Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for Atmel AT32 and AT91 SPI Controllers
   4 *
   5 * Copyright (C) 2006 Atmel Corporation
 
 
 
 
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/clk.h>
  10#include <linux/module.h>
  11#include <linux/platform_device.h>
  12#include <linux/delay.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/dmaengine.h>
  15#include <linux/err.h>
  16#include <linux/interrupt.h>
  17#include <linux/spi/spi.h>
  18#include <linux/slab.h>
  19#include <linux/platform_data/dma-atmel.h>
  20#include <linux/of.h>
  21
  22#include <linux/io.h>
  23#include <linux/gpio/consumer.h>
 
  24#include <linux/pinctrl/consumer.h>
  25#include <linux/pm_runtime.h>
  26#include <trace/events/spi.h>
  27
  28/* SPI register offsets */
  29#define SPI_CR					0x0000
  30#define SPI_MR					0x0004
  31#define SPI_RDR					0x0008
  32#define SPI_TDR					0x000c
  33#define SPI_SR					0x0010
  34#define SPI_IER					0x0014
  35#define SPI_IDR					0x0018
  36#define SPI_IMR					0x001c
  37#define SPI_CSR0				0x0030
  38#define SPI_CSR1				0x0034
  39#define SPI_CSR2				0x0038
  40#define SPI_CSR3				0x003c
  41#define SPI_FMR					0x0040
  42#define SPI_FLR					0x0044
  43#define SPI_VERSION				0x00fc
  44#define SPI_RPR					0x0100
  45#define SPI_RCR					0x0104
  46#define SPI_TPR					0x0108
  47#define SPI_TCR					0x010c
  48#define SPI_RNPR				0x0110
  49#define SPI_RNCR				0x0114
  50#define SPI_TNPR				0x0118
  51#define SPI_TNCR				0x011c
  52#define SPI_PTCR				0x0120
  53#define SPI_PTSR				0x0124
  54
  55/* Bitfields in CR */
  56#define SPI_SPIEN_OFFSET			0
  57#define SPI_SPIEN_SIZE				1
  58#define SPI_SPIDIS_OFFSET			1
  59#define SPI_SPIDIS_SIZE				1
  60#define SPI_SWRST_OFFSET			7
  61#define SPI_SWRST_SIZE				1
  62#define SPI_LASTXFER_OFFSET			24
  63#define SPI_LASTXFER_SIZE			1
  64#define SPI_TXFCLR_OFFSET			16
  65#define SPI_TXFCLR_SIZE				1
  66#define SPI_RXFCLR_OFFSET			17
  67#define SPI_RXFCLR_SIZE				1
  68#define SPI_FIFOEN_OFFSET			30
  69#define SPI_FIFOEN_SIZE				1
  70#define SPI_FIFODIS_OFFSET			31
  71#define SPI_FIFODIS_SIZE			1
  72
  73/* Bitfields in MR */
  74#define SPI_MSTR_OFFSET				0
  75#define SPI_MSTR_SIZE				1
  76#define SPI_PS_OFFSET				1
  77#define SPI_PS_SIZE				1
  78#define SPI_PCSDEC_OFFSET			2
  79#define SPI_PCSDEC_SIZE				1
  80#define SPI_FDIV_OFFSET				3
  81#define SPI_FDIV_SIZE				1
  82#define SPI_MODFDIS_OFFSET			4
  83#define SPI_MODFDIS_SIZE			1
  84#define SPI_WDRBT_OFFSET			5
  85#define SPI_WDRBT_SIZE				1
  86#define SPI_LLB_OFFSET				7
  87#define SPI_LLB_SIZE				1
  88#define SPI_PCS_OFFSET				16
  89#define SPI_PCS_SIZE				4
  90#define SPI_DLYBCS_OFFSET			24
  91#define SPI_DLYBCS_SIZE				8
  92
  93/* Bitfields in RDR */
  94#define SPI_RD_OFFSET				0
  95#define SPI_RD_SIZE				16
  96
  97/* Bitfields in TDR */
  98#define SPI_TD_OFFSET				0
  99#define SPI_TD_SIZE				16
 100
 101/* Bitfields in SR */
 102#define SPI_RDRF_OFFSET				0
 103#define SPI_RDRF_SIZE				1
 104#define SPI_TDRE_OFFSET				1
 105#define SPI_TDRE_SIZE				1
 106#define SPI_MODF_OFFSET				2
 107#define SPI_MODF_SIZE				1
 108#define SPI_OVRES_OFFSET			3
 109#define SPI_OVRES_SIZE				1
 110#define SPI_ENDRX_OFFSET			4
 111#define SPI_ENDRX_SIZE				1
 112#define SPI_ENDTX_OFFSET			5
 113#define SPI_ENDTX_SIZE				1
 114#define SPI_RXBUFF_OFFSET			6
 115#define SPI_RXBUFF_SIZE				1
 116#define SPI_TXBUFE_OFFSET			7
 117#define SPI_TXBUFE_SIZE				1
 118#define SPI_NSSR_OFFSET				8
 119#define SPI_NSSR_SIZE				1
 120#define SPI_TXEMPTY_OFFSET			9
 121#define SPI_TXEMPTY_SIZE			1
 122#define SPI_SPIENS_OFFSET			16
 123#define SPI_SPIENS_SIZE				1
 124#define SPI_TXFEF_OFFSET			24
 125#define SPI_TXFEF_SIZE				1
 126#define SPI_TXFFF_OFFSET			25
 127#define SPI_TXFFF_SIZE				1
 128#define SPI_TXFTHF_OFFSET			26
 129#define SPI_TXFTHF_SIZE				1
 130#define SPI_RXFEF_OFFSET			27
 131#define SPI_RXFEF_SIZE				1
 132#define SPI_RXFFF_OFFSET			28
 133#define SPI_RXFFF_SIZE				1
 134#define SPI_RXFTHF_OFFSET			29
 135#define SPI_RXFTHF_SIZE				1
 136#define SPI_TXFPTEF_OFFSET			30
 137#define SPI_TXFPTEF_SIZE			1
 138#define SPI_RXFPTEF_OFFSET			31
 139#define SPI_RXFPTEF_SIZE			1
 140
 141/* Bitfields in CSR0 */
 142#define SPI_CPOL_OFFSET				0
 143#define SPI_CPOL_SIZE				1
 144#define SPI_NCPHA_OFFSET			1
 145#define SPI_NCPHA_SIZE				1
 146#define SPI_CSAAT_OFFSET			3
 147#define SPI_CSAAT_SIZE				1
 148#define SPI_BITS_OFFSET				4
 149#define SPI_BITS_SIZE				4
 150#define SPI_SCBR_OFFSET				8
 151#define SPI_SCBR_SIZE				8
 152#define SPI_DLYBS_OFFSET			16
 153#define SPI_DLYBS_SIZE				8
 154#define SPI_DLYBCT_OFFSET			24
 155#define SPI_DLYBCT_SIZE				8
 156
 157/* Bitfields in RCR */
 158#define SPI_RXCTR_OFFSET			0
 159#define SPI_RXCTR_SIZE				16
 160
 161/* Bitfields in TCR */
 162#define SPI_TXCTR_OFFSET			0
 163#define SPI_TXCTR_SIZE				16
 164
 165/* Bitfields in RNCR */
 166#define SPI_RXNCR_OFFSET			0
 167#define SPI_RXNCR_SIZE				16
 168
 169/* Bitfields in TNCR */
 170#define SPI_TXNCR_OFFSET			0
 171#define SPI_TXNCR_SIZE				16
 172
 173/* Bitfields in PTCR */
 174#define SPI_RXTEN_OFFSET			0
 175#define SPI_RXTEN_SIZE				1
 176#define SPI_RXTDIS_OFFSET			1
 177#define SPI_RXTDIS_SIZE				1
 178#define SPI_TXTEN_OFFSET			8
 179#define SPI_TXTEN_SIZE				1
 180#define SPI_TXTDIS_OFFSET			9
 181#define SPI_TXTDIS_SIZE				1
 182
 183/* Bitfields in FMR */
 184#define SPI_TXRDYM_OFFSET			0
 185#define SPI_TXRDYM_SIZE				2
 186#define SPI_RXRDYM_OFFSET			4
 187#define SPI_RXRDYM_SIZE				2
 188#define SPI_TXFTHRES_OFFSET			16
 189#define SPI_TXFTHRES_SIZE			6
 190#define SPI_RXFTHRES_OFFSET			24
 191#define SPI_RXFTHRES_SIZE			6
 192
 193/* Bitfields in FLR */
 194#define SPI_TXFL_OFFSET				0
 195#define SPI_TXFL_SIZE				6
 196#define SPI_RXFL_OFFSET				16
 197#define SPI_RXFL_SIZE				6
 198
 199/* Constants for BITS */
 200#define SPI_BITS_8_BPT				0
 201#define SPI_BITS_9_BPT				1
 202#define SPI_BITS_10_BPT				2
 203#define SPI_BITS_11_BPT				3
 204#define SPI_BITS_12_BPT				4
 205#define SPI_BITS_13_BPT				5
 206#define SPI_BITS_14_BPT				6
 207#define SPI_BITS_15_BPT				7
 208#define SPI_BITS_16_BPT				8
 209#define SPI_ONE_DATA				0
 210#define SPI_TWO_DATA				1
 211#define SPI_FOUR_DATA				2
 212
 213/* Bit manipulation macros */
 214#define SPI_BIT(name) \
 215	(1 << SPI_##name##_OFFSET)
 216#define SPI_BF(name, value) \
 217	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 218#define SPI_BFEXT(name, value) \
 219	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 220#define SPI_BFINS(name, value, old) \
 221	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 222	  | SPI_BF(name, value))
 223
 224/* Register access macros */
 225#ifdef CONFIG_AVR32
 226#define spi_readl(port, reg) \
 227	__raw_readl((port)->regs + SPI_##reg)
 228#define spi_writel(port, reg, value) \
 229	__raw_writel((value), (port)->regs + SPI_##reg)
 230
 231#define spi_readw(port, reg) \
 232	__raw_readw((port)->regs + SPI_##reg)
 233#define spi_writew(port, reg, value) \
 234	__raw_writew((value), (port)->regs + SPI_##reg)
 235
 236#define spi_readb(port, reg) \
 237	__raw_readb((port)->regs + SPI_##reg)
 238#define spi_writeb(port, reg, value) \
 239	__raw_writeb((value), (port)->regs + SPI_##reg)
 240#else
 241#define spi_readl(port, reg) \
 242	readl_relaxed((port)->regs + SPI_##reg)
 243#define spi_writel(port, reg, value) \
 244	writel_relaxed((value), (port)->regs + SPI_##reg)
 245
 246#define spi_readw(port, reg) \
 247	readw_relaxed((port)->regs + SPI_##reg)
 248#define spi_writew(port, reg, value) \
 249	writew_relaxed((value), (port)->regs + SPI_##reg)
 250
 251#define spi_readb(port, reg) \
 252	readb_relaxed((port)->regs + SPI_##reg)
 253#define spi_writeb(port, reg, value) \
 254	writeb_relaxed((value), (port)->regs + SPI_##reg)
 255#endif
 256/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 257 * cache operations; better heuristics consider wordsize and bitrate.
 258 */
 259#define DMA_MIN_BYTES	16
 260
 261#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
 262
 263#define AUTOSUSPEND_TIMEOUT	2000
 264
 265struct atmel_spi_caps {
 266	bool	is_spi2;
 267	bool	has_wdrbt;
 268	bool	has_dma_support;
 269	bool	has_pdc_support;
 270};
 271
 272/*
 273 * The core SPI transfer engine just talks to a register bank to set up
 274 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 275 * framework provides the base clock, subdivided for each spi_device.
 276 */
 277struct atmel_spi {
 278	spinlock_t		lock;
 279	unsigned long		flags;
 280
 281	phys_addr_t		phybase;
 282	void __iomem		*regs;
 283	int			irq;
 284	struct clk		*clk;
 285	struct platform_device	*pdev;
 286	unsigned long		spi_clk;
 287
 288	struct spi_transfer	*current_transfer;
 289	int			current_remaining_bytes;
 290	int			done_status;
 291	dma_addr_t		dma_addr_rx_bbuf;
 292	dma_addr_t		dma_addr_tx_bbuf;
 293	void			*addr_rx_bbuf;
 294	void			*addr_tx_bbuf;
 295
 296	struct completion	xfer_completion;
 297
 298	struct atmel_spi_caps	caps;
 299
 300	bool			use_dma;
 301	bool			use_pdc;
 302	bool			use_cs_gpios;
 303
 304	bool			keep_cs;
 305	bool			cs_active;
 306
 307	u32			fifo_size;
 308};
 309
 310/* Controller-specific per-slave state */
 311struct atmel_spi_device {
 312	struct gpio_desc	*npcs_pin;
 313	u32			csr;
 314};
 315
 316#define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
 317#define INVALID_DMA_ADDRESS	0xffffffff
 318
 319/*
 320 * Version 2 of the SPI controller has
 321 *  - CR.LASTXFER
 322 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 323 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 324 *  - SPI_CSRx.CSAAT
 325 *  - SPI_CSRx.SBCR allows faster clocking
 326 */
 327static bool atmel_spi_is_v2(struct atmel_spi *as)
 328{
 329	return as->caps.is_spi2;
 330}
 331
 332/*
 333 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 334 * they assume that spi slave device state will not change on deselect, so
 335 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 336 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 337 * controllers have CSAAT and friends.
 338 *
 339 * Since the CSAAT functionality is a bit weird on newer controllers as
 340 * well, we use GPIO to control nCSx pins on all controllers, updating
 341 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 342 * support active-high chipselects despite the controller's belief that
 343 * only active-low devices/systems exists.
 344 *
 345 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 346 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 347 * Master on Chip Select 0.")  No workaround exists for that ... so for
 348 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 349 * and (c) will trigger that first erratum in some cases.
 350 */
 351
 352static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 353{
 354	struct atmel_spi_device *asd = spi->controller_state;
 
