Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 */
85
86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87
88#include <asm/unaligned.h>
89#include <linux/capability.h>
90#include <linux/errno.h>
91#include <linux/errqueue.h>
92#include <linux/types.h>
93#include <linux/socket.h>
94#include <linux/in.h>
95#include <linux/kernel.h>
96#include <linux/module.h>
97#include <linux/proc_fs.h>
98#include <linux/seq_file.h>
99#include <linux/sched.h>
100#include <linux/sched/mm.h>
101#include <linux/timer.h>
102#include <linux/string.h>
103#include <linux/sockios.h>
104#include <linux/net.h>
105#include <linux/mm.h>
106#include <linux/slab.h>
107#include <linux/interrupt.h>
108#include <linux/poll.h>
109#include <linux/tcp.h>
110#include <linux/init.h>
111#include <linux/highmem.h>
112#include <linux/user_namespace.h>
113#include <linux/static_key.h>
114#include <linux/memcontrol.h>
115#include <linux/prefetch.h>
116
117#include <linux/uaccess.h>
118
119#include <linux/netdevice.h>
120#include <net/protocol.h>
121#include <linux/skbuff.h>
122#include <net/net_namespace.h>
123#include <net/request_sock.h>
124#include <net/sock.h>
125#include <linux/net_tstamp.h>
126#include <net/xfrm.h>
127#include <linux/ipsec.h>
128#include <net/cls_cgroup.h>
129#include <net/netprio_cgroup.h>
130#include <linux/sock_diag.h>
131
132#include <linux/filter.h>
133#include <net/sock_reuseport.h>
134#include <net/bpf_sk_storage.h>
135
136#include <trace/events/sock.h>
137
138#include <net/tcp.h>
139#include <net/busy_poll.h>
140
141static DEFINE_MUTEX(proto_list_mutex);
142static LIST_HEAD(proto_list);
143
144static void sock_inuse_add(struct net *net, int val);
145
146/**
147 * sk_ns_capable - General socket capability test
148 * @sk: Socket to use a capability on or through
149 * @user_ns: The user namespace of the capability to use
150 * @cap: The capability to use
151 *
152 * Test to see if the opener of the socket had when the socket was
153 * created and the current process has the capability @cap in the user
154 * namespace @user_ns.
155 */
156bool sk_ns_capable(const struct sock *sk,
157 struct user_namespace *user_ns, int cap)
158{
159 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
160 ns_capable(user_ns, cap);
161}
162EXPORT_SYMBOL(sk_ns_capable);
163
164/**
165 * sk_capable - Socket global capability test
166 * @sk: Socket to use a capability on or through
167 * @cap: The global capability to use
168 *
169 * Test to see if the opener of the socket had when the socket was
170 * created and the current process has the capability @cap in all user
171 * namespaces.
172 */
173bool sk_capable(const struct sock *sk, int cap)
174{
175 return sk_ns_capable(sk, &init_user_ns, cap);
176}
177EXPORT_SYMBOL(sk_capable);
178
179/**
180 * sk_net_capable - Network namespace socket capability test
181 * @sk: Socket to use a capability on or through
182 * @cap: The capability to use
183 *
184 * Test to see if the opener of the socket had when the socket was created
185 * and the current process has the capability @cap over the network namespace
186 * the socket is a member of.
187 */
188bool sk_net_capable(const struct sock *sk, int cap)
189{
190 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
191}
192EXPORT_SYMBOL(sk_net_capable);
193
194/*
195 * Each address family might have different locking rules, so we have
196 * one slock key per address family and separate keys for internal and
197 * userspace sockets.
198 */
199static struct lock_class_key af_family_keys[AF_MAX];
200static struct lock_class_key af_family_kern_keys[AF_MAX];
201static struct lock_class_key af_family_slock_keys[AF_MAX];
202static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
203
204/*
205 * Make lock validator output more readable. (we pre-construct these
206 * strings build-time, so that runtime initialization of socket
207 * locks is fast):
208 */
209
210#define _sock_locks(x) \
211 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
212 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
213 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
214 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
215 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
216 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
217 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
218 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
219 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
220 x "27" , x "28" , x "AF_CAN" , \
221 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
222 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
223 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
224 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
225 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
226 x "AF_MAX"
227
228static const char *const af_family_key_strings[AF_MAX+1] = {
229 _sock_locks("sk_lock-")
230};
231static const char *const af_family_slock_key_strings[AF_MAX+1] = {
232 _sock_locks("slock-")
233};
234static const char *const af_family_clock_key_strings[AF_MAX+1] = {
235 _sock_locks("clock-")
236};
237
238static const char *const af_family_kern_key_strings[AF_MAX+1] = {
239 _sock_locks("k-sk_lock-")
240};
241static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
242 _sock_locks("k-slock-")
243};
244static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
245 _sock_locks("k-clock-")
246};
247static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
248 _sock_locks("rlock-")
249};
250static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
251 _sock_locks("wlock-")
252};
253static const char *const af_family_elock_key_strings[AF_MAX+1] = {
254 _sock_locks("elock-")
255};
256
257/*
258 * sk_callback_lock and sk queues locking rules are per-address-family,
259 * so split the lock classes by using a per-AF key:
260 */
261static struct lock_class_key af_callback_keys[AF_MAX];
262static struct lock_class_key af_rlock_keys[AF_MAX];
263static struct lock_class_key af_wlock_keys[AF_MAX];
264static struct lock_class_key af_elock_keys[AF_MAX];
265static struct lock_class_key af_kern_callback_keys[AF_MAX];
266
267/* Run time adjustable parameters. */
268__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
269EXPORT_SYMBOL(sysctl_wmem_max);
270__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
271EXPORT_SYMBOL(sysctl_rmem_max);
272__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
273__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
274
275/* Maximal space eaten by iovec or ancillary data plus some space */
276int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
277EXPORT_SYMBOL(sysctl_optmem_max);
278
279int sysctl_tstamp_allow_data __read_mostly = 1;
280
281DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
282EXPORT_SYMBOL_GPL(memalloc_socks_key);
283
284/**
285 * sk_set_memalloc - sets %SOCK_MEMALLOC
286 * @sk: socket to set it on
287 *
288 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
289 * It's the responsibility of the admin to adjust min_free_kbytes
290 * to meet the requirements
291 */
292void sk_set_memalloc(struct sock *sk)
293{
294 sock_set_flag(sk, SOCK_MEMALLOC);
295 sk->sk_allocation |= __GFP_MEMALLOC;
296 static_branch_inc(&memalloc_socks_key);
297}
298EXPORT_SYMBOL_GPL(sk_set_memalloc);
299
300void sk_clear_memalloc(struct sock *sk)
301{
302 sock_reset_flag(sk, SOCK_MEMALLOC);
303 sk->sk_allocation &= ~__GFP_MEMALLOC;
304 static_branch_dec(&memalloc_socks_key);
305
306 /*
307 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
308 * progress of swapping. SOCK_MEMALLOC may be cleared while
309 * it has rmem allocations due to the last swapfile being deactivated
310 * but there is a risk that the socket is unusable due to exceeding
311 * the rmem limits. Reclaim the reserves and obey rmem limits again.
312 */
313 sk_mem_reclaim(sk);
314}
315EXPORT_SYMBOL_GPL(sk_clear_memalloc);
316
317int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
318{
319 int ret;
320 unsigned int noreclaim_flag;
321
322 /* these should have been dropped before queueing */
323 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
324
325 noreclaim_flag = memalloc_noreclaim_save();
326 ret = sk->sk_backlog_rcv(sk, skb);
327 memalloc_noreclaim_restore(noreclaim_flag);
328
329 return ret;
330}
331EXPORT_SYMBOL(__sk_backlog_rcv);
332
333static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
334{
335 struct __kernel_sock_timeval tv;
336 int size;
337
338 if (timeo == MAX_SCHEDULE_TIMEOUT) {
339 tv.tv_sec = 0;
340 tv.tv_usec = 0;
341 } else {
342 tv.tv_sec = timeo / HZ;
343 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
344 }
345
346 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
347 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
348 *(struct old_timeval32 *)optval = tv32;
349 return sizeof(tv32);
350 }
351
352 if (old_timeval) {
353 struct __kernel_old_timeval old_tv;
354 old_tv.tv_sec = tv.tv_sec;
355 old_tv.tv_usec = tv.tv_usec;
356 *(struct __kernel_old_timeval *)optval = old_tv;
357 size = sizeof(old_tv);
358 } else {
359 *(struct __kernel_sock_timeval *)optval = tv;
360 size = sizeof(tv);
361 }
362
363 return size;
364}
365
366static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen, bool old_timeval)
367{
368 struct __kernel_sock_timeval tv;
369
370 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
371 struct old_timeval32 tv32;
372
373 if (optlen < sizeof(tv32))
374 return -EINVAL;
375
376 if (copy_from_user(&tv32, optval, sizeof(tv32)))
377 return -EFAULT;
378 tv.tv_sec = tv32.tv_sec;
379 tv.tv_usec = tv32.tv_usec;
380 } else if (old_timeval) {
381 struct __kernel_old_timeval old_tv;
382
383 if (optlen < sizeof(old_tv))
384 return -EINVAL;
385 if (copy_from_user(&old_tv, optval, sizeof(old_tv)))
386 return -EFAULT;
387 tv.tv_sec = old_tv.tv_sec;
388 tv.tv_usec = old_tv.tv_usec;
389 } else {
390 if (optlen < sizeof(tv))
391 return -EINVAL;
392 if (copy_from_user(&tv, optval, sizeof(tv)))
393 return -EFAULT;
394 }
395 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
396 return -EDOM;
397
398 if (tv.tv_sec < 0) {
399 static int warned __read_mostly;
400
401 *timeo_p = 0;
402 if (warned < 10 && net_ratelimit()) {
403 warned++;
404 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
405 __func__, current->comm, task_pid_nr(current));
406 }
407 return 0;
408 }
409 *timeo_p = MAX_SCHEDULE_TIMEOUT;
410 if (tv.tv_sec == 0 && tv.tv_usec == 0)
411 return 0;
412 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
413 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
414 return 0;
415}
416
417static void sock_warn_obsolete_bsdism(const char *name)
418{
419 static int warned;
420 static char warncomm[TASK_COMM_LEN];
421 if (strcmp(warncomm, current->comm) && warned < 5) {
422 strcpy(warncomm, current->comm);
423 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
424 warncomm, name);
425 warned++;
426 }
427}
428
429static bool sock_needs_netstamp(const struct sock *sk)
430{
431 switch (sk->sk_family) {
432 case AF_UNSPEC:
433 case AF_UNIX:
434 return false;
435 default:
436 return true;
437 }
438}
439
440static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
441{
442 if (sk->sk_flags & flags) {
443 sk->sk_flags &= ~flags;
444 if (sock_needs_netstamp(sk) &&
445 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
446 net_disable_timestamp();
447 }
448}
449
450
451int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
452{
453 unsigned long flags;
454 struct sk_buff_head *list = &sk->sk_receive_queue;
455
456 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
457 atomic_inc(&sk->sk_drops);
458 trace_sock_rcvqueue_full(sk, skb);
459 return -ENOMEM;
460 }
461
462 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
463 atomic_inc(&sk->sk_drops);
464 return -ENOBUFS;
465 }
466
467 skb->dev = NULL;
468 skb_set_owner_r(skb, sk);
469
470 /* we escape from rcu protected region, make sure we dont leak
471 * a norefcounted dst
472 */
473 skb_dst_force(skb);
474
475 spin_lock_irqsave(&list->lock, flags);
476 sock_skb_set_dropcount(sk, skb);
477 __skb_queue_tail(list, skb);
478 spin_unlock_irqrestore(&list->lock, flags);
479
480 if (!sock_flag(sk, SOCK_DEAD))
481 sk->sk_data_ready(sk);
482 return 0;
483}
484EXPORT_SYMBOL(__sock_queue_rcv_skb);
485
486int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
487{
488 int err;
489
490 err = sk_filter(sk, skb);
491 if (err)
492 return err;
493
494 return __sock_queue_rcv_skb(sk, skb);
495}
496EXPORT_SYMBOL(sock_queue_rcv_skb);
497
498int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
499 const int nested, unsigned int trim_cap, bool refcounted)
500{
501 int rc = NET_RX_SUCCESS;
502
503 if (sk_filter_trim_cap(sk, skb, trim_cap))
504 goto discard_and_relse;
505
506 skb->dev = NULL;
507
508 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
509 atomic_inc(&sk->sk_drops);
510 goto discard_and_relse;
511 }
512 if (nested)
513 bh_lock_sock_nested(sk);
514 else
515 bh_lock_sock(sk);
516 if (!sock_owned_by_user(sk)) {
517 /*
518 * trylock + unlock semantics:
519 */
520 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
521
522 rc = sk_backlog_rcv(sk, skb);
523
524 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
525 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
526 bh_unlock_sock(sk);
527 atomic_inc(&sk->sk_drops);
528 goto discard_and_relse;
529 }
530
531 bh_unlock_sock(sk);
532out:
533 if (refcounted)
534 sock_put(sk);
535 return rc;
536discard_and_relse:
537 kfree_skb(skb);
538 goto out;
539}
540EXPORT_SYMBOL(__sk_receive_skb);
541
542struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
543{
544 struct dst_entry *dst = __sk_dst_get(sk);
545
546 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
547 sk_tx_queue_clear(sk);
548 sk->sk_dst_pending_confirm = 0;
549 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
550 dst_release(dst);
551 return NULL;
552 }
553
554 return dst;
555}
556EXPORT_SYMBOL(__sk_dst_check);
557
558struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
559{
560 struct dst_entry *dst = sk_dst_get(sk);
561
562 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
563 sk_dst_reset(sk);
564 dst_release(dst);
565 return NULL;
566 }
567
568 return dst;
569}
570EXPORT_SYMBOL(sk_dst_check);
571
572static int sock_setbindtodevice_locked(struct sock *sk, int ifindex)
573{
574 int ret = -ENOPROTOOPT;
575#ifdef CONFIG_NETDEVICES
576 struct net *net = sock_net(sk);
577
578 /* Sorry... */
579 ret = -EPERM;
580 if (!ns_capable(net->user_ns, CAP_NET_RAW))
581 goto out;
582
583 ret = -EINVAL;
584 if (ifindex < 0)
585 goto out;
586
587 sk->sk_bound_dev_if = ifindex;
588 if (sk->sk_prot->rehash)
589 sk->sk_prot->rehash(sk);
590 sk_dst_reset(sk);
591
592 ret = 0;
593
594out:
595#endif
596
597 return ret;
598}
599
600static int sock_setbindtodevice(struct sock *sk, char __user *optval,
601 int optlen)
602{
603 int ret = -ENOPROTOOPT;
604#ifdef CONFIG_NETDEVICES
605 struct net *net = sock_net(sk);
606 char devname[IFNAMSIZ];
607 int index;
608
609 ret = -EINVAL;
610 if (optlen < 0)
611 goto out;
612
613 /* Bind this socket to a particular device like "eth0",
614 * as specified in the passed interface name. If the
615 * name is "" or the option length is zero the socket
616 * is not bound.
617 */
618 if (optlen > IFNAMSIZ - 1)
619 optlen = IFNAMSIZ - 1;
620 memset(devname, 0, sizeof(devname));
621
622 ret = -EFAULT;
623 if (copy_from_user(devname, optval, optlen))
624 goto out;
625
626 index = 0;
627 if (devname[0] != '\0') {
628 struct net_device *dev;
629
630 rcu_read_lock();
631 dev = dev_get_by_name_rcu(net, devname);
632 if (dev)
633 index = dev->ifindex;
634 rcu_read_unlock();
635 ret = -ENODEV;
636 if (!dev)
637 goto out;
638 }
639
640 lock_sock(sk);
641 ret = sock_setbindtodevice_locked(sk, index);
642 release_sock(sk);
643
644out:
645#endif
646
647 return ret;
648}
649
650static int sock_getbindtodevice(struct sock *sk, char __user *optval,
651 int __user *optlen, int len)
652{
653 int ret = -ENOPROTOOPT;
654#ifdef CONFIG_NETDEVICES
655 struct net *net = sock_net(sk);
656 char devname[IFNAMSIZ];
657
658 if (sk->sk_bound_dev_if == 0) {
659 len = 0;
660 goto zero;
661 }
662
663 ret = -EINVAL;
664 if (len < IFNAMSIZ)
665 goto out;
666
667 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
668 if (ret)
669 goto out;
670
671 len = strlen(devname) + 1;
672
673 ret = -EFAULT;
674 if (copy_to_user(optval, devname, len))
675 goto out;
676
677zero:
678 ret = -EFAULT;
679 if (put_user(len, optlen))
680 goto out;
681
682 ret = 0;
683
684out:
685#endif
686
687 return ret;
688}
689
690static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
691{
692 if (valbool)
693 sock_set_flag(sk, bit);
694 else
695 sock_reset_flag(sk, bit);
696}
697
698bool sk_mc_loop(struct sock *sk)
699{
700 if (dev_recursion_level())
701 return false;
702 if (!sk)
703 return true;
704 switch (sk->sk_family) {
705 case AF_INET:
706 return inet_sk(sk)->mc_loop;
707#if IS_ENABLED(CONFIG_IPV6)
708 case AF_INET6:
709 return inet6_sk(sk)->mc_loop;
710#endif
711 }
712 WARN_ON(1);
713 return true;
714}
715EXPORT_SYMBOL(sk_mc_loop);
716
717/*
718 * This is meant for all protocols to use and covers goings on
719 * at the socket level. Everything here is generic.
720 */
721
722int sock_setsockopt(struct socket *sock, int level, int optname,
723 char __user *optval, unsigned int optlen)
724{
725 struct sock_txtime sk_txtime;
726 struct sock *sk = sock->sk;
727 int val;
728 int valbool;
729 struct linger ling;
730 int ret = 0;
731
732 /*
733 * Options without arguments
734 */
735
736 if (optname == SO_BINDTODEVICE)
737 return sock_setbindtodevice(sk, optval, optlen);
738
739 if (optlen < sizeof(int))
740 return -EINVAL;
741
742 if (get_user(val, (int __user *)optval))
743 return -EFAULT;
744
745 valbool = val ? 1 : 0;
746
747 lock_sock(sk);
748
749 switch (optname) {
750 case SO_DEBUG:
751 if (val && !capable(CAP_NET_ADMIN))
752 ret = -EACCES;
753 else
754 sock_valbool_flag(sk, SOCK_DBG, valbool);
755 break;
756 case SO_REUSEADDR:
757 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
758 break;
759 case SO_REUSEPORT:
760 sk->sk_reuseport = valbool;
761 break;
762 case SO_TYPE:
763 case SO_PROTOCOL:
764 case SO_DOMAIN:
765 case SO_ERROR:
766 ret = -ENOPROTOOPT;
767 break;
768 case SO_DONTROUTE:
769 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
770 sk_dst_reset(sk);
771 break;
772 case SO_BROADCAST:
773 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
774 break;
775 case SO_SNDBUF:
776 /* Don't error on this BSD doesn't and if you think
777 * about it this is right. Otherwise apps have to
778 * play 'guess the biggest size' games. RCVBUF/SNDBUF
779 * are treated in BSD as hints
780 */
781 val = min_t(u32, val, sysctl_wmem_max);
782set_sndbuf:
783 /* Ensure val * 2 fits into an int, to prevent max_t()
784 * from treating it as a negative value.
785 */
786 val = min_t(int, val, INT_MAX / 2);
787 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
788 WRITE_ONCE(sk->sk_sndbuf,
789 max_t(int, val * 2, SOCK_MIN_SNDBUF));
790 /* Wake up sending tasks if we upped the value. */
791 sk->sk_write_space(sk);
792 break;
793
794 case SO_SNDBUFFORCE:
795 if (!capable(CAP_NET_ADMIN)) {
796 ret = -EPERM;
797 break;
798 }
799
800 /* No negative values (to prevent underflow, as val will be
801 * multiplied by 2).
802 */
803 if (val < 0)
804 val = 0;
805 goto set_sndbuf;
806
807 case SO_RCVBUF:
808 /* Don't error on this BSD doesn't and if you think
809 * about it this is right. Otherwise apps have to
810 * play 'guess the biggest size' games. RCVBUF/SNDBUF
811 * are treated in BSD as hints
812 */
813 val = min_t(u32, val, sysctl_rmem_max);
814set_rcvbuf:
815 /* Ensure val * 2 fits into an int, to prevent max_t()
816 * from treating it as a negative value.
817 */
818 val = min_t(int, val, INT_MAX / 2);
819 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
820 /*
821 * We double it on the way in to account for
822 * "struct sk_buff" etc. overhead. Applications
823 * assume that the SO_RCVBUF setting they make will
824 * allow that much actual data to be received on that
825 * socket.
826 *
827 * Applications are unaware that "struct sk_buff" and
828 * other overheads allocate from the receive buffer
829 * during socket buffer allocation.
830 *
831 * And after considering the possible alternatives,
832 * returning the value we actually used in getsockopt
833 * is the most desirable behavior.
834 */
835 WRITE_ONCE(sk->sk_rcvbuf,
836 max_t(int, val * 2, SOCK_MIN_RCVBUF));
837 break;
838
839 case SO_RCVBUFFORCE:
840 if (!capable(CAP_NET_ADMIN)) {
841 ret = -EPERM;
842 break;
843 }
844
845 /* No negative values (to prevent underflow, as val will be
846 * multiplied by 2).
