs->rs_congested = 0;
116		rds_cong_clear_bit(map, port);
117		rds_cong_queue_updates(map);
118	}
119
120	/* do nothing if no change in cong state */
121}
122
123static void rds_conn_peer_gen_update(struct rds_connection *conn,
124				     u32 peer_gen_num)
125{
126	int i;
127	struct rds_message *rm, *tmp;
128	unsigned long flags;
129
130	WARN_ON(conn->c_trans->t_type != RDS_TRANS_TCP);
131	if (peer_gen_num != 0) {
132		if (conn->c_peer_gen_num != 0 &&
133		    peer_gen_num != conn->c_peer_gen_num) {
134			for (i = 0; i < RDS_MPATH_WORKERS; i++) {
135				struct rds_conn_path *cp;
136
137				cp = &conn->c_path[i];
138				spin_lock_irqsave(&cp->cp_lock, flags);
139				cp->cp_next_tx_seq = 1;
140				cp->cp_next_rx_seq = 0;
141				list_for_each_entry_safe(rm, tmp,
142							 &cp->cp_retrans,
143							 m_conn_item) {
144					set_bit(RDS_MSG_FLUSH, &rm->m_flags);
145				}
146				spin_unlock_irqrestore(&cp->cp_lock, flags);
147			}
148		}
149		conn->c_peer_gen_num = peer_gen_num;
150	}
151}
152
153/*
154 * Process all extension headers that come with this message.
155 */
156static void rds_recv_incoming_exthdrs(struct rds_incoming *inc, struct rds_sock *rs)
157{
158	struct rds_header *hdr = &inc->i_hdr;
159	unsigned int pos = 0, type, len;
160	union {
161		struct rds_ext_header_version version;
162		struct rds_ext_header_rdma rdma;
163		struct rds_ext_header_rdma_dest rdma_dest;
164	} buffer;
165
166	while (1) {
167		len = sizeof(buffer);
168		type = rds_message_next_extension(hdr, &pos, &buffer, &len);
169		if (type == RDS_EXTHDR_NONE)
170			break;
171		/* Process extension header here */
172		switch (type) {
173		case RDS_EXTHDR_RDMA:
174			rds_rdma_unuse(rs, be32_to_cpu(buffer.rdma.h_rdma_rkey), 0);
175			break;
176
177		case RDS_EXTHDR_RDMA_DEST:
178			/* We ignore the size for now. We could stash it
179			 * somewhere and use it for error checking. */
180			inc->i_rdma_cookie = rds_rdma_make_cookie(
181					be32_to_cpu(buffer.rdma_dest.h_rdma_rkey),
182					be32_to_cpu(buffer.rdma_dest.h_rdma_offset));
183
184			break;
185		}
186	}
187}
188
189static void rds_recv_hs_exthdrs(struct rds_header *hdr,
190				struct rds_connection *conn)
191{
192	unsigned int pos = 0, type, len;
193	union {
194		struct rds_ext_header_version version;
195		u16 rds_npaths;
196		u32 rds_gen_num;
197	} buffer;
198	u32 new_peer_gen_num = 0;
199
200	while (1) {
201		len = sizeof(buffer);
202		type = rds_message_next_extension(hdr, &pos, &buffer, &len);
203		if (type == RDS_EXTHDR_NONE)
204			break;
205		/* Process extension header here */
206		switch (type) {
207		case RDS_EXTHDR_NPATHS:
208			conn->c_npaths = min_t(int, RDS_MPATH_WORKERS,
209					       buffer.rds_npaths);
210			break;
211		case RDS_EXTHDR_GEN_NUM:
212			new_peer_gen_num = buffer.rds_gen_num;
213			break;
214		default:
215			pr_warn_ratelimited("ignoring unknown exthdr type "
216					     "0x%x\n", type);
217		}
218	}
219	/* if RDS_EXTHDR_NPATHS was not found, default to a single-path */
220	conn->c_npaths = max_t(int, conn->c_npaths, 1);
 
