Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Pid namespaces
  4 *
  5 * Authors:
  6 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  7 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  8 *     Many thanks to Oleg Nesterov for comments and help
  9 *
 10 */
 11
 12#include <linux/pid.h>
 13#include <linux/pid_namespace.h>
 14#include <linux/user_namespace.h>
 15#include <linux/syscalls.h>
 16#include <linux/cred.h>
 17#include <linux/err.h>
 18#include <linux/acct.h>
 19#include <linux/slab.h>
 20#include <linux/proc_ns.h>
 21#include <linux/reboot.h>
 22#include <linux/export.h>
 23#include <linux/sched/task.h>
 24#include <linux/sched/signal.h>
 25#include <linux/idr.h>
 26
 
 
 
 
 
 
 
 
 27static DEFINE_MUTEX(pid_caches_mutex);
 28static struct kmem_cache *pid_ns_cachep;
 29/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
 30#define MAX_PID_NS_LEVEL 32
 31/* Write once array, filled from the beginning. */
 32static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
 33
 34/*
 35 * creates the kmem cache to allocate pids from.
 36 * @level: pid namespace level
 37 */
 38
 39static struct kmem_cache *create_pid_cachep(unsigned int level)
 40{
 41	/* Level 0 is init_pid_ns.pid_cachep */
 42	struct kmem_cache **pkc = &pid_cache[level - 1];
 43	struct kmem_cache *kc;
 44	char name[4 + 10 + 1];
 45	unsigned int len;
 46
 47	kc = READ_ONCE(*pkc);
 48	if (kc)
 49		return kc;
 50
 51	snprintf(name, sizeof(name), "pid_%u", level + 1);
 52	len = sizeof(struct pid) + level * sizeof(struct upid);
 53	mutex_lock(&pid_caches_mutex);
 54	/* Name collision forces to do allocation under mutex. */
 55	if (!*pkc)
 56		*pkc = kmem_cache_create(name, len, 0, SLAB_HWCACHE_ALIGN, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 57	mutex_unlock(&pid_caches_mutex);
 58	/* current can fail, but someone else can succeed. */
 59	return READ_ONCE(*pkc);
 
 
 
 
 
 60}
 61
 62static void proc_cleanup_work(struct work_struct *work)
 63{
 64	struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
 65	pid_ns_release_proc(ns);
 66}
 67
 
 
 
 68static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
 69{
 70	return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
 71}
 72
 73static void dec_pid_namespaces(struct ucounts *ucounts)
 74{
 75	dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
 76}
 77
 78static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
 79	struct pid_namespace *parent_pid_ns)
 80{
 81	struct pid_namespace *ns;
 82	unsigned int level = parent_pid_ns->level + 1;
 83	struct ucounts *ucounts;
 
 84	int err;
 85
 86	err = -EINVAL;
 87	if (!in_userns(parent_pid_ns->user_ns, user_ns))
 88		goto out;
 89
 90	err = -ENOSPC;
 91	if (level > MAX_PID_NS_LEVEL)
 92		goto out;
 93	ucounts = inc_pid_namespaces(user_ns);
 94	if (!ucounts)
 95		goto out;
 96
 97	err = -ENOMEM;
 98	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
 99	if (ns == NULL)
100		goto out_dec;
101
102	idr_init(&ns->idr);
 
 
103
104	ns->pid_cachep = create_pid_cachep(level);
105	if (ns->pid_cachep == NULL)
106		goto out_free_idr;
107
108	err = ns_alloc_inum(&ns->ns);
109	if (err)
110		goto out_free_idr;
111	ns->ns.ops = &pidns_operations;
112
113	kref_init(&ns->kref);
114	ns->level = level;
115	ns->parent = get_pid_ns(parent_pid_ns);
116	ns->user_ns = get_user_ns(user_ns);
117	ns->ucounts = ucounts;
118	ns->pid_allocated = PIDNS_ADDING;
119	INIT_WORK(&ns->proc_work, proc_cleanup_work);
120
 
 
 
 
 
 
121	return ns;
122
123out_free_idr:
124	idr_destroy(&ns->idr);
 