847 */
848 if (val < 0)
849 val = 0;
850 goto set_rcvbuf;
851
852 case SO_KEEPALIVE:
853 if (sk->sk_prot->keepalive)
854 sk->sk_prot->keepalive(sk, valbool);
855 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
856 break;
857
858 case SO_OOBINLINE:
859 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
860 break;
861
862 case SO_NO_CHECK:
863 sk->sk_no_check_tx = valbool;
864 break;
865
866 case SO_PRIORITY:
867 if ((val >= 0 && val <= 6) ||
868 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
869 sk->sk_priority = val;
870 else
871 ret = -EPERM;
872 break;
873
874 case SO_LINGER:
875 if (optlen < sizeof(ling)) {
876 ret = -EINVAL; /* 1003.1g */
877 break;
878 }
879 if (copy_from_user(&ling, optval, sizeof(ling))) {
880 ret = -EFAULT;
881 break;
882 }
883 if (!ling.l_onoff)
884 sock_reset_flag(sk, SOCK_LINGER);
885 else {
886#if (BITS_PER_LONG == 32)
887 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
888 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
889 else
890#endif
891 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
892 sock_set_flag(sk, SOCK_LINGER);
893 }
894 break;
895
896 case SO_BSDCOMPAT:
897 sock_warn_obsolete_bsdism("setsockopt");
898 break;
899
900 case SO_PASSCRED:
901 if (valbool)
902 set_bit(SOCK_PASSCRED, &sock->flags);
903 else
904 clear_bit(SOCK_PASSCRED, &sock->flags);
905 break;
906
907 case SO_TIMESTAMP_OLD:
908 case SO_TIMESTAMP_NEW:
909 case SO_TIMESTAMPNS_OLD:
910 case SO_TIMESTAMPNS_NEW:
911 if (valbool) {
912 if (optname == SO_TIMESTAMP_NEW || optname == SO_TIMESTAMPNS_NEW)
913 sock_set_flag(sk, SOCK_TSTAMP_NEW);
914 else
915 sock_reset_flag(sk, SOCK_TSTAMP_NEW);
916
917 if (optname == SO_TIMESTAMP_OLD || optname == SO_TIMESTAMP_NEW)
918 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
919 else
920 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
921 sock_set_flag(sk, SOCK_RCVTSTAMP);
922 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
923 } else {
924 sock_reset_flag(sk, SOCK_RCVTSTAMP);
925 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
926 sock_reset_flag(sk, SOCK_TSTAMP_NEW);
927 }
928 break;
929
930 case SO_TIMESTAMPING_NEW:
931 sock_set_flag(sk, SOCK_TSTAMP_NEW);
932 /* fall through */
933 case SO_TIMESTAMPING_OLD:
934 if (val & ~SOF_TIMESTAMPING_MASK) {
935 ret = -EINVAL;
936 break;
937 }
938
939 if (val & SOF_TIMESTAMPING_OPT_ID &&
940 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
941 if (sk->sk_protocol == IPPROTO_TCP &&
942 sk->sk_type == SOCK_STREAM) {
943 if ((1 << sk->sk_state) &
944 (TCPF_CLOSE | TCPF_LISTEN)) {
945 ret = -EINVAL;
946 break;
947 }
948 sk->sk_tskey = tcp_sk(sk)->snd_una;
949 } else {
950 sk->sk_tskey = 0;
951 }
952 }
953
954 if (val & SOF_TIMESTAMPING_OPT_STATS &&
955 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
956 ret = -EINVAL;
957 break;
958 }
959
960 sk->sk_tsflags = val;
961 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
962 sock_enable_timestamp(sk,
963 SOCK_TIMESTAMPING_RX_SOFTWARE);
964 else {
965 if (optname == SO_TIMESTAMPING_NEW)
966 sock_reset_flag(sk, SOCK_TSTAMP_NEW);
967
968 sock_disable_timestamp(sk,
969 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
970 }
971 break;
972
973 case SO_RCVLOWAT:
974 if (val < 0)
975 val = INT_MAX;
976 if (sock->ops->set_rcvlowat)
977 ret = sock->ops->set_rcvlowat(sk, val);
978 else
979 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
980 break;
981
982 case SO_RCVTIMEO_OLD:
983 case SO_RCVTIMEO_NEW:
984 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD);
985 break;
986
987 case SO_SNDTIMEO_OLD:
988 case SO_SNDTIMEO_NEW:
989 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD);
990 break;
991
992 case SO_ATTACH_FILTER:
993 ret = -EINVAL;
994 if (optlen == sizeof(struct sock_fprog)) {
995 struct sock_fprog fprog;
996
997 ret = -EFAULT;
998 if (copy_from_user(&fprog, optval, sizeof(fprog)))
999 break;
1000
1001 ret = sk_attach_filter(&fprog, sk);
1002 }
1003 break;
1004
1005 case SO_ATTACH_BPF:
1006 ret = -EINVAL;
1007 if (optlen == sizeof(u32)) {
1008 u32 ufd;
1009
1010 ret = -EFAULT;
1011 if (copy_from_user(&ufd, optval, sizeof(ufd)))
1012 break;
1013
1014 ret = sk_attach_bpf(ufd, sk);
1015 }
1016 break;
1017
1018 case SO_ATTACH_REUSEPORT_CBPF:
1019 ret = -EINVAL;
1020 if (optlen == sizeof(struct sock_fprog)) {
1021 struct sock_fprog fprog;
1022
1023 ret = -EFAULT;
1024 if (copy_from_user(&fprog, optval, sizeof(fprog)))
1025 break;
1026
1027 ret = sk_reuseport_attach_filter(&fprog, sk);
1028 }
1029 break;
1030
1031 case SO_ATTACH_REUSEPORT_EBPF:
1032 ret = -EINVAL;
1033 if (optlen == sizeof(u32)) {
1034 u32 ufd;
1035
1036 ret = -EFAULT;
1037 if (copy_from_user(&ufd, optval, sizeof(ufd)))
1038 break;
1039
1040 ret = sk_reuseport_attach_bpf(ufd, sk);
1041 }
1042 break;
1043
1044 case SO_DETACH_REUSEPORT_BPF:
1045 ret = reuseport_detach_prog(sk);
1046 break;
1047
1048 case SO_DETACH_FILTER:
1049 ret = sk_detach_filter(sk);
1050 break;
1051
1052 case SO_LOCK_FILTER:
1053 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1054 ret = -EPERM;
1055 else
1056 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1057 break;
1058
1059 case SO_PASSSEC:
1060 if (valbool)
1061 set_bit(SOCK_PASSSEC, &sock->flags);
1062 else
1063 clear_bit(SOCK_PASSSEC, &sock->flags);
1064 break;
1065 case SO_MARK:
1066 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1067 ret = -EPERM;
1068 } else if (val != sk->sk_mark) {
1069 sk->sk_mark = val;
1070 sk_dst_reset(sk);
1071 }
1072 break;
1073
1074 case SO_RXQ_OVFL:
1075 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1076 break;
1077
1078 case SO_WIFI_STATUS:
1079 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1080 break;
1081
1082 case SO_PEEK_OFF:
1083 if (sock->ops->set_peek_off)
1084 ret = sock->ops->set_peek_off(sk, val);
1085 else
1086 ret = -EOPNOTSUPP;
1087 break;
1088
1089 case SO_NOFCS:
1090 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1091 break;
1092
1093 case SO_SELECT_ERR_QUEUE:
1094 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1095 break;
1096
1097#ifdef CONFIG_NET_RX_BUSY_POLL
1098 case SO_BUSY_POLL:
1099 /* allow unprivileged users to decrease the value */
1100 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1101 ret = -EPERM;
1102 else {
1103 if (val < 0)
1104 ret = -EINVAL;
1105 else
1106 sk->sk_ll_usec = val;
1107 }
1108 break;
1109#endif
1110
1111 case SO_MAX_PACING_RATE:
1112 {
1113 unsigned long ulval = (val == ~0U) ? ~0UL : val;
1114
1115 if (sizeof(ulval) != sizeof(val) &&
1116 optlen >= sizeof(ulval) &&
1117 get_user(ulval, (unsigned long __user *)optval)) {
1118 ret = -EFAULT;
1119 break;
1120 }
1121 if (ulval != ~0UL)
1122 cmpxchg(&sk->sk_pacing_status,
1123 SK_PACING_NONE,
1124 SK_PACING_NEEDED);
1125 sk->sk_max_pacing_rate = ulval;
1126 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1127 break;
1128 }
1129 case SO_INCOMING_CPU:
1130 WRITE_ONCE(sk->sk_incoming_cpu, val);
1131 break;
1132
1133 case SO_CNX_ADVICE:
1134 if (val == 1)
1135 dst_negative_advice(sk);
1136 break;
1137
1138 case SO_ZEROCOPY:
1139 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1140 if (!((sk->sk_type == SOCK_STREAM &&
1141 sk->sk_protocol == IPPROTO_TCP) ||
1142 (sk->sk_type == SOCK_DGRAM &&
1143 sk->sk_protocol == IPPROTO_UDP)))
1144 ret = -ENOTSUPP;
1145 } else if (sk->sk_family != PF_RDS) {
1146 ret = -ENOTSUPP;
1147 }
1148 if (!ret) {
1149 if (val < 0 || val > 1)
1150 ret = -EINVAL;
1151 else
1152 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1153 }
1154 break;
1155
1156 case SO_TXTIME:
1157 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1158 ret = -EPERM;
1159 } else if (optlen != sizeof(struct sock_txtime)) {
1160 ret = -EINVAL;
1161 } else if (copy_from_user(&sk_txtime, optval,
1162 sizeof(struct sock_txtime))) {
1163 ret = -EFAULT;
1164 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1165 ret = -EINVAL;
1166 } else {
1167 sock_valbool_flag(sk, SOCK_TXTIME, true);
1168 sk->sk_clockid = sk_txtime.clockid;
1169 sk->sk_txtime_deadline_mode =
1170 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1171 sk->sk_txtime_report_errors =
1172 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1173 }
1174 break;
1175
1176 case SO_BINDTOIFINDEX:
1177 ret = sock_setbindtodevice_locked(sk, val);
1178 break;
1179
1180 default:
1181 ret = -ENOPROTOOPT;
1182 break;
1183 }
1184 release_sock(sk);
1185 return ret;
1186}
1187EXPORT_SYMBOL(sock_setsockopt);
1188
1189
1190static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1191 struct ucred *ucred)
1192{
1193 ucred->pid = pid_vnr(pid);
1194 ucred->uid = ucred->gid = -1;
1195 if (cred) {
1196 struct user_namespace *current_ns = current_user_ns();
1197
1198 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1199 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1200 }
1201}
1202
1203static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1204{
1205 struct user_namespace *user_ns = current_user_ns();
1206 int i;
1207
1208 for (i = 0; i < src->ngroups; i++)
1209 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1210 return -EFAULT;
1211
1212 return 0;
1213}
1214
1215int sock_getsockopt(struct socket *sock, int level, int optname,
1216 char __user *optval, int __user *optlen)
1217{
1218 struct sock *sk = sock->sk;
1219
1220 union {
1221 int val;
1222 u64 val64;
1223 unsigned long ulval;
1224 struct linger ling;
1225 struct old_timeval32 tm32;
1226 struct __kernel_old_timeval tm;
1227 struct __kernel_sock_timeval stm;
1228 struct sock_txtime txtime;
1229 } v;
1230
1231 int lv = sizeof(int);
1232 int len;
1233
1234 if (get_user(len, optlen))
1235 return -EFAULT;
1236 if (len < 0)
1237 return -EINVAL;
1238
1239 memset(&v, 0, sizeof(v));
1240
1241 switch (optname) {
1242 case SO_DEBUG:
1243 v.val = sock_flag(sk, SOCK_DBG);
1244 break;
1245
1246 case SO_DONTROUTE:
1247 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1248 break;
1249
1250 case SO_BROADCAST:
1251 v.val = sock_flag(sk, SOCK_BROADCAST);
1252 break;
1253
1254 case SO_SNDBUF:
1255 v.val = sk->sk_sndbuf;
1256 break;
1257
1258 case SO_RCVBUF:
1259 v.val = sk->sk_rcvbuf;
1260 break;
1261
1262 case SO_REUSEADDR:
1263 v.val = sk->sk_reuse;
1264 break;
1265
1266 case SO_REUSEPORT:
1267 v.val = sk->sk_reuseport;
1268 break;
1269
1270 case SO_KEEPALIVE:
1271 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1272 break;
1273
1274 case SO_TYPE:
1275 v.val = sk->sk_type;
1276 break;
1277
1278 case SO_PROTOCOL:
1279 v.val = sk->sk_protocol;
1280 break;
1281
1282 case SO_DOMAIN:
1283 v.val = sk->sk_family;
1284 break;
1285
1286 case SO_ERROR:
1287 v.val = -sock_error(sk);
1288 if (v.val == 0)
1289 v.val = xchg(&sk->sk_err_soft, 0);
1290 break;
1291
1292 case SO_OOBINLINE:
1293 v.val = sock_flag(sk, SOCK_URGINLINE);
1294 break;
1295
1296 case SO_NO_CHECK:
1297 v.val = sk->sk_no_check_tx;
1298 break;
1299
1300 case SO_PRIORITY:
1301 v.val = sk->sk_priority;
1302 break;
1303
1304 case SO_LINGER:
1305 lv = sizeof(v.ling);
1306 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1307 v.ling.l_linger = sk->sk_lingertime / HZ;
1308 break;
1309
1310 case SO_BSDCOMPAT:
1311 sock_warn_obsolete_bsdism("getsockopt");
1312 break;
1313
1314 case SO_TIMESTAMP_OLD:
1315 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1316 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1317 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1318 break;
1319
1320 case SO_TIMESTAMPNS_OLD:
1321 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1322 break;
1323
1324 case SO_TIMESTAMP_NEW:
1325 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1326 break;
1327
1328 case SO_TIMESTAMPNS_NEW:
1329 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1330 break;
1331
1332 case SO_TIMESTAMPING_OLD:
1333 v.val = sk->sk_tsflags;
1334 break;
1335
1336 case SO_RCVTIMEO_OLD:
1337 case SO_RCVTIMEO_NEW:
1338 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1339 break;
1340
1341 case SO_SNDTIMEO_OLD:
1342 case SO_SNDTIMEO_NEW:
1343 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1344 break;
1345
1346 case SO_RCVLOWAT:
1347 v.val = sk->sk_rcvlowat;
1348 break;
1349
1350 case SO_SNDLOWAT:
1351 v.val = 1;
1352 break;
1353
1354 case SO_PASSCRED:
1355 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1356 break;
1357
1358 case SO_PEERCRED:
1359 {
1360 struct ucred peercred;
1361 if (len > sizeof(peercred))
1362 len = sizeof(peercred);
1363 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1364 if (copy_to_user(optval, &peercred, len))
1365 return -EFAULT;
1366 goto lenout;
1367 }
1368
1369 case SO_PEERGROUPS:
1370 {
1371 int ret, n;
1372
1373 if (!sk->sk_peer_cred)
1374 return -ENODATA;
1375
1376 n = sk->sk_peer_cred->group_info->ngroups;
1377 if (len < n * sizeof(gid_t)) {
1378 len = n * sizeof(gid_t);
1379 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1380 }
1381 len = n * sizeof(gid_t);
1382
1383 ret = groups_to_user((gid_t __user *)optval,
1384 sk->sk_peer_cred->group_info);
1385 if (ret)
1386 return ret;
1387 goto lenout;
1388 }
1389
1390 case SO_PEERNAME:
1391 {
1392 char address[128];
1393
1394 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1395 if (lv < 0)
1396 return -ENOTCONN;
1397 if (lv < len)
1398 return -EINVAL;
1399 if (copy_to_user(optval, address, len))
1400 return -EFAULT;
1401 goto lenout;
1402 }
1403
1404 /* Dubious BSD thing... Probably nobody even uses it, but
1405 * the UNIX standard wants it for whatever reason... -DaveM
1406 */
1407 case SO_ACCEPTCONN:
1408 v.val = sk->sk_state == TCP_LISTEN;
1409 break;
1410
1411 case SO_PASSSEC:
1412 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1413 break;
1414
1415 case SO_PEERSEC:
1416 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1417
1418 case SO_MARK:
1419 v.val = sk->sk_mark;
1420 break;
1421
1422 case SO_RXQ_OVFL:
1423 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1424 break;
1425
1426 case SO_WIFI_STATUS:
1427 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1428 break;
1429
1430 case SO_PEEK_OFF:
1431 if (!sock->ops->set_peek_off)
1432 return -EOPNOTSUPP;
1433
1434 v.val = sk->sk_peek_off;
1435 break;
1436 case SO_NOFCS:
1437 v.val = sock_flag(sk, SOCK_NOFCS);
1438 break;
1439
1440 case SO_BINDTODEVICE:
1441 return sock_getbindtodevice(sk, optval, optlen, len);
1442
1443 case SO_GET_FILTER:
1444 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1445 if (len < 0)
1446 return len;
1447
1448 goto lenout;
1449
1450 case SO_LOCK_FILTER:
1451 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1452 break;
1453
1454 case SO_BPF_EXTENSIONS:
1455 v.val = bpf_tell_extensions();
1456 break;
1457
1458 case SO_SELECT_ERR_QUEUE:
1459 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1460 break;
1461
1462#ifdef CONFIG_NET_RX_BUSY_POLL
1463 case SO_BUSY_POLL:
1464 v.val = sk->sk_ll_usec;
1465 break;
1466#endif
1467
1468 case SO_MAX_PACING_RATE:
1469 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1470 lv = sizeof(v.ulval);
1471 v.ulval = sk->sk_max_pacing_rate;
1472 } else {
1473 /* 32bit version */
1474 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1475 }
1476 break;
1477
1478 case SO_INCOMING_CPU:
1479 v.val = READ_ONCE(sk->sk_incoming_cpu);
1480 break;
1481
1482 case SO_MEMINFO:
1483 {
1484 u32 meminfo[SK_MEMINFO_VARS];
1485
1486 sk_get_meminfo(sk, meminfo);
1487
1488 len = min_t(unsigned int, len, sizeof(meminfo));
1489 if (copy_to_user(optval, &meminfo, len))
1490 return -EFAULT;
1491
1492 goto lenout;
1493 }
1494
1495#ifdef CONFIG_NET_RX_BUSY_POLL
1496 case SO_INCOMING_NAPI_ID:
1497 v.val = READ_ONCE(sk->sk_napi_id);
1498
1499 /* aggregate non-NAPI IDs down to 0 */
1500 if (v.val < MIN_NAPI_ID)
1501 v.val = 0;
1502
1503 break;
1504#endif
1505
1506 case SO_COOKIE:
1507 lv = sizeof(u64);
1508 if (len < lv)
1509 return -EINVAL;
1510 v.val64 = sock_gen_cookie(sk);
1511 break;
1512
1513 case SO_ZEROCOPY:
1514 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1515 break;
1516
1517 case SO_TXTIME:
1518 lv = sizeof(v.txtime);
1519 v.txtime.clockid = sk->sk_clockid;
1520 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1521 SOF_TXTIME_DEADLINE_MODE : 0;
1522 v.txtime.flags |= sk->sk_txtime_report_errors ?
1523 SOF_TXTIME_REPORT_ERRORS : 0;
1524 break;
1525
1526 case SO_BINDTOIFINDEX:
1527 v.val = sk->sk_bound_dev_if;
1528 break;
1529
1530 default:
1531 /* We implement the SO_SNDLOWAT etc to not be settable
1532 * (1003.1g 7).
1533 */
1534 return -ENOPROTOOPT;
1535 }
1536
1537 if (len > lv)
1538 len = lv;
1539 if (copy_to_user(optval, &v, len))
1540 return -EFAULT;
1541lenout:
1542 if (put_user(len, optlen))
1543 return -EFAULT;
1544 return 0;
1545}
1546
1547/*
1548 * Initialize an sk_lock.
1549 *
1550 * (We also register the sk_lock with the lock validator.)
1551 */
1552static inline void sock_lock_init(struct sock *sk)
1553{
1554 if (sk->sk_kern_sock)
1555 sock_lock_init_class_and_name(
1556 sk,
1557 af_family_kern_slock_key_strings[sk->sk_family],
1558 af_family_kern_slock_keys + sk->sk_family,
1559 af_family_kern_key_strings[sk->sk_family],
1560 af_family_kern_keys + sk->sk_family);
1561 else
1562 sock_lock_init_class_and_name(
1563 sk,
1564 af_family_slock_key_strings[sk->sk_family],
1565 af_family_slock_keys + sk->sk_family,
1566 af_family_key_strings[sk->sk_family],
1567 af_family_keys + sk->sk_family);
1568}
1569
1570/*
1571 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1572 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1573 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1574 */
1575static void sock_copy(struct sock *nsk, const struct sock *osk)
1576{
1577#ifdef CONFIG_SECURITY_NETWORK
1578 void *sptr = nsk->sk_security;
1579#endif
1580 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1581
1582 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1583 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1584
1585#ifdef CONFIG_SECURITY_NETWORK
1586 nsk->sk_security = sptr;
1587 security_sk_clone(osk, nsk);
1588#endif
1589}
1590
1591static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1592 int family)
1593{
1594 struct sock *sk;
1595 struct kmem_cache *slab;
1596
1597 slab = prot->slab;
1598 if (slab != NULL) {
1599 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1600 if (!sk)
1601 return sk;
1602 if (want_init_on_alloc(priority))
1603 sk_prot_clear_nulls(sk, prot->obj_size);
1604 } else
1605 sk = kmalloc(prot->obj_size, priority);
1606
1607 if (sk != NULL) {
1608 if (security_sk_alloc(sk, family, priority))
1609 goto out_free;
1610
1611 if (!try_module_get(prot->owner))
1612 goto out_free_sec;
1613 sk_tx_queue_clear(sk);
1614 }
1615
1616 return sk;
1617
1618out_free_sec:
1619 security_sk_free(sk);
1620out_free:
1621 if (slab != NULL)
1622 kmem_cache_free(slab, sk);
1623 else
1624 kfree(sk);
1625 return NULL;
1626}
1627
1628static void sk_prot_free(struct proto *prot, struct sock *sk)
1629{
1630 struct kmem_cache *slab;
1631 struct module *owner;
1632
1633 owner = prot->owner;
1634 slab = prot->slab;
1635
1636 cgroup_sk_free(&sk->sk_cgrp_data);
1637 mem_cgroup_sk_free(sk);
1638 security_sk_free(sk);
1639 if (slab != NULL)
1640 kmem_cache_free(slab, sk);
1641 else
1642 kfree(sk);
1643 module_put(owner);
1644}
1645
1646/**
1647 * sk_alloc - All socket objects are allocated here
1648 * @net: the applicable net namespace
1649 * @family: protocol family
1650 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1651 * @prot: struct proto associated with this new sock instance
1652 * @kern: is this to be a kernel socket?
1653 */
1654struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1655 struct proto *prot, int kern)
1656{
1657 struct sock *sk;
1658
1659 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1660 if (sk) {
1661 sk->sk_family = family;
1662 /*
1663 * See comment in struct sock definition to understand
1664 * why we need sk_prot_creator -acme
1665 */
1666 sk->sk_prot = sk->sk_prot_creator = prot;
1667 sk->sk_kern_sock = kern;
1668 sock_lock_init(sk);
1669 sk->sk_net_refcnt = kern ? 0 : 1;
1670 if (likely(sk->sk_net_refcnt)) {
1671 get_net(net);
1672 sock_inuse_add(net, 1);
1673 }
1674
1675 sock_net_set(sk, net);
1676 refcount_set(&sk->sk_wmem_alloc, 1);
1677
1678 mem_cgroup_sk_alloc(sk);
1679 cgroup_sk_alloc(&sk->sk_cgrp_data);
1680 sock_update_classid(&sk->sk_cgrp_data);
1681 sock_update_netprioidx(&sk->sk_cgrp_data);
1682 }
1683
1684 return sk;
1685}
1686EXPORT_SYMBOL(sk_alloc);
1687
1688/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1689 * grace period. This is the case for UDP sockets and TCP listeners.
1690 */
1691static void __sk_destruct(struct rcu_head *head)
1692{
1693 struct sock *sk = container_of(head, struct sock, sk_rcu);
1694 struct sk_filter *filter;
1695
1696 if (sk->sk_destruct)
1697 sk->sk_destruct(sk);
1698
1699 filter = rcu_dereference_check(sk->sk_filter,
1700 refcount_read(&sk->sk_wmem_alloc) == 0);
1701 if (filter) {
1702 sk_filter_uncharge(sk, filter);
1703 RCU_INIT_POINTER(sk->sk_filter, NULL);
1704 }
1705
1706 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1707
1708#ifdef CONFIG_BPF_SYSCALL
1709 bpf_sk_storage_free(sk);
1710#endif
1711
1712 if (atomic_read(&sk->sk_omem_alloc))
1713 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1714 __func__, atomic_read(&sk->sk_omem_alloc));
1715
1716 if (sk->sk_frag.page) {
1717 put_page(sk->sk_frag.page);
1718 sk->sk_frag.page = NULL;
1719 }
1720
1721 if (sk->sk_peer_cred)
1722 put_cred(sk->sk_peer_cred);
1723 put_pid(sk->sk_peer_pid);
1724 if (likely(sk->sk_net_refcnt))
1725 put_net(sock_net(sk));
1726 sk_prot_free(sk->sk_prot_creator, sk);
1727}
1728
1729void sk_destruct(struct sock *sk)
1730{
1731 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1732
1733 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1734 reuseport_detach_sock(sk);
1735 use_call_rcu = true;
1736 }
1737
1738 if (use_call_rcu)
1739 call_rcu(&sk->sk_rcu, __sk_destruct);
1740 else
1741 __sk_destruct(&sk->sk_rcu);
1742}
1743
1744static void __sk_free(struct sock *sk)
1745{
1746 if (likely(sk->sk_net_refcnt))
1747 sock_inuse_add(sock_net(sk), -1);
1748
1749 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1750 sock_diag_broadcast_destroy(sk);
1751 else
1752 sk_destruct(sk);
1753}
1754
1755void sk_free(struct sock *sk)
1756{
1757 /*
1758 * We subtract one from sk_wmem_alloc and can know if
1759 * some packets are still in some tx queue.
