Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
  1/*
  2 *  bootmem - A boot-time physical memory allocator and configurator
  3 *
  4 *  Copyright (C) 1999 Ingo Molnar
  5 *                1999 Kanoj Sarcar, SGI
  6 *                2008 Johannes Weiner
  7 *
  8 * Access to this subsystem has to be serialized externally (which is true
  9 * for the boot process anyway).
 10 */
 11#include <linux/init.h>
 12#include <linux/pfn.h>
 13#include <linux/slab.h>
 14#include <linux/export.h>
 15#include <linux/kmemleak.h>
 16#include <linux/range.h>
 17#include <linux/bug.h>
 18#include <linux/io.h>
 19#include <linux/bootmem.h>
 20
 21#include "internal.h"
 22
 23#ifndef CONFIG_NEED_MULTIPLE_NODES
 24struct pglist_data __refdata contig_page_data = {
 25	.bdata = &bootmem_node_data[0]
 26};
 27EXPORT_SYMBOL(contig_page_data);
 28#endif
 29
 30unsigned long max_low_pfn;
 31unsigned long min_low_pfn;
 32unsigned long max_pfn;
 33unsigned long long max_possible_pfn;
 34
 35bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
 36
 37static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
 38
 39static int bootmem_debug;
 40
 41static int __init bootmem_debug_setup(char *buf)
 42{
 43	bootmem_debug = 1;
 44	return 0;
 45}
 46early_param("bootmem_debug", bootmem_debug_setup);
 47
 48#define bdebug(fmt, args...) ({				\
 49	if (unlikely(bootmem_debug))			\
 50		pr_info("bootmem::%s " fmt,		\
 51			__func__, ## args);		\
 52})
 53
 54static unsigned long __init bootmap_bytes(unsigned long pages)
 55{
 56	unsigned long bytes = DIV_ROUND_UP(pages, 8);
 57
 58	return ALIGN(bytes, sizeof(long));
 59}
 60
 61/**
 62 * bootmem_bootmap_pages - calculate bitmap size in pages
 63 * @pages: number of pages the bitmap has to represent
 64 */
 65unsigned long __init bootmem_bootmap_pages(unsigned long pages)
 66{
 67	unsigned long bytes = bootmap_bytes(pages);
 68
 69	return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
 70}
 71
 72/*
 73 * link bdata in order
 74 */
 75static void __init link_bootmem(bootmem_data_t *bdata)
 76{
 77	bootmem_data_t *ent;
 78
 79	list_for_each_entry(ent, &bdata_list, list) {
 80		if (bdata->node_min_pfn < ent->node_min_pfn) {
 81			list_add_tail(&bdata->list, &ent->list);
 82			return;
 83		}
 84	}
 85
 86	list_add_tail(&bdata->list, &bdata_list);
 87}
 88
 89/*
 90 * Called once to set up the allocator itself.
 91 */
 92static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
 93	unsigned long mapstart, unsigned long start, unsigned long end)
 94{
 95	unsigned long mapsize;
 96
 97	mminit_validate_memmodel_limits(&start, &end);
 98	bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
 99	bdata->node_min_pfn = start;
100	bdata->node_low_pfn = end;
101	link_bootmem(bdata);
102
103	/*
104	 * Initially all pages are reserved - setup_arch() has to
105	 * register free RAM areas explicitly.
106	 */
107	mapsize = bootmap_bytes(end - start);
108	memset(bdata->node_bootmem_map, 0xff, mapsize);
109
110	bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
111		bdata - bootmem_node_data, start, mapstart, end, mapsize);
112
113	return mapsize;
114}
115
116/**
117 * init_bootmem_node - register a node as boot memory
118 * @pgdat: node to register
119 * @freepfn: pfn where the bitmap for this node is to be placed
120 * @startpfn: first pfn on the node
121 * @endpfn: first pfn after the node
122 *
123 * Returns the number of bytes needed to hold the bitmap for this node.
124 */
125unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
126				unsigned long startpfn, unsigned long endpfn)
127{
128	return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
129}
130
131/**
132 * init_bootmem - register boot memory
133 * @start: pfn where the bitmap is to be placed
134 * @pages: number of available physical pages
135 *
136 * Returns the number of bytes needed to hold the bitmap.