125	kmem_cache_free(pid_ns_cachep, ns);
126out_dec:
127	dec_pid_namespaces(ucounts);
128out:
129	return ERR_PTR(err);
130}
131
132static void delayed_free_pidns(struct rcu_head *p)
133{
134	struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
135
136	dec_pid_namespaces(ns->ucounts);
137	put_user_ns(ns->user_ns);
138
139	kmem_cache_free(pid_ns_cachep, ns);
140}
141
142static void destroy_pid_namespace(struct pid_namespace *ns)
143{
144	ns_free_inum(&ns->ns);
145
146	idr_destroy(&ns->idr);
 
 
147	call_rcu(&ns->rcu, delayed_free_pidns);
148}
149
150struct pid_namespace *copy_pid_ns(unsigned long flags,
151	struct user_namespace *user_ns, struct pid_namespace *old_ns)
152{
153	if (!(flags & CLONE_NEWPID))
154		return get_pid_ns(old_ns);
155	if (task_active_pid_ns(current) != old_ns)
156		return ERR_PTR(-EINVAL);
157	return create_pid_namespace(user_ns, old_ns);
158}
159
160static void free_pid_ns(struct kref *kref)
161{
162	struct pid_namespace *ns;
163
164	ns = container_of(kref, struct pid_namespace, kref);
165	destroy_pid_namespace(ns);
166}
167
168void put_pid_ns(struct pid_namespace *ns)
169{
170	struct pid_namespace *parent;
171
172	while (ns != &init_pid_ns) {
173		parent = ns->parent;
174		if (!kref_put(&ns->kref, free_pid_ns))
175			break;
176		ns = parent;
177	}
178}
179EXPORT_SYMBOL_GPL(put_pid_ns);
180
181void zap_pid_ns_processes(struct pid_namespace *pid_ns)
182{
183	int nr;
184	int rc;
185	struct task_struct *task, *me = current;
186	int init_pids = thread_group_leader(me) ? 1 : 2;
187	struct pid *pid;
188
189	/* Don't allow any more processes into the pid namespace */
190	disable_pid_allocation(pid_ns);
191
192	/*
193	 * Ignore SIGCHLD causing any terminated children to autoreap.
194	 * This speeds up the namespace shutdown, plus see the comment
195	 * below.
196	 */
197	spin_lock_irq(&me->sighand->siglock);
198	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
199	spin_unlock_irq(&me->sighand->siglock);
200
201	/*
202	 * The last thread in the cgroup-init thread group is terminating.
203	 * Find remaining pid_ts in the namespace, signal and wait for them
204	 * to exit.
205	 *
206	 * Note:  This signals each threads in the namespace - even those that
207	 * 	  belong to the same thread group, To avoid this, we would have
208	 * 	  to walk the entire tasklist looking a processes in this
209	 * 	  namespace, but that could be unnecessarily expensive if the
210	 * 	  pid namespace has just a few processes. Or we need to
211	 * 	  maintain a tasklist for each pid namespace.
212	 *
213	 */
214	rcu_read_lock();
215	read_lock(&tasklist_lock);
216	nr = 2;
217	idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
218		task = pid_task(pid, PIDTYPE_PID);
 
 
219		if (task && !__fatal_signal_pending(task))
220			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
 
 
 