1760 * If not null, sock_wfree() will call __sk_free(sk) later
1761 */
1762 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1763 __sk_free(sk);
1764}
1765EXPORT_SYMBOL(sk_free);
1766
1767static void sk_init_common(struct sock *sk)
1768{
1769 skb_queue_head_init(&sk->sk_receive_queue);
1770 skb_queue_head_init(&sk->sk_write_queue);
1771 skb_queue_head_init(&sk->sk_error_queue);
1772
1773 rwlock_init(&sk->sk_callback_lock);
1774 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1775 af_rlock_keys + sk->sk_family,
1776 af_family_rlock_key_strings[sk->sk_family]);
1777 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1778 af_wlock_keys + sk->sk_family,
1779 af_family_wlock_key_strings[sk->sk_family]);
1780 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1781 af_elock_keys + sk->sk_family,
1782 af_family_elock_key_strings[sk->sk_family]);
1783 lockdep_set_class_and_name(&sk->sk_callback_lock,
1784 af_callback_keys + sk->sk_family,
1785 af_family_clock_key_strings[sk->sk_family]);
1786}
1787
1788/**
1789 * sk_clone_lock - clone a socket, and lock its clone
1790 * @sk: the socket to clone
1791 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1792 *
1793 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1794 */
1795struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1796{
1797 struct sock *newsk;
1798 bool is_charged = true;
1799
1800 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1801 if (newsk != NULL) {
1802 struct sk_filter *filter;
1803
1804 sock_copy(newsk, sk);
1805
1806 newsk->sk_prot_creator = sk->sk_prot;
1807
1808 /* SANITY */
1809 if (likely(newsk->sk_net_refcnt))
1810 get_net(sock_net(newsk));
1811 sk_node_init(&newsk->sk_node);
1812 sock_lock_init(newsk);
1813 bh_lock_sock(newsk);
1814 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1815 newsk->sk_backlog.len = 0;
1816
1817 atomic_set(&newsk->sk_rmem_alloc, 0);
1818 /*
1819 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1820 */
1821 refcount_set(&newsk->sk_wmem_alloc, 1);
1822 atomic_set(&newsk->sk_omem_alloc, 0);
1823 sk_init_common(newsk);
1824
1825 newsk->sk_dst_cache = NULL;
1826 newsk->sk_dst_pending_confirm = 0;
1827 newsk->sk_wmem_queued = 0;
1828 newsk->sk_forward_alloc = 0;
1829 atomic_set(&newsk->sk_drops, 0);
1830 newsk->sk_send_head = NULL;
1831 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1832 atomic_set(&newsk->sk_zckey, 0);
1833
1834 sock_reset_flag(newsk, SOCK_DONE);
1835 mem_cgroup_sk_alloc(newsk);
1836 cgroup_sk_alloc(&newsk->sk_cgrp_data);
1837
1838 rcu_read_lock();
1839 filter = rcu_dereference(sk->sk_filter);
1840 if (filter != NULL)
1841 /* though it's an empty new sock, the charging may fail
1842 * if sysctl_optmem_max was changed between creation of
1843 * original socket and cloning
1844 */
1845 is_charged = sk_filter_charge(newsk, filter);
1846 RCU_INIT_POINTER(newsk->sk_filter, filter);
1847 rcu_read_unlock();
1848
1849 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1850 /* We need to make sure that we don't uncharge the new
1851 * socket if we couldn't charge it in the first place
1852 * as otherwise we uncharge the parent's filter.
1853 */
1854 if (!is_charged)
1855 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1856 sk_free_unlock_clone(newsk);
1857 newsk = NULL;
1858 goto out;
1859 }
1860 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1861
1862 if (bpf_sk_storage_clone(sk, newsk)) {
1863 sk_free_unlock_clone(newsk);
1864 newsk = NULL;
1865 goto out;
1866 }
1867
1868 newsk->sk_err = 0;
1869 newsk->sk_err_soft = 0;
1870 newsk->sk_priority = 0;
1871 newsk->sk_incoming_cpu = raw_smp_processor_id();
1872 if (likely(newsk->sk_net_refcnt))
1873 sock_inuse_add(sock_net(newsk), 1);
1874
1875 /*
1876 * Before updating sk_refcnt, we must commit prior changes to memory
1877 * (Documentation/RCU/rculist_nulls.txt for details)
1878 */
1879 smp_wmb();
1880 refcount_set(&newsk->sk_refcnt, 2);
1881
1882 /*
1883 * Increment the counter in the same struct proto as the master
1884 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1885 * is the same as sk->sk_prot->socks, as this field was copied
1886 * with memcpy).
1887 *
1888 * This _changes_ the previous behaviour, where
1889 * tcp_create_openreq_child always was incrementing the
1890 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1891 * to be taken into account in all callers. -acme
1892 */
1893 sk_refcnt_debug_inc(newsk);
1894 sk_set_socket(newsk, NULL);
1895 RCU_INIT_POINTER(newsk->sk_wq, NULL);
1896
1897 if (newsk->sk_prot->sockets_allocated)
1898 sk_sockets_allocated_inc(newsk);
1899
1900 if (sock_needs_netstamp(sk) &&
1901 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1902 net_enable_timestamp();
1903 }
1904out:
1905 return newsk;
1906}
1907EXPORT_SYMBOL_GPL(sk_clone_lock);
1908
1909void sk_free_unlock_clone(struct sock *sk)
1910{
1911 /* It is still raw copy of parent, so invalidate
1912 * destructor and make plain sk_free() */
1913 sk->sk_destruct = NULL;
1914 bh_unlock_sock(sk);
1915 sk_free(sk);
1916}
1917EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1918
1919void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1920{
1921 u32 max_segs = 1;
1922
1923 sk_dst_set(sk, dst);
1924 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1925 if (sk->sk_route_caps & NETIF_F_GSO)
1926 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1927 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1928 if (sk_can_gso(sk)) {
1929 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1930 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1931 } else {
1932 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1933 sk->sk_gso_max_size = dst->dev->gso_max_size;
1934 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1935 }
1936 }
1937 sk->sk_gso_max_segs = max_segs;
1938}
1939EXPORT_SYMBOL_GPL(sk_setup_caps);
1940
1941/*
1942 * Simple resource managers for sockets.
1943 */
1944
1945
1946/*
1947 * Write buffer destructor automatically called from kfree_skb.
1948 */
1949void sock_wfree(struct sk_buff *skb)
1950{
1951 struct sock *sk = skb->sk;
1952 unsigned int len = skb->truesize;
1953
1954 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1955 /*
1956 * Keep a reference on sk_wmem_alloc, this will be released
1957 * after sk_write_space() call
1958 */
1959 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1960 sk->sk_write_space(sk);
1961 len = 1;
1962 }
1963 /*
1964 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1965 * could not do because of in-flight packets
1966 */
1967 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1968 __sk_free(sk);
1969}
1970EXPORT_SYMBOL(sock_wfree);
1971
1972/* This variant of sock_wfree() is used by TCP,
1973 * since it sets SOCK_USE_WRITE_QUEUE.
1974 */
1975void __sock_wfree(struct sk_buff *skb)
1976{
1977 struct sock *sk = skb->sk;
1978
1979 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1980 __sk_free(sk);
1981}
1982
1983void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1984{
1985 skb_orphan(skb);
1986 skb->sk = sk;
1987#ifdef CONFIG_INET
1988 if (unlikely(!sk_fullsock(sk))) {
1989 skb->destructor = sock_edemux;
1990 sock_hold(sk);
1991 return;
1992 }
1993#endif
1994 skb->destructor = sock_wfree;
1995 skb_set_hash_from_sk(skb, sk);
1996 /*
1997 * We used to take a refcount on sk, but following operation
1998 * is enough to guarantee sk_free() wont free this sock until
1999 * all in-flight packets are completed
2000 */
2001 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2002}
2003EXPORT_SYMBOL(skb_set_owner_w);
2004
2005static bool can_skb_orphan_partial(const struct sk_buff *skb)
2006{
2007#ifdef CONFIG_TLS_DEVICE
2008 /* Drivers depend on in-order delivery for crypto offload,
2009 * partial orphan breaks out-of-order-OK logic.
2010 */
2011 if (skb->decrypted)
2012 return false;
2013#endif
2014 return (skb->destructor == sock_wfree ||
2015 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2016}
2017
2018/* This helper is used by netem, as it can hold packets in its
2019 * delay queue. We want to allow the owner socket to send more
2020 * packets, as if they were already TX completed by a typical driver.
2021 * But we also want to keep skb->sk set because some packet schedulers
2022 * rely on it (sch_fq for example).
2023 */
2024void skb_orphan_partial(struct sk_buff *skb)
2025{
2026 if (skb_is_tcp_pure_ack(skb))
2027 return;
2028
2029 if (can_skb_orphan_partial(skb)) {
2030 struct sock *sk = skb->sk;
2031
2032 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
2033 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
2034 skb->destructor = sock_efree;
2035 }
2036 } else {
2037 skb_orphan(skb);
2038 }
2039}
2040EXPORT_SYMBOL(skb_orphan_partial);
2041
2042/*
2043 * Read buffer destructor automatically called from kfree_skb.
2044 */
2045void sock_rfree(struct sk_buff *skb)
2046{
2047 struct sock *sk = skb->sk;
2048 unsigned int len = skb->truesize;
2049
2050 atomic_sub(len, &sk->sk_rmem_alloc);
2051 sk_mem_uncharge(sk, len);
2052}
2053EXPORT_SYMBOL(sock_rfree);
2054
2055/*
2056 * Buffer destructor for skbs that are not used directly in read or write
2057 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2058 */
2059void sock_efree(struct sk_buff *skb)
2060{
2061 sock_put(skb->sk);
2062}
2063EXPORT_SYMBOL(sock_efree);
2064
2065kuid_t sock_i_uid(struct sock *sk)
2066{
2067 kuid_t uid;
2068
2069 read_lock_bh(&sk->sk_callback_lock);
2070 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2071 read_unlock_bh(&sk->sk_callback_lock);
2072 return uid;
2073}
2074EXPORT_SYMBOL(sock_i_uid);
2075
2076unsigned long sock_i_ino(struct sock *sk)
2077{
2078 unsigned long ino;
2079
2080 read_lock_bh(&sk->sk_callback_lock);
2081 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2082 read_unlock_bh(&sk->sk_callback_lock);
2083 return ino;
2084}
2085EXPORT_SYMBOL(sock_i_ino);
2086
2087/*
2088 * Allocate a skb from the socket's send buffer.
2089 */
2090struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2091 gfp_t priority)
2092{
2093 if (force ||
2094 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2095 struct sk_buff *skb = alloc_skb(size, priority);
2096
2097 if (skb) {
2098 skb_set_owner_w(skb, sk);
2099 return skb;
2100 }
2101 }
2102 return NULL;
2103}
2104EXPORT_SYMBOL(sock_wmalloc);
2105
2106static void sock_ofree(struct sk_buff *skb)
2107{
2108 struct sock *sk = skb->sk;
2109
2110 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2111}
2112
2113struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2114 gfp_t priority)
2115{
2116 struct sk_buff *skb;
2117
2118 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2119 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2120 sysctl_optmem_max)
2121 return NULL;
2122
2123 skb = alloc_skb(size, priority);
2124 if (!skb)
2125 return NULL;
2126
2127 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2128 skb->sk = sk;
2129 skb->destructor = sock_ofree;
2130 return skb;
2131}
2132
2133/*
2134 * Allocate a memory block from the socket's option memory buffer.
2135 */
2136void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2137{
2138 if ((unsigned int)size <= sysctl_optmem_max &&
2139 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2140 void *mem;
2141 /* First do the add, to avoid the race if kmalloc
2142 * might sleep.
2143 */
2144 atomic_add(size, &sk->sk_omem_alloc);
2145 mem = kmalloc(size, priority);
2146 if (mem)
2147 return mem;
2148 atomic_sub(size, &sk->sk_omem_alloc);
2149 }
2150 return NULL;
2151}
2152EXPORT_SYMBOL(sock_kmalloc);
2153
2154/* Free an option memory block. Note, we actually want the inline
2155 * here as this allows gcc to detect the nullify and fold away the
2156 * condition entirely.
2157 */
2158static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2159 const bool nullify)
2160{
2161 if (WARN_ON_ONCE(!mem))
2162 return;
2163 if (nullify)
2164 kzfree(mem);
2165 else
2166 kfree(mem);
2167 atomic_sub(size, &sk->sk_omem_alloc);
2168}
2169
2170void sock_kfree_s(struct sock *sk, void *mem, int size)
2171{
2172 __sock_kfree_s(sk, mem, size, false);
2173}
2174EXPORT_SYMBOL(sock_kfree_s);
2175
2176void sock_kzfree_s(struct sock *sk, void *mem, int size)
2177{
2178 __sock_kfree_s(sk, mem, size, true);
2179}
2180EXPORT_SYMBOL(sock_kzfree_s);
2181
2182/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2183 I think, these locks should be removed for datagram sockets.
2184 */
2185static long sock_wait_for_wmem(struct sock *sk, long timeo)
2186{
2187 DEFINE_WAIT(wait);
2188
2189 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2190 for (;;) {
2191 if (!timeo)
2192 break;
2193 if (signal_pending(current))
2194 break;
2195 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2196 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2197 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2198 break;
2199 if (sk->sk_shutdown & SEND_SHUTDOWN)
2200 break;
2201 if (sk->sk_err)
2202 break;
2203 timeo = schedule_timeout(timeo);
2204 }
2205 finish_wait(sk_sleep(sk), &wait);
2206 return timeo;
2207}
2208
2209
2210/*
2211 * Generic send/receive buffer handlers
2212 */
2213
2214struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2215 unsigned long data_len, int noblock,
2216 int *errcode, int max_page_order)
2217{
2218 struct sk_buff *skb;
2219 long timeo;
2220 int err;
2221
2222 timeo = sock_sndtimeo(sk, noblock);
2223 for (;;) {
2224 err = sock_error(sk);
2225 if (err != 0)
2226 goto failure;
2227
2228 err = -EPIPE;
2229 if (sk->sk_shutdown & SEND_SHUTDOWN)
2230 goto failure;
2231
2232 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2233 break;
2234
2235 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2236 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2237 err = -EAGAIN;
2238 if (!timeo)
2239 goto failure;
2240 if (signal_pending(current))
2241 goto interrupted;
2242 timeo = sock_wait_for_wmem(sk, timeo);
2243 }
2244 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2245 errcode, sk->sk_allocation);
2246 if (skb)
2247 skb_set_owner_w(skb, sk);
2248 return skb;
2249
2250interrupted:
2251 err = sock_intr_errno(timeo);
2252failure:
2253 *errcode = err;
2254 return NULL;
2255}
2256EXPORT_SYMBOL(sock_alloc_send_pskb);
2257
2258struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2259 int noblock, int *errcode)
2260{
2261 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2262}
2263EXPORT_SYMBOL(sock_alloc_send_skb);
2264
2265int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2266 struct sockcm_cookie *sockc)
2267{
2268 u32 tsflags;
2269
2270 switch (cmsg->cmsg_type) {
2271 case SO_MARK:
2272 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2273 return -EPERM;
2274 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2275 return -EINVAL;
2276 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2277 break;
2278 case SO_TIMESTAMPING_OLD:
2279 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2280 return -EINVAL;
2281
2282 tsflags = *(u32 *)CMSG_DATA(cmsg);
2283 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2284 return -EINVAL;
2285
2286 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2287 sockc->tsflags |= tsflags;
2288 break;
2289 case SCM_TXTIME:
2290 if (!sock_flag(sk, SOCK_TXTIME))
2291 return -EINVAL;
2292 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2293 return -EINVAL;
2294 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2295 break;
2296 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2297 case SCM_RIGHTS:
2298 case SCM_CREDENTIALS:
2299 break;
2300 default:
2301 return -EINVAL;
2302 }
2303 return 0;
2304}
2305EXPORT_SYMBOL(__sock_cmsg_send);
2306
2307int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2308 struct sockcm_cookie *sockc)
2309{
2310 struct cmsghdr *cmsg;
2311 int ret;
2312
2313 for_each_cmsghdr(cmsg, msg) {
2314 if (!CMSG_OK(msg, cmsg))
2315 return -EINVAL;
2316 if (cmsg->cmsg_level != SOL_SOCKET)
2317 continue;
2318 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2319 if (ret)
2320 return ret;
2321 }
2322 return 0;
2323}
2324EXPORT_SYMBOL(sock_cmsg_send);
2325
2326static void sk_enter_memory_pressure(struct sock *sk)
2327{
2328 if (!sk->sk_prot->enter_memory_pressure)
2329 return;
2330
2331 sk->sk_prot->enter_memory_pressure(sk);
2332}
2333
2334static void sk_leave_memory_pressure(struct sock *sk)
2335{
2336 if (sk->sk_prot->leave_memory_pressure) {
2337 sk->sk_prot->leave_memory_pressure(sk);
2338 } else {
2339 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2340
2341 if (memory_pressure && READ_ONCE(*memory_pressure))
2342 WRITE_ONCE(*memory_pressure, 0);
2343 }
2344}
2345
2346/* On 32bit arches, an skb frag is limited to 2^15 */
2347#define SKB_FRAG_PAGE_ORDER get_order(32768)
2348DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2349
2350/**
2351 * skb_page_frag_refill - check that a page_frag contains enough room
2352 * @sz: minimum size of the fragment we want to get
2353 * @pfrag: pointer to page_frag
2354 * @gfp: priority for memory allocation
2355 *
2356 * Note: While this allocator tries to use high order pages, there is
2357 * no guarantee that allocations succeed. Therefore, @sz MUST be
2358 * less or equal than PAGE_SIZE.
2359 */
2360bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2361{
2362 if (pfrag->page) {
2363 if (page_ref_count(pfrag->page) == 1) {
2364 pfrag->offset = 0;
2365 return true;
2366 }
2367 if (pfrag->offset + sz <= pfrag->size)
2368 return true;
2369 put_page(pfrag->page);
2370 }
2371
2372 pfrag->offset = 0;
2373 if (SKB_FRAG_PAGE_ORDER &&
2374 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2375 /* Avoid direct reclaim but allow kswapd to wake */
2376 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2377 __GFP_COMP | __GFP_NOWARN |
2378 __GFP_NORETRY,
2379 SKB_FRAG_PAGE_ORDER);
2380 if (likely(pfrag->page)) {
2381 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2382 return true;
2383 }
2384 }
2385 pfrag->page = alloc_page(gfp);
2386 if (likely(pfrag->page)) {
2387 pfrag->size = PAGE_SIZE;
2388 return true;
2389 }
2390 return false;
2391}
2392EXPORT_SYMBOL(skb_page_frag_refill);
2393
2394bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2395{
2396 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2397 return true;
2398
2399 sk_enter_memory_pressure(sk);
2400 sk_stream_moderate_sndbuf(sk);
2401 return false;
2402}
2403EXPORT_SYMBOL(sk_page_frag_refill);
2404
2405static void __lock_sock(struct sock *sk)
2406 __releases(&sk->sk_lock.slock)
2407 __acquires(&sk->sk_lock.slock)
2408{
2409 DEFINE_WAIT(wait);
2410
2411 for (;;) {
2412 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2413 TASK_UNINTERRUPTIBLE);
2414 spin_unlock_bh(&sk->sk_lock.slock);
2415 schedule();
2416 spin_lock_bh(&sk->sk_lock.slock);
2417 if (!sock_owned_by_user(sk))
2418 break;
2419 }
2420 finish_wait(&sk->sk_lock.wq, &wait);
2421}
2422
2423void __release_sock(struct sock *sk)
2424 __releases(&sk->sk_lock.slock)
2425 __acquires(&sk->sk_lock.slock)
2426{
2427 struct sk_buff *skb, *next;
2428
2429 while ((skb = sk->sk_backlog.head) != NULL) {
2430 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2431
2432 spin_unlock_bh(&sk->sk_lock.slock);
2433
2434 do {
2435 next = skb->next;
2436 prefetch(next);
2437 WARN_ON_ONCE(skb_dst_is_noref(skb));
2438 skb_mark_not_on_list(skb);
2439 sk_backlog_rcv(sk, skb);
2440
2441 cond_resched();
2442
2443 skb = next;
2444 } while (skb != NULL);
2445
2446 spin_lock_bh(&sk->sk_lock.slock);
2447 }
2448
2449 /*
2450 * Doing the zeroing here guarantee we can not loop forever
2451 * while a wild producer attempts to flood us.
2452 */
2453 sk->sk_backlog.len = 0;
2454}
2455
2456void __sk_flush_backlog(struct sock *sk)
2457{
2458 spin_lock_bh(&sk->sk_lock.slock);
2459 __release_sock(sk);
2460 spin_unlock_bh(&sk->sk_lock.slock);
2461}
2462
2463/**
2464 * sk_wait_data - wait for data to arrive at sk_receive_queue
2465 * @sk: sock to wait on
2466 * @timeo: for how long
2467 * @skb: last skb seen on sk_receive_queue
2468 *
2469 * Now socket state including sk->sk_err is changed only under lock,
2470 * hence we may omit checks after joining wait queue.
2471 * We check receive queue before schedule() only as optimization;
2472 * it is very likely that release_sock() added new data.
2473 */
2474int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2475{
2476 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2477 int rc;
2478
2479 add_wait_queue(sk_sleep(sk), &wait);
2480 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2481 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2482 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2483 remove_wait_queue(sk_sleep(sk), &wait);
2484 return rc;
2485}
2486EXPORT_SYMBOL(sk_wait_data);
2487
2488/**
2489 * __sk_mem_raise_allocated - increase memory_allocated
2490 * @sk: socket
2491 * @size: memory size to allocate
2492 * @amt: pages to allocate
2493 * @kind: allocation type
2494 *
2495 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2496 */
2497int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2498{
2499 struct proto *prot = sk->sk_prot;
2500 long allocated = sk_memory_allocated_add(sk, amt);
2501 bool charged = true;
2502
2503 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2504 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2505 goto suppress_allocation;
2506
2507 /* Under limit. */
2508 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2509 sk_leave_memory_pressure(sk);
2510 return 1;
2511 }
2512
2513 /* Under pressure. */
2514 if (allocated > sk_prot_mem_limits(sk, 1))
2515 sk_enter_memory_pressure(sk);
2516
2517 /* Over hard limit. */
2518 if (allocated > sk_prot_mem_limits(sk, 2))
2519 goto suppress_allocation;
2520
2521 /* guarantee minimum buffer size under pressure */
2522 if (kind == SK_MEM_RECV) {
2523 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2524 return 1;
2525
2526 } else { /* SK_MEM_SEND */
2527 int wmem0 = sk_get_wmem0(sk, prot);
2528
2529 if (sk->sk_type == SOCK_STREAM) {
2530 if (sk->sk_wmem_queued < wmem0)
2531 return 1;
2532 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2533 return 1;
2534 }
2535 }
2536
2537 if (sk_has_memory_pressure(sk)) {
2538 u64 alloc;
2539
2540 if (!sk_under_memory_pressure(sk))
2541 return 1;
2542 alloc = sk_sockets_allocated_read_positive(sk);
2543 if (sk_prot_mem_limits(sk, 2) > alloc *
2544 sk_mem_pages(sk->sk_wmem_queued +
2545 atomic_read(&sk->sk_rmem_alloc) +
2546 sk->sk_forward_alloc))
2547 return 1;
2548 }
2549
2550suppress_allocation:
2551
2552 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2553 sk_stream_moderate_sndbuf(sk);
2554
2555 /* Fail only if socket is _under_ its sndbuf.
