Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   4 *		http://www.samsung.com
   5 *
   6 * Copyright 2008 Openmoko, Inc.
   7 * Copyright 2008 Simtec Electronics
   8 *      Ben Dooks <ben@simtec.co.uk>
   9 *      http://armlinux.simtec.co.uk/
  10 *
  11 * S3C USB2.0 High-speed / OtG driver
 
 
 
 
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/spinlock.h>
  17#include <linux/interrupt.h>
  18#include <linux/platform_device.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/mutex.h>
  21#include <linux/seq_file.h>
  22#include <linux/delay.h>
  23#include <linux/io.h>
  24#include <linux/slab.h>
  25#include <linux/of_platform.h>
  26
  27#include <linux/usb/ch9.h>
  28#include <linux/usb/gadget.h>
  29#include <linux/usb/phy.h>
  30#include <linux/usb/composite.h>
  31
  32
  33#include "core.h"
  34#include "hw.h"
  35
  36/* conversion functions */
  37static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
  38{
  39	return container_of(req, struct dwc2_hsotg_req, req);
  40}
  41
  42static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
  43{
  44	return container_of(ep, struct dwc2_hsotg_ep, ep);
  45}
  46
  47static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
  48{
  49	return container_of(gadget, struct dwc2_hsotg, gadget);
  50}
  51
  52static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
  53{
  54	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
  55}
  56
  57static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
  58{
  59	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
  60}
  61
  62static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
  63						u32 ep_index, u32 dir_in)
  64{
  65	if (dir_in)
  66		return hsotg->eps_in[ep_index];
  67	else
  68		return hsotg->eps_out[ep_index];
  69}
  70
  71/* forward declaration of functions */
  72static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
  73
  74/**
  75 * using_dma - return the DMA status of the driver.
  76 * @hsotg: The driver state.
  77 *
  78 * Return true if we're using DMA.
  79 *
  80 * Currently, we have the DMA support code worked into everywhere
  81 * that needs it, but the AMBA DMA implementation in the hardware can
  82 * only DMA from 32bit aligned addresses. This means that gadgets such
  83 * as the CDC Ethernet cannot work as they often pass packets which are
  84 * not 32bit aligned.
  85 *
  86 * Unfortunately the choice to use DMA or not is global to the controller
  87 * and seems to be only settable when the controller is being put through
  88 * a core reset. This means we either need to fix the gadgets to take
  89 * account of DMA alignment, or add bounce buffers (yuerk).
  90 *
  91 * g_using_dma is set depending on dts flag.
  92 */
  93static inline bool using_dma(struct dwc2_hsotg *hsotg)
  94{
  95	return hsotg->params.g_dma;
  96}
  97
  98/*
  99 * using_desc_dma - return the descriptor DMA status of the driver.
 100 * @hsotg: The driver state.
 101 *
 102 * Return true if we're using descriptor DMA.
 103 */
 104static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
 105{
 106	return hsotg->params.g_dma_desc;
 107}
 108
 109/**
 110 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 111 * @hs_ep: The endpoint
 
 112 *
 113 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 114 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 115 */
 116static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
 117{
 118	hs_ep->target_frame += hs_ep->interval;
 119	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
 120		hs_ep->frame_overrun = true;
 121		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
 122	} else {
 123		hs_ep->frame_overrun = false;
 124	}
 125}
 126
 127/**
 128 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
 129 *                                    by one.
 130 * @hs_ep: The endpoint.
 131 *
 132 * This function used in service interval based scheduling flow to calculate
 133 * descriptor frame number filed value. For service interval mode frame
 134 * number in descriptor should point to last (u)frame in the interval.
 135 *
 136 */
 137static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
 138{
 139	if (hs_ep->target_frame)
 140		hs_ep->target_frame -= 1;
 141	else
 142		hs_ep->target_frame = DSTS_SOFFN_LIMIT;
 143}
 144
 145/**
 146 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
 147 * @hsotg: The device state
 148 * @ints: A bitmask of the interrupts to enable
 149 */
 150static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 151{
 152	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
 153	u32 new_gsintmsk;
 154
 155	new_gsintmsk = gsintmsk | ints;
 156
 157	if (new_gsintmsk != gsintmsk) {
 158		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
 159		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
 160	}
 161}
 162
 163/**
 164 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
 165 * @hsotg: The device state
 166 * @ints: A bitmask of the interrupts to enable
 167 */
 168static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 169{
 170	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
 171	u32 new_gsintmsk;
 172
 173	new_gsintmsk = gsintmsk & ~ints;
 174
 175	if (new_gsintmsk != gsintmsk)
 176		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
 177}
 178
 179/**
 180 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
 181 * @hsotg: The device state
 182 * @ep: The endpoint index
 183 * @dir_in: True if direction is in.
 184 * @en: The enable value, true to enable
 185 *
 186 * Set or clear the mask for an individual endpoint's interrupt
 187 * request.
 188 */
 189static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
 190				  unsigned int ep, unsigned int dir_in,
 191				 unsigned int en)
 192{
 193	unsigned long flags;
 194	u32 bit = 1 << ep;
 195	u32 daint;
 196
 197	if (!dir_in)
 198		bit <<= 16;
 199
 200	local_irq_save(flags);
 201	daint = dwc2_readl(hsotg, DAINTMSK);
 202	if (en)
 203		daint |= bit;
 204	else
 205		daint &= ~bit;
 206	dwc2_writel(hsotg, daint, DAINTMSK);
 207	local_irq_restore(flags);
 208}
 209
 210/**
 211 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
 212 *
 213 * @hsotg: Programming view of the DWC_otg controller
 214 */
 215int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
 216{
 217	if (hsotg->hw_params.en_multiple_tx_fifo)
 218		/* In dedicated FIFO mode we need count of IN EPs */
 219		return hsotg->hw_params.num_dev_in_eps;
 220	else
 221		/* In shared FIFO mode we need count of Periodic IN EPs */
 222		return hsotg->hw_params.num_dev_perio_in_ep;
 223}
 224
 225/**
 226 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
 227 * device mode TX FIFOs
 228 *
 229 * @hsotg: Programming view of the DWC_otg controller
 230 */
 231int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
 232{
 233	int addr;
 234	int tx_addr_max;
 235	u32 np_tx_fifo_size;
 236
 237	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
 238				hsotg->params.g_np_tx_fifo_size);
 239
 240	/* Get Endpoint Info Control block size in DWORDs. */
 241	tx_addr_max = hsotg->hw_params.total_fifo_size;
 242
 243	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
 244	if (tx_addr_max <= addr)
 245		return 0;
 246
 247	return tx_addr_max - addr;
 248}
 249
 250/**
 251 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
 252 *
 253 * @hsotg: Programming view of the DWC_otg controller
 254 *
 255 */
 256static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
 257{
 258	u32 gintsts2;
 259	u32 gintmsk2;
 260
 261	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
 262	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
 263
 264	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
 265		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
 266		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
 267		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
 268	}
 269}
 270
 271/**
 272 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
 273 * TX FIFOs
 274 *
 275 * @hsotg: Programming view of the DWC_otg controller
 276 */
 277int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
 278{
 279	int tx_fifo_count;
 280	int tx_fifo_depth;
 281
 282	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
 283
 284	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
 285
 286	if (!tx_fifo_count)
 287		return tx_fifo_depth;
 288	else
 289		return tx_fifo_depth / tx_fifo_count;
 290}
 291
 292/**
 293 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
 294 * @hsotg: The device instance.
 295 */
 296static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
 297{
 298	unsigned int ep;
 299	unsigned int addr;
 300	int timeout;
 301
 302	u32 val;
 303	u32 *txfsz = hsotg->params.g_tx_fifo_size;
 304
 305	/* Reset fifo map if not correctly cleared during previous session */
 306	WARN_ON(hsotg->fifo_map);
 307	hsotg->fifo_map = 0;
 308
 309	/* set RX/NPTX FIFO sizes */
 310	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
 311	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
 312		    FIFOSIZE_STARTADDR_SHIFT) |
 313		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
 314		    GNPTXFSIZ);
 315
 316	/*
 317	 * arange all the rest of the TX FIFOs, as some versions of this
 318	 * block have overlapping default addresses. This also ensures
 319	 * that if the settings have been changed, then they are set to
 320	 * known values.
 321	 */
 322
 323	/* start at the end of the GNPTXFSIZ, rounded up */
 324	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
 325
 326	/*
 327	 * Configure fifos sizes from provided configuration and assign
 328	 * them to endpoints dynamically according to maxpacket size value of
 329	 * given endpoint.
 330	 */
 331	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
 332		if (!txfsz[ep])
 333			continue;
 334		val = addr;
 335		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
 336		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
 337			  "insufficient fifo memory");
 338		addr += txfsz[ep];
 339
 340		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
 341		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
 342	}
 343
 344	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
 345		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
 346		    GDFIFOCFG);
 347	/*
 348	 * according to p428 of the design guide, we need to ensure that
 349	 * all fifos are flushed before continuing
 350	 */
 351
 352	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
 353	       GRSTCTL_RXFFLSH, GRSTCTL);
 354
 355	/* wait until the fifos are both flushed */
 356	timeout = 100;
 357	while (1) {
 358		val = dwc2_readl(hsotg, GRSTCTL);
 359
 360		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
 361			break;
 362
 363		if (--timeout == 0) {
 364			dev_err(hsotg->dev,
 365				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
 366				__func__, val);
 367			break;
 368		}
 369
 370		udelay(1);
 371	}
 372
 373	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
 374}
 375
 376/**
 377 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
 378 * @ep: USB endpoint to allocate request for.
 379 * @flags: Allocation flags
 380 *
 381 * Allocate a new USB request structure appropriate for the specified endpoint
 382 */
 383static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
 384						       gfp_t flags)
 385{
 386	struct dwc2_hsotg_req *req;
 387
 388	req = kzalloc(sizeof(*req), flags);
 389	if (!req)
 390		return NULL;
 391
 392	INIT_LIST_HEAD(&req->queue);
 393
 394	return &req->req;
 395}
 396
 397/**
 398 * is_ep_periodic - return true if the endpoint is in periodic mode.
 399 * @hs_ep: The endpoint to query.
 400 *
 401 * Returns true if the endpoint is in periodic mode, meaning it is being
 402 * used for an Interrupt or ISO transfer.
 403 */
 404static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
 405{
 406	return hs_ep->periodic;
 407}
 408
 409/**
 410 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
 411 * @hsotg: The device state.
 412 * @hs_ep: The endpoint for the request
 413 * @hs_req: The request being processed.
 414 *
 415 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
 416 * of a request to ensure the buffer is ready for access by the caller.
 417 */
 418static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
 419				 struct dwc2_hsotg_ep *hs_ep,
 420				struct dwc2_hsotg_req *hs_req)
 421{
 422	struct usb_request *req = &hs_req->req;
 423
 424	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
 425}
 426
 427/*
 428 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 429 * for Control endpoint
 430 * @hsotg: The device state.
 431 *
 432 * This function will allocate 4 descriptor chains for EP 0: 2 for
 433 * Setup stage, per one for IN and OUT data/status transactions.
 434 */
 435static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
 436{
 437	hsotg->setup_desc[0] =
 438		dmam_alloc_coherent(hsotg->dev,
 439				    sizeof(struct dwc2_dma_desc),
 440				    &hsotg->setup_desc_dma[0],
 441				    GFP_KERNEL);
 442	if (!hsotg->setup_desc[0])
 443		goto fail;
 444
 445	hsotg->setup_desc[1] =
 446		dmam_alloc_coherent(hsotg->dev,
 447				    sizeof(struct dwc2_dma_desc),
 448				    &hsotg->setup_desc_dma[1],
 449				    GFP_KERNEL);
 450	if (!hsotg->setup_desc[1])
 451		goto fail;
 452
 453	hsotg->ctrl_in_desc =
 454		dmam_alloc_coherent(hsotg->dev,
 455				    sizeof(struct dwc2_dma_desc),
 456				    &hsotg->ctrl_in_desc_dma,
 457				    GFP_KERNEL);
 458	if (!hsotg->ctrl_in_desc)
 459		goto fail;
 460
 461	hsotg->ctrl_out_desc =
 462		dmam_alloc_coherent(hsotg->dev,
 463				    sizeof(struct dwc2_dma_desc),
 464				    &hsotg->ctrl_out_desc_dma,
 465				    GFP_KERNEL);
 466	if (!hsotg->ctrl_out_desc)
 467		goto fail;
 468
 469	return 0;
 470
 471fail:
 472	return -ENOMEM;
 473}
 474
 475/**
 476 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
 477 * @hsotg: The controller state.
 478 * @hs_ep: The endpoint we're going to write for.
 479 * @hs_req: The request to write data for.
 480 *
 481 * This is called when the TxFIFO has some space in it to hold a new
 482 * transmission and we have something to give it. The actual setup of
 483 * the data size is done elsewhere, so all we have to do is to actually
 484 * write the data.
 485 *
 486 * The return value is zero if there is more space (or nothing was done)
 487 * otherwise -ENOSPC is returned if the FIFO space was used up.
 488 *
 489 * This routine is only needed for PIO
 490 */
 491static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
 492				 struct dwc2_hsotg_ep *hs_ep,
 493				struct dwc2_hsotg_req *hs_req)
 494{
 495	bool periodic = is_ep_periodic(hs_ep);
 496	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
 497	int buf_pos = hs_req->req.actual;
 498	int to_write = hs_ep->size_loaded;
 499	void *data;
 500	int can_write;
 501	int pkt_round;
 502	int max_transfer;
 503
 504	to_write -= (buf_pos - hs_ep->last_load);
 505
 506	/* if there's nothing to write, get out early */
 507	if (to_write == 0)
 508		return 0;
 509
 510	if (periodic && !hsotg->dedicated_fifos) {
 511		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
 512		int size_left;
 513		int size_done;
 514
 515		/*
 516		 * work out how much data was loaded so we can calculate
 517		 * how much data is left in the fifo.
 518		 */
 519
 520		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
 521
 522		/*
 523		 * if shared fifo, we cannot write anything until the
 524		 * previous data has been completely sent.
 525		 */
 526		if (hs_ep->fifo_load != 0) {
 527			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 528			return -ENOSPC;
 529		}
 530
 531		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
 532			__func__, size_left,
 533			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
 534
 535		/* how much of the data has moved */
 536		size_done = hs_ep->size_loaded - size_left;
 537
 538		/* how much data is left in the fifo */
 539		can_write = hs_ep->fifo_load - size_done;
 540		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
 541			__func__, can_write);
 542
 543		can_write = hs_ep->fifo_size - can_write;
 544		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
 545			__func__, can_write);
 546
 547		if (can_write <= 0) {
 548			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 549			return -ENOSPC;
 550		}
 551	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
 552		can_write = dwc2_readl(hsotg,
 553				       DTXFSTS(hs_ep->fifo_index));
 554
 555		can_write &= 0xffff;
 556		can_write *= 4;
 557	} else {
 558		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
 559			dev_dbg(hsotg->dev,
 560				"%s: no queue slots available (0x%08x)\n",
 561				__func__, gnptxsts);
 562
 563			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
 564			return -ENOSPC;
 565		}
 566
 567		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
 568		can_write *= 4;	/* fifo size is in 32bit quantities. */
 569	}
 570
 571	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
 572
 573	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
 574		__func__, gnptxsts, can_write, to_write, max_transfer);
 575
 576	/*
 577	 * limit to 512 bytes of data, it seems at least on the non-periodic
 578	 * FIFO, requests of >512 cause the endpoint to get stuck with a
 579	 * fragment of the end of the transfer in it.
 580	 */
 581	if (can_write > 512 && !periodic)
 582		can_write = 512;
 583
 584	/*
 585	 * limit the write to one max-packet size worth of data, but allow
 586	 * the transfer to return that it did not run out of fifo space
 587	 * doing it.
 588	 */
 589	if (to_write > max_transfer) {
 590		to_write = max_transfer;
 591
 592		/* it's needed only when we do not use dedicated fifos */
 593		if (!hsotg->dedicated_fifos)
 594			dwc2_hsotg_en_gsint(hsotg,
 595					    periodic ? GINTSTS_PTXFEMP :
 596					   GINTSTS_NPTXFEMP);
 597	}
 598
 599	/* see if we can write data */
 600
 601	if (to_write > can_write) {
 602		to_write = can_write;
 603		pkt_round = to_write % max_transfer;
 604
 605		/*
 606		 * Round the write down to an
 607		 * exact number of packets.
 608		 *
 609		 * Note, we do not currently check to see if we can ever
 610		 * write a full packet or not to the FIFO.
 611		 */
 612
 613		if (pkt_round)
 614			to_write -= pkt_round;
 615
 616		/*
 617		 * enable correct FIFO interrupt to alert us when there
 618		 * is more room left.
 619		 */
 620
 621		/* it's needed only when we do not use dedicated fifos */
 622		if (!hsotg->dedicated_fifos)
 623			dwc2_hsotg_en_gsint(hsotg,
 624					    periodic ? GINTSTS_PTXFEMP :
 625					   GINTSTS_NPTXFEMP);
 626	}
 627
 628	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
 629		to_write, hs_req->req.length, can_write, buf_pos);
 630
 631	if (to_write <= 0)
 632		return -ENOSPC;
 633
 634	hs_req->req.actual = buf_pos + to_write;
 635	hs_ep->total_data += to_write;
 636
 637	if (periodic)
 638		hs_ep->fifo_load += to_write;
 639
 640	to_write = DIV_ROUND_UP(to_write, 4);
 641	data = hs_req->req.buf + buf_pos;
 642
 643	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
 644
 645	return (to_write >= can_write) ? -ENOSPC : 0;
 646}
 647
 648/**
 649 * get_ep_limit - get the maximum data legnth for this endpoint
 650 * @hs_ep: The endpoint
 651 *
 652 * Return the maximum data that can be queued in one go on a given endpoint
 653 * so that transfers that are too long can be split.
 654 */
 655static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
 656{
 657	int index = hs_ep->index;
 658	unsigned int maxsize;
 659	unsigned int maxpkt;
 660
 661	if (index != 0) {
 662		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
 663		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
 664	} else {
 665		maxsize = 64 + 64;
 666		if (hs_ep->dir_in)
 667			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
 668		else
 669			maxpkt = 2;
 670	}
 671
 672	/* we made the constant loading easier above by using +1 */
 673	maxpkt--;
 674	maxsize--;
 675
 676	/*
 677	 * constrain by packet count if maxpkts*pktsize is greater
 678	 * than the length register size.
 679	 */
 680
 681	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
 682		maxsize = maxpkt * hs_ep->ep.maxpacket;
 683
 684	return maxsize;
 685}
 686
 687/**
 688 * dwc2_hsotg_read_frameno - read current frame number
 689 * @hsotg: The device instance
 690 *
 691 * Return the current frame number
 692 */
 693static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
 694{
 695	u32 dsts;
 696
 697	dsts = dwc2_readl(hsotg, DSTS);
 698	dsts &= DSTS_SOFFN_MASK;
 699	dsts >>= DSTS_SOFFN_SHIFT;
 700
 701	return dsts;
 702}
 703
 704/**
 705 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 706 * DMA descriptor chain prepared for specific endpoint
 707 * @hs_ep: The endpoint
 708 *
 709 * Return the maximum data that can be queued in one go on a given endpoint
 710 * depending on its descriptor chain capacity so that transfers that
 711 * are too long can be split.
 712 */
 713static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
 714{
 715	int is_isoc = hs_ep->isochronous;
 716	unsigned int maxsize;
 717
 718	if (is_isoc)
 719		maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
 720					   DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
 721					   MAX_DMA_DESC_NUM_HS_ISOC;
 722	else
 723		maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
 
 
 
 724
 725	return maxsize;
 726}
 727
 728/*
 729 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 730 * @hs_ep: The endpoint
 731 * @mask: RX/TX bytes mask to be defined
 732 *
 733 * Returns maximum data payload for one descriptor after analyzing endpoint
 734 * characteristics.
 735 * DMA descriptor transfer bytes limit depends on EP type:
 736 * Control out - MPS,
 737 * Isochronous - descriptor rx/tx bytes bitfield limit,
 738 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 739 * have concatenations from various descriptors within one packet.
 740 *
 741 * Selects corresponding mask for RX/TX bytes as well.
 742 */
 743static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
 744{
 745	u32 mps = hs_ep->ep.maxpacket;
 746	int dir_in = hs_ep->dir_in;
 747	u32 desc_size = 0;
 748
 749	if (!hs_ep->index && !dir_in) {
 750		desc_size = mps;
 751		*mask = DEV_DMA_NBYTES_MASK;
 752	} else if (hs_ep->isochronous) {
 753		if (dir_in) {
 754			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
 755			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
 756		} else {
 757			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
 758			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
 759		}
 760	} else {
 761		desc_size = DEV_DMA_NBYTES_LIMIT;
 762		*mask = DEV_DMA_NBYTES_MASK;
 763
 764		/* Round down desc_size to be mps multiple */
 765		desc_size -= desc_size % mps;
 766	}
 767
 768	return desc_size;
 769}
 770
 771static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
 772						 struct dwc2_dma_desc **desc,
 
 
 
 
 
 
 
 
 773						 dma_addr_t dma_buff,
 774						 unsigned int len,
 775						 bool true_last)
 776{
 
 777	int dir_in = hs_ep->dir_in;
 
 778	u32 mps = hs_ep->ep.maxpacket;
 779	u32 maxsize = 0;
 780	u32 offset = 0;
 781	u32 mask = 0;
 782	int i;
 783
 784	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
 785
 786	hs_ep->desc_count = (len / maxsize) +
 787				((len % maxsize) ? 1 : 0);
 788	if (len == 0)
 789		hs_ep->desc_count = 1;
 790
 791	for (i = 0; i < hs_ep->desc_count; ++i) {
 792		(*desc)->status = 0;
 793		(*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
 794				 << DEV_DMA_BUFF_STS_SHIFT);
 795
 796		if (len > maxsize) {
 797			if (!hs_ep->index && !dir_in)
 798				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
 799
 800			(*desc)->status |=
 801				maxsize << DEV_DMA_NBYTES_SHIFT & mask;
 802			(*desc)->buf = dma_buff + offset;
 803
 804			len -= maxsize;
 805			offset += maxsize;
 806		} else {
 807			if (true_last)
 808				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
 809
 810			if (dir_in)
 811				(*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
 812					((hs_ep->send_zlp && true_last) ?
 813					DEV_DMA_SHORT : 0);
 
 814
 815			(*desc)->status |=
 816				len << DEV_DMA_NBYTES_SHIFT & mask;
 817			(*desc)->buf = dma_buff + offset;
 818		}
 819
 820		(*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
 821		(*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
 822				 << DEV_DMA_BUFF_STS_SHIFT);
 823		(*desc)++;
 824	}
 825}
 826
 827/*
 828 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 829 * @hs_ep: The endpoint
 830 * @ureq: Request to transfer
 831 * @offset: offset in bytes
 832 * @len: Length of the transfer
 833 *
 834 * This function will iterate over descriptor chain and fill its entries
 835 * with corresponding information based on transfer data.
 836 */
 837static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
 838						 dma_addr_t dma_buff,
 839						 unsigned int len)
 840{
 841	struct usb_request *ureq = NULL;
 842	struct dwc2_dma_desc *desc = hs_ep->desc_list;
 843	struct scatterlist *sg;
 844	int i;
 845	u8 desc_count = 0;
 846
 847	if (hs_ep->req)
 848		ureq = &hs_ep->req->req;
 849
 850	/* non-DMA sg buffer */
 851	if (!ureq || !ureq->num_sgs) {
 852		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
 853			dma_buff, len, true);
 854		return;
 855	}
 856
 857	/* DMA sg buffer */
 858	for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
 859		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
 860			sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
 861			sg_is_last(sg));
 862		desc_count += hs_ep->desc_count;
 863	}
 864
 865	hs_ep->desc_count = desc_count;
 866}
 867
 868/*
 869 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
 870 * @hs_ep: The isochronous endpoint.
 871 * @dma_buff: usb requests dma buffer.
 872 * @len: usb request transfer length.
 873 *
 874 * Fills next free descriptor with the data of the arrived usb request,
 
 
 875 * frame info, sets Last and IOC bits increments next_desc. If filled
 876 * descriptor is not the first one, removes L bit from the previous descriptor
 877 * status.
 878 */
 879static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
 880				      dma_addr_t dma_buff, unsigned int len)
 881{
 882	struct dwc2_dma_desc *desc;
 883	struct dwc2_hsotg *hsotg = hs_ep->parent;
 884	u32 index;
 885	u32 maxsize = 0;
 886	u32 mask = 0;
 887	u8 pid = 0;
 888
 889	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
 
 
 
 
 890
 891	index = hs_ep->next_desc;
 892	desc = &hs_ep->desc_list[index];
 
 
 
 
 
 
 
 
 
 
 
 893
 894	/* Check if descriptor chain full */
 895	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
 896	    DEV_DMA_BUFF_STS_HREADY) {
 897		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
 898		return 1;
 899	}
 900
 
 
 901	/* Clear L bit of previous desc if more than one entries in the chain */
 902	if (hs_ep->next_desc)
 903		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
 904
 905	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
 906		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
 907
 908	desc->status = 0;
 909	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
 910
 911	desc->buf = dma_buff;
 912	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
 913			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
 914
 915	if (hs_ep->dir_in) {
 916		if (len)
 917			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
 918		else
 919			pid = 1;
 920		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
 921				 DEV_DMA_ISOC_PID_MASK) |
 922				((len % hs_ep->ep.maxpacket) ?
 923				 DEV_DMA_SHORT : 0) |
 924				((hs_ep->target_frame <<
 925				  DEV_DMA_ISOC_FRNUM_SHIFT) &
 926				 DEV_DMA_ISOC_FRNUM_MASK);
 927	}
 928
 929	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
 930	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
 931
 932	/* Increment frame number by interval for IN */
 933	if (hs_ep->dir_in)
 934		dwc2_gadget_incr_frame_num(hs_ep);
 935
 936	/* Update index of last configured entry in the chain */
 937	hs_ep->next_desc++;
 938	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
 939		hs_ep->next_desc = 0;
 940
 941	return 0;
 942}
 943
 944/*
 945 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
 946 * @hs_ep: The isochronous endpoint.
 947 *
 948 * Prepare descriptor chain for isochronous endpoints. Afterwards
 949 * write DMA address to HW and enable the endpoint.
 
 
 
 950 */
 951static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
 952{
 953	struct dwc2_hsotg *hsotg = hs_ep->parent;
 954	struct dwc2_hsotg_req *hs_req, *treq;
 955	int index = hs_ep->index;
 956	int ret;
 957	int i;
 958	u32 dma_reg;
 959	u32 depctl;
 960	u32 ctrl;
 961	struct dwc2_dma_desc *desc;
 962
 963	if (list_empty(&hs_ep->queue)) {
 964		hs_ep->target_frame = TARGET_FRAME_INITIAL;
 965		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
 966		return;
 967	}
 968
 969	/* Initialize descriptor chain by Host Busy status */
 970	for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
 971		desc = &hs_ep->desc_list[i];
 972		desc->status = 0;
 973		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
 974				    << DEV_DMA_BUFF_STS_SHIFT);
 975	}
 976
 977	hs_ep->next_desc = 0;
 978	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
 979		dma_addr_t dma_addr = hs_req->req.dma;
 980
 981		if (hs_req->req.num_sgs) {
 982			WARN_ON(hs_req->req.num_sgs > 1);
 983			dma_addr = sg_dma_address(hs_req->req.sg);
 984		}
 985		ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
 986						 hs_req->req.length);
 987		if (ret)
 
 988			break;
 
 989	}
 990
 991	hs_ep->compl_desc = 0;
 992	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
 993	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
 994
 995	/* write descriptor chain address to control register */
 996	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
 997
 998	ctrl = dwc2_readl(hsotg, depctl);
 999	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1000	dwc2_writel(hsotg, ctrl, depctl);
 
 
 