 
221	}
222	read_unlock(&tasklist_lock);
223	rcu_read_unlock();
224
225	/*
226	 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
227	 * kernel_wait4() will also block until our children traced from the
228	 * parent namespace are detached and become EXIT_DEAD.
229	 */
230	do {
231		clear_thread_flag(TIF_SIGPENDING);
232		rc = kernel_wait4(-1, NULL, __WALL, NULL);
233	} while (rc != -ECHILD);
234
235	/*
236	 * kernel_wait4() above can't reap the EXIT_DEAD children but we do not
237	 * really care, we could reparent them to the global init. We could
238	 * exit and reap ->child_reaper even if it is not the last thread in
239	 * this pid_ns, free_pid(pid_allocated == 0) calls proc_cleanup_work(),
240	 * pid_ns can not go away until proc_kill_sb() drops the reference.
241	 *
242	 * But this ns can also have other tasks injected by setns()+fork().
243	 * Again, ignoring the user visible semantics we do not really need
244	 * to wait until they are all reaped, but they can be reparented to
245	 * us and thus we need to ensure that pid->child_reaper stays valid
246	 * until they all go away. See free_pid()->wake_up_process().
247	 *
248	 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
249	 * if reparented.
250	 */
251	for (;;) {
252		set_current_state(TASK_INTERRUPTIBLE);
253		if (pid_ns->pid_allocated == init_pids)
254			break;
255		schedule();
256	}
257	__set_current_state(TASK_RUNNING);
258
259	if (pid_ns->reboot)
260		current->signal->group_exit_code = pid_ns->reboot;
261
262	acct_exit_ns(pid_ns);
263	return;
264}
265
266#ifdef CONFIG_CHECKPOINT_RESTORE
267static int pid_ns_ctl_handler(struct ctl_table *table, int write,
268		void __user *buffer, size_t *lenp, loff_t *ppos)
269{
270	struct pid_namespace *pid_ns = task_active_pid_ns(current);
271	struct ctl_table tmp = *table;
272	int ret, next;
273
274	if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
275		return -EPERM;
276
277	/*
278	 * Writing directly to ns' last_pid field is OK, since this field
279	 * is volatile in a living namespace anyway and a code writing to
280	 * it should synchronize its usage with external means.
281	 */
282
283	next = idr_get_cursor(&pid_ns->idr) - 1;
284
285	tmp.data = &next;
286	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
287	if (!ret && write)
288		idr_set_cursor(&pid_ns->idr, next + 1);
289
290	return ret;
291}
292
293extern int pid_max;
 
294static struct ctl_table pid_ns_ctl_table[] = {
295	{
296		.procname = "ns_last_pid",
297		.maxlen = sizeof(int),
298		.mode = 0666, /* permissions are checked in the handler */
299		.proc_handler = pid_ns_ctl_handler,
300		.extra1 = SYSCTL_ZERO,
301		.extra2 = &pid_max,
302	},
303	{ }
304};
305static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
306#endif	/* CONFIG_CHECKPOINT_RESTORE */
307
308int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
309{
310	if (pid_ns == &init_pid_ns)
311		return 0;
312
313	switch (cmd) {
314	case LINUX_REBOOT_CMD_RESTART2:
315	case LINUX_REBOOT_CMD_RESTART:
316		pid_ns->reboot = SIGHUP;
317		break;
318
319	case LINUX_REBOOT_CMD_POWER_OFF:
320	case LINUX_REBOOT_CMD_HALT:
321		pid_ns->reboot = SIGINT;
322		break;
323	default:
324		return -EINVAL;
325	}
326
327	read_lock(&tasklist_lock);
328	send_sig(SIGKILL, pid_ns->child_reaper, 1);
329	read_unlock(&tasklist_lock);
330
331	do_exit(0);
332
333	/* Not reached */
334	return 0;
335}
336
337static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
338{
339	return container_of(ns, struct pid_namespace, ns);
340}
341
342static struct ns_common *pidns_get(struct task_struct *task)
343{
344	struct pid_namespace *ns;
345
346	rcu_read_lock();
347	ns = task_active_pid_ns(task);
348	if (ns)
349		get_pid_ns(ns);
350	rcu_read_unlock();
351
352	return ns ? &ns->ns : NULL;
353}
354
355static struct ns_common *pidns_for_children_get(struct task_struct *task)
356{
357	struct pid_namespace *ns = NULL;
358
359	task_lock(task);
360	if (task->nsproxy) {
361		ns = task->nsproxy->pid_ns_for_children;
362		get_pid_ns(ns);
363	}
364	task_unlock(task);
365
366	if (ns) {
367		read_lock(&tasklist_lock);
368		if (!ns->child_reaper) {
369			put_pid_ns(ns);
370			ns = NULL;
371		}
372		read_unlock(&tasklist_lock);
373	}
374
375	return ns ? &ns->ns : NULL;
376}
377
378static void pidns_put(struct ns_common *ns)
379{
380	put_pid_ns(to_pid_ns(ns));
381}
382
383static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
384{
385	struct pid_namespace *active = task_active_pid_ns(current);
386	struct pid_namespace *ancestor, *new = to_pid_ns(ns);
387
388	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
389	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
390		return -EPERM;
391
392	/*
393	 * Only allow entering the current active pid namespace
394	 * or a child of the current active pid namespace.
395	 *
396	 * This is required for fork to return a usable pid value and
397	 * this maintains the property that processes and their
398	 * children can not escape their current pid namespace.
399	 */
400	if (new->level < active->level)
401		return -EINVAL;
402
403	ancestor = new;
404	while (ancestor->level > active->level)
405		ancestor = ancestor->parent;
406	if (ancestor != active)
407		return -EINVAL;
408
409	put_pid_ns(nsproxy->pid_ns_for_children);
410	nsproxy->pid_ns_for_children = get_pid_ns(new);
411	return 0;
412}
413
414static struct ns_common *pidns_get_parent(struct ns_common *ns)
415{
416	struct pid_namespace *active = task_active_pid_ns(current);
417	struct pid_namespace *pid_ns, *p;
418
419	/* See if the parent is in the current namespace */
420	pid_ns = p = to_pid_ns(ns)->parent;
421	for (;;) {
422		if (!p)
423			return ERR_PTR(-EPERM);
424		if (p == active)
425			break;
426		p = p->parent;
427	}
428
429	return &get_pid_ns(pid_ns)->ns;
430}
431
432static struct user_namespace *pidns_owner(struct ns_common *ns)
433{
434	return to_pid_ns(ns)->user_ns;
435}
436
437const struct proc_ns_operations pidns_operations = {
438	.name		= "pid",
439	.type		= CLONE_NEWPID,
440	.get		= pidns_get,
441	.put		= pidns_put,
442	.install	= pidns_install,
443	.owner		= pidns_owner,
444	.get_parent	= pidns_get_parent,
445};
446
447const struct proc_ns_operations pidns_for_children_operations = {
448	.name		= "pid_for_children",
449	.real_ns_name	= "pid",
450	.type		= CLONE_NEWPID,
451	.get		= pidns_for_children_get,
452	.put		= pidns_put,
453	.install	= pidns_install,
454	.owner		= pidns_owner,
455	.get_parent	= pidns_get_parent,
456};
457
458static __init int pid_namespaces_init(void)
459{
460	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
461
462#ifdef CONFIG_CHECKPOINT_RESTORE
463	register_sysctl_paths(kern_path, pid_ns_ctl_table);
464#endif
465	return 0;
466}
467
468__initcall(pid_namespaces_init);
v4.10.11
 