2556 * In this case we cannot block, so that we have to fail.
2557 */
2558 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2559 return 1;
2560 }
2561
2562 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2563 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2564
2565 sk_memory_allocated_sub(sk, amt);
2566
2567 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2568 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2569
2570 return 0;
2571}
2572EXPORT_SYMBOL(__sk_mem_raise_allocated);
2573
2574/**
2575 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2576 * @sk: socket
2577 * @size: memory size to allocate
2578 * @kind: allocation type
2579 *
2580 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2581 * rmem allocation. This function assumes that protocols which have
2582 * memory_pressure use sk_wmem_queued as write buffer accounting.
2583 */
2584int __sk_mem_schedule(struct sock *sk, int size, int kind)
2585{
2586 int ret, amt = sk_mem_pages(size);
2587
2588 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2589 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2590 if (!ret)
2591 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2592 return ret;
2593}
2594EXPORT_SYMBOL(__sk_mem_schedule);
2595
2596/**
2597 * __sk_mem_reduce_allocated - reclaim memory_allocated
2598 * @sk: socket
2599 * @amount: number of quanta
2600 *
2601 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2602 */
2603void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2604{
2605 sk_memory_allocated_sub(sk, amount);
2606
2607 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2608 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2609
2610 if (sk_under_memory_pressure(sk) &&
2611 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2612 sk_leave_memory_pressure(sk);
2613}
2614EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2615
2616/**
2617 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2618 * @sk: socket
2619 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2620 */
2621void __sk_mem_reclaim(struct sock *sk, int amount)
2622{
2623 amount >>= SK_MEM_QUANTUM_SHIFT;
2624 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2625 __sk_mem_reduce_allocated(sk, amount);
2626}
2627EXPORT_SYMBOL(__sk_mem_reclaim);
2628
2629int sk_set_peek_off(struct sock *sk, int val)
2630{
2631 sk->sk_peek_off = val;
2632 return 0;
2633}
2634EXPORT_SYMBOL_GPL(sk_set_peek_off);
2635
2636/*
2637 * Set of default routines for initialising struct proto_ops when
2638 * the protocol does not support a particular function. In certain
2639 * cases where it makes no sense for a protocol to have a "do nothing"
2640 * function, some default processing is provided.
2641 */
2642
2643int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2644{
2645 return -EOPNOTSUPP;
2646}
2647EXPORT_SYMBOL(sock_no_bind);
2648
2649int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2650 int len, int flags)
2651{
2652 return -EOPNOTSUPP;
2653}
2654EXPORT_SYMBOL(sock_no_connect);
2655
2656int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2657{
2658 return -EOPNOTSUPP;
2659}
2660EXPORT_SYMBOL(sock_no_socketpair);
2661
2662int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2663 bool kern)
2664{
2665 return -EOPNOTSUPP;
2666}
2667EXPORT_SYMBOL(sock_no_accept);
2668
2669int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2670 int peer)
2671{
2672 return -EOPNOTSUPP;
2673}
2674EXPORT_SYMBOL(sock_no_getname);
2675
2676int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2677{
2678 return -EOPNOTSUPP;
2679}
2680EXPORT_SYMBOL(sock_no_ioctl);
2681
2682int sock_no_listen(struct socket *sock, int backlog)
2683{
2684 return -EOPNOTSUPP;
2685}
2686EXPORT_SYMBOL(sock_no_listen);
2687
2688int sock_no_shutdown(struct socket *sock, int how)
2689{
2690 return -EOPNOTSUPP;
2691}
2692EXPORT_SYMBOL(sock_no_shutdown);
2693
2694int sock_no_setsockopt(struct socket *sock, int level, int optname,
2695 char __user *optval, unsigned int optlen)
2696{
2697 return -EOPNOTSUPP;
2698}
2699EXPORT_SYMBOL(sock_no_setsockopt);
2700
2701int sock_no_getsockopt(struct socket *sock, int level, int optname,
2702 char __user *optval, int __user *optlen)
2703{
2704 return -EOPNOTSUPP;
2705}
2706EXPORT_SYMBOL(sock_no_getsockopt);
2707
2708int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2709{
2710 return -EOPNOTSUPP;
2711}
2712EXPORT_SYMBOL(sock_no_sendmsg);
2713
2714int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2715{
2716 return -EOPNOTSUPP;
2717}
2718EXPORT_SYMBOL(sock_no_sendmsg_locked);
2719
2720int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2721 int flags)
2722{
2723 return -EOPNOTSUPP;
2724}
2725EXPORT_SYMBOL(sock_no_recvmsg);
2726
2727int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2728{
2729 /* Mirror missing mmap method error code */
2730 return -ENODEV;
2731}
2732EXPORT_SYMBOL(sock_no_mmap);
2733
2734ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2735{
2736 ssize_t res;
2737 struct msghdr msg = {.msg_flags = flags};
2738 struct kvec iov;
2739 char *kaddr = kmap(page);
2740 iov.iov_base = kaddr + offset;
2741 iov.iov_len = size;
2742 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2743 kunmap(page);
2744 return res;
2745}
2746EXPORT_SYMBOL(sock_no_sendpage);
2747
2748ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2749 int offset, size_t size, int flags)
2750{
2751 ssize_t res;
2752 struct msghdr msg = {.msg_flags = flags};
2753 struct kvec iov;
2754 char *kaddr = kmap(page);
2755
2756 iov.iov_base = kaddr + offset;
2757 iov.iov_len = size;
2758 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2759 kunmap(page);
2760 return res;
2761}
2762EXPORT_SYMBOL(sock_no_sendpage_locked);
2763
2764/*
2765 * Default Socket Callbacks
2766 */
2767
2768static void sock_def_wakeup(struct sock *sk)
2769{
2770 struct socket_wq *wq;
2771
2772 rcu_read_lock();
2773 wq = rcu_dereference(sk->sk_wq);
2774 if (skwq_has_sleeper(wq))
2775 wake_up_interruptible_all(&wq->wait);
2776 rcu_read_unlock();
2777}
2778
2779static void sock_def_error_report(struct sock *sk)
2780{
2781 struct socket_wq *wq;
2782
2783 rcu_read_lock();
2784 wq = rcu_dereference(sk->sk_wq);
2785 if (skwq_has_sleeper(wq))
2786 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2787 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2788 rcu_read_unlock();
2789}
2790
2791static void sock_def_readable(struct sock *sk)
2792{
2793 struct socket_wq *wq;
2794
2795 rcu_read_lock();
2796 wq = rcu_dereference(sk->sk_wq);
2797 if (skwq_has_sleeper(wq))
2798 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2799 EPOLLRDNORM | EPOLLRDBAND);
2800 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2801 rcu_read_unlock();
2802}
2803
2804static void sock_def_write_space(struct sock *sk)
2805{
2806 struct socket_wq *wq;
2807
2808 rcu_read_lock();
2809
2810 /* Do not wake up a writer until he can make "significant"
2811 * progress. --DaveM
2812 */
2813 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2814 wq = rcu_dereference(sk->sk_wq);
2815 if (skwq_has_sleeper(wq))
2816 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2817 EPOLLWRNORM | EPOLLWRBAND);
2818
2819 /* Should agree with poll, otherwise some programs break */
2820 if (sock_writeable(sk))
2821 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2822 }
2823
2824 rcu_read_unlock();
2825}
2826
2827static void sock_def_destruct(struct sock *sk)
2828{
2829}
2830
2831void sk_send_sigurg(struct sock *sk)
2832{
2833 if (sk->sk_socket && sk->sk_socket->file)
2834 if (send_sigurg(&sk->sk_socket->file->f_owner))
2835 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2836}
2837EXPORT_SYMBOL(sk_send_sigurg);
2838
2839void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2840 unsigned long expires)
2841{
2842 if (!mod_timer(timer, expires))
2843 sock_hold(sk);
2844}
2845EXPORT_SYMBOL(sk_reset_timer);
2846
2847void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2848{
2849 if (del_timer(timer))
2850 __sock_put(sk);
2851}
2852EXPORT_SYMBOL(sk_stop_timer);
2853
2854void sock_init_data(struct socket *sock, struct sock *sk)
2855{
2856 sk_init_common(sk);
2857 sk->sk_send_head = NULL;
2858
2859 timer_setup(&sk->sk_timer, NULL, 0);
2860
2861 sk->sk_allocation = GFP_KERNEL;
2862 sk->sk_rcvbuf = sysctl_rmem_default;
2863 sk->sk_sndbuf = sysctl_wmem_default;
2864 sk->sk_state = TCP_CLOSE;
2865 sk_set_socket(sk, sock);
2866
2867 sock_set_flag(sk, SOCK_ZAPPED);
2868
2869 if (sock) {
2870 sk->sk_type = sock->type;
2871 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
2872 sock->sk = sk;
2873 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2874 } else {
2875 RCU_INIT_POINTER(sk->sk_wq, NULL);
2876 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2877 }
2878
2879 rwlock_init(&sk->sk_callback_lock);
2880 if (sk->sk_kern_sock)
2881 lockdep_set_class_and_name(
2882 &sk->sk_callback_lock,
2883 af_kern_callback_keys + sk->sk_family,
2884 af_family_kern_clock_key_strings[sk->sk_family]);
2885 else
2886 lockdep_set_class_and_name(
2887 &sk->sk_callback_lock,
2888 af_callback_keys + sk->sk_family,
2889 af_family_clock_key_strings[sk->sk_family]);
2890
2891 sk->sk_state_change = sock_def_wakeup;
2892 sk->sk_data_ready = sock_def_readable;
2893 sk->sk_write_space = sock_def_write_space;
2894 sk->sk_error_report = sock_def_error_report;
2895 sk->sk_destruct = sock_def_destruct;
2896
2897 sk->sk_frag.page = NULL;
2898 sk->sk_frag.offset = 0;
2899 sk->sk_peek_off = -1;
2900
2901 sk->sk_peer_pid = NULL;
2902 sk->sk_peer_cred = NULL;
2903 sk->sk_write_pending = 0;
2904 sk->sk_rcvlowat = 1;
2905 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2906 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2907
2908 sk->sk_stamp = SK_DEFAULT_STAMP;
2909#if BITS_PER_LONG==32
2910 seqlock_init(&sk->sk_stamp_seq);
2911#endif
2912 atomic_set(&sk->sk_zckey, 0);
2913
2914#ifdef CONFIG_NET_RX_BUSY_POLL
2915 sk->sk_napi_id = 0;
2916 sk->sk_ll_usec = sysctl_net_busy_read;
2917#endif
2918
2919 sk->sk_max_pacing_rate = ~0UL;
2920 sk->sk_pacing_rate = ~0UL;
2921 sk->sk_pacing_shift = 10;
2922 sk->sk_incoming_cpu = -1;
2923
2924 sk_rx_queue_clear(sk);
2925 /*
2926 * Before updating sk_refcnt, we must commit prior changes to memory
2927 * (Documentation/RCU/rculist_nulls.txt for details)
2928 */
2929 smp_wmb();
2930 refcount_set(&sk->sk_refcnt, 1);
2931 atomic_set(&sk->sk_drops, 0);
2932}
2933EXPORT_SYMBOL(sock_init_data);
2934
2935void lock_sock_nested(struct sock *sk, int subclass)
2936{
2937 might_sleep();
2938 spin_lock_bh(&sk->sk_lock.slock);
2939 if (sk->sk_lock.owned)
2940 __lock_sock(sk);
2941 sk->sk_lock.owned = 1;
2942 spin_unlock(&sk->sk_lock.slock);
2943 /*
2944 * The sk_lock has mutex_lock() semantics here:
2945 */
2946 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2947 local_bh_enable();
2948}
2949EXPORT_SYMBOL(lock_sock_nested);
2950
2951void release_sock(struct sock *sk)
2952{
2953 spin_lock_bh(&sk->sk_lock.slock);
2954 if (sk->sk_backlog.tail)
2955 __release_sock(sk);
2956
2957 /* Warning : release_cb() might need to release sk ownership,
2958 * ie call sock_release_ownership(sk) before us.
2959 */
2960 if (sk->sk_prot->release_cb)
2961 sk->sk_prot->release_cb(sk);
2962
2963 sock_release_ownership(sk);
2964 if (waitqueue_active(&sk->sk_lock.wq))
2965 wake_up(&sk->sk_lock.wq);
2966 spin_unlock_bh(&sk->sk_lock.slock);
2967}
2968EXPORT_SYMBOL(release_sock);
2969
2970/**
2971 * lock_sock_fast - fast version of lock_sock
2972 * @sk: socket
2973 *
2974 * This version should be used for very small section, where process wont block
2975 * return false if fast path is taken:
2976 *
2977 * sk_lock.slock locked, owned = 0, BH disabled
2978 *
2979 * return true if slow path is taken:
2980 *
2981 * sk_lock.slock unlocked, owned = 1, BH enabled
2982 */
2983bool lock_sock_fast(struct sock *sk)
2984{
2985 might_sleep();
2986 spin_lock_bh(&sk->sk_lock.slock);
2987
2988 if (!sk->sk_lock.owned)
2989 /*
2990 * Note : We must disable BH
2991 */
2992 return false;
2993
2994 __lock_sock(sk);
2995 sk->sk_lock.owned = 1;
2996 spin_unlock(&sk->sk_lock.slock);
2997 /*
2998 * The sk_lock has mutex_lock() semantics here:
2999 */
3000 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3001 local_bh_enable();
3002 return true;
3003}
3004EXPORT_SYMBOL(lock_sock_fast);
3005
3006int sock_gettstamp(struct socket *sock, void __user *userstamp,
3007 bool timeval, bool time32)
3008{
3009 struct sock *sk = sock->sk;
3010 struct timespec64 ts;
3011
3012 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3013 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3014 if (ts.tv_sec == -1)
3015 return -ENOENT;
3016 if (ts.tv_sec == 0) {
3017 ktime_t kt = ktime_get_real();
3018 sock_write_timestamp(sk, kt);;
3019 ts = ktime_to_timespec64(kt);
3020 }
3021
3022 if (timeval)
3023 ts.tv_nsec /= 1000;
3024
3025#ifdef CONFIG_COMPAT_32BIT_TIME
3026 if (time32)
3027 return put_old_timespec32(&ts, userstamp);
3028#endif
3029#ifdef CONFIG_SPARC64
3030 /* beware of padding in sparc64 timeval */
3031 if (timeval && !in_compat_syscall()) {
3032 struct __kernel_old_timeval __user tv = {
3033 .tv_sec = ts.tv_sec,
3034 .tv_usec = ts.tv_nsec,
3035 };
3036 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3037 return -EFAULT;
3038 return 0;
3039 }
3040#endif
3041 return put_timespec64(&ts, userstamp);
3042}
3043EXPORT_SYMBOL(sock_gettstamp);
3044
3045void sock_enable_timestamp(struct sock *sk, int flag)
3046{
3047 if (!sock_flag(sk, flag)) {
3048 unsigned long previous_flags = sk->sk_flags;
3049
3050 sock_set_flag(sk, flag);
3051 /*
3052 * we just set one of the two flags which require net
3053 * time stamping, but time stamping might have been on
3054 * already because of the other one
3055 */
3056 if (sock_needs_netstamp(sk) &&
3057 !(previous_flags & SK_FLAGS_TIMESTAMP))
3058 net_enable_timestamp();
3059 }
3060}
3061
3062int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3063 int level, int type)
3064{
3065 struct sock_exterr_skb *serr;
3066 struct sk_buff *skb;
3067 int copied, err;
3068
3069 err = -EAGAIN;
3070 skb = sock_dequeue_err_skb(sk);
3071 if (skb == NULL)
3072 goto out;
3073
3074 copied = skb->len;
3075 if (copied > len) {
3076 msg->msg_flags |= MSG_TRUNC;
3077 copied = len;
3078 }
3079 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3080 if (err)
3081 goto out_free_skb;
3082
3083 sock_recv_timestamp(msg, sk, skb);
3084
3085 serr = SKB_EXT_ERR(skb);
3086 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3087
3088 msg->msg_flags |= MSG_ERRQUEUE;
3089 err = copied;
3090
3091out_free_skb:
3092 kfree_skb(skb);
3093out:
3094 return err;
3095}
3096EXPORT_SYMBOL(sock_recv_errqueue);
3097
3098/*
3099 * Get a socket option on an socket.
3100 *
3101 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3102 * asynchronous errors should be reported by getsockopt. We assume
3103 * this means if you specify SO_ERROR (otherwise whats the point of it).
3104 */
3105int sock_common_getsockopt(struct socket *sock, int level, int optname,
3106 char __user *optval, int __user *optlen)
3107{
3108 struct sock *sk = sock->sk;
3109
3110 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3111}
3112EXPORT_SYMBOL(sock_common_getsockopt);
3113
3114#ifdef CONFIG_COMPAT
3115int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3116 char __user *optval, int __user *optlen)
3117{
3118 struct sock *sk = sock->sk;
3119
3120 if (sk->sk_prot->compat_getsockopt != NULL)
3121 return sk->sk_prot->compat_getsockopt(sk, level, optname,
3122 optval, optlen);
3123 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3124}
3125EXPORT_SYMBOL(compat_sock_common_getsockopt);
3126#endif
3127
3128int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3129 int flags)
3130{
3131 struct sock *sk = sock->sk;
3132 int addr_len = 0;
3133 int err;
3134
3135 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3136 flags & ~MSG_DONTWAIT, &addr_len);
3137 if (err >= 0)
3138 msg->msg_namelen = addr_len;
3139 return err;
3140}
3141EXPORT_SYMBOL(sock_common_recvmsg);
3142
3143/*
3144 * Set socket options on an inet socket.
3145 */
3146int sock_common_setsockopt(struct socket *sock, int level, int optname,
3147 char __user *optval, unsigned int optlen)
3148{
3149 struct sock *sk = sock->sk;
3150
3151 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3152}
3153EXPORT_SYMBOL(sock_common_setsockopt);
3154
3155#ifdef CONFIG_COMPAT
3156int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3157 char __user *optval, unsigned int optlen)
3158{
3159 struct sock *sk = sock->sk;
3160
3161 if (sk->sk_prot->compat_setsockopt != NULL)
3162 return sk->sk_prot->compat_setsockopt(sk, level, optname,
3163 optval, optlen);
3164 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3165}
3166EXPORT_SYMBOL(compat_sock_common_setsockopt);
3167#endif
3168
3169void sk_common_release(struct sock *sk)
3170{
3171 if (sk->sk_prot->destroy)
3172 sk->sk_prot->destroy(sk);
3173
3174 /*
3175 * Observation: when sock_common_release is called, processes have
3176 * no access to socket. But net still has.
3177 * Step one, detach it from networking:
3178 *
3179 * A. Remove from hash tables.
3180 */
3181
3182 sk->sk_prot->unhash(sk);
3183
3184 /*
3185 * In this point socket cannot receive new packets, but it is possible
3186 * that some packets are in flight because some CPU runs receiver and
3187 * did hash table lookup before we unhashed socket. They will achieve
3188 * receive queue and will be purged by socket destructor.
3189 *
3190 * Also we still have packets pending on receive queue and probably,
3191 * our own packets waiting in device queues. sock_destroy will drain
3192 * receive queue, but transmitted packets will delay socket destruction
3193 * until the last reference will be released.