 
1001}
1002
1003/**
1004 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1005 * @hsotg: The controller state.
1006 * @hs_ep: The endpoint to process a request for
1007 * @hs_req: The request to start.
1008 * @continuing: True if we are doing more for the current request.
1009 *
1010 * Start the given request running by setting the endpoint registers
1011 * appropriately, and writing any data to the FIFOs.
1012 */
1013static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1014				 struct dwc2_hsotg_ep *hs_ep,
1015				struct dwc2_hsotg_req *hs_req,
1016				bool continuing)
1017{
1018	struct usb_request *ureq = &hs_req->req;
1019	int index = hs_ep->index;
1020	int dir_in = hs_ep->dir_in;
1021	u32 epctrl_reg;
1022	u32 epsize_reg;
1023	u32 epsize;
1024	u32 ctrl;
1025	unsigned int length;
1026	unsigned int packets;
1027	unsigned int maxreq;
1028	unsigned int dma_reg;
1029
1030	if (index != 0) {
1031		if (hs_ep->req && !continuing) {
1032			dev_err(hsotg->dev, "%s: active request\n", __func__);
1033			WARN_ON(1);
1034			return;
1035		} else if (hs_ep->req != hs_req && continuing) {
1036			dev_err(hsotg->dev,
1037				"%s: continue different req\n", __func__);
1038			WARN_ON(1);
1039			return;
1040		}
1041	}
1042
1043	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1044	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1045	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1046
1047	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1048		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1049		hs_ep->dir_in ? "in" : "out");
1050
1051	/* If endpoint is stalled, we will restart request later */
1052	ctrl = dwc2_readl(hsotg, epctrl_reg);
1053
1054	if (index && ctrl & DXEPCTL_STALL) {
1055		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1056		return;
1057	}
1058
1059	length = ureq->length - ureq->actual;
1060	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1061		ureq->length, ureq->actual);
1062
1063	if (!using_desc_dma(hsotg))
1064		maxreq = get_ep_limit(hs_ep);
1065	else
1066		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1067
1068	if (length > maxreq) {
1069		int round = maxreq % hs_ep->ep.maxpacket;
1070
1071		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1072			__func__, length, maxreq, round);
1073
1074		/* round down to multiple of packets */
1075		if (round)
1076			maxreq -= round;
1077
1078		length = maxreq;
1079	}
1080
1081	if (length)
1082		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1083	else
1084		packets = 1;	/* send one packet if length is zero. */
1085
1086	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1087		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
1088		return;
1089	}
1090
1091	if (dir_in && index != 0)
1092		if (hs_ep->isochronous)
1093			epsize = DXEPTSIZ_MC(packets);
1094		else
1095			epsize = DXEPTSIZ_MC(1);
1096	else
1097		epsize = 0;
1098
1099	/*
1100	 * zero length packet should be programmed on its own and should not
1101	 * be counted in DIEPTSIZ.PktCnt with other packets.
1102	 */
1103	if (dir_in && ureq->zero && !continuing) {
1104		/* Test if zlp is actually required. */
1105		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1106		    !(ureq->length % hs_ep->ep.maxpacket))
1107			hs_ep->send_zlp = 1;
1108	}
1109
1110	epsize |= DXEPTSIZ_PKTCNT(packets);
1111	epsize |= DXEPTSIZ_XFERSIZE(length);
1112
1113	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1114		__func__, packets, length, ureq->length, epsize, epsize_reg);
1115
1116	/* store the request as the current one we're doing */
1117	hs_ep->req = hs_req;
1118
1119	if (using_desc_dma(hsotg)) {
1120		u32 offset = 0;
1121		u32 mps = hs_ep->ep.maxpacket;
1122
1123		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1124		if (!dir_in) {
1125			if (!index)
1126				length = mps;
1127			else if (length % mps)
1128				length += (mps - (length % mps));
1129		}
1130
1131		/*
1132		 * If more data to send, adjust DMA for EP0 out data stage.
1133		 * ureq->dma stays unchanged, hence increment it by already
1134		 * passed passed data count before starting new transaction.
1135		 */
1136		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1137		    continuing)
1138			offset = ureq->actual;
1139
1140		/* Fill DDMA chain entries */
1141		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1142						     length);
1143
1144		/* write descriptor chain address to control register */
1145		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1146
1147		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1148			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1149	} else {
1150		/* write size / packets */
1151		dwc2_writel(hsotg, epsize, epsize_reg);
1152
1153		if (using_dma(hsotg) && !continuing && (length != 0)) {
1154			/*
1155			 * write DMA address to control register, buffer
1156			 * already synced by dwc2_hsotg_ep_queue().
1157			 */
1158
1159			dwc2_writel(hsotg, ureq->dma, dma_reg);
1160
1161			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1162				__func__, &ureq->dma, dma_reg);
1163		}
1164	}
1165
1166	if (hs_ep->isochronous && hs_ep->interval == 1) {
1167		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1168		dwc2_gadget_incr_frame_num(hs_ep);
1169
1170		if (hs_ep->target_frame & 0x1)
1171			ctrl |= DXEPCTL_SETODDFR;
1172		else
1173			ctrl |= DXEPCTL_SETEVENFR;
1174	}
1175
1176	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1177
1178	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1179
1180	/* For Setup request do not clear NAK */
1181	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1182		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1183
1184	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1185	dwc2_writel(hsotg, ctrl, epctrl_reg);
1186
1187	/*
1188	 * set these, it seems that DMA support increments past the end
1189	 * of the packet buffer so we need to calculate the length from
1190	 * this information.
1191	 */
1192	hs_ep->size_loaded = length;
1193	hs_ep->last_load = ureq->actual;
1194
1195	if (dir_in && !using_dma(hsotg)) {
1196		/* set these anyway, we may need them for non-periodic in */
1197		hs_ep->fifo_load = 0;
1198
1199		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1200	}
1201
1202	/*
1203	 * Note, trying to clear the NAK here causes problems with transmit
1204	 * on the S3C6400 ending up with the TXFIFO becoming full.
1205	 */
1206
1207	/* check ep is enabled */
1208	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1209		dev_dbg(hsotg->dev,
1210			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1211			 index, dwc2_readl(hsotg, epctrl_reg));
1212
1213	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1214		__func__, dwc2_readl(hsotg, epctrl_reg));
1215
1216	/* enable ep interrupts */
1217	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1218}
1219
1220/**
1221 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1222 * @hsotg: The device state.
1223 * @hs_ep: The endpoint the request is on.
1224 * @req: The request being processed.
1225 *
1226 * We've been asked to queue a request, so ensure that the memory buffer
1227 * is correctly setup for DMA. If we've been passed an extant DMA address
1228 * then ensure the buffer has been synced to memory. If our buffer has no
1229 * DMA memory, then we map the memory and mark our request to allow us to
1230 * cleanup on completion.
1231 */
1232static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1233			      struct dwc2_hsotg_ep *hs_ep,
1234			     struct usb_request *req)
1235{
1236	int ret;
1237
1238	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1239	if (ret)
1240		goto dma_error;
1241
1242	return 0;
1243
1244dma_error:
1245	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1246		__func__, req->buf, req->length);
1247
1248	return -EIO;
1249}
1250
1251static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1252						 struct dwc2_hsotg_ep *hs_ep,
1253						 struct dwc2_hsotg_req *hs_req)
1254{
1255	void *req_buf = hs_req->req.buf;
1256
1257	/* If dma is not being used or buffer is aligned */
1258	if (!using_dma(hsotg) || !((long)req_buf & 3))
1259		return 0;
1260
1261	WARN_ON(hs_req->saved_req_buf);
1262
1263	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1264		hs_ep->ep.name, req_buf, hs_req->req.length);
1265
1266	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1267	if (!hs_req->req.buf) {
1268		hs_req->req.buf = req_buf;
1269		dev_err(hsotg->dev,
1270			"%s: unable to allocate memory for bounce buffer\n",
1271			__func__);
1272		return -ENOMEM;
1273	}
1274
1275	/* Save actual buffer */
1276	hs_req->saved_req_buf = req_buf;
1277
1278	if (hs_ep->dir_in)
1279		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1280	return 0;
1281}
1282
1283static void
1284dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1285					 struct dwc2_hsotg_ep *hs_ep,
1286					 struct dwc2_hsotg_req *hs_req)
1287{
1288	/* If dma is not being used or buffer was aligned */
1289	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1290		return;
1291
1292	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1293		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1294
1295	/* Copy data from bounce buffer on successful out transfer */
1296	if (!hs_ep->dir_in && !hs_req->req.status)
1297		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1298		       hs_req->req.actual);
1299
1300	/* Free bounce buffer */
1301	kfree(hs_req->req.buf);
1302
1303	hs_req->req.buf = hs_req->saved_req_buf;
1304	hs_req->saved_req_buf = NULL;
1305}
1306
1307/**
1308 * dwc2_gadget_target_frame_elapsed - Checks target frame
1309 * @hs_ep: The driver endpoint to check
1310 *
1311 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1312 * corresponding transfer.
1313 */
1314static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1315{
1316	struct dwc2_hsotg *hsotg = hs_ep->parent;
1317	u32 target_frame = hs_ep->target_frame;
1318	u32 current_frame = hsotg->frame_number;
1319	bool frame_overrun = hs_ep->frame_overrun;
1320
1321	if (!frame_overrun && current_frame >= target_frame)
1322		return true;
1323
1324	if (frame_overrun && current_frame >= target_frame &&
1325	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1326		return true;
1327
1328	return false;
1329}
1330
1331/*
1332 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1333 * @hsotg: The driver state
1334 * @hs_ep: the ep descriptor chain is for
1335 *
1336 * Called to update EP0 structure's pointers depend on stage of
1337 * control transfer.
1338 */
1339static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1340					  struct dwc2_hsotg_ep *hs_ep)
1341{
1342	switch (hsotg->ep0_state) {
1343	case DWC2_EP0_SETUP:
1344	case DWC2_EP0_STATUS_OUT:
1345		hs_ep->desc_list = hsotg->setup_desc[0];
1346		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1347		break;
1348	case DWC2_EP0_DATA_IN:
1349	case DWC2_EP0_STATUS_IN:
1350		hs_ep->desc_list = hsotg->ctrl_in_desc;
1351		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1352		break;
1353	case DWC2_EP0_DATA_OUT:
1354		hs_ep->desc_list = hsotg->ctrl_out_desc;
1355		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1356		break;
1357	default:
1358		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1359			hsotg->ep0_state);
1360		return -EINVAL;
1361	}
1362
1363	return 0;
1364}
1365
1366static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1367			       gfp_t gfp_flags)
1368{
1369	struct dwc2_hsotg_req *hs_req = our_req(req);
1370	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1371	struct dwc2_hsotg *hs = hs_ep->parent;
1372	bool first;
1373	int ret;
1374	u32 maxsize = 0;
1375	u32 mask = 0;
1376
1377
1378	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1379		ep->name, req, req->length, req->buf, req->no_interrupt,
1380		req->zero, req->short_not_ok);
1381
1382	/* Prevent new request submission when controller is suspended */
1383	if (hs->lx_state != DWC2_L0) {
1384		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1385			__func__);
1386		return -EAGAIN;
1387	}
1388
1389	/* initialise status of the request */
1390	INIT_LIST_HEAD(&hs_req->queue);
1391	req->actual = 0;
1392	req->status = -EINPROGRESS;
1393
1394	/* In DDMA mode for ISOC's don't queue request if length greater
1395	 * than descriptor limits.
1396	 */
1397	if (using_desc_dma(hs) && hs_ep->isochronous) {
1398		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1399		if (hs_ep->dir_in && req->length > maxsize) {
1400			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1401				req->length, maxsize);
1402			return -EINVAL;
1403		}
1404
1405		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1406			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1407				req->length, hs_ep->ep.maxpacket);
1408			return -EINVAL;
1409		}
1410	}
1411
1412	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1413	if (ret)
1414		return ret;
1415
1416	/* if we're using DMA, sync the buffers as necessary */
1417	if (using_dma(hs)) {
1418		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1419		if (ret)
1420			return ret;
1421	}
1422	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1423	if (using_desc_dma(hs) && !hs_ep->index) {
1424		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1425		if (ret)
1426			return ret;
1427	}
1428
1429	first = list_empty(&hs_ep->queue);
1430	list_add_tail(&hs_req->queue, &hs_ep->queue);
1431
1432	/*
1433	 * Handle DDMA isochronous transfers separately - just add new entry
1434	 * to the descriptor chain.
1435	 * Transfer will be started once SW gets either one of NAK or
1436	 * OutTknEpDis interrupts.
1437	 */
1438	if (using_desc_dma(hs) && hs_ep->isochronous) {
1439		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1440			dma_addr_t dma_addr = hs_req->req.dma;
1441
1442			if (hs_req->req.num_sgs) {
1443				WARN_ON(hs_req->req.num_sgs > 1);
1444				dma_addr = sg_dma_address(hs_req->req.sg);
1445			}
1446			dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1447						   hs_req->req.length);
1448		}
1449		return 0;
1450	}
1451
1452	/* Change EP direction if status phase request is after data out */
1453	if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1454	    hs->ep0_state == DWC2_EP0_DATA_OUT)
1455		hs_ep->dir_in = 1;
1456
1457	if (first) {
1458		if (!hs_ep->isochronous) {
1459			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1460			return 0;
1461		}
1462
1463		/* Update current frame number value. */
1464		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1465		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1466			dwc2_gadget_incr_frame_num(hs_ep);
1467			/* Update current frame number value once more as it
1468			 * changes here.
1469			 */
1470			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1471		}
1472
1473		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1474			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1475	}
1476	return 0;
1477}
1478
1479static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1480				    gfp_t gfp_flags)
1481{
1482	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1483	struct dwc2_hsotg *hs = hs_ep->parent;
1484	unsigned long flags = 0;
1485	int ret = 0;
1486
1487	spin_lock_irqsave(&hs->lock, flags);
1488	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1489	spin_unlock_irqrestore(&hs->lock, flags);
1490
1491	return ret;
1492}
1493
1494static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1495				       struct usb_request *req)
1496{
1497	struct dwc2_hsotg_req *hs_req = our_req(req);
1498
1499	kfree(hs_req);
1500}
1501
1502/**
1503 * dwc2_hsotg_complete_oursetup - setup completion callback
1504 * @ep: The endpoint the request was on.
1505 * @req: The request completed.
1506 *
1507 * Called on completion of any requests the driver itself
1508 * submitted that need cleaning up.
1509 */
1510static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1511					 struct usb_request *req)
1512{
1513	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1514	struct dwc2_hsotg *hsotg = hs_ep->parent;
1515
1516	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1517
1518	dwc2_hsotg_ep_free_request(ep, req);
1519}
1520
1521/**
1522 * ep_from_windex - convert control wIndex value to endpoint
1523 * @hsotg: The driver state.
1524 * @windex: The control request wIndex field (in host order).
1525 *
1526 * Convert the given wIndex into a pointer to an driver endpoint
1527 * structure, or return NULL if it is not a valid endpoint.
1528 */
1529static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1530					    u32 windex)
1531{
1532	struct dwc2_hsotg_ep *ep;
1533	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1534	int idx = windex & 0x7F;
1535
1536	if (windex >= 0x100)
1537		return NULL;
1538
1539	if (idx > hsotg->num_of_eps)
1540		return NULL;
1541
1542	ep = index_to_ep(hsotg, idx, dir);
1543
1544	if (idx && ep->dir_in != dir)
1545		return NULL;
1546
1547	return ep;
1548}
1549
1550/**
1551 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1552 * @hsotg: The driver state.
1553 * @testmode: requested usb test mode
1554 * Enable usb Test Mode requested by the Host.
1555 */
1556int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1557{
1558	int dctl = dwc2_readl(hsotg, DCTL);
1559
1560	dctl &= ~DCTL_TSTCTL_MASK;
1561	switch (testmode) {
1562	case TEST_J:
1563	case TEST_K:
1564	case TEST_SE0_NAK:
1565	case TEST_PACKET:
1566	case TEST_FORCE_EN:
1567		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1568		break;
1569	default:
1570		return -EINVAL;
1571	}
1572	dwc2_writel(hsotg, dctl, DCTL);
1573	return 0;
1574}
1575
1576/**
1577 * dwc2_hsotg_send_reply - send reply to control request
1578 * @hsotg: The device state
1579 * @ep: Endpoint 0
1580 * @buff: Buffer for request
1581 * @length: Length of reply.
1582 *
1583 * Create a request and queue it on the given endpoint. This is useful as
1584 * an internal method of sending replies to certain control requests, etc.
1585 */
1586static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1587				 struct dwc2_hsotg_ep *ep,
1588				void *buff,
1589				int length)
1590{
1591	struct usb_request *req;
1592	int ret;
1593
1594	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1595
1596	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1597	hsotg->ep0_reply = req;
1598	if (!req) {
1599		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1600		return -ENOMEM;
1601	}
1602
1603	req->buf = hsotg->ep0_buff;
1604	req->length = length;
1605	/*
1606	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1607	 * STATUS stage.
1608	 */
1609	req->zero = 0;
1610	req->complete = dwc2_hsotg_complete_oursetup;
1611
1612	if (length)
1613		memcpy(req->buf, buff, length);
1614
1615	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1616	if (ret) {
1617		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1618		return ret;
1619	}
1620
1621	return 0;
1622}
1623
1624/**
1625 * dwc2_hsotg_process_req_status - process request GET_STATUS
1626 * @hsotg: The device state
1627 * @ctrl: USB control request
1628 */
1629static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1630					 struct usb_ctrlrequest *ctrl)
1631{
1632	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1633	struct dwc2_hsotg_ep *ep;
1634	__le16 reply;
1635	int ret;
1636
1637	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1638
1639	if (!ep0->dir_in) {
1640		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1641		return -EINVAL;
1642	}
1643
1644	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1645	case USB_RECIP_DEVICE:
1646		/*
1647		 * bit 0 => self powered
1648		 * bit 1 => remote wakeup
1649		 */
1650		reply = cpu_to_le16(0);
1651		break;
1652
1653	case USB_RECIP_INTERFACE:
1654		/* currently, the data result should be zero */
1655		reply = cpu_to_le16(0);
1656		break;
1657
1658	case USB_RECIP_ENDPOINT:
1659		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1660		if (!ep)
1661			return -ENOENT;
1662
1663		reply = cpu_to_le16(ep->halted ? 1 : 0);
1664		break;
1665
1666	default:
1667		return 0;
1668	}
1669
1670	if (le16_to_cpu(ctrl->wLength) != 2)
1671		return -EINVAL;
1672
1673	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1674	if (ret) {
1675		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1676		return ret;
1677	}
1678
1679	return 1;
1680}
1681
1682static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1683
1684/**
1685 * get_ep_head - return the first request on the endpoint
1686 * @hs_ep: The controller endpoint to get
1687 *
1688 * Get the first request on the endpoint.
1689 */
1690static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1691{
1692	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1693					queue);
1694}
1695
1696/**
1697 * dwc2_gadget_start_next_request - Starts next request from ep queue
1698 * @hs_ep: Endpoint structure
1699 *
1700 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1701 * in its handler. Hence we need to unmask it here to be able to do
1702 * resynchronization.
1703 */
1704static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1705{
1706	u32 mask;
1707	struct dwc2_hsotg *hsotg = hs_ep->parent;
1708	int dir_in = hs_ep->dir_in;
1709	struct dwc2_hsotg_req *hs_req;
1710	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1711
1712	if (!list_empty(&hs_ep->queue)) {
1713		hs_req = get_ep_head(hs_ep);
1714		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1715		return;
1716	}
1717	if (!hs_ep->isochronous)
1718		return;
1719
1720	if (dir_in) {
1721		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1722			__func__);
1723	} else {
1724		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1725			__func__);
1726		mask = dwc2_readl(hsotg, epmsk_reg);
1727		mask |= DOEPMSK_OUTTKNEPDISMSK;
1728		dwc2_writel(hsotg, mask, epmsk_reg);
1729	}
1730}
1731
1732/**
1733 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1734 * @hsotg: The device state
1735 * @ctrl: USB control request
1736 */
1737static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1738					  struct usb_ctrlrequest *ctrl)
1739{
1740	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1741	struct dwc2_hsotg_req *hs_req;
1742	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1743	struct dwc2_hsotg_ep *ep;
1744	int ret;
1745	bool halted;
1746	u32 recip;
1747	u32 wValue;
1748	u32 wIndex;
1749
1750	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1751		__func__, set ? "SET" : "CLEAR");
1752
1753	wValue = le16_to_cpu(ctrl->wValue);
1754	wIndex = le16_to_cpu(ctrl->wIndex);
1755	recip = ctrl->bRequestType & USB_RECIP_MASK;
1756
1757	switch (recip) {
1758	case USB_RECIP_DEVICE:
1759		switch (wValue) {
1760		case USB_DEVICE_REMOTE_WAKEUP:
1761			hsotg->remote_wakeup_allowed = 1;
1762			break;
1763
1764		case USB_DEVICE_TEST_MODE:
1765			if ((wIndex & 0xff) != 0)
1766				return -EINVAL;
1767			if (!set)
1768				return -EINVAL;
1769
1770			hsotg->test_mode = wIndex >> 8;
1771			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1772			if (ret) {
1773				dev_err(hsotg->dev,
1774					"%s: failed to send reply\n", __func__);
1775				return ret;
1776			}
1777			break;
1778		default:
1779			return -ENOENT;
1780		}
1781		break;
1782
1783	case USB_RECIP_ENDPOINT:
1784		ep = ep_from_windex(hsotg, wIndex);
1785		if (!ep) {
1786			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1787				__func__, wIndex);
1788			return -ENOENT;
1789		}
1790
1791		switch (wValue) {
1792		case USB_ENDPOINT_HALT:
1793			halted = ep->halted;
1794
1795			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1796
1797			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1798			if (ret) {
1799				dev_err(hsotg->dev,
1800					"%s: failed to send reply\n", __func__);
1801				return ret;
1802			}
1803
1804			/*
1805			 * we have to complete all requests for ep if it was
1806			 * halted, and the halt was cleared by CLEAR_FEATURE
1807			 */
1808
1809			if (!set && halted) {
1810				/*
1811				 * If we have request in progress,
1812				 * then complete it
1813				 */
1814				if (ep->req) {
1815					hs_req = ep->req;
1816					ep->req = NULL;
1817					list_del_init(&hs_req->queue);
1818					if (hs_req->req.complete) {
1819						spin_unlock(&hsotg->lock);
1820						usb_gadget_giveback_request(
1821							&ep->ep, &hs_req->req);
1822						spin_lock(&hsotg->lock);
1823					}
1824				}
1825
1826				/* If we have pending request, then start it */
1827				if (!ep->req)
1828					dwc2_gadget_start_next_request(ep);
 
1829			}
1830
1831			break;
1832
1833		default:
1834			return -ENOENT;
1835		}
1836		break;
1837	default:
1838		return -ENOENT;
1839	}
1840	return 1;
1841}
1842
1843static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1844
1845/**
1846 * dwc2_hsotg_stall_ep0 - stall ep0
1847 * @hsotg: The device state
1848 *
1849 * Set stall for ep0 as response for setup request.
1850 */
1851static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1852{
1853	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1854	u32 reg;
1855	u32 ctrl;
1856
1857	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1858	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1859
1860	/*
1861	 * DxEPCTL_Stall will be cleared by EP once it has
1862	 * taken effect, so no need to clear later.
1863	 */
1864
1865	ctrl = dwc2_readl(hsotg, reg);
1866	ctrl |= DXEPCTL_STALL;
1867	ctrl |= DXEPCTL_CNAK;
1868	dwc2_writel(hsotg, ctrl, reg);
1869
1870	dev_dbg(hsotg->dev,
1871		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1872		ctrl, reg, dwc2_readl(hsotg, reg));
1873
1874	 /*
1875	  * complete won't be called, so we enqueue
1876	  * setup request here
1877	  */
1878	 dwc2_hsotg_enqueue_setup(hsotg);
1879}
1880
1881/**
1882 * dwc2_hsotg_process_control - process a control request
1883 * @hsotg: The device state
1884 * @ctrl: The control request received
1885 *
1886 * The controller has received the SETUP phase of a control request, and
1887 * needs to work out what to do next (and whether to pass it on to the
1888 * gadget driver).
1889 */
1890static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1891				       struct usb_ctrlrequest *ctrl)
1892{
1893	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1894	int ret = 0;
1895	u32 dcfg;
1896
1897	dev_dbg(hsotg->dev,
1898		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1899		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1900		ctrl->wIndex, ctrl->wLength);
1901
1902	if (ctrl->wLength == 0) {
1903		ep0->dir_in = 1;
1904		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1905	} else if (ctrl->bRequestType & USB_DIR_IN) {
1906		ep0->dir_in = 1;
1907		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1908	} else {
1909		ep0->dir_in = 0;
1910		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1911	}
1912
1913	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1914		switch (ctrl->bRequest) {
1915		case USB_REQ_SET_ADDRESS:
1916			hsotg->connected = 1;
1917			dcfg = dwc2_readl(hsotg, DCFG);
1918			dcfg &= ~DCFG_DEVADDR_MASK;
1919			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1920				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1921			dwc2_writel(hsotg, dcfg, DCFG);
1922
1923			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1924
1925			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1926			return;
1927
1928		case USB_REQ_GET_STATUS:
1929			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1930			break;
1931
1932		case USB_REQ_CLEAR_FEATURE:
1933		case USB_REQ_SET_FEATURE:
1934			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1935			break;
1936		}
1937	}
1938
1939	/* as a fallback, try delivering it to the driver to deal with */
1940
1941	if (ret == 0 && hsotg->driver) {
1942		spin_unlock(&hsotg->lock);
1943		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1944		spin_lock(&hsotg->lock);
1945		if (ret < 0)
1946			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1947	}
1948
1949	hsotg->delayed_status = false;
1950	if (ret == USB_GADGET_DELAYED_STATUS)
1951		hsotg->delayed_status = true;
1952
1953	/*
1954	 * the request is either unhandlable, or is not formatted correctly
1955	 * so respond with a STALL for the status stage to indicate failure.
1956	 */
1957
1958	if (ret < 0)
1959		dwc2_hsotg_stall_ep0(hsotg);
1960}
1961
1962/**
1963 * dwc2_hsotg_complete_setup - completion of a setup transfer
1964 * @ep: The endpoint the request was on.
1965 * @req: The request completed.
1966 *
1967 * Called on completion of any requests the driver itself submitted for
1968 * EP0 setup packets
1969 */
1970static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1971				      struct usb_request *req)
1972{
1973	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1974	struct dwc2_hsotg *hsotg = hs_ep->parent;
1975
1976	if (req->status < 0) {
1977		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1978		return;
1979	}
1980
1981	spin_lock(&hsotg->lock);
1982	if (req->actual == 0)
1983		dwc2_hsotg_enqueue_setup(hsotg);
1984	else
1985		dwc2_hsotg_process_control(hsotg, req->buf);
1986	spin_unlock(&hsotg->lock);
1987}
1988
1989/**
1990 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1991 * @hsotg: The device state.
1992 *
1993 * Enqueue a request on EP0 if necessary to received any SETUP packets
1994 * received from the host.
1995 */
1996static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1997{
1998	struct usb_request *req = hsotg->ctrl_req;
1999	struct dwc2_hsotg_req *hs_req = our_req(req);
2000	int ret;
2001
2002	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2003
2004	req->zero = 0;
2005	req->length = 8;
2006	req->buf = hsotg->ctrl_buff;
2007	req->complete = dwc2_hsotg_complete_setup;
2008
2009	if (!list_empty(&hs_req->queue)) {
2010		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2011		return;
2012	}
2013
2014	hsotg->eps_out[0]->dir_in = 0;
2015	hsotg->eps_out[0]->send_zlp = 0;
2016	hsotg->ep0_state = DWC2_EP0_SETUP;
2017
2018	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2019	if (ret < 0) {
2020		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2021		/*
2022		 * Don't think there's much we can do other than watch the
2023		 * driver fail.
2024		 */
2025	}
2026}
2027
2028static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2029				   struct dwc2_hsotg_ep *hs_ep)
2030{
2031	u32 ctrl;
2032	u8 index = hs_ep->index;
2033	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2034	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2035
2036	if (hs_ep->dir_in)
2037		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2038			index);
2039	else
2040		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2041			index);
2042	if (using_desc_dma(hsotg)) {
2043		/* Not specific buffer needed for ep0 ZLP */
2044		dma_addr_t dma = hs_ep->desc_list_dma;
2045
2046		if (!index)
2047			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2048
2049		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2050	} else {
2051		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2052			    DXEPTSIZ_XFERSIZE(0),
2053			    epsiz_reg);
2054	}
2055
2056	ctrl = dwc2_readl(hsotg, epctl_reg);
2057	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2058	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2059	ctrl |= DXEPCTL_USBACTEP;
2060	dwc2_writel(hsotg, ctrl, epctl_reg);
2061}
2062
2063/**
2064 * dwc2_hsotg_complete_request - complete a request given to us
2065 * @hsotg: The device state.
2066 * @hs_ep: The endpoint the request was on.
2067 * @hs_req: The request to complete.
2068 * @result: The result code (0 => Ok, otherwise errno)
2069 *
2070 * The given request has finished, so call the necessary completion
2071 * if it has one and then look to see if we can start a new request
2072 * on the endpoint.
2073 *
2074 * Note, expects the ep to already be locked as appropriate.
2075 */
2076static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2077					struct dwc2_hsotg_ep *hs_ep,
2078				       struct dwc2_hsotg_req *hs_req,
2079				       int result)
2080{
 
2081	if (!hs_req) {
2082		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2083		return;
2084	}
2085
2086	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2087		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2088
2089	/*
2090	 * only replace the status if we've not already set an error
2091	 * from a previous transaction
2092	 */
2093
2094	if (hs_req->req.status == -EINPROGRESS)
2095		hs_req->req.status = result;
2096
2097	if (using_dma(hsotg))
2098		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2099
2100	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2101
2102	hs_ep->req = NULL;
2103	list_del_init(&hs_req->queue);
2104
2105	/*
2106	 * call the complete request with the locks off, just in case the
2107	 * request tries to queue more work for this endpoint.
2108	 */
2109
2110	if (hs_req->req.complete) {
2111		spin_unlock(&hsotg->lock);
2112		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2113		spin_lock(&hsotg->lock);
2114	}
2115
2116	/* In DDMA don't need to proceed to starting of next ISOC request */
2117	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2118		return;
2119
2120	/*
2121	 * Look to see if there is anything else to do. Note, the completion
2122	 * of the previous request may have caused a new request to be started
2123	 * so be careful when doing this.
2124	 */
2125
2126	if (!hs_ep->req && result >= 0)
2127		dwc2_gadget_start_next_request(hs_ep);
 
2128}
2129
2130/*
2131 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2132 * @hs_ep: The endpoint the request was on.
2133 *
2134 * Get first request from the ep queue, determine descriptor on which complete
2135 * happened. SW discovers which descriptor currently in use by HW, adjusts
2136 * dma_address and calculates index of completed descriptor based on the value
2137 * of DEPDMA register. Update actual length of request, giveback to gadget.
 
2138 */
2139static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2140{
2141	struct dwc2_hsotg *hsotg = hs_ep->parent;
2142	struct dwc2_hsotg_req *hs_req;
2143	struct usb_request *ureq;
 
 
 
 
2144	u32 desc_sts;
2145	u32 mask;
2146
2147	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2148
2149	/* Process only descriptors with buffer status set to DMA done */
2150	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2151		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2152
2153		hs_req = get_ep_head(hs_ep);
2154		if (!hs_req) {
2155			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2156			return;
2157		}
2158		ureq = &hs_req->req;
2159
2160		/* Check completion status */
2161		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2162			DEV_DMA_STS_SUCC) {
2163			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2164				DEV_DMA_ISOC_RX_NBYTES_MASK;
2165			ureq->actual = ureq->length - ((desc_sts & mask) >>
2166				DEV_DMA_ISOC_NBYTES_SHIFT);
2167
2168			/* Adjust actual len for ISOC Out if len is
2169			 * not align of 4
2170			 */
2171			if (!hs_ep->dir_in && ureq->length & 0x3)
2172				ureq->actual += 4 - (ureq->length & 0x3);
2173
2174			/* Set actual frame number for completed transfers */
2175			ureq->frame_number =
2176				(desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2177				DEV_DMA_ISOC_FRNUM_SHIFT;
2178		}
2179
2180		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2181
2182		hs_ep->compl_desc++;
2183		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2184			hs_ep->compl_desc = 0;
2185		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2186	}
2187}
2188
2189/*
2190 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2191 * @hs_ep: The isochronous endpoint.
2192 *
2193 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2194 * interrupt. Reset target frame and next_desc to allow to start
2195 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2196 * interrupt for OUT direction.
2197 */
2198static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2199{
2200	struct dwc2_hsotg *hsotg = hs_ep->parent;
 
 
 
 
 
2201
2202	if (!hs_ep->dir_in)
2203		dwc2_flush_rx_fifo(hsotg);
2204	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2205
2206	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2207	hs_ep->next_desc = 0;
2208	hs_ep->compl_desc = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2209}
2210
2211/**
2212 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2213 * @hsotg: The device state.
2214 * @ep_idx: The endpoint index for the data
2215 * @size: The size of data in the fifo, in bytes
2216 *
2217 * The FIFO status shows there is data to read from the FIFO for a given
2218 * endpoint, so sort out whether we need to read the data into a request
2219 * that has been made for that endpoint.
2220 */
2221static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2222{
2223	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2224	struct dwc2_hsotg_req *hs_req = hs_ep->req;
 
2225	int to_read;
2226	int max_req;
2227	int read_ptr;
2228
 
2229	if (!hs_req) {
2230		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2231		int ptr;
2232
2233		dev_dbg(hsotg->dev,
2234			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2235			 __func__, size, ep_idx, epctl);
2236
2237		/* dump the data from the FIFO, we've nothing we can do */
2238		for (ptr = 0; ptr < size; ptr += 4)
2239			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2240
2241		return;
2242	}
2243
2244	to_read = size;
2245	read_ptr = hs_req->req.actual;
2246	max_req = hs_req->req.length - read_ptr;
2247
2248	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2249		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2250
2251	if (to_read > max_req) {
2252		/*
2253		 * more data appeared than we where willing
2254		 * to deal with in this request.
2255		 */
2256
2257		/* currently we don't deal this */
2258		WARN_ON_ONCE(1);
2259	}
2260
2261	hs_ep->total_data += to_read;
2262	hs_req->req.actual += to_read;
2263	to_read = DIV_ROUND_UP(to_read, 4);
2264
2265	/*
2266	 * note, we might over-write the buffer end by 3 bytes depending on
2267	 * alignment of the data.
2268	 */
2269	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2270		       hs_req->req.buf + read_ptr, to_read);
2271}
2272
2273/**
2274 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2275 * @hsotg: The device instance
2276 * @dir_in: If IN zlp
2277 *
2278 * Generate a zero-length IN packet request for terminating a SETUP
2279 * transaction.
2280 *
2281 * Note, since we don't write any data to the TxFIFO, then it is
2282 * currently believed that we do not need to wait for any space in
2283 * the TxFIFO.
2284 */
2285static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2286{
2287	/* eps_out[0] is used in both directions */
2288	hsotg->eps_out[0]->dir_in = dir_in;
2289	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2290
2291	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2292}
2293
2294static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2295					    u32 epctl_reg)
2296{
2297	u32 ctrl;
2298
2299	ctrl = dwc2_readl(hsotg, epctl_reg);
2300	if (ctrl & DXEPCTL_EOFRNUM)
2301		ctrl |= DXEPCTL_SETEVENFR;
2302	else
2303		ctrl |= DXEPCTL_SETODDFR;
2304	dwc2_writel(hsotg, ctrl, epctl_reg);
2305}
2306
2307/*
2308 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2309 * @hs_ep - The endpoint on which transfer went
2310 *
2311 * Iterate over endpoints descriptor chain and get info on bytes remained
2312 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2313 */
2314static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2315{
2316	struct dwc2_hsotg *hsotg = hs_ep->parent;
2317	unsigned int bytes_rem = 0;
2318	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2319	int i;
2320	u32 status;
2321
2322	if (!desc)
2323		return -EINVAL;
2324
2325	for (i = 0; i < hs_ep->desc_count; ++i) {
2326		status = desc->status;
2327		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2328
2329		if (status & DEV_DMA_STS_MASK)
2330			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2331				i, status & DEV_DMA_STS_MASK);
2332		desc++;
2333	}
2334
2335	return bytes_rem;
2336}
2337
2338/**
2339 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2340 * @hsotg: The device instance
2341 * @epnum: The endpoint received from
2342 *
2343 * The RXFIFO has delivered an OutDone event, which means that the data
2344 * transfer for an OUT endpoint has been completed, either by a short
2345 * packet or by the finish of a transfer.
2346 */
2347static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2348{
2349	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2350	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2351	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2352	struct usb_request *req = &hs_req->req;
2353	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2354	int result = 0;
2355
2356	if (!hs_req) {
2357		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2358		return;
2359	}
2360
2361	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2362		dev_dbg(hsotg->dev, "zlp packet received\n");
2363		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2364		dwc2_hsotg_enqueue_setup(hsotg);
2365		return;
2366	}
2367
2368	if (using_desc_dma(hsotg))
2369		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2370
2371	if (using_dma(hsotg)) {
2372		unsigned int size_done;
2373
2374		/*
2375		 * Calculate the size of the transfer by checking how much
2376		 * is left in the endpoint size register and then working it
2377		 * out from the amount we loaded for the transfer.
2378		 *
2379		 * We need to do this as DMA pointers are always 32bit aligned
2380		 * so may overshoot/undershoot the transfer.
2381		 */
2382
2383		size_done = hs_ep->size_loaded - size_left;
2384		size_done += hs_ep->last_load;
2385
2386		req->actual = size_done;
2387	}
2388
2389	/* if there is more request to do, schedule new transfer */
2390	if (req->actual < req->length && size_left == 0) {
2391		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2392		return;
2393	}
2394
2395	if (req->actual < req->length && req->short_not_ok) {
2396		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2397			__func__, req->actual, req->length);
2398
2399		/*
2400		 * todo - what should we return here? there's no one else
2401		 * even bothering to check the status.
2402		 */
2403	}
2404
2405	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2406	if (!using_desc_dma(hsotg) && epnum == 0 &&
2407	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2408		/* Move to STATUS IN */
2409		if (!hsotg->delayed_status)
2410			dwc2_hsotg_ep0_zlp(hsotg, true);
2411	}
2412
2413	/*
2414	 * Slave mode OUT transfers do not go through XferComplete so
2415	 * adjust the ISOC parity here.
2416	 */
2417	if (!using_dma(hsotg)) {
2418		if (hs_ep->isochronous && hs_ep->interval == 1)
2419			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2420		else if (hs_ep->isochronous && hs_ep->interval > 1)
2421			dwc2_gadget_incr_frame_num(hs_ep);
2422	}
2423
2424	/* Set actual frame number for completed transfers */
2425	if (!using_desc_dma(hsotg) && hs_ep->isochronous)
2426		req->frame_number = hsotg->frame_number;
2427
2428	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2429}
2430
2431/**
2432 * dwc2_hsotg_handle_rx - RX FIFO has data
2433 * @hsotg: The device instance
2434 *
2435 * The IRQ handler has detected that the RX FIFO has some data in it
2436 * that requires processing, so find out what is in there and do the
2437 * appropriate read.
2438 *
2439 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2440 * chunks, so if you have x packets received on an endpoint you'll get x
2441 * FIFO events delivered, each with a packet's worth of data in it.
2442 *
2443 * When using DMA, we should not be processing events from the RXFIFO
2444 * as the actual data should be sent to the memory directly and we turn
2445 * on the completion interrupts to get notifications of transfer completion.
2446 */
2447static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2448{
2449	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2450	u32 epnum, status, size;
2451
2452	WARN_ON(using_dma(hsotg));
2453
2454	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2455	status = grxstsr & GRXSTS_PKTSTS_MASK;
2456
2457	size = grxstsr & GRXSTS_BYTECNT_MASK;
2458	size >>= GRXSTS_BYTECNT_SHIFT;
2459
2460	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2461		__func__, grxstsr, size, epnum);
2462
2463	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2464	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2465		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2466		break;
2467
2468	case GRXSTS_PKTSTS_OUTDONE:
2469		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2470			dwc2_hsotg_read_frameno(hsotg));
2471
2472		if (!using_dma(hsotg))
2473			dwc2_hsotg_handle_outdone(hsotg, epnum);
2474		break;
2475
2476	case GRXSTS_PKTSTS_SETUPDONE:
2477		dev_dbg(hsotg->dev,
2478			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2479			dwc2_hsotg_read_frameno(hsotg),
2480			dwc2_readl(hsotg, DOEPCTL(0)));
2481		/*
2482		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2483		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2484		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2485		 */
2486		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2487			dwc2_hsotg_handle_outdone(hsotg, epnum);
2488		break;
2489
2490	case GRXSTS_PKTSTS_OUTRX:
2491		dwc2_hsotg_rx_data(hsotg, epnum, size);
2492		break;
2493
2494	case GRXSTS_PKTSTS_SETUPRX:
2495		dev_dbg(hsotg->dev,
2496			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2497			dwc2_hsotg_read_frameno(hsotg),
2498			dwc2_readl(hsotg, DOEPCTL(0)));
2499
2500		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2501
2502		dwc2_hsotg_rx_data(hsotg, epnum, size);
2503		break;
2504
2505	default:
2506		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2507			 __func__, grxstsr);
2508
2509		dwc2_hsotg_dump(hsotg);
2510		break;
2511	}
2512}
2513
2514/**
2515 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2516 * @mps: The maximum packet size in bytes.
2517 */
2518static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2519{
2520	switch (mps) {
2521	case 64:
2522		return D0EPCTL_MPS_64;
2523	case 32:
2524		return D0EPCTL_MPS_32;
2525	case 16:
2526		return D0EPCTL_MPS_16;
2527	case 8:
2528		return D0EPCTL_MPS_8;
2529	}
2530
2531	/* bad max packet size, warn and return invalid result */
2532	WARN_ON(1);
2533	return (u32)-1;
2534}
2535
2536/**
2537 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2538 * @hsotg: The driver state.
2539 * @ep: The index number of the endpoint
2540 * @mps: The maximum packet size in bytes
2541 * @mc: The multicount value
2542 * @dir_in: True if direction is in.
2543 *
2544 * Configure the maximum packet size for the given endpoint, updating
2545 * the hardware control registers to reflect this.
2546 */
2547static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2548					unsigned int ep, unsigned int mps,
2549					unsigned int mc, unsigned int dir_in)
2550{
2551	struct dwc2_hsotg_ep *hs_ep;
 