221	rds_conn_peer_gen_update(conn, new_peer_gen_num);
222}
223
224/* rds_start_mprds() will synchronously start multiple paths when appropriate.
225 * The scheme is based on the following rules:
226 *
227 * 1. rds_sendmsg on first connect attempt sends the probe ping, with the
228 *    sender's npaths (s_npaths)
229 * 2. rcvr of probe-ping knows the mprds_paths = min(s_npaths, r_npaths). It
230 *    sends back a probe-pong with r_npaths. After that, if rcvr is the
231 *    smaller ip addr, it starts rds_conn_path_connect_if_down on all
232 *    mprds_paths.
233 * 3. sender gets woken up, and can move to rds_conn_path_connect_if_down.
234 *    If it is the smaller ipaddr, rds_conn_path_connect_if_down can be
235 *    called after reception of the probe-pong on all mprds_paths.
236 *    Otherwise (sender of probe-ping is not the smaller ip addr): just call
237 *    rds_conn_path_connect_if_down on the hashed path. (see rule 4)
238 * 4. when cp_index > 0, rds_connect_worker must only trigger
239 *    a connection if laddr < faddr.
240 * 5. sender may end up queuing the packet on the cp. will get sent out later.
241 *    when connection is completed.
242 */
243static void rds_start_mprds(struct rds_connection *conn)
244{
245	int i;
246	struct rds_conn_path *cp;
247
248	if (conn->c_npaths > 1 && conn->c_laddr < conn->c_faddr) {
249		for (i = 1; i < conn->c_npaths; i++) {
 
250			cp = &conn->c_path[i];
251			rds_conn_path_connect_if_down(cp);
252		}
253	}
254}
255
256/*
257 * The transport must make sure that this is serialized against other
258 * rx and conn reset on this specific conn.
259 *
260 * We currently assert that only one fragmented message will be sent
261 * down a connection at a time.  This lets us reassemble in the conn
262 * instead of per-flow which means that we don't have to go digging through
263 * flows to tear down partial reassembly progress on conn failure and
264 * we save flow lookup and locking for each frag arrival.  It does mean
265 * that small messages will wait behind large ones.  Fragmenting at all
266 * is only to reduce the memory consumption of pre-posted buffers.
267 *
268 * The caller passes in saddr and daddr instead of us getting it from the
269 * conn.  This lets loopback, who only has one conn for both directions,
270 * tell us which roles the addrs in the conn are playing for this message.
271 */
272void rds_recv_incoming(struct rds_connection *conn, __be32 saddr, __be32 daddr,
 
273		       struct rds_incoming *inc, gfp_t gfp)
274{
275	struct rds_sock *rs = NULL;
276	struct sock *sk;
277	unsigned long flags;
278	struct rds_conn_path *cp;
279
280	inc->i_conn = conn;
281	inc->i_rx_jiffies = jiffies;
282	if (conn->c_trans->t_mp_capable)
283		cp = inc->i_conn_path;
284	else
285		cp = &conn->c_path[0];
286
287	rdsdebug("conn %p next %llu inc %p seq %llu len %u sport %u dport %u "
288		 "flags 0x%x rx_jiffies %lu\n", conn,
289		 (unsigned long long)cp->cp_next_rx_seq,
290		 inc,
291		 (unsigned long long)be64_to_cpu(inc->i_hdr.h_sequence),
292		 be32_to_cpu(inc->i_hdr.h_len),
293		 be16_to_cpu(inc->i_hdr.h_sport),
294		 be16_to_cpu(inc->i_hdr.h_dport),
295		 inc->i_hdr.h_flags,
296		 inc->i_rx_jiffies);
297
298	/*
299	 * Sequence numbers should only increase.  Messages get their
300	 * sequence number as they're queued in a sending conn.  They
301	 * can be dropped, though, if the sending socket is closed before
302	 * they hit the wire.  So sequence numbers can skip forward
303	 * under normal operation.  They can also drop back in the conn
304	 * failover case as previously sent messages are resent down the
305	 * new instance of a conn.  We drop those, otherwise we have
306	 * to assume that the next valid seq does not come after a
307	 * hole in the fragment stream.
308	 *
309	 * The headers don't give us a way to realize if fragments of
310	 * a message have been dropped.  We assume that frags that arrive
311	 * to a flow are part of the current message on the flow that is
312	 * being reassembled.  This means that senders can't drop messages
313	 * from the sending conn until all their frags are sent.
314	 *
315	 * XXX we could spend more on the wire to get more robust failure
316	 * detection, arguably worth it to avoid data corruption.
317	 */
318	if (be64_to_cpu(inc->i_hdr.h_sequence) < cp->cp_next_rx_seq &&
319	    (inc->i_hdr.h_flags & RDS_FLAG_RETRANSMITTED)) {
320		rds_stats_inc(s_recv_drop_old_seq);
321		goto out;
322	}
323	cp->cp_next_rx_seq = be64_to_cpu(inc->i_hdr.h_sequence) + 1;
324
325	if (rds_sysctl_ping_enable && inc->i_hdr.h_dport == 0) {
326		if (inc->i_hdr.h_sport == 0) {
327			rdsdebug("ignore ping with 0 sport from 0x%x\n", saddr);
 