 355	u32 mr;
 356
 357	if (atmel_spi_is_v2(as)) {
 358		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
 359		/* For the low SPI version, there is a issue that PDC transfer
 360		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
 361		 */
 362		spi_writel(as, CSR0, asd->csr);
 363		if (as->caps.has_wdrbt) {
 364			spi_writel(as, MR,
 365					SPI_BF(PCS, ~(0x01 << spi->chip_select))
 366					| SPI_BIT(WDRBT)
 367					| SPI_BIT(MODFDIS)
 368					| SPI_BIT(MSTR));
 369		} else {
 370			spi_writel(as, MR,
 371					SPI_BF(PCS, ~(0x01 << spi->chip_select))
 372					| SPI_BIT(MODFDIS)
 373					| SPI_BIT(MSTR));
 374		}
 375
 376		mr = spi_readl(as, MR);
 377		if (as->use_cs_gpios)
 378			gpiod_set_value(asd->npcs_pin, 1);
 379	} else {
 380		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 381		int i;
 382		u32 csr;
 383
 384		/* Make sure clock polarity is correct */
 385		for (i = 0; i < spi->master->num_chipselect; i++) {
 386			csr = spi_readl(as, CSR0 + 4 * i);
 387			if ((csr ^ cpol) & SPI_BIT(CPOL))
 388				spi_writel(as, CSR0 + 4 * i,
 389						csr ^ SPI_BIT(CPOL));
 390		}
 391
 392		mr = spi_readl(as, MR);
 393		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
 394		if (as->use_cs_gpios && spi->chip_select != 0)
 395			gpiod_set_value(asd->npcs_pin, 1);
 396		spi_writel(as, MR, mr);
 397	}
 398
 399	dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
 
 
 400}
 401
 402static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 403{
 404	struct atmel_spi_device *asd = spi->controller_state;
 
 405	u32 mr;
 406
 407	/* only deactivate *this* device; sometimes transfers to
 408	 * another device may be active when this routine is called.
 409	 */
 410	mr = spi_readl(as, MR);
 411	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
 412		mr = SPI_BFINS(PCS, 0xf, mr);
 413		spi_writel(as, MR, mr);
 414	}
 415
 416	dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
 