2552	u32 reg;
2553
2554	hs_ep = index_to_ep(hsotg, ep, dir_in);
2555	if (!hs_ep)
2556		return;
2557
2558	if (ep == 0) {
2559		u32 mps_bytes = mps;
2560
2561		/* EP0 is a special case */
2562		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2563		if (mps > 3)
2564			goto bad_mps;
2565		hs_ep->ep.maxpacket = mps_bytes;
2566		hs_ep->mc = 1;
2567	} else {
2568		if (mps > 1024)
2569			goto bad_mps;
2570		hs_ep->mc = mc;
2571		if (mc > 3)
2572			goto bad_mps;
2573		hs_ep->ep.maxpacket = mps;
2574	}
2575
2576	if (dir_in) {
2577		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2578		reg &= ~DXEPCTL_MPS_MASK;
2579		reg |= mps;
2580		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2581	} else {
2582		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2583		reg &= ~DXEPCTL_MPS_MASK;
2584		reg |= mps;
2585		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2586	}
2587
2588	return;
2589
2590bad_mps:
2591	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2592}
2593
2594/**
2595 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2596 * @hsotg: The driver state
2597 * @idx: The index for the endpoint (0..15)
2598 */
2599static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2600{
2601	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2602		    GRSTCTL);
 
 
 
2603
2604	/* wait until the fifo is flushed */
2605	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2606		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2607			 __func__);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2608}
2609
2610/**
2611 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2612 * @hsotg: The driver state
2613 * @hs_ep: The driver endpoint to check.
2614 *
2615 * Check to see if there is a request that has data to send, and if so
2616 * make an attempt to write data into the FIFO.
2617 */
2618static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2619			    struct dwc2_hsotg_ep *hs_ep)
2620{
2621	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2622
2623	if (!hs_ep->dir_in || !hs_req) {
2624		/**
2625		 * if request is not enqueued, we disable interrupts
2626		 * for endpoints, excepting ep0
2627		 */
2628		if (hs_ep->index != 0)
2629			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2630					      hs_ep->dir_in, 0);
2631		return 0;
2632	}
2633
2634	if (hs_req->req.actual < hs_req->req.length) {
2635		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2636			hs_ep->index);
2637		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2638	}
2639
2640	return 0;
2641}
2642
2643/**
2644 * dwc2_hsotg_complete_in - complete IN transfer
2645 * @hsotg: The device state.
2646 * @hs_ep: The endpoint that has just completed.
2647 *
2648 * An IN transfer has been completed, update the transfer's state and then
2649 * call the relevant completion routines.
2650 */
2651static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2652				   struct dwc2_hsotg_ep *hs_ep)
2653{
2654	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2655	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2656	int size_left, size_done;
2657
2658	if (!hs_req) {
2659		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2660		return;
2661	}
2662
2663	/* Finish ZLP handling for IN EP0 transactions */
2664	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2665		dev_dbg(hsotg->dev, "zlp packet sent\n");
2666
2667		/*
2668		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2669		 * changed to IN. Change back to complete OUT transfer request
2670		 */
2671		hs_ep->dir_in = 0;
2672
2673		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2674		if (hsotg->test_mode) {
2675			int ret;
2676
2677			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2678			if (ret < 0) {
2679				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2680					hsotg->test_mode);
2681				dwc2_hsotg_stall_ep0(hsotg);
2682				return;
2683			}
2684		}
2685		dwc2_hsotg_enqueue_setup(hsotg);
2686		return;
2687	}
2688
2689	/*
2690	 * Calculate the size of the transfer by checking how much is left
2691	 * in the endpoint size register and then working it out from
2692	 * the amount we loaded for the transfer.
2693	 *
2694	 * We do this even for DMA, as the transfer may have incremented
2695	 * past the end of the buffer (DMA transfers are always 32bit
2696	 * aligned).
2697	 */
2698	if (using_desc_dma(hsotg)) {
2699		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2700		if (size_left < 0)
2701			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2702				size_left);
2703	} else {
2704		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2705	}
2706
2707	size_done = hs_ep->size_loaded - size_left;
2708	size_done += hs_ep->last_load;
2709
2710	if (hs_req->req.actual != size_done)
2711		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2712			__func__, hs_req->req.actual, size_done);
2713
2714	hs_req->req.actual = size_done;
2715	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2716		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2717
2718	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2719		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2720		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2721		return;
2722	}
2723
2724	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2725	if (hs_ep->send_zlp) {
2726		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2727		hs_ep->send_zlp = 0;
2728		/* transfer will be completed on next complete interrupt */
2729		return;
2730	}
2731
2732	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2733		/* Move to STATUS OUT */
2734		dwc2_hsotg_ep0_zlp(hsotg, false);
2735		return;
2736	}
2737
2738	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2739}
2740
2741/**
2742 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2743 * @hsotg: The device state.
2744 * @idx: Index of ep.
2745 * @dir_in: Endpoint direction 1-in 0-out.
2746 *
2747 * Reads for endpoint with given index and direction, by masking
2748 * epint_reg with coresponding mask.
2749 */
2750static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2751					  unsigned int idx, int dir_in)
2752{
2753	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2754	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2755	u32 ints;
2756	u32 mask;
2757	u32 diepempmsk;
2758
2759	mask = dwc2_readl(hsotg, epmsk_reg);
2760	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2761	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2762	mask |= DXEPINT_SETUP_RCVD;
2763
2764	ints = dwc2_readl(hsotg, epint_reg);
2765	ints &= mask;
2766	return ints;
2767}
2768
2769/**
2770 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2771 * @hs_ep: The endpoint on which interrupt is asserted.
2772 *
2773 * This interrupt indicates that the endpoint has been disabled per the
2774 * application's request.
2775 *
2776 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2777 * in case of ISOC completes current request.
2778 *
2779 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2780 * request starts it.
2781 */
2782static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2783{
2784	struct dwc2_hsotg *hsotg = hs_ep->parent;
2785	struct dwc2_hsotg_req *hs_req;
2786	unsigned char idx = hs_ep->index;
2787	int dir_in = hs_ep->dir_in;
2788	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2789	int dctl = dwc2_readl(hsotg, DCTL);
2790
2791	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2792
2793	if (dir_in) {
2794		int epctl = dwc2_readl(hsotg, epctl_reg);
2795
2796		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2797
2798		if (hs_ep->isochronous) {
2799			dwc2_hsotg_complete_in(hsotg, hs_ep);
2800			return;
2801		}
2802
2803		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2804			int dctl = dwc2_readl(hsotg, DCTL);
2805
2806			dctl |= DCTL_CGNPINNAK;
2807			dwc2_writel(hsotg, dctl, DCTL);
2808		}
2809		return;
2810	}
2811
2812	if (dctl & DCTL_GOUTNAKSTS) {
2813		dctl |= DCTL_CGOUTNAK;
2814		dwc2_writel(hsotg, dctl, DCTL);
2815	}
2816
2817	if (!hs_ep->isochronous)
2818		return;
2819
2820	if (list_empty(&hs_ep->queue)) {
2821		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2822			__func__, hs_ep);
2823		return;
2824	}
2825
2826	do {
2827		hs_req = get_ep_head(hs_ep);
2828		if (hs_req)
2829			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2830						    -ENODATA);
2831		dwc2_gadget_incr_frame_num(hs_ep);
2832		/* Update current frame number value. */
2833		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2834	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2835
2836	dwc2_gadget_start_next_request(hs_ep);
2837}
2838
2839/**
2840 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2841 * @ep: The endpoint on which interrupt is asserted.
2842 *
2843 * This is starting point for ISOC-OUT transfer, synchronization done with
2844 * first out token received from host while corresponding EP is disabled.
2845 *
2846 * Device does not know initial frame in which out token will come. For this
2847 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2848 * getting this interrupt SW starts calculation for next transfer frame.
2849 */
2850static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2851{
2852	struct dwc2_hsotg *hsotg = ep->parent;
2853	int dir_in = ep->dir_in;
2854	u32 doepmsk;
 
2855
2856	if (dir_in || !ep->isochronous)
2857		return;
2858
 
 
 
 
 
 
 
 
2859	if (using_desc_dma(hsotg)) {
2860		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2861			/* Start first ISO Out */
2862			ep->target_frame = hsotg->frame_number;
2863			dwc2_gadget_start_isoc_ddma(ep);
2864		}
2865		return;
2866	}
2867
2868	if (ep->interval > 1 &&
2869	    ep->target_frame == TARGET_FRAME_INITIAL) {
 
2870		u32 ctrl;
2871
2872		ep->target_frame = hsotg->frame_number;
 
2873		dwc2_gadget_incr_frame_num(ep);
2874
2875		ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2876		if (ep->target_frame & 0x1)
2877			ctrl |= DXEPCTL_SETODDFR;
2878		else
2879			ctrl |= DXEPCTL_SETEVENFR;
2880
2881		dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2882	}
2883
2884	dwc2_gadget_start_next_request(ep);
2885	doepmsk = dwc2_readl(hsotg, DOEPMSK);
2886	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2887	dwc2_writel(hsotg, doepmsk, DOEPMSK);
2888}
2889
2890/**
2891 * dwc2_gadget_handle_nak - handle NAK interrupt
2892 * @hs_ep: The endpoint on which interrupt is asserted.
2893 *
2894 * This is starting point for ISOC-IN transfer, synchronization done with
2895 * first IN token received from host while corresponding EP is disabled.
2896 *
2897 * Device does not know when first one token will arrive from host. On first
2898 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2899 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2900 * sent in response to that as there was no data in FIFO. SW is basing on this
2901 * interrupt to obtain frame in which token has come and then based on the
2902 * interval calculates next frame for transfer.
2903 */
2904static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2905{
2906	struct dwc2_hsotg *hsotg = hs_ep->parent;
2907	int dir_in = hs_ep->dir_in;
2908
2909	if (!dir_in || !hs_ep->isochronous)
2910		return;
2911
2912	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
 
2913
2914		if (using_desc_dma(hsotg)) {
2915			hs_ep->target_frame = hsotg->frame_number;
2916			dwc2_gadget_incr_frame_num(hs_ep);
2917
2918			/* In service interval mode target_frame must
2919			 * be set to last (u)frame of the service interval.
2920			 */
2921			if (hsotg->params.service_interval) {
2922				/* Set target_frame to the first (u)frame of
2923				 * the service interval
2924				 */
2925				hs_ep->target_frame &= ~hs_ep->interval + 1;
2926
2927				/* Set target_frame to the last (u)frame of
2928				 * the service interval
2929				 */
2930				dwc2_gadget_incr_frame_num(hs_ep);
2931				dwc2_gadget_dec_frame_num_by_one(hs_ep);
2932			}
2933
2934			dwc2_gadget_start_isoc_ddma(hs_ep);
2935			return;
2936		}
2937
2938		hs_ep->target_frame = hsotg->frame_number;
2939		if (hs_ep->interval > 1) {
2940			u32 ctrl = dwc2_readl(hsotg,
2941					      DIEPCTL(hs_ep->index));
2942			if (hs_ep->target_frame & 0x1)
2943				ctrl |= DXEPCTL_SETODDFR;
2944			else
2945				ctrl |= DXEPCTL_SETEVENFR;
2946
2947			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2948		}
2949
2950		dwc2_hsotg_complete_request(hsotg, hs_ep,
2951					    get_ep_head(hs_ep), 0);
2952	}
2953
2954	if (!using_desc_dma(hsotg))
2955		dwc2_gadget_incr_frame_num(hs_ep);
2956}
2957
2958/**
2959 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2960 * @hsotg: The driver state
2961 * @idx: The index for the endpoint (0..15)
2962 * @dir_in: Set if this is an IN endpoint
2963 *
2964 * Process and clear any interrupt pending for an individual endpoint
2965 */
2966static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2967			     int dir_in)
2968{
2969	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2970	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2971	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2972	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2973	u32 ints;
2974	u32 ctrl;
2975
2976	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2977	ctrl = dwc2_readl(hsotg, epctl_reg);
2978
2979	/* Clear endpoint interrupts */
2980	dwc2_writel(hsotg, ints, epint_reg);
2981
2982	if (!hs_ep) {
2983		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2984			__func__, idx, dir_in ? "in" : "out");
2985		return;
2986	}
2987
2988	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2989		__func__, idx, dir_in ? "in" : "out", ints);
2990
2991	/* Don't process XferCompl interrupt if it is a setup packet */
2992	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2993		ints &= ~DXEPINT_XFERCOMPL;
2994
2995	/*
2996	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2997	 * stage and xfercomplete was generated without SETUP phase done
2998	 * interrupt. SW should parse received setup packet only after host's
2999	 * exit from setup phase of control transfer.
3000	 */
3001	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3002	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3003		ints &= ~DXEPINT_XFERCOMPL;
3004
3005	if (ints & DXEPINT_XFERCOMPL) {
3006		dev_dbg(hsotg->dev,
3007			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3008			__func__, dwc2_readl(hsotg, epctl_reg),
3009			dwc2_readl(hsotg, epsiz_reg));
3010
3011		/* In DDMA handle isochronous requests separately */
3012		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3013			/* XferCompl set along with BNA */
3014			if (!(ints & DXEPINT_BNAINTR))
3015				dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3016		} else if (dir_in) {
3017			/*
3018			 * We get OutDone from the FIFO, so we only
3019			 * need to look at completing IN requests here
3020			 * if operating slave mode
3021			 */
3022			if (hs_ep->isochronous && hs_ep->interval > 1)
3023				dwc2_gadget_incr_frame_num(hs_ep);
3024
3025			dwc2_hsotg_complete_in(hsotg, hs_ep);
3026			if (ints & DXEPINT_NAKINTRPT)
3027				ints &= ~DXEPINT_NAKINTRPT;
3028
3029			if (idx == 0 && !hs_ep->req)
3030				dwc2_hsotg_enqueue_setup(hsotg);
3031		} else if (using_dma(hsotg)) {
3032			/*
3033			 * We're using DMA, we need to fire an OutDone here
3034			 * as we ignore the RXFIFO.
3035			 */
3036			if (hs_ep->isochronous && hs_ep->interval > 1)
3037				dwc2_gadget_incr_frame_num(hs_ep);
3038
3039			dwc2_hsotg_handle_outdone(hsotg, idx);
3040		}
3041	}
3042
3043	if (ints & DXEPINT_EPDISBLD)
3044		dwc2_gadget_handle_ep_disabled(hs_ep);
3045
3046	if (ints & DXEPINT_OUTTKNEPDIS)
3047		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3048
3049	if (ints & DXEPINT_NAKINTRPT)
3050		dwc2_gadget_handle_nak(hs_ep);
3051
3052	if (ints & DXEPINT_AHBERR)
3053		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3054
3055	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3056		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3057
3058		if (using_dma(hsotg) && idx == 0) {
3059			/*
3060			 * this is the notification we've received a
3061			 * setup packet. In non-DMA mode we'd get this
3062			 * from the RXFIFO, instead we need to process
3063			 * the setup here.
3064			 */
3065
3066			if (dir_in)
3067				WARN_ON_ONCE(1);
3068			else
3069				dwc2_hsotg_handle_outdone(hsotg, 0);
3070		}
3071	}
3072
3073	if (ints & DXEPINT_STSPHSERCVD) {
3074		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3075
3076		/* Safety check EP0 state when STSPHSERCVD asserted */
3077		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3078			/* Move to STATUS IN for DDMA */
3079			if (using_desc_dma(hsotg)) {
3080				if (!hsotg->delayed_status)
3081					dwc2_hsotg_ep0_zlp(hsotg, true);
3082				else
3083				/* In case of 3 stage Control Write with delayed
3084				 * status, when Status IN transfer started
3085				 * before STSPHSERCVD asserted, NAKSTS bit not
3086				 * cleared by CNAK in dwc2_hsotg_start_req()
3087				 * function. Clear now NAKSTS to allow complete
3088				 * transfer.
3089				 */
3090					dwc2_set_bit(hsotg, DIEPCTL(0),
3091						     DXEPCTL_CNAK);
3092			}
3093		}
3094
3095	}
3096
3097	if (ints & DXEPINT_BACK2BACKSETUP)
3098		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3099
3100	if (ints & DXEPINT_BNAINTR) {
3101		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
 
 
 
 
 
 
 
3102		if (hs_ep->isochronous)
3103			dwc2_gadget_handle_isoc_bna(hs_ep);
3104	}
3105
3106	if (dir_in && !hs_ep->isochronous) {
3107		/* not sure if this is important, but we'll clear it anyway */
3108		if (ints & DXEPINT_INTKNTXFEMP) {
3109			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3110				__func__, idx);
3111		}
3112
3113		/* this probably means something bad is happening */
3114		if (ints & DXEPINT_INTKNEPMIS) {
3115			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3116				 __func__, idx);
3117		}
3118
3119		/* FIFO has space or is empty (see GAHBCFG) */
3120		if (hsotg->dedicated_fifos &&
3121		    ints & DXEPINT_TXFEMP) {
3122			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3123				__func__, idx);
3124			if (!using_dma(hsotg))
3125				dwc2_hsotg_trytx(hsotg, hs_ep);
3126		}
3127	}
3128}
3129
3130/**
3131 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3132 * @hsotg: The device state.
3133 *
3134 * Handle updating the device settings after the enumeration phase has
3135 * been completed.
3136 */
3137static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3138{
3139	u32 dsts = dwc2_readl(hsotg, DSTS);
3140	int ep0_mps = 0, ep_mps = 8;
3141
3142	/*
3143	 * This should signal the finish of the enumeration phase
3144	 * of the USB handshaking, so we should now know what rate
3145	 * we connected at.
3146	 */
3147
3148	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3149
3150	/*
3151	 * note, since we're limited by the size of transfer on EP0, and
3152	 * it seems IN transfers must be a even number of packets we do
3153	 * not advertise a 64byte MPS on EP0.
3154	 */
3155
3156	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3157	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3158	case DSTS_ENUMSPD_FS:
3159	case DSTS_ENUMSPD_FS48:
3160		hsotg->gadget.speed = USB_SPEED_FULL;
3161		ep0_mps = EP0_MPS_LIMIT;
3162		ep_mps = 1023;
3163		break;
3164
3165	case DSTS_ENUMSPD_HS:
3166		hsotg->gadget.speed = USB_SPEED_HIGH;
3167		ep0_mps = EP0_MPS_LIMIT;
3168		ep_mps = 1024;
3169		break;
3170
3171	case DSTS_ENUMSPD_LS:
3172		hsotg->gadget.speed = USB_SPEED_LOW;
3173		ep0_mps = 8;
3174		ep_mps = 8;
3175		/*
3176		 * note, we don't actually support LS in this driver at the
3177		 * moment, and the documentation seems to imply that it isn't
3178		 * supported by the PHYs on some of the devices.
3179		 */
3180		break;
3181	}
3182	dev_info(hsotg->dev, "new device is %s\n",
3183		 usb_speed_string(hsotg->gadget.speed));
3184
3185	/*
3186	 * we should now know the maximum packet size for an
3187	 * endpoint, so set the endpoints to a default value.
3188	 */
3189
3190	if (ep0_mps) {
3191		int i;
3192		/* Initialize ep0 for both in and out directions */
3193		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3194		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3195		for (i = 1; i < hsotg->num_of_eps; i++) {
3196			if (hsotg->eps_in[i])
3197				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3198							    0, 1);
3199			if (hsotg->eps_out[i])
3200				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3201							    0, 0);
3202		}
3203	}
3204
3205	/* ensure after enumeration our EP0 is active */
3206
3207	dwc2_hsotg_enqueue_setup(hsotg);
3208
3209	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3210		dwc2_readl(hsotg, DIEPCTL0),
3211		dwc2_readl(hsotg, DOEPCTL0));
3212}
3213
3214/**
3215 * kill_all_requests - remove all requests from the endpoint's queue
3216 * @hsotg: The device state.
3217 * @ep: The endpoint the requests may be on.
3218 * @result: The result code to use.
3219 *
3220 * Go through the requests on the given endpoint and mark them
3221 * completed with the given result code.
3222 */
3223static void kill_all_requests(struct dwc2_hsotg *hsotg,
3224			      struct dwc2_hsotg_ep *ep,
3225			      int result)
3226{
3227	unsigned int size;
 
3228
3229	ep->req = NULL;
3230
3231	while (!list_empty(&ep->queue)) {
3232		struct dwc2_hsotg_req *req = get_ep_head(ep);
3233
3234		dwc2_hsotg_complete_request(hsotg, ep, req, result);
3235	}
3236
3237	if (!hsotg->dedicated_fifos)
3238		return;
3239	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3240	if (size < ep->fifo_size)
3241		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3242}
3243
3244/**
3245 * dwc2_hsotg_disconnect - disconnect service
3246 * @hsotg: The device state.
3247 *
3248 * The device has been disconnected. Remove all current
3249 * transactions and signal the gadget driver that this
3250 * has happened.
3251 */
3252void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3253{
3254	unsigned int ep;
3255
3256	if (!hsotg->connected)
3257		return;
3258
3259	hsotg->connected = 0;
3260	hsotg->test_mode = 0;
3261
3262	/* all endpoints should be shutdown */
3263	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3264		if (hsotg->eps_in[ep])
3265			kill_all_requests(hsotg, hsotg->eps_in[ep],
3266					  -ESHUTDOWN);
3267		if (hsotg->eps_out[ep])
3268			kill_all_requests(hsotg, hsotg->eps_out[ep],
3269					  -ESHUTDOWN);
3270	}
3271
3272	call_gadget(hsotg, disconnect);
3273	hsotg->lx_state = DWC2_L3;
3274
3275	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3276}
3277
3278/**
3279 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3280 * @hsotg: The device state:
3281 * @periodic: True if this is a periodic FIFO interrupt
3282 */
3283static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3284{
3285	struct dwc2_hsotg_ep *ep;
3286	int epno, ret;
3287
3288	/* look through for any more data to transmit */
3289	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3290		ep = index_to_ep(hsotg, epno, 1);
3291
3292		if (!ep)
3293			continue;
3294
3295		if (!ep->dir_in)
3296			continue;
3297
3298		if ((periodic && !ep->periodic) ||
3299		    (!periodic && ep->periodic))
3300			continue;
3301
3302		ret = dwc2_hsotg_trytx(hsotg, ep);
3303		if (ret < 0)
3304			break;
3305	}
3306}
3307
3308/* IRQ flags which will trigger a retry around the IRQ loop */
3309#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3310			GINTSTS_PTXFEMP |  \
3311			GINTSTS_RXFLVL)
3312
3313static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3314/**
3315 * dwc2_hsotg_core_init - issue softreset to the core
3316 * @hsotg: The device state
3317 * @is_usb_reset: Usb resetting flag
3318 *
3319 * Issue a soft reset to the core, and await the core finishing it.
3320 */
3321void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3322				       bool is_usb_reset)
3323{
3324	u32 intmsk;
3325	u32 val;
3326	u32 usbcfg;
3327	u32 dcfg = 0;
3328	int ep;
3329
3330	/* Kill any ep0 requests as controller will be reinitialized */
3331	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3332
3333	if (!is_usb_reset) {
3334		if (dwc2_core_reset(hsotg, true))
3335			return;
3336	} else {
3337		/* all endpoints should be shutdown */
3338		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3339			if (hsotg->eps_in[ep])
3340				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3341			if (hsotg->eps_out[ep])
3342				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3343		}
3344	}
3345
3346	/*
3347	 * we must now enable ep0 ready for host detection and then
3348	 * set configuration.
3349	 */
3350
3351	/* keep other bits untouched (so e.g. forced modes are not lost) */
3352	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3353	usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3354	usbcfg |= GUSBCFG_TOUTCAL(7);
3355
3356	/* remove the HNP/SRP and set the PHY */
3357	usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3358        dwc2_writel(hsotg, usbcfg, GUSBCFG);
3359
3360	dwc2_phy_init(hsotg, true);
 
 
 
 
 
 
 
3361
3362	dwc2_hsotg_init_fifo(hsotg);
3363
3364	if (!is_usb_reset)
3365		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3366
3367	dcfg |= DCFG_EPMISCNT(1);
3368
3369	switch (hsotg->params.speed) {
3370	case DWC2_SPEED_PARAM_LOW:
3371		dcfg |= DCFG_DEVSPD_LS;
3372		break;
3373	case DWC2_SPEED_PARAM_FULL:
3374		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3375			dcfg |= DCFG_DEVSPD_FS48;
3376		else
3377			dcfg |= DCFG_DEVSPD_FS;
3378		break;
3379	default:
3380		dcfg |= DCFG_DEVSPD_HS;
3381	}
3382
3383	if (hsotg->params.ipg_isoc_en)
3384		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3385
3386	dwc2_writel(hsotg, dcfg,  DCFG);
3387
3388	/* Clear any pending OTG interrupts */
3389	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3390
3391	/* Clear any pending interrupts */
3392	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3393	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3394		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3395		GINTSTS_USBRST | GINTSTS_RESETDET |
3396		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3397		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3398		GINTSTS_LPMTRANRCVD;
3399
3400	if (!using_desc_dma(hsotg))
3401		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3402
3403	if (!hsotg->params.external_id_pin_ctl)
3404		intmsk |= GINTSTS_CONIDSTSCHNG;
3405
3406	dwc2_writel(hsotg, intmsk, GINTMSK);
3407
3408	if (using_dma(hsotg)) {
3409		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3410			    hsotg->params.ahbcfg,
3411			    GAHBCFG);
3412
3413		/* Set DDMA mode support in the core if needed */
3414		if (using_desc_dma(hsotg))
3415			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3416
3417	} else {
3418		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3419						(GAHBCFG_NP_TXF_EMP_LVL |
3420						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3421			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3422	}
3423
3424	/*
3425	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3426	 * when we have no data to transfer. Otherwise we get being flooded by
3427	 * interrupts.
3428	 */
3429
3430	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3431		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3432		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3433		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3434		DIEPMSK);
3435
3436	/*
3437	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3438	 * DMA mode we may need this and StsPhseRcvd.
3439	 */
3440	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3441		DOEPMSK_STSPHSERCVDMSK) : 0) |
3442		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3443		DOEPMSK_SETUPMSK,
3444		DOEPMSK);
3445
3446	/* Enable BNA interrupt for DDMA */
3447	if (using_desc_dma(hsotg)) {
3448		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3449		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3450	}
3451
3452	/* Enable Service Interval mode if supported */
3453	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3454		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3455
3456	dwc2_writel(hsotg, 0, DAINTMSK);
3457
3458	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3459		dwc2_readl(hsotg, DIEPCTL0),
3460		dwc2_readl(hsotg, DOEPCTL0));
3461
3462	/* enable in and out endpoint interrupts */
3463	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3464
3465	/*
3466	 * Enable the RXFIFO when in slave mode, as this is how we collect
3467	 * the data. In DMA mode, we get events from the FIFO but also
3468	 * things we cannot process, so do not use it.
3469	 */
3470	if (!using_dma(hsotg))
3471		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3472
3473	/* Enable interrupts for EP0 in and out */
3474	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3475	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3476
3477	if (!is_usb_reset) {
3478		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3479		udelay(10);  /* see openiboot */
3480		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3481	}
3482
3483	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3484
3485	/*
3486	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3487	 * writing to the EPCTL register..
3488	 */
3489
3490	/* set to read 1 8byte packet */
3491	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3492	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3493
3494	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3495	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3496	       DXEPCTL_USBACTEP,
3497	       DOEPCTL0);
3498
3499	/* enable, but don't activate EP0in */
3500	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3501	       DXEPCTL_USBACTEP, DIEPCTL0);
 
 
 
 
 
 
3502
3503	/* clear global NAKs */
3504	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3505	if (!is_usb_reset)
3506		val |= DCTL_SFTDISCON;
3507	dwc2_set_bit(hsotg, DCTL, val);
3508
3509	/* configure the core to support LPM */
3510	dwc2_gadget_init_lpm(hsotg);
3511
3512	/* program GREFCLK register if needed */
3513	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3514		dwc2_gadget_program_ref_clk(hsotg);
3515
3516	/* must be at-least 3ms to allow bus to see disconnect */
3517	mdelay(3);
3518
3519	hsotg->lx_state = DWC2_L0;
3520
3521	dwc2_hsotg_enqueue_setup(hsotg);
3522
3523	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3524		dwc2_readl(hsotg, DIEPCTL0),
3525		dwc2_readl(hsotg, DOEPCTL0));
3526}
3527
3528static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3529{
3530	/* set the soft-disconnect bit */
3531	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3532}
3533
3534void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3535{
3536	/* remove the soft-disconnect and let's go */
3537	dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3538}
3539
3540/**
3541 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3542 * @hsotg: The device state:
3543 *
3544 * This interrupt indicates one of the following conditions occurred while
3545 * transmitting an ISOC transaction.
3546 * - Corrupted IN Token for ISOC EP.
3547 * - Packet not complete in FIFO.
3548 *
3549 * The following actions will be taken:
3550 * - Determine the EP
3551 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3552 */
3553static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3554{
3555	struct dwc2_hsotg_ep *hs_ep;
3556	u32 epctrl;
3557	u32 daintmsk;
3558	u32 idx;
3559
3560	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3561
3562	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3563
3564	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3565		hs_ep = hsotg->eps_in[idx];
3566		/* Proceed only unmasked ISOC EPs */
3567		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3568			continue;
3569
3570		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3571		if ((epctrl & DXEPCTL_EPENA) &&
3572		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3573			epctrl |= DXEPCTL_SNAK;
3574			epctrl |= DXEPCTL_EPDIS;
3575			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3576		}
3577	}
3578
3579	/* Clear interrupt */
3580	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3581}
3582
3583/**
3584 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3585 * @hsotg: The device state:
3586 *
3587 * This interrupt indicates one of the following conditions occurred while
3588 * transmitting an ISOC transaction.
3589 * - Corrupted OUT Token for ISOC EP.
3590 * - Packet not complete in FIFO.
3591 *
3592 * The following actions will be taken:
3593 * - Determine the EP
3594 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3595 */
3596static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3597{
3598	u32 gintsts;
3599	u32 gintmsk;
3600	u32 daintmsk;
3601	u32 epctrl;
3602	struct dwc2_hsotg_ep *hs_ep;
3603	int idx;
3604
3605	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3606
3607	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3608	daintmsk >>= DAINT_OUTEP_SHIFT;
3609
3610	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3611		hs_ep = hsotg->eps_out[idx];
3612		/* Proceed only unmasked ISOC EPs */
3613		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3614			continue;
3615
3616		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3617		if ((epctrl & DXEPCTL_EPENA) &&
3618		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3619			/* Unmask GOUTNAKEFF interrupt */
3620			gintmsk = dwc2_readl(hsotg, GINTMSK);
3621			gintmsk |= GINTSTS_GOUTNAKEFF;
3622			dwc2_writel(hsotg, gintmsk, GINTMSK);
3623
3624			gintsts = dwc2_readl(hsotg, GINTSTS);
3625			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3626				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3627				break;
3628			}
3629		}
3630	}
3631
3632	/* Clear interrupt */
3633	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3634}
3635
3636/**
3637 * dwc2_hsotg_irq - handle device interrupt
3638 * @irq: The IRQ number triggered
3639 * @pw: The pw value when registered the handler.
3640 */
3641static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3642{
3643	struct dwc2_hsotg *hsotg = pw;
3644	int retry_count = 8;
3645	u32 gintsts;
3646	u32 gintmsk;
3647
3648	if (!dwc2_is_device_mode(hsotg))
3649		return IRQ_NONE;
3650
3651	spin_lock(&hsotg->lock);
3652irq_retry:
3653	gintsts = dwc2_readl(hsotg, GINTSTS);
3654	gintmsk = dwc2_readl(hsotg, GINTMSK);
3655
3656	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3657		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3658
3659	gintsts &= gintmsk;
3660
3661	if (gintsts & GINTSTS_RESETDET) {
3662		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3663
3664		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3665
3666		/* This event must be used only if controller is suspended */
3667		if (hsotg->lx_state == DWC2_L2) {
3668			dwc2_exit_partial_power_down(hsotg, true);
3669			hsotg->lx_state = DWC2_L0;
3670		}
3671	}
3672
3673	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3674		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
 