3194 */
3195
3196 sock_orphan(sk);
3197
3198 xfrm_sk_free_policy(sk);
3199
3200 sk_refcnt_debug_release(sk);
3201
3202 sock_put(sk);
3203}
3204EXPORT_SYMBOL(sk_common_release);
3205
3206void sk_get_meminfo(const struct sock *sk, u32 *mem)
3207{
3208 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3209
3210 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3211 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3212 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3213 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3214 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3215 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3216 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3217 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3218 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3219}
3220
3221#ifdef CONFIG_PROC_FS
3222#define PROTO_INUSE_NR 64 /* should be enough for the first time */
3223struct prot_inuse {
3224 int val[PROTO_INUSE_NR];
3225};
3226
3227static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3228
3229void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3230{
3231 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3232}
3233EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3234
3235int sock_prot_inuse_get(struct net *net, struct proto *prot)
3236{
3237 int cpu, idx = prot->inuse_idx;
3238 int res = 0;
3239
3240 for_each_possible_cpu(cpu)
3241 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3242
3243 return res >= 0 ? res : 0;
3244}
3245EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3246
3247static void sock_inuse_add(struct net *net, int val)
3248{
3249 this_cpu_add(*net->core.sock_inuse, val);
3250}
3251
3252int sock_inuse_get(struct net *net)
3253{
3254 int cpu, res = 0;
3255
3256 for_each_possible_cpu(cpu)
3257 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3258
3259 return res;
3260}
3261
3262EXPORT_SYMBOL_GPL(sock_inuse_get);
3263
3264static int __net_init sock_inuse_init_net(struct net *net)
3265{
3266 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3267 if (net->core.prot_inuse == NULL)
3268 return -ENOMEM;
3269
3270 net->core.sock_inuse = alloc_percpu(int);
3271 if (net->core.sock_inuse == NULL)
3272 goto out;
3273
3274 return 0;
3275
3276out:
3277 free_percpu(net->core.prot_inuse);
3278 return -ENOMEM;
3279}
3280
3281static void __net_exit sock_inuse_exit_net(struct net *net)
3282{
3283 free_percpu(net->core.prot_inuse);
3284 free_percpu(net->core.sock_inuse);
3285}
3286
3287static struct pernet_operations net_inuse_ops = {
3288 .init = sock_inuse_init_net,
3289 .exit = sock_inuse_exit_net,
3290};
3291
3292static __init int net_inuse_init(void)
3293{
3294 if (register_pernet_subsys(&net_inuse_ops))
3295 panic("Cannot initialize net inuse counters");
3296
3297 return 0;
3298}
3299
3300core_initcall(net_inuse_init);
3301
3302static int assign_proto_idx(struct proto *prot)
3303{
3304 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3305
3306 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3307 pr_err("PROTO_INUSE_NR exhausted\n");
3308 return -ENOSPC;
3309 }
3310
3311 set_bit(prot->inuse_idx, proto_inuse_idx);
3312 return 0;
3313}
3314
3315static void release_proto_idx(struct proto *prot)
3316{
3317 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3318 clear_bit(prot->inuse_idx, proto_inuse_idx);
3319}
3320#else
3321static inline int assign_proto_idx(struct proto *prot)
3322{
3323 return 0;
3324}
3325
3326static inline void release_proto_idx(struct proto *prot)
3327{
3328}
3329
3330static void sock_inuse_add(struct net *net, int val)
3331{
3332}
3333#endif
3334
3335static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3336{
3337 if (!rsk_prot)
3338 return;
3339 kfree(rsk_prot->slab_name);
3340 rsk_prot->slab_name = NULL;
3341 kmem_cache_destroy(rsk_prot->slab);
3342 rsk_prot->slab = NULL;
3343}
3344
3345static int req_prot_init(const struct proto *prot)
3346{
3347 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3348
3349 if (!rsk_prot)
3350 return 0;
3351
3352 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3353 prot->name);
3354 if (!rsk_prot->slab_name)
3355 return -ENOMEM;
3356
3357 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3358 rsk_prot->obj_size, 0,
3359 SLAB_ACCOUNT | prot->slab_flags,
3360 NULL);
3361
3362 if (!rsk_prot->slab) {
3363 pr_crit("%s: Can't create request sock SLAB cache!\n",
3364 prot->name);
3365 return -ENOMEM;
3366 }
3367 return 0;
3368}
3369
3370int proto_register(struct proto *prot, int alloc_slab)
3371{
3372 int ret = -ENOBUFS;
3373
3374 if (alloc_slab) {
3375 prot->slab = kmem_cache_create_usercopy(prot->name,
3376 prot->obj_size, 0,
3377 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3378 prot->slab_flags,
3379 prot->useroffset, prot->usersize,
3380 NULL);
3381
3382 if (prot->slab == NULL) {
3383 pr_crit("%s: Can't create sock SLAB cache!\n",
3384 prot->name);
3385 goto out;
3386 }
3387
3388 if (req_prot_init(prot))
3389 goto out_free_request_sock_slab;
3390
3391 if (prot->twsk_prot != NULL) {
3392 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3393
3394 if (prot->twsk_prot->twsk_slab_name == NULL)
3395 goto out_free_request_sock_slab;
3396
3397 prot->twsk_prot->twsk_slab =
3398 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3399 prot->twsk_prot->twsk_obj_size,
3400 0,
3401 SLAB_ACCOUNT |
3402 prot->slab_flags,
3403 NULL);
3404 if (prot->twsk_prot->twsk_slab == NULL)
3405 goto out_free_timewait_sock_slab_name;
3406 }
3407 }
3408
3409 mutex_lock(&proto_list_mutex);
3410 ret = assign_proto_idx(prot);
3411 if (ret) {
3412 mutex_unlock(&proto_list_mutex);
3413 goto out_free_timewait_sock_slab_name;
3414 }
3415 list_add(&prot->node, &proto_list);
3416 mutex_unlock(&proto_list_mutex);
3417 return ret;
3418
3419out_free_timewait_sock_slab_name:
3420 if (alloc_slab && prot->twsk_prot)
3421 kfree(prot->twsk_prot->twsk_slab_name);
3422out_free_request_sock_slab:
3423 if (alloc_slab) {
3424 req_prot_cleanup(prot->rsk_prot);
3425
3426 kmem_cache_destroy(prot->slab);
3427 prot->slab = NULL;
3428 }
3429out:
3430 return ret;
3431}
3432EXPORT_SYMBOL(proto_register);
3433
3434void proto_unregister(struct proto *prot)
3435{
3436 mutex_lock(&proto_list_mutex);
3437 release_proto_idx(prot);
3438 list_del(&prot->node);
3439 mutex_unlock(&proto_list_mutex);
3440
3441 kmem_cache_destroy(prot->slab);
3442 prot->slab = NULL;
3443
3444 req_prot_cleanup(prot->rsk_prot);
3445
3446 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3447 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3448 kfree(prot->twsk_prot->twsk_slab_name);
3449 prot->twsk_prot->twsk_slab = NULL;
3450 }
3451}
3452EXPORT_SYMBOL(proto_unregister);
3453
3454int sock_load_diag_module(int family, int protocol)
3455{
3456 if (!protocol) {
3457 if (!sock_is_registered(family))
3458 return -ENOENT;
3459
3460 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3461 NETLINK_SOCK_DIAG, family);
3462 }
3463
3464#ifdef CONFIG_INET
3465 if (family == AF_INET &&
3466 protocol != IPPROTO_RAW &&
3467 !rcu_access_pointer(inet_protos[protocol]))
3468 return -ENOENT;
3469#endif
3470
3471 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3472 NETLINK_SOCK_DIAG, family, protocol);
3473}
3474EXPORT_SYMBOL(sock_load_diag_module);
3475
3476#ifdef CONFIG_PROC_FS
3477static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3478 __acquires(proto_list_mutex)
3479{
3480 mutex_lock(&proto_list_mutex);
3481 return seq_list_start_head(&proto_list, *pos);
3482}
3483
3484static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3485{
3486 return seq_list_next(v, &proto_list, pos);
3487}
3488
3489static void proto_seq_stop(struct seq_file *seq, void *v)
3490 __releases(proto_list_mutex)
3491{
3492 mutex_unlock(&proto_list_mutex);
3493}
3494
3495static char proto_method_implemented(const void *method)
3496{
3497 return method == NULL ? 'n' : 'y';
3498}
3499static long sock_prot_memory_allocated(struct proto *proto)
3500{
3501 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3502}
3503
3504static const char *sock_prot_memory_pressure(struct proto *proto)
3505{
3506 return proto->memory_pressure != NULL ?
3507 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3508}
3509
3510static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3511{
3512
3513 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3514 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3515 proto->name,
3516 proto->obj_size,
3517 sock_prot_inuse_get(seq_file_net(seq), proto),
3518 sock_prot_memory_allocated(proto),
3519 sock_prot_memory_pressure(proto),
3520 proto->max_header,
3521 proto->slab == NULL ? "no" : "yes",
3522 module_name(proto->owner),
3523 proto_method_implemented(proto->close),
3524 proto_method_implemented(proto->connect),
3525 proto_method_implemented(proto->disconnect),
3526 proto_method_implemented(proto->accept),
3527 proto_method_implemented(proto->ioctl),
3528 proto_method_implemented(proto->init),
3529 proto_method_implemented(proto->destroy),
3530 proto_method_implemented(proto->shutdown),
3531 proto_method_implemented(proto->setsockopt),
3532 proto_method_implemented(proto->getsockopt),
3533 proto_method_implemented(proto->sendmsg),
3534 proto_method_implemented(proto->recvmsg),
3535 proto_method_implemented(proto->sendpage),
3536 proto_method_implemented(proto->bind),
3537 proto_method_implemented(proto->backlog_rcv),
3538 proto_method_implemented(proto->hash),
3539 proto_method_implemented(proto->unhash),
3540 proto_method_implemented(proto->get_port),
3541 proto_method_implemented(proto->enter_memory_pressure));
3542}
3543
3544static int proto_seq_show(struct seq_file *seq, void *v)
3545{
3546 if (v == &proto_list)
3547 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3548 "protocol",
3549 "size",
3550 "sockets",
3551 "memory",
3552 "press",
3553 "maxhdr",
3554 "slab",
3555 "module",
3556 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3557 else
3558 proto_seq_printf(seq, list_entry(v, struct proto, node));
3559 return 0;
3560}
3561
3562static const struct seq_operations proto_seq_ops = {
3563 .start = proto_seq_start,
3564 .next = proto_seq_next,
3565 .stop = proto_seq_stop,
3566 .show = proto_seq_show,
3567};
3568
3569static __net_init int proto_init_net(struct net *net)
3570{
3571 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3572 sizeof(struct seq_net_private)))
3573 return -ENOMEM;
3574
3575 return 0;
3576}
3577
3578static __net_exit void proto_exit_net(struct net *net)
3579{
3580 remove_proc_entry("protocols", net->proc_net);
3581}
3582
3583
3584static __net_initdata struct pernet_operations proto_net_ops = {
3585 .init = proto_init_net,
3586 .exit = proto_exit_net,
3587};
3588
3589static int __init proto_init(void)
3590{
3591 return register_pernet_subsys(&proto_net_ops);
3592}
3593
3594subsys_initcall(proto_init);
3595
3596#endif /* PROC_FS */
3597
3598#ifdef CONFIG_NET_RX_BUSY_POLL
3599bool sk_busy_loop_end(void *p, unsigned long start_time)
3600{
3601 struct sock *sk = p;
3602
3603 return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3604 sk_busy_loop_timeout(sk, start_time);
3605}
3606EXPORT_SYMBOL(sk_busy_loop_end);
3607#endif /* CONFIG_NET_RX_BUSY_POLL */
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94#include <linux/capability.h>
95#include <linux/errno.h>
96#include <linux/errqueue.h>
97#include <linux/types.h>
98#include <linux/socket.h>
99#include <linux/in.h>
100#include <linux/kernel.h>
101#include <linux/module.h>
102#include <linux/proc_fs.h>
103#include <linux/seq_file.h>
104#include <linux/sched.h>
105#include <linux/timer.h>
106#include <linux/string.h>
107#include <linux/sockios.h>
108#include <linux/net.h>
109#include <linux/mm.h>
110#include <linux/slab.h>
111#include <linux/interrupt.h>
112#include <linux/poll.h>
113#include <linux/tcp.h>
114#include <linux/init.h>
115#include <linux/highmem.h>
116#include <linux/user_namespace.h>
117#include <linux/static_key.h>
118#include <linux/memcontrol.h>
119#include <linux/prefetch.h>
120
121#include <linux/uaccess.h>
122
123#include <linux/netdevice.h>
124#include <net/protocol.h>
125#include <linux/skbuff.h>
126#include <net/net_namespace.h>
127#include <net/request_sock.h>
128#include <net/sock.h>
129#include <linux/net_tstamp.h>
130#include <net/xfrm.h>
131#include <linux/ipsec.h>
132#include <net/cls_cgroup.h>
133#include <net/netprio_cgroup.h>
134#include <linux/sock_diag.h>
135
136#include <linux/filter.h>
137#include <net/sock_reuseport.h>
138
139#include <trace/events/sock.h>
140
141#ifdef CONFIG_INET
142#include <net/tcp.h>
143#endif
144
145#include <net/busy_poll.h>
146
147static DEFINE_MUTEX(proto_list_mutex);
148static LIST_HEAD(proto_list);
149
150/**
151 * sk_ns_capable - General socket capability test
152 * @sk: Socket to use a capability on or through
153 * @user_ns: The user namespace of the capability to use
154 * @cap: The capability to use
155 *
156 * Test to see if the opener of the socket had when the socket was
157 * created and the current process has the capability @cap in the user
158 * namespace @user_ns.
159 */
160bool sk_ns_capable(const struct sock *sk,
161 struct user_namespace *user_ns, int cap)
162{
163 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
164 ns_capable(user_ns, cap);
165}
166EXPORT_SYMBOL(sk_ns_capable);
167
168/**
169 * sk_capable - Socket global capability test
170 * @sk: Socket to use a capability on or through
171 * @cap: The global capability to use
172 *
173 * Test to see if the opener of the socket had when the socket was
174 * created and the current process has the capability @cap in all user
175 * namespaces.
176 */
177bool sk_capable(const struct sock *sk, int cap)
178{
179 return sk_ns_capable(sk, &init_user_ns, cap);
180}
181EXPORT_SYMBOL(sk_capable);
182
183/**
184 * sk_net_capable - Network namespace socket capability test
185 * @sk: Socket to use a capability on or through
186 * @cap: The capability to use
187 *
188 * Test to see if the opener of the socket had when the socket was created
189 * and the current process has the capability @cap over the network namespace
190 * the socket is a member of.
191 */
192bool sk_net_capable(const struct sock *sk, int cap)
193{
194 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
195}
196EXPORT_SYMBOL(sk_net_capable);
197
198/*
199 * Each address family might have different locking rules, so we have
200 * one slock key per address family:
201 */
202static struct lock_class_key af_family_keys[AF_MAX];
203static struct lock_class_key af_family_slock_keys[AF_MAX];
204
205/*
206 * Make lock validator output more readable. (we pre-construct these
207 * strings build-time, so that runtime initialization of socket
208 * locks is fast):
209 */
210static const char *const af_family_key_strings[AF_MAX+1] = {
211 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
212 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
213 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
214 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
215 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
216 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
217 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
218 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
219 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
220 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
221 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
222 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
223 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
224 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_KCM" ,
225 "sk_lock-AF_QIPCRTR", "sk_lock-AF_MAX"
226};
227static const char *const af_family_slock_key_strings[AF_MAX+1] = {
228 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
229 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
230 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
231 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
232 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
233 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
234 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
235 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
236 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
237 "slock-27" , "slock-28" , "slock-AF_CAN" ,
238 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
239 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
240 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
241 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_KCM" ,
242 "slock-AF_QIPCRTR", "slock-AF_MAX"
243};
244static const char *const af_family_clock_key_strings[AF_MAX+1] = {
245 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
246 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
247 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
248 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
249 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
250 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
251 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
252 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
253 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
254 "clock-27" , "clock-28" , "clock-AF_CAN" ,
255 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
256 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
257 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
258 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_KCM" ,
259 "clock-AF_QIPCRTR", "clock-AF_MAX"
260};
261
262/*
263 * sk_callback_lock locking rules are per-address-family,
264 * so split the lock classes by using a per-AF key:
265 */
266static struct lock_class_key af_callback_keys[AF_MAX];
267
268/* Take into consideration the size of the struct sk_buff overhead in the
269 * determination of these values, since that is non-constant across
270 * platforms. This makes socket queueing behavior and performance
271 * not depend upon such differences.
272 */
273#define _SK_MEM_PACKETS 256
274#define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
275#define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
276#define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
277
278/* Run time adjustable parameters. */
279__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
280EXPORT_SYMBOL(sysctl_wmem_max);
281__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
282EXPORT_SYMBOL(sysctl_rmem_max);
283__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
284__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
285
286/* Maximal space eaten by iovec or ancillary data plus some space */
287int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
288EXPORT_SYMBOL(sysctl_optmem_max);
289
290int sysctl_tstamp_allow_data __read_mostly = 1;
291
292struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
293EXPORT_SYMBOL_GPL(memalloc_socks);
294
295/**
296 * sk_set_memalloc - sets %SOCK_MEMALLOC
297 * @sk: socket to set it on
298 *
299 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
300 * It's the responsibility of the admin to adjust min_free_kbytes
301 * to meet the requirements
302 */
303void sk_set_memalloc(struct sock *sk)
304{
305 sock_set_flag(sk, SOCK_MEMALLOC);
306 sk->sk_allocation |= __GFP_MEMALLOC;
307 static_key_slow_inc(&memalloc_socks);
308}
309EXPORT_SYMBOL_GPL(sk_set_memalloc);
310
311void sk_clear_memalloc(struct sock *sk)
312{
313 sock_reset_flag(sk, SOCK_MEMALLOC);
314 sk->sk_allocation &= ~__GFP_MEMALLOC;
315 static_key_slow_dec(&memalloc_socks);
316
317 /*
318 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
319 * progress of swapping. SOCK_MEMALLOC may be cleared while
320 * it has rmem allocations due to the last swapfile being deactivated
321 * but there is a risk that the socket is unusable due to exceeding
322 * the rmem limits. Reclaim the reserves and obey rmem limits again.
323 */
324 sk_mem_reclaim(sk);
325}
326EXPORT_SYMBOL_GPL(sk_clear_memalloc);
327
328int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
329{
330 int ret;
331 unsigned long pflags = current->flags;
332
333 /* these should have been dropped before queueing */
334 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
335
336 current->flags |= PF_MEMALLOC;
337 ret = sk->sk_backlog_rcv(sk, skb);
338 tsk_restore_flags(current, pflags, PF_MEMALLOC);
339
340 return ret;
341}
342EXPORT_SYMBOL(__sk_backlog_rcv);
343
344static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
345{
346 struct timeval tv;
347
348 if (optlen < sizeof(tv))
349 return -EINVAL;
350 if (copy_from_user(&tv, optval, sizeof(tv)))
351 return -EFAULT;
352 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
353 return -EDOM;
354
355 if (tv.tv_sec < 0) {
356 static int warned __read_mostly;
357
358 *timeo_p = 0;
359 if (warned < 10 && net_ratelimit()) {
360 warned++;
361 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
362 __func__, current->comm, task_pid_nr(current));
363 }
364 return 0;
365 }
366 *timeo_p = MAX_SCHEDULE_TIMEOUT;
367 if (tv.tv_sec == 0 && tv.tv_usec == 0)
368 return 0;
369 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
370 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
371 return 0;
372}
373
374static void sock_warn_obsolete_bsdism(const char *name)
375{
376 static int warned;
377 static char warncomm[TASK_COMM_LEN];
378 if (strcmp(warncomm, current->comm) && warned < 5) {
379 strcpy(warncomm, current->comm);
380 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
381 warncomm, name);
382 warned++;
383 }
384}
385
386static bool sock_needs_netstamp(const struct sock *sk)
387{
388 switch (sk->sk_family) {
389 case AF_UNSPEC:
390 case AF_UNIX:
391 return false;
392 default:
393 return true;
394 }
395}
396
397static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
398{
399 if (sk->sk_flags & flags) {
400 sk->sk_flags &= ~flags;
401 if (sock_needs_netstamp(sk) &&
402 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
403 net_disable_timestamp();
404 }
405}
406
407
408int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
409{
410 unsigned long flags;
411 struct sk_buff_head *list = &sk->sk_receive_queue;
412
413 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
414 atomic_inc(&sk->sk_drops);
415 trace_sock_rcvqueue_full(sk, skb);
416 return -ENOMEM;
417 }
418
419 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
420 atomic_inc(&sk->sk_drops);
421 return -ENOBUFS;
422 }
423
424 skb->dev = NULL;
425 skb_set_owner_r(skb, sk);
426
427 /* we escape from rcu protected region, make sure we dont leak
428 * a norefcounted dst
429 */
430 skb_dst_force(skb);
431
432 spin_lock_irqsave(&list->lock, flags);
433 sock_skb_set_dropcount(sk, skb);
434 __skb_queue_tail(list, skb);
435 spin_unlock_irqrestore(&list->lock, flags);
436
437 if (!sock_flag(sk, SOCK_DEAD))
438 sk->sk_data_ready(sk);
439 return 0;
440}
441EXPORT_SYMBOL(__sock_queue_rcv_skb);
442
443int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
444{
445 int err;
446
447 err = sk_filter(sk, skb);
448 if (err)
449 return err;
450
451 return __sock_queue_rcv_skb(sk, skb);
452}
453EXPORT_SYMBOL(sock_queue_rcv_skb);
454
455int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
456 const int nested, unsigned int trim_cap, bool refcounted)
457{
458 int rc = NET_RX_SUCCESS;
459
460 if (sk_filter_trim_cap(sk, skb, trim_cap))
461 goto discard_and_relse;
462
463 skb->dev = NULL;
464
465 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
466 atomic_inc(&sk->sk_drops);
467 goto discard_and_relse;
468 }
469 if (nested)
470 bh_lock_sock_nested(sk);
471 else
472 bh_lock_sock(sk);
473 if (!sock_owned_by_user(sk)) {
474 /*
475 * trylock + unlock semantics:
476 */
477 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
478
479 rc = sk_backlog_rcv(sk, skb);
480
481 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
482 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
483 bh_unlock_sock(sk);
484 atomic_inc(&sk->sk_drops);
485 goto discard_and_relse;
486 }
487
488 bh_unlock_sock(sk);
489out:
490 if (refcounted)
491 sock_put(sk);
492 return rc;
493discard_and_relse:
494 kfree_skb(skb);
495 goto out;
496}
497EXPORT_SYMBOL(__sk_receive_skb);
498
499struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
500{
501 struct dst_entry *dst = __sk_dst_get(sk);
502
503 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
504 sk_tx_queue_clear(sk);
505 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
506 dst_release(dst);
507 return NULL;
508 }
509
510 return dst;
511}
512EXPORT_SYMBOL(__sk_dst_check);
513
514struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
515{
516 struct dst_entry *dst = sk_dst_get(sk);
517
518 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
519 sk_dst_reset(sk);
520 dst_release(dst);
521 return NULL;
522 }
523
524 return dst;
525}
526EXPORT_SYMBOL(sk_dst_check);
527
528static int sock_setbindtodevice(struct sock *sk, char __user *optval,
529 int optlen)
530{
531 int ret = -ENOPROTOOPT;
532#ifdef CONFIG_NETDEVICES
533 struct net *net = sock_net(sk);
534 char devname[IFNAMSIZ];
535 int index;
536
537 /* Sorry... */
538 ret = -EPERM;
539 if (!ns_capable(net->user_ns, CAP_NET_RAW))
540 goto out;
541
542 ret = -EINVAL;
543 if (optlen < 0)
544 goto out;
545
546 /* Bind this socket to a particular device like "eth0",
547 * as specified in the passed interface name. If the
548 * name is "" or the option length is zero the socket
549 * is not bound.
550 */
551 if (optlen > IFNAMSIZ - 1)
552 optlen = IFNAMSIZ - 1;
553 memset(devname, 0, sizeof(devname));
554
555 ret = -EFAULT;
556 if (copy_from_user(devname, optval, optlen))
557 goto out;
558
559 index = 0;
560 if (devname[0] != '\0') {
561 struct net_device *dev;
562
563 rcu_read_lock();
564 dev = dev_get_by_name_rcu(net, devname);
565 if (dev)
566 index = dev->ifindex;
567 rcu_read_unlock();
568 ret = -ENODEV;
569 if (!dev)
570 goto out;
571 }
572
573 lock_sock(sk);
574 sk->sk_bound_dev_if = index;
575 sk_dst_reset(sk);
576 release_sock(sk);
577
578 ret = 0;
579
580out:
581#endif
582
583 return ret;
584}
585
586static int sock_getbindtodevice(struct sock *sk, char __user *optval,
587 int __user *optlen, int len)
588{
589 int ret = -ENOPROTOOPT;
590#ifdef CONFIG_NETDEVICES
591 struct net *net = sock_net(sk);
592 char devname[IFNAMSIZ];
593
594 if (sk->sk_bound_dev_if == 0) {
595 len = 0;
596 goto zero;
597 }
598
599 ret = -EINVAL;
600 if (len < IFNAMSIZ)
601 goto out;
602
603 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
604 if (ret)
605 goto out;
606
607 len = strlen(devname) + 1;
608
609 ret = -EFAULT;
610 if (copy_to_user(optval, devname, len))
611 goto out;
612
613zero:
614 ret = -EFAULT;
615 if (put_user(len, optlen))
616 goto out;
617
618 ret = 0;
619
620out:
621#endif
622
623 return ret;
624}
625
626static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
627{
628 if (valbool)
629 sock_set_flag(sk, bit);
630 else
631 sock_reset_flag(sk, bit);
632}
633
634bool sk_mc_loop(struct sock *sk)
635{
636 if (dev_recursion_level())
637 return false;
638 if (!sk)
639 return true;
640 switch (sk->sk_family) {
641 case AF_INET:
642 return inet_sk(sk)->mc_loop;
643#if IS_ENABLED(CONFIG_IPV6)
644 case AF_INET6:
645 return inet6_sk(sk)->mc_loop;
646#endif
647 }
648 WARN_ON(1);
649 return true;
650}
651EXPORT_SYMBOL(sk_mc_loop);
652
653/*
654 * This is meant for all protocols to use and covers goings on
655 * at the socket level. Everything here is generic.