 
 417
 418	if (!as->use_cs_gpios)
 419		spi_writel(as, CR, SPI_BIT(LASTXFER));
 420	else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
 421		gpiod_set_value(asd->npcs_pin, 0);
 422}
 423
 424static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
 425{
 426	spin_lock_irqsave(&as->lock, as->flags);
 427}
 428
 429static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
 430{
 431	spin_unlock_irqrestore(&as->lock, as->flags);
 432}
 433
 434static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
 435{
 436	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
 437}
 438
 439static inline bool atmel_spi_use_dma(struct atmel_spi *as,
 440				struct spi_transfer *xfer)
 441{
 442	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
 443}
 444
 445static bool atmel_spi_can_dma(struct spi_master *master,
 446			      struct spi_device *spi,
 447			      struct spi_transfer *xfer)
 448{
 449	struct atmel_spi *as = spi_master_get_devdata(master);
 450
 451	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
 452		return atmel_spi_use_dma(as, xfer) &&
 453			!atmel_spi_is_vmalloc_xfer(xfer);
 454	else
 455		return atmel_spi_use_dma(as, xfer);
 456
 457}
 458
 459static int atmel_spi_dma_slave_config(struct atmel_spi *as,
 460				struct dma_slave_config *slave_config,
 461				u8 bits_per_word)
 462{
 463	struct spi_master *master = platform_get_drvdata(as->pdev);
 464	int err = 0;
 465
 466	if (bits_per_word > 8) {
 467		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 468		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 469	} else {
 470		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 471		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 472	}
 473
 474	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
 475	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
 476	slave_config->src_maxburst = 1;
 477	slave_config->dst_maxburst = 1;
 478	slave_config->device_fc = false;
 479
 480	/*
 481	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
 482	 * the Mode Register).
 483	 * So according to the datasheet, when FIFOs are available (and
 484	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
 485	 * In this mode, up to 2 data, not 4, can be written into the Transmit
 486	 * Data Register in a single access.
 487	 * However, the first data has to be written into the lowest 16 bits and
 488	 * the second data into the highest 16 bits of the Transmit
 489	 * Data Register. For 8bit data (the most frequent case), it would
 490	 * require to rework tx_buf so each data would actualy fit 16 bits.
 491	 * So we'd rather write only one data at the time. Hence the transmit
 492	 * path works the same whether FIFOs are available (and enabled) or not.
 493	 */
 494	slave_config->direction = DMA_MEM_TO_DEV;
 495	if (dmaengine_slave_config(master->dma_tx, slave_config)) {
 496		dev_err(&as->pdev->dev,
 497			"failed to configure tx dma channel\n");
 498		err = -EINVAL;
 499	}
 500
 501	/*
 502	 * This driver configures the spi controller for master mode (MSTR bit
 503	 * set to '1' in the Mode Register).
 504	 * So according to the datasheet, when FIFOs are available (and
 505	 * enabled), the Receive FIFO operates in Single Data Mode.
 506	 * So the receive path works the same whether FIFOs are available (and
 507	 * enabled) or not.
 508	 */
 509	slave_config->direction = DMA_DEV_TO_MEM;
 510	if (dmaengine_slave_config(master->dma_rx, slave_config)) {
 511		dev_err(&as->pdev->dev,
 512			"failed to configure rx dma channel\n");
 513		err = -EINVAL;
 514	}
 515
 516	return err;
 517}
 518
 519static int atmel_spi_configure_dma(struct spi_master *master,
 520				   struct atmel_spi *as)
 521{
 522	struct dma_slave_config	slave_config;
 523	struct device *dev = &as->pdev->dev;
 524	int err;
 525
 526	dma_cap_mask_t mask;
 527	dma_cap_zero(mask);
 528	dma_cap_set(DMA_SLAVE, mask);
 529
 530	master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
 531	if (IS_ERR(master->dma_tx)) {
 532		err = PTR_ERR(master->dma_tx);
 533		if (err == -EPROBE_DEFER) {
 534			dev_warn(dev, "no DMA channel available at the moment\n");
 535			goto error_clear;
 536		}
 537		dev_err(dev,
 538			"DMA TX channel not available, SPI unable to use DMA\n");
 539		err = -EBUSY;
 540		goto error_clear;
 541	}
 542
 543	/*
 544	 * No reason to check EPROBE_DEFER here since we have already requested
 545	 * tx channel. If it fails here, it's for another reason.
 546	 */
 547	master->dma_rx = dma_request_slave_channel(dev, "rx");
 548
 549	if (!master->dma_rx) {
 550		dev_err(dev,
 551			"DMA RX channel not available, SPI unable to use DMA\n");
 552		err = -EBUSY;
 553		goto error;
 554	}
 555
 556	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
 557	if (err)
 558		goto error;
 559
 560	dev_info(&as->pdev->dev,
 561			"Using %s (tx) and %s (rx) for DMA transfers\n",
 562			dma_chan_name(master->dma_tx),
 563			dma_chan_name(master->dma_rx));
 564
 565	return 0;
 566error:
 567	if (master->dma_rx)
 568		dma_release_channel(master->dma_rx);
 569	if (!IS_ERR(master->dma_tx))
 570		dma_release_channel(master->dma_tx);
 571error_clear:
 572	master->dma_tx = master->dma_rx = NULL;
 573	return err;
 574}
 575
 576static void atmel_spi_stop_dma(struct spi_master *master)
 577{
 578	if (master->dma_rx)
 579		dmaengine_terminate_all(master->dma_rx);
 580	if (master->dma_tx)
 581		dmaengine_terminate_all(master->dma_tx);
 582}
 583
 584static void atmel_spi_release_dma(struct spi_master *master)
 585{
 586	if (master->dma_rx) {
 587		dma_release_channel(master->dma_rx);
 588		master->dma_rx = NULL;
 589	}
 590	if (master->dma_tx) {
 591		dma_release_channel(master->dma_tx);
 592		master->dma_tx = NULL;
 593	}
 594}
 595
 596/* This function is called by the DMA driver from tasklet context */
 597static void dma_callback(void *data)
 598{
 599	struct spi_master	*master = data;
 600	struct atmel_spi	*as = spi_master_get_devdata(master);
 601
 602	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
 603	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 604		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
 605		       as->current_transfer->len);
 606	}
 607	complete(&as->xfer_completion);
 608}
 609
 610/*
 611 * Next transfer using PIO without FIFO.
 612 */
 613static void atmel_spi_next_xfer_single(struct spi_master *master,
 614				       struct spi_transfer *xfer)
 615{
 616	struct atmel_spi	*as = spi_master_get_devdata(master);
 617	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
 618
 619	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
 620
 621	/* Make sure data is not remaining in RDR */
 622	spi_readl(as, RDR);
 623	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
 624		spi_readl(as, RDR);
 625		cpu_relax();
 626	}
 627
 628	if (xfer->bits_per_word > 8)
 629		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
 630	else
 631		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
 632
 633	dev_dbg(master->dev.parent,
 634		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
 635		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 636		xfer->bits_per_word);
 637
 638	/* Enable relevant interrupts */
 639	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
 640}
 641
 642/*
 643 * Next transfer using PIO with FIFO.
 644 */
 645static void atmel_spi_next_xfer_fifo(struct spi_master *master,
 646				     struct spi_transfer *xfer)
 647{
 648	struct atmel_spi *as = spi_master_get_devdata(master);
 649	u32 current_remaining_data, num_data;
 650	u32 offset = xfer->len - as->current_remaining_bytes;
 651	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
 652	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
 653	u16 td0, td1;
 654	u32 fifomr;
 655
 656	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
 657
 658	/* Compute the number of data to transfer in the current iteration */
 659	current_remaining_data = ((xfer->bits_per_word > 8) ?
 660				  ((u32)as->current_remaining_bytes >> 1) :
 661				  (u32)as->current_remaining_bytes);
 662	num_data = min(current_remaining_data, as->fifo_size);
 663
 664	/* Flush RX and TX FIFOs */
 665	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
 666	while (spi_readl(as, FLR))
 667		cpu_relax();
 668
 669	/* Set RX FIFO Threshold to the number of data to transfer */
 670	fifomr = spi_readl(as, FMR);
 671	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
 672
 673	/* Clear FIFO flags in the Status Register, especially RXFTHF */
 674	(void)spi_readl(as, SR);
 675
 676	/* Fill TX FIFO */
 677	while (num_data >= 2) {
 678		if (xfer->bits_per_word > 8) {
 679			td0 = *words++;
 680			td1 = *words++;
 681		} else {
 682			td0 = *bytes++;
 683			td1 = *bytes++;
 684		}
 685
 686		spi_writel(as, TDR, (td1 << 16) | td0);
 687		num_data -= 2;
 688	}
 689
 690	if (num_data) {
 691		if (xfer->bits_per_word > 8)
 692			td0 = *words++;
 693		else
 694			td0 = *bytes++;
 695
 696		spi_writew(as, TDR, td0);
 697		num_data--;
 698	}
 699
 700	dev_dbg(master->dev.parent,
 701		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
 702		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 703		xfer->bits_per_word);
 704
 705	/*
 706	 * Enable RX FIFO Threshold Flag interrupt to be notified about
 707	 * transfer completion.
 708	 */
 709	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
 710}
 711
 712/*
 713 * Next transfer using PIO.
 714 */
 715static void atmel_spi_next_xfer_pio(struct spi_master *master,
 716				    struct spi_transfer *xfer)
 717{
 718	struct atmel_spi *as = spi_master_get_devdata(master);
 719
 720	if (as->fifo_size)
 721		atmel_spi_next_xfer_fifo(master, xfer);
 722	else
 723		atmel_spi_next_xfer_single(master, xfer);
 724}
 725
 726/*
 727 * Submit next transfer for DMA.
 728 */
 729static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
 730				struct spi_transfer *xfer,
 731				u32 *plen)
 732{
 733	struct atmel_spi	*as = spi_master_get_devdata(master);
 734	struct dma_chan		*rxchan = master->dma_rx;
 735	struct dma_chan		*txchan = master->dma_tx;
 736	struct dma_async_tx_descriptor *rxdesc;
 737	struct dma_async_tx_descriptor *txdesc;
 738	struct dma_slave_config	slave_config;
 739	dma_cookie_t		cookie;
 740
 741	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
 742
 743	/* Check that the channels are available */
 744	if (!rxchan || !txchan)
 745		return -ENODEV;
 746
 747	/* release lock for DMA operations */
 748	atmel_spi_unlock(as);
 749
 750	*plen = xfer->len;
 751
 752	if (atmel_spi_dma_slave_config(as, &slave_config,
 753				       xfer->bits_per_word))
 754		goto err_exit;
 755
 756	/* Send both scatterlists */
 757	if (atmel_spi_is_vmalloc_xfer(xfer) &&
 758	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 759		rxdesc = dmaengine_prep_slave_single(rxchan,
 760						     as->dma_addr_rx_bbuf,
 761						     xfer->len,
 762						     DMA_DEV_TO_MEM,
 763						     DMA_PREP_INTERRUPT |
 764						     DMA_CTRL_ACK);
 765	} else {
 766		rxdesc = dmaengine_prep_slave_sg(rxchan,
 767						 xfer->rx_sg.sgl,
 768						 xfer->rx_sg.nents,
 769						 DMA_DEV_TO_MEM,
 770						 DMA_PREP_INTERRUPT |
 771						 DMA_CTRL_ACK);
 772	}
 773	if (!rxdesc)
 774		goto err_dma;
 775
 776	if (atmel_spi_is_vmalloc_xfer(xfer) &&
 777	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 778		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
 779		txdesc = dmaengine_prep_slave_single(txchan,
 780						     as->dma_addr_tx_bbuf,
 781						     xfer->len, DMA_MEM_TO_DEV,
 782						     DMA_PREP_INTERRUPT |
 783						     DMA_CTRL_ACK);
 784	} else {
 785		txdesc = dmaengine_prep_slave_sg(txchan,
 786						 xfer->tx_sg.sgl,
 787						 xfer->tx_sg.nents,
 788						 DMA_MEM_TO_DEV,
 789						 DMA_PREP_INTERRUPT |
 790						 DMA_CTRL_ACK);
 791	}
 792	if (!txdesc)
 793		goto err_dma;
 794
 795	dev_dbg(master->dev.parent,
 796		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 797		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
 798		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
 799
 800	/* Enable relevant interrupts */
 801	spi_writel(as, IER, SPI_BIT(OVRES));
 802
 803	/* Put the callback on the RX transfer only, that should finish last */
 804	rxdesc->callback = dma_callback;
 805	rxdesc->callback_param = master;
 806
 807	/* Submit and fire RX and TX with TX last so we're ready to read! */
 808	cookie = rxdesc->tx_submit(rxdesc);
 809	if (dma_submit_error(cookie))
 810		goto err_dma;
 811	cookie = txdesc->tx_submit(txdesc);
 812	if (dma_submit_error(cookie))
 813		goto err_dma;
 814	rxchan->device->device_issue_pending(rxchan);
 815	txchan->device->device_issue_pending(txchan);
 816
 817	/* take back lock */
 818	atmel_spi_lock(as);
 819	return 0;
 820
 821err_dma:
 822	spi_writel(as, IDR, SPI_BIT(OVRES));
 823	atmel_spi_stop_dma(master);
 824err_exit:
 825	atmel_spi_lock(as);
 826	return -ENOMEM;
 827}
 828
 829static void atmel_spi_next_xfer_data(struct spi_master *master,
 830				struct spi_transfer *xfer,
 831				dma_addr_t *tx_dma,
 832				dma_addr_t *rx_dma,
 833				u32 *plen)
 834{
 835	*rx_dma = xfer->rx_dma + xfer->len - *plen;
 836	*tx_dma = xfer->tx_dma + xfer->len - *plen;
 837	if (*plen > master->max_dma_len)
 838		*plen = master->max_dma_len;
 839}
 840
 841static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
 842				    struct spi_device *spi,
 843				    struct spi_transfer *xfer)
 844{
 845	u32			scbr, csr;
 846	unsigned long		bus_hz;
 847
 848	/* v1 chips start out at half the peripheral bus speed. */
 849	bus_hz = as->spi_clk;
 850	if (!atmel_spi_is_v2(as))
 851		bus_hz /= 2;
 852
 853	/*
 854	 * Calculate the lowest divider that satisfies the
 855	 * constraint, assuming div32/fdiv/mbz == 0.
 856	 */
 857	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
 858
 859	/*
 860	 * If the resulting divider doesn't fit into the
 861	 * register bitfield, we can't satisfy the constraint.
 862	 */
 863	if (scbr >= (1 << SPI_SCBR_SIZE)) {
 864		dev_err(&spi->dev,
 865			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 866			xfer->speed_hz, scbr, bus_hz/255);
 867		return -EINVAL;
 868	}
 869	if (scbr == 0) {
 870		dev_err(&spi->dev,
 871			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
 872			xfer->speed_hz, scbr, bus_hz);
 873		return -EINVAL;
 874	}
 875	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
 876	csr = SPI_BFINS(SCBR, scbr, csr);
 877	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
 878
 879	return 0;
 880}
 881
 882/*
 883 * Submit next transfer for PDC.
 884 * lock is held, spi irq is blocked
 885 */
 886static void atmel_spi_pdc_next_xfer(struct spi_master *master,
 887					struct spi_message *msg,
 888					struct spi_transfer *xfer)
 889{
 890	struct atmel_spi	*as = spi_master_get_devdata(master);
 891	u32			len;
 892	dma_addr_t		tx_dma, rx_dma;
 893
 894	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 895
 896	len = as->current_remaining_bytes;
 897	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 898	as->current_remaining_bytes -= len;
 899
 900	spi_writel(as, RPR, rx_dma);
 901	spi_writel(as, TPR, tx_dma);
 902
 903	if (msg->spi->bits_per_word > 8)
 904		len >>= 1;
 905	spi_writel(as, RCR, len);
 906	spi_writel(as, TCR, len);
 907
 908	dev_dbg(&msg->spi->dev,
 909		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 910		xfer, xfer->len, xfer->tx_buf,
 911		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 912		(unsigned long long)xfer->rx_dma);
 913
 914	if (as->current_remaining_bytes) {
 915		len = as->current_remaining_bytes;
 916		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 917		as->current_remaining_bytes -= len;
 918
 919		spi_writel(as, RNPR, rx_dma);
 920		spi_writel(as, TNPR, tx_dma);
 921
 922		if (msg->spi->bits_per_word > 8)
 923			len >>= 1;
 924		spi_writel(as, RNCR, len);
 925		spi_writel(as, TNCR, len);
 926
 927		dev_dbg(&msg->spi->dev,
 928			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 929			xfer, xfer->len, xfer->tx_buf,
 930			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 931			(unsigned long long)xfer->rx_dma);
 932	}
 933
 934	/* REVISIT: We're waiting for RXBUFF before we start the next
 935	 * transfer because we need to handle some difficult timing
 936	 * issues otherwise. If we wait for TXBUFE in one transfer and
 937	 * then starts waiting for RXBUFF in the next, it's difficult
 938	 * to tell the difference between the RXBUFF interrupt we're
 939	 * actually waiting for and the RXBUFF interrupt of the
 940	 * previous transfer.
 941	 *
 942	 * It should be doable, though. Just not now...
 943	 */
 944	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
 945	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 946}
 947
 948/*
 949 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 950 *  - The buffer is either valid for CPU access, else NULL
 951 *  - If the buffer is valid, so is its DMA address
 952 *
 953 * This driver manages the dma address unless message->is_dma_mapped.
 954 */
 955static int
 956atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 957{
 958	struct device	*dev = &as->pdev->dev;
 959
 960	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 961	if (xfer->tx_buf) {
 962		/* tx_buf is a const void* where we need a void * for the dma
 963		 * mapping */
 964		void *nonconst_tx = (void *)xfer->tx_buf;
 965
 966		xfer->tx_dma = dma_map_single(dev,
 967				nonconst_tx, xfer->len,
 968				DMA_TO_DEVICE);
 969		if (dma_mapping_error(dev, xfer->tx_dma))
 970			return -ENOMEM;
 971	}
 972	if (xfer->rx_buf) {
 973		xfer->rx_dma = dma_map_single(dev,
 974				xfer->rx_buf, xfer->len,
 975				DMA_FROM_DEVICE);
 976		if (dma_mapping_error(dev, xfer->rx_dma)) {
 977			if (xfer->tx_buf)
 978				dma_unmap_single(dev,
 979						xfer->tx_dma, xfer->len,
 980						DMA_TO_DEVICE);
 981			return -ENOMEM;
 982		}
 983	}
 984	return 0;
 985}
 986
 987static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 988				     struct spi_transfer *xfer)
 989{
 990	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
 991		dma_unmap_single(master->dev.parent, xfer->tx_dma,
 992				 xfer->len, DMA_TO_DEVICE);
 993	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
 994		dma_unmap_single(master->dev.parent, xfer->rx_dma,
 995				 xfer->len, DMA_FROM_DEVICE);
 996}
 997
 998static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
 999{
1000	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1001}
1002
1003static void
1004atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1005{
1006	u8		*rxp;
1007	u16		*rxp16;
1008	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
1009
1010	if (xfer->bits_per_word > 8) {
1011		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1012		*rxp16 = spi_readl(as, RDR);
1013	} else {
1014		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1015		*rxp = spi_readl(as, RDR);
1016	}
1017	if (xfer->bits_per_word > 8) {
1018		if (as->current_remaining_bytes > 2)
1019			as->current_remaining_bytes -= 2;
1020		else
1021			as->current_remaining_bytes = 0;
1022	} else {
1023		as->current_remaining_bytes--;
1024	}
1025}
1026
1027static void
1028atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1029{
1030	u32 fifolr = spi_readl(as, FLR);
1031	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1032	u32 offset = xfer->len - as->current_remaining_bytes;
1033	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1034	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1035	u16 rd; /* RD field is the lowest 16 bits of RDR */
1036
1037	/* Update the number of remaining bytes to transfer */
1038	num_bytes = ((xfer->bits_per_word > 8) ?
1039		     (num_data << 1) :
1040		     num_data);
1041
1042	if (as->current_remaining_bytes > num_bytes)
1043		as->current_remaining_bytes -= num_bytes;
1044	else
1045		as->current_remaining_bytes = 0;
1046
1047	/* Handle odd number of bytes when data are more than 8bit width */
1048	if (xfer->bits_per_word > 8)
1049		as->current_remaining_bytes &= ~0x1;
1050
1051	/* Read data */
1052	while (num_data) {
1053		rd = spi_readl(as, RDR);
1054		if (xfer->bits_per_word > 8)
1055			*words++ = rd;
1056		else
1057			*bytes++ = rd;
1058		num_data--;
1059	}
1060}
1061
1062/* Called from IRQ
1063 *
1064 * Must update "current_remaining_bytes" to keep track of data
1065 * to transfer.
1066 */
1067static void
1068atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1069{
1070	if (as->fifo_size)
1071		atmel_spi_pump_fifo_data(as, xfer);
1072	else
1073		atmel_spi_pump_single_data(as, xfer);
1074}
1075
1076/* Interrupt
1077 *
1078 * No need for locking in this Interrupt handler: done_status is the
1079 * only information modified.
1080 */
1081static irqreturn_t
1082atmel_spi_pio_interrupt(int irq, void *dev_id)
1083{
1084	struct spi_master	*master = dev_id;
1085	struct atmel_spi	*as = spi_master_get_devdata(master);
1086	u32			status, pending, imr;
1087	struct spi_transfer	*xfer;
1088	int			ret = IRQ_NONE;
1089
1090	imr = spi_readl(as, IMR);
1091	status = spi_readl(as, SR);
1092	pending = status & imr;
1093
1094	if (pending & SPI_BIT(OVRES)) {
1095		ret = IRQ_HANDLED;
1096		spi_writel(as, IDR, SPI_BIT(OVRES));
1097		dev_warn(master->dev.parent, "overrun\n");
1098
1099		/*
1100		 * When we get an overrun, we disregard the current
1101		 * transfer. Data will not be copied back from any
1102		 * bounce buffer and msg->actual_len will not be
1103		 * updated with the last xfer.
1104		 *
1105		 * We will also not process any remaning transfers in
1106		 * the message.
1107		 */
1108		as->done_status = -EIO;
1109		smp_wmb();
1110
1111		/* Clear any overrun happening while cleaning up */
1112		spi_readl(as, SR);
1113
1114		complete(&as->xfer_completion);
1115
1116	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1117		atmel_spi_lock(as);
1118
1119		if (as->current_remaining_bytes) {
1120			ret = IRQ_HANDLED;
1121			xfer = as->current_transfer;
1122			atmel_spi_pump_pio_data(as, xfer);
1123			if (!as->current_remaining_bytes)
1124				spi_writel(as, IDR, pending);
1125
1126			complete(&as->xfer_completion);
1127		}
1128
1129		atmel_spi_unlock(as);
1130	} else {
1131		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1132		ret = IRQ_HANDLED;
1133		spi_writel(as, IDR, pending);
1134	}
1135
1136	return ret;
1137}
1138
1139static irqreturn_t
1140atmel_spi_pdc_interrupt(int irq, void *dev_id)
1141{
1142	struct spi_master	*master = dev_id;
1143	struct atmel_spi	*as = spi_master_get_devdata(master);
1144	u32			status, pending, imr;
1145	int			ret = IRQ_NONE;
1146
1147	imr = spi_readl(as, IMR);
1148	status = spi_readl(as, SR);
1149	pending = status & imr;
1150
1151	if (pending & SPI_BIT(OVRES)) {
1152
1153		ret = IRQ_HANDLED;
1154
1155		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1156				     | SPI_BIT(OVRES)));
1157
1158		/* Clear any overrun happening while cleaning up */
1159		spi_readl(as, SR);
1160
1161		as->done_status = -EIO;
1162
1163		complete(&as->xfer_completion);
1164
1165	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1166		ret = IRQ_HANDLED;
1167
1168		spi_writel(as, IDR, pending);
1169
1170		complete(&as->xfer_completion);
1171	}
1172
1173	return ret;
1174}
1175
1176static int atmel_spi_setup(struct spi_device *spi)
1177{
1178	struct atmel_spi	*as;
1179	struct atmel_spi_device	*asd;
1180	u32			csr;
1181	unsigned int		bits = spi->bits_per_word;
 