3675		u32 connected = hsotg->connected;
3676
3677		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3678		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3679			dwc2_readl(hsotg, GNPTXSTS));
3680
3681		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3682
3683		/* Report disconnection if it is not already done. */
3684		dwc2_hsotg_disconnect(hsotg);
3685
3686		/* Reset device address to zero */
3687		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3688
3689		if (usb_status & GOTGCTL_BSESVLD && connected)
3690			dwc2_hsotg_core_init_disconnected(hsotg, true);
3691	}
3692
3693	if (gintsts & GINTSTS_ENUMDONE) {
3694		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3695
3696		dwc2_hsotg_irq_enumdone(hsotg);
3697	}
3698
3699	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3700		u32 daint = dwc2_readl(hsotg, DAINT);
3701		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3702		u32 daint_out, daint_in;
3703		int ep;
3704
3705		daint &= daintmsk;
3706		daint_out = daint >> DAINT_OUTEP_SHIFT;
3707		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3708
3709		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3710
3711		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3712						ep++, daint_out >>= 1) {
3713			if (daint_out & 1)
3714				dwc2_hsotg_epint(hsotg, ep, 0);
3715		}
3716
3717		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3718						ep++, daint_in >>= 1) {
3719			if (daint_in & 1)
3720				dwc2_hsotg_epint(hsotg, ep, 1);
3721		}
3722	}
3723
3724	/* check both FIFOs */
3725
3726	if (gintsts & GINTSTS_NPTXFEMP) {
3727		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3728
3729		/*
3730		 * Disable the interrupt to stop it happening again
3731		 * unless one of these endpoint routines decides that
3732		 * it needs re-enabling
3733		 */
3734
3735		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3736		dwc2_hsotg_irq_fifoempty(hsotg, false);
3737	}
3738
3739	if (gintsts & GINTSTS_PTXFEMP) {
3740		dev_dbg(hsotg->dev, "PTxFEmp\n");
3741
3742		/* See note in GINTSTS_NPTxFEmp */
3743
3744		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3745		dwc2_hsotg_irq_fifoempty(hsotg, true);
3746	}
3747
3748	if (gintsts & GINTSTS_RXFLVL) {
3749		/*
3750		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3751		 * we need to retry dwc2_hsotg_handle_rx if this is still
3752		 * set.
3753		 */
3754
3755		dwc2_hsotg_handle_rx(hsotg);
3756	}
3757
3758	if (gintsts & GINTSTS_ERLYSUSP) {
3759		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3760		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3761	}
3762
3763	/*
3764	 * these next two seem to crop-up occasionally causing the core
3765	 * to shutdown the USB transfer, so try clearing them and logging
3766	 * the occurrence.
3767	 */
3768
3769	if (gintsts & GINTSTS_GOUTNAKEFF) {
3770		u8 idx;
3771		u32 epctrl;
3772		u32 gintmsk;
3773		u32 daintmsk;
3774		struct dwc2_hsotg_ep *hs_ep;
3775
3776		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3777		daintmsk >>= DAINT_OUTEP_SHIFT;
3778		/* Mask this interrupt */
3779		gintmsk = dwc2_readl(hsotg, GINTMSK);
3780		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3781		dwc2_writel(hsotg, gintmsk, GINTMSK);
3782
3783		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3784		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3785			hs_ep = hsotg->eps_out[idx];
3786			/* Proceed only unmasked ISOC EPs */
3787			if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3788				continue;
3789
3790			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3791
3792			if (epctrl & DXEPCTL_EPENA) {
3793				epctrl |= DXEPCTL_SNAK;
3794				epctrl |= DXEPCTL_EPDIS;
3795				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3796			}
3797		}
3798
3799		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3800	}
3801
3802	if (gintsts & GINTSTS_GINNAKEFF) {
3803		dev_info(hsotg->dev, "GINNakEff triggered\n");
3804
3805		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3806
3807		dwc2_hsotg_dump(hsotg);
3808	}
3809
3810	if (gintsts & GINTSTS_INCOMPL_SOIN)
3811		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3812
3813	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3814		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3815
3816	/*
3817	 * if we've had fifo events, we should try and go around the
3818	 * loop again to see if there's any point in returning yet.
3819	 */
3820
3821	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3822		goto irq_retry;
3823
3824	/* Check WKUP_ALERT interrupt*/
3825	if (hsotg->params.service_interval)
3826		dwc2_gadget_wkup_alert_handler(hsotg);
3827
3828	spin_unlock(&hsotg->lock);
3829
3830	return IRQ_HANDLED;
3831}
3832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3833static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3834				   struct dwc2_hsotg_ep *hs_ep)
3835{
3836	u32 epctrl_reg;
3837	u32 epint_reg;
3838
3839	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3840		DOEPCTL(hs_ep->index);
3841	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3842		DOEPINT(hs_ep->index);
3843
3844	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3845		hs_ep->name);
3846
3847	if (hs_ep->dir_in) {
3848		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3849			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3850			/* Wait for Nak effect */
3851			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3852						    DXEPINT_INEPNAKEFF, 100))
3853				dev_warn(hsotg->dev,
3854					 "%s: timeout DIEPINT.NAKEFF\n",
3855					 __func__);
3856		} else {
3857			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3858			/* Wait for Nak effect */
3859			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3860						    GINTSTS_GINNAKEFF, 100))
3861				dev_warn(hsotg->dev,
3862					 "%s: timeout GINTSTS.GINNAKEFF\n",
3863					 __func__);
3864		}
3865	} else {
3866		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3867			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3868
3869		/* Wait for global nak to take effect */
3870		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3871					    GINTSTS_GOUTNAKEFF, 100))
3872			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3873				 __func__);
3874	}
3875
3876	/* Disable ep */
3877	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3878
3879	/* Wait for ep to be disabled */
3880	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3881		dev_warn(hsotg->dev,
3882			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3883
3884	/* Clear EPDISBLD interrupt */
3885	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3886
3887	if (hs_ep->dir_in) {
3888		unsigned short fifo_index;
3889
3890		if (hsotg->dedicated_fifos || hs_ep->periodic)
3891			fifo_index = hs_ep->fifo_index;
3892		else
3893			fifo_index = 0;
3894
3895		/* Flush TX FIFO */
3896		dwc2_flush_tx_fifo(hsotg, fifo_index);
3897
3898		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3899		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3900			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3901
3902	} else {
3903		/* Remove global NAKs */
3904		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3905	}
3906}
3907
3908/**
3909 * dwc2_hsotg_ep_enable - enable the given endpoint
3910 * @ep: The USB endpint to configure
3911 * @desc: The USB endpoint descriptor to configure with.
3912 *
3913 * This is called from the USB gadget code's usb_ep_enable().
3914 */
3915static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3916				const struct usb_endpoint_descriptor *desc)
3917{
3918	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3919	struct dwc2_hsotg *hsotg = hs_ep->parent;
3920	unsigned long flags;
3921	unsigned int index = hs_ep->index;
3922	u32 epctrl_reg;
3923	u32 epctrl;
3924	u32 mps;
3925	u32 mc;
3926	u32 mask;
3927	unsigned int dir_in;
3928	unsigned int i, val, size;
3929	int ret = 0;
3930	unsigned char ep_type;
3931	int desc_num;
3932
3933	dev_dbg(hsotg->dev,
3934		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3935		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3936		desc->wMaxPacketSize, desc->bInterval);
3937
3938	/* not to be called for EP0 */
3939	if (index == 0) {
3940		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3941		return -EINVAL;
3942	}
3943
3944	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3945	if (dir_in != hs_ep->dir_in) {
3946		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3947		return -EINVAL;
3948	}
3949
3950	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
3951	mps = usb_endpoint_maxp(desc);
3952	mc = usb_endpoint_maxp_mult(desc);
3953
3954	/* ISOC IN in DDMA supported bInterval up to 10 */
3955	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3956	    dir_in && desc->bInterval > 10) {
3957		dev_err(hsotg->dev,
3958			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
3959		return -EINVAL;
3960	}
3961
3962	/* High bandwidth ISOC OUT in DDMA not supported */
3963	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3964	    !dir_in && mc > 1) {
3965		dev_err(hsotg->dev,
3966			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
3967		return -EINVAL;
3968	}
3969
3970	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3971
3972	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3973	epctrl = dwc2_readl(hsotg, epctrl_reg);
3974
3975	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3976		__func__, epctrl, epctrl_reg);
3977
3978	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
3979		desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
3980	else
3981		desc_num = MAX_DMA_DESC_NUM_GENERIC;
3982
3983	/* Allocate DMA descriptor chain for non-ctrl endpoints */
3984	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3985		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3986			desc_num * sizeof(struct dwc2_dma_desc),
 
3987			&hs_ep->desc_list_dma, GFP_ATOMIC);
3988		if (!hs_ep->desc_list) {
3989			ret = -ENOMEM;
3990			goto error2;
3991		}
3992	}
3993
3994	spin_lock_irqsave(&hsotg->lock, flags);
3995
3996	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3997	epctrl |= DXEPCTL_MPS(mps);
3998
3999	/*
4000	 * mark the endpoint as active, otherwise the core may ignore
4001	 * transactions entirely for this endpoint
4002	 */
4003	epctrl |= DXEPCTL_USBACTEP;
4004
4005	/* update the endpoint state */
4006	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4007
4008	/* default, set to non-periodic */
4009	hs_ep->isochronous = 0;
4010	hs_ep->periodic = 0;
4011	hs_ep->halted = 0;
4012	hs_ep->interval = desc->bInterval;
4013
4014	switch (ep_type) {
4015	case USB_ENDPOINT_XFER_ISOC:
4016		epctrl |= DXEPCTL_EPTYPE_ISO;
4017		epctrl |= DXEPCTL_SETEVENFR;
4018		hs_ep->isochronous = 1;
4019		hs_ep->interval = 1 << (desc->bInterval - 1);
4020		hs_ep->target_frame = TARGET_FRAME_INITIAL;
 
4021		hs_ep->next_desc = 0;
4022		hs_ep->compl_desc = 0;
4023		if (dir_in) {
4024			hs_ep->periodic = 1;
4025			mask = dwc2_readl(hsotg, DIEPMSK);
4026			mask |= DIEPMSK_NAKMSK;
4027			dwc2_writel(hsotg, mask, DIEPMSK);
4028		} else {
4029			mask = dwc2_readl(hsotg, DOEPMSK);
4030			mask |= DOEPMSK_OUTTKNEPDISMSK;
4031			dwc2_writel(hsotg, mask, DOEPMSK);
4032		}
4033		break;
4034
4035	case USB_ENDPOINT_XFER_BULK:
4036		epctrl |= DXEPCTL_EPTYPE_BULK;
4037		break;
4038
4039	case USB_ENDPOINT_XFER_INT:
4040		if (dir_in)
4041			hs_ep->periodic = 1;
4042
4043		if (hsotg->gadget.speed == USB_SPEED_HIGH)
4044			hs_ep->interval = 1 << (desc->bInterval - 1);
4045
4046		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4047		break;
4048
4049	case USB_ENDPOINT_XFER_CONTROL:
4050		epctrl |= DXEPCTL_EPTYPE_CONTROL;
4051		break;
4052	}
4053
4054	/*
4055	 * if the hardware has dedicated fifos, we must give each IN EP
4056	 * a unique tx-fifo even if it is non-periodic.
4057	 */
4058	if (dir_in && hsotg->dedicated_fifos) {
4059		u32 fifo_index = 0;
4060		u32 fifo_size = UINT_MAX;
4061
4062		size = hs_ep->ep.maxpacket * hs_ep->mc;
4063		for (i = 1; i < hsotg->num_of_eps; ++i) {
4064			if (hsotg->fifo_map & (1 << i))
4065				continue;
4066			val = dwc2_readl(hsotg, DPTXFSIZN(i));
4067			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4068			if (val < size)
4069				continue;
4070			/* Search for smallest acceptable fifo */
4071			if (val < fifo_size) {
4072				fifo_size = val;
4073				fifo_index = i;
4074			}
4075		}
4076		if (!fifo_index) {
4077			dev_err(hsotg->dev,
4078				"%s: No suitable fifo found\n", __func__);
4079			ret = -ENOMEM;
4080			goto error1;
4081		}
4082		epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4083		hsotg->fifo_map |= 1 << fifo_index;
4084		epctrl |= DXEPCTL_TXFNUM(fifo_index);
4085		hs_ep->fifo_index = fifo_index;
4086		hs_ep->fifo_size = fifo_size;
4087	}
4088
4089	/* for non control endpoints, set PID to D0 */
4090	if (index && !hs_ep->isochronous)
4091		epctrl |= DXEPCTL_SETD0PID;
4092
4093	/* WA for Full speed ISOC IN in DDMA mode.
4094	 * By Clear NAK status of EP, core will send ZLP
4095	 * to IN token and assert NAK interrupt relying
4096	 * on TxFIFO status only
4097	 */
4098
4099	if (hsotg->gadget.speed == USB_SPEED_FULL &&
4100	    hs_ep->isochronous && dir_in) {
4101		/* The WA applies only to core versions from 2.72a
4102		 * to 4.00a (including both). Also for FS_IOT_1.00a
4103		 * and HS_IOT_1.00a.
4104		 */
4105		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4106
4107		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4108		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
4109		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4110		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
4111			epctrl |= DXEPCTL_CNAK;
4112	}
4113
4114	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4115		__func__, epctrl);
4116
4117	dwc2_writel(hsotg, epctrl, epctrl_reg);
4118	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4119		__func__, dwc2_readl(hsotg, epctrl_reg));
4120
4121	/* enable the endpoint interrupt */
4122	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4123
4124error1:
4125	spin_unlock_irqrestore(&hsotg->lock, flags);
4126
4127error2:
4128	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4129		dmam_free_coherent(hsotg->dev, desc_num *
4130			sizeof(struct dwc2_dma_desc),
4131			hs_ep->desc_list, hs_ep->desc_list_dma);
4132		hs_ep->desc_list = NULL;
4133	}
4134
4135	return ret;
4136}
4137
4138/**
4139 * dwc2_hsotg_ep_disable - disable given endpoint
4140 * @ep: The endpoint to disable.
4141 */
4142static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4143{
4144	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4145	struct dwc2_hsotg *hsotg = hs_ep->parent;
4146	int dir_in = hs_ep->dir_in;
4147	int index = hs_ep->index;
 
4148	u32 epctrl_reg;
4149	u32 ctrl;
4150
4151	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4152
4153	if (ep == &hsotg->eps_out[0]->ep) {
4154		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4155		return -EINVAL;
4156	}
4157
4158	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4159		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4160		return -EINVAL;
4161	}
4162
4163	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4164
4165	ctrl = dwc2_readl(hsotg, epctrl_reg);
 
 
4166
4167	if (ctrl & DXEPCTL_EPENA)
4168		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4169
4170	ctrl &= ~DXEPCTL_EPENA;
4171	ctrl &= ~DXEPCTL_USBACTEP;
4172	ctrl |= DXEPCTL_SNAK;
4173
4174	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4175	dwc2_writel(hsotg, ctrl, epctrl_reg);
4176
4177	/* disable endpoint interrupts */
4178	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4179
4180	/* terminate all requests with shutdown */
4181	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4182
4183	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4184	hs_ep->fifo_index = 0;
4185	hs_ep->fifo_size = 0;
4186
4187	return 0;
4188}
4189
4190static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4191{
4192	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4193	struct dwc2_hsotg *hsotg = hs_ep->parent;
4194	unsigned long flags;
4195	int ret;
4196
4197	spin_lock_irqsave(&hsotg->lock, flags);
4198	ret = dwc2_hsotg_ep_disable(ep);
4199	spin_unlock_irqrestore(&hsotg->lock, flags);
4200	return ret;
4201}
4202
4203/**
4204 * on_list - check request is on the given endpoint
4205 * @ep: The endpoint to check.
4206 * @test: The request to test if it is on the endpoint.
4207 */
4208static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4209{
4210	struct dwc2_hsotg_req *req, *treq;
4211
4212	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4213		if (req == test)
4214			return true;
4215	}
4216
4217	return false;
4218}
4219
4220/**
4221 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4222 * @ep: The endpoint to dequeue.
4223 * @req: The request to be removed from a queue.
4224 */
4225static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4226{
4227	struct dwc2_hsotg_req *hs_req = our_req(req);
4228	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4229	struct dwc2_hsotg *hs = hs_ep->parent;
4230	unsigned long flags;
4231
4232	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4233
4234	spin_lock_irqsave(&hs->lock, flags);
4235
4236	if (!on_list(hs_ep, hs_req)) {
4237		spin_unlock_irqrestore(&hs->lock, flags);
4238		return -EINVAL;
4239	}
4240
4241	/* Dequeue already started request */
4242	if (req == &hs_ep->req->req)
4243		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4244
4245	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4246	spin_unlock_irqrestore(&hs->lock, flags);
4247
4248	return 0;
4249}
4250
4251/**
4252 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4253 * @ep: The endpoint to set halt.
4254 * @value: Set or unset the halt.
4255 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4256 *       the endpoint is busy processing requests.
4257 *
4258 * We need to stall the endpoint immediately if request comes from set_feature
4259 * protocol command handler.
4260 */
4261static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4262{
4263	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4264	struct dwc2_hsotg *hs = hs_ep->parent;
4265	int index = hs_ep->index;
4266	u32 epreg;
4267	u32 epctl;
4268	u32 xfertype;
4269
4270	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4271
4272	if (index == 0) {
4273		if (value)
4274			dwc2_hsotg_stall_ep0(hs);
4275		else
4276			dev_warn(hs->dev,
4277				 "%s: can't clear halt on ep0\n", __func__);
4278		return 0;
4279	}
4280
4281	if (hs_ep->isochronous) {
4282		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4283		return -EINVAL;
4284	}
4285
4286	if (!now && value && !list_empty(&hs_ep->queue)) {
4287		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4288			ep->name);
4289		return -EAGAIN;
4290	}
4291
4292	if (hs_ep->dir_in) {
4293		epreg = DIEPCTL(index);
4294		epctl = dwc2_readl(hs, epreg);
4295
4296		if (value) {
4297			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4298			if (epctl & DXEPCTL_EPENA)
4299				epctl |= DXEPCTL_EPDIS;
4300		} else {
4301			epctl &= ~DXEPCTL_STALL;
4302			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4303			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4304			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4305				epctl |= DXEPCTL_SETD0PID;
4306		}
4307		dwc2_writel(hs, epctl, epreg);
4308	} else {
 
4309		epreg = DOEPCTL(index);
4310		epctl = dwc2_readl(hs, epreg);
4311
4312		if (value) {
4313			epctl |= DXEPCTL_STALL;
4314		} else {
4315			epctl &= ~DXEPCTL_STALL;
4316			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4317			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4318			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4319				epctl |= DXEPCTL_SETD0PID;
4320		}
4321		dwc2_writel(hs, epctl, epreg);
4322	}
4323
4324	hs_ep->halted = value;
4325
4326	return 0;
4327}
4328
4329/**
4330 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4331 * @ep: The endpoint to set halt.
4332 * @value: Set or unset the halt.
4333 */
4334static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4335{
4336	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4337	struct dwc2_hsotg *hs = hs_ep->parent;
4338	unsigned long flags = 0;
4339	int ret = 0;
4340
4341	spin_lock_irqsave(&hs->lock, flags);
4342	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4343	spin_unlock_irqrestore(&hs->lock, flags);
4344
4345	return ret;
4346}
4347
4348static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4349	.enable		= dwc2_hsotg_ep_enable,
4350	.disable	= dwc2_hsotg_ep_disable_lock,
4351	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4352	.free_request	= dwc2_hsotg_ep_free_request,
4353	.queue		= dwc2_hsotg_ep_queue_lock,
4354	.dequeue	= dwc2_hsotg_ep_dequeue,
4355	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4356	/* note, don't believe we have any call for the fifo routines */
4357};
4358
4359/**
4360 * dwc2_hsotg_init - initialize the usb core
4361 * @hsotg: The driver state
4362 */
4363static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4364{
 
 
4365	/* unmask subset of endpoint interrupts */
4366
4367	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4368		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4369		    DIEPMSK);
4370
4371	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4372		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4373		    DOEPMSK);
4374
4375	dwc2_writel(hsotg, 0, DAINTMSK);
4376
4377	/* Be in disconnected state until gadget is registered */
4378	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4379
4380	/* setup fifos */
4381
4382	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4383		dwc2_readl(hsotg, GRXFSIZ),
4384		dwc2_readl(hsotg, GNPTXFSIZ));
4385
4386	dwc2_hsotg_init_fifo(hsotg);
4387
 
 
 
 
 
 
 
 
 
 
 
4388	if (using_dma(hsotg))
4389		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4390}
4391
4392/**
4393 * dwc2_hsotg_udc_start - prepare the udc for work
4394 * @gadget: The usb gadget state
4395 * @driver: The usb gadget driver
4396 *
4397 * Perform initialization to prepare udc device and driver
4398 * to work.
4399 */
4400static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4401				struct usb_gadget_driver *driver)
4402{
4403	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4404	unsigned long flags;
4405	int ret;
4406
4407	if (!hsotg) {
4408		pr_err("%s: called with no device\n", __func__);
4409		return -ENODEV;
4410	}
4411
4412	if (!driver) {
4413		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4414		return -EINVAL;
4415	}
4416
4417	if (driver->max_speed < USB_SPEED_FULL)
4418		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4419
4420	if (!driver->setup) {
4421		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4422		return -EINVAL;
4423	}
4424
4425	WARN_ON(hsotg->driver);
4426
4427	driver->driver.bus = NULL;
4428	hsotg->driver = driver;
4429	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4430	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4431
4432	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4433		ret = dwc2_lowlevel_hw_enable(hsotg);
4434		if (ret)
4435			goto err;
4436	}
4437
4438	if (!IS_ERR_OR_NULL(hsotg->uphy))
4439		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4440
4441	spin_lock_irqsave(&hsotg->lock, flags);
4442	if (dwc2_hw_is_device(hsotg)) {
4443		dwc2_hsotg_init(hsotg);
4444		dwc2_hsotg_core_init_disconnected(hsotg, false);
4445	}
4446
4447	hsotg->enabled = 0;
4448	spin_unlock_irqrestore(&hsotg->lock, flags);
4449
4450	gadget->sg_supported = using_desc_dma(hsotg);
4451	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4452
4453	return 0;
4454
4455err:
4456	hsotg->driver = NULL;
4457	return ret;
4458}
4459
4460/**
4461 * dwc2_hsotg_udc_stop - stop the udc
4462 * @gadget: The usb gadget state
 
4463 *
4464 * Stop udc hw block and stay tunned for future transmissions
4465 */
4466static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4467{
4468	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4469	unsigned long flags = 0;
4470	int ep;
4471
4472	if (!hsotg)
4473		return -ENODEV;
4474
4475	/* all endpoints should be shutdown */
4476	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4477		if (hsotg->eps_in[ep])
4478			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4479		if (hsotg->eps_out[ep])
4480			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4481	}
4482
4483	spin_lock_irqsave(&hsotg->lock, flags);
4484
4485	hsotg->driver = NULL;
4486	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4487	hsotg->enabled = 0;
4488
4489	spin_unlock_irqrestore(&hsotg->lock, flags);
4490
4491	if (!IS_ERR_OR_NULL(hsotg->uphy))
4492		otg_set_peripheral(hsotg->uphy->otg, NULL);
4493
4494	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4495		dwc2_lowlevel_hw_disable(hsotg);
4496
4497	return 0;
4498}
4499
4500/**
4501 * dwc2_hsotg_gadget_getframe - read the frame number
4502 * @gadget: The usb gadget state
4503 *
4504 * Read the {micro} frame number
4505 */
4506static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4507{
4508	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4509}
4510
4511/**
4512 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4513 * @gadget: The usb gadget state
4514 * @is_on: Current state of the USB PHY
4515 *
4516 * Connect/Disconnect the USB PHY pullup
4517 */
4518static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4519{
4520	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4521	unsigned long flags = 0;
4522
4523	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4524		hsotg->op_state);
4525
4526	/* Don't modify pullup state while in host mode */
4527	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4528		hsotg->enabled = is_on;
4529		return 0;
4530	}
4531
4532	spin_lock_irqsave(&hsotg->lock, flags);
4533	if (is_on) {
4534		hsotg->enabled = 1;
4535		dwc2_hsotg_core_init_disconnected(hsotg, false);
4536		/* Enable ACG feature in device mode,if supported */
4537		dwc2_enable_acg(hsotg);
4538		dwc2_hsotg_core_connect(hsotg);
4539	} else {
4540		dwc2_hsotg_core_disconnect(hsotg);
4541		dwc2_hsotg_disconnect(hsotg);
4542		hsotg->enabled = 0;
4543	}
4544
4545	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4546	spin_unlock_irqrestore(&hsotg->lock, flags);
4547
4548	return 0;
4549}
4550
4551static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4552{
4553	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4554	unsigned long flags;
4555
4556	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4557	spin_lock_irqsave(&hsotg->lock, flags);
4558
4559	/*
4560	 * If controller is hibernated, it must exit from power_down
4561	 * before being initialized / de-initialized
4562	 */
4563	if (hsotg->lx_state == DWC2_L2)
4564		dwc2_exit_partial_power_down(hsotg, false);
4565
4566	if (is_active) {
4567		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4568
4569		dwc2_hsotg_core_init_disconnected(hsotg, false);
4570		if (hsotg->enabled) {
4571			/* Enable ACG feature in device mode,if supported */
4572			dwc2_enable_acg(hsotg);
4573			dwc2_hsotg_core_connect(hsotg);
4574		}
4575	} else {
4576		dwc2_hsotg_core_disconnect(hsotg);
4577		dwc2_hsotg_disconnect(hsotg);
4578	}
4579
4580	spin_unlock_irqrestore(&hsotg->lock, flags);
4581	return 0;
4582}
4583
4584/**
4585 * dwc2_hsotg_vbus_draw - report bMaxPower field
4586 * @gadget: The usb gadget state
4587 * @mA: Amount of current
4588 *
4589 * Report how much power the device may consume to the phy.
4590 */
4591static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4592{
4593	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4594
4595	if (IS_ERR_OR_NULL(hsotg->uphy))
4596		return -ENOTSUPP;
4597	return usb_phy_set_power(hsotg->uphy, mA);
4598}
4599
4600static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4601	.get_frame	= dwc2_hsotg_gadget_getframe,
4602	.udc_start		= dwc2_hsotg_udc_start,
4603	.udc_stop		= dwc2_hsotg_udc_stop,
4604	.pullup                 = dwc2_hsotg_pullup,
4605	.vbus_session		= dwc2_hsotg_vbus_session,
4606	.vbus_draw		= dwc2_hsotg_vbus_draw,
4607};
4608
4609/**
4610 * dwc2_hsotg_initep - initialise a single endpoint
4611 * @hsotg: The device state.
4612 * @hs_ep: The endpoint to be initialised.
4613 * @epnum: The endpoint number
4614 * @dir_in: True if direction is in.
4615 *
4616 * Initialise the given endpoint (as part of the probe and device state
4617 * creation) to give to the gadget driver. Setup the endpoint name, any
4618 * direction information and other state that may be required.
4619 */
4620static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4621			      struct dwc2_hsotg_ep *hs_ep,
4622				       int epnum,
4623				       bool dir_in)
4624{
4625	char *dir;
4626
4627	if (epnum == 0)
4628		dir = "";
4629	else if (dir_in)
4630		dir = "in";
4631	else
4632		dir = "out";
4633
4634	hs_ep->dir_in = dir_in;
4635	hs_ep->index = epnum;
4636
4637	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4638
4639	INIT_LIST_HEAD(&hs_ep->queue);
4640	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4641
4642	/* add to the list of endpoints known by the gadget driver */
4643	if (epnum)
4644		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4645
4646	hs_ep->parent = hsotg;
4647	hs_ep->ep.name = hs_ep->name;
4648
4649	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4650		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4651	else
4652		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4653					   epnum ? 1024 : EP0_MPS_LIMIT);
4654	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4655
4656	if (epnum == 0) {
4657		hs_ep->ep.caps.type_control = true;
4658	} else {
4659		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4660			hs_ep->ep.caps.type_iso = true;
4661			hs_ep->ep.caps.type_bulk = true;
4662		}
4663		hs_ep->ep.caps.type_int = true;
4664	}
4665
4666	if (dir_in)
4667		hs_ep->ep.caps.dir_in = true;
4668	else
4669		hs_ep->ep.caps.dir_out = true;
4670
4671	/*
4672	 * if we're using dma, we need to set the next-endpoint pointer
4673	 * to be something valid.
4674	 */
4675
4676	if (using_dma(hsotg)) {
4677		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4678
4679		if (dir_in)
4680			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4681		else
4682			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4683	}
4684}
4685
4686/**
4687 * dwc2_hsotg_hw_cfg - read HW configuration registers
4688 * @hsotg: Programming view of the DWC_otg controller
4689 *
4690 * Read the USB core HW configuration registers
4691 */
4692static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4693{
4694	u32 cfg;
4695	u32 ep_type;
4696	u32 i;
4697
4698	/* check hardware configuration */
4699
4700	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4701
4702	/* Add ep0 */
4703	hsotg->num_of_eps++;
4704
4705	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4706					sizeof(struct dwc2_hsotg_ep),
4707					GFP_KERNEL);
4708	if (!hsotg->eps_in[0])
4709		return -ENOMEM;
4710	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4711	hsotg->eps_out[0] = hsotg->eps_in[0];
4712
4713	cfg = hsotg->hw_params.dev_ep_dirs;
4714	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4715		ep_type = cfg & 3;
4716		/* Direction in or both */
4717		if (!(ep_type & 2)) {
4718			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4719				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4720			if (!hsotg->eps_in[i])
4721				return -ENOMEM;
4722		}
4723		/* Direction out or both */
4724		if (!(ep_type & 1)) {
4725			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4726				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4727			if (!hsotg->eps_out[i])
4728				return -ENOMEM;
4729		}
4730	}
4731
4732	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4733	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4734
4735	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4736		 hsotg->num_of_eps,
4737		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4738		 hsotg->fifo_mem);
4739	return 0;
4740}
4741
4742/**
4743 * dwc2_hsotg_dump - dump state of the udc
4744 * @hsotg: Programming view of the DWC_otg controller
4745 *
4746 */
4747static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4748{
4749#ifdef DEBUG
4750	struct device *dev = hsotg->dev;
 
4751	u32 val;
4752	int idx;
4753
4754	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4755		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4756		 dwc2_readl(hsotg, DIEPMSK));
4757
4758	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4759		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4760
4761	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4762		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4763
4764	/* show periodic fifo settings */
4765
4766	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4767		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4768		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4769			 val >> FIFOSIZE_DEPTH_SHIFT,
4770			 val & FIFOSIZE_STARTADDR_MASK);
4771	}
4772
4773	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4774		dev_info(dev,
4775			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4776			 dwc2_readl(hsotg, DIEPCTL(idx)),
4777			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4778			 dwc2_readl(hsotg, DIEPDMA(idx)));
4779
4780		val = dwc2_readl(hsotg, DOEPCTL(idx));
4781		dev_info(dev,
4782			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4783			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4784			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4785			 dwc2_readl(hsotg, DOEPDMA(idx)));
 
4786	}
4787
4788	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4789		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4790#endif
4791}
4792
4793/**
4794 * dwc2_gadget_init - init function for gadget
4795 * @hsotg: Programming view of the DWC_otg controller
4796 *
4797 */
4798int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4799{
4800	struct device *dev = hsotg->dev;
4801	int epnum;
4802	int ret;
4803
4804	/* Dump fifo information */
4805	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4806		hsotg->params.g_np_tx_fifo_size);
4807	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4808
4809	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4810	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4811	hsotg->gadget.name = dev_name(dev);
4812	hsotg->remote_wakeup_allowed = 0;
4813
4814	if (hsotg->params.lpm)
4815		hsotg->gadget.lpm_capable = true;
4816
4817	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4818		hsotg->gadget.is_otg = 1;
4819	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4820		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4821
4822	ret = dwc2_hsotg_hw_cfg(hsotg);
4823	if (ret) {
4824		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4825		return ret;
4826	}
4827
4828	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4829			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4830	if (!hsotg->ctrl_buff)
4831		return -ENOMEM;
4832
4833	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4834			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4835	if (!hsotg->ep0_buff)
4836		return -ENOMEM;
4837
4838	if (using_desc_dma(hsotg)) {
4839		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4840		if (ret < 0)
4841			return ret;
4842	}
4843
4844	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4845			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4846	if (ret < 0) {
4847		dev_err(dev, "cannot claim IRQ for gadget\n");
4848		return ret;
4849	}
4850
4851	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4852
4853	if (hsotg->num_of_eps == 0) {
4854		dev_err(dev, "wrong number of EPs (zero)\n");
4855		return -EINVAL;
4856	}
4857
4858	/* setup endpoint information */
4859
4860	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4861	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4862
4863	/* allocate EP0 request */
4864
4865	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4866						     GFP_KERNEL);
4867	if (!hsotg->ctrl_req) {
4868		dev_err(dev, "failed to allocate ctrl req\n");
4869		return -ENOMEM;
4870	}
4871
4872	/* initialise the endpoints now the core has been initialised */
4873	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4874		if (hsotg->eps_in[epnum])
4875			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4876					  epnum, 1);
4877		if (hsotg->eps_out[epnum])
4878			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4879					  epnum, 0);
4880	}
4881
4882	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4883	if (ret) {
4884		dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep,
4885					   hsotg->ctrl_req);
4886		return ret;
4887	}
4888	dwc2_hsotg_dump(hsotg);
4889
4890	return 0;
4891}
4892
4893/**
4894 * dwc2_hsotg_remove - remove function for hsotg driver
4895 * @hsotg: Programming view of the DWC_otg controller
4896 *
4897 */
4898int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4899{
4900	usb_del_gadget_udc(&hsotg->gadget);
4901	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
4902
4903	return 0;
4904}
4905
4906int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4907{
4908	unsigned long flags;
4909
4910	if (hsotg->lx_state != DWC2_L0)
4911		return 0;
4912
4913	if (hsotg->driver) {
4914		int ep;
4915
4916		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4917			 hsotg->driver->driver.name);
4918
4919		spin_lock_irqsave(&hsotg->lock, flags);
4920		if (hsotg->enabled)
4921			dwc2_hsotg_core_disconnect(hsotg);
4922		dwc2_hsotg_disconnect(hsotg);
4923		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4924		spin_unlock_irqrestore(&hsotg->lock, flags);
4925
4926		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4927			if (hsotg->eps_in[ep])
4928				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4929			if (hsotg->eps_out[ep])
4930				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4931		}
4932	}
4933
4934	return 0;
4935}
4936
4937int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4938{
4939	unsigned long flags;
4940
4941	if (hsotg->lx_state == DWC2_L2)
4942		return 0;
4943
4944	if (hsotg->driver) {
4945		dev_info(hsotg->dev, "resuming usb gadget %s\n",
4946			 hsotg->driver->driver.name);
4947
4948		spin_lock_irqsave(&hsotg->lock, flags);
4949		dwc2_hsotg_core_init_disconnected(hsotg, false);
4950		if (hsotg->enabled) {
4951			/* Enable ACG feature in device mode,if supported */
4952			dwc2_enable_acg(hsotg);
4953			dwc2_hsotg_core_connect(hsotg);
4954		}
4955		spin_unlock_irqrestore(&hsotg->lock, flags);
4956	}
4957
4958	return 0;
4959}
4960
4961/**
4962 * dwc2_backup_device_registers() - Backup controller device registers.
4963 * When suspending usb bus, registers needs to be backuped
4964 * if controller power is disabled once suspended.
4965 *
4966 * @hsotg: Programming view of the DWC_otg controller
4967 */
4968int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4969{
4970	struct dwc2_dregs_backup *dr;
4971	int i;
4972
4973	dev_dbg(hsotg->dev, "%s\n", __func__);
4974
4975	/* Backup dev regs */
4976	dr = &hsotg->dr_backup;
4977
4978	dr->dcfg = dwc2_readl(hsotg, DCFG);
4979	dr->dctl = dwc2_readl(hsotg, DCTL);
4980	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
4981	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
4982	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
4983
4984	for (i = 0; i < hsotg->num_of_eps; i++) {
4985		/* Backup IN EPs */
4986		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
4987
4988		/* Ensure DATA PID is correctly configured */
4989		if (dr->diepctl[i] & DXEPCTL_DPID)
4990			dr->diepctl[i] |= DXEPCTL_SETD1PID;
4991		else
4992			dr->diepctl[i] |= DXEPCTL_SETD0PID;
4993
4994		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
4995		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
4996
4997		/* Backup OUT EPs */
4998		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
4999
5000		/* Ensure DATA PID is correctly configured */
5001		if (dr->doepctl[i] & DXEPCTL_DPID)
5002			dr->doepctl[i] |= DXEPCTL_SETD1PID;
5003		else
5004			dr->doepctl[i] |= DXEPCTL_SETD0PID;
5005
5006		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5007		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5008		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5009	}
5010	dr->valid = true;
5011	return 0;
5012}
5013
5014/**
5015 * dwc2_restore_device_registers() - Restore controller device registers.
5016 * When resuming usb bus, device registers needs to be restored
5017 * if controller power were disabled.
5018 *
5019 * @hsotg: Programming view of the DWC_otg controller
5020 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5021 *
5022 * Return: 0 if successful, negative error code otherwise
5023 */
5024int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5025{
5026	struct dwc2_dregs_backup *dr;
 