137 */
138unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
139{
140	max_low_pfn = pages;
141	min_low_pfn = start;
142	return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
143}
144
145/*
146 * free_bootmem_late - free bootmem pages directly to page allocator
147 * @addr: starting physical address of the range
148 * @size: size of the range in bytes
149 *
150 * This is only useful when the bootmem allocator has already been torn
151 * down, but we are still initializing the system.  Pages are given directly
152 * to the page allocator, no bootmem metadata is updated because it is gone.
153 */
154void __init free_bootmem_late(unsigned long physaddr, unsigned long size)
155{
156	unsigned long cursor, end;
157
158	kmemleak_free_part_phys(physaddr, size);
159
160	cursor = PFN_UP(physaddr);
161	end = PFN_DOWN(physaddr + size);
162
163	for (; cursor < end; cursor++) {
164		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
165		totalram_pages++;
166	}
167}
168
169static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
170{
171	struct page *page;
172	unsigned long *map, start, end, pages, cur, count = 0;
173
174	if (!bdata->node_bootmem_map)
175		return 0;
176
177	map = bdata->node_bootmem_map;
178	start = bdata->node_min_pfn;
179	end = bdata->node_low_pfn;
180
181	bdebug("nid=%td start=%lx end=%lx\n",
182		bdata - bootmem_node_data, start, end);
183
184	while (start < end) {
185		unsigned long idx, vec;
186		unsigned shift;
187
188		idx = start - bdata->node_min_pfn;
189		shift = idx & (BITS_PER_LONG - 1);
190		/*
191		 * vec holds at most BITS_PER_LONG map bits,
192		 * bit 0 corresponds to start.
193		 */
194		vec = ~map[idx / BITS_PER_LONG];
195
196		if (shift) {
197			vec >>= shift;
198			if (end - start >= BITS_PER_LONG)
199				vec |= ~map[idx / BITS_PER_LONG + 1] <<
200					(BITS_PER_LONG - shift);
201		}
202		/*
203		 * If we have a properly aligned and fully unreserved
204		 * BITS_PER_LONG block of pages in front of us, free
205		 * it in one go.
206		 */
207		if (IS_ALIGNED(start, BITS_PER_LONG) && vec == ~0UL) {
208			int order = ilog2(BITS_PER_LONG);
209
210			__free_pages_bootmem(pfn_to_page(start), start, order);
211			count += BITS_PER_LONG;
212			start += BITS_PER_LONG;
213		} else {
214			cur = start;
215
216			start = ALIGN(start + 1, BITS_PER_LONG);
217			while (vec && cur != start) {
218				if (vec & 1) {
219					page = pfn_to_page(cur);
220					__free_pages_bootmem(page, cur, 0);
221					count++;
222				}
223				vec >>= 1;
224				++cur;
225			}
226		}
227	}
228
229	cur = bdata->node_min_pfn;
230	page = virt_to_page(bdata->node_bootmem_map);
231	pages = bdata->node_low_pfn - bdata->node_min_pfn;
232	pages = bootmem_bootmap_pages(pages);
233	count += pages;
234	while (pages--)
235		__free_pages_bootmem(page++, cur++, 0);
236	bdata->node_bootmem_map = NULL;
237
238	bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
239
240	return count;
241}
242
243static int reset_managed_pages_done __initdata;
244
245void reset_node_managed_pages(pg_data_t *pgdat)
246{
247	struct zone *z;
248
249	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
250		z->managed_pages = 0;
251}
252
253void __init reset_all_zones_managed_pages(void)
254{
255	struct pglist_data *pgdat;
256
257	if (reset_managed_pages_done)
258		return;
259
260	for_each_online_pgdat(pgdat)
261		reset_node_managed_pages(pgdat);
262
263	reset_managed_pages_done = 1;
264}
265
266/**
267 * free_all_bootmem - release free pages to the buddy allocator
268 *
269 * Returns the number of pages actually released.