656 */
657
658int sock_setsockopt(struct socket *sock, int level, int optname,
659 char __user *optval, unsigned int optlen)
660{
661 struct sock *sk = sock->sk;
662 int val;
663 int valbool;
664 struct linger ling;
665 int ret = 0;
666
667 /*
668 * Options without arguments
669 */
670
671 if (optname == SO_BINDTODEVICE)
672 return sock_setbindtodevice(sk, optval, optlen);
673
674 if (optlen < sizeof(int))
675 return -EINVAL;
676
677 if (get_user(val, (int __user *)optval))
678 return -EFAULT;
679
680 valbool = val ? 1 : 0;
681
682 lock_sock(sk);
683
684 switch (optname) {
685 case SO_DEBUG:
686 if (val && !capable(CAP_NET_ADMIN))
687 ret = -EACCES;
688 else
689 sock_valbool_flag(sk, SOCK_DBG, valbool);
690 break;
691 case SO_REUSEADDR:
692 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
693 break;
694 case SO_REUSEPORT:
695 sk->sk_reuseport = valbool;
696 break;
697 case SO_TYPE:
698 case SO_PROTOCOL:
699 case SO_DOMAIN:
700 case SO_ERROR:
701 ret = -ENOPROTOOPT;
702 break;
703 case SO_DONTROUTE:
704 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
705 break;
706 case SO_BROADCAST:
707 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
708 break;
709 case SO_SNDBUF:
710 /* Don't error on this BSD doesn't and if you think
711 * about it this is right. Otherwise apps have to
712 * play 'guess the biggest size' games. RCVBUF/SNDBUF
713 * are treated in BSD as hints
714 */
715 val = min_t(u32, val, sysctl_wmem_max);
716set_sndbuf:
717 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
718 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
719 /* Wake up sending tasks if we upped the value. */
720 sk->sk_write_space(sk);
721 break;
722
723 case SO_SNDBUFFORCE:
724 if (!capable(CAP_NET_ADMIN)) {
725 ret = -EPERM;
726 break;
727 }
728 goto set_sndbuf;
729
730 case SO_RCVBUF:
731 /* Don't error on this BSD doesn't and if you think
732 * about it this is right. Otherwise apps have to
733 * play 'guess the biggest size' games. RCVBUF/SNDBUF
734 * are treated in BSD as hints
735 */
736 val = min_t(u32, val, sysctl_rmem_max);
737set_rcvbuf:
738 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
739 /*
740 * We double it on the way in to account for
741 * "struct sk_buff" etc. overhead. Applications
742 * assume that the SO_RCVBUF setting they make will
743 * allow that much actual data to be received on that
744 * socket.
745 *
746 * Applications are unaware that "struct sk_buff" and
747 * other overheads allocate from the receive buffer
748 * during socket buffer allocation.
749 *
750 * And after considering the possible alternatives,
751 * returning the value we actually used in getsockopt
752 * is the most desirable behavior.
753 */
754 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
755 break;
756
757 case SO_RCVBUFFORCE:
758 if (!capable(CAP_NET_ADMIN)) {
759 ret = -EPERM;
760 break;
761 }
762 goto set_rcvbuf;
763
764 case SO_KEEPALIVE:
765#ifdef CONFIG_INET
766 if (sk->sk_protocol == IPPROTO_TCP &&
767 sk->sk_type == SOCK_STREAM)
768 tcp_set_keepalive(sk, valbool);
769#endif
770 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
771 break;
772
773 case SO_OOBINLINE:
774 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
775 break;
776
777 case SO_NO_CHECK:
778 sk->sk_no_check_tx = valbool;
779 break;
780
781 case SO_PRIORITY:
782 if ((val >= 0 && val <= 6) ||
783 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
784 sk->sk_priority = val;
785 else
786 ret = -EPERM;
787 break;
788
789 case SO_LINGER:
790 if (optlen < sizeof(ling)) {
791 ret = -EINVAL; /* 1003.1g */
792 break;
793 }
794 if (copy_from_user(&ling, optval, sizeof(ling))) {
795 ret = -EFAULT;
796 break;
797 }
798 if (!ling.l_onoff)
799 sock_reset_flag(sk, SOCK_LINGER);
800 else {
801#if (BITS_PER_LONG == 32)
802 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
803 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
804 else
805#endif
806 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
807 sock_set_flag(sk, SOCK_LINGER);
808 }
809 break;
810
811 case SO_BSDCOMPAT:
812 sock_warn_obsolete_bsdism("setsockopt");
813 break;
814
815 case SO_PASSCRED:
816 if (valbool)
817 set_bit(SOCK_PASSCRED, &sock->flags);
818 else
819 clear_bit(SOCK_PASSCRED, &sock->flags);
820 break;
821
822 case SO_TIMESTAMP:
823 case SO_TIMESTAMPNS:
824 if (valbool) {
825 if (optname == SO_TIMESTAMP)
826 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
827 else
828 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
829 sock_set_flag(sk, SOCK_RCVTSTAMP);
830 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
831 } else {
832 sock_reset_flag(sk, SOCK_RCVTSTAMP);
833 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
834 }
835 break;
836
837 case SO_TIMESTAMPING:
838 if (val & ~SOF_TIMESTAMPING_MASK) {
839 ret = -EINVAL;
840 break;
841 }
842
843 if (val & SOF_TIMESTAMPING_OPT_ID &&
844 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
845 if (sk->sk_protocol == IPPROTO_TCP &&
846 sk->sk_type == SOCK_STREAM) {
847 if ((1 << sk->sk_state) &
848 (TCPF_CLOSE | TCPF_LISTEN)) {
849 ret = -EINVAL;
850 break;
851 }
852 sk->sk_tskey = tcp_sk(sk)->snd_una;
853 } else {
854 sk->sk_tskey = 0;
855 }
856 }
857
858 if (val & SOF_TIMESTAMPING_OPT_STATS &&
859 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
860 ret = -EINVAL;
861 break;
862 }
863
864 sk->sk_tsflags = val;
865 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
866 sock_enable_timestamp(sk,
867 SOCK_TIMESTAMPING_RX_SOFTWARE);
868 else
869 sock_disable_timestamp(sk,
870 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
871 break;
872
873 case SO_RCVLOWAT:
874 if (val < 0)
875 val = INT_MAX;
876 sk->sk_rcvlowat = val ? : 1;
877 break;
878
879 case SO_RCVTIMEO:
880 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
881 break;
882
883 case SO_SNDTIMEO:
884 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
885 break;
886
887 case SO_ATTACH_FILTER:
888 ret = -EINVAL;
889 if (optlen == sizeof(struct sock_fprog)) {
890 struct sock_fprog fprog;
891
892 ret = -EFAULT;
893 if (copy_from_user(&fprog, optval, sizeof(fprog)))
894 break;
895
896 ret = sk_attach_filter(&fprog, sk);
897 }
898 break;
899
900 case SO_ATTACH_BPF:
901 ret = -EINVAL;
902 if (optlen == sizeof(u32)) {
903 u32 ufd;
904
905 ret = -EFAULT;
906 if (copy_from_user(&ufd, optval, sizeof(ufd)))
907 break;
908
909 ret = sk_attach_bpf(ufd, sk);
910 }
911 break;
912
913 case SO_ATTACH_REUSEPORT_CBPF:
914 ret = -EINVAL;
915 if (optlen == sizeof(struct sock_fprog)) {
916 struct sock_fprog fprog;
917
918 ret = -EFAULT;
919 if (copy_from_user(&fprog, optval, sizeof(fprog)))
920 break;
921
922 ret = sk_reuseport_attach_filter(&fprog, sk);
923 }
924 break;
925
926 case SO_ATTACH_REUSEPORT_EBPF:
927 ret = -EINVAL;
928 if (optlen == sizeof(u32)) {
929 u32 ufd;
930
931 ret = -EFAULT;
932 if (copy_from_user(&ufd, optval, sizeof(ufd)))
933 break;
934
935 ret = sk_reuseport_attach_bpf(ufd, sk);
936 }
937 break;
938
939 case SO_DETACH_FILTER:
940 ret = sk_detach_filter(sk);
941 break;
942
943 case SO_LOCK_FILTER:
944 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
945 ret = -EPERM;
946 else
947 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
948 break;
949
950 case SO_PASSSEC:
951 if (valbool)
952 set_bit(SOCK_PASSSEC, &sock->flags);
953 else
954 clear_bit(SOCK_PASSSEC, &sock->flags);
955 break;
956 case SO_MARK:
957 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
958 ret = -EPERM;
959 else
960 sk->sk_mark = val;
961 break;
962
963 case SO_RXQ_OVFL:
964 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
965 break;
966
967 case SO_WIFI_STATUS:
968 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
969 break;
970
971 case SO_PEEK_OFF:
972 if (sock->ops->set_peek_off)
973 ret = sock->ops->set_peek_off(sk, val);
974 else
975 ret = -EOPNOTSUPP;
976 break;
977
978 case SO_NOFCS:
979 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
980 break;
981
982 case SO_SELECT_ERR_QUEUE:
983 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
984 break;
985
986#ifdef CONFIG_NET_RX_BUSY_POLL
987 case SO_BUSY_POLL:
988 /* allow unprivileged users to decrease the value */
989 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
990 ret = -EPERM;
991 else {
992 if (val < 0)
993 ret = -EINVAL;
994 else
995 sk->sk_ll_usec = val;
996 }
997 break;
998#endif
999
1000 case SO_MAX_PACING_RATE:
1001 sk->sk_max_pacing_rate = val;
1002 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1003 sk->sk_max_pacing_rate);
1004 break;
1005
1006 case SO_INCOMING_CPU:
1007 sk->sk_incoming_cpu = val;
1008 break;
1009
1010 case SO_CNX_ADVICE:
1011 if (val == 1)
1012 dst_negative_advice(sk);
1013 break;
1014 default:
1015 ret = -ENOPROTOOPT;
1016 break;
1017 }
1018 release_sock(sk);
1019 return ret;
1020}
1021EXPORT_SYMBOL(sock_setsockopt);
1022
1023
1024static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1025 struct ucred *ucred)
1026{
1027 ucred->pid = pid_vnr(pid);
1028 ucred->uid = ucred->gid = -1;
1029 if (cred) {
1030 struct user_namespace *current_ns = current_user_ns();
1031
1032 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1033 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1034 }
1035}
1036
1037int sock_getsockopt(struct socket *sock, int level, int optname,
1038 char __user *optval, int __user *optlen)
1039{
1040 struct sock *sk = sock->sk;
1041
1042 union {
1043 int val;
1044 struct linger ling;
1045 struct timeval tm;
1046 } v;
1047
1048 int lv = sizeof(int);
1049 int len;
1050
1051 if (get_user(len, optlen))
1052 return -EFAULT;
1053 if (len < 0)
1054 return -EINVAL;
1055
1056 memset(&v, 0, sizeof(v));
1057
1058 switch (optname) {
1059 case SO_DEBUG:
1060 v.val = sock_flag(sk, SOCK_DBG);
1061 break;
1062
1063 case SO_DONTROUTE:
1064 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1065 break;
1066
1067 case SO_BROADCAST:
1068 v.val = sock_flag(sk, SOCK_BROADCAST);
1069 break;
1070
1071 case SO_SNDBUF:
1072 v.val = sk->sk_sndbuf;
1073 break;
1074
1075 case SO_RCVBUF:
1076 v.val = sk->sk_rcvbuf;
1077 break;
1078
1079 case SO_REUSEADDR:
1080 v.val = sk->sk_reuse;
1081 break;
1082
1083 case SO_REUSEPORT:
1084 v.val = sk->sk_reuseport;
1085 break;
1086
1087 case SO_KEEPALIVE:
1088 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1089 break;
1090
1091 case SO_TYPE:
1092 v.val = sk->sk_type;
1093 break;
1094
1095 case SO_PROTOCOL:
1096 v.val = sk->sk_protocol;
1097 break;
1098
1099 case SO_DOMAIN:
1100 v.val = sk->sk_family;
1101 break;
1102
1103 case SO_ERROR:
1104 v.val = -sock_error(sk);
1105 if (v.val == 0)
1106 v.val = xchg(&sk->sk_err_soft, 0);
1107 break;
1108
1109 case SO_OOBINLINE:
1110 v.val = sock_flag(sk, SOCK_URGINLINE);
1111 break;
1112
1113 case SO_NO_CHECK:
1114 v.val = sk->sk_no_check_tx;
1115 break;
1116
1117 case SO_PRIORITY:
1118 v.val = sk->sk_priority;
1119 break;
1120
1121 case SO_LINGER:
1122 lv = sizeof(v.ling);
1123 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1124 v.ling.l_linger = sk->sk_lingertime / HZ;
1125 break;
1126
1127 case SO_BSDCOMPAT:
1128 sock_warn_obsolete_bsdism("getsockopt");
1129 break;
1130
1131 case SO_TIMESTAMP:
1132 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1133 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1134 break;
1135
1136 case SO_TIMESTAMPNS:
1137 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1138 break;
1139
1140 case SO_TIMESTAMPING:
1141 v.val = sk->sk_tsflags;
1142 break;
1143
1144 case SO_RCVTIMEO:
1145 lv = sizeof(struct timeval);
1146 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1147 v.tm.tv_sec = 0;
1148 v.tm.tv_usec = 0;
1149 } else {
1150 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1151 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1152 }
1153 break;
1154
1155 case SO_SNDTIMEO:
1156 lv = sizeof(struct timeval);
1157 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1158 v.tm.tv_sec = 0;
1159 v.tm.tv_usec = 0;
1160 } else {
1161 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1162 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1163 }
1164 break;
1165
1166 case SO_RCVLOWAT:
1167 v.val = sk->sk_rcvlowat;
1168 break;
1169
1170 case SO_SNDLOWAT:
1171 v.val = 1;
1172 break;
1173
1174 case SO_PASSCRED:
1175 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1176 break;
1177
1178 case SO_PEERCRED:
1179 {
1180 struct ucred peercred;
1181 if (len > sizeof(peercred))
1182 len = sizeof(peercred);
1183 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1184 if (copy_to_user(optval, &peercred, len))
1185 return -EFAULT;
1186 goto lenout;
1187 }
1188
1189 case SO_PEERNAME:
1190 {
1191 char address[128];
1192
1193 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1194 return -ENOTCONN;
1195 if (lv < len)
1196 return -EINVAL;
1197 if (copy_to_user(optval, address, len))
1198 return -EFAULT;
1199 goto lenout;
1200 }
1201
1202 /* Dubious BSD thing... Probably nobody even uses it, but
1203 * the UNIX standard wants it for whatever reason... -DaveM
1204 */
1205 case SO_ACCEPTCONN:
1206 v.val = sk->sk_state == TCP_LISTEN;
1207 break;
1208
1209 case SO_PASSSEC:
1210 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1211 break;
1212
1213 case SO_PEERSEC:
1214 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1215
1216 case SO_MARK:
1217 v.val = sk->sk_mark;
1218 break;
1219
1220 case SO_RXQ_OVFL:
1221 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1222 break;
1223
1224 case SO_WIFI_STATUS:
1225 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1226 break;
1227
1228 case SO_PEEK_OFF:
1229 if (!sock->ops->set_peek_off)
1230 return -EOPNOTSUPP;
1231
1232 v.val = sk->sk_peek_off;
1233 break;
1234 case SO_NOFCS:
1235 v.val = sock_flag(sk, SOCK_NOFCS);
1236 break;
1237
1238 case SO_BINDTODEVICE:
1239 return sock_getbindtodevice(sk, optval, optlen, len);
1240
1241 case SO_GET_FILTER:
1242 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1243 if (len < 0)
1244 return len;
1245
1246 goto lenout;
1247
1248 case SO_LOCK_FILTER:
1249 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1250 break;
1251
1252 case SO_BPF_EXTENSIONS:
1253 v.val = bpf_tell_extensions();
1254 break;
1255
1256 case SO_SELECT_ERR_QUEUE:
1257 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1258 break;
1259
1260#ifdef CONFIG_NET_RX_BUSY_POLL
1261 case SO_BUSY_POLL:
1262 v.val = sk->sk_ll_usec;
1263 break;
1264#endif
1265
1266 case SO_MAX_PACING_RATE:
1267 v.val = sk->sk_max_pacing_rate;
1268 break;
1269
1270 case SO_INCOMING_CPU:
1271 v.val = sk->sk_incoming_cpu;
1272 break;
1273
1274 default:
1275 /* We implement the SO_SNDLOWAT etc to not be settable
1276 * (1003.1g 7).
1277 */
1278 return -ENOPROTOOPT;
1279 }
1280
1281 if (len > lv)
1282 len = lv;
1283 if (copy_to_user(optval, &v, len))
1284 return -EFAULT;
1285lenout:
1286 if (put_user(len, optlen))
1287 return -EFAULT;
1288 return 0;
1289}
1290
1291/*
1292 * Initialize an sk_lock.
1293 *
1294 * (We also register the sk_lock with the lock validator.)
1295 */
1296static inline void sock_lock_init(struct sock *sk)
1297{
1298 sock_lock_init_class_and_name(sk,
1299 af_family_slock_key_strings[sk->sk_family],
1300 af_family_slock_keys + sk->sk_family,
1301 af_family_key_strings[sk->sk_family],
1302 af_family_keys + sk->sk_family);
1303}
1304
1305/*
1306 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1307 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1308 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1309 */
1310static void sock_copy(struct sock *nsk, const struct sock *osk)
1311{
1312#ifdef CONFIG_SECURITY_NETWORK
1313 void *sptr = nsk->sk_security;
1314#endif
1315 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1316
1317 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1318 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1319
1320#ifdef CONFIG_SECURITY_NETWORK
1321 nsk->sk_security = sptr;
1322 security_sk_clone(osk, nsk);
1323#endif
1324}
1325
1326static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1327 int family)
1328{
1329 struct sock *sk;
1330 struct kmem_cache *slab;
1331
1332 slab = prot->slab;
1333 if (slab != NULL) {
1334 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1335 if (!sk)
1336 return sk;
1337 if (priority & __GFP_ZERO)
1338 sk_prot_clear_nulls(sk, prot->obj_size);
1339 } else
1340 sk = kmalloc(prot->obj_size, priority);
1341
1342 if (sk != NULL) {
1343 kmemcheck_annotate_bitfield(sk, flags);
1344
1345 if (security_sk_alloc(sk, family, priority))
1346 goto out_free;
1347
1348 if (!try_module_get(prot->owner))
1349 goto out_free_sec;
1350 sk_tx_queue_clear(sk);
1351 }
1352
1353 return sk;
1354
1355out_free_sec:
1356 security_sk_free(sk);
1357out_free:
1358 if (slab != NULL)
1359 kmem_cache_free(slab, sk);
1360 else
1361 kfree(sk);
1362 return NULL;
1363}
1364
1365static void sk_prot_free(struct proto *prot, struct sock *sk)
1366{
1367 struct kmem_cache *slab;
1368 struct module *owner;
1369
1370 owner = prot->owner;
1371 slab = prot->slab;
1372
1373 cgroup_sk_free(&sk->sk_cgrp_data);
1374 mem_cgroup_sk_free(sk);
1375 security_sk_free(sk);
1376 if (slab != NULL)
1377 kmem_cache_free(slab, sk);
1378 else
1379 kfree(sk);
1380 module_put(owner);
1381}
1382
1383/**
1384 * sk_alloc - All socket objects are allocated here
1385 * @net: the applicable net namespace
1386 * @family: protocol family
1387 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1388 * @prot: struct proto associated with this new sock instance
1389 * @kern: is this to be a kernel socket?
1390 */
1391struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1392 struct proto *prot, int kern)
1393{
1394 struct sock *sk;
1395
1396 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1397 if (sk) {
1398 sk->sk_family = family;
1399 /*
1400 * See comment in struct sock definition to understand
1401 * why we need sk_prot_creator -acme
1402 */
1403 sk->sk_prot = sk->sk_prot_creator = prot;
1404 sock_lock_init(sk);
1405 sk->sk_net_refcnt = kern ? 0 : 1;
1406 if (likely(sk->sk_net_refcnt))
1407 get_net(net);
1408 sock_net_set(sk, net);
1409 atomic_set(&sk->sk_wmem_alloc, 1);
1410
1411 mem_cgroup_sk_alloc(sk);
1412 cgroup_sk_alloc(&sk->sk_cgrp_data);
1413 sock_update_classid(&sk->sk_cgrp_data);
1414 sock_update_netprioidx(&sk->sk_cgrp_data);
1415 }
1416
1417 return sk;
1418}
1419EXPORT_SYMBOL(sk_alloc);
1420
1421/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1422 * grace period. This is the case for UDP sockets and TCP listeners.
1423 */
1424static void __sk_destruct(struct rcu_head *head)
1425{
1426 struct sock *sk = container_of(head, struct sock, sk_rcu);
1427 struct sk_filter *filter;
1428
1429 if (sk->sk_destruct)
1430 sk->sk_destruct(sk);
1431
1432 filter = rcu_dereference_check(sk->sk_filter,
1433 atomic_read(&sk->sk_wmem_alloc) == 0);
1434 if (filter) {
1435 sk_filter_uncharge(sk, filter);
1436 RCU_INIT_POINTER(sk->sk_filter, NULL);
1437 }
1438 if (rcu_access_pointer(sk->sk_reuseport_cb))
1439 reuseport_detach_sock(sk);
1440
1441 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1442
1443 if (atomic_read(&sk->sk_omem_alloc))
1444 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1445 __func__, atomic_read(&sk->sk_omem_alloc));
1446
1447 if (sk->sk_frag.page) {
1448 put_page(sk->sk_frag.page);
1449 sk->sk_frag.page = NULL;
1450 }
1451
1452 if (sk->sk_peer_cred)
1453 put_cred(sk->sk_peer_cred);
1454 put_pid(sk->sk_peer_pid);
1455 if (likely(sk->sk_net_refcnt))
1456 put_net(sock_net(sk));
1457 sk_prot_free(sk->sk_prot_creator, sk);
1458}
1459
1460void sk_destruct(struct sock *sk)
1461{
1462 if (sock_flag(sk, SOCK_RCU_FREE))
1463 call_rcu(&sk->sk_rcu, __sk_destruct);
1464 else
1465 __sk_destruct(&sk->sk_rcu);
1466}
1467
1468static void __sk_free(struct sock *sk)
1469{
1470 if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1471 sock_diag_broadcast_destroy(sk);
1472 else
1473 sk_destruct(sk);
1474}
1475
1476void sk_free(struct sock *sk)
1477{
1478 /*
1479 * We subtract one from sk_wmem_alloc and can know if
1480 * some packets are still in some tx queue.
1481 * If not null, sock_wfree() will call __sk_free(sk) later
1482 */
1483 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1484 __sk_free(sk);
1485}
1486EXPORT_SYMBOL(sk_free);
1487
1488/**
1489 * sk_clone_lock - clone a socket, and lock its clone
1490 * @sk: the socket to clone
1491 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1492 *
1493 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1494 */
1495struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1496{
1497 struct sock *newsk;
1498 bool is_charged = true;
1499
1500 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1501 if (newsk != NULL) {
1502 struct sk_filter *filter;
1503
1504 sock_copy(newsk, sk);
1505
1506 /* SANITY */
1507 if (likely(newsk->sk_net_refcnt))
1508 get_net(sock_net(newsk));
1509 sk_node_init(&newsk->sk_node);
1510 sock_lock_init(newsk);
1511 bh_lock_sock(newsk);
1512 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1513 newsk->sk_backlog.len = 0;
1514
1515 atomic_set(&newsk->sk_rmem_alloc, 0);
1516 /*
1517 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1518 */
1519 atomic_set(&newsk->sk_wmem_alloc, 1);
1520 atomic_set(&newsk->sk_omem_alloc, 0);
1521 skb_queue_head_init(&newsk->sk_receive_queue);
1522 skb_queue_head_init(&newsk->sk_write_queue);
1523
1524 rwlock_init(&newsk->sk_callback_lock);
1525 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1526 af_callback_keys + newsk->sk_family,
1527 af_family_clock_key_strings[newsk->sk_family]);
1528
1529 newsk->sk_dst_cache = NULL;
1530 newsk->sk_wmem_queued = 0;
1531 newsk->sk_forward_alloc = 0;
1532 atomic_set(&newsk->sk_drops, 0);
1533 newsk->sk_send_head = NULL;
1534 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1535
1536 sock_reset_flag(newsk, SOCK_DONE);
1537 skb_queue_head_init(&newsk->sk_error_queue);
1538
1539 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1540 if (filter != NULL)
1541 /* though it's an empty new sock, the charging may fail
1542 * if sysctl_optmem_max was changed between creation of
1543 * original socket and cloning
1544 */
1545 is_charged = sk_filter_charge(newsk, filter);
1546
1547 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1548 /* We need to make sure that we don't uncharge the new
1549 * socket if we couldn't charge it in the first place
1550 * as otherwise we uncharge the parent's filter.