5027	int i;
5028
5029	dev_dbg(hsotg->dev, "%s\n", __func__);
5030
5031	/* Restore dev regs */
5032	dr = &hsotg->dr_backup;
5033	if (!dr->valid) {
5034		dev_err(hsotg->dev, "%s: no device registers to restore\n",
5035			__func__);
5036		return -EINVAL;
5037	}
5038	dr->valid = false;
5039
5040	if (!remote_wakeup)
5041		dwc2_writel(hsotg, dr->dctl, DCTL);
5042
5043	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5044	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5045	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5046
5047	for (i = 0; i < hsotg->num_of_eps; i++) {
5048		/* Restore IN EPs */
5049		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5050		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5051		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5052		/** WA for enabled EPx's IN in DDMA mode. On entering to
5053		 * hibernation wrong value read and saved from DIEPDMAx,
5054		 * as result BNA interrupt asserted on hibernation exit
5055		 * by restoring from saved area.
5056		 */
5057		if (hsotg->params.g_dma_desc &&
5058		    (dr->diepctl[i] & DXEPCTL_EPENA))
5059			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5060		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5061		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5062		/* Restore OUT EPs */
5063		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5064		/* WA for enabled EPx's OUT in DDMA mode. On entering to
5065		 * hibernation wrong value read and saved from DOEPDMAx,
5066		 * as result BNA interrupt asserted on hibernation exit
5067		 * by restoring from saved area.
5068		 */
5069		if (hsotg->params.g_dma_desc &&
5070		    (dr->doepctl[i] & DXEPCTL_EPENA))
5071			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5072		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5073		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5074	}
5075
5076	return 0;
5077}
5078
5079/**
5080 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5081 *
5082 * @hsotg: Programming view of DWC_otg controller
5083 *
5084 */
5085void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5086{
5087	u32 val;
5088
5089	if (!hsotg->params.lpm)
5090		return;
5091
5092	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5093	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5094	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5095	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5096	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5097	val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5098	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5099	dwc2_writel(hsotg, val, GLPMCFG);
5100	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5101
5102	/* Unmask WKUP_ALERT Interrupt */
5103	if (hsotg->params.service_interval)
5104		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5105}
5106
5107/**
5108 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5109 *
5110 * @hsotg: Programming view of DWC_otg controller
5111 *
5112 */
5113void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5114{
5115	u32 val = 0;
5116
5117	val |= GREFCLK_REF_CLK_MODE;
5118	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5119	val |= hsotg->params.sof_cnt_wkup_alert <<
5120	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5121
5122	dwc2_writel(hsotg, val, GREFCLK);
5123	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5124}
5125
5126/**
5127 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5128 *
5129 * @hsotg: Programming view of the DWC_otg controller
5130 *
5131 * Return non-zero if failed to enter to hibernation.
5132 */
5133int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5134{
5135	u32 gpwrdn;
5136	int ret = 0;
5137
5138	/* Change to L2(suspend) state */
5139	hsotg->lx_state = DWC2_L2;
5140	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5141	ret = dwc2_backup_global_registers(hsotg);
5142	if (ret) {
5143		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5144			__func__);
5145		return ret;
5146	}
5147	ret = dwc2_backup_device_registers(hsotg);
5148	if (ret) {
5149		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5150			__func__);
5151		return ret;
5152	}
5153
5154	gpwrdn = GPWRDN_PWRDNRSTN;
5155	gpwrdn |= GPWRDN_PMUACTV;
5156	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5157	udelay(10);
5158
5159	/* Set flag to indicate that we are in hibernation */
5160	hsotg->hibernated = 1;
5161
5162	/* Enable interrupts from wake up logic */
5163	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5164	gpwrdn |= GPWRDN_PMUINTSEL;
5165	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5166	udelay(10);
5167
5168	/* Unmask device mode interrupts in GPWRDN */
5169	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5170	gpwrdn |= GPWRDN_RST_DET_MSK;
5171	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5172	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5173	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5174	udelay(10);
5175
5176	/* Enable Power Down Clamp */
5177	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5178	gpwrdn |= GPWRDN_PWRDNCLMP;
5179	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5180	udelay(10);
5181
5182	/* Switch off VDD */
5183	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5184	gpwrdn |= GPWRDN_PWRDNSWTCH;
5185	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5186	udelay(10);
5187
5188	/* Save gpwrdn register for further usage if stschng interrupt */
5189	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5190	dev_dbg(hsotg->dev, "Hibernation completed\n");
5191
5192	return ret;
5193}
5194
5195/**
5196 * dwc2_gadget_exit_hibernation()
5197 * This function is for exiting from Device mode hibernation by host initiated
5198 * resume/reset and device initiated remote-wakeup.
5199 *
5200 * @hsotg: Programming view of the DWC_otg controller
5201 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5202 * @reset: indicates whether resume is initiated by Reset.
5203 *
5204 * Return non-zero if failed to exit from hibernation.
5205 */
5206int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5207				 int rem_wakeup, int reset)
5208{
5209	u32 pcgcctl;
5210	u32 gpwrdn;
5211	u32 dctl;
5212	int ret = 0;
5213	struct dwc2_gregs_backup *gr;
5214	struct dwc2_dregs_backup *dr;
5215
5216	gr = &hsotg->gr_backup;
5217	dr = &hsotg->dr_backup;
5218
5219	if (!hsotg->hibernated) {
5220		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5221		return 1;
5222	}
5223	dev_dbg(hsotg->dev,
5224		"%s: called with rem_wakeup = %d reset = %d\n",
5225		__func__, rem_wakeup, reset);
5226
5227	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5228
5229	if (!reset) {
5230		/* Clear all pending interupts */
5231		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5232	}
5233
5234	/* De-assert Restore */
5235	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5236	gpwrdn &= ~GPWRDN_RESTORE;
5237	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5238	udelay(10);
5239
5240	if (!rem_wakeup) {
5241		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5242		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5243		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5244	}
5245
5246	/* Restore GUSBCFG, DCFG and DCTL */
5247	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5248	dwc2_writel(hsotg, dr->dcfg, DCFG);
5249	dwc2_writel(hsotg, dr->dctl, DCTL);
5250
5251	/* De-assert Wakeup Logic */
5252	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5253	gpwrdn &= ~GPWRDN_PMUACTV;
5254	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5255
5256	if (rem_wakeup) {
5257		udelay(10);
5258		/* Start Remote Wakeup Signaling */
5259		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5260	} else {
5261		udelay(50);
5262		/* Set Device programming done bit */
5263		dctl = dwc2_readl(hsotg, DCTL);
5264		dctl |= DCTL_PWRONPRGDONE;
5265		dwc2_writel(hsotg, dctl, DCTL);
5266	}
5267	/* Wait for interrupts which must be cleared */
5268	mdelay(2);
5269	/* Clear all pending interupts */
5270	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5271
5272	/* Restore global registers */
5273	ret = dwc2_restore_global_registers(hsotg);
5274	if (ret) {
5275		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5276			__func__);
5277		return ret;
5278	}
5279
5280	/* Restore device registers */
5281	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5282	if (ret) {
5283		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5284			__func__);
5285		return ret;
5286	}
5287
5288	if (rem_wakeup) {
5289		mdelay(10);
5290		dctl = dwc2_readl(hsotg, DCTL);
5291		dctl &= ~DCTL_RMTWKUPSIG;
5292		dwc2_writel(hsotg, dctl, DCTL);
5293	}
5294
5295	hsotg->hibernated = 0;
5296	hsotg->lx_state = DWC2_L0;
5297	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5298
5299	return ret;
5300}
v4.10.11
   1/**
 
   2 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   3 *		http://www.samsung.com
   4 *
   5 * Copyright 2008 Openmoko, Inc.
   6 * Copyright 2008 Simtec Electronics
   7 *      Ben Dooks <ben@simtec.co.uk>
   8 *      http://armlinux.simtec.co.uk/
   9 *
  10 * S3C USB2.0 High-speed / OtG driver
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 */
  16
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/spinlock.h>
  20#include <linux/interrupt.h>
  21#include <linux/platform_device.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/mutex.h>
  24#include <linux/seq_file.h>
  25#include <linux/delay.h>
  26#include <linux/io.h>
  27#include <linux/slab.h>
  28#include <linux/of_platform.h>
  29
  30#include <linux/usb/ch9.h>
  31#include <linux/usb/gadget.h>
  32#include <linux/usb/phy.h>
 
 
  33
  34#include "core.h"
  35#include "hw.h"
  36
  37/* conversion functions */
  38static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
  39{
  40	return container_of(req, struct dwc2_hsotg_req, req);
  41}
  42
  43static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
  44{
  45	return container_of(ep, struct dwc2_hsotg_ep, ep);
  46}
  47
  48static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
  49{
  50	return container_of(gadget, struct dwc2_hsotg, gadget);
  51}
  52
  53static inline void __orr32(void __iomem *ptr, u32 val)
  54{
  55	dwc2_writel(dwc2_readl(ptr) | val, ptr);
  56}
  57
  58static inline void __bic32(void __iomem *ptr, u32 val)
  59{
  60	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
  61}
  62
  63static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
  64						u32 ep_index, u32 dir_in)
  65{
  66	if (dir_in)
  67		return hsotg->eps_in[ep_index];
  68	else
  69		return hsotg->eps_out[ep_index];
  70}
  71
  72/* forward declaration of functions */
  73static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
  74
  75/**
  76 * using_dma - return the DMA status of the driver.
  77 * @hsotg: The driver state.
  78 *
  79 * Return true if we're using DMA.
  80 *
  81 * Currently, we have the DMA support code worked into everywhere
  82 * that needs it, but the AMBA DMA implementation in the hardware can
  83 * only DMA from 32bit aligned addresses. This means that gadgets such
  84 * as the CDC Ethernet cannot work as they often pass packets which are
  85 * not 32bit aligned.
  86 *
  87 * Unfortunately the choice to use DMA or not is global to the controller
  88 * and seems to be only settable when the controller is being put through
  89 * a core reset. This means we either need to fix the gadgets to take
  90 * account of DMA alignment, or add bounce buffers (yuerk).
  91 *
  92 * g_using_dma is set depending on dts flag.
  93 */
  94static inline bool using_dma(struct dwc2_hsotg *hsotg)
  95{
  96	return hsotg->params.g_dma;
  97}
  98
  99/*
 100 * using_desc_dma - return the descriptor DMA status of the driver.
 101 * @hsotg: The driver state.
 102 *
 103 * Return true if we're using descriptor DMA.
 104 */
 105static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
 106{
 107	return hsotg->params.g_dma_desc;
 108}
 109
 110/**
 111 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 112 * @hs_ep: The endpoint
 113 * @increment: The value to increment by
 114 *
 115 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 116 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 117 */
 118static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
 119{
 120	hs_ep->target_frame += hs_ep->interval;
 121	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
 122		hs_ep->frame_overrun = 1;
 123		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
 124	} else {
 125		hs_ep->frame_overrun = 0;
 126	}
 127}
 128
 129/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
 131 * @hsotg: The device state
 132 * @ints: A bitmask of the interrupts to enable
 133 */
 134static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 135{
 136	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
 137	u32 new_gsintmsk;
 138
 139	new_gsintmsk = gsintmsk | ints;
 140
 141	if (new_gsintmsk != gsintmsk) {
 142		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
 143		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
 144	}
 145}
 146
 147/**
 148 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
 149 * @hsotg: The device state
 150 * @ints: A bitmask of the interrupts to enable
 151 */
 152static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 153{
 154	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
 155	u32 new_gsintmsk;
 156
 157	new_gsintmsk = gsintmsk & ~ints;
 158
 159	if (new_gsintmsk != gsintmsk)
 160		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
 161}
 162
 163/**
 164 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
 165 * @hsotg: The device state
 166 * @ep: The endpoint index
 167 * @dir_in: True if direction is in.
 168 * @en: The enable value, true to enable
 169 *
 170 * Set or clear the mask for an individual endpoint's interrupt
 171 * request.
 172 */
 173static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
 174				 unsigned int ep, unsigned int dir_in,
 175				 unsigned int en)
 176{
 177	unsigned long flags;
 178	u32 bit = 1 << ep;
 179	u32 daint;
 180
 181	if (!dir_in)
 182		bit <<= 16;
 183
 184	local_irq_save(flags);
 185	daint = dwc2_readl(hsotg->regs + DAINTMSK);
 186	if (en)
 187		daint |= bit;
 188	else
 189		daint &= ~bit;
 190	dwc2_writel(daint, hsotg->regs + DAINTMSK);
 191	local_irq_restore(flags);
 192}
 193
 194/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 195 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
 196 * @hsotg: The device instance.
 197 */
 198static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
 199{
 200	unsigned int ep;
 201	unsigned int addr;
 202	int timeout;
 
 203	u32 val;
 204	u32 *txfsz = hsotg->params.g_tx_fifo_size;
 205
 206	/* Reset fifo map if not correctly cleared during previous session */
 207	WARN_ON(hsotg->fifo_map);
 208	hsotg->fifo_map = 0;
 209
 210	/* set RX/NPTX FIFO sizes */
 211	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
 212	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
 
 213		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
 214		    hsotg->regs + GNPTXFSIZ);
 215
 216	/*
 217	 * arange all the rest of the TX FIFOs, as some versions of this
 218	 * block have overlapping default addresses. This also ensures
 219	 * that if the settings have been changed, then they are set to
 220	 * known values.
 221	 */
 222
 223	/* start at the end of the GNPTXFSIZ, rounded up */
 224	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
 225
 226	/*
 227	 * Configure fifos sizes from provided configuration and assign
 228	 * them to endpoints dynamically according to maxpacket size value of
 229	 * given endpoint.
 230	 */
 231	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
 232		if (!txfsz[ep])
 233			continue;
 234		val = addr;
 235		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
 236		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
 237			  "insufficient fifo memory");
 238		addr += txfsz[ep];
 239
 240		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
 241		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
 242	}
 243
 
 
 
 244	/*
 245	 * according to p428 of the design guide, we need to ensure that
 246	 * all fifos are flushed before continuing
 247	 */
 248
 249	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
 250	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
 251
 252	/* wait until the fifos are both flushed */
 253	timeout = 100;
 254	while (1) {
 255		val = dwc2_readl(hsotg->regs + GRSTCTL);
 256
 257		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
 258			break;
 259
 260		if (--timeout == 0) {
 261			dev_err(hsotg->dev,
 262				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
 263				__func__, val);
 264			break;
 265		}
 266
 267		udelay(1);
 268	}
 269
 270	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
 271}
 272
 273/**
 
 274 * @ep: USB endpoint to allocate request for.
 275 * @flags: Allocation flags
 276 *
 277 * Allocate a new USB request structure appropriate for the specified endpoint
 278 */
 279static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
 280						      gfp_t flags)
 281{
 282	struct dwc2_hsotg_req *req;
 283
 284	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
 285	if (!req)
 286		return NULL;
 287
 288	INIT_LIST_HEAD(&req->queue);
 289
 290	return &req->req;
 291}
 292
 293/**
 294 * is_ep_periodic - return true if the endpoint is in periodic mode.
 295 * @hs_ep: The endpoint to query.
 296 *
 297 * Returns true if the endpoint is in periodic mode, meaning it is being
 298 * used for an Interrupt or ISO transfer.
 299 */
 300static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
 301{
 302	return hs_ep->periodic;
 303}
 304
 305/**
 306 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
 307 * @hsotg: The device state.
 308 * @hs_ep: The endpoint for the request
 309 * @hs_req: The request being processed.
 310 *
 311 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
 312 * of a request to ensure the buffer is ready for access by the caller.
 313 */
 314static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
 315				struct dwc2_hsotg_ep *hs_ep,
 316				struct dwc2_hsotg_req *hs_req)
 317{
 318	struct usb_request *req = &hs_req->req;
 
 319	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
 320}
 321
 322/*
 323 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 324 * for Control endpoint
 325 * @hsotg: The device state.
 326 *
 327 * This function will allocate 4 descriptor chains for EP 0: 2 for
 328 * Setup stage, per one for IN and OUT data/status transactions.
 329 */
 330static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
 331{
 332	hsotg->setup_desc[0] =
 333		dmam_alloc_coherent(hsotg->dev,
 334				    sizeof(struct dwc2_dma_desc),
 335				    &hsotg->setup_desc_dma[0],
 336				    GFP_KERNEL);
 337	if (!hsotg->setup_desc[0])
 338		goto fail;
 339
 340	hsotg->setup_desc[1] =
 341		dmam_alloc_coherent(hsotg->dev,
 342				    sizeof(struct dwc2_dma_desc),
 343				    &hsotg->setup_desc_dma[1],
 344				    GFP_KERNEL);
 345	if (!hsotg->setup_desc[1])
 346		goto fail;
 347
 348	hsotg->ctrl_in_desc =
 349		dmam_alloc_coherent(hsotg->dev,
 350				    sizeof(struct dwc2_dma_desc),
 351				    &hsotg->ctrl_in_desc_dma,
 352				    GFP_KERNEL);
 353	if (!hsotg->ctrl_in_desc)
 354		goto fail;
 355
 356	hsotg->ctrl_out_desc =
 357		dmam_alloc_coherent(hsotg->dev,
 358				    sizeof(struct dwc2_dma_desc),
 359				    &hsotg->ctrl_out_desc_dma,
 360				    GFP_KERNEL);
 361	if (!hsotg->ctrl_out_desc)
 362		goto fail;
 363
 364	return 0;
 365
 366fail:
 367	return -ENOMEM;
 368}
 369
 370/**
 371 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
 372 * @hsotg: The controller state.
 373 * @hs_ep: The endpoint we're going to write for.
 374 * @hs_req: The request to write data for.
 375 *
 376 * This is called when the TxFIFO has some space in it to hold a new
 377 * transmission and we have something to give it. The actual setup of
 378 * the data size is done elsewhere, so all we have to do is to actually
 379 * write the data.
 380 *
 381 * The return value is zero if there is more space (or nothing was done)
 382 * otherwise -ENOSPC is returned if the FIFO space was used up.
 383 *
 384 * This routine is only needed for PIO
 385 */
 386static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
 387				struct dwc2_hsotg_ep *hs_ep,
 388				struct dwc2_hsotg_req *hs_req)
 389{
 390	bool periodic = is_ep_periodic(hs_ep);
 391	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
 392	int buf_pos = hs_req->req.actual;
 393	int to_write = hs_ep->size_loaded;
 394	void *data;
 395	int can_write;
 396	int pkt_round;
 397	int max_transfer;
 398
 399	to_write -= (buf_pos - hs_ep->last_load);
 400
 401	/* if there's nothing to write, get out early */
 402	if (to_write == 0)
 403		return 0;
 404
 405	if (periodic && !hsotg->dedicated_fifos) {
 406		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
 407		int size_left;
 408		int size_done;
 409
 410		/*
 411		 * work out how much data was loaded so we can calculate
 412		 * how much data is left in the fifo.
 413		 */
 414
 415		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
 416
 417		/*
 418		 * if shared fifo, we cannot write anything until the
 419		 * previous data has been completely sent.
 420		 */
 421		if (hs_ep->fifo_load != 0) {
 422			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 423			return -ENOSPC;
 424		}
 425
 426		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
 427			__func__, size_left,
 428			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
 429
 430		/* how much of the data has moved */
 431		size_done = hs_ep->size_loaded - size_left;
 432
 433		/* how much data is left in the fifo */
 434		can_write = hs_ep->fifo_load - size_done;
 435		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
 436			__func__, can_write);
 437
 438		can_write = hs_ep->fifo_size - can_write;
 439		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
 440			__func__, can_write);
 441
 442		if (can_write <= 0) {
 443			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 444			return -ENOSPC;
 445		}
 446	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
 447		can_write = dwc2_readl(hsotg->regs +
 448				DTXFSTS(hs_ep->fifo_index));
 449
 450		can_write &= 0xffff;
 451		can_write *= 4;
 452	} else {
 453		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
 454			dev_dbg(hsotg->dev,
 455				"%s: no queue slots available (0x%08x)\n",
 456				__func__, gnptxsts);
 457
 458			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
 459			return -ENOSPC;
 460		}
 461
 462		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
 463		can_write *= 4;	/* fifo size is in 32bit quantities. */
 464	}
 465
 466	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
 467
 468	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
 469		 __func__, gnptxsts, can_write, to_write, max_transfer);
 470
 471	/*
 472	 * limit to 512 bytes of data, it seems at least on the non-periodic
 473	 * FIFO, requests of >512 cause the endpoint to get stuck with a
 474	 * fragment of the end of the transfer in it.
 475	 */
 476	if (can_write > 512 && !periodic)
 477		can_write = 512;
 478
 479	/*
 480	 * limit the write to one max-packet size worth of data, but allow
 481	 * the transfer to return that it did not run out of fifo space
 482	 * doing it.
 483	 */
 484	if (to_write > max_transfer) {
 485		to_write = max_transfer;
 486
 487		/* it's needed only when we do not use dedicated fifos */
 488		if (!hsotg->dedicated_fifos)
 489			dwc2_hsotg_en_gsint(hsotg,
 490					   periodic ? GINTSTS_PTXFEMP :
 491					   GINTSTS_NPTXFEMP);
 492	}
 493
 494	/* see if we can write data */
 495
 496	if (to_write > can_write) {
 497		to_write = can_write;
 498		pkt_round = to_write % max_transfer;
 499
 500		/*
 501		 * Round the write down to an
 502		 * exact number of packets.
 503		 *
 504		 * Note, we do not currently check to see if we can ever
 505		 * write a full packet or not to the FIFO.
 506		 */
 507
 508		if (pkt_round)
 509			to_write -= pkt_round;
 510
 511		/*
 512		 * enable correct FIFO interrupt to alert us when there
 513		 * is more room left.
 514		 */
 515
 516		/* it's needed only when we do not use dedicated fifos */
 517		if (!hsotg->dedicated_fifos)
 518			dwc2_hsotg_en_gsint(hsotg,
 519					   periodic ? GINTSTS_PTXFEMP :
 520					   GINTSTS_NPTXFEMP);
 521	}
 522
 523	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
 524		 to_write, hs_req->req.length, can_write, buf_pos);
 525
 526	if (to_write <= 0)
 527		return -ENOSPC;
 528
 529	hs_req->req.actual = buf_pos + to_write;
 530	hs_ep->total_data += to_write;
 531
 532	if (periodic)
 533		hs_ep->fifo_load += to_write;
 534
 535	to_write = DIV_ROUND_UP(to_write, 4);
 536	data = hs_req->req.buf + buf_pos;
 537
 538	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
 539
 540	return (to_write >= can_write) ? -ENOSPC : 0;
 541}
 542
 543/**
 544 * get_ep_limit - get the maximum data legnth for this endpoint
 545 * @hs_ep: The endpoint
 546 *
 547 * Return the maximum data that can be queued in one go on a given endpoint
 548 * so that transfers that are too long can be split.
 549 */
 550static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
 551{
 552	int index = hs_ep->index;
 553	unsigned maxsize;
 554	unsigned maxpkt;
 555
 556	if (index != 0) {
 557		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
 558		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
 559	} else {
 560		maxsize = 64+64;
 561		if (hs_ep->dir_in)
 562			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
 563		else
 564			maxpkt = 2;
 565	}
 566
 567	/* we made the constant loading easier above by using +1 */
 568	maxpkt--;
 569	maxsize--;
 570
 571	/*
 572	 * constrain by packet count if maxpkts*pktsize is greater
 573	 * than the length register size.
 574	 */
 575
 576	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
 577		maxsize = maxpkt * hs_ep->ep.maxpacket;
 578
 579	return maxsize;
 580}
 581
 582/**
 583* dwc2_hsotg_read_frameno - read current frame number
 584* @hsotg: The device instance
 585*
 586* Return the current frame number
 587*/
 588static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
 589{
 590	u32 dsts;
 591
 592	dsts = dwc2_readl(hsotg->regs + DSTS);
 593	dsts &= DSTS_SOFFN_MASK;
 594	dsts >>= DSTS_SOFFN_SHIFT;
 595
 596	return dsts;
 597}
 598
 599/**
 600 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 601 * DMA descriptor chain prepared for specific endpoint
 602 * @hs_ep: The endpoint
 603 *
 604 * Return the maximum data that can be queued in one go on a given endpoint
 605 * depending on its descriptor chain capacity so that transfers that
 606 * are too long can be split.
 607 */
 608static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
 609{
 610	int is_isoc = hs_ep->isochronous;
 611	unsigned int maxsize;
 612
 613	if (is_isoc)
 614		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
 615					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
 
 616	else
 617		maxsize = DEV_DMA_NBYTES_LIMIT;
 618
 619	/* Above size of one descriptor was chosen, multiple it */
 620	maxsize *= MAX_DMA_DESC_NUM_GENERIC;
 621
 622	return maxsize;
 623}
 624
 625/*
 626 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 627 * @hs_ep: The endpoint
 628 * @mask: RX/TX bytes mask to be defined
 629 *
 630 * Returns maximum data payload for one descriptor after analyzing endpoint
 631 * characteristics.
 632 * DMA descriptor transfer bytes limit depends on EP type:
 633 * Control out - MPS,
 634 * Isochronous - descriptor rx/tx bytes bitfield limit,
 635 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 636 * have concatenations from various descriptors within one packet.
 637 *
 638 * Selects corresponding mask for RX/TX bytes as well.
 639 */
 640static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
 641{
 642	u32 mps = hs_ep->ep.maxpacket;
 643	int dir_in = hs_ep->dir_in;
 644	u32 desc_size = 0;
 645
 646	if (!hs_ep->index && !dir_in) {
 647		desc_size = mps;
 648		*mask = DEV_DMA_NBYTES_MASK;
 649	} else if (hs_ep->isochronous) {
 650		if (dir_in) {
 651			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
 652			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
 653		} else {
 654			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
 655			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
 656		}
 657	} else {
 658		desc_size = DEV_DMA_NBYTES_LIMIT;
 659		*mask = DEV_DMA_NBYTES_MASK;
 660
 661		/* Round down desc_size to be mps multiple */
 662		desc_size -= desc_size % mps;
 663	}
 664
 665	return desc_size;
 666}
 667
 668/*
 669 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 670 * @hs_ep: The endpoint
 671 * @dma_buff: DMA address to use
 672 * @len: Length of the transfer
 673 *
 674 * This function will iterate over descriptor chain and fill its entries
 675 * with corresponding information based on transfer data.
 676 */
 677static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
 678						 dma_addr_t dma_buff,
 679						 unsigned int len)
 
 680{
 681	struct dwc2_hsotg *hsotg = hs_ep->parent;
 682	int dir_in = hs_ep->dir_in;
 683	struct dwc2_dma_desc *desc = hs_ep->desc_list;
 684	u32 mps = hs_ep->ep.maxpacket;
 685	u32 maxsize = 0;
 686	u32 offset = 0;
 687	u32 mask = 0;
 688	int i;
 689
 690	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
 691
 692	hs_ep->desc_count = (len / maxsize) +
 693				((len % maxsize) ? 1 : 0);
 694	if (len == 0)
 695		hs_ep->desc_count = 1;
 696
 697	for (i = 0; i < hs_ep->desc_count; ++i) {
 698		desc->status = 0;
 699		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
 700				 << DEV_DMA_BUFF_STS_SHIFT);
 701
 702		if (len > maxsize) {
 703			if (!hs_ep->index && !dir_in)
 704				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
 705
 706			desc->status |= (maxsize <<
 707						DEV_DMA_NBYTES_SHIFT & mask);
 708			desc->buf = dma_buff + offset;
 709
 710			len -= maxsize;
 711			offset += maxsize;
 712		} else {
 713			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
 
 714
 715			if (dir_in)
 716				desc->status |= (len % mps) ? DEV_DMA_SHORT :
 717					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
 718			if (len > maxsize)
 719				dev_err(hsotg->dev, "wrong len %d\n", len);
 720
 721			desc->status |=
 722				len << DEV_DMA_NBYTES_SHIFT & mask;
 723			desc->buf = dma_buff + offset;
 724		}
 725
 726		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
 727		desc->status |= (DEV_DMA_BUFF_STS_HREADY
 728				 << DEV_DMA_BUFF_STS_SHIFT);
 729		desc++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 730	}
 
 
 731}
 732
 733/*
 734 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
 735 * @hs_ep: The isochronous endpoint.
 736 * @dma_buff: usb requests dma buffer.
 737 * @len: usb request transfer length.
 738 *
 739 * Finds out index of first free entry either in the bottom or up half of
 740 * descriptor chain depend on which is under SW control and not processed
 741 * by HW. Then fills that descriptor with the data of the arrived usb request,
 742 * frame info, sets Last and IOC bits increments next_desc. If filled
 743 * descriptor is not the first one, removes L bit from the previous descriptor
 744 * status.
 745 */
 746static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
 747				      dma_addr_t dma_buff, unsigned int len)
 748{
 749	struct dwc2_dma_desc *desc;
 750	struct dwc2_hsotg *hsotg = hs_ep->parent;
 751	u32 index;
 752	u32 maxsize = 0;
 753	u32 mask = 0;
 
 754
 755	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
 756	if (len > maxsize) {
 757		dev_err(hsotg->dev, "wrong len %d\n", len);
 758		return -EINVAL;
 759	}
 760
 761	/*
 762	 * If SW has already filled half of chain, then return and wait for
 763	 * the other chain to be processed by HW.
 764	 */
 765	if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
 766		return -EBUSY;
 767
 768	/* Increment frame number by interval for IN */
 769	if (hs_ep->dir_in)
 770		dwc2_gadget_incr_frame_num(hs_ep);
 771
 772	index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
 773		 hs_ep->next_desc;
 774
 775	/* Sanity check of calculated index */
 776	if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
 777	    (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
 778		dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
 779		return -EINVAL;
 780	}
 781
 782	desc = &hs_ep->desc_list[index];
 783
 784	/* Clear L bit of previous desc if more than one entries in the chain */
 785	if (hs_ep->next_desc)
 786		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
 787
 788	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
 789		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
 790
 791	desc->status = 0;
 792	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
 793
 794	desc->buf = dma_buff;
 795	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
 796			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
 797
 798	if (hs_ep->dir_in) {
 799		desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
 
 
 
 
 800				 DEV_DMA_ISOC_PID_MASK) |
 801				((len % hs_ep->ep.maxpacket) ?
 802				 DEV_DMA_SHORT : 0) |
 803				((hs_ep->target_frame <<
 804				  DEV_DMA_ISOC_FRNUM_SHIFT) &
 805				 DEV_DMA_ISOC_FRNUM_MASK);
 806	}
 807
 808	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
 809	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
 810
 
 
 
 
 811	/* Update index of last configured entry in the chain */
 812	hs_ep->next_desc++;
 
 
 813
 814	return 0;
 815}
 816
 817/*
 818 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
 819 * @hs_ep: The isochronous endpoint.
 820 *
 821 * Prepare first descriptor chain for isochronous endpoints. Afterwards
 822 * write DMA address to HW and enable the endpoint.
 823 *
 824 * Switch between descriptor chains via isoc_chain_num to give SW opportunity
 825 * to prepare second descriptor chain while first one is being processed by HW.
 826 */
 827static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
 828{
 829	struct dwc2_hsotg *hsotg = hs_ep->parent;
 830	struct dwc2_hsotg_req *hs_req, *treq;
 831	int index = hs_ep->index;
 832	int ret;
 
 833	u32 dma_reg;
 834	u32 depctl;
 835	u32 ctrl;
 
 836
 837	if (list_empty(&hs_ep->queue)) {
 
 838		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
 839		return;
 840	}
 841
 
 
 
 
 
 
 
 
 
 842	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
 843		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
 
 
 
 
 
 
 844						 hs_req->req.length);
 845		if (ret) {
 846			dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
 847			break;
 848		}
 849	}
 850
 