270 */
271unsigned long __init free_all_bootmem(void)
272{
273	unsigned long total_pages = 0;
274	bootmem_data_t *bdata;
275
276	reset_all_zones_managed_pages();
277
278	list_for_each_entry(bdata, &bdata_list, list)
279		total_pages += free_all_bootmem_core(bdata);
280
281	totalram_pages += total_pages;
282
283	return total_pages;
284}
285
286static void __init __free(bootmem_data_t *bdata,
287			unsigned long sidx, unsigned long eidx)
288{
289	unsigned long idx;
290
291	bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
292		sidx + bdata->node_min_pfn,
293		eidx + bdata->node_min_pfn);
294
295	if (WARN_ON(bdata->node_bootmem_map == NULL))
296		return;
297
298	if (bdata->hint_idx > sidx)
299		bdata->hint_idx = sidx;
300
301	for (idx = sidx; idx < eidx; idx++)
302		if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
303			BUG();
304}
305
306static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
307			unsigned long eidx, int flags)
308{
309	unsigned long idx;
310	int exclusive = flags & BOOTMEM_EXCLUSIVE;
311
312	bdebug("nid=%td start=%lx end=%lx flags=%x\n",
313		bdata - bootmem_node_data,
314		sidx + bdata->node_min_pfn,
315		eidx + bdata->node_min_pfn,
316		flags);
317
318	if (WARN_ON(bdata->node_bootmem_map == NULL))
319		return 0;
320
321	for (idx = sidx; idx < eidx; idx++)
322		if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
323			if (exclusive) {
324				__free(bdata, sidx, idx);
325				return -EBUSY;
326			}
327			bdebug("silent double reserve of PFN %lx\n",
328				idx + bdata->node_min_pfn);
329		}
330	return 0;
331}
332
333static int __init mark_bootmem_node(bootmem_data_t *bdata,
334				unsigned long start, unsigned long end,
335				int reserve, int flags)
336{
337	unsigned long sidx, eidx;
338
339	bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
340		bdata - bootmem_node_data, start, end, reserve, flags);
341
342	BUG_ON(start < bdata->node_min_pfn);
343	BUG_ON(end > bdata->node_low_pfn);
344
345	sidx = start - bdata->node_min_pfn;
346	eidx = end - bdata->node_min_pfn;
347
348	if (reserve)
349		return __reserve(bdata, sidx, eidx, flags);
350	else
351		__free(bdata, sidx, eidx);
352	return 0;
353}
354
355static int __init mark_bootmem(unsigned long start, unsigned long end,
356				int reserve, int flags)
357{
358	unsigned long pos;
359	bootmem_data_t *bdata;
360
361	pos = start;
362	list_for_each_entry(bdata, &bdata_list, list) {
363		int err;
364		unsigned long max;
365
366		if (pos < bdata->node_min_pfn ||
367		    pos >= bdata->node_low_pfn) {
368			BUG_ON(pos != start);
369			continue;
370		}
371
372		max = min(bdata->node_low_pfn, end);
373
374		err = mark_bootmem_node(bdata, pos, max, reserve, flags);
375		if (reserve && err) {
376			mark_bootmem(start, pos, 0, 0);
377			return err;
378		}
379
380		if (max == end)
381			return 0;
382		pos = bdata->node_low_pfn;
383	}
384	BUG();
385}
386
387/**
388 * free_bootmem_node - mark a page range as usable
389 * @pgdat: node the range resides on
390 * @physaddr: starting address of the range
391 * @size: size of the range in bytes
392 *
393 * Partial pages will be considered reserved and left as they are.
394 *
395 * The range must reside completely on the specified node.
396 */
397void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
398			      unsigned long size)
399{
400	unsigned long start, end;
401
402	kmemleak_free_part_phys(physaddr, size);
403
404	start = PFN_UP(physaddr);
405	end = PFN_DOWN(physaddr + size);
406
407	mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
408}
409
410/**
411 * free_bootmem - mark a page range as usable
412 * @addr: starting physical address of the range
413 * @size: size of the range in bytes
414 *
415 * Partial pages will be considered reserved and left as they are.
416 *
417 * The range must be contiguous but may span node boundaries.