  1/*
  2 * Pid namespaces
  3 *
  4 * Authors:
  5 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  6 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  7 *     Many thanks to Oleg Nesterov for comments and help
  8 *
  9 */
 10
 11#include <linux/pid.h>
 12#include <linux/pid_namespace.h>
 13#include <linux/user_namespace.h>
 14#include <linux/syscalls.h>
 
 15#include <linux/err.h>
 16#include <linux/acct.h>
 17#include <linux/slab.h>
 18#include <linux/proc_ns.h>
 19#include <linux/reboot.h>
 20#include <linux/export.h>
 
 
 
 21
 22struct pid_cache {
 23	int nr_ids;
 24	char name[16];
 25	struct kmem_cache *cachep;
 26	struct list_head list;
 27};
 28
 29static LIST_HEAD(pid_caches_lh);
 30static DEFINE_MUTEX(pid_caches_mutex);
 31static struct kmem_cache *pid_ns_cachep;
 
 
 
 
 32
 33/*
 34 * creates the kmem cache to allocate pids from.
 35 * @nr_ids: the number of numerical ids this pid will have to carry
 36 */
 37
 38static struct kmem_cache *create_pid_cachep(int nr_ids)
 39{
 40	struct pid_cache *pcache;
 41	struct kmem_cache *cachep;
 
 
 
 
 
 
 