328			goto out;
329		}
330		rds_stats_inc(s_recv_ping);
331		rds_send_pong(cp, inc->i_hdr.h_sport);
332		/* if this is a handshake ping, start multipath if necessary */
333		if (RDS_HS_PROBE(inc->i_hdr.h_sport, inc->i_hdr.h_dport)) {
 
334			rds_recv_hs_exthdrs(&inc->i_hdr, cp->cp_conn);
335			rds_start_mprds(cp->cp_conn);
336		}
337		goto out;
338	}
339
340	if (inc->i_hdr.h_dport ==  RDS_FLAG_PROBE_PORT &&
341	    inc->i_hdr.h_sport == 0) {
342		rds_recv_hs_exthdrs(&inc->i_hdr, cp->cp_conn);
343		/* if this is a handshake pong, start multipath if necessary */
344		rds_start_mprds(cp->cp_conn);
345		wake_up(&cp->cp_conn->c_hs_waitq);
346		goto out;
347	}
348
349	rs = rds_find_bound(daddr, inc->i_hdr.h_dport);
350	if (!rs) {
351		rds_stats_inc(s_recv_drop_no_sock);
352		goto out;
353	}
354
355	/* Process extension headers */
356	rds_recv_incoming_exthdrs(inc, rs);
357
358	/* We can be racing with rds_release() which marks the socket dead. */
359	sk = rds_rs_to_sk(rs);
360
361	/* serialize with rds_release -> sock_orphan */
362	write_lock_irqsave(&rs->rs_recv_lock, flags);
363	if (!sock_flag(sk, SOCK_DEAD)) {
364		rdsdebug("adding inc %p to rs %p's recv queue\n", inc, rs);
365		rds_stats_inc(s_recv_queued);
366		rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong,
367				      be32_to_cpu(inc->i_hdr.h_len),
368				      inc->i_hdr.h_dport);
369		if (sock_flag(sk, SOCK_RCVTSTAMP))
370			do_gettimeofday(&inc->i_rx_tstamp);
371		rds_inc_addref(inc);
 