418 */
419void __init free_bootmem(unsigned long physaddr, unsigned long size)
420{
421	unsigned long start, end;
422
423	kmemleak_free_part_phys(physaddr, size);
424
425	start = PFN_UP(physaddr);
426	end = PFN_DOWN(physaddr + size);
427
428	mark_bootmem(start, end, 0, 0);
429}
430
431/**
432 * reserve_bootmem_node - mark a page range as reserved
433 * @pgdat: node the range resides on
434 * @physaddr: starting address of the range
435 * @size: size of the range in bytes
436 * @flags: reservation flags (see linux/bootmem.h)
437 *
438 * Partial pages will be reserved.
439 *
440 * The range must reside completely on the specified node.
441 */
442int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
443				 unsigned long size, int flags)
444{
445	unsigned long start, end;
446
447	start = PFN_DOWN(physaddr);
448	end = PFN_UP(physaddr + size);
449
450	return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
451}
452
453/**
454 * reserve_bootmem - mark a page range as reserved
455 * @addr: starting address of the range
456 * @size: size of the range in bytes
457 * @flags: reservation flags (see linux/bootmem.h)
458 *
459 * Partial pages will be reserved.
460 *
461 * The range must be contiguous but may span node boundaries.
462 */
463int __init reserve_bootmem(unsigned long addr, unsigned long size,
464			    int flags)
465{
466	unsigned long start, end;
467
468	start = PFN_DOWN(addr);
469	end = PFN_UP(addr + size);
470
471	return mark_bootmem(start, end, 1, flags);
472}
473
474static unsigned long __init align_idx(struct bootmem_data *bdata,
475				      unsigned long idx, unsigned long step)
476{
477	unsigned long base = bdata->node_min_pfn;
478
479	/*
480	 * Align the index with respect to the node start so that the
481	 * combination of both satisfies the requested alignment.
482	 */
483
484	return ALIGN(base + idx, step) - base;
485}
486
487static unsigned long __init align_off(struct bootmem_data *bdata,
488				      unsigned long off, unsigned long align)
489{
490	unsigned long base = PFN_PHYS(bdata->node_min_pfn);
491
492	/* Same as align_idx for byte offsets */
493
494	return ALIGN(base + off, align) - base;
495}
496
497static void * __init alloc_bootmem_bdata(struct bootmem_data *bdata,
498					unsigned long size, unsigned long align,
499					unsigned long goal, unsigned long limit)
500{
501	unsigned long fallback = 0;
502	unsigned long min, max, start, sidx, midx, step;
503
504	bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
505		bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
506		align, goal, limit);
507
508	BUG_ON(!size);
509	BUG_ON(align & (align - 1));
510	BUG_ON(limit && goal + size > limit);
511
512	if (!bdata->node_bootmem_map)
513		return NULL;
514
515	min = bdata->node_min_pfn;
516	max = bdata->node_low_pfn;
517
518	goal >>= PAGE_SHIFT;
519	limit >>= PAGE_SHIFT;
520
521	if (limit && max > limit)
522		max = limit;
523	if (max <= min)
524		return NULL;
525
526	step = max(align >> PAGE_SHIFT, 1UL);
527
528	if (goal && min < goal && goal < max)
529		start = ALIGN(goal, step);
530	else
531		start = ALIGN(min, step);
532
533	sidx = start - bdata->node_min_pfn;
534	midx = max - bdata->node_min_pfn;
535
536	if (bdata->hint_idx > sidx) {
537		/*
538		 * Handle the valid case of sidx being zero and still
539		 * catch the fallback below.