1182
1183	as = spi_master_get_devdata(spi->master);
1184
1185	/* see notes above re chipselect */
1186	if (!atmel_spi_is_v2(as)
1187			&& spi->chip_select == 0
1188			&& (spi->mode & SPI_CS_HIGH)) {
1189		dev_dbg(&spi->dev, "setup: can't be active-high\n");
1190		return -EINVAL;
1191	}
1192
1193	csr = SPI_BF(BITS, bits - 8);
1194	if (spi->mode & SPI_CPOL)
1195		csr |= SPI_BIT(CPOL);
1196	if (!(spi->mode & SPI_CPHA))
1197		csr |= SPI_BIT(NCPHA);
1198	if (!as->use_cs_gpios)
1199		csr |= SPI_BIT(CSAAT);
1200
1201	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
 
 
 
 
1202	 */
1203	csr |= SPI_BF(DLYBS, 0);
 
1204
1205	/* DLYBCT adds delays between words.  This is useful for slow devices
1206	 * that need a bit of time to setup the next transfer.
1207	 */
1208	csr |= SPI_BF(DLYBCT,
1209			(as->spi_clk / 1000000 * spi->word_delay_usecs) >> 5);
 
 
1210
1211	asd = spi->controller_state;
1212	if (!asd) {
1213		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1214		if (!asd)
1215			return -ENOMEM;
1216
1217		/*
1218		 * If use_cs_gpios is true this means that we have "cs-gpios"
1219		 * defined in the device tree node so we should have
1220		 * gotten the GPIO lines from the device tree inside the
1221		 * SPI core. Warn if this is not the case but continue since
1222		 * CS GPIOs are after all optional.
1223		 */
1224		if (as->use_cs_gpios) {
1225			if (!spi->cs_gpiod) {
1226				dev_err(&spi->dev,
1227					"host claims to use CS GPIOs but no CS found in DT by the SPI core\n");
1228			}
1229			asd->npcs_pin = spi->cs_gpiod;
1230		}
1231
 
1232		spi->controller_state = asd;
1233	}
1234
1235	asd->csr = csr;
1236
1237	dev_dbg(&spi->dev,
1238		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1239		bits, spi->mode, spi->chip_select, csr);
1240
1241	if (!atmel_spi_is_v2(as))
1242		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1243
1244	return 0;
1245}
1246
1247static int atmel_spi_one_transfer(struct spi_master *master,
1248					struct spi_message *msg,
1249					struct spi_transfer *xfer)
1250{
1251	struct atmel_spi	*as;
1252	struct spi_device	*spi = msg->spi;
1253	u8			bits;
1254	u32			len;
1255	struct atmel_spi_device	*asd;
1256	int			timeout;
1257	int			ret;
1258	unsigned long		dma_timeout;
1259
1260	as = spi_master_get_devdata(master);
1261
1262	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1263		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1264		return -EINVAL;
1265	}
1266
1267	asd = spi->controller_state;
1268	bits = (asd->csr >> 4) & 0xf;
1269	if (bits != xfer->bits_per_word - 8) {
1270		dev_dbg(&spi->dev,
1271			"you can't yet change bits_per_word in transfers\n");
1272		return -ENOPROTOOPT;
1273	}
1274
1275	/*
1276	 * DMA map early, for performance (empties dcache ASAP) and
1277	 * better fault reporting.
1278	 */
1279	if ((!msg->is_dma_mapped)
1280		&& as->use_pdc) {
1281		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1282			return -ENOMEM;
1283	}
1284
1285	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1286
1287	as->done_status = 0;
1288	as->current_transfer = xfer;
1289	as->current_remaining_bytes = xfer->len;
1290	while (as->current_remaining_bytes) {
1291		reinit_completion(&as->xfer_completion);
1292
1293		if (as->use_pdc) {
1294			atmel_spi_pdc_next_xfer(master, msg, xfer);
1295		} else if (atmel_spi_use_dma(as, xfer)) {
1296			len = as->current_remaining_bytes;
1297			ret = atmel_spi_next_xfer_dma_submit(master,
1298								xfer, &len);
1299			if (ret) {
1300				dev_err(&spi->dev,
1301					"unable to use DMA, fallback to PIO\n");
1302				atmel_spi_next_xfer_pio(master, xfer);
1303			} else {
1304				as->current_remaining_bytes -= len;
1305				if (as->current_remaining_bytes < 0)
1306					as->current_remaining_bytes = 0;
1307			}
1308		} else {
1309			atmel_spi_next_xfer_pio(master, xfer);
1310		}
1311
1312		/* interrupts are disabled, so free the lock for schedule */
1313		atmel_spi_unlock(as);
1314		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1315							  SPI_DMA_TIMEOUT);
1316		atmel_spi_lock(as);
1317		if (WARN_ON(dma_timeout == 0)) {
1318			dev_err(&spi->dev, "spi transfer timeout\n");
1319			as->done_status = -EIO;
1320		}
1321
1322		if (as->done_status)
1323			break;
1324	}
1325
1326	if (as->done_status) {
1327		if (as->use_pdc) {
1328			dev_warn(master->dev.parent,
1329				"overrun (%u/%u remaining)\n",
1330				spi_readl(as, TCR), spi_readl(as, RCR));
1331
1332			/*
1333			 * Clean up DMA registers and make sure the data
1334			 * registers are empty.
1335			 */
1336			spi_writel(as, RNCR, 0);
1337			spi_writel(as, TNCR, 0);
1338			spi_writel(as, RCR, 0);
1339			spi_writel(as, TCR, 0);
1340			for (timeout = 1000; timeout; timeout--)
1341				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1342					break;
1343			if (!timeout)
1344				dev_warn(master->dev.parent,
1345					 "timeout waiting for TXEMPTY");
1346			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1347				spi_readl(as, RDR);
1348
1349			/* Clear any overrun happening while cleaning up */
1350			spi_readl(as, SR);
1351
1352		} else if (atmel_spi_use_dma(as, xfer)) {
1353			atmel_spi_stop_dma(master);
1354		}
1355
1356		if (!msg->is_dma_mapped
1357			&& as->use_pdc)
1358			atmel_spi_dma_unmap_xfer(master, xfer);
1359
1360		return 0;
1361
1362	} else {
1363		/* only update length if no error */
1364		msg->actual_length += xfer->len;
1365	}
1366
1367	if (!msg->is_dma_mapped
1368		&& as->use_pdc)
1369		atmel_spi_dma_unmap_xfer(master, xfer);
1370
1371	if (xfer->delay_usecs)
1372		udelay(xfer->delay_usecs);
1373
1374	if (xfer->cs_change) {
1375		if (list_is_last(&xfer->transfer_list,
1376				 &msg->transfers)) {
1377			as->keep_cs = true;
1378		} else {
1379			as->cs_active = !as->cs_active;
1380			if (as->cs_active)
1381				cs_activate(as, msg->spi);
1382			else
1383				cs_deactivate(as, msg->spi);
1384		}
1385	}
1386
1387	return 0;
1388}
1389
1390static int atmel_spi_transfer_one_message(struct spi_master *master,
1391						struct spi_message *msg)
1392{
1393	struct atmel_spi *as;
1394	struct spi_transfer *xfer;
1395	struct spi_device *spi = msg->spi;
1396	int ret = 0;
1397
1398	as = spi_master_get_devdata(master);
1399
1400	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1401					msg, dev_name(&spi->dev));
1402
1403	atmel_spi_lock(as);
1404	cs_activate(as, spi);
1405
1406	as->cs_active = true;
1407	as->keep_cs = false;
1408
1409	msg->status = 0;
1410	msg->actual_length = 0;
1411
1412	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1413		trace_spi_transfer_start(msg, xfer);
1414
1415		ret = atmel_spi_one_transfer(master, msg, xfer);
1416		if (ret)
1417			goto msg_done;
1418
1419		trace_spi_transfer_stop(msg, xfer);
1420	}
1421
1422	if (as->use_pdc)
1423		atmel_spi_disable_pdc_transfer(as);
1424
1425	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1426		dev_dbg(&spi->dev,
1427			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1428			xfer, xfer->len,
1429			xfer->tx_buf, &xfer->tx_dma,
1430			xfer->rx_buf, &xfer->rx_dma);
1431	}
1432
1433msg_done:
1434	if (!as->keep_cs)
1435		cs_deactivate(as, msg->spi);
1436
1437	atmel_spi_unlock(as);
1438
1439	msg->status = as->done_status;
1440	spi_finalize_current_message(spi->master);
1441
1442	return ret;
1443}
1444
1445static void atmel_spi_cleanup(struct spi_device *spi)
1446{
1447	struct atmel_spi_device	*asd = spi->controller_state;
1448
1449	if (!asd)
1450		return;
1451
1452	spi->controller_state = NULL;
1453	kfree(asd);
1454}
1455
1456static inline unsigned int atmel_get_version(struct atmel_spi *as)
1457{
1458	return spi_readl(as, VERSION) & 0x00000fff;
1459}
1460
1461static void atmel_get_caps(struct atmel_spi *as)
1462{
1463	unsigned int version;
1464
1465	version = atmel_get_version(as);
 