1551 */
1552 if (!is_charged)
1553 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1554 /* It is still raw copy of parent, so invalidate
1555 * destructor and make plain sk_free() */
1556 newsk->sk_destruct = NULL;
1557 bh_unlock_sock(newsk);
1558 sk_free(newsk);
1559 newsk = NULL;
1560 goto out;
1561 }
1562 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1563
1564 newsk->sk_err = 0;
1565 newsk->sk_err_soft = 0;
1566 newsk->sk_priority = 0;
1567 newsk->sk_incoming_cpu = raw_smp_processor_id();
1568 atomic64_set(&newsk->sk_cookie, 0);
1569
1570 mem_cgroup_sk_alloc(newsk);
1571 cgroup_sk_alloc(&newsk->sk_cgrp_data);
1572
1573 /*
1574 * Before updating sk_refcnt, we must commit prior changes to memory
1575 * (Documentation/RCU/rculist_nulls.txt for details)
1576 */
1577 smp_wmb();
1578 atomic_set(&newsk->sk_refcnt, 2);
1579
1580 /*
1581 * Increment the counter in the same struct proto as the master
1582 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1583 * is the same as sk->sk_prot->socks, as this field was copied
1584 * with memcpy).
1585 *
1586 * This _changes_ the previous behaviour, where
1587 * tcp_create_openreq_child always was incrementing the
1588 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1589 * to be taken into account in all callers. -acme
1590 */
1591 sk_refcnt_debug_inc(newsk);
1592 sk_set_socket(newsk, NULL);
1593 newsk->sk_wq = NULL;
1594
1595 if (newsk->sk_prot->sockets_allocated)
1596 sk_sockets_allocated_inc(newsk);
1597
1598 if (sock_needs_netstamp(sk) &&
1599 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1600 net_enable_timestamp();
1601 }
1602out:
1603 return newsk;
1604}
1605EXPORT_SYMBOL_GPL(sk_clone_lock);
1606
1607void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1608{
1609 u32 max_segs = 1;
1610
1611 sk_dst_set(sk, dst);
1612 sk->sk_route_caps = dst->dev->features;
1613 if (sk->sk_route_caps & NETIF_F_GSO)
1614 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1615 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1616 if (sk_can_gso(sk)) {
1617 if (dst->header_len) {
1618 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1619 } else {
1620 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1621 sk->sk_gso_max_size = dst->dev->gso_max_size;
1622 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1623 }
1624 }
1625 sk->sk_gso_max_segs = max_segs;
1626}
1627EXPORT_SYMBOL_GPL(sk_setup_caps);
1628
1629/*
1630 * Simple resource managers for sockets.
1631 */
1632
1633
1634/*
1635 * Write buffer destructor automatically called from kfree_skb.
1636 */
1637void sock_wfree(struct sk_buff *skb)
1638{
1639 struct sock *sk = skb->sk;
1640 unsigned int len = skb->truesize;
1641
1642 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1643 /*
1644 * Keep a reference on sk_wmem_alloc, this will be released
1645 * after sk_write_space() call
1646 */
1647 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1648 sk->sk_write_space(sk);
1649 len = 1;
1650 }
1651 /*
1652 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1653 * could not do because of in-flight packets
1654 */
1655 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1656 __sk_free(sk);
1657}
1658EXPORT_SYMBOL(sock_wfree);
1659
1660/* This variant of sock_wfree() is used by TCP,
1661 * since it sets SOCK_USE_WRITE_QUEUE.
1662 */
1663void __sock_wfree(struct sk_buff *skb)
1664{
1665 struct sock *sk = skb->sk;
1666
1667 if (atomic_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1668 __sk_free(sk);
1669}
1670
1671void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1672{
1673 skb_orphan(skb);
1674 skb->sk = sk;
1675#ifdef CONFIG_INET
1676 if (unlikely(!sk_fullsock(sk))) {
1677 skb->destructor = sock_edemux;
1678 sock_hold(sk);
1679 return;
1680 }
1681#endif
1682 skb->destructor = sock_wfree;
1683 skb_set_hash_from_sk(skb, sk);
1684 /*
1685 * We used to take a refcount on sk, but following operation
1686 * is enough to guarantee sk_free() wont free this sock until
1687 * all in-flight packets are completed
1688 */
1689 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1690}
1691EXPORT_SYMBOL(skb_set_owner_w);
1692
1693/* This helper is used by netem, as it can hold packets in its
1694 * delay queue. We want to allow the owner socket to send more
1695 * packets, as if they were already TX completed by a typical driver.
1696 * But we also want to keep skb->sk set because some packet schedulers
1697 * rely on it (sch_fq for example). So we set skb->truesize to a small
1698 * amount (1) and decrease sk_wmem_alloc accordingly.
1699 */
1700void skb_orphan_partial(struct sk_buff *skb)
1701{
1702 /* If this skb is a TCP pure ACK or already went here,
1703 * we have nothing to do. 2 is already a very small truesize.
1704 */
1705 if (skb->truesize <= 2)
1706 return;
1707
1708 /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1709 * so we do not completely orphan skb, but transfert all
1710 * accounted bytes but one, to avoid unexpected reorders.
1711 */
1712 if (skb->destructor == sock_wfree
1713#ifdef CONFIG_INET
1714 || skb->destructor == tcp_wfree
1715#endif
1716 ) {
1717 atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1718 skb->truesize = 1;
1719 } else {
1720 skb_orphan(skb);
1721 }
1722}
1723EXPORT_SYMBOL(skb_orphan_partial);
1724
1725/*
1726 * Read buffer destructor automatically called from kfree_skb.
1727 */
1728void sock_rfree(struct sk_buff *skb)
1729{
1730 struct sock *sk = skb->sk;
1731 unsigned int len = skb->truesize;
1732
1733 atomic_sub(len, &sk->sk_rmem_alloc);
1734 sk_mem_uncharge(sk, len);
1735}
1736EXPORT_SYMBOL(sock_rfree);
1737
1738/*
1739 * Buffer destructor for skbs that are not used directly in read or write
1740 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1741 */
1742void sock_efree(struct sk_buff *skb)
1743{
1744 sock_put(skb->sk);
1745}
1746EXPORT_SYMBOL(sock_efree);
1747
1748kuid_t sock_i_uid(struct sock *sk)
1749{
1750 kuid_t uid;
1751
1752 read_lock_bh(&sk->sk_callback_lock);
1753 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1754 read_unlock_bh(&sk->sk_callback_lock);
1755 return uid;
1756}
1757EXPORT_SYMBOL(sock_i_uid);
1758
1759unsigned long sock_i_ino(struct sock *sk)
1760{
1761 unsigned long ino;
1762
1763 read_lock_bh(&sk->sk_callback_lock);
1764 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1765 read_unlock_bh(&sk->sk_callback_lock);
1766 return ino;
1767}
1768EXPORT_SYMBOL(sock_i_ino);
1769
1770/*
1771 * Allocate a skb from the socket's send buffer.
1772 */
1773struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1774 gfp_t priority)
1775{
1776 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1777 struct sk_buff *skb = alloc_skb(size, priority);
1778 if (skb) {
1779 skb_set_owner_w(skb, sk);
1780 return skb;
1781 }
1782 }
1783 return NULL;
1784}
1785EXPORT_SYMBOL(sock_wmalloc);
1786
1787/*
1788 * Allocate a memory block from the socket's option memory buffer.
1789 */
1790void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1791{
1792 if ((unsigned int)size <= sysctl_optmem_max &&
1793 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1794 void *mem;
1795 /* First do the add, to avoid the race if kmalloc
1796 * might sleep.
1797 */
1798 atomic_add(size, &sk->sk_omem_alloc);
1799 mem = kmalloc(size, priority);
1800 if (mem)
1801 return mem;
1802 atomic_sub(size, &sk->sk_omem_alloc);
1803 }
1804 return NULL;
1805}
1806EXPORT_SYMBOL(sock_kmalloc);
1807
1808/* Free an option memory block. Note, we actually want the inline
1809 * here as this allows gcc to detect the nullify and fold away the
1810 * condition entirely.
1811 */
1812static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1813 const bool nullify)
1814{
1815 if (WARN_ON_ONCE(!mem))
1816 return;
1817 if (nullify)
1818 kzfree(mem);
1819 else
1820 kfree(mem);
1821 atomic_sub(size, &sk->sk_omem_alloc);
1822}
1823
1824void sock_kfree_s(struct sock *sk, void *mem, int size)
1825{
1826 __sock_kfree_s(sk, mem, size, false);
1827}
1828EXPORT_SYMBOL(sock_kfree_s);
1829
1830void sock_kzfree_s(struct sock *sk, void *mem, int size)
1831{
1832 __sock_kfree_s(sk, mem, size, true);
1833}
1834EXPORT_SYMBOL(sock_kzfree_s);
1835
1836/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1837 I think, these locks should be removed for datagram sockets.
1838 */
1839static long sock_wait_for_wmem(struct sock *sk, long timeo)
1840{
1841 DEFINE_WAIT(wait);
1842
1843 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1844 for (;;) {
1845 if (!timeo)
1846 break;
1847 if (signal_pending(current))
1848 break;
1849 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1850 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1851 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1852 break;
1853 if (sk->sk_shutdown & SEND_SHUTDOWN)
1854 break;
1855 if (sk->sk_err)
1856 break;
1857 timeo = schedule_timeout(timeo);
1858 }
1859 finish_wait(sk_sleep(sk), &wait);
1860 return timeo;
1861}
1862
1863
1864/*
1865 * Generic send/receive buffer handlers
1866 */
1867
1868struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1869 unsigned long data_len, int noblock,
1870 int *errcode, int max_page_order)
1871{
1872 struct sk_buff *skb;
1873 long timeo;
1874 int err;
1875
1876 timeo = sock_sndtimeo(sk, noblock);
1877 for (;;) {
1878 err = sock_error(sk);
1879 if (err != 0)
1880 goto failure;
1881
1882 err = -EPIPE;
1883 if (sk->sk_shutdown & SEND_SHUTDOWN)
1884 goto failure;
1885
1886 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1887 break;
1888
1889 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1890 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1891 err = -EAGAIN;
1892 if (!timeo)
1893 goto failure;
1894 if (signal_pending(current))
1895 goto interrupted;
1896 timeo = sock_wait_for_wmem(sk, timeo);
1897 }
1898 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1899 errcode, sk->sk_allocation);
1900 if (skb)
1901 skb_set_owner_w(skb, sk);
1902 return skb;
1903
1904interrupted:
1905 err = sock_intr_errno(timeo);
1906failure:
1907 *errcode = err;
1908 return NULL;
1909}
1910EXPORT_SYMBOL(sock_alloc_send_pskb);
1911
1912struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1913 int noblock, int *errcode)
1914{
1915 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1916}
1917EXPORT_SYMBOL(sock_alloc_send_skb);
1918
1919int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1920 struct sockcm_cookie *sockc)
1921{
1922 u32 tsflags;
1923
1924 switch (cmsg->cmsg_type) {
1925 case SO_MARK:
1926 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1927 return -EPERM;
1928 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1929 return -EINVAL;
1930 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
1931 break;
1932 case SO_TIMESTAMPING:
1933 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1934 return -EINVAL;
1935
1936 tsflags = *(u32 *)CMSG_DATA(cmsg);
1937 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
1938 return -EINVAL;
1939
1940 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
1941 sockc->tsflags |= tsflags;
1942 break;
1943 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
1944 case SCM_RIGHTS:
1945 case SCM_CREDENTIALS:
1946 break;
1947 default:
1948 return -EINVAL;
1949 }
1950 return 0;
1951}
1952EXPORT_SYMBOL(__sock_cmsg_send);
1953
1954int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1955 struct sockcm_cookie *sockc)
1956{
1957 struct cmsghdr *cmsg;
1958 int ret;
1959
1960 for_each_cmsghdr(cmsg, msg) {
1961 if (!CMSG_OK(msg, cmsg))
1962 return -EINVAL;
1963 if (cmsg->cmsg_level != SOL_SOCKET)
1964 continue;
1965 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
1966 if (ret)
1967 return ret;
1968 }
1969 return 0;
1970}
1971EXPORT_SYMBOL(sock_cmsg_send);
1972
1973/* On 32bit arches, an skb frag is limited to 2^15 */
1974#define SKB_FRAG_PAGE_ORDER get_order(32768)
1975
1976/**
1977 * skb_page_frag_refill - check that a page_frag contains enough room
1978 * @sz: minimum size of the fragment we want to get
1979 * @pfrag: pointer to page_frag
1980 * @gfp: priority for memory allocation
1981 *
1982 * Note: While this allocator tries to use high order pages, there is
1983 * no guarantee that allocations succeed. Therefore, @sz MUST be
1984 * less or equal than PAGE_SIZE.
1985 */
1986bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1987{
1988 if (pfrag->page) {
1989 if (page_ref_count(pfrag->page) == 1) {
1990 pfrag->offset = 0;
1991 return true;
1992 }
1993 if (pfrag->offset + sz <= pfrag->size)
1994 return true;
1995 put_page(pfrag->page);
1996 }
1997
1998 pfrag->offset = 0;
1999 if (SKB_FRAG_PAGE_ORDER) {
2000 /* Avoid direct reclaim but allow kswapd to wake */
2001 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2002 __GFP_COMP | __GFP_NOWARN |
2003 __GFP_NORETRY,
2004 SKB_FRAG_PAGE_ORDER);
2005 if (likely(pfrag->page)) {
2006 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2007 return true;
2008 }
2009 }
2010 pfrag->page = alloc_page(gfp);
2011 if (likely(pfrag->page)) {
2012 pfrag->size = PAGE_SIZE;
2013 return true;
2014 }
2015 return false;
2016}
2017EXPORT_SYMBOL(skb_page_frag_refill);
2018
2019bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2020{
2021 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2022 return true;
2023
2024 sk_enter_memory_pressure(sk);
2025 sk_stream_moderate_sndbuf(sk);
2026 return false;
2027}
2028EXPORT_SYMBOL(sk_page_frag_refill);
2029
2030static void __lock_sock(struct sock *sk)
2031 __releases(&sk->sk_lock.slock)
2032 __acquires(&sk->sk_lock.slock)
2033{
2034 DEFINE_WAIT(wait);
2035
2036 for (;;) {
2037 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2038 TASK_UNINTERRUPTIBLE);
2039 spin_unlock_bh(&sk->sk_lock.slock);
2040 schedule();
2041 spin_lock_bh(&sk->sk_lock.slock);
2042 if (!sock_owned_by_user(sk))
2043 break;
2044 }
2045 finish_wait(&sk->sk_lock.wq, &wait);
2046}
2047
2048static void __release_sock(struct sock *sk)
2049 __releases(&sk->sk_lock.slock)
2050 __acquires(&sk->sk_lock.slock)
2051{
2052 struct sk_buff *skb, *next;
2053
2054 while ((skb = sk->sk_backlog.head) != NULL) {
2055 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2056
2057 spin_unlock_bh(&sk->sk_lock.slock);
2058
2059 do {
2060 next = skb->next;
2061 prefetch(next);
2062 WARN_ON_ONCE(skb_dst_is_noref(skb));
2063 skb->next = NULL;
2064 sk_backlog_rcv(sk, skb);
2065
2066 cond_resched();
2067
2068 skb = next;
2069 } while (skb != NULL);
2070
2071 spin_lock_bh(&sk->sk_lock.slock);
2072 }
2073
2074 /*
2075 * Doing the zeroing here guarantee we can not loop forever
2076 * while a wild producer attempts to flood us.
2077 */
2078 sk->sk_backlog.len = 0;
2079}
2080
2081void __sk_flush_backlog(struct sock *sk)
2082{
2083 spin_lock_bh(&sk->sk_lock.slock);
2084 __release_sock(sk);
2085 spin_unlock_bh(&sk->sk_lock.slock);
2086}
2087
2088/**
2089 * sk_wait_data - wait for data to arrive at sk_receive_queue
2090 * @sk: sock to wait on
2091 * @timeo: for how long
2092 * @skb: last skb seen on sk_receive_queue
2093 *
2094 * Now socket state including sk->sk_err is changed only under lock,
2095 * hence we may omit checks after joining wait queue.
2096 * We check receive queue before schedule() only as optimization;
2097 * it is very likely that release_sock() added new data.
2098 */
2099int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2100{
2101 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2102 int rc;
2103
2104 add_wait_queue(sk_sleep(sk), &wait);
2105 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2106 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2107 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2108 remove_wait_queue(sk_sleep(sk), &wait);
2109 return rc;
2110}
2111EXPORT_SYMBOL(sk_wait_data);
2112
2113/**
2114 * __sk_mem_raise_allocated - increase memory_allocated
2115 * @sk: socket
2116 * @size: memory size to allocate
2117 * @amt: pages to allocate
2118 * @kind: allocation type
2119 *
2120 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2121 */
2122int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2123{
2124 struct proto *prot = sk->sk_prot;
2125 long allocated = sk_memory_allocated_add(sk, amt);
2126
2127 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2128 !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2129 goto suppress_allocation;
2130
2131 /* Under limit. */
2132 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2133 sk_leave_memory_pressure(sk);
2134 return 1;
2135 }
2136
2137 /* Under pressure. */
2138 if (allocated > sk_prot_mem_limits(sk, 1))
2139 sk_enter_memory_pressure(sk);
2140
2141 /* Over hard limit. */
2142 if (allocated > sk_prot_mem_limits(sk, 2))
2143 goto suppress_allocation;
2144
2145 /* guarantee minimum buffer size under pressure */
2146 if (kind == SK_MEM_RECV) {
2147 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2148 return 1;
2149
2150 } else { /* SK_MEM_SEND */
2151 if (sk->sk_type == SOCK_STREAM) {
2152 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2153 return 1;
2154 } else if (atomic_read(&sk->sk_wmem_alloc) <
2155 prot->sysctl_wmem[0])
2156 return 1;
2157 }
2158
2159 if (sk_has_memory_pressure(sk)) {
2160 int alloc;
2161
2162 if (!sk_under_memory_pressure(sk))
2163 return 1;
2164 alloc = sk_sockets_allocated_read_positive(sk);
2165 if (sk_prot_mem_limits(sk, 2) > alloc *
2166 sk_mem_pages(sk->sk_wmem_queued +
2167 atomic_read(&sk->sk_rmem_alloc) +
2168 sk->sk_forward_alloc))
2169 return 1;
2170 }
2171
2172suppress_allocation:
2173
2174 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2175 sk_stream_moderate_sndbuf(sk);
2176
2177 /* Fail only if socket is _under_ its sndbuf.
2178 * In this case we cannot block, so that we have to fail.
2179 */
2180 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2181 return 1;
2182 }
2183
2184 trace_sock_exceed_buf_limit(sk, prot, allocated);
2185
2186 sk_memory_allocated_sub(sk, amt);
2187
2188 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2189 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2190
2191 return 0;
2192}
2193EXPORT_SYMBOL(__sk_mem_raise_allocated);
2194
2195/**
2196 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2197 * @sk: socket
2198 * @size: memory size to allocate
2199 * @kind: allocation type
2200 *
2201 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2202 * rmem allocation. This function assumes that protocols which have
2203 * memory_pressure use sk_wmem_queued as write buffer accounting.
2204 */
2205int __sk_mem_schedule(struct sock *sk, int size, int kind)
2206{
2207 int ret, amt = sk_mem_pages(size);
2208
2209 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2210 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2211 if (!ret)
2212 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2213 return ret;
2214}
2215EXPORT_SYMBOL(__sk_mem_schedule);
2216
2217/**
2218 * __sk_mem_reduce_allocated - reclaim memory_allocated
2219 * @sk: socket
2220 * @amount: number of quanta
2221 *
2222 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2223 */
2224void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2225{
2226 sk_memory_allocated_sub(sk, amount);
2227
2228 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2229 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2230
2231 if (sk_under_memory_pressure(sk) &&
2232 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2233 sk_leave_memory_pressure(sk);
2234}
2235EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2236
2237/**
2238 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2239 * @sk: socket
2240 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2241 */
2242void __sk_mem_reclaim(struct sock *sk, int amount)
2243{
2244 amount >>= SK_MEM_QUANTUM_SHIFT;
2245 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2246 __sk_mem_reduce_allocated(sk, amount);
2247}
2248EXPORT_SYMBOL(__sk_mem_reclaim);
2249
2250int sk_set_peek_off(struct sock *sk, int val)
2251{
2252 if (val < 0)
2253 return -EINVAL;
2254
2255 sk->sk_peek_off = val;
2256 return 0;
2257}
2258EXPORT_SYMBOL_GPL(sk_set_peek_off);
2259
2260/*
2261 * Set of default routines for initialising struct proto_ops when
2262 * the protocol does not support a particular function. In certain
2263 * cases where it makes no sense for a protocol to have a "do nothing"
2264 * function, some default processing is provided.