 42
 
 
 43	mutex_lock(&pid_caches_mutex);
 44	list_for_each_entry(pcache, &pid_caches_lh, list)
 45		if (pcache->nr_ids == nr_ids)
 46			goto out;
 47
 48	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
 49	if (pcache == NULL)
 50		goto err_alloc;
 51
 52	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
 53	cachep = kmem_cache_create(pcache->name,
 54			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
 55			0, SLAB_HWCACHE_ALIGN, NULL);
 56	if (cachep == NULL)
 57		goto err_cachep;
 58
 59	pcache->nr_ids = nr_ids;
 60	pcache->cachep = cachep;
 61	list_add(&pcache->list, &pid_caches_lh);
 62out:
 63	mutex_unlock(&pid_caches_mutex);
 64	return pcache->cachep;
 65
 66err_cachep:
 67	kfree(pcache);
 68err_alloc:
 69	mutex_unlock(&pid_caches_mutex);
 70	return NULL;
 71}
 72
 73static void proc_cleanup_work(struct work_struct *work)
 74{
 75	struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
 76	pid_ns_release_proc(ns);
 77}
 78
 79/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
 80#define MAX_PID_NS_LEVEL 32
 81
 82static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
 83{
 84	return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
 85}
 86
 87static void dec_pid_namespaces(struct ucounts *ucounts)
 88{
 89	dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
 90}
 91
 92static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
 93	struct pid_namespace *parent_pid_ns)
 94{
 95	struct pid_namespace *ns;
 96	unsigned int level = parent_pid_ns->level + 1;
 97	struct ucounts *ucounts;
 98	int i;
 99	int err;
100
 
 
 
 
101	err = -ENOSPC;
102	if (level > MAX_PID_NS_LEVEL)
103		goto out;
104	ucounts = inc_pid_namespaces(user_ns);
105	if (!ucounts)
106		goto out;
107
108	err = -ENOMEM;
109	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
110	if (ns == NULL)
111		goto out_dec;
112
113	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
114	if (!ns->pidmap[0].page)
115		goto out_free;
116
117	ns->pid_cachep = create_pid_cachep(level + 1);
118	if (ns->pid_cachep == NULL)
119		goto out_free_map;
120
121	err = ns_alloc_inum(&ns->ns);
122	if (err)
123		goto out_free_map;
124	ns->ns.ops = &pidns_operations;
125
126	kref_init(&ns->kref);
127	ns->level = level;
128	ns->parent = get_pid_ns(parent_pid_ns);
129	ns->user_ns = get_user_ns(user_ns);
130	ns->ucounts = ucounts;
131	ns->nr_hashed = PIDNS_HASH_ADDING;
132	INIT_WORK(&ns->proc_work, proc_cleanup_work);
133
134	set_bit(0, ns->pidmap[0].page);
135	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
136
137	for (i = 1; i < PIDMAP_ENTRIES; i++)
138		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
139
140	return ns;
141
142out_free_map:
143	kfree(ns->pidmap[0].page);
144out_free:
145	kmem_cache_free(pid_ns_cachep, ns);
146out_dec:
147	dec_pid_namespaces(ucounts);
148out:
149	return ERR_PTR(err);
150}
151
152static void delayed_free_pidns(struct rcu_head *p)
153{
154	struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
155
156	dec_pid_namespaces(ns->ucounts);
157	put_user_ns(ns->user_ns);
158
159	kmem_cache_free(pid_ns_cachep, ns);
160}
161
162static void destroy_pid_namespace(struct pid_namespace *ns)
163{
164	int i;
165
166	ns_free_inum(&ns->ns);
167	for (i = 0; i < PIDMAP_ENTRIES; i++)
168		kfree(ns->pidmap[i].page);
169	call_rcu(&ns->rcu, delayed_free_pidns);
170}
171
172struct pid_namespace *copy_pid_ns(unsigned long flags,
173	struct user_namespace *user_ns, struct pid_namespace *old_ns)
174{
175	if (!(flags & CLONE_NEWPID))
176		return get_pid_ns(old_ns);
177	if (task_active_pid_ns(current) != old_ns)
178		return ERR_PTR(-EINVAL);
179	return create_pid_namespace(user_ns, old_ns);
180}
181
182static void free_pid_ns(struct kref *kref)
183{
184	struct pid_namespace *ns;
185
186	ns = container_of(kref, struct pid_namespace, kref);
187	destroy_pid_namespace(ns);
188}
189
190void put_pid_ns(struct pid_namespace *ns)
191{
192	struct pid_namespace *parent;
193
194	while (ns != &init_pid_ns) {
195		parent = ns->parent;
196		if (!kref_put(&ns->kref, free_pid_ns))
197			break;
198		ns = parent;
199	}
200}
201EXPORT_SYMBOL_GPL(put_pid_ns);
202
203void zap_pid_ns_processes(struct pid_namespace *pid_ns)
204{
205	int nr;
206	int rc;
207	struct task_struct *task, *me = current;
208	int init_pids = thread_group_leader(me) ? 1 : 2;
 