372		list_add_tail(&inc->i_item, &rs->rs_recv_queue);
373		__rds_wake_sk_sleep(sk);
374	} else {
375		rds_stats_inc(s_recv_drop_dead_sock);
376	}
377	write_unlock_irqrestore(&rs->rs_recv_lock, flags);
378
379out:
380	if (rs)
381		rds_sock_put(rs);
382}
383EXPORT_SYMBOL_GPL(rds_recv_incoming);
384
385/*
386 * be very careful here.  This is being called as the condition in
387 * wait_event_*() needs to cope with being called many times.
388 */
389static int rds_next_incoming(struct rds_sock *rs, struct rds_incoming **inc)
390{
391	unsigned long flags;
392
393	if (!*inc) {
394		read_lock_irqsave(&rs->rs_recv_lock, flags);
395		if (!list_empty(&rs->rs_recv_queue)) {
396			*inc = list_entry(rs->rs_recv_queue.next,
397					  struct rds_incoming,
398					  i_item);
399			rds_inc_addref(*inc);
400		}
401		read_unlock_irqrestore(&rs->rs_recv_lock, flags);
402	}
403
404	return *inc != NULL;
405}
406
407static int rds_still_queued(struct rds_sock *rs, struct rds_incoming *inc,
408			    int drop)
409{
410	struct sock *sk = rds_rs_to_sk(rs);
411	int ret = 0;
412	unsigned long flags;
413
414	write_lock_irqsave(&rs->rs_recv_lock, flags);
415	if (!list_empty(&inc->i_item)) {
416		ret = 1;
417		if (drop) {
418			/* XXX make sure this i_conn is reliable */
419			rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong,
420					      -be32_to_cpu(inc->i_hdr.h_len),
421					      inc->i_hdr.h_dport);
422			list_del_init(&inc->i_item);
423			rds_inc_put(inc);
424		}
425	}
426	write_unlock_irqrestore(&rs->rs_recv_lock, flags);
427
428	rdsdebug("inc %p rs %p still %d dropped %d\n", inc, rs, ret, drop);
429	return ret;
430}
431
432/*
433 * Pull errors off the error queue.
434 * If msghdr is NULL, we will just purge the error queue.
435 */
436int rds_notify_queue_get(struct rds_sock *rs, struct msghdr *msghdr)
437{
438	struct rds_notifier *notifier;
439	struct rds_rdma_notify cmsg = { 0 }; /* fill holes with zero */
440	unsigned int count = 0, max_messages = ~0U;
441	unsigned long flags;
442	LIST_HEAD(copy);
443	int err = 0;
444
445
446	/* put_cmsg copies to user space and thus may sleep. We can't do this
447	 * with rs_lock held, so first grab as many notifications as we can stuff
448	 * in the user provided cmsg buffer. We don't try to copy more, to avoid
449	 * losing notifications - except when the buffer is so small that it wouldn't
450	 * even hold a single notification. Then we give him as much of this single
451	 * msg as we can squeeze in, and set MSG_CTRUNC.
452	 */
453	if (msghdr) {
454		max_messages = msghdr->msg_controllen / CMSG_SPACE(sizeof(cmsg));
455		if (!max_messages)
456			max_messages = 1;
457	}
458
459	spin_lock_irqsave(&rs->rs_lock, flags);
460	while (!list_empty(&rs->rs_notify_queue) && count < max_messages) {
461		notifier = list_entry(rs->rs_notify_queue.next,
462				struct rds_notifier, n_list);
463		list_move(&notifier->n_list, &copy);
464		count++;
465	}
466	spin_unlock_irqrestore(&rs->rs_lock, flags);
467
468	if (!count)
469		return 0;
470
471	while (!list_empty(&copy)) {
472		notifier = list_entry(copy.next, struct rds_notifier, n_list);
473
474		if (msghdr) {
475			cmsg.user_token = notifier->n_user_token;
476			cmsg.status = notifier->n_status;
477
478			err = put_cmsg(msghdr, SOL_RDS, RDS_CMSG_RDMA_STATUS,
479				       sizeof(cmsg), &cmsg);
480			if (err)
481				break;
482		}
483
484		list_del_init(&notifier->n_list);
485		kfree(notifier);
486	}
487
488	/* If we bailed out because of an error in put_cmsg,
489	 * we may be left with one or more notifications that we
490	 * didn't process. Return them to the head of the list. */
491	if (!list_empty(&copy)) {
492		spin_lock_irqsave(&rs->rs_lock, flags);
493		list_splice(&copy, &rs->rs_notify_queue);
494		spin_unlock_irqrestore(&rs->rs_lock, flags);
495	}
496
497	return err;
498}
499
500/*
501 * Queue a congestion notification
502 */
503static int rds_notify_cong(struct rds_sock *rs, struct msghdr *msghdr)
504{
505	uint64_t notify = rs->rs_cong_notify;
506	unsigned long flags;
507	int err;
508
509	err = put_cmsg(msghdr, SOL_RDS, RDS_CMSG_CONG_UPDATE,
510			sizeof(notify), &notify);
511	if (err)
512		return err;
513
514	spin_lock_irqsave(&rs->rs_lock, flags);
515	rs->rs_cong_notify &= ~notify;
516	spin_unlock_irqrestore(&rs->rs_lock, flags);
517
518	return 0;
519}
520
521/*
522 * Receive any control messages.
523 */
524static int rds_cmsg_recv(struct rds_incoming *inc, struct msghdr *msg,
525			 struct rds_sock *rs)
526{
527	int ret = 0;
528
529	if (inc->i_rdma_cookie) {
530		ret = put_cmsg(msg, SOL_RDS, RDS_CMSG_RDMA_DEST,
531				sizeof(inc->i_rdma_cookie), &inc->i_rdma_cookie);
 
532		if (ret)
533			return ret;
534	}
535
536	if ((inc->i_rx_tstamp.tv_sec != 0) &&
537	    sock_flag(rds_rs_to_sk(rs), SOCK_RCVTSTAMP)) {
538		ret = put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
539			       sizeof(struct timeval),
540			       &inc->i_rx_tstamp);
 
 
 
 
 
 
 
 
 
 
 
 
 
541		if (ret)
542			return ret;
543	}
544
545	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
546}
547
548int rds_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
549		int msg_flags)
550{
551	struct sock *sk = sock->sk;
552	struct rds_sock *rs = rds_sk_to_rs(sk);
553	long timeo;
554	int ret = 0, nonblock = msg_flags & MSG_DONTWAIT;
 
555	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
556	struct rds_incoming *inc = NULL;
557
558	/* udp_recvmsg()->sock_recvtimeo() gets away without locking too.. */
559	timeo = sock_rcvtimeo(sk, nonblock);
560
561	rdsdebug("size %zu flags 0x%x timeo %ld\n", size, msg_flags, timeo);
562
563	if (msg_flags & MSG_OOB)
564		goto out;
 