 851	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
 852	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
 853
 854	/* write descriptor chain address to control register */
 855	dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
 856
 857	ctrl = dwc2_readl(hsotg->regs + depctl);
 858	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
 859	dwc2_writel(ctrl, hsotg->regs + depctl);
 860
 861	/* Switch ISOC descriptor chain number being processed by SW*/
 862	hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
 863	hs_ep->next_desc = 0;
 864}
 865
 866/**
 867 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
 868 * @hsotg: The controller state.
 869 * @hs_ep: The endpoint to process a request for
 870 * @hs_req: The request to start.
 871 * @continuing: True if we are doing more for the current request.
 872 *
 873 * Start the given request running by setting the endpoint registers
 874 * appropriately, and writing any data to the FIFOs.
 875 */
 876static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
 877				struct dwc2_hsotg_ep *hs_ep,
 878				struct dwc2_hsotg_req *hs_req,
 879				bool continuing)
 880{
 881	struct usb_request *ureq = &hs_req->req;
 882	int index = hs_ep->index;
 883	int dir_in = hs_ep->dir_in;
 884	u32 epctrl_reg;
 885	u32 epsize_reg;
 886	u32 epsize;
 887	u32 ctrl;
 888	unsigned length;
 889	unsigned packets;
 890	unsigned maxreq;
 891	unsigned int dma_reg;
 892
 893	if (index != 0) {
 894		if (hs_ep->req && !continuing) {
 895			dev_err(hsotg->dev, "%s: active request\n", __func__);
 896			WARN_ON(1);
 897			return;
 898		} else if (hs_ep->req != hs_req && continuing) {
 899			dev_err(hsotg->dev,
 900				"%s: continue different req\n", __func__);
 901			WARN_ON(1);
 902			return;
 903		}
 904	}
 905
 906	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
 907	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
 908	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
 909
 910	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
 911		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
 912		hs_ep->dir_in ? "in" : "out");
 913
 914	/* If endpoint is stalled, we will restart request later */
 915	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
 916
 917	if (index && ctrl & DXEPCTL_STALL) {
 918		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
 919		return;
 920	}
 921
 922	length = ureq->length - ureq->actual;
 923	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
 924		ureq->length, ureq->actual);
 925
 926	if (!using_desc_dma(hsotg))
 927		maxreq = get_ep_limit(hs_ep);
 928	else
 929		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
 930
 931	if (length > maxreq) {
 932		int round = maxreq % hs_ep->ep.maxpacket;
 933
 934		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
 935			__func__, length, maxreq, round);
 936
 937		/* round down to multiple of packets */
 938		if (round)
 939			maxreq -= round;
 940
 941		length = maxreq;
 942	}
 943
 944	if (length)
 945		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
 946	else
 947		packets = 1;	/* send one packet if length is zero. */
 948
 949	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
 950		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
 951		return;
 952	}
 953
 954	if (dir_in && index != 0)
 955		if (hs_ep->isochronous)
 956			epsize = DXEPTSIZ_MC(packets);
 957		else
 958			epsize = DXEPTSIZ_MC(1);
 959	else
 960		epsize = 0;
 961
 962	/*
 963	 * zero length packet should be programmed on its own and should not
 964	 * be counted in DIEPTSIZ.PktCnt with other packets.
 965	 */
 966	if (dir_in && ureq->zero && !continuing) {
 967		/* Test if zlp is actually required. */
 968		if ((ureq->length >= hs_ep->ep.maxpacket) &&
 969					!(ureq->length % hs_ep->ep.maxpacket))
 970			hs_ep->send_zlp = 1;
 971	}
 972
 973	epsize |= DXEPTSIZ_PKTCNT(packets);
 974	epsize |= DXEPTSIZ_XFERSIZE(length);
 975
 976	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
 977		__func__, packets, length, ureq->length, epsize, epsize_reg);
 978
 979	/* store the request as the current one we're doing */
 980	hs_ep->req = hs_req;
 981
 982	if (using_desc_dma(hsotg)) {
 983		u32 offset = 0;
 984		u32 mps = hs_ep->ep.maxpacket;
 985
 986		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
 987		if (!dir_in) {
 988			if (!index)
 989				length = mps;
 990			else if (length % mps)
 991				length += (mps - (length % mps));
 992		}
 993
 994		/*
 995		 * If more data to send, adjust DMA for EP0 out data stage.
 996		 * ureq->dma stays unchanged, hence increment it by already
 997		 * passed passed data count before starting new transaction.
 998		 */
 999		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1000		    continuing)
1001			offset = ureq->actual;
1002
1003		/* Fill DDMA chain entries */
1004		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1005						     length);
1006
1007		/* write descriptor chain address to control register */
1008		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1009
1010		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1011			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1012	} else {
1013		/* write size / packets */
1014		dwc2_writel(epsize, hsotg->regs + epsize_reg);
1015
1016		if (using_dma(hsotg) && !continuing && (length != 0)) {
1017			/*
1018			 * write DMA address to control register, buffer
1019			 * already synced by dwc2_hsotg_ep_queue().
1020			 */
1021
1022			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
1023
1024			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1025				__func__, &ureq->dma, dma_reg);
1026		}
1027	}
1028
1029	if (hs_ep->isochronous && hs_ep->interval == 1) {
1030		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1031		dwc2_gadget_incr_frame_num(hs_ep);
1032
1033		if (hs_ep->target_frame & 0x1)
1034			ctrl |= DXEPCTL_SETODDFR;
1035		else
1036			ctrl |= DXEPCTL_SETEVENFR;
1037	}
1038
1039	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1040
1041	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1042
1043	/* For Setup request do not clear NAK */
1044	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1045		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1046
1047	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1048	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1049
1050	/*
1051	 * set these, it seems that DMA support increments past the end
1052	 * of the packet buffer so we need to calculate the length from
1053	 * this information.
1054	 */
1055	hs_ep->size_loaded = length;
1056	hs_ep->last_load = ureq->actual;
1057
1058	if (dir_in && !using_dma(hsotg)) {
1059		/* set these anyway, we may need them for non-periodic in */
1060		hs_ep->fifo_load = 0;
1061
1062		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1063	}
1064
1065	/*
1066	 * Note, trying to clear the NAK here causes problems with transmit
1067	 * on the S3C6400 ending up with the TXFIFO becoming full.
1068	 */
1069
1070	/* check ep is enabled */
1071	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1072		dev_dbg(hsotg->dev,
1073			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1074			 index, dwc2_readl(hsotg->regs + epctrl_reg));
1075
1076	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1077		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
1078
1079	/* enable ep interrupts */
1080	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1081}
1082
1083/**
1084 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1085 * @hsotg: The device state.
1086 * @hs_ep: The endpoint the request is on.
1087 * @req: The request being processed.
1088 *
1089 * We've been asked to queue a request, so ensure that the memory buffer
1090 * is correctly setup for DMA. If we've been passed an extant DMA address
1091 * then ensure the buffer has been synced to memory. If our buffer has no
1092 * DMA memory, then we map the memory and mark our request to allow us to
1093 * cleanup on completion.
1094 */
1095static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1096			     struct dwc2_hsotg_ep *hs_ep,
1097			     struct usb_request *req)
1098{
1099	int ret;
1100
1101	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1102	if (ret)
1103		goto dma_error;
1104
1105	return 0;
1106
1107dma_error:
1108	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1109		__func__, req->buf, req->length);
1110
1111	return -EIO;
1112}
1113
1114static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1115	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
 
1116{
1117	void *req_buf = hs_req->req.buf;
1118
1119	/* If dma is not being used or buffer is aligned */
1120	if (!using_dma(hsotg) || !((long)req_buf & 3))
1121		return 0;
1122
1123	WARN_ON(hs_req->saved_req_buf);
1124
1125	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1126			hs_ep->ep.name, req_buf, hs_req->req.length);
1127
1128	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1129	if (!hs_req->req.buf) {
1130		hs_req->req.buf = req_buf;
1131		dev_err(hsotg->dev,
1132			"%s: unable to allocate memory for bounce buffer\n",
1133			__func__);
1134		return -ENOMEM;
1135	}
1136
1137	/* Save actual buffer */
1138	hs_req->saved_req_buf = req_buf;
1139
1140	if (hs_ep->dir_in)
1141		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1142	return 0;
1143}
1144
1145static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1146	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
 
 
1147{
1148	/* If dma is not being used or buffer was aligned */
1149	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1150		return;
1151
1152	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1153		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1154
1155	/* Copy data from bounce buffer on successful out transfer */
1156	if (!hs_ep->dir_in && !hs_req->req.status)
1157		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1158							hs_req->req.actual);
1159
1160	/* Free bounce buffer */
1161	kfree(hs_req->req.buf);
1162
1163	hs_req->req.buf = hs_req->saved_req_buf;
1164	hs_req->saved_req_buf = NULL;
1165}
1166
1167/**
1168 * dwc2_gadget_target_frame_elapsed - Checks target frame
1169 * @hs_ep: The driver endpoint to check
1170 *
1171 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1172 * corresponding transfer.
1173 */
1174static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1175{
1176	struct dwc2_hsotg *hsotg = hs_ep->parent;
1177	u32 target_frame = hs_ep->target_frame;
1178	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
1179	bool frame_overrun = hs_ep->frame_overrun;
1180
1181	if (!frame_overrun && current_frame >= target_frame)
1182		return true;
1183
1184	if (frame_overrun && current_frame >= target_frame &&
1185	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1186		return true;
1187
1188	return false;
1189}
1190
1191/*
1192 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1193 * @hsotg: The driver state
1194 * @hs_ep: the ep descriptor chain is for
1195 *
1196 * Called to update EP0 structure's pointers depend on stage of
1197 * control transfer.
1198 */
1199static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1200					  struct dwc2_hsotg_ep *hs_ep)
1201{
1202	switch (hsotg->ep0_state) {
1203	case DWC2_EP0_SETUP:
1204	case DWC2_EP0_STATUS_OUT:
1205		hs_ep->desc_list = hsotg->setup_desc[0];
1206		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1207		break;
1208	case DWC2_EP0_DATA_IN:
1209	case DWC2_EP0_STATUS_IN:
1210		hs_ep->desc_list = hsotg->ctrl_in_desc;
1211		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1212		break;
1213	case DWC2_EP0_DATA_OUT:
1214		hs_ep->desc_list = hsotg->ctrl_out_desc;
1215		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1216		break;
1217	default:
1218		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1219			hsotg->ep0_state);
1220		return -EINVAL;
1221	}
1222
1223	return 0;
1224}
1225
1226static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1227			      gfp_t gfp_flags)
1228{
1229	struct dwc2_hsotg_req *hs_req = our_req(req);
1230	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1231	struct dwc2_hsotg *hs = hs_ep->parent;
1232	bool first;
1233	int ret;
 
 
 
1234
1235	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1236		ep->name, req, req->length, req->buf, req->no_interrupt,
1237		req->zero, req->short_not_ok);
1238
1239	/* Prevent new request submission when controller is suspended */
1240	if (hs->lx_state == DWC2_L2) {
1241		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
1242				__func__);
1243		return -EAGAIN;
1244	}
1245
1246	/* initialise status of the request */
1247	INIT_LIST_HEAD(&hs_req->queue);
1248	req->actual = 0;
1249	req->status = -EINPROGRESS;
1250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1251	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1252	if (ret)
1253		return ret;
1254
1255	/* if we're using DMA, sync the buffers as necessary */
1256	if (using_dma(hs)) {
1257		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1258		if (ret)
1259			return ret;
1260	}
1261	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1262	if (using_desc_dma(hs) && !hs_ep->index) {
1263		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1264		if (ret)
1265			return ret;
1266	}
1267
1268	first = list_empty(&hs_ep->queue);
1269	list_add_tail(&hs_req->queue, &hs_ep->queue);
1270
1271	/*
1272	 * Handle DDMA isochronous transfers separately - just add new entry
1273	 * to the half of descriptor chain that is not processed by HW.
1274	 * Transfer will be started once SW gets either one of NAK or
1275	 * OutTknEpDis interrupts.
1276	 */
1277	if (using_desc_dma(hs) && hs_ep->isochronous &&
1278	    hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1279		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
1280						 hs_req->req.length);
1281		if (ret)
1282			dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);
1283
 
 
 
 
1284		return 0;
1285	}
1286
 
 
 
 
 
1287	if (first) {
1288		if (!hs_ep->isochronous) {
1289			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1290			return 0;
1291		}
1292
1293		while (dwc2_gadget_target_frame_elapsed(hs_ep))
 
 
1294			dwc2_gadget_incr_frame_num(hs_ep);
 
 
 
 
 
1295
1296		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1297			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1298	}
1299	return 0;
1300}
1301
1302static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1303			      gfp_t gfp_flags)
1304{
1305	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1306	struct dwc2_hsotg *hs = hs_ep->parent;
1307	unsigned long flags = 0;
1308	int ret = 0;
1309
1310	spin_lock_irqsave(&hs->lock, flags);
1311	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1312	spin_unlock_irqrestore(&hs->lock, flags);
1313
1314	return ret;
1315}
1316
1317static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1318				      struct usb_request *req)
1319{
1320	struct dwc2_hsotg_req *hs_req = our_req(req);
1321
1322	kfree(hs_req);
1323}
1324
1325/**
1326 * dwc2_hsotg_complete_oursetup - setup completion callback
1327 * @ep: The endpoint the request was on.
1328 * @req: The request completed.
1329 *
1330 * Called on completion of any requests the driver itself
1331 * submitted that need cleaning up.
1332 */
1333static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1334					struct usb_request *req)
1335{
1336	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1337	struct dwc2_hsotg *hsotg = hs_ep->parent;
1338
1339	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1340
1341	dwc2_hsotg_ep_free_request(ep, req);
1342}
1343
1344/**
1345 * ep_from_windex - convert control wIndex value to endpoint
1346 * @hsotg: The driver state.
1347 * @windex: The control request wIndex field (in host order).
1348 *
1349 * Convert the given wIndex into a pointer to an driver endpoint
1350 * structure, or return NULL if it is not a valid endpoint.
1351 */
1352static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1353					   u32 windex)
1354{
1355	struct dwc2_hsotg_ep *ep;
1356	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1357	int idx = windex & 0x7F;
1358
1359	if (windex >= 0x100)
1360		return NULL;
1361
1362	if (idx > hsotg->num_of_eps)
1363		return NULL;
1364
1365	ep = index_to_ep(hsotg, idx, dir);
1366
1367	if (idx && ep->dir_in != dir)
1368		return NULL;
1369
1370	return ep;
1371}
1372
1373/**
1374 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1375 * @hsotg: The driver state.
1376 * @testmode: requested usb test mode
1377 * Enable usb Test Mode requested by the Host.
1378 */
1379int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1380{
1381	int dctl = dwc2_readl(hsotg->regs + DCTL);
1382
1383	dctl &= ~DCTL_TSTCTL_MASK;
1384	switch (testmode) {
1385	case TEST_J:
1386	case TEST_K:
1387	case TEST_SE0_NAK:
1388	case TEST_PACKET:
1389	case TEST_FORCE_EN:
1390		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1391		break;
1392	default:
1393		return -EINVAL;
1394	}
1395	dwc2_writel(dctl, hsotg->regs + DCTL);
1396	return 0;
1397}
1398
1399/**
1400 * dwc2_hsotg_send_reply - send reply to control request
1401 * @hsotg: The device state
1402 * @ep: Endpoint 0
1403 * @buff: Buffer for request
1404 * @length: Length of reply.
1405 *
1406 * Create a request and queue it on the given endpoint. This is useful as
1407 * an internal method of sending replies to certain control requests, etc.
1408 */
1409static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1410				struct dwc2_hsotg_ep *ep,
1411				void *buff,
1412				int length)
1413{
1414	struct usb_request *req;
1415	int ret;
1416
1417	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1418
1419	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1420	hsotg->ep0_reply = req;
1421	if (!req) {
1422		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1423		return -ENOMEM;
1424	}
1425
1426	req->buf = hsotg->ep0_buff;
1427	req->length = length;
1428	/*
1429	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1430	 * STATUS stage.
1431	 */
1432	req->zero = 0;
1433	req->complete = dwc2_hsotg_complete_oursetup;
1434
1435	if (length)
1436		memcpy(req->buf, buff, length);
1437
1438	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1439	if (ret) {
1440		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1441		return ret;
1442	}
1443
1444	return 0;
1445}
1446
1447/**
1448 * dwc2_hsotg_process_req_status - process request GET_STATUS
1449 * @hsotg: The device state
1450 * @ctrl: USB control request
1451 */
1452static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1453					struct usb_ctrlrequest *ctrl)
1454{
1455	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1456	struct dwc2_hsotg_ep *ep;
1457	__le16 reply;
1458	int ret;
1459
1460	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1461
1462	if (!ep0->dir_in) {
1463		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1464		return -EINVAL;
1465	}
1466
1467	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1468	case USB_RECIP_DEVICE:
1469		reply = cpu_to_le16(0); /* bit 0 => self powered,
1470					 * bit 1 => remote wakeup */
 
 
 
1471		break;
1472
1473	case USB_RECIP_INTERFACE:
1474		/* currently, the data result should be zero */
1475		reply = cpu_to_le16(0);
1476		break;
1477
1478	case USB_RECIP_ENDPOINT:
1479		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1480		if (!ep)
1481			return -ENOENT;
1482
1483		reply = cpu_to_le16(ep->halted ? 1 : 0);
1484		break;
1485
1486	default:
1487		return 0;
1488	}
1489
1490	if (le16_to_cpu(ctrl->wLength) != 2)
1491		return -EINVAL;
1492
1493	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1494	if (ret) {
1495		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1496		return ret;
1497	}
1498
1499	return 1;
1500}
1501
1502static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1503
1504/**
1505 * get_ep_head - return the first request on the endpoint
1506 * @hs_ep: The controller endpoint to get
1507 *
1508 * Get the first request on the endpoint.
1509 */
1510static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1511{
1512	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1513					queue);
1514}
1515
1516/**
1517 * dwc2_gadget_start_next_request - Starts next request from ep queue
1518 * @hs_ep: Endpoint structure
1519 *
1520 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1521 * in its handler. Hence we need to unmask it here to be able to do
1522 * resynchronization.
1523 */
1524static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1525{
1526	u32 mask;
1527	struct dwc2_hsotg *hsotg = hs_ep->parent;
1528	int dir_in = hs_ep->dir_in;
1529	struct dwc2_hsotg_req *hs_req;
1530	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1531
1532	if (!list_empty(&hs_ep->queue)) {
1533		hs_req = get_ep_head(hs_ep);
1534		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1535		return;
1536	}
1537	if (!hs_ep->isochronous)
1538		return;
1539
1540	if (dir_in) {
1541		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1542			__func__);
1543	} else {
1544		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1545			__func__);
1546		mask = dwc2_readl(hsotg->regs + epmsk_reg);
1547		mask |= DOEPMSK_OUTTKNEPDISMSK;
1548		dwc2_writel(mask, hsotg->regs + epmsk_reg);
1549	}
1550}
1551
1552/**
1553 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1554 * @hsotg: The device state
1555 * @ctrl: USB control request
1556 */
1557static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1558					 struct usb_ctrlrequest *ctrl)
1559{
1560	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1561	struct dwc2_hsotg_req *hs_req;
1562	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1563	struct dwc2_hsotg_ep *ep;
1564	int ret;
1565	bool halted;
1566	u32 recip;
1567	u32 wValue;
1568	u32 wIndex;
1569
1570	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1571		__func__, set ? "SET" : "CLEAR");
1572
1573	wValue = le16_to_cpu(ctrl->wValue);
1574	wIndex = le16_to_cpu(ctrl->wIndex);
1575	recip = ctrl->bRequestType & USB_RECIP_MASK;
1576
1577	switch (recip) {
1578	case USB_RECIP_DEVICE:
1579		switch (wValue) {
 
 
 
 
1580		case USB_DEVICE_TEST_MODE:
1581			if ((wIndex & 0xff) != 0)
1582				return -EINVAL;
1583			if (!set)
1584				return -EINVAL;
1585
1586			hsotg->test_mode = wIndex >> 8;
1587			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1588			if (ret) {
1589				dev_err(hsotg->dev,
1590					"%s: failed to send reply\n", __func__);
1591				return ret;
1592			}
1593			break;
1594		default:
1595			return -ENOENT;
1596		}
1597		break;
1598
1599	case USB_RECIP_ENDPOINT:
1600		ep = ep_from_windex(hsotg, wIndex);
1601		if (!ep) {
1602			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1603				__func__, wIndex);
1604			return -ENOENT;
1605		}
1606
1607		switch (wValue) {
1608		case USB_ENDPOINT_HALT:
1609			halted = ep->halted;
1610
1611			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1612
1613			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1614			if (ret) {
1615				dev_err(hsotg->dev,
1616					"%s: failed to send reply\n", __func__);
1617				return ret;
1618			}
1619
1620			/*
1621			 * we have to complete all requests for ep if it was
1622			 * halted, and the halt was cleared by CLEAR_FEATURE
1623			 */
1624
1625			if (!set && halted) {
1626				/*
1627				 * If we have request in progress,
1628				 * then complete it
1629				 */
1630				if (ep->req) {
1631					hs_req = ep->req;
1632					ep->req = NULL;
1633					list_del_init(&hs_req->queue);
1634					if (hs_req->req.complete) {
1635						spin_unlock(&hsotg->lock);
1636						usb_gadget_giveback_request(
1637							&ep->ep, &hs_req->req);
1638						spin_lock(&hsotg->lock);
1639					}
1640				}
1641
1642				/* If we have pending request, then start it */
1643				if (!ep->req) {
1644					dwc2_gadget_start_next_request(ep);
1645				}
1646			}
1647
1648			break;
1649
1650		default:
1651			return -ENOENT;
1652		}
1653		break;
1654	default:
1655		return -ENOENT;
1656	}
1657	return 1;
1658}
1659
1660static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1661
1662/**
1663 * dwc2_hsotg_stall_ep0 - stall ep0
1664 * @hsotg: The device state
1665 *
1666 * Set stall for ep0 as response for setup request.
1667 */
1668static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1669{
1670	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1671	u32 reg;
1672	u32 ctrl;
1673
1674	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1675	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1676
1677	/*
1678	 * DxEPCTL_Stall will be cleared by EP once it has
1679	 * taken effect, so no need to clear later.
1680	 */
1681
1682	ctrl = dwc2_readl(hsotg->regs + reg);
1683	ctrl |= DXEPCTL_STALL;
1684	ctrl |= DXEPCTL_CNAK;
1685	dwc2_writel(ctrl, hsotg->regs + reg);
1686
1687	dev_dbg(hsotg->dev,
1688		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1689		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1690
1691	 /*
1692	  * complete won't be called, so we enqueue
1693	  * setup request here
1694	  */
1695	 dwc2_hsotg_enqueue_setup(hsotg);
1696}
1697
1698/**
1699 * dwc2_hsotg_process_control - process a control request
1700 * @hsotg: The device state
1701 * @ctrl: The control request received
1702 *
1703 * The controller has received the SETUP phase of a control request, and
1704 * needs to work out what to do next (and whether to pass it on to the
1705 * gadget driver).
1706 */
1707static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1708				      struct usb_ctrlrequest *ctrl)
1709{
1710	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1711	int ret = 0;
1712	u32 dcfg;
1713
1714	dev_dbg(hsotg->dev,
1715		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1716		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1717		ctrl->wIndex, ctrl->wLength);
1718
1719	if (ctrl->wLength == 0) {
1720		ep0->dir_in = 1;
1721		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1722	} else if (ctrl->bRequestType & USB_DIR_IN) {
1723		ep0->dir_in = 1;
1724		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1725	} else {
1726		ep0->dir_in = 0;
1727		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1728	}
1729
1730	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1731		switch (ctrl->bRequest) {
1732		case USB_REQ_SET_ADDRESS:
1733			hsotg->connected = 1;
1734			dcfg = dwc2_readl(hsotg->regs + DCFG);
1735			dcfg &= ~DCFG_DEVADDR_MASK;
1736			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1737				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1738			dwc2_writel(dcfg, hsotg->regs + DCFG);
1739
1740			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1741
1742			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1743			return;
1744
1745		case USB_REQ_GET_STATUS:
1746			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1747			break;
1748
1749		case USB_REQ_CLEAR_FEATURE:
1750		case USB_REQ_SET_FEATURE:
1751			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1752			break;
1753		}
1754	}
1755
1756	/* as a fallback, try delivering it to the driver to deal with */
1757
1758	if (ret == 0 && hsotg->driver) {
1759		spin_unlock(&hsotg->lock);
1760		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1761		spin_lock(&hsotg->lock);
1762		if (ret < 0)
1763			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1764	}
1765
 
 
 
 
1766	/*
1767	 * the request is either unhandlable, or is not formatted correctly
1768	 * so respond with a STALL for the status stage to indicate failure.
1769	 */
1770
1771	if (ret < 0)
1772		dwc2_hsotg_stall_ep0(hsotg);
1773}
1774
1775/**
1776 * dwc2_hsotg_complete_setup - completion of a setup transfer
1777 * @ep: The endpoint the request was on.
1778 * @req: The request completed.
1779 *
1780 * Called on completion of any requests the driver itself submitted for
1781 * EP0 setup packets
1782 */
1783static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1784				     struct usb_request *req)
1785{
1786	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1787	struct dwc2_hsotg *hsotg = hs_ep->parent;
1788
1789	if (req->status < 0) {
1790		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1791		return;
1792	}
1793
1794	spin_lock(&hsotg->lock);
1795	if (req->actual == 0)
1796		dwc2_hsotg_enqueue_setup(hsotg);
1797	else
1798		dwc2_hsotg_process_control(hsotg, req->buf);
1799	spin_unlock(&hsotg->lock);
1800}
1801
1802/**
1803 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1804 * @hsotg: The device state.
1805 *
1806 * Enqueue a request on EP0 if necessary to received any SETUP packets
1807 * received from the host.
1808 */
1809static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1810{
1811	struct usb_request *req = hsotg->ctrl_req;
1812	struct dwc2_hsotg_req *hs_req = our_req(req);
1813	int ret;
1814
1815	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1816
1817	req->zero = 0;
1818	req->length = 8;
1819	req->buf = hsotg->ctrl_buff;
1820	req->complete = dwc2_hsotg_complete_setup;
1821
1822	if (!list_empty(&hs_req->queue)) {
1823		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1824		return;
1825	}
1826
1827	hsotg->eps_out[0]->dir_in = 0;
1828	hsotg->eps_out[0]->send_zlp = 0;
1829	hsotg->ep0_state = DWC2_EP0_SETUP;
1830
1831	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1832	if (ret < 0) {
1833		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1834		/*
1835		 * Don't think there's much we can do other than watch the
1836		 * driver fail.
1837		 */
1838	}
1839}
1840
1841static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1842					struct dwc2_hsotg_ep *hs_ep)
1843{
1844	u32 ctrl;
1845	u8 index = hs_ep->index;
1846	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1847	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1848
1849	if (hs_ep->dir_in)
1850		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1851			index);
1852	else
1853		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1854			index);
1855	if (using_desc_dma(hsotg)) {
1856		/* Not specific buffer needed for ep0 ZLP */
1857		dma_addr_t dma = hs_ep->desc_list_dma;
1858
1859		dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
 
 
1860		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
1861	} else {
1862		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1863			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1864			    epsiz_reg);
1865	}
1866
1867	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1868	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1869	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1870	ctrl |= DXEPCTL_USBACTEP;
1871	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1872}
1873
1874/**
1875 * dwc2_hsotg_complete_request - complete a request given to us
1876 * @hsotg: The device state.
1877 * @hs_ep: The endpoint the request was on.
1878 * @hs_req: The request to complete.
1879 * @result: The result code (0 => Ok, otherwise errno)
1880 *
1881 * The given request has finished, so call the necessary completion
1882 * if it has one and then look to see if we can start a new request
1883 * on the endpoint.
1884 *
1885 * Note, expects the ep to already be locked as appropriate.
1886 */
1887static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1888				       struct dwc2_hsotg_ep *hs_ep,
1889				       struct dwc2_hsotg_req *hs_req,
1890				       int result)
1891{
1892
1893	if (!hs_req) {
1894		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1895		return;
1896	}
1897
1898	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1899		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1900
1901	/*
1902	 * only replace the status if we've not already set an error
1903	 * from a previous transaction
1904	 */
1905
1906	if (hs_req->req.status == -EINPROGRESS)
1907		hs_req->req.status = result;
1908
1909	if (using_dma(hsotg))
1910		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1911
1912	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1913
1914	hs_ep->req = NULL;
1915	list_del_init(&hs_req->queue);
1916
1917	/*
1918	 * call the complete request with the locks off, just in case the
1919	 * request tries to queue more work for this endpoint.
1920	 */
1921
1922	if (hs_req->req.complete) {
1923		spin_unlock(&hsotg->lock);
1924		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1925		spin_lock(&hsotg->lock);
1926	}
1927
1928	/* In DDMA don't need to proceed to starting of next ISOC request */
1929	if (using_desc_dma(hsotg) && hs_ep->isochronous)
1930		return;
1931
1932	/*
1933	 * Look to see if there is anything else to do. Note, the completion
1934	 * of the previous request may have caused a new request to be started
1935	 * so be careful when doing this.
1936	 */
1937
1938	if (!hs_ep->req && result >= 0) {
1939		dwc2_gadget_start_next_request(hs_ep);
1940	}
1941}
1942
1943/*
1944 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
1945 * @hs_ep: The endpoint the request was on.
1946 *
1947 * Get first request from the ep queue, determine descriptor on which complete
1948 * happened. SW based on isoc_chain_num discovers which half of the descriptor
1949 * chain is currently in use by HW, adjusts dma_address and calculates index
1950 * of completed descriptor based on the value of DEPDMA register. Update actual
1951 * length of request, giveback to gadget.
1952 */
1953static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
1954{
1955	struct dwc2_hsotg *hsotg = hs_ep->parent;
1956	struct dwc2_hsotg_req *hs_req;
1957	struct usb_request *ureq;
1958	int index;
1959	dma_addr_t dma_addr;
1960	u32 dma_reg;
1961	u32 depdma;
1962	u32 desc_sts;
1963	u32 mask;
1964
1965	hs_req = get_ep_head(hs_ep);
1966	if (!hs_req) {
1967		dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
1968		return;
1969	}
1970	ureq = &hs_req->req;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1971
1972	dma_addr = hs_ep->desc_list_dma;
 
 
 
 
1973
1974	/*
1975	 * If lower half of  descriptor chain is currently use by SW,
1976	 * that means higher half is being processed by HW, so shift
1977	 * DMA address to higher half of descriptor chain.
1978	 */
1979	if (!hs_ep->isoc_chain_num)
1980		dma_addr += sizeof(struct dwc2_dma_desc) *
1981			    (MAX_DMA_DESC_NUM_GENERIC / 2);
1982
1983	dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
1984	depdma = dwc2_readl(hsotg->regs + dma_reg);
1985
1986	index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
1987	desc_sts = hs_ep->desc_list[index].status;
1988
1989	mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
1990	       DEV_DMA_ISOC_RX_NBYTES_MASK;
1991	ureq->actual = ureq->length -
1992		       ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);
1993
1994	/* Adjust actual length for ISOC Out if length is not align of 4 */
1995	if (!hs_ep->dir_in && ureq->length & 0x3)
1996		ureq->actual += 4 - (ureq->length & 0x3);
1997
1998	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
 
 
 
 
1999}
2000
2001/*
2002 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
2003 * @hs_ep: The isochronous endpoint to be re-enabled.
2004 *
2005 * If ep has been disabled due to last descriptor servicing (IN endpoint) or
2006 * BNA (OUT endpoint) check the status of other half of descriptor chain that
2007 * was under SW control till HW was busy and restart the endpoint if needed.
 
2008 */
2009static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
2010{
2011	struct dwc2_hsotg *hsotg = hs_ep->parent;
2012	u32 depctl;
2013	u32 dma_reg;
2014	u32 ctrl;
2015	u32 dma_addr = hs_ep->desc_list_dma;
2016	unsigned char index = hs_ep->index;
2017
2018	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
2019	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
 
2020
2021	ctrl = dwc2_readl(hsotg->regs + depctl);
2022
2023	/*
2024	 * EP was disabled if HW has processed last descriptor or BNA was set.
2025	 * So restart ep if SW has prepared new descriptor chain in ep_queue
2026	 * routine while HW was busy.
2027	 */
2028	if (!(ctrl & DXEPCTL_EPENA)) {
2029		if (!hs_ep->next_desc) {
2030			dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
2031				__func__);
2032			return;
2033		}
2034
2035		dma_addr += sizeof(struct dwc2_dma_desc) *
2036			    (MAX_DMA_DESC_NUM_GENERIC / 2) *
2037			    hs_ep->isoc_chain_num;
2038		dwc2_writel(dma_addr, hsotg->regs + dma_reg);
2039
2040		ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
2041		dwc2_writel(ctrl, hsotg->regs + depctl);
2042
2043		/* Switch ISOC descriptor chain number being processed by SW*/
2044		hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
2045		hs_ep->next_desc = 0;
2046
2047		dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
2048			__func__);
2049	}
2050}
2051
2052/**
2053 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2054 * @hsotg: The device state.
2055 * @ep_idx: The endpoint index for the data
2056 * @size: The size of data in the fifo, in bytes
2057 *
2058 * The FIFO status shows there is data to read from the FIFO for a given
2059 * endpoint, so sort out whether we need to read the data into a request
2060 * that has been made for that endpoint.
2061 */
2062static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2063{
2064	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2065	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2066	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2067	int to_read;
2068	int max_req;
2069	int read_ptr;
2070
2071
2072	if (!hs_req) {
2073		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2074		int ptr;
2075
2076		dev_dbg(hsotg->dev,
2077			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2078			 __func__, size, ep_idx, epctl);
2079
2080		/* dump the data from the FIFO, we've nothing we can do */
2081		for (ptr = 0; ptr < size; ptr += 4)
2082			(void)dwc2_readl(fifo);
2083
2084		return;
2085	}
2086
2087	to_read = size;
2088	read_ptr = hs_req->req.actual;
2089	max_req = hs_req->req.length - read_ptr;
2090
2091	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2092		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2093
2094	if (to_read > max_req) {
2095		/*
2096		 * more data appeared than we where willing
2097		 * to deal with in this request.
2098		 */
2099
2100		/* currently we don't deal this */
2101		WARN_ON_ONCE(1);
2102	}
2103
2104	hs_ep->total_data += to_read;
2105	hs_req->req.actual += to_read;
2106	to_read = DIV_ROUND_UP(to_read, 4);
2107
2108	/*
2109	 * note, we might over-write the buffer end by 3 bytes depending on
2110	 * alignment of the data.
2111	 */
2112	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
 
2113}
2114
2115/**
2116 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2117 * @hsotg: The device instance
2118 * @dir_in: If IN zlp
2119 *
2120 * Generate a zero-length IN packet request for terminating a SETUP
2121 * transaction.
2122 *
2123 * Note, since we don't write any data to the TxFIFO, then it is
2124 * currently believed that we do not need to wait for any space in
2125 * the TxFIFO.
2126 */
2127static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2128{
2129	/* eps_out[0] is used in both directions */
2130	hsotg->eps_out[0]->dir_in = dir_in;
2131	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2132
2133	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2134}
2135
2136static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2137			u32 epctl_reg)
2138{
2139	u32 ctrl;
2140
2141	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2142	if (ctrl & DXEPCTL_EOFRNUM)
2143		ctrl |= DXEPCTL_SETEVENFR;
2144	else
2145		ctrl |= DXEPCTL_SETODDFR;
2146	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
2147}
2148
2149/*
2150 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2151 * @hs_ep - The endpoint on which transfer went
2152 *
2153 * Iterate over endpoints descriptor chain and get info on bytes remained
2154 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2155 */
2156static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2157{
2158	struct dwc2_hsotg *hsotg = hs_ep->parent;
2159	unsigned int bytes_rem = 0;
2160	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2161	int i;
2162	u32 status;
2163
2164	if (!desc)
2165		return -EINVAL;
2166
2167	for (i = 0; i < hs_ep->desc_count; ++i) {
2168		status = desc->status;
2169		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2170
2171		if (status & DEV_DMA_STS_MASK)
2172			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2173				i, status & DEV_DMA_STS_MASK);
 
2174	}
2175
2176	return bytes_rem;
2177}
2178
2179/**
2180 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2181 * @hsotg: The device instance
2182 * @epnum: The endpoint received from
2183 *
2184 * The RXFIFO has delivered an OutDone event, which means that the data
2185 * transfer for an OUT endpoint has been completed, either by a short
2186 * packet or by the finish of a transfer.
2187 */
2188static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2189{
2190	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2191	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2192	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2193	struct usb_request *req = &hs_req->req;
2194	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2195	int result = 0;
2196
2197	if (!hs_req) {
2198		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2199		return;
2200	}
2201
2202	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2203		dev_dbg(hsotg->dev, "zlp packet received\n");
2204		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2205		dwc2_hsotg_enqueue_setup(hsotg);
2206		return;
2207	}
2208
2209	if (using_desc_dma(hsotg))
2210		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2211
2212	if (using_dma(hsotg)) {
2213		unsigned size_done;
2214
2215		/*
2216		 * Calculate the size of the transfer by checking how much
2217		 * is left in the endpoint size register and then working it
2218		 * out from the amount we loaded for the transfer.
2219		 *
2220		 * We need to do this as DMA pointers are always 32bit aligned
2221		 * so may overshoot/undershoot the transfer.
2222		 */
2223
2224		size_done = hs_ep->size_loaded - size_left;
2225		size_done += hs_ep->last_load;
2226
2227		req->actual = size_done;
2228	}
2229
2230	/* if there is more request to do, schedule new transfer */
2231	if (req->actual < req->length && size_left == 0) {
2232		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2233		return;
2234	}
2235
2236	if (req->actual < req->length && req->short_not_ok) {
2237		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2238			__func__, req->actual, req->length);
2239
2240		/*
2241		 * todo - what should we return here? there's no one else
2242		 * even bothering to check the status.
2243		 */
2244	}
2245
2246	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2247	if (!using_desc_dma(hsotg) && epnum == 0 &&
2248	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2249		/* Move to STATUS IN */
2250		dwc2_hsotg_ep0_zlp(hsotg, true);
2251		return;
2252	}
2253
2254	/*
2255	 * Slave mode OUT transfers do not go through XferComplete so
2256	 * adjust the ISOC parity here.
2257	 */
2258	if (!using_dma(hsotg)) {
2259		if (hs_ep->isochronous && hs_ep->interval == 1)
2260			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2261		else if (hs_ep->isochronous && hs_ep->interval > 1)
2262			dwc2_gadget_incr_frame_num(hs_ep);
2263	}
2264
 