1466
1467	as->caps.is_spi2 = version > 0x121;
1468	as->caps.has_wdrbt = version >= 0x210;
1469	as->caps.has_dma_support = version >= 0x212;
1470	as->caps.has_pdc_support = version < 0x212;
1471}
1472
1473static void atmel_spi_init(struct atmel_spi *as)
 
1474{
1475	spi_writel(as, CR, SPI_BIT(SWRST));
1476	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
 
 
 
 
1477
1478	/* It is recommended to enable FIFOs first thing after reset */
1479	if (as->fifo_size)
1480		spi_writel(as, CR, SPI_BIT(FIFOEN));
1481
1482	if (as->caps.has_wdrbt) {
1483		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1484				| SPI_BIT(MSTR));
1485	} else {
1486		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
 
 
 
 
 
 
 
 
 
 
 
 
1487	}
1488
1489	if (as->use_pdc)
1490		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1491	spi_writel(as, CR, SPI_BIT(SPIEN));
1492}
1493
1494static int atmel_spi_probe(struct platform_device *pdev)
1495{
1496	struct resource		*regs;
1497	int			irq;
1498	struct clk		*clk;
1499	int			ret;
1500	struct spi_master	*master;
1501	struct atmel_spi	*as;
1502
1503	/* Select default pin state */
1504	pinctrl_pm_select_default_state(&pdev->dev);
1505
1506	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1507	if (!regs)
1508		return -ENXIO;
1509
1510	irq = platform_get_irq(pdev, 0);
1511	if (irq < 0)
1512		return irq;
1513
1514	clk = devm_clk_get(&pdev->dev, "spi_clk");
1515	if (IS_ERR(clk))
1516		return PTR_ERR(clk);
1517
1518	/* setup spi core then atmel-specific driver state */
1519	ret = -ENOMEM;
1520	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1521	if (!master)
1522		goto out_free;
1523
1524	/* the spi->mode bits understood by this driver: */
1525	master->use_gpio_descriptors = true;
1526	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1527	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1528	master->dev.of_node = pdev->dev.of_node;
1529	master->bus_num = pdev->id;
1530	master->num_chipselect = master->dev.of_node ? 0 : 4;
1531	master->setup = atmel_spi_setup;
1532	master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1533	master->transfer_one_message = atmel_spi_transfer_one_message;
1534	master->cleanup = atmel_spi_cleanup;
1535	master->auto_runtime_pm = true;
1536	master->max_dma_len = SPI_MAX_DMA_XFER;
1537	master->can_dma = atmel_spi_can_dma;
1538	platform_set_drvdata(pdev, master);
1539
1540	as = spi_master_get_devdata(master);
1541
1542	spin_lock_init(&as->lock);
1543
1544	as->pdev = pdev;
1545	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1546	if (IS_ERR(as->regs)) {
1547		ret = PTR_ERR(as->regs);
1548		goto out_unmap_regs;
1549	}
1550	as->phybase = regs->start;
1551	as->irq = irq;
1552	as->clk = clk;
1553
1554	init_completion(&as->xfer_completion);
1555
1556	atmel_get_caps(as);
1557
1558	/*
1559	 * If there are chip selects in the device tree, those will be
1560	 * discovered by the SPI core when registering the SPI master
1561	 * and assigned to each SPI device.
1562	 */
1563	as->use_cs_gpios = true;
1564	if (atmel_spi_is_v2(as) &&
1565	    pdev->dev.of_node &&
1566	    !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1567		as->use_cs_gpios = false;
1568		master->num_chipselect = 4;
1569	}
1570
 
 
 
 
1571	as->use_dma = false;
1572	as->use_pdc = false;
1573	if (as->caps.has_dma_support) {
1574		ret = atmel_spi_configure_dma(master, as);
1575		if (ret == 0) {
1576			as->use_dma = true;
1577		} else if (ret == -EPROBE_DEFER) {
1578			return ret;
1579		}
1580	} else if (as->caps.has_pdc_support) {
1581		as->use_pdc = true;
1582	}
1583
1584	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1585		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1586						      SPI_MAX_DMA_XFER,
1587						      &as->dma_addr_rx_bbuf,
1588						      GFP_KERNEL | GFP_DMA);
1589		if (!as->addr_rx_bbuf) {
1590			as->use_dma = false;
1591		} else {
1592			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1593					SPI_MAX_DMA_XFER,
1594					&as->dma_addr_tx_bbuf,
1595					GFP_KERNEL | GFP_DMA);
1596			if (!as->addr_tx_bbuf) {
1597				as->use_dma = false;
1598				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1599						  as->addr_rx_bbuf,
1600						  as->dma_addr_rx_bbuf);
1601			}
1602		}
1603		if (!as->use_dma)
1604			dev_info(master->dev.parent,
1605				 "  can not allocate dma coherent memory\n");
1606	}
1607
1608	if (as->caps.has_dma_support && !as->use_dma)
1609		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1610
1611	if (as->use_pdc) {
1612		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1613					0, dev_name(&pdev->dev), master);
1614	} else {
1615		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1616					0, dev_name(&pdev->dev), master);
1617	}
1618	if (ret)
1619		goto out_unmap_regs;
1620
1621	/* Initialize the hardware */
1622	ret = clk_prepare_enable(clk);
1623	if (ret)
1624		goto out_free_irq;
1625
1626	as->spi_clk = clk_get_rate(clk);
1627
 
 
 
 
 
 
 
 
 
 
 
 
 
1628	as->fifo_size = 0;
1629	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1630				  &as->fifo_size)) {
1631		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
 
1632	}
1633
1634	atmel_spi_init(as);
1635
1636	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1637	pm_runtime_use_autosuspend(&pdev->dev);
1638	pm_runtime_set_active(&pdev->dev);
1639	pm_runtime_enable(&pdev->dev);
1640
1641	ret = devm_spi_register_master(&pdev->dev, master);
1642	if (ret)
1643		goto out_free_dma;
1644
1645	/* go! */
1646	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1647			atmel_get_version(as), (unsigned long)regs->start,
1648			irq);
1649
1650	return 0;
1651
1652out_free_dma:
1653	pm_runtime_disable(&pdev->dev);
1654	pm_runtime_set_suspended(&pdev->dev);
1655
1656	if (as->use_dma)
1657		atmel_spi_release_dma(master);
1658
1659	spi_writel(as, CR, SPI_BIT(SWRST));
1660	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1661	clk_disable_unprepare(clk);
1662out_free_irq:
1663out_unmap_regs:
1664out_free:
1665	spi_master_put(master);
1666	return ret;
1667}
1668
1669static int atmel_spi_remove(struct platform_device *pdev)
1670{
1671	struct spi_master	*master = platform_get_drvdata(pdev);
1672	struct atmel_spi	*as = spi_master_get_devdata(master);
1673
1674	pm_runtime_get_sync(&pdev->dev);
1675
1676	/* reset the hardware and block queue progress */
 
1677	if (as->use_dma) {
1678		atmel_spi_stop_dma(master);
1679		atmel_spi_release_dma(master);
1680		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1681			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1682					  as->addr_tx_bbuf,
1683					  as->dma_addr_tx_bbuf);
1684			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1685					  as->addr_rx_bbuf,
1686					  as->dma_addr_rx_bbuf);
1687		}
1688	}
1689
1690	spin_lock_irq(&as->lock);
1691	spi_writel(as, CR, SPI_BIT(SWRST));
1692	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1693	spi_readl(as, SR);
1694	spin_unlock_irq(&as->lock);
1695
1696	clk_disable_unprepare(as->clk);
1697
1698	pm_runtime_put_noidle(&pdev->dev);
1699	pm_runtime_disable(&pdev->dev);
1700
1701	return 0;
1702}
1703
1704#ifdef CONFIG_PM
1705static int atmel_spi_runtime_suspend(struct device *dev)
1706{
1707	struct spi_master *master = dev_get_drvdata(dev);
1708	struct atmel_spi *as = spi_master_get_devdata(master);
1709
1710	clk_disable_unprepare(as->clk);
1711	pinctrl_pm_select_sleep_state(dev);
1712
1713	return 0;
1714}
1715
1716static int atmel_spi_runtime_resume(struct device *dev)
1717{
1718	struct spi_master *master = dev_get_drvdata(dev);
1719	struct atmel_spi *as = spi_master_get_devdata(master);
1720
1721	pinctrl_pm_select_default_state(dev);
1722
1723	return clk_prepare_enable(as->clk);
1724}
1725
1726#ifdef CONFIG_PM_SLEEP
1727static int atmel_spi_suspend(struct device *dev)
1728{
1729	struct spi_master *master = dev_get_drvdata(dev);
1730	int ret;
1731
1732	/* Stop the queue running */
1733	ret = spi_master_suspend(master);
1734	if (ret)
 
1735		return ret;
 
1736
1737	if (!pm_runtime_suspended(dev))
1738		atmel_spi_runtime_suspend(dev);
1739
1740	return 0;
1741}
1742
1743static int atmel_spi_resume(struct device *dev)
1744{
1745	struct spi_master *master = dev_get_drvdata(dev);
1746	struct atmel_spi *as = spi_master_get_devdata(master);
1747	int ret;
1748
1749	ret = clk_prepare_enable(as->clk);
1750	if (ret)
1751		return ret;
1752
1753	atmel_spi_init(as);
1754
1755	clk_disable_unprepare(as->clk);
1756
1757	if (!pm_runtime_suspended(dev)) {
1758		ret = atmel_spi_runtime_resume(dev);
1759		if (ret)
1760			return ret;
1761	}
1762
1763	/* Start the queue running */
1764	return spi_master_resume(master);
 
 
 