540		 */
541		fallback = sidx + 1;
542		sidx = align_idx(bdata, bdata->hint_idx, step);
543	}
544
545	while (1) {
546		int merge;
547		void *region;
548		unsigned long eidx, i, start_off, end_off;
549find_block:
550		sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
551		sidx = align_idx(bdata, sidx, step);
552		eidx = sidx + PFN_UP(size);
553
554		if (sidx >= midx || eidx > midx)
555			break;
556
557		for (i = sidx; i < eidx; i++)
558			if (test_bit(i, bdata->node_bootmem_map)) {
559				sidx = align_idx(bdata, i, step);
560				if (sidx == i)
561					sidx += step;
562				goto find_block;
563			}
564
565		if (bdata->last_end_off & (PAGE_SIZE - 1) &&
566				PFN_DOWN(bdata->last_end_off) + 1 == sidx)
567			start_off = align_off(bdata, bdata->last_end_off, align);
568		else
569			start_off = PFN_PHYS(sidx);
570
571		merge = PFN_DOWN(start_off) < sidx;
572		end_off = start_off + size;
573
574		bdata->last_end_off = end_off;
575		bdata->hint_idx = PFN_UP(end_off);
576
577		/*
578		 * Reserve the area now:
579		 */
580		if (__reserve(bdata, PFN_DOWN(start_off) + merge,
581				PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
582			BUG();
583
584		region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
585				start_off);
586		memset(region, 0, size);
587		/*
588		 * The min_count is set to 0 so that bootmem allocated blocks
589		 * are never reported as leaks.
590		 */
591		kmemleak_alloc(region, size, 0, 0);
592		return region;
593	}
594
595	if (fallback) {
596		sidx = align_idx(bdata, fallback - 1, step);
597		fallback = 0;
598		goto find_block;
599	}
600
601	return NULL;
602}
603
604static void * __init alloc_bootmem_core(unsigned long size,
605					unsigned long align,
606					unsigned long goal,
607					unsigned long limit)
608{
609	bootmem_data_t *bdata;
610	void *region;
611
612	if (WARN_ON_ONCE(slab_is_available()))
613		return kzalloc(size, GFP_NOWAIT);
614
615	list_for_each_entry(bdata, &bdata_list, list) {
616		if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
617			continue;
618		if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
619			break;
620
621		region = alloc_bootmem_bdata(bdata, size, align, goal, limit);
622		if (region)
623			return region;
624	}
625
626	return NULL;
627}
628
629static void * __init ___alloc_bootmem_nopanic(unsigned long size,
630					      unsigned long align,
631					      unsigned long goal,
632					      unsigned long limit)
633{
634	void *ptr;
635
636restart:
637	ptr = alloc_bootmem_core(size, align, goal, limit);
638	if (ptr)
639		return ptr;
640	if (goal) {
641		goal = 0;
642		goto restart;
643	}
644
645	return NULL;
646}
647
648/**
649 * __alloc_bootmem_nopanic - allocate boot memory without panicking
650 * @size: size of the request in bytes
651 * @align: alignment of the region
652 * @goal: preferred starting address of the region
653 *
654 * The goal is dropped if it can not be satisfied and the allocation will
655 * fall back to memory below @goal.
656 *
657 * Allocation may happen on any node in the system.
658 *
659 * Returns NULL on failure.
660 */
661void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
662					unsigned long goal)
663{
664	unsigned long limit = 0;
665
666	return ___alloc_bootmem_nopanic(size, align, goal, limit);
667}
668
669static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
670					unsigned long goal, unsigned long limit)
671{
672	void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
673
674	if (mem)
675		return mem;
676	/*
677	 * Whoops, we cannot satisfy the allocation request.
678	 */
679	pr_alert("bootmem alloc of %lu bytes failed!\n", size);
680	panic("Out of memory");
681	return NULL;
682}
683
684/**
685 * __alloc_bootmem - allocate boot memory
686 * @size: size of the request in bytes
687 * @align: alignment of the region
688 * @goal: preferred starting address of the region
689 *
690 * The goal is dropped if it can not be satisfied and the allocation will
691 * fall back to memory below @goal.
692 *
693 * Allocation may happen on any node in the system.
694 *
695 * The function panics if the request can not be satisfied.