209
210	/* Don't allow any more processes into the pid namespace */
211	disable_pid_allocation(pid_ns);
212
213	/*
214	 * Ignore SIGCHLD causing any terminated children to autoreap.
215	 * This speeds up the namespace shutdown, plus see the comment
216	 * below.
217	 */
218	spin_lock_irq(&me->sighand->siglock);
219	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
220	spin_unlock_irq(&me->sighand->siglock);
221
222	/*
223	 * The last thread in the cgroup-init thread group is terminating.
224	 * Find remaining pid_ts in the namespace, signal and wait for them
225	 * to exit.
226	 *
227	 * Note:  This signals each threads in the namespace - even those that
228	 * 	  belong to the same thread group, To avoid this, we would have
229	 * 	  to walk the entire tasklist looking a processes in this
230	 * 	  namespace, but that could be unnecessarily expensive if the
231	 * 	  pid namespace has just a few processes. Or we need to
232	 * 	  maintain a tasklist for each pid namespace.
233	 *
234	 */
 
235	read_lock(&tasklist_lock);
236	nr = next_pidmap(pid_ns, 1);
237	while (nr > 0) {
238		rcu_read_lock();
239
240		task = pid_task(find_vpid(nr), PIDTYPE_PID);
241		if (task && !__fatal_signal_pending(task))
242			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
243
244		rcu_read_unlock();
245
246		nr = next_pidmap(pid_ns, nr);
247	}
248	read_unlock(&tasklist_lock);
 
249
250	/*
251	 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
252	 * sys_wait4() will also block until our children traced from the
253	 * parent namespace are detached and become EXIT_DEAD.
254	 */
255	do {
256		clear_thread_flag(TIF_SIGPENDING);
257		rc = sys_wait4(-1, NULL, __WALL, NULL);
258	} while (rc != -ECHILD);
259
260	/*
261	 * sys_wait4() above can't reap the EXIT_DEAD children but we do not
262	 * really care, we could reparent them to the global init. We could
263	 * exit and reap ->child_reaper even if it is not the last thread in
264	 * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(),
265	 * pid_ns can not go away until proc_kill_sb() drops the reference.
266	 *
267	 * But this ns can also have other tasks injected by setns()+fork().
268	 * Again, ignoring the user visible semantics we do not really need
269	 * to wait until they are all reaped, but they can be reparented to
270	 * us and thus we need to ensure that pid->child_reaper stays valid
271	 * until they all go away. See free_pid()->wake_up_process().
272	 *
273	 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
274	 * if reparented.
275	 */
276	for (;;) {
277		set_current_state(TASK_UNINTERRUPTIBLE);
278		if (pid_ns->nr_hashed == init_pids)
279			break;
280		schedule();
281	}
282	__set_current_state(TASK_RUNNING);
283
284	if (pid_ns->reboot)
285		current->signal->group_exit_code = pid_ns->reboot;
286
287	acct_exit_ns(pid_ns);
288	return;
289}
290
291#ifdef CONFIG_CHECKPOINT_RESTORE
292static int pid_ns_ctl_handler(struct ctl_table *table, int write,
293		void __user *buffer, size_t *lenp, loff_t *ppos)
294{
295	struct pid_namespace *pid_ns = task_active_pid_ns(current);
296	struct ctl_table tmp = *table;
 
297
298	if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
299		return -EPERM;
300
301	/*
302	 * Writing directly to ns' last_pid field is OK, since this field
303	 * is volatile in a living namespace anyway and a code writing to
304	 * it should synchronize its usage with external means.
305	 */
306
307	tmp.data = &pid_ns->last_pid;
308	return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
 