 
565
566	while (1) {
567		struct iov_iter save;
568		/* If there are pending notifications, do those - and nothing else */
569		if (!list_empty(&rs->rs_notify_queue)) {
570			ret = rds_notify_queue_get(rs, msg);
571			break;
572		}
573
574		if (rs->rs_cong_notify) {
575			ret = rds_notify_cong(rs, msg);
576			break;
577		}
578
579		if (!rds_next_incoming(rs, &inc)) {
580			if (nonblock) {
581				ret = -EAGAIN;
 
 
582				break;
583			}
584
585			timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
586					(!list_empty(&rs->rs_notify_queue) ||
587					 rs->rs_cong_notify ||
588					 rds_next_incoming(rs, &inc)), timeo);
589			rdsdebug("recvmsg woke inc %p timeo %ld\n", inc,
590				 timeo);
591			if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
592				continue;
593
594			ret = timeo;
595			if (ret == 0)
596				ret = -ETIMEDOUT;
597			break;
598		}
599
600		rdsdebug("copying inc %p from %pI4:%u to user\n", inc,
601			 &inc->i_conn->c_faddr,
602			 ntohs(inc->i_hdr.h_sport));
603		save = msg->msg_iter;
604		ret = inc->i_conn->c_trans->inc_copy_to_user(inc, &msg->msg_iter);
605		if (ret < 0)
606			break;
607
608		/*
609		 * if the message we just copied isn't at the head of the
610		 * recv queue then someone else raced us to return it, try
611		 * to get the next message.
612		 */
613		if (!rds_still_queued(rs, inc, !(msg_flags & MSG_PEEK))) {
614			rds_inc_put(inc);
615			inc = NULL;
616			rds_stats_inc(s_recv_deliver_raced);
617			msg->msg_iter = save;
618			continue;
619		}
620
621		if (ret < be32_to_cpu(inc->i_hdr.h_len)) {
622			if (msg_flags & MSG_TRUNC)
623				ret = be32_to_cpu(inc->i_hdr.h_len);
624			msg->msg_flags |= MSG_TRUNC;
625		}
626
627		if (rds_cmsg_recv(inc, msg, rs)) {
628			ret = -EFAULT;
629			goto out;
630		}
 
631
632		rds_stats_inc(s_recv_delivered);
633
634		if (sin) {
635			sin->sin_family = AF_INET;
636			sin->sin_port = inc->i_hdr.h_sport;
637			sin->sin_addr.s_addr = inc->i_saddr;
638			memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
639			msg->msg_namelen = sizeof(*sin);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
640		}
641		break;
642	}
643
644	if (inc)
645		rds_inc_put(inc);
646
647out:
648	return ret;
649}
650
651/*
652 * The socket is being shut down and we're asked to drop messages that were
653 * queued for recvmsg.  The caller has unbound the socket so the receive path
654 * won't queue any more incoming fragments or messages on the socket.
655 */
656void rds_clear_recv_queue(struct rds_sock *rs)
657{
658	struct sock *sk = rds_rs_to_sk(rs);
659	struct rds_incoming *inc, *tmp;
660	unsigned long flags;
661
662	write_lock_irqsave(&rs->rs_recv_lock, flags);
663	list_for_each_entry_safe(inc, tmp, &rs->rs_recv_queue, i_item) {
664		rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong,
665				      -be32_to_cpu(inc->i_hdr.h_len),
666				      inc->i_hdr.h_dport);
667		list_del_init(&inc->i_item);
668		rds_inc_put(inc);
669	}
670	write_unlock_irqrestore(&rs->rs_recv_lock, flags);
671}
672
673/*
674 * inc->i_saddr isn't used here because it is only set in the receive
675 * path.
676 */
677void rds_inc_info_copy(struct rds_incoming *inc,
678		       struct rds_info_iterator *iter,
679		       __be32 saddr, __be32 daddr, int flip)
680{
681	struct rds_info_message minfo;
682
683	minfo.seq = be64_to_cpu(inc->i_hdr.h_sequence);
684	minfo.len = be32_to_cpu(inc->i_hdr.h_len);
 
685
686	if (flip) {
687		minfo.laddr = daddr;
688		minfo.faddr = saddr;
689		minfo.lport = inc->i_hdr.h_dport;
690		minfo.fport = inc->i_hdr.h_sport;
691	} else {
692		minfo.laddr = saddr;
693		minfo.faddr = daddr;
694		minfo.lport = inc->i_hdr.h_sport;
695		minfo.fport = inc->i_hdr.h_dport;
696	}
697
698	minfo.flags = 0;
699
700	rds_info_copy(iter, &minfo, sizeof(minfo));
701}