 
 
 
2265	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2266}
2267
2268/**
2269 * dwc2_hsotg_handle_rx - RX FIFO has data
2270 * @hsotg: The device instance
2271 *
2272 * The IRQ handler has detected that the RX FIFO has some data in it
2273 * that requires processing, so find out what is in there and do the
2274 * appropriate read.
2275 *
2276 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2277 * chunks, so if you have x packets received on an endpoint you'll get x
2278 * FIFO events delivered, each with a packet's worth of data in it.
2279 *
2280 * When using DMA, we should not be processing events from the RXFIFO
2281 * as the actual data should be sent to the memory directly and we turn
2282 * on the completion interrupts to get notifications of transfer completion.
2283 */
2284static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2285{
2286	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2287	u32 epnum, status, size;
2288
2289	WARN_ON(using_dma(hsotg));
2290
2291	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2292	status = grxstsr & GRXSTS_PKTSTS_MASK;
2293
2294	size = grxstsr & GRXSTS_BYTECNT_MASK;
2295	size >>= GRXSTS_BYTECNT_SHIFT;
2296
2297	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2298			__func__, grxstsr, size, epnum);
2299
2300	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2301	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2302		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2303		break;
2304
2305	case GRXSTS_PKTSTS_OUTDONE:
2306		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2307			dwc2_hsotg_read_frameno(hsotg));
2308
2309		if (!using_dma(hsotg))
2310			dwc2_hsotg_handle_outdone(hsotg, epnum);
2311		break;
2312
2313	case GRXSTS_PKTSTS_SETUPDONE:
2314		dev_dbg(hsotg->dev,
2315			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2316			dwc2_hsotg_read_frameno(hsotg),
2317			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2318		/*
2319		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2320		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2321		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2322		 */
2323		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2324			dwc2_hsotg_handle_outdone(hsotg, epnum);
2325		break;
2326
2327	case GRXSTS_PKTSTS_OUTRX:
2328		dwc2_hsotg_rx_data(hsotg, epnum, size);
2329		break;
2330
2331	case GRXSTS_PKTSTS_SETUPRX:
2332		dev_dbg(hsotg->dev,
2333			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2334			dwc2_hsotg_read_frameno(hsotg),
2335			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2336
2337		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2338
2339		dwc2_hsotg_rx_data(hsotg, epnum, size);
2340		break;
2341
2342	default:
2343		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2344			 __func__, grxstsr);
2345
2346		dwc2_hsotg_dump(hsotg);
2347		break;
2348	}
2349}
2350
2351/**
2352 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2353 * @mps: The maximum packet size in bytes.
2354 */
2355static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2356{
2357	switch (mps) {
2358	case 64:
2359		return D0EPCTL_MPS_64;
2360	case 32:
2361		return D0EPCTL_MPS_32;
2362	case 16:
2363		return D0EPCTL_MPS_16;
2364	case 8:
2365		return D0EPCTL_MPS_8;
2366	}
2367
2368	/* bad max packet size, warn and return invalid result */
2369	WARN_ON(1);
2370	return (u32)-1;
2371}
2372
2373/**
2374 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2375 * @hsotg: The driver state.
2376 * @ep: The index number of the endpoint
2377 * @mps: The maximum packet size in bytes
2378 * @mc: The multicount value
 
2379 *
2380 * Configure the maximum packet size for the given endpoint, updating
2381 * the hardware control registers to reflect this.
2382 */
2383static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2384					unsigned int ep, unsigned int mps,
2385					unsigned int mc, unsigned int dir_in)
2386{
2387	struct dwc2_hsotg_ep *hs_ep;
2388	void __iomem *regs = hsotg->regs;
2389	u32 reg;
2390
2391	hs_ep = index_to_ep(hsotg, ep, dir_in);
2392	if (!hs_ep)
2393		return;
2394
2395	if (ep == 0) {
2396		u32 mps_bytes = mps;
2397
2398		/* EP0 is a special case */
2399		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2400		if (mps > 3)
2401			goto bad_mps;
2402		hs_ep->ep.maxpacket = mps_bytes;
2403		hs_ep->mc = 1;
2404	} else {
2405		if (mps > 1024)
2406			goto bad_mps;
2407		hs_ep->mc = mc;
2408		if (mc > 3)
2409			goto bad_mps;
2410		hs_ep->ep.maxpacket = mps;
2411	}
2412
2413	if (dir_in) {
2414		reg = dwc2_readl(regs + DIEPCTL(ep));
2415		reg &= ~DXEPCTL_MPS_MASK;
2416		reg |= mps;
2417		dwc2_writel(reg, regs + DIEPCTL(ep));
2418	} else {
2419		reg = dwc2_readl(regs + DOEPCTL(ep));
2420		reg &= ~DXEPCTL_MPS_MASK;
2421		reg |= mps;
2422		dwc2_writel(reg, regs + DOEPCTL(ep));
2423	}
2424
2425	return;
2426
2427bad_mps:
2428	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2429}
2430
2431/**
2432 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2433 * @hsotg: The driver state
2434 * @idx: The index for the endpoint (0..15)
2435 */
2436static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2437{
2438	int timeout;
2439	int val;
2440
2441	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2442		    hsotg->regs + GRSTCTL);
2443
2444	/* wait until the fifo is flushed */
2445	timeout = 100;
2446
2447	while (1) {
2448		val = dwc2_readl(hsotg->regs + GRSTCTL);
2449
2450		if ((val & (GRSTCTL_TXFFLSH)) == 0)
2451			break;
2452
2453		if (--timeout == 0) {
2454			dev_err(hsotg->dev,
2455				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
2456				__func__, val);
2457			break;
2458		}
2459
2460		udelay(1);
2461	}
2462}
2463
2464/**
2465 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2466 * @hsotg: The driver state
2467 * @hs_ep: The driver endpoint to check.
2468 *
2469 * Check to see if there is a request that has data to send, and if so
2470 * make an attempt to write data into the FIFO.
2471 */
2472static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2473			   struct dwc2_hsotg_ep *hs_ep)
2474{
2475	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2476
2477	if (!hs_ep->dir_in || !hs_req) {
2478		/**
2479		 * if request is not enqueued, we disable interrupts
2480		 * for endpoints, excepting ep0
2481		 */
2482		if (hs_ep->index != 0)
2483			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2484					     hs_ep->dir_in, 0);
2485		return 0;
2486	}
2487
2488	if (hs_req->req.actual < hs_req->req.length) {
2489		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2490			hs_ep->index);
2491		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2492	}
2493
2494	return 0;
2495}
2496
2497/**
2498 * dwc2_hsotg_complete_in - complete IN transfer
2499 * @hsotg: The device state.
2500 * @hs_ep: The endpoint that has just completed.
2501 *
2502 * An IN transfer has been completed, update the transfer's state and then
2503 * call the relevant completion routines.
2504 */
2505static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2506				  struct dwc2_hsotg_ep *hs_ep)
2507{
2508	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2509	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2510	int size_left, size_done;
2511
2512	if (!hs_req) {
2513		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2514		return;
2515	}
2516
2517	/* Finish ZLP handling for IN EP0 transactions */
2518	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2519		dev_dbg(hsotg->dev, "zlp packet sent\n");
2520
2521		/*
2522		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2523		 * changed to IN. Change back to complete OUT transfer request
2524		 */
2525		hs_ep->dir_in = 0;
2526
2527		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2528		if (hsotg->test_mode) {
2529			int ret;
2530
2531			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2532			if (ret < 0) {
2533				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2534						hsotg->test_mode);
2535				dwc2_hsotg_stall_ep0(hsotg);
2536				return;
2537			}
2538		}
2539		dwc2_hsotg_enqueue_setup(hsotg);
2540		return;
2541	}
2542
2543	/*
2544	 * Calculate the size of the transfer by checking how much is left
2545	 * in the endpoint size register and then working it out from
2546	 * the amount we loaded for the transfer.
2547	 *
2548	 * We do this even for DMA, as the transfer may have incremented
2549	 * past the end of the buffer (DMA transfers are always 32bit
2550	 * aligned).
2551	 */
2552	if (using_desc_dma(hsotg)) {
2553		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2554		if (size_left < 0)
2555			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2556				size_left);
2557	} else {
2558		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2559	}
2560
2561	size_done = hs_ep->size_loaded - size_left;
2562	size_done += hs_ep->last_load;
2563
2564	if (hs_req->req.actual != size_done)
2565		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2566			__func__, hs_req->req.actual, size_done);
2567
2568	hs_req->req.actual = size_done;
2569	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2570		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2571
2572	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2573		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2574		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2575		return;
2576	}
2577
2578	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2579	if (hs_ep->send_zlp) {
2580		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2581		hs_ep->send_zlp = 0;
2582		/* transfer will be completed on next complete interrupt */
2583		return;
2584	}
2585
2586	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2587		/* Move to STATUS OUT */
2588		dwc2_hsotg_ep0_zlp(hsotg, false);
2589		return;
2590	}
2591
2592	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2593}
2594
2595/**
2596 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2597 * @hsotg: The device state.
2598 * @idx: Index of ep.
2599 * @dir_in: Endpoint direction 1-in 0-out.
2600 *
2601 * Reads for endpoint with given index and direction, by masking
2602 * epint_reg with coresponding mask.
2603 */
2604static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2605					  unsigned int idx, int dir_in)
2606{
2607	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2608	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2609	u32 ints;
2610	u32 mask;
2611	u32 diepempmsk;
2612
2613	mask = dwc2_readl(hsotg->regs + epmsk_reg);
2614	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
2615	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2616	mask |= DXEPINT_SETUP_RCVD;
2617
2618	ints = dwc2_readl(hsotg->regs + epint_reg);
2619	ints &= mask;
2620	return ints;
2621}
2622
2623/**
2624 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2625 * @hs_ep: The endpoint on which interrupt is asserted.
2626 *
2627 * This interrupt indicates that the endpoint has been disabled per the
2628 * application's request.
2629 *
2630 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2631 * in case of ISOC completes current request.
2632 *
2633 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2634 * request starts it.
2635 */
2636static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2637{
2638	struct dwc2_hsotg *hsotg = hs_ep->parent;
2639	struct dwc2_hsotg_req *hs_req;
2640	unsigned char idx = hs_ep->index;
2641	int dir_in = hs_ep->dir_in;
2642	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2643	int dctl = dwc2_readl(hsotg->regs + DCTL);
2644
2645	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2646
2647	if (dir_in) {
2648		int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2649
2650		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2651
2652		if (hs_ep->isochronous) {
2653			dwc2_hsotg_complete_in(hsotg, hs_ep);
2654			return;
2655		}
2656
2657		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2658			int dctl = dwc2_readl(hsotg->regs + DCTL);
2659
2660			dctl |= DCTL_CGNPINNAK;
2661			dwc2_writel(dctl, hsotg->regs + DCTL);
2662		}
2663		return;
2664	}
2665
2666	if (dctl & DCTL_GOUTNAKSTS) {
2667		dctl |= DCTL_CGOUTNAK;
2668		dwc2_writel(dctl, hsotg->regs + DCTL);
2669	}
2670
2671	if (!hs_ep->isochronous)
2672		return;
2673
2674	if (list_empty(&hs_ep->queue)) {
2675		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2676			__func__, hs_ep);
2677		return;
2678	}
2679
2680	do {
2681		hs_req = get_ep_head(hs_ep);
2682		if (hs_req)
2683			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2684						    -ENODATA);
2685		dwc2_gadget_incr_frame_num(hs_ep);
 
 
2686	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2687
2688	dwc2_gadget_start_next_request(hs_ep);
2689}
2690
2691/**
2692 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2693 * @hs_ep: The endpoint on which interrupt is asserted.
2694 *
2695 * This is starting point for ISOC-OUT transfer, synchronization done with
2696 * first out token received from host while corresponding EP is disabled.
2697 *
2698 * Device does not know initial frame in which out token will come. For this
2699 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2700 * getting this interrupt SW starts calculation for next transfer frame.
2701 */
2702static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2703{
2704	struct dwc2_hsotg *hsotg = ep->parent;
2705	int dir_in = ep->dir_in;
2706	u32 doepmsk;
2707	u32 tmp;
2708
2709	if (dir_in || !ep->isochronous)
2710		return;
2711
2712	/*
2713	 * Store frame in which irq was asserted here, as
2714	 * it can change while completing request below.
2715	 */
2716	tmp = dwc2_hsotg_read_frameno(hsotg);
2717
2718	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);
2719
2720	if (using_desc_dma(hsotg)) {
2721		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2722			/* Start first ISO Out */
2723			ep->target_frame = tmp;
2724			dwc2_gadget_start_isoc_ddma(ep);
2725		}
2726		return;
2727	}
2728
2729	if (ep->interval > 1 &&
2730	    ep->target_frame == TARGET_FRAME_INITIAL) {
2731		u32 dsts;
2732		u32 ctrl;
2733
2734		dsts = dwc2_readl(hsotg->regs + DSTS);
2735		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2736		dwc2_gadget_incr_frame_num(ep);
2737
2738		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
2739		if (ep->target_frame & 0x1)
2740			ctrl |= DXEPCTL_SETODDFR;
2741		else
2742			ctrl |= DXEPCTL_SETEVENFR;
2743
2744		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
2745	}
2746
2747	dwc2_gadget_start_next_request(ep);
2748	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
2749	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2750	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
2751}
2752
2753/**
2754* dwc2_gadget_handle_nak - handle NAK interrupt
2755* @hs_ep: The endpoint on which interrupt is asserted.
2756*
2757* This is starting point for ISOC-IN transfer, synchronization done with
2758* first IN token received from host while corresponding EP is disabled.
2759*
2760* Device does not know when first one token will arrive from host. On first
2761* token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2762* and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2763* sent in response to that as there was no data in FIFO. SW is basing on this
2764* interrupt to obtain frame in which token has come and then based on the
2765* interval calculates next frame for transfer.
2766*/
2767static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2768{
2769	struct dwc2_hsotg *hsotg = hs_ep->parent;
2770	int dir_in = hs_ep->dir_in;
2771
2772	if (!dir_in || !hs_ep->isochronous)
2773		return;
2774
2775	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2776		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2777
2778		if (using_desc_dma(hsotg)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2779			dwc2_gadget_start_isoc_ddma(hs_ep);
2780			return;
2781		}
2782
 
2783		if (hs_ep->interval > 1) {
2784			u32 ctrl = dwc2_readl(hsotg->regs +
2785					      DIEPCTL(hs_ep->index));
2786			if (hs_ep->target_frame & 0x1)
2787				ctrl |= DXEPCTL_SETODDFR;
2788			else
2789				ctrl |= DXEPCTL_SETEVENFR;
2790
2791			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
2792		}
2793
2794		dwc2_hsotg_complete_request(hsotg, hs_ep,
2795					    get_ep_head(hs_ep), 0);
2796	}
2797
2798	dwc2_gadget_incr_frame_num(hs_ep);
 
2799}
2800
2801/**
2802 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2803 * @hsotg: The driver state
2804 * @idx: The index for the endpoint (0..15)
2805 * @dir_in: Set if this is an IN endpoint
2806 *
2807 * Process and clear any interrupt pending for an individual endpoint
2808 */
2809static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2810			    int dir_in)
2811{
2812	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2813	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2814	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2815	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2816	u32 ints;
2817	u32 ctrl;
2818
2819	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2820	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2821
2822	/* Clear endpoint interrupts */
2823	dwc2_writel(ints, hsotg->regs + epint_reg);
2824
2825	if (!hs_ep) {
2826		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2827					__func__, idx, dir_in ? "in" : "out");
2828		return;
2829	}
2830
2831	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2832		__func__, idx, dir_in ? "in" : "out", ints);
2833
2834	/* Don't process XferCompl interrupt if it is a setup packet */
2835	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2836		ints &= ~DXEPINT_XFERCOMPL;
2837
2838	/*
2839	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2840	 * stage and xfercomplete was generated without SETUP phase done
2841	 * interrupt. SW should parse received setup packet only after host's
2842	 * exit from setup phase of control transfer.
2843	 */
2844	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2845	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2846		ints &= ~DXEPINT_XFERCOMPL;
2847
2848	if (ints & DXEPINT_XFERCOMPL) {
2849		dev_dbg(hsotg->dev,
2850			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2851			__func__, dwc2_readl(hsotg->regs + epctl_reg),
2852			dwc2_readl(hsotg->regs + epsiz_reg));
2853
2854		/* In DDMA handle isochronous requests separately */
2855		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2856			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2857			/* Try to start next isoc request */
2858			dwc2_gadget_start_next_isoc_ddma(hs_ep);
2859		} else if (dir_in) {
2860			/*
2861			 * We get OutDone from the FIFO, so we only
2862			 * need to look at completing IN requests here
2863			 * if operating slave mode
2864			 */
2865			if (hs_ep->isochronous && hs_ep->interval > 1)
2866				dwc2_gadget_incr_frame_num(hs_ep);
2867
2868			dwc2_hsotg_complete_in(hsotg, hs_ep);
2869			if (ints & DXEPINT_NAKINTRPT)
2870				ints &= ~DXEPINT_NAKINTRPT;
2871
2872			if (idx == 0 && !hs_ep->req)
2873				dwc2_hsotg_enqueue_setup(hsotg);
2874		} else if (using_dma(hsotg)) {
2875			/*
2876			 * We're using DMA, we need to fire an OutDone here
2877			 * as we ignore the RXFIFO.
2878			 */
2879			if (hs_ep->isochronous && hs_ep->interval > 1)
2880				dwc2_gadget_incr_frame_num(hs_ep);
2881
2882			dwc2_hsotg_handle_outdone(hsotg, idx);
2883		}
2884	}
2885
2886	if (ints & DXEPINT_EPDISBLD)
2887		dwc2_gadget_handle_ep_disabled(hs_ep);
2888
2889	if (ints & DXEPINT_OUTTKNEPDIS)
2890		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
2891
2892	if (ints & DXEPINT_NAKINTRPT)
2893		dwc2_gadget_handle_nak(hs_ep);
2894
2895	if (ints & DXEPINT_AHBERR)
2896		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2897
2898	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2899		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2900
2901		if (using_dma(hsotg) && idx == 0) {
2902			/*
2903			 * this is the notification we've received a
2904			 * setup packet. In non-DMA mode we'd get this
2905			 * from the RXFIFO, instead we need to process
2906			 * the setup here.
2907			 */
2908
2909			if (dir_in)
2910				WARN_ON_ONCE(1);
2911			else
2912				dwc2_hsotg_handle_outdone(hsotg, 0);
2913		}
2914	}
2915
2916	if (ints & DXEPINT_STSPHSERCVD) {
2917		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
2918
2919		/* Move to STATUS IN for DDMA */
2920		if (using_desc_dma(hsotg))
2921			dwc2_hsotg_ep0_zlp(hsotg, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2922	}
2923
2924	if (ints & DXEPINT_BACK2BACKSETUP)
2925		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2926
2927	if (ints & DXEPINT_BNAINTR) {
2928		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
2929
2930		/*
2931		 * Try to start next isoc request, if any.
2932		 * Sometimes the endpoint remains enabled after BNA interrupt
2933		 * assertion, which is not expected, hence we can enter here
2934		 * couple of times.
2935		 */
2936		if (hs_ep->isochronous)
2937			dwc2_gadget_start_next_isoc_ddma(hs_ep);
2938	}
2939
2940	if (dir_in && !hs_ep->isochronous) {
2941		/* not sure if this is important, but we'll clear it anyway */
2942		if (ints & DXEPINT_INTKNTXFEMP) {
2943			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2944				__func__, idx);
2945		}
2946
2947		/* this probably means something bad is happening */
2948		if (ints & DXEPINT_INTKNEPMIS) {
2949			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2950				 __func__, idx);
2951		}
2952
2953		/* FIFO has space or is empty (see GAHBCFG) */
2954		if (hsotg->dedicated_fifos &&
2955		    ints & DXEPINT_TXFEMP) {
2956			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2957				__func__, idx);
2958			if (!using_dma(hsotg))
2959				dwc2_hsotg_trytx(hsotg, hs_ep);
2960		}
2961	}
2962}
2963
2964/**
2965 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2966 * @hsotg: The device state.
2967 *
2968 * Handle updating the device settings after the enumeration phase has
2969 * been completed.
2970 */
2971static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2972{
2973	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2974	int ep0_mps = 0, ep_mps = 8;
2975
2976	/*
2977	 * This should signal the finish of the enumeration phase
2978	 * of the USB handshaking, so we should now know what rate
2979	 * we connected at.
2980	 */
2981
2982	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2983
2984	/*
2985	 * note, since we're limited by the size of transfer on EP0, and
2986	 * it seems IN transfers must be a even number of packets we do
2987	 * not advertise a 64byte MPS on EP0.
2988	 */
2989
2990	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2991	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2992	case DSTS_ENUMSPD_FS:
2993	case DSTS_ENUMSPD_FS48:
2994		hsotg->gadget.speed = USB_SPEED_FULL;
2995		ep0_mps = EP0_MPS_LIMIT;
2996		ep_mps = 1023;
2997		break;
2998
2999	case DSTS_ENUMSPD_HS:
3000		hsotg->gadget.speed = USB_SPEED_HIGH;
3001		ep0_mps = EP0_MPS_LIMIT;
3002		ep_mps = 1024;
3003		break;
3004
3005	case DSTS_ENUMSPD_LS:
3006		hsotg->gadget.speed = USB_SPEED_LOW;
3007		ep0_mps = 8;
3008		ep_mps = 8;
3009		/*
3010		 * note, we don't actually support LS in this driver at the
3011		 * moment, and the documentation seems to imply that it isn't
3012		 * supported by the PHYs on some of the devices.
3013		 */
3014		break;
3015	}
3016	dev_info(hsotg->dev, "new device is %s\n",
3017		 usb_speed_string(hsotg->gadget.speed));
3018
3019	/*
3020	 * we should now know the maximum packet size for an
3021	 * endpoint, so set the endpoints to a default value.
3022	 */
3023
3024	if (ep0_mps) {
3025		int i;
3026		/* Initialize ep0 for both in and out directions */
3027		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3028		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3029		for (i = 1; i < hsotg->num_of_eps; i++) {
3030			if (hsotg->eps_in[i])
3031				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3032							    0, 1);
3033			if (hsotg->eps_out[i])
3034				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3035							    0, 0);
3036		}
3037	}
3038
3039	/* ensure after enumeration our EP0 is active */
3040
3041	dwc2_hsotg_enqueue_setup(hsotg);
3042
3043	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3044		dwc2_readl(hsotg->regs + DIEPCTL0),
3045		dwc2_readl(hsotg->regs + DOEPCTL0));
3046}
3047
3048/**
3049 * kill_all_requests - remove all requests from the endpoint's queue
3050 * @hsotg: The device state.
3051 * @ep: The endpoint the requests may be on.
3052 * @result: The result code to use.
3053 *
3054 * Go through the requests on the given endpoint and mark them
3055 * completed with the given result code.
3056 */
3057static void kill_all_requests(struct dwc2_hsotg *hsotg,
3058			      struct dwc2_hsotg_ep *ep,
3059			      int result)
3060{
3061	struct dwc2_hsotg_req *req, *treq;
3062	unsigned size;
3063
3064	ep->req = NULL;
3065
3066	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3067		dwc2_hsotg_complete_request(hsotg, ep, req,
3068					   result);
 
 
3069
3070	if (!hsotg->dedicated_fifos)
3071		return;
3072	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3073	if (size < ep->fifo_size)
3074		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3075}
3076
3077/**
3078 * dwc2_hsotg_disconnect - disconnect service
3079 * @hsotg: The device state.
3080 *
3081 * The device has been disconnected. Remove all current
3082 * transactions and signal the gadget driver that this
3083 * has happened.
3084 */
3085void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3086{
3087	unsigned ep;
3088
3089	if (!hsotg->connected)
3090		return;
3091
3092	hsotg->connected = 0;
3093	hsotg->test_mode = 0;
3094
 
3095	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3096		if (hsotg->eps_in[ep])
3097			kill_all_requests(hsotg, hsotg->eps_in[ep],
3098								-ESHUTDOWN);
3099		if (hsotg->eps_out[ep])
3100			kill_all_requests(hsotg, hsotg->eps_out[ep],
3101								-ESHUTDOWN);
3102	}
3103
3104	call_gadget(hsotg, disconnect);
3105	hsotg->lx_state = DWC2_L3;
 
 
3106}
3107
3108/**
3109 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3110 * @hsotg: The device state:
3111 * @periodic: True if this is a periodic FIFO interrupt
3112 */
3113static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3114{
3115	struct dwc2_hsotg_ep *ep;
3116	int epno, ret;
3117
3118	/* look through for any more data to transmit */
3119	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3120		ep = index_to_ep(hsotg, epno, 1);
3121
3122		if (!ep)
3123			continue;
3124
3125		if (!ep->dir_in)
3126			continue;
3127
3128		if ((periodic && !ep->periodic) ||
3129		    (!periodic && ep->periodic))
3130			continue;
3131
3132		ret = dwc2_hsotg_trytx(hsotg, ep);
3133		if (ret < 0)
3134			break;
3135	}
3136}
3137
3138/* IRQ flags which will trigger a retry around the IRQ loop */
3139#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3140			GINTSTS_PTXFEMP |  \
3141			GINTSTS_RXFLVL)
3142
 
3143/**
3144 * dwc2_hsotg_core_init - issue softreset to the core
3145 * @hsotg: The device state
 
3146 *
3147 * Issue a soft reset to the core, and await the core finishing it.
3148 */
3149void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3150						bool is_usb_reset)
3151{
3152	u32 intmsk;
3153	u32 val;
3154	u32 usbcfg;
3155	u32 dcfg = 0;
 
3156
3157	/* Kill any ep0 requests as controller will be reinitialized */
3158	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3159
3160	if (!is_usb_reset)
3161		if (dwc2_core_reset(hsotg))
3162			return;
 
 
 
 
 
 
 
 
 
3163
3164	/*
3165	 * we must now enable ep0 ready for host detection and then
3166	 * set configuration.
3167	 */
3168
3169	/* keep other bits untouched (so e.g. forced modes are not lost) */
3170	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3171	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3172		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3173
3174	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3175	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
3176	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3177		/* FS/LS Dedicated Transceiver Interface */
3178		usbcfg |= GUSBCFG_PHYSEL;
3179	} else {
3180		/* set the PLL on, remove the HNP/SRP and set the PHY */
3181		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3182		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3183			(val << GUSBCFG_USBTRDTIM_SHIFT);
3184	}
3185	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3186
3187	dwc2_hsotg_init_fifo(hsotg);
3188
3189	if (!is_usb_reset)
3190		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3191
3192	dcfg |= DCFG_EPMISCNT(1);
3193
3194	switch (hsotg->params.speed) {
3195	case DWC2_SPEED_PARAM_LOW:
3196		dcfg |= DCFG_DEVSPD_LS;
3197		break;
3198	case DWC2_SPEED_PARAM_FULL:
3199		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3200			dcfg |= DCFG_DEVSPD_FS48;
3201		else
3202			dcfg |= DCFG_DEVSPD_FS;
3203		break;
3204	default:
3205		dcfg |= DCFG_DEVSPD_HS;
3206	}
3207
3208	dwc2_writel(dcfg,  hsotg->regs + DCFG);
 
 
 
3209
3210	/* Clear any pending OTG interrupts */
3211	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3212
3213	/* Clear any pending interrupts */
3214	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3215	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3216		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3217		GINTSTS_USBRST | GINTSTS_RESETDET |
3218		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3219		GINTSTS_USBSUSP | GINTSTS_WKUPINT;
 
3220
3221	if (!using_desc_dma(hsotg))
3222		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3223
3224	if (hsotg->params.external_id_pin_ctl <= 0)
3225		intmsk |= GINTSTS_CONIDSTSCHNG;
3226
3227	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3228
3229	if (using_dma(hsotg)) {
3230		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3231			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
3232			    hsotg->regs + GAHBCFG);
3233
3234		/* Set DDMA mode support in the core if needed */
3235		if (using_desc_dma(hsotg))
3236			__orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN);
3237
3238	} else {
3239		dwc2_writel(((hsotg->dedicated_fifos) ?
3240						(GAHBCFG_NP_TXF_EMP_LVL |
3241						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3242			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3243	}
3244
3245	/*
3246	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3247	 * when we have no data to transfer. Otherwise we get being flooded by
3248	 * interrupts.
3249	 */
3250
3251	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3252		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3253		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3254		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3255		hsotg->regs + DIEPMSK);
3256
3257	/*
3258	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3259	 * DMA mode we may need this and StsPhseRcvd.
3260	 */
3261	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3262		DOEPMSK_STSPHSERCVDMSK) : 0) |
3263		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3264		DOEPMSK_SETUPMSK,
3265		hsotg->regs + DOEPMSK);
3266
3267	/* Enable BNA interrupt for DDMA */
3268	if (using_desc_dma(hsotg))
3269		__orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);
 
 
 
 
 
 
3270
3271	dwc2_writel(0, hsotg->regs + DAINTMSK);
3272
3273	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3274		dwc2_readl(hsotg->regs + DIEPCTL0),
3275		dwc2_readl(hsotg->regs + DOEPCTL0));
3276
3277	/* enable in and out endpoint interrupts */
3278	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3279
3280	/*
3281	 * Enable the RXFIFO when in slave mode, as this is how we collect
3282	 * the data. In DMA mode, we get events from the FIFO but also
3283	 * things we cannot process, so do not use it.
3284	 */
3285	if (!using_dma(hsotg))
3286		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3287
3288	/* Enable interrupts for EP0 in and out */
3289	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3290	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3291
3292	if (!is_usb_reset) {
3293		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3294		udelay(10);  /* see openiboot */
3295		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3296	}
3297
3298	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3299
3300	/*
3301	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3302	 * writing to the EPCTL register..
3303	 */
3304
3305	/* set to read 1 8byte packet */
3306	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3307	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3308
3309	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3310	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3311	       DXEPCTL_USBACTEP,
3312	       hsotg->regs + DOEPCTL0);
3313
3314	/* enable, but don't activate EP0in */
3315	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3316	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3317
3318	dwc2_hsotg_enqueue_setup(hsotg);
3319
3320	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3321		dwc2_readl(hsotg->regs + DIEPCTL0),
3322		dwc2_readl(hsotg->regs + DOEPCTL0));
3323
3324	/* clear global NAKs */
3325	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3326	if (!is_usb_reset)
3327		val |= DCTL_SFTDISCON;
3328	__orr32(hsotg->regs + DCTL, val);
 
 
 
 
 
 
 
3329
3330	/* must be at-least 3ms to allow bus to see disconnect */
3331	mdelay(3);
3332
3333	hsotg->lx_state = DWC2_L0;
 
 
 
 
 
 
3334}
3335
3336static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3337{
3338	/* set the soft-disconnect bit */
3339	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3340}
3341
3342void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3343{
3344	/* remove the soft-disconnect and let's go */
3345	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3346}
3347
3348/**
3349 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3350 * @hsotg: The device state:
3351 *
3352 * This interrupt indicates one of the following conditions occurred while
3353 * transmitting an ISOC transaction.
3354 * - Corrupted IN Token for ISOC EP.
3355 * - Packet not complete in FIFO.
3356 *
3357 * The following actions will be taken:
3358 * - Determine the EP
3359 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3360 */
3361static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3362{
3363	struct dwc2_hsotg_ep *hs_ep;
3364	u32 epctrl;
 
3365	u32 idx;
3366
3367	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3368
3369	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
 
 
3370		hs_ep = hsotg->eps_in[idx];
3371		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
3372		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
 
 
 
 
3373		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3374			epctrl |= DXEPCTL_SNAK;
3375			epctrl |= DXEPCTL_EPDIS;
3376			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
3377		}
3378	}
3379
3380	/* Clear interrupt */
3381	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
3382}
3383
3384/**
3385 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3386 * @hsotg: The device state:
3387 *
3388 * This interrupt indicates one of the following conditions occurred while
3389 * transmitting an ISOC transaction.
3390 * - Corrupted OUT Token for ISOC EP.
3391 * - Packet not complete in FIFO.
3392 *
3393 * The following actions will be taken:
3394 * - Determine the EP
3395 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3396 */
3397static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3398{
3399	u32 gintsts;
3400	u32 gintmsk;
 
3401	u32 epctrl;
3402	struct dwc2_hsotg_ep *hs_ep;
3403	int idx;
3404
3405	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3406
3407	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
 
 
 
3408		hs_ep = hsotg->eps_out[idx];
3409		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3410		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
 
 
 
 
3411		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3412			/* Unmask GOUTNAKEFF interrupt */
3413			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3414			gintmsk |= GINTSTS_GOUTNAKEFF;
3415			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3416
3417			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3418			if (!(gintsts & GINTSTS_GOUTNAKEFF))
3419				__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
 
 
3420		}
3421	}
3422
3423	/* Clear interrupt */
3424	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
3425}
3426
3427/**
3428 * dwc2_hsotg_irq - handle device interrupt
3429 * @irq: The IRQ number triggered
3430 * @pw: The pw value when registered the handler.
3431 */
3432static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3433{
3434	struct dwc2_hsotg *hsotg = pw;
3435	int retry_count = 8;
3436	u32 gintsts;
3437	u32 gintmsk;
3438
3439	if (!dwc2_is_device_mode(hsotg))
3440		return IRQ_NONE;
3441
3442	spin_lock(&hsotg->lock);
3443irq_retry:
3444	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3445	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3446
3447	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3448		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3449
3450	gintsts &= gintmsk;
3451
3452	if (gintsts & GINTSTS_RESETDET) {
3453		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3454
3455		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
3456
3457		/* This event must be used only if controller is suspended */
3458		if (hsotg->lx_state == DWC2_L2) {
3459			dwc2_exit_hibernation(hsotg, true);
3460			hsotg->lx_state = DWC2_L0;
3461		}
3462	}
3463
3464	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3465
3466		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
3467		u32 connected = hsotg->connected;
3468
3469		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3470		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3471			dwc2_readl(hsotg->regs + GNPTXSTS));
3472
3473		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
3474
3475		/* Report disconnection if it is not already done. */
3476		dwc2_hsotg_disconnect(hsotg);
3477
 
 
 