 
1765}
1766#endif
1767
1768static const struct dev_pm_ops atmel_spi_pm_ops = {
1769	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1770	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1771			   atmel_spi_runtime_resume, NULL)
1772};
1773#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1774#else
1775#define ATMEL_SPI_PM_OPS	NULL
1776#endif
1777
1778#if defined(CONFIG_OF)
1779static const struct of_device_id atmel_spi_dt_ids[] = {
1780	{ .compatible = "atmel,at91rm9200-spi" },
1781	{ /* sentinel */ }
1782};
1783
1784MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1785#endif
1786
1787static struct platform_driver atmel_spi_driver = {
1788	.driver		= {
1789		.name	= "atmel_spi",
1790		.pm	= ATMEL_SPI_PM_OPS,
1791		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1792	},
1793	.probe		= atmel_spi_probe,
1794	.remove		= atmel_spi_remove,
1795};
1796module_platform_driver(atmel_spi_driver);
1797
1798MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1799MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1800MODULE_LICENSE("GPL");
1801MODULE_ALIAS("platform:atmel_spi");
v4.10.11
 
   1/*
   2 * Driver for Atmel AT32 and AT91 SPI Controllers
   3 *
   4 * Copyright (C) 2006 Atmel Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/clk.h>
  13#include <linux/module.h>
  14#include <linux/platform_device.h>
  15#include <linux/delay.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/dmaengine.h>
  18#include <linux/err.h>
  19#include <linux/interrupt.h>
  20#include <linux/spi/spi.h>
  21#include <linux/slab.h>
  22#include <linux/platform_data/dma-atmel.h>
  23#include <linux/of.h>
  24
  25#include <linux/io.h>
  26#include <linux/gpio.h>
  27#include <linux/of_gpio.h>
  28#include <linux/pinctrl/consumer.h>
  29#include <linux/pm_runtime.h>
 
  30
  31/* SPI register offsets */
  32#define SPI_CR					0x0000
  33#define SPI_MR					0x0004
  34#define SPI_RDR					0x0008
  35#define SPI_TDR					0x000c
  36#define SPI_SR					0x0010
  37#define SPI_IER					0x0014
  38#define SPI_IDR					0x0018
  39#define SPI_IMR					0x001c
  40#define SPI_CSR0				0x0030
  41#define SPI_CSR1				0x0034
  42#define SPI_CSR2				0x0038
  43#define SPI_CSR3				0x003c
  44#define SPI_FMR					0x0040
  45#define SPI_FLR					0x0044
  46#define SPI_VERSION				0x00fc
  47#define SPI_RPR					0x0100
  48#define SPI_RCR					0x0104
  49#define SPI_TPR					0x0108
  50#define SPI_TCR					0x010c
  51#define SPI_RNPR				0x0110
  52#define SPI_RNCR				0x0114
  53#define SPI_TNPR				0x0118
  54#define SPI_TNCR				0x011c
  55#define SPI_PTCR				0x0120
  56#define SPI_PTSR				0x0124
  57
  58/* Bitfields in CR */
  59#define SPI_SPIEN_OFFSET			0
  60#define SPI_SPIEN_SIZE				1
  61#define SPI_SPIDIS_OFFSET			1
  62#define SPI_SPIDIS_SIZE				1
  63#define SPI_SWRST_OFFSET			7
  64#define SPI_SWRST_SIZE				1
  65#define SPI_LASTXFER_OFFSET			24
  66#define SPI_LASTXFER_SIZE			1
  67#define SPI_TXFCLR_OFFSET			16
  68#define SPI_TXFCLR_SIZE				1
  69#define SPI_RXFCLR_OFFSET			17
  70#define SPI_RXFCLR_SIZE				1
  71#define SPI_FIFOEN_OFFSET			30
  72#define SPI_FIFOEN_SIZE				1
  73#define SPI_FIFODIS_OFFSET			31
  74#define SPI_FIFODIS_SIZE			1
  75
  76/* Bitfields in MR */
  77#define SPI_MSTR_OFFSET				0
  78#define SPI_MSTR_SIZE				1
  79#define SPI_PS_OFFSET				1
  80#define SPI_PS_SIZE				1
  81#define SPI_PCSDEC_OFFSET			2
  82#define SPI_PCSDEC_SIZE				1
  83#define SPI_FDIV_OFFSET				3
  84#define SPI_FDIV_SIZE				1
  85#define SPI_MODFDIS_OFFSET			4
  86#define SPI_MODFDIS_SIZE			1
  87#define SPI_WDRBT_OFFSET			5
  88#define SPI_WDRBT_SIZE				1
  89#define SPI_LLB_OFFSET				7
  90#define SPI_LLB_SIZE				1
  91#define SPI_PCS_OFFSET				16
  92#define SPI_PCS_SIZE				4
  93#define SPI_DLYBCS_OFFSET			24
  94#define SPI_DLYBCS_SIZE				8
  95
  96/* Bitfields in RDR */
  97#define SPI_RD_OFFSET				0
  98#define SPI_RD_SIZE				16
  99
 100/* Bitfields in TDR */
 101#define SPI_TD_OFFSET				0
 102#define SPI_TD_SIZE				16
 103
 104/* Bitfields in SR */
 105#define SPI_RDRF_OFFSET				0
 106#define SPI_RDRF_SIZE				1
 107#define SPI_TDRE_OFFSET				1
 108#define SPI_TDRE_SIZE				1
 109#define SPI_MODF_OFFSET				2
 110#define SPI_MODF_SIZE				1
 111#define SPI_OVRES_OFFSET			3
 112#define SPI_OVRES_SIZE				1
 113#define SPI_ENDRX_OFFSET			4
 114#define SPI_ENDRX_SIZE				1
 115#define SPI_ENDTX_OFFSET			5
 116#define SPI_ENDTX_SIZE				1
 117#define SPI_RXBUFF_OFFSET			6
 118#define SPI_RXBUFF_SIZE				1
 119#define SPI_TXBUFE_OFFSET			7
 120#define SPI_TXBUFE_SIZE				1
 121#define SPI_NSSR_OFFSET				8
 122#define SPI_NSSR_SIZE				1
 123#define SPI_TXEMPTY_OFFSET			9
 124#define SPI_TXEMPTY_SIZE			1
 125#define SPI_SPIENS_OFFSET			16
 126#define SPI_SPIENS_SIZE				1
 127#define SPI_TXFEF_OFFSET			24
 128#define SPI_TXFEF_SIZE				1
 129#define SPI_TXFFF_OFFSET			25
 130#define SPI_TXFFF_SIZE				1
 131#define SPI_TXFTHF_OFFSET			26
 132#define SPI_TXFTHF_SIZE				1
 133#define SPI_RXFEF_OFFSET			27
 134#define SPI_RXFEF_SIZE				1
 135#define SPI_RXFFF_OFFSET			28
 136#define SPI_RXFFF_SIZE				1
 137#define SPI_RXFTHF_OFFSET			29
 138#define SPI_RXFTHF_SIZE				1
 139#define SPI_TXFPTEF_OFFSET			30
 140#define SPI_TXFPTEF_SIZE			1
 141#define SPI_RXFPTEF_OFFSET			31
 142#define SPI_RXFPTEF_SIZE			1
 143
 144/* Bitfields in CSR0 */
 145#define SPI_CPOL_OFFSET				0
 146#define SPI_CPOL_SIZE				1
 147#define SPI_NCPHA_OFFSET			1
 148#define SPI_NCPHA_SIZE				1
 149#define SPI_CSAAT_OFFSET			3
 150#define SPI_CSAAT_SIZE				1
 151#define SPI_BITS_OFFSET				4
 152#define SPI_BITS_SIZE				4
 153#define SPI_SCBR_OFFSET				8
 154#define SPI_SCBR_SIZE				8
 155#define SPI_DLYBS_OFFSET			16
 156#define SPI_DLYBS_SIZE				8
 157#define SPI_DLYBCT_OFFSET			24
 158#define SPI_DLYBCT_SIZE				8
 159
 160/* Bitfields in RCR */
 161#define SPI_RXCTR_OFFSET			0
 162#define SPI_RXCTR_SIZE				16
 163
 164/* Bitfields in TCR */
 165#define SPI_TXCTR_OFFSET			0
 166#define SPI_TXCTR_SIZE				16
 167
 168/* Bitfields in RNCR */
 169#define SPI_RXNCR_OFFSET			0
 170#define SPI_RXNCR_SIZE				16
 171
 172/* Bitfields in TNCR */
 173#define SPI_TXNCR_OFFSET			0
 174#define SPI_TXNCR_SIZE				16
 175
 176/* Bitfields in PTCR */
 177#define SPI_RXTEN_OFFSET			0
 178#define SPI_RXTEN_SIZE				1
 179#define SPI_RXTDIS_OFFSET			1
 180#define SPI_RXTDIS_SIZE				1
 181#define SPI_TXTEN_OFFSET			8
 182#define SPI_TXTEN_SIZE				1
 183#define SPI_TXTDIS_OFFSET			9
 184#define SPI_TXTDIS_SIZE				1
 185
 186/* Bitfields in FMR */
 187#define SPI_TXRDYM_OFFSET			0
 188#define SPI_TXRDYM_SIZE				2
 189#define SPI_RXRDYM_OFFSET			4
 190#define SPI_RXRDYM_SIZE				2
 191#define SPI_TXFTHRES_OFFSET			16
 192#define SPI_TXFTHRES_SIZE			6
 193#define SPI_RXFTHRES_OFFSET			24
 194#define SPI_RXFTHRES_SIZE			6
 195
 196/* Bitfields in FLR */
 197#define SPI_TXFL_OFFSET				0
 198#define SPI_TXFL_SIZE				6
 199#define SPI_RXFL_OFFSET				16
 200#define SPI_RXFL_SIZE				6
 201
 202/* Constants for BITS */
 203#define SPI_BITS_8_BPT				0
 204#define SPI_BITS_9_BPT				1
 205#define SPI_BITS_10_BPT				2
 206#define SPI_BITS_11_BPT				3
 207#define SPI_BITS_12_BPT				4
 208#define SPI_BITS_13_BPT				5
 209#define SPI_BITS_14_BPT				6
 210#define SPI_BITS_15_BPT				7
 211#define SPI_BITS_16_BPT				8
 212#define SPI_ONE_DATA				0
 213#define SPI_TWO_DATA				1
 214#define SPI_FOUR_DATA				2
 215
 216/* Bit manipulation macros */
 217#define SPI_BIT(name) \
 218	(1 << SPI_##name##_OFFSET)
 219#define SPI_BF(name, value) \
 220	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 221#define SPI_BFEXT(name, value) \
 222	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 223#define SPI_BFINS(name, value, old) \
 224	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 225	  | SPI_BF(name, value))
 226
 227/* Register access macros */
 228#ifdef CONFIG_AVR32
 229#define spi_readl(port, reg) \
 230	__raw_readl((port)->regs + SPI_##reg)
 231#define spi_writel(port, reg, value) \
 232	__raw_writel((value), (port)->regs + SPI_##reg)
 233
 234#define spi_readw(port, reg) \
 235	__raw_readw((port)->regs + SPI_##reg)
 236#define spi_writew(port, reg, value) \
 237	__raw_writew((value), (port)->regs + SPI_##reg)
 238
 239#define spi_readb(port, reg) \
 240	__raw_readb((port)->regs + SPI_##reg)
 241#define spi_writeb(port, reg, value) \
 242	__raw_writeb((value), (port)->regs + SPI_##reg)
 243#else
 244#define spi_readl(port, reg) \
 245	readl_relaxed((port)->regs + SPI_##reg)
 246#define spi_writel(port, reg, value) \
 247	writel_relaxed((value), (port)->regs + SPI_##reg)
 248
 249#define spi_readw(port, reg) \
 250	readw_relaxed((port)->regs + SPI_##reg)
 251#define spi_writew(port, reg, value) \
 252	writew_relaxed((value), (port)->regs + SPI_##reg)
 253
 254#define spi_readb(port, reg) \
 255	readb_relaxed((port)->regs + SPI_##reg)
 256#define spi_writeb(port, reg, value) \
 257	writeb_relaxed((value), (port)->regs + SPI_##reg)
 258#endif
 259/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 260 * cache operations; better heuristics consider wordsize and bitrate.
 261 */
 262#define DMA_MIN_BYTES	16
 263
 264#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
 265
 266#define AUTOSUSPEND_TIMEOUT	2000
 267
 268struct atmel_spi_caps {
 269	bool	is_spi2;
 270	bool	has_wdrbt;
 271	bool	has_dma_support;
 