696 */
697void * __init __alloc_bootmem(unsigned long size, unsigned long align,
698			      unsigned long goal)
699{
700	unsigned long limit = 0;
701
702	return ___alloc_bootmem(size, align, goal, limit);
703}
704
705void * __init ___alloc_bootmem_node_nopanic(pg_data_t *pgdat,
706				unsigned long size, unsigned long align,
707				unsigned long goal, unsigned long limit)
708{
709	void *ptr;
710
711	if (WARN_ON_ONCE(slab_is_available()))
712		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
713again:
714
715	/* do not panic in alloc_bootmem_bdata() */
716	if (limit && goal + size > limit)
717		limit = 0;
718
719	ptr = alloc_bootmem_bdata(pgdat->bdata, size, align, goal, limit);
720	if (ptr)
721		return ptr;
722
723	ptr = alloc_bootmem_core(size, align, goal, limit);
724	if (ptr)
725		return ptr;
726
727	if (goal) {
728		goal = 0;
729		goto again;
730	}
731
732	return NULL;
733}
734
735void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
736				   unsigned long align, unsigned long goal)
737{
738	return ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
739}
740
741void * __init ___alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
742				    unsigned long align, unsigned long goal,
743				    unsigned long limit)
744{
745	void *ptr;
746
747	ptr = ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
748	if (ptr)
749		return ptr;
750
751	pr_alert("bootmem alloc of %lu bytes failed!\n", size);
752	panic("Out of memory");
753	return NULL;
754}
755
756/**
757 * __alloc_bootmem_node - allocate boot memory from a specific node
758 * @pgdat: node to allocate from
759 * @size: size of the request in bytes
760 * @align: alignment of the region
761 * @goal: preferred starting address of the region
762 *
763 * The goal is dropped if it can not be satisfied and the allocation will
764 * fall back to memory below @goal.
765 *
766 * Allocation may fall back to any node in the system if the specified node
767 * can not hold the requested memory.
768 *
769 * The function panics if the request can not be satisfied.
770 */
771void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
772				   unsigned long align, unsigned long goal)
773{
774	if (WARN_ON_ONCE(slab_is_available()))
775		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
776
777	return  ___alloc_bootmem_node(pgdat, size, align, goal, 0);
778}
779
780void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
781				   unsigned long align, unsigned long goal)
782{
783#ifdef MAX_DMA32_PFN
784	unsigned long end_pfn;
785
786	if (WARN_ON_ONCE(slab_is_available()))
787		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
788
789	/* update goal according ...MAX_DMA32_PFN */
790	end_pfn = pgdat_end_pfn(pgdat);
791
792	if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
793	    (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
794		void *ptr;
795		unsigned long new_goal;
796
797		new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
798		ptr = alloc_bootmem_bdata(pgdat->bdata, size, align,
799						 new_goal, 0);
800		if (ptr)
801			return ptr;
802	}
803#endif
804
805	return __alloc_bootmem_node(pgdat, size, align, goal);
806
807}
808
809/**
810 * __alloc_bootmem_low - allocate low boot memory
811 * @size: size of the request in bytes
812 * @align: alignment of the region
813 * @goal: preferred starting address of the region
814 *
815 * The goal is dropped if it can not be satisfied and the allocation will
816 * fall back to memory below @goal.
817 *
818 * Allocation may happen on any node in the system.
819 *
820 * The function panics if the request can not be satisfied.
821 */
822void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
823				  unsigned long goal)
824{
825	return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
826}
827
828void * __init __alloc_bootmem_low_nopanic(unsigned long size,
829					  unsigned long align,
830					  unsigned long goal)
831{
832	return ___alloc_bootmem_nopanic(size, align, goal,
833					ARCH_LOW_ADDRESS_LIMIT);
834}
835
836/**
837 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
838 * @pgdat: node to allocate from
839 * @size: size of the request in bytes
840 * @align: alignment of the region
841 * @goal: preferred starting address of the region
842 *
843 * The goal is dropped if it can not be satisfied and the allocation will
844 * fall back to memory below @goal.
845 *
846 * Allocation may fall back to any node in the system if the specified node
847 * can not hold the requested memory.
848 *
849 * The function panics if the request can not be satisfied.
850 */
851void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
852				       unsigned long align, unsigned long goal)
853{
854	if (WARN_ON_ONCE(slab_is_available()))
855		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
856
857	return ___alloc_bootmem_node(pgdat, size, align,
858				     goal, ARCH_LOW_ADDRESS_LIMIT);
859}