3478		if (usb_status & GOTGCTL_BSESVLD && connected)
3479			dwc2_hsotg_core_init_disconnected(hsotg, true);
3480	}
3481
3482	if (gintsts & GINTSTS_ENUMDONE) {
3483		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3484
3485		dwc2_hsotg_irq_enumdone(hsotg);
3486	}
3487
3488	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3489		u32 daint = dwc2_readl(hsotg->regs + DAINT);
3490		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3491		u32 daint_out, daint_in;
3492		int ep;
3493
3494		daint &= daintmsk;
3495		daint_out = daint >> DAINT_OUTEP_SHIFT;
3496		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3497
3498		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3499
3500		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3501						ep++, daint_out >>= 1) {
3502			if (daint_out & 1)
3503				dwc2_hsotg_epint(hsotg, ep, 0);
3504		}
3505
3506		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3507						ep++, daint_in >>= 1) {
3508			if (daint_in & 1)
3509				dwc2_hsotg_epint(hsotg, ep, 1);
3510		}
3511	}
3512
3513	/* check both FIFOs */
3514
3515	if (gintsts & GINTSTS_NPTXFEMP) {
3516		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3517
3518		/*
3519		 * Disable the interrupt to stop it happening again
3520		 * unless one of these endpoint routines decides that
3521		 * it needs re-enabling
3522		 */
3523
3524		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3525		dwc2_hsotg_irq_fifoempty(hsotg, false);
3526	}
3527
3528	if (gintsts & GINTSTS_PTXFEMP) {
3529		dev_dbg(hsotg->dev, "PTxFEmp\n");
3530
3531		/* See note in GINTSTS_NPTxFEmp */
3532
3533		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3534		dwc2_hsotg_irq_fifoempty(hsotg, true);
3535	}
3536
3537	if (gintsts & GINTSTS_RXFLVL) {
3538		/*
3539		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3540		 * we need to retry dwc2_hsotg_handle_rx if this is still
3541		 * set.
3542		 */
3543
3544		dwc2_hsotg_handle_rx(hsotg);
3545	}
3546
3547	if (gintsts & GINTSTS_ERLYSUSP) {
3548		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3549		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3550	}
3551
3552	/*
3553	 * these next two seem to crop-up occasionally causing the core
3554	 * to shutdown the USB transfer, so try clearing them and logging
3555	 * the occurrence.
3556	 */
3557
3558	if (gintsts & GINTSTS_GOUTNAKEFF) {
3559		u8 idx;
3560		u32 epctrl;
3561		u32 gintmsk;
 
3562		struct dwc2_hsotg_ep *hs_ep;
3563
 
 
3564		/* Mask this interrupt */
3565		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3566		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3567		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3568
3569		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3570		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3571			hs_ep = hsotg->eps_out[idx];
3572			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
 
 
3573
3574			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
 
 
3575				epctrl |= DXEPCTL_SNAK;
3576				epctrl |= DXEPCTL_EPDIS;
3577				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
3578			}
3579		}
3580
3581		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3582	}
3583
3584	if (gintsts & GINTSTS_GINNAKEFF) {
3585		dev_info(hsotg->dev, "GINNakEff triggered\n");
3586
3587		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3588
3589		dwc2_hsotg_dump(hsotg);
3590	}
3591
3592	if (gintsts & GINTSTS_INCOMPL_SOIN)
3593		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3594
3595	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3596		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3597
3598	/*
3599	 * if we've had fifo events, we should try and go around the
3600	 * loop again to see if there's any point in returning yet.
3601	 */
3602
3603	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3604			goto irq_retry;
 
 
 
 
3605
3606	spin_unlock(&hsotg->lock);
3607
3608	return IRQ_HANDLED;
3609}
3610
3611static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
3612				   u32 bit, u32 timeout)
3613{
3614	u32 i;
3615
3616	for (i = 0; i < timeout; i++) {
3617		if (dwc2_readl(hs_otg->regs + reg) & bit)
3618			return 0;
3619		udelay(1);
3620	}
3621
3622	return -ETIMEDOUT;
3623}
3624
3625static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3626				   struct dwc2_hsotg_ep *hs_ep)
3627{
3628	u32 epctrl_reg;
3629	u32 epint_reg;
3630
3631	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3632		DOEPCTL(hs_ep->index);
3633	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3634		DOEPINT(hs_ep->index);
3635
3636	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3637		hs_ep->name);
3638
3639	if (hs_ep->dir_in) {
3640		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3641			__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
3642			/* Wait for Nak effect */
3643			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3644						    DXEPINT_INEPNAKEFF, 100))
3645				dev_warn(hsotg->dev,
3646					 "%s: timeout DIEPINT.NAKEFF\n",
3647					 __func__);
3648		} else {
3649			__orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
3650			/* Wait for Nak effect */
3651			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3652						    GINTSTS_GINNAKEFF, 100))
3653				dev_warn(hsotg->dev,
3654					 "%s: timeout GINTSTS.GINNAKEFF\n",
3655					 __func__);
3656		}
3657	} else {
3658		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
3659			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3660
3661		/* Wait for global nak to take effect */
3662		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3663					    GINTSTS_GOUTNAKEFF, 100))
3664			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3665				 __func__);
3666	}
3667
3668	/* Disable ep */
3669	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3670
3671	/* Wait for ep to be disabled */
3672	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3673		dev_warn(hsotg->dev,
3674			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3675
3676	/* Clear EPDISBLD interrupt */
3677	__orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);
3678
3679	if (hs_ep->dir_in) {
3680		unsigned short fifo_index;
3681
3682		if (hsotg->dedicated_fifos || hs_ep->periodic)
3683			fifo_index = hs_ep->fifo_index;
3684		else
3685			fifo_index = 0;
3686
3687		/* Flush TX FIFO */
3688		dwc2_flush_tx_fifo(hsotg, fifo_index);
3689
3690		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3691		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3692			__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3693
3694	} else {
3695		/* Remove global NAKs */
3696		__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
3697	}
3698}
3699
3700/**
3701 * dwc2_hsotg_ep_enable - enable the given endpoint
3702 * @ep: The USB endpint to configure
3703 * @desc: The USB endpoint descriptor to configure with.
3704 *
3705 * This is called from the USB gadget code's usb_ep_enable().
3706 */
3707static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3708			       const struct usb_endpoint_descriptor *desc)
3709{
3710	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3711	struct dwc2_hsotg *hsotg = hs_ep->parent;
3712	unsigned long flags;
3713	unsigned int index = hs_ep->index;
3714	u32 epctrl_reg;
3715	u32 epctrl;
3716	u32 mps;
3717	u32 mc;
3718	u32 mask;
3719	unsigned int dir_in;
3720	unsigned int i, val, size;
3721	int ret = 0;
 
 
3722
3723	dev_dbg(hsotg->dev,
3724		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3725		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3726		desc->wMaxPacketSize, desc->bInterval);
3727
3728	/* not to be called for EP0 */
3729	if (index == 0) {
3730		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3731		return -EINVAL;
3732	}
3733
3734	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3735	if (dir_in != hs_ep->dir_in) {
3736		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3737		return -EINVAL;
3738	}
3739
 
3740	mps = usb_endpoint_maxp(desc);
3741	mc = usb_endpoint_maxp_mult(desc);
3742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3743	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3744
3745	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3746	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3747
3748	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3749		__func__, epctrl, epctrl_reg);
3750
 
 
 
 
 
3751	/* Allocate DMA descriptor chain for non-ctrl endpoints */
3752	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3753		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3754			MAX_DMA_DESC_NUM_GENERIC *
3755			sizeof(struct dwc2_dma_desc),
3756			&hs_ep->desc_list_dma, GFP_ATOMIC);
3757		if (!hs_ep->desc_list) {
3758			ret = -ENOMEM;
3759			goto error2;
3760		}
3761	}
3762
3763	spin_lock_irqsave(&hsotg->lock, flags);
3764
3765	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3766	epctrl |= DXEPCTL_MPS(mps);
3767
3768	/*
3769	 * mark the endpoint as active, otherwise the core may ignore
3770	 * transactions entirely for this endpoint
3771	 */
3772	epctrl |= DXEPCTL_USBACTEP;
3773
3774	/* update the endpoint state */
3775	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3776
3777	/* default, set to non-periodic */
3778	hs_ep->isochronous = 0;
3779	hs_ep->periodic = 0;
3780	hs_ep->halted = 0;
3781	hs_ep->interval = desc->bInterval;
3782
3783	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
3784	case USB_ENDPOINT_XFER_ISOC:
3785		epctrl |= DXEPCTL_EPTYPE_ISO;
3786		epctrl |= DXEPCTL_SETEVENFR;
3787		hs_ep->isochronous = 1;
3788		hs_ep->interval = 1 << (desc->bInterval - 1);
3789		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3790		hs_ep->isoc_chain_num = 0;
3791		hs_ep->next_desc = 0;
 
3792		if (dir_in) {
3793			hs_ep->periodic = 1;
3794			mask = dwc2_readl(hsotg->regs + DIEPMSK);
3795			mask |= DIEPMSK_NAKMSK;
3796			dwc2_writel(mask, hsotg->regs + DIEPMSK);
3797		} else {
3798			mask = dwc2_readl(hsotg->regs + DOEPMSK);
3799			mask |= DOEPMSK_OUTTKNEPDISMSK;
3800			dwc2_writel(mask, hsotg->regs + DOEPMSK);
3801		}
3802		break;
3803
3804	case USB_ENDPOINT_XFER_BULK:
3805		epctrl |= DXEPCTL_EPTYPE_BULK;
3806		break;
3807
3808	case USB_ENDPOINT_XFER_INT:
3809		if (dir_in)
3810			hs_ep->periodic = 1;
3811
3812		if (hsotg->gadget.speed == USB_SPEED_HIGH)
3813			hs_ep->interval = 1 << (desc->bInterval - 1);
3814
3815		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3816		break;
3817
3818	case USB_ENDPOINT_XFER_CONTROL:
3819		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3820		break;
3821	}
3822
3823	/*
3824	 * if the hardware has dedicated fifos, we must give each IN EP
3825	 * a unique tx-fifo even if it is non-periodic.
3826	 */
3827	if (dir_in && hsotg->dedicated_fifos) {
3828		u32 fifo_index = 0;
3829		u32 fifo_size = UINT_MAX;
3830		size = hs_ep->ep.maxpacket*hs_ep->mc;
 
3831		for (i = 1; i < hsotg->num_of_eps; ++i) {
3832			if (hsotg->fifo_map & (1<<i))
3833				continue;
3834			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3835			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
3836			if (val < size)
3837				continue;
3838			/* Search for smallest acceptable fifo */
3839			if (val < fifo_size) {
3840				fifo_size = val;
3841				fifo_index = i;
3842			}
3843		}
3844		if (!fifo_index) {
3845			dev_err(hsotg->dev,
3846				"%s: No suitable fifo found\n", __func__);
3847			ret = -ENOMEM;
3848			goto error1;
3849		}
 
3850		hsotg->fifo_map |= 1 << fifo_index;
3851		epctrl |= DXEPCTL_TXFNUM(fifo_index);
3852		hs_ep->fifo_index = fifo_index;
3853		hs_ep->fifo_size = fifo_size;
3854	}
3855
3856	/* for non control endpoints, set PID to D0 */
3857	if (index && !hs_ep->isochronous)
3858		epctrl |= DXEPCTL_SETD0PID;
3859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3860	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
3861		__func__, epctrl);
3862
3863	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3864	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3865		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3866
3867	/* enable the endpoint interrupt */
3868	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3869
3870error1:
3871	spin_unlock_irqrestore(&hsotg->lock, flags);
3872
3873error2:
3874	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3875		dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3876			sizeof(struct dwc2_dma_desc),
3877			hs_ep->desc_list, hs_ep->desc_list_dma);
3878		hs_ep->desc_list = NULL;
3879	}
3880
3881	return ret;
3882}
3883
3884/**
3885 * dwc2_hsotg_ep_disable - disable given endpoint
3886 * @ep: The endpoint to disable.
3887 */
3888static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3889{
3890	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3891	struct dwc2_hsotg *hsotg = hs_ep->parent;
3892	int dir_in = hs_ep->dir_in;
3893	int index = hs_ep->index;
3894	unsigned long flags;
3895	u32 epctrl_reg;
3896	u32 ctrl;
3897
3898	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3899
3900	if (ep == &hsotg->eps_out[0]->ep) {
3901		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
3902		return -EINVAL;
3903	}
3904
 
 
 
 
 
3905	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3906
3907	spin_lock_irqsave(&hsotg->lock, flags);
3908
3909	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3910
3911	if (ctrl & DXEPCTL_EPENA)
3912		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3913
3914	ctrl &= ~DXEPCTL_EPENA;
3915	ctrl &= ~DXEPCTL_USBACTEP;
3916	ctrl |= DXEPCTL_SNAK;
3917
3918	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3919	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3920
3921	/* disable endpoint interrupts */
3922	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3923
3924	/* terminate all requests with shutdown */
3925	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
3926
3927	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
3928	hs_ep->fifo_index = 0;
3929	hs_ep->fifo_size = 0;
3930
 
 
 
 
 
 
 
 
 
 
 
 
3931	spin_unlock_irqrestore(&hsotg->lock, flags);
3932	return 0;
3933}
3934
3935/**
3936 * on_list - check request is on the given endpoint
3937 * @ep: The endpoint to check.
3938 * @test: The request to test if it is on the endpoint.
3939 */
3940static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
3941{
3942	struct dwc2_hsotg_req *req, *treq;
3943
3944	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
3945		if (req == test)
3946			return true;
3947	}
3948
3949	return false;
3950}
3951
3952/**
3953 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
3954 * @ep: The endpoint to dequeue.
3955 * @req: The request to be removed from a queue.
3956 */
3957static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
3958{
3959	struct dwc2_hsotg_req *hs_req = our_req(req);
3960	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3961	struct dwc2_hsotg *hs = hs_ep->parent;
3962	unsigned long flags;
3963
3964	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
3965
3966	spin_lock_irqsave(&hs->lock, flags);
3967
3968	if (!on_list(hs_ep, hs_req)) {
3969		spin_unlock_irqrestore(&hs->lock, flags);
3970		return -EINVAL;
3971	}
3972
3973	/* Dequeue already started request */
3974	if (req == &hs_ep->req->req)
3975		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
3976
3977	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
3978	spin_unlock_irqrestore(&hs->lock, flags);
3979
3980	return 0;
3981}
3982
3983/**
3984 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
3985 * @ep: The endpoint to set halt.
3986 * @value: Set or unset the halt.
3987 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
3988 *       the endpoint is busy processing requests.
3989 *
3990 * We need to stall the endpoint immediately if request comes from set_feature
3991 * protocol command handler.
3992 */
3993static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
3994{
3995	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3996	struct dwc2_hsotg *hs = hs_ep->parent;
3997	int index = hs_ep->index;
3998	u32 epreg;
3999	u32 epctl;
4000	u32 xfertype;
4001
4002	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4003
4004	if (index == 0) {
4005		if (value)
4006			dwc2_hsotg_stall_ep0(hs);
4007		else
4008			dev_warn(hs->dev,
4009				 "%s: can't clear halt on ep0\n", __func__);
4010		return 0;
4011	}
4012
4013	if (hs_ep->isochronous) {
4014		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4015		return -EINVAL;
4016	}
4017
4018	if (!now && value && !list_empty(&hs_ep->queue)) {
4019		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4020			ep->name);
4021		return -EAGAIN;
4022	}
4023
4024	if (hs_ep->dir_in) {
4025		epreg = DIEPCTL(index);
4026		epctl = dwc2_readl(hs->regs + epreg);
4027
4028		if (value) {
4029			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4030			if (epctl & DXEPCTL_EPENA)
4031				epctl |= DXEPCTL_EPDIS;
4032		} else {
4033			epctl &= ~DXEPCTL_STALL;
4034			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4035			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4036				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4037					epctl |= DXEPCTL_SETD0PID;
4038		}
4039		dwc2_writel(epctl, hs->regs + epreg);
4040	} else {
4041
4042		epreg = DOEPCTL(index);
4043		epctl = dwc2_readl(hs->regs + epreg);
4044
4045		if (value)
4046			epctl |= DXEPCTL_STALL;
4047		else {
4048			epctl &= ~DXEPCTL_STALL;
4049			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4050			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4051				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4052					epctl |= DXEPCTL_SETD0PID;
4053		}
4054		dwc2_writel(epctl, hs->regs + epreg);
4055	}
4056
4057	hs_ep->halted = value;
4058
4059	return 0;
4060}
4061
4062/**
4063 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4064 * @ep: The endpoint to set halt.
4065 * @value: Set or unset the halt.
4066 */
4067static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4068{
4069	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4070	struct dwc2_hsotg *hs = hs_ep->parent;
4071	unsigned long flags = 0;
4072	int ret = 0;
4073
4074	spin_lock_irqsave(&hs->lock, flags);
4075	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4076	spin_unlock_irqrestore(&hs->lock, flags);
4077
4078	return ret;
4079}
4080
4081static struct usb_ep_ops dwc2_hsotg_ep_ops = {
4082	.enable		= dwc2_hsotg_ep_enable,
4083	.disable	= dwc2_hsotg_ep_disable,
4084	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4085	.free_request	= dwc2_hsotg_ep_free_request,
4086	.queue		= dwc2_hsotg_ep_queue_lock,
4087	.dequeue	= dwc2_hsotg_ep_dequeue,
4088	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4089	/* note, don't believe we have any call for the fifo routines */
4090};
4091
4092/**
4093 * dwc2_hsotg_init - initalize the usb core
4094 * @hsotg: The driver state
4095 */
4096static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4097{
4098	u32 trdtim;
4099	u32 usbcfg;
4100	/* unmask subset of endpoint interrupts */
4101
4102	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4103		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4104		    hsotg->regs + DIEPMSK);
4105
4106	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4107		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4108		    hsotg->regs + DOEPMSK);
4109
4110	dwc2_writel(0, hsotg->regs + DAINTMSK);
4111
4112	/* Be in disconnected state until gadget is registered */
4113	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
4114
4115	/* setup fifos */
4116
4117	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4118		dwc2_readl(hsotg->regs + GRXFSIZ),
4119		dwc2_readl(hsotg->regs + GNPTXFSIZ));
4120
4121	dwc2_hsotg_init_fifo(hsotg);
4122
4123	/* keep other bits untouched (so e.g. forced modes are not lost) */
4124	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
4125	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4126		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4127
4128	/* set the PLL on, remove the HNP/SRP and set the PHY */
4129	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4130	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
4131		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4132	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4133
4134	if (using_dma(hsotg))
4135		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4136}
4137
4138/**
4139 * dwc2_hsotg_udc_start - prepare the udc for work
4140 * @gadget: The usb gadget state
4141 * @driver: The usb gadget driver
4142 *
4143 * Perform initialization to prepare udc device and driver
4144 * to work.
4145 */
4146static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4147			   struct usb_gadget_driver *driver)
4148{
4149	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4150	unsigned long flags;
4151	int ret;
4152
4153	if (!hsotg) {
4154		pr_err("%s: called with no device\n", __func__);
4155		return -ENODEV;
4156	}
4157
4158	if (!driver) {
4159		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4160		return -EINVAL;
4161	}
4162
4163	if (driver->max_speed < USB_SPEED_FULL)
4164		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4165
4166	if (!driver->setup) {
4167		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4168		return -EINVAL;
4169	}
4170
4171	WARN_ON(hsotg->driver);
4172
4173	driver->driver.bus = NULL;
4174	hsotg->driver = driver;
4175	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4176	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4177
4178	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4179		ret = dwc2_lowlevel_hw_enable(hsotg);
4180		if (ret)
4181			goto err;
4182	}
4183
4184	if (!IS_ERR_OR_NULL(hsotg->uphy))
4185		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4186
4187	spin_lock_irqsave(&hsotg->lock, flags);
4188	if (dwc2_hw_is_device(hsotg)) {
4189		dwc2_hsotg_init(hsotg);
4190		dwc2_hsotg_core_init_disconnected(hsotg, false);
4191	}
4192
4193	hsotg->enabled = 0;
4194	spin_unlock_irqrestore(&hsotg->lock, flags);
4195
 
4196	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4197
4198	return 0;
4199
4200err:
4201	hsotg->driver = NULL;
4202	return ret;
4203}
4204
4205/**
4206 * dwc2_hsotg_udc_stop - stop the udc
4207 * @gadget: The usb gadget state
4208 * @driver: The usb gadget driver
4209 *
4210 * Stop udc hw block and stay tunned for future transmissions
4211 */
4212static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4213{
4214	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4215	unsigned long flags = 0;
4216	int ep;
4217
4218	if (!hsotg)
4219		return -ENODEV;
4220
4221	/* all endpoints should be shutdown */
4222	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4223		if (hsotg->eps_in[ep])
4224			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4225		if (hsotg->eps_out[ep])
4226			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4227	}
4228
4229	spin_lock_irqsave(&hsotg->lock, flags);
4230
4231	hsotg->driver = NULL;
4232	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4233	hsotg->enabled = 0;
4234
4235	spin_unlock_irqrestore(&hsotg->lock, flags);
4236
4237	if (!IS_ERR_OR_NULL(hsotg->uphy))
4238		otg_set_peripheral(hsotg->uphy->otg, NULL);
4239
4240	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4241		dwc2_lowlevel_hw_disable(hsotg);
4242
4243	return 0;
4244}
4245
4246/**
4247 * dwc2_hsotg_gadget_getframe - read the frame number
4248 * @gadget: The usb gadget state
4249 *
4250 * Read the {micro} frame number
4251 */
4252static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4253{
4254	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4255}
4256
4257/**
4258 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4259 * @gadget: The usb gadget state
4260 * @is_on: Current state of the USB PHY
4261 *
4262 * Connect/Disconnect the USB PHY pullup
4263 */
4264static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4265{
4266	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4267	unsigned long flags = 0;
4268
4269	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4270			hsotg->op_state);
4271
4272	/* Don't modify pullup state while in host mode */
4273	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4274		hsotg->enabled = is_on;
4275		return 0;
4276	}
4277
4278	spin_lock_irqsave(&hsotg->lock, flags);
4279	if (is_on) {
4280		hsotg->enabled = 1;
4281		dwc2_hsotg_core_init_disconnected(hsotg, false);
 
 
4282		dwc2_hsotg_core_connect(hsotg);
4283	} else {
4284		dwc2_hsotg_core_disconnect(hsotg);
4285		dwc2_hsotg_disconnect(hsotg);
4286		hsotg->enabled = 0;
4287	}
4288
4289	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4290	spin_unlock_irqrestore(&hsotg->lock, flags);
4291
4292	return 0;
4293}
4294
4295static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4296{
4297	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4298	unsigned long flags;
4299
4300	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4301	spin_lock_irqsave(&hsotg->lock, flags);
4302
4303	/*
4304	 * If controller is hibernated, it must exit from hibernation
4305	 * before being initialized / de-initialized
4306	 */
4307	if (hsotg->lx_state == DWC2_L2)
4308		dwc2_exit_hibernation(hsotg, false);
4309
4310	if (is_active) {
4311		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4312
4313		dwc2_hsotg_core_init_disconnected(hsotg, false);
4314		if (hsotg->enabled)
 
 
4315			dwc2_hsotg_core_connect(hsotg);
 
4316	} else {
4317		dwc2_hsotg_core_disconnect(hsotg);
4318		dwc2_hsotg_disconnect(hsotg);
4319	}
4320
4321	spin_unlock_irqrestore(&hsotg->lock, flags);
4322	return 0;
4323}
4324
4325/**
4326 * dwc2_hsotg_vbus_draw - report bMaxPower field
4327 * @gadget: The usb gadget state
4328 * @mA: Amount of current
4329 *
4330 * Report how much power the device may consume to the phy.
4331 */
4332static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
4333{
4334	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4335
4336	if (IS_ERR_OR_NULL(hsotg->uphy))
4337		return -ENOTSUPP;
4338	return usb_phy_set_power(hsotg->uphy, mA);
4339}
4340
4341static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4342	.get_frame	= dwc2_hsotg_gadget_getframe,
4343	.udc_start		= dwc2_hsotg_udc_start,
4344	.udc_stop		= dwc2_hsotg_udc_stop,
4345	.pullup                 = dwc2_hsotg_pullup,
4346	.vbus_session		= dwc2_hsotg_vbus_session,
4347	.vbus_draw		= dwc2_hsotg_vbus_draw,
4348};
4349
4350/**
4351 * dwc2_hsotg_initep - initialise a single endpoint
4352 * @hsotg: The device state.
4353 * @hs_ep: The endpoint to be initialised.
4354 * @epnum: The endpoint number
 
4355 *
4356 * Initialise the given endpoint (as part of the probe and device state
4357 * creation) to give to the gadget driver. Setup the endpoint name, any
4358 * direction information and other state that may be required.
4359 */
4360static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4361				       struct dwc2_hsotg_ep *hs_ep,
4362				       int epnum,
4363				       bool dir_in)
4364{
4365	char *dir;
4366
4367	if (epnum == 0)
4368		dir = "";
4369	else if (dir_in)
4370		dir = "in";
4371	else
4372		dir = "out";
4373
4374	hs_ep->dir_in = dir_in;
4375	hs_ep->index = epnum;
4376
4377	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4378
4379	INIT_LIST_HEAD(&hs_ep->queue);
4380	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4381
4382	/* add to the list of endpoints known by the gadget driver */
4383	if (epnum)
4384		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4385
4386	hs_ep->parent = hsotg;
4387	hs_ep->ep.name = hs_ep->name;
4388
4389	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4390		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4391	else
4392		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4393					   epnum ? 1024 : EP0_MPS_LIMIT);
4394	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4395
4396	if (epnum == 0) {
4397		hs_ep->ep.caps.type_control = true;
4398	} else {
4399		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4400			hs_ep->ep.caps.type_iso = true;
4401			hs_ep->ep.caps.type_bulk = true;
4402		}
4403		hs_ep->ep.caps.type_int = true;
4404	}
4405
4406	if (dir_in)
4407		hs_ep->ep.caps.dir_in = true;
4408	else
4409		hs_ep->ep.caps.dir_out = true;
4410
4411	/*
4412	 * if we're using dma, we need to set the next-endpoint pointer
4413	 * to be something valid.
4414	 */
4415
4416	if (using_dma(hsotg)) {
4417		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
 
4418		if (dir_in)
4419			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4420		else
4421			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4422	}
4423}
4424
4425/**
4426 * dwc2_hsotg_hw_cfg - read HW configuration registers
4427 * @param: The device state
4428 *
4429 * Read the USB core HW configuration registers
4430 */
4431static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4432{
4433	u32 cfg;
4434	u32 ep_type;
4435	u32 i;
4436
4437	/* check hardware configuration */
4438
4439	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4440
4441	/* Add ep0 */
4442	hsotg->num_of_eps++;
4443
4444	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
4445								GFP_KERNEL);
 
4446	if (!hsotg->eps_in[0])
4447		return -ENOMEM;
4448	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4449	hsotg->eps_out[0] = hsotg->eps_in[0];
4450
4451	cfg = hsotg->hw_params.dev_ep_dirs;
4452	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4453		ep_type = cfg & 3;
4454		/* Direction in or both */
4455		if (!(ep_type & 2)) {
4456			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4457				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4458			if (!hsotg->eps_in[i])
4459				return -ENOMEM;
4460		}
4461		/* Direction out or both */
4462		if (!(ep_type & 1)) {
4463			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4464				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4465			if (!hsotg->eps_out[i])
4466				return -ENOMEM;
4467		}
4468	}
4469
4470	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4471	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4472
4473	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4474		 hsotg->num_of_eps,
4475		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4476		 hsotg->fifo_mem);
4477	return 0;
4478}
4479
4480/**
4481 * dwc2_hsotg_dump - dump state of the udc
4482 * @param: The device state
 
4483 */
4484static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4485{
4486#ifdef DEBUG
4487	struct device *dev = hsotg->dev;
4488	void __iomem *regs = hsotg->regs;
4489	u32 val;
4490	int idx;
4491
4492	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4493		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
4494		 dwc2_readl(regs + DIEPMSK));
4495
4496	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4497		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4498
4499	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4500		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4501
4502	/* show periodic fifo settings */
4503
4504	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4505		val = dwc2_readl(regs + DPTXFSIZN(idx));
4506		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4507			 val >> FIFOSIZE_DEPTH_SHIFT,
4508			 val & FIFOSIZE_STARTADDR_MASK);
4509	}
4510
4511	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4512		dev_info(dev,
4513			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4514			 dwc2_readl(regs + DIEPCTL(idx)),
4515			 dwc2_readl(regs + DIEPTSIZ(idx)),
4516			 dwc2_readl(regs + DIEPDMA(idx)));
4517
4518		val = dwc2_readl(regs + DOEPCTL(idx));
4519		dev_info(dev,
4520			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4521			 idx, dwc2_readl(regs + DOEPCTL(idx)),
4522			 dwc2_readl(regs + DOEPTSIZ(idx)),
4523			 dwc2_readl(regs + DOEPDMA(idx)));
4524
4525	}
4526
4527	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4528		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
4529#endif
4530}
4531
4532/**
4533 * dwc2_gadget_init - init function for gadget
4534 * @dwc2: The data structure for the DWC2 driver.
4535 * @irq: The IRQ number for the controller.
4536 */
4537int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
4538{
4539	struct device *dev = hsotg->dev;
4540	int epnum;
4541	int ret;
4542
4543	/* Dump fifo information */
4544	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4545		hsotg->params.g_np_tx_fifo_size);
4546	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4547
4548	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4549	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4550	hsotg->gadget.name = dev_name(dev);
 
 
 
 
 
4551	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4552		hsotg->gadget.is_otg = 1;
4553	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4554		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4555
4556	ret = dwc2_hsotg_hw_cfg(hsotg);
4557	if (ret) {
4558		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4559		return ret;
4560	}
4561
4562	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4563			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4564	if (!hsotg->ctrl_buff)
4565		return -ENOMEM;
4566
4567	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4568			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4569	if (!hsotg->ep0_buff)
4570		return -ENOMEM;
4571
4572	if (using_desc_dma(hsotg)) {
4573		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4574		if (ret < 0)
4575			return ret;
4576	}
4577
4578	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
4579				dev_name(hsotg->dev), hsotg);
4580	if (ret < 0) {
4581		dev_err(dev, "cannot claim IRQ for gadget\n");
4582		return ret;
4583	}
4584
4585	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4586
4587	if (hsotg->num_of_eps == 0) {
4588		dev_err(dev, "wrong number of EPs (zero)\n");
4589		return -EINVAL;
4590	}
4591
4592	/* setup endpoint information */
4593
4594	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4595	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4596
4597	/* allocate EP0 request */
4598
4599	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4600						     GFP_KERNEL);
4601	if (!hsotg->ctrl_req) {
4602		dev_err(dev, "failed to allocate ctrl req\n");
4603		return -ENOMEM;
4604	}
4605
4606	/* initialise the endpoints now the core has been initialised */
4607	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4608		if (hsotg->eps_in[epnum])
4609			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4610								epnum, 1);
4611		if (hsotg->eps_out[epnum])
4612			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4613								epnum, 0);
4614	}
4615
4616	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4617	if (ret)
 
 
4618		return ret;
4619
4620	dwc2_hsotg_dump(hsotg);
4621
4622	return 0;
4623}
4624
4625/**
4626 * dwc2_hsotg_remove - remove function for hsotg driver
4627 * @pdev: The platform information for the driver
 
4628 */
4629int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4630{
4631	usb_del_gadget_udc(&hsotg->gadget);
 
4632
4633	return 0;
4634}
4635
4636int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4637{
4638	unsigned long flags;
4639
4640	if (hsotg->lx_state != DWC2_L0)
4641		return 0;
4642
4643	if (hsotg->driver) {
4644		int ep;
4645
4646		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4647			 hsotg->driver->driver.name);
4648
4649		spin_lock_irqsave(&hsotg->lock, flags);
4650		if (hsotg->enabled)
4651			dwc2_hsotg_core_disconnect(hsotg);
4652		dwc2_hsotg_disconnect(hsotg);
4653		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4654		spin_unlock_irqrestore(&hsotg->lock, flags);
4655
4656		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4657			if (hsotg->eps_in[ep])
4658				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4659			if (hsotg->eps_out[ep])
4660				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4661		}
4662	}
4663
4664	return 0;
4665}
4666
4667int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4668{
4669	unsigned long flags;
4670
4671	if (hsotg->lx_state == DWC2_L2)
4672		return 0;
4673
4674	if (hsotg->driver) {
4675		dev_info(hsotg->dev, "resuming usb gadget %s\n",
4676			 hsotg->driver->driver.name);
4677
4678		spin_lock_irqsave(&hsotg->lock, flags);
4679		dwc2_hsotg_core_init_disconnected(hsotg, false);
4680		if (hsotg->enabled)
 
 
4681			dwc2_hsotg_core_connect(hsotg);
 
4682		spin_unlock_irqrestore(&hsotg->lock, flags);
4683	}
4684
4685	return 0;
4686}
4687
4688/**
4689 * dwc2_backup_device_registers() - Backup controller device registers.
4690 * When suspending usb bus, registers needs to be backuped
4691 * if controller power is disabled once suspended.
4692 *
4693 * @hsotg: Programming view of the DWC_otg controller
4694 */
4695int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4696{
4697	struct dwc2_dregs_backup *dr;
4698	int i;
4699
4700	dev_dbg(hsotg->dev, "%s\n", __func__);
4701
4702	/* Backup dev regs */
4703	dr = &hsotg->dr_backup;
4704
4705	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
4706	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
4707	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
4708	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
4709	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
4710
4711	for (i = 0; i < hsotg->num_of_eps; i++) {
4712		/* Backup IN EPs */
4713		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
4714
4715		/* Ensure DATA PID is correctly configured */
4716		if (dr->diepctl[i] & DXEPCTL_DPID)
4717			dr->diepctl[i] |= DXEPCTL_SETD1PID;
4718		else
4719			dr->diepctl[i] |= DXEPCTL_SETD0PID;
4720
4721		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
4722		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
4723
4724		/* Backup OUT EPs */
4725		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
4726
4727		/* Ensure DATA PID is correctly configured */
4728		if (dr->doepctl[i] & DXEPCTL_DPID)
4729			dr->doepctl[i] |= DXEPCTL_SETD1PID;
4730		else
4731			dr->doepctl[i] |= DXEPCTL_SETD0PID;
4732
4733		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
4734		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
 
4735	}
4736	dr->valid = true;
4737	return 0;
4738}
4739
4740/**
4741 * dwc2_restore_device_registers() - Restore controller device registers.
4742 * When resuming usb bus, device registers needs to be restored
4743 * if controller power were disabled.
4744 *
4745 * @hsotg: Programming view of the DWC_otg controller
 
 
 
4746 */
4747int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
4748{
4749	struct dwc2_dregs_backup *dr;
4750	u32 dctl;
4751	int i;
4752
4753	dev_dbg(hsotg->dev, "%s\n", __func__);
4754
4755	/* Restore dev regs */
4756	dr = &hsotg->dr_backup;
4757	if (!dr->valid) {
4758		dev_err(hsotg->dev, "%s: no device registers to restore\n",
4759			__func__);
4760		return -EINVAL;
4761	}
4762	dr->valid = false;
4763
4764	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
4765	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
4766	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
4767	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
4768	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
 
4769
4770	for (i = 0; i < hsotg->num_of_eps; i++) {
4771		/* Restore IN EPs */
4772		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
4773		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
4774		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4775
4776		/* Restore OUT EPs */
4777		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
4778		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4779		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
 
 
 
 
 
 
 
 
 
 
4780	}
4781
4782	/* Set the Power-On Programming done bit */
4783	dctl = dwc2_readl(hsotg->regs + DCTL);
4784	dctl |= DCTL_PWRONPRGDONE;
4785	dwc2_writel(dctl, hsotg->regs + DCTL);
 
 
4786
4787	return 0;
 
 
 
 
4788}