 
 
 
 
 
309}
310
311extern int pid_max;
312static int zero = 0;
313static struct ctl_table pid_ns_ctl_table[] = {
314	{
315		.procname = "ns_last_pid",
316		.maxlen = sizeof(int),
317		.mode = 0666, /* permissions are checked in the handler */
318		.proc_handler = pid_ns_ctl_handler,
319		.extra1 = &zero,
320		.extra2 = &pid_max,
321	},
322	{ }
323};
324static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
325#endif	/* CONFIG_CHECKPOINT_RESTORE */
326
327int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
328{
329	if (pid_ns == &init_pid_ns)
330		return 0;
331
332	switch (cmd) {
333	case LINUX_REBOOT_CMD_RESTART2:
334	case LINUX_REBOOT_CMD_RESTART:
335		pid_ns->reboot = SIGHUP;
336		break;
337
338	case LINUX_REBOOT_CMD_POWER_OFF:
339	case LINUX_REBOOT_CMD_HALT:
340		pid_ns->reboot = SIGINT;
341		break;
342	default:
343		return -EINVAL;
344	}
345
346	read_lock(&tasklist_lock);
347	force_sig(SIGKILL, pid_ns->child_reaper);
348	read_unlock(&tasklist_lock);
349
350	do_exit(0);
351
352	/* Not reached */
353	return 0;
354}
355
356static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
357{
358	return container_of(ns, struct pid_namespace, ns);
359}
360
361static struct ns_common *pidns_get(struct task_struct *task)
362{
363	struct pid_namespace *ns;
364
365	rcu_read_lock();
366	ns = task_active_pid_ns(task);
367	if (ns)
368		get_pid_ns(ns);
369	rcu_read_unlock();
370
371	return ns ? &ns->ns : NULL;
372}
373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
374static void pidns_put(struct ns_common *ns)
375{
376	put_pid_ns(to_pid_ns(ns));
377}
378
379static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
380{
381	struct pid_namespace *active = task_active_pid_ns(current);
382	struct pid_namespace *ancestor, *new = to_pid_ns(ns);
383
384	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
385	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
386		return -EPERM;
387
388	/*
389	 * Only allow entering the current active pid namespace
390	 * or a child of the current active pid namespace.
391	 *
392	 * This is required for fork to return a usable pid value and
393	 * this maintains the property that processes and their
394	 * children can not escape their current pid namespace.
395	 */
396	if (new->level < active->level)
397		return -EINVAL;
398
399	ancestor = new;
400	while (ancestor->level > active->level)
401		ancestor = ancestor->parent;
402	if (ancestor != active)
403		return -EINVAL;
404
405	put_pid_ns(nsproxy->pid_ns_for_children);
406	nsproxy->pid_ns_for_children = get_pid_ns(new);
407	return 0;
408}
409
410static struct ns_common *pidns_get_parent(struct ns_common *ns)
411{
412	struct pid_namespace *active = task_active_pid_ns(current);
413	struct pid_namespace *pid_ns, *p;
414
415	/* See if the parent is in the current namespace */
416	pid_ns = p = to_pid_ns(ns)->parent;
417	for (;;) {
418		if (!p)
419			return ERR_PTR(-EPERM);
420		if (p == active)
421			break;
422		p = p->parent;
423	}
424
425	return &get_pid_ns(pid_ns)->ns;
426}
427
428static struct user_namespace *pidns_owner(struct ns_common *ns)
429{
430	return to_pid_ns(ns)->user_ns;
431}
432
433const struct proc_ns_operations pidns_operations = {
434	.name		= "pid",
435	.type		= CLONE_NEWPID,
436	.get		= pidns_get,
 
 
 
 
 
 
 
 
 
 
 
437	.put		= pidns_put,
438	.install	= pidns_install,
439	.owner		= pidns_owner,
440	.get_parent	= pidns_get_parent,
441};
442
443static __init int pid_namespaces_init(void)
444{
445	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
446
447#ifdef CONFIG_CHECKPOINT_RESTORE
448	register_sysctl_paths(kern_path, pid_ns_ctl_table);
449#endif
450	return 0;
451}
452
453__initcall(pid_namespaces_init);