 272};
 273
 274/*
 275 * The core SPI transfer engine just talks to a register bank to set up
 276 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 277 * framework provides the base clock, subdivided for each spi_device.
 278 */
 279struct atmel_spi {
 280	spinlock_t		lock;
 281	unsigned long		flags;
 282
 283	phys_addr_t		phybase;
 284	void __iomem		*regs;
 285	int			irq;
 286	struct clk		*clk;
 287	struct platform_device	*pdev;
 288	unsigned long		spi_clk;
 289
 290	struct spi_transfer	*current_transfer;
 291	int			current_remaining_bytes;
 292	int			done_status;
 
 
 
 
 293
 294	struct completion	xfer_completion;
 295
 296	struct atmel_spi_caps	caps;
 297
 298	bool			use_dma;
 299	bool			use_pdc;
 300	bool			use_cs_gpios;
 301
 302	bool			keep_cs;
 303	bool			cs_active;
 304
 305	u32			fifo_size;
 306};
 307
 308/* Controller-specific per-slave state */
 309struct atmel_spi_device {
 310	unsigned int		npcs_pin;
 311	u32			csr;
 312};
 313
 314#define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
 315#define INVALID_DMA_ADDRESS	0xffffffff
 316
 317/*
 318 * Version 2 of the SPI controller has
 319 *  - CR.LASTXFER
 320 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 321 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 322 *  - SPI_CSRx.CSAAT
 323 *  - SPI_CSRx.SBCR allows faster clocking
 324 */
 325static bool atmel_spi_is_v2(struct atmel_spi *as)
 326{
 327	return as->caps.is_spi2;
 328}
 329
 330/*
 331 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 332 * they assume that spi slave device state will not change on deselect, so
 333 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 334 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 335 * controllers have CSAAT and friends.
 336 *
 337 * Since the CSAAT functionality is a bit weird on newer controllers as
 338 * well, we use GPIO to control nCSx pins on all controllers, updating
 339 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 340 * support active-high chipselects despite the controller's belief that
 341 * only active-low devices/systems exists.
 342 *
 343 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 344 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 345 * Master on Chip Select 0.")  No workaround exists for that ... so for
 346 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 347 * and (c) will trigger that first erratum in some cases.
 348 */
 349
 350static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 351{
 352	struct atmel_spi_device *asd = spi->controller_state;
 353	unsigned active = spi->mode & SPI_CS_HIGH;
 354	u32 mr;
 355
 356	if (atmel_spi_is_v2(as)) {
 357		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
 358		/* For the low SPI version, there is a issue that PDC transfer
 359		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
 360		 */
 361		spi_writel(as, CSR0, asd->csr);
 362		if (as->caps.has_wdrbt) {
 363			spi_writel(as, MR,
 364					SPI_BF(PCS, ~(0x01 << spi->chip_select))
 365					| SPI_BIT(WDRBT)
 366					| SPI_BIT(MODFDIS)
 367					| SPI_BIT(MSTR));
 368		} else {
 369			spi_writel(as, MR,
 370					SPI_BF(PCS, ~(0x01 << spi->chip_select))
 371					| SPI_BIT(MODFDIS)
 372					| SPI_BIT(MSTR));
 373		}
 374
 375		mr = spi_readl(as, MR);
 376		if (as->use_cs_gpios)
 377			gpio_set_value(asd->npcs_pin, active);
 378	} else {
 379		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 380		int i;
 381		u32 csr;
 382
 383		/* Make sure clock polarity is correct */
 384		for (i = 0; i < spi->master->num_chipselect; i++) {
 385			csr = spi_readl(as, CSR0 + 4 * i);
 386			if ((csr ^ cpol) & SPI_BIT(CPOL))
 387				spi_writel(as, CSR0 + 4 * i,
 388						csr ^ SPI_BIT(CPOL));
 389		}
 390
 391		mr = spi_readl(as, MR);
 392		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
 393		if (as->use_cs_gpios && spi->chip_select != 0)
 394			gpio_set_value(asd->npcs_pin, active);
 395		spi_writel(as, MR, mr);
 396	}
 397
 398	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
 399			asd->npcs_pin, active ? " (high)" : "",
 400			mr);
 401}
 402
 403static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 404{
 405	struct atmel_spi_device *asd = spi->controller_state;
 406	unsigned active = spi->mode & SPI_CS_HIGH;
 407	u32 mr;
 408
 409	/* only deactivate *this* device; sometimes transfers to
 410	 * another device may be active when this routine is called.
 411	 */
 412	mr = spi_readl(as, MR);
 413	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
 414		mr = SPI_BFINS(PCS, 0xf, mr);
 415		spi_writel(as, MR, mr);
 416	}
 417
 418	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
 419			asd->npcs_pin, active ? " (low)" : "",
 420			mr);
 421
 422	if (!as->use_cs_gpios)
 423		spi_writel(as, CR, SPI_BIT(LASTXFER));
 424	else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
 425		gpio_set_value(asd->npcs_pin, !active);
 426}
 427
 428static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
 429{
 430	spin_lock_irqsave(&as->lock, as->flags);
 431}
 432
 433static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
 434{
 435	spin_unlock_irqrestore(&as->lock, as->flags);
 436}
 437
 
 
 
 
 
 438static inline bool atmel_spi_use_dma(struct atmel_spi *as,
 439				struct spi_transfer *xfer)
 440{
 441	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
 442}
 443
 444static bool atmel_spi_can_dma(struct spi_master *master,
 445			      struct spi_device *spi,
 446			      struct spi_transfer *xfer)
 447{
 448	struct atmel_spi *as = spi_master_get_devdata(master);
 449
 450	return atmel_spi_use_dma(as, xfer);
 
 
 
 
 
 451}
 452
 453static int atmel_spi_dma_slave_config(struct atmel_spi *as,
 454				struct dma_slave_config *slave_config,
 455				u8 bits_per_word)
 456{
 457	struct spi_master *master = platform_get_drvdata(as->pdev);
 458	int err = 0;
 459
 460	if (bits_per_word > 8) {
 461		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 462		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 463	} else {
 464		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 465		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 466	}
 467
 468	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
 469	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
 470	slave_config->src_maxburst = 1;
 471	slave_config->dst_maxburst = 1;
 472	slave_config->device_fc = false;
 473
 474	/*
 475	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
 476	 * the Mode Register).
 477	 * So according to the datasheet, when FIFOs are available (and
 478	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
 479	 * In this mode, up to 2 data, not 4, can be written into the Transmit
 480	 * Data Register in a single access.
 481	 * However, the first data has to be written into the lowest 16 bits and
 482	 * the second data into the highest 16 bits of the Transmit
 483	 * Data Register. For 8bit data (the most frequent case), it would
 484	 * require to rework tx_buf so each data would actualy fit 16 bits.
 485	 * So we'd rather write only one data at the time. Hence the transmit
 486	 * path works the same whether FIFOs are available (and enabled) or not.
 487	 */
 488	slave_config->direction = DMA_MEM_TO_DEV;
 489	if (dmaengine_slave_config(master->dma_tx, slave_config)) {
 490		dev_err(&as->pdev->dev,
 491			"failed to configure tx dma channel\n");
 492		err = -EINVAL;
 493	}
 494
 495	/*
 496	 * This driver configures the spi controller for master mode (MSTR bit
 497	 * set to '1' in the Mode Register).
 498	 * So according to the datasheet, when FIFOs are available (and
 499	 * enabled), the Receive FIFO operates in Single Data Mode.
 500	 * So the receive path works the same whether FIFOs are available (and
 501	 * enabled) or not.
 502	 */
 503	slave_config->direction = DMA_DEV_TO_MEM;
 504	if (dmaengine_slave_config(master->dma_rx, slave_config)) {
 505		dev_err(&as->pdev->dev,
 506			"failed to configure rx dma channel\n");
 507		err = -EINVAL;
 508	}
 509
 510	return err;
 511}
 512
 513static int atmel_spi_configure_dma(struct spi_master *master,
 514				   struct atmel_spi *as)
 515{
 516	struct dma_slave_config	slave_config;
 517	struct device *dev = &as->pdev->dev;
 518	int err;
 519
 520	dma_cap_mask_t mask;
 521	dma_cap_zero(mask);
 522	dma_cap_set(DMA_SLAVE, mask);
 523
 524	master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
 525	if (IS_ERR(master->dma_tx)) {
 526		err = PTR_ERR(master->dma_tx);
 527		if (err == -EPROBE_DEFER) {
 528			dev_warn(dev, "no DMA channel available at the moment\n");
 529			goto error_clear;
 530		}
 531		dev_err(dev,
 532			"DMA TX channel not available, SPI unable to use DMA\n");
 533		err = -EBUSY;
 534		goto error_clear;
 535	}
 536
 537	/*
 538	 * No reason to check EPROBE_DEFER here since we have already requested
 539	 * tx channel. If it fails here, it's for another reason.
 540	 */
 541	master->dma_rx = dma_request_slave_channel(dev, "rx");
 542
 543	if (!master->dma_rx) {
 544		dev_err(dev,
 545			"DMA RX channel not available, SPI unable to use DMA\n");
 546		err = -EBUSY;
 547		goto error;
 548	}
 549
 550	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
 551	if (err)
 552		goto error;
 553
 554	dev_info(&as->pdev->dev,
 555			"Using %s (tx) and %s (rx) for DMA transfers\n",
 556			dma_chan_name(master->dma_tx),
 557			dma_chan_name(master->dma_rx));
 558
 559	return 0;
 560error:
 561	if (master->dma_rx)
 562		dma_release_channel(master->dma_rx);
 563	if (!IS_ERR(master->dma_tx))
 564		dma_release_channel(master->dma_tx);
 565error_clear:
 566	master->dma_tx = master->dma_rx = NULL;
 567	return err;
 568}
 569
 570static void atmel_spi_stop_dma(struct spi_master *master)
 571{
 572	if (master->dma_rx)
 573		dmaengine_terminate_all(master->dma_rx);
 574	if (master->dma_tx)
 575		dmaengine_terminate_all(master->dma_tx);
 576}
 577
 578static void atmel_spi_release_dma(struct spi_master *master)
 579{
 580	if (master->dma_rx) {
 581		dma_release_channel(master->dma_rx);
 582		master->dma_rx = NULL;
 583	}
 584	if (master->dma_tx) {
 585		dma_release_channel(master->dma_tx);
 586		master->dma_tx = NULL;
 587	}
 588}
 589
 590/* This function is called by the DMA driver from tasklet context */
 591static void dma_callback(void *data)
 592{
 593	struct spi_master	*master = data;
 594	struct atmel_spi	*as = spi_master_get_devdata(master);
 595
 
 
 
 
 