2265 */
2266
2267int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2268{
2269 return -EOPNOTSUPP;
2270}
2271EXPORT_SYMBOL(sock_no_bind);
2272
2273int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2274 int len, int flags)
2275{
2276 return -EOPNOTSUPP;
2277}
2278EXPORT_SYMBOL(sock_no_connect);
2279
2280int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2281{
2282 return -EOPNOTSUPP;
2283}
2284EXPORT_SYMBOL(sock_no_socketpair);
2285
2286int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2287{
2288 return -EOPNOTSUPP;
2289}
2290EXPORT_SYMBOL(sock_no_accept);
2291
2292int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2293 int *len, int peer)
2294{
2295 return -EOPNOTSUPP;
2296}
2297EXPORT_SYMBOL(sock_no_getname);
2298
2299unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2300{
2301 return 0;
2302}
2303EXPORT_SYMBOL(sock_no_poll);
2304
2305int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2306{
2307 return -EOPNOTSUPP;
2308}
2309EXPORT_SYMBOL(sock_no_ioctl);
2310
2311int sock_no_listen(struct socket *sock, int backlog)
2312{
2313 return -EOPNOTSUPP;
2314}
2315EXPORT_SYMBOL(sock_no_listen);
2316
2317int sock_no_shutdown(struct socket *sock, int how)
2318{
2319 return -EOPNOTSUPP;
2320}
2321EXPORT_SYMBOL(sock_no_shutdown);
2322
2323int sock_no_setsockopt(struct socket *sock, int level, int optname,
2324 char __user *optval, unsigned int optlen)
2325{
2326 return -EOPNOTSUPP;
2327}
2328EXPORT_SYMBOL(sock_no_setsockopt);
2329
2330int sock_no_getsockopt(struct socket *sock, int level, int optname,
2331 char __user *optval, int __user *optlen)
2332{
2333 return -EOPNOTSUPP;
2334}
2335EXPORT_SYMBOL(sock_no_getsockopt);
2336
2337int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2338{
2339 return -EOPNOTSUPP;
2340}
2341EXPORT_SYMBOL(sock_no_sendmsg);
2342
2343int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2344 int flags)
2345{
2346 return -EOPNOTSUPP;
2347}
2348EXPORT_SYMBOL(sock_no_recvmsg);
2349
2350int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2351{
2352 /* Mirror missing mmap method error code */
2353 return -ENODEV;
2354}
2355EXPORT_SYMBOL(sock_no_mmap);
2356
2357ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2358{
2359 ssize_t res;
2360 struct msghdr msg = {.msg_flags = flags};
2361 struct kvec iov;
2362 char *kaddr = kmap(page);
2363 iov.iov_base = kaddr + offset;
2364 iov.iov_len = size;
2365 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2366 kunmap(page);
2367 return res;
2368}
2369EXPORT_SYMBOL(sock_no_sendpage);
2370
2371/*
2372 * Default Socket Callbacks
2373 */
2374
2375static void sock_def_wakeup(struct sock *sk)
2376{
2377 struct socket_wq *wq;
2378
2379 rcu_read_lock();
2380 wq = rcu_dereference(sk->sk_wq);
2381 if (skwq_has_sleeper(wq))
2382 wake_up_interruptible_all(&wq->wait);
2383 rcu_read_unlock();
2384}
2385
2386static void sock_def_error_report(struct sock *sk)
2387{
2388 struct socket_wq *wq;
2389
2390 rcu_read_lock();
2391 wq = rcu_dereference(sk->sk_wq);
2392 if (skwq_has_sleeper(wq))
2393 wake_up_interruptible_poll(&wq->wait, POLLERR);
2394 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2395 rcu_read_unlock();
2396}
2397
2398static void sock_def_readable(struct sock *sk)
2399{
2400 struct socket_wq *wq;
2401
2402 rcu_read_lock();
2403 wq = rcu_dereference(sk->sk_wq);
2404 if (skwq_has_sleeper(wq))
2405 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2406 POLLRDNORM | POLLRDBAND);
2407 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2408 rcu_read_unlock();
2409}
2410
2411static void sock_def_write_space(struct sock *sk)
2412{
2413 struct socket_wq *wq;
2414
2415 rcu_read_lock();
2416
2417 /* Do not wake up a writer until he can make "significant"
2418 * progress. --DaveM
2419 */
2420 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2421 wq = rcu_dereference(sk->sk_wq);
2422 if (skwq_has_sleeper(wq))
2423 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2424 POLLWRNORM | POLLWRBAND);
2425
2426 /* Should agree with poll, otherwise some programs break */
2427 if (sock_writeable(sk))
2428 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2429 }
2430
2431 rcu_read_unlock();
2432}
2433
2434static void sock_def_destruct(struct sock *sk)
2435{
2436}
2437
2438void sk_send_sigurg(struct sock *sk)
2439{
2440 if (sk->sk_socket && sk->sk_socket->file)
2441 if (send_sigurg(&sk->sk_socket->file->f_owner))
2442 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2443}
2444EXPORT_SYMBOL(sk_send_sigurg);
2445
2446void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2447 unsigned long expires)
2448{
2449 if (!mod_timer(timer, expires))
2450 sock_hold(sk);
2451}
2452EXPORT_SYMBOL(sk_reset_timer);
2453
2454void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2455{
2456 if (del_timer(timer))
2457 __sock_put(sk);
2458}
2459EXPORT_SYMBOL(sk_stop_timer);
2460
2461void sock_init_data(struct socket *sock, struct sock *sk)
2462{
2463 skb_queue_head_init(&sk->sk_receive_queue);
2464 skb_queue_head_init(&sk->sk_write_queue);
2465 skb_queue_head_init(&sk->sk_error_queue);
2466
2467 sk->sk_send_head = NULL;
2468
2469 init_timer(&sk->sk_timer);
2470
2471 sk->sk_allocation = GFP_KERNEL;
2472 sk->sk_rcvbuf = sysctl_rmem_default;
2473 sk->sk_sndbuf = sysctl_wmem_default;
2474 sk->sk_state = TCP_CLOSE;
2475 sk_set_socket(sk, sock);
2476
2477 sock_set_flag(sk, SOCK_ZAPPED);
2478
2479 if (sock) {
2480 sk->sk_type = sock->type;
2481 sk->sk_wq = sock->wq;
2482 sock->sk = sk;
2483 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2484 } else {
2485 sk->sk_wq = NULL;
2486 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2487 }
2488
2489 rwlock_init(&sk->sk_callback_lock);
2490 lockdep_set_class_and_name(&sk->sk_callback_lock,
2491 af_callback_keys + sk->sk_family,
2492 af_family_clock_key_strings[sk->sk_family]);
2493
2494 sk->sk_state_change = sock_def_wakeup;
2495 sk->sk_data_ready = sock_def_readable;
2496 sk->sk_write_space = sock_def_write_space;
2497 sk->sk_error_report = sock_def_error_report;
2498 sk->sk_destruct = sock_def_destruct;
2499
2500 sk->sk_frag.page = NULL;
2501 sk->sk_frag.offset = 0;
2502 sk->sk_peek_off = -1;
2503
2504 sk->sk_peer_pid = NULL;
2505 sk->sk_peer_cred = NULL;
2506 sk->sk_write_pending = 0;
2507 sk->sk_rcvlowat = 1;
2508 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2509 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2510
2511 sk->sk_stamp = ktime_set(-1L, 0);
2512
2513#ifdef CONFIG_NET_RX_BUSY_POLL
2514 sk->sk_napi_id = 0;
2515 sk->sk_ll_usec = sysctl_net_busy_read;
2516#endif
2517
2518 sk->sk_max_pacing_rate = ~0U;
2519 sk->sk_pacing_rate = ~0U;
2520 sk->sk_incoming_cpu = -1;
2521 /*
2522 * Before updating sk_refcnt, we must commit prior changes to memory
2523 * (Documentation/RCU/rculist_nulls.txt for details)
2524 */
2525 smp_wmb();
2526 atomic_set(&sk->sk_refcnt, 1);
2527 atomic_set(&sk->sk_drops, 0);
2528}
2529EXPORT_SYMBOL(sock_init_data);
2530
2531void lock_sock_nested(struct sock *sk, int subclass)
2532{
2533 might_sleep();
2534 spin_lock_bh(&sk->sk_lock.slock);
2535 if (sk->sk_lock.owned)
2536 __lock_sock(sk);
2537 sk->sk_lock.owned = 1;
2538 spin_unlock(&sk->sk_lock.slock);
2539 /*
2540 * The sk_lock has mutex_lock() semantics here:
2541 */
2542 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2543 local_bh_enable();
2544}
2545EXPORT_SYMBOL(lock_sock_nested);
2546
2547void release_sock(struct sock *sk)
2548{
2549 spin_lock_bh(&sk->sk_lock.slock);
2550 if (sk->sk_backlog.tail)
2551 __release_sock(sk);
2552
2553 /* Warning : release_cb() might need to release sk ownership,
2554 * ie call sock_release_ownership(sk) before us.
2555 */
2556 if (sk->sk_prot->release_cb)
2557 sk->sk_prot->release_cb(sk);
2558
2559 sock_release_ownership(sk);
2560 if (waitqueue_active(&sk->sk_lock.wq))
2561 wake_up(&sk->sk_lock.wq);
2562 spin_unlock_bh(&sk->sk_lock.slock);
2563}
2564EXPORT_SYMBOL(release_sock);
2565
2566/**
2567 * lock_sock_fast - fast version of lock_sock
2568 * @sk: socket
2569 *
2570 * This version should be used for very small section, where process wont block
2571 * return false if fast path is taken
2572 * sk_lock.slock locked, owned = 0, BH disabled
2573 * return true if slow path is taken
2574 * sk_lock.slock unlocked, owned = 1, BH enabled
2575 */
2576bool lock_sock_fast(struct sock *sk)
2577{
2578 might_sleep();
2579 spin_lock_bh(&sk->sk_lock.slock);
2580
2581 if (!sk->sk_lock.owned)
2582 /*
2583 * Note : We must disable BH
2584 */
2585 return false;
2586
2587 __lock_sock(sk);
2588 sk->sk_lock.owned = 1;
2589 spin_unlock(&sk->sk_lock.slock);
2590 /*
2591 * The sk_lock has mutex_lock() semantics here:
2592 */
2593 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2594 local_bh_enable();
2595 return true;
2596}
2597EXPORT_SYMBOL(lock_sock_fast);
2598
2599int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2600{
2601 struct timeval tv;
2602 if (!sock_flag(sk, SOCK_TIMESTAMP))
2603 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2604 tv = ktime_to_timeval(sk->sk_stamp);
2605 if (tv.tv_sec == -1)
2606 return -ENOENT;
2607 if (tv.tv_sec == 0) {
2608 sk->sk_stamp = ktime_get_real();
2609 tv = ktime_to_timeval(sk->sk_stamp);
2610 }
2611 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2612}
2613EXPORT_SYMBOL(sock_get_timestamp);
2614
2615int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2616{
2617 struct timespec ts;
2618 if (!sock_flag(sk, SOCK_TIMESTAMP))
2619 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2620 ts = ktime_to_timespec(sk->sk_stamp);
2621 if (ts.tv_sec == -1)
2622 return -ENOENT;
2623 if (ts.tv_sec == 0) {
2624 sk->sk_stamp = ktime_get_real();
2625 ts = ktime_to_timespec(sk->sk_stamp);
2626 }
2627 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2628}
2629EXPORT_SYMBOL(sock_get_timestampns);
2630
2631void sock_enable_timestamp(struct sock *sk, int flag)
2632{
2633 if (!sock_flag(sk, flag)) {
2634 unsigned long previous_flags = sk->sk_flags;
2635
2636 sock_set_flag(sk, flag);
2637 /*
2638 * we just set one of the two flags which require net
2639 * time stamping, but time stamping might have been on
2640 * already because of the other one
2641 */
2642 if (sock_needs_netstamp(sk) &&
2643 !(previous_flags & SK_FLAGS_TIMESTAMP))
2644 net_enable_timestamp();
2645 }
2646}
2647
2648int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2649 int level, int type)
2650{
2651 struct sock_exterr_skb *serr;
2652 struct sk_buff *skb;
2653 int copied, err;
2654
2655 err = -EAGAIN;
2656 skb = sock_dequeue_err_skb(sk);
2657 if (skb == NULL)
2658 goto out;
2659
2660 copied = skb->len;
2661 if (copied > len) {
2662 msg->msg_flags |= MSG_TRUNC;
2663 copied = len;
2664 }
2665 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2666 if (err)
2667 goto out_free_skb;
2668
2669 sock_recv_timestamp(msg, sk, skb);
2670
2671 serr = SKB_EXT_ERR(skb);
2672 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2673
2674 msg->msg_flags |= MSG_ERRQUEUE;
2675 err = copied;
2676
2677out_free_skb:
2678 kfree_skb(skb);
2679out:
2680 return err;
2681}
2682EXPORT_SYMBOL(sock_recv_errqueue);
2683
2684/*
2685 * Get a socket option on an socket.
2686 *
2687 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2688 * asynchronous errors should be reported by getsockopt. We assume
2689 * this means if you specify SO_ERROR (otherwise whats the point of it).
2690 */
2691int sock_common_getsockopt(struct socket *sock, int level, int optname,
2692 char __user *optval, int __user *optlen)
2693{
2694 struct sock *sk = sock->sk;
2695
2696 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2697}
2698EXPORT_SYMBOL(sock_common_getsockopt);
2699
2700#ifdef CONFIG_COMPAT
2701int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2702 char __user *optval, int __user *optlen)
2703{
2704 struct sock *sk = sock->sk;
2705
2706 if (sk->sk_prot->compat_getsockopt != NULL)
2707 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2708 optval, optlen);
2709 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2710}
2711EXPORT_SYMBOL(compat_sock_common_getsockopt);
2712#endif
2713
2714int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2715 int flags)
2716{
2717 struct sock *sk = sock->sk;
2718 int addr_len = 0;
2719 int err;
2720
2721 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2722 flags & ~MSG_DONTWAIT, &addr_len);
2723 if (err >= 0)
2724 msg->msg_namelen = addr_len;
2725 return err;
2726}
2727EXPORT_SYMBOL(sock_common_recvmsg);
2728
2729/*
2730 * Set socket options on an inet socket.
2731 */
2732int sock_common_setsockopt(struct socket *sock, int level, int optname,
2733 char __user *optval, unsigned int optlen)
2734{
2735 struct sock *sk = sock->sk;
2736
2737 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2738}
2739EXPORT_SYMBOL(sock_common_setsockopt);
2740
2741#ifdef CONFIG_COMPAT
2742int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2743 char __user *optval, unsigned int optlen)
2744{
2745 struct sock *sk = sock->sk;
2746
2747 if (sk->sk_prot->compat_setsockopt != NULL)
2748 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2749 optval, optlen);
2750 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2751}
2752EXPORT_SYMBOL(compat_sock_common_setsockopt);
2753#endif
2754
2755void sk_common_release(struct sock *sk)
2756{
2757 if (sk->sk_prot->destroy)
2758 sk->sk_prot->destroy(sk);
2759
2760 /*
2761 * Observation: when sock_common_release is called, processes have
2762 * no access to socket. But net still has.
2763 * Step one, detach it from networking:
2764 *
2765 * A. Remove from hash tables.
2766 */
2767
2768 sk->sk_prot->unhash(sk);
2769
2770 /*
2771 * In this point socket cannot receive new packets, but it is possible
2772 * that some packets are in flight because some CPU runs receiver and
2773 * did hash table lookup before we unhashed socket. They will achieve
2774 * receive queue and will be purged by socket destructor.
2775 *
2776 * Also we still have packets pending on receive queue and probably,
2777 * our own packets waiting in device queues. sock_destroy will drain
2778 * receive queue, but transmitted packets will delay socket destruction
2779 * until the last reference will be released.
2780 */
2781
2782 sock_orphan(sk);
2783
2784 xfrm_sk_free_policy(sk);
2785
2786 sk_refcnt_debug_release(sk);
2787
2788 sock_put(sk);
2789}
2790EXPORT_SYMBOL(sk_common_release);
2791
2792#ifdef CONFIG_PROC_FS
2793#define PROTO_INUSE_NR 64 /* should be enough for the first time */
2794struct prot_inuse {
2795 int val[PROTO_INUSE_NR];
2796};
2797
2798static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2799
2800#ifdef CONFIG_NET_NS
2801void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2802{
2803 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2804}
2805EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2806
2807int sock_prot_inuse_get(struct net *net, struct proto *prot)
2808{
2809 int cpu, idx = prot->inuse_idx;
2810 int res = 0;
2811
2812 for_each_possible_cpu(cpu)
2813 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2814
2815 return res >= 0 ? res : 0;
2816}
2817EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2818
2819static int __net_init sock_inuse_init_net(struct net *net)
2820{
2821 net->core.inuse = alloc_percpu(struct prot_inuse);
2822 return net->core.inuse ? 0 : -ENOMEM;
2823}
2824
2825static void __net_exit sock_inuse_exit_net(struct net *net)
2826{
2827 free_percpu(net->core.inuse);
2828}
2829
2830static struct pernet_operations net_inuse_ops = {
2831 .init = sock_inuse_init_net,
2832 .exit = sock_inuse_exit_net,
2833};
2834
2835static __init int net_inuse_init(void)
2836{
2837 if (register_pernet_subsys(&net_inuse_ops))
2838 panic("Cannot initialize net inuse counters");
2839
2840 return 0;
2841}
2842
2843core_initcall(net_inuse_init);
2844#else
2845static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2846
2847void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2848{
2849 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2850}
2851EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2852
2853int sock_prot_inuse_get(struct net *net, struct proto *prot)
2854{
2855 int cpu, idx = prot->inuse_idx;
2856 int res = 0;
2857
2858 for_each_possible_cpu(cpu)
2859 res += per_cpu(prot_inuse, cpu).val[idx];
2860
2861 return res >= 0 ? res : 0;
2862}
2863EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2864#endif
2865
2866static void assign_proto_idx(struct proto *prot)
2867{
2868 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2869
2870 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2871 pr_err("PROTO_INUSE_NR exhausted\n");
2872 return;
2873 }
2874
2875 set_bit(prot->inuse_idx, proto_inuse_idx);
2876}
2877
2878static void release_proto_idx(struct proto *prot)
2879{
2880 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2881 clear_bit(prot->inuse_idx, proto_inuse_idx);
2882}
2883#else
2884static inline void assign_proto_idx(struct proto *prot)
2885{
2886}
2887
2888static inline void release_proto_idx(struct proto *prot)
2889{
2890}
2891#endif
2892
2893static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2894{
2895 if (!rsk_prot)
2896 return;
2897 kfree(rsk_prot->slab_name);
2898 rsk_prot->slab_name = NULL;
2899 kmem_cache_destroy(rsk_prot->slab);
2900 rsk_prot->slab = NULL;
2901}
2902
2903static int req_prot_init(const struct proto *prot)
2904{
2905 struct request_sock_ops *rsk_prot = prot->rsk_prot;
2906
2907 if (!rsk_prot)
2908 return 0;
2909
2910 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2911 prot->name);
2912 if (!rsk_prot->slab_name)
2913 return -ENOMEM;
2914
2915 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2916 rsk_prot->obj_size, 0,
2917 prot->slab_flags, NULL);
2918
2919 if (!rsk_prot->slab) {
2920 pr_crit("%s: Can't create request sock SLAB cache!\n",
2921 prot->name);
2922 return -ENOMEM;
2923 }
2924 return 0;
2925}
2926
2927int proto_register(struct proto *prot, int alloc_slab)
2928{
2929 if (alloc_slab) {
2930 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2931 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2932 NULL);
2933
2934 if (prot->slab == NULL) {
2935 pr_crit("%s: Can't create sock SLAB cache!\n",
2936 prot->name);
2937 goto out;
2938 }
2939
2940 if (req_prot_init(prot))
2941 goto out_free_request_sock_slab;
2942
2943 if (prot->twsk_prot != NULL) {
2944 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2945
2946 if (prot->twsk_prot->twsk_slab_name == NULL)
2947 goto out_free_request_sock_slab;
2948
2949 prot->twsk_prot->twsk_slab =
2950 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2951 prot->twsk_prot->twsk_obj_size,
2952 0,
2953 prot->slab_flags,
2954 NULL);
2955 if (prot->twsk_prot->twsk_slab == NULL)
2956 goto out_free_timewait_sock_slab_name;
2957 }
2958 }
2959
2960 mutex_lock(&proto_list_mutex);
2961 list_add(&prot->node, &proto_list);
2962 assign_proto_idx(prot);
2963 mutex_unlock(&proto_list_mutex);
2964 return 0;
2965
2966out_free_timewait_sock_slab_name:
2967 kfree(prot->twsk_prot->twsk_slab_name);
2968out_free_request_sock_slab:
2969 req_prot_cleanup(prot->rsk_prot);
2970
2971 kmem_cache_destroy(prot->slab);
2972 prot->slab = NULL;
2973out:
2974 return -ENOBUFS;
2975}
2976EXPORT_SYMBOL(proto_register);
2977
2978void proto_unregister(struct proto *prot)
2979{
2980 mutex_lock(&proto_list_mutex);
2981 release_proto_idx(prot);
2982 list_del(&prot->node);
2983 mutex_unlock(&proto_list_mutex);
2984
2985 kmem_cache_destroy(prot->slab);
2986 prot->slab = NULL;
2987
2988 req_prot_cleanup(prot->rsk_prot);
2989
2990 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2991 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2992 kfree(prot->twsk_prot->twsk_slab_name);
2993 prot->twsk_prot->twsk_slab = NULL;
2994 }
2995}
2996EXPORT_SYMBOL(proto_unregister);
2997
2998#ifdef CONFIG_PROC_FS
2999static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3000 __acquires(proto_list_mutex)
3001{
3002 mutex_lock(&proto_list_mutex);
3003 return seq_list_start_head(&proto_list, *pos);
3004}
3005
3006static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3007{
3008 return seq_list_next(v, &proto_list, pos);
3009}
3010
3011static void proto_seq_stop(struct seq_file *seq, void *v)
3012 __releases(proto_list_mutex)
3013{
3014 mutex_unlock(&proto_list_mutex);
3015}
3016
3017static char proto_method_implemented(const void *method)
3018{
3019 return method == NULL ? 'n' : 'y';
3020}
3021static long sock_prot_memory_allocated(struct proto *proto)
3022{
3023 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3024}
3025
3026static char *sock_prot_memory_pressure(struct proto *proto)
3027{
3028 return proto->memory_pressure != NULL ?
3029 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3030}
3031
3032static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3033{
3034
3035 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3036 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3037 proto->name,
3038 proto->obj_size,
3039 sock_prot_inuse_get(seq_file_net(seq), proto),
3040 sock_prot_memory_allocated(proto),
3041 sock_prot_memory_pressure(proto),
3042 proto->max_header,
3043 proto->slab == NULL ? "no" : "yes",
3044 module_name(proto->owner),
3045 proto_method_implemented(proto->close),
3046 proto_method_implemented(proto->connect),
3047 proto_method_implemented(proto->disconnect),
3048 proto_method_implemented(proto->accept),
3049 proto_method_implemented(proto->ioctl),
3050 proto_method_implemented(proto->init),
3051 proto_method_implemented(proto->destroy),
3052 proto_method_implemented(proto->shutdown),
3053 proto_method_implemented(proto->setsockopt),
3054 proto_method_implemented(proto->getsockopt),
3055 proto_method_implemented(proto->sendmsg),
3056 proto_method_implemented(proto->recvmsg),
3057 proto_method_implemented(proto->sendpage),
3058 proto_method_implemented(proto->bind),
3059 proto_method_implemented(proto->backlog_rcv),
3060 proto_method_implemented(proto->hash),
3061 proto_method_implemented(proto->unhash),
3062 proto_method_implemented(proto->get_port),
3063 proto_method_implemented(proto->enter_memory_pressure));
3064}
3065
3066static int proto_seq_show(struct seq_file *seq, void *v)
3067{
3068 if (v == &proto_list)
3069 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3070 "protocol",
3071 "size",
3072 "sockets",
3073 "memory",
3074 "press",
3075 "maxhdr",
3076 "slab",
3077 "module",
3078 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3079 else
3080 proto_seq_printf(seq, list_entry(v, struct proto, node));
3081 return 0;
3082}
3083
3084static const struct seq_operations proto_seq_ops = {
3085 .start = proto_seq_start,
3086 .next = proto_seq_next,
3087 .stop = proto_seq_stop,
3088 .show = proto_seq_show,
3089};
3090
3091static int proto_seq_open(struct inode *inode, struct file *file)
3092{
3093 return seq_open_net(inode, file, &proto_seq_ops,
3094 sizeof(struct seq_net_private));
3095}
3096
3097static const struct file_operations proto_seq_fops = {
3098 .owner = THIS_MODULE,
3099 .open = proto_seq_open,
3100 .read = seq_read,
3101 .llseek = seq_lseek,
3102 .release = seq_release_net,
3103};
3104
3105static __net_init int proto_init_net(struct net *net)
3106{
3107 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3108 return -ENOMEM;
3109
3110 return 0;
3111}
3112
3113static __net_exit void proto_exit_net(struct net *net)
3114{
3115 remove_proc_entry("protocols", net->proc_net);
3116}
3117
3118
3119static __net_initdata struct pernet_operations proto_net_ops = {
3120 .init = proto_init_net,
3121 .exit = proto_exit_net,
3122};
3123
3124static int __init proto_init(void)
3125{
3126 return register_pernet_subsys(&proto_net_ops);
3127}
3128
3129subsys_initcall(proto_init);
3130
3131#endif /* PROC_FS */