 596	complete(&as->xfer_completion);
 597}
 598
 599/*
 600 * Next transfer using PIO without FIFO.
 601 */
 602static void atmel_spi_next_xfer_single(struct spi_master *master,
 603				       struct spi_transfer *xfer)
 604{
 605	struct atmel_spi	*as = spi_master_get_devdata(master);
 606	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
 607
 608	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
 609
 610	/* Make sure data is not remaining in RDR */
 611	spi_readl(as, RDR);
 612	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
 613		spi_readl(as, RDR);
 614		cpu_relax();
 615	}
 616
 617	if (xfer->bits_per_word > 8)
 618		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
 619	else
 620		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
 621
 622	dev_dbg(master->dev.parent,
 623		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
 624		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 625		xfer->bits_per_word);
 626
 627	/* Enable relevant interrupts */
 628	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
 629}
 630
 631/*
 632 * Next transfer using PIO with FIFO.
 633 */
 634static void atmel_spi_next_xfer_fifo(struct spi_master *master,
 635				     struct spi_transfer *xfer)
 636{
 637	struct atmel_spi *as = spi_master_get_devdata(master);
 638	u32 current_remaining_data, num_data;
 639	u32 offset = xfer->len - as->current_remaining_bytes;
 640	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
 641	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
 642	u16 td0, td1;
 643	u32 fifomr;
 644
 645	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
 646
 647	/* Compute the number of data to transfer in the current iteration */
 648	current_remaining_data = ((xfer->bits_per_word > 8) ?
 649				  ((u32)as->current_remaining_bytes >> 1) :
 650				  (u32)as->current_remaining_bytes);
 651	num_data = min(current_remaining_data, as->fifo_size);
 652
 653	/* Flush RX and TX FIFOs */
 654	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
 655	while (spi_readl(as, FLR))
 656		cpu_relax();
 657
 658	/* Set RX FIFO Threshold to the number of data to transfer */
 659	fifomr = spi_readl(as, FMR);
 660	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
 661
 662	/* Clear FIFO flags in the Status Register, especially RXFTHF */
 663	(void)spi_readl(as, SR);
 664
 665	/* Fill TX FIFO */
 666	while (num_data >= 2) {
 667		if (xfer->bits_per_word > 8) {
 668			td0 = *words++;
 669			td1 = *words++;
 670		} else {
 671			td0 = *bytes++;
 672			td1 = *bytes++;
 673		}
 674
 675		spi_writel(as, TDR, (td1 << 16) | td0);
 676		num_data -= 2;
 677	}
 678
 679	if (num_data) {
 680		if (xfer->bits_per_word > 8)
 681			td0 = *words++;
 682		else
 683			td0 = *bytes++;
 684
 685		spi_writew(as, TDR, td0);
 686		num_data--;
 687	}
 688
 689	dev_dbg(master->dev.parent,
 690		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
 691		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 692		xfer->bits_per_word);
 693
 694	/*
 695	 * Enable RX FIFO Threshold Flag interrupt to be notified about
 696	 * transfer completion.
 697	 */
 698	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
 699}
 700
 701/*
 702 * Next transfer using PIO.
 703 */
 704static void atmel_spi_next_xfer_pio(struct spi_master *master,
 705				    struct spi_transfer *xfer)
 706{
 707	struct atmel_spi *as = spi_master_get_devdata(master);
 708
 709	if (as->fifo_size)
 710		atmel_spi_next_xfer_fifo(master, xfer);
 711	else
 712		atmel_spi_next_xfer_single(master, xfer);
 713}
 714
 715/*
 716 * Submit next transfer for DMA.
 717 */
 718static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
 719				struct spi_transfer *xfer,
 720				u32 *plen)
 721{
 722	struct atmel_spi	*as = spi_master_get_devdata(master);
 723	struct dma_chan		*rxchan = master->dma_rx;
 724	struct dma_chan		*txchan = master->dma_tx;
 725	struct dma_async_tx_descriptor *rxdesc;
 726	struct dma_async_tx_descriptor *txdesc;
 727	struct dma_slave_config	slave_config;
 728	dma_cookie_t		cookie;
 729
 730	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
 731
 732	/* Check that the channels are available */
 733	if (!rxchan || !txchan)
 734		return -ENODEV;
 735
 736	/* release lock for DMA operations */
 737	atmel_spi_unlock(as);
 738
 739	*plen = xfer->len;
 740
 741	if (atmel_spi_dma_slave_config(as, &slave_config,
 742				       xfer->bits_per_word))
 743		goto err_exit;
 744
 745	/* Send both scatterlists */
 746	rxdesc = dmaengine_prep_slave_sg(rxchan,
 747					 xfer->rx_sg.sgl, xfer->rx_sg.nents,
 748					 DMA_FROM_DEVICE,
 749					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 
 
 
 
 
 
 
 
 
 
 
 
 750	if (!rxdesc)
 751		goto err_dma;
 752
 753	txdesc = dmaengine_prep_slave_sg(txchan,
 754					 xfer->tx_sg.sgl, xfer->tx_sg.nents,
 755					 DMA_TO_DEVICE,
 756					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 
 
 
 
 
 
 
 
 
 
 
 
 757	if (!txdesc)
 758		goto err_dma;
 759
 760	dev_dbg(master->dev.parent,
 761		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 762		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
 763		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
 764
 765	/* Enable relevant interrupts */
 766	spi_writel(as, IER, SPI_BIT(OVRES));
 767
 768	/* Put the callback on the RX transfer only, that should finish last */
 769	rxdesc->callback = dma_callback;
 770	rxdesc->callback_param = master;
 771
 772	/* Submit and fire RX and TX with TX last so we're ready to read! */
 773	cookie = rxdesc->tx_submit(rxdesc);
 774	if (dma_submit_error(cookie))
 775		goto err_dma;
 776	cookie = txdesc->tx_submit(txdesc);
 777	if (dma_submit_error(cookie))
 778		goto err_dma;
 779	rxchan->device->device_issue_pending(rxchan);
 780	txchan->device->device_issue_pending(txchan);
 781
 782	/* take back lock */
 783	atmel_spi_lock(as);
 784	return 0;
 785
 786err_dma:
 787	spi_writel(as, IDR, SPI_BIT(OVRES));
 788	atmel_spi_stop_dma(master);
 789err_exit:
 790	atmel_spi_lock(as);
 791	return -ENOMEM;
 792}
 793
 794static void atmel_spi_next_xfer_data(struct spi_master *master,
 795				struct spi_transfer *xfer,
 796				dma_addr_t *tx_dma,
 797				dma_addr_t *rx_dma,
 798				u32 *plen)
 799{
 800	*rx_dma = xfer->rx_dma + xfer->len - *plen;
 801	*tx_dma = xfer->tx_dma + xfer->len - *plen;
 802	if (*plen > master->max_dma_len)
 803		*plen = master->max_dma_len;
 804}
 805
 806static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
 807				    struct spi_device *spi,
 808				    struct spi_transfer *xfer)
 809{
 810	u32			scbr, csr;
 811	unsigned long		bus_hz;
 812
 813	/* v1 chips start out at half the peripheral bus speed. */
 814	bus_hz = as->spi_clk;
 815	if (!atmel_spi_is_v2(as))
 816		bus_hz /= 2;
 817
 818	/*
 819	 * Calculate the lowest divider that satisfies the
 820	 * constraint, assuming div32/fdiv/mbz == 0.
 821	 */
 822	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
 823
 824	/*
 825	 * If the resulting divider doesn't fit into the
 826	 * register bitfield, we can't satisfy the constraint.
 827	 */
 828	if (scbr >= (1 << SPI_SCBR_SIZE)) {
 829		dev_err(&spi->dev,
 830			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 831			xfer->speed_hz, scbr, bus_hz/255);
 832		return -EINVAL;
 833	}
 834	if (scbr == 0) {
 835		dev_err(&spi->dev,
 836			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
 837			xfer->speed_hz, scbr, bus_hz);
 838		return -EINVAL;
 839	}
 840	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
 841	csr = SPI_BFINS(SCBR, scbr, csr);
 842	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
 843
 844	return 0;
 845}
 846
 847/*
 848 * Submit next transfer for PDC.
 849 * lock is held, spi irq is blocked
 850 */
 851static void atmel_spi_pdc_next_xfer(struct spi_master *master,
 852					struct spi_message *msg,
 853					struct spi_transfer *xfer)
 854{
 855	struct atmel_spi	*as = spi_master_get_devdata(master);
 856	u32			len;
 857	dma_addr_t		tx_dma, rx_dma;
 858
 859	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 860
 861	len = as->current_remaining_bytes;
 862	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 863	as->current_remaining_bytes -= len;
 864
 865	spi_writel(as, RPR, rx_dma);
 866	spi_writel(as, TPR, tx_dma);
 867
 868	if (msg->spi->bits_per_word > 8)
 869		len >>= 1;
 870	spi_writel(as, RCR, len);
 871	spi_writel(as, TCR, len);
 872
 873	dev_dbg(&msg->spi->dev,
 874		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 875		xfer, xfer->len, xfer->tx_buf,
 876		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 877		(unsigned long long)xfer->rx_dma);
 878
 879	if (as->current_remaining_bytes) {
 880		len = as->current_remaining_bytes;
 881		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 882		as->current_remaining_bytes -= len;
 883
 884		spi_writel(as, RNPR, rx_dma);
 885		spi_writel(as, TNPR, tx_dma);
 886
 887		if (msg->spi->bits_per_word > 8)
 888			len >>= 1;
 889		spi_writel(as, RNCR, len);
 890		spi_writel(as, TNCR, len);
 891
 892		dev_dbg(&msg->spi->dev,
 893			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 894			xfer, xfer->len, xfer->tx_buf,
 895			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 896			(unsigned long long)xfer->rx_dma);
 897	}
 898
 899	/* REVISIT: We're waiting for RXBUFF before we start the next
 900	 * transfer because we need to handle some difficult timing
 901	 * issues otherwise. If we wait for TXBUFE in one transfer and
 902	 * then starts waiting for RXBUFF in the next, it's difficult
 903	 * to tell the difference between the RXBUFF interrupt we're
 904	 * actually waiting for and the RXBUFF interrupt of the
 905	 * previous transfer.
 906	 *
 907	 * It should be doable, though. Just not now...
 908	 */
 909	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
 910	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 911}
 912
 913/*
 914 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 915 *  - The buffer is either valid for CPU access, else NULL
 916 *  - If the buffer is valid, so is its DMA address
 917 *
 918 * This driver manages the dma address unless message->is_dma_mapped.
 919 */
 920static int
 921atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 922{
 923	struct device	*dev = &as->pdev->dev;
 924
 925	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 926	if (xfer->tx_buf) {
 927		/* tx_buf is a const void* where we need a void * for the dma
 928		 * mapping */
 929		void *nonconst_tx = (void *)xfer->tx_buf;
 930
 931		xfer->tx_dma = dma_map_single(dev,
 932				nonconst_tx, xfer->len,
 933				DMA_TO_DEVICE);
 934		if (dma_mapping_error(dev, xfer->tx_dma))
 935			return -ENOMEM;
 936	}
 937	if (xfer->rx_buf) {
 938		xfer->rx_dma = dma_map_single(dev,
 939				xfer->rx_buf, xfer->len,
 940				DMA_FROM_DEVICE);
 941		if (dma_mapping_error(dev, xfer->rx_dma)) {
 942			if (xfer->tx_buf)
 943				dma_unmap_single(dev,
 944						xfer->tx_dma, xfer->len,
 945						DMA_TO_DEVICE);
 946			return -ENOMEM;
 947		}
 948	}
 949	return 0;
 950}
 951
 952static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 953				     struct spi_transfer *xfer)
 954{
 955	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
 956		dma_unmap_single(master->dev.parent, xfer->tx_dma,
 957				 xfer->len, DMA_TO_DEVICE);
 958	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
 959		dma_unmap_single(master->dev.parent, xfer->rx_dma,
 960				 xfer->len, DMA_FROM_DEVICE);
 961}
 962
 963static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
 964{
 965	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 966}
 967
 968static void
 969atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
 970{
 971	u8		*rxp;
 972	u16		*rxp16;
 973	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
 974
 975	if (xfer->bits_per_word > 8) {
 976		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
 977		*rxp16 = spi_readl(as, RDR);
 978	} else {
 979		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
 980		*rxp = spi_readl(as, RDR);
 981	}
 982	if (xfer->bits_per_word > 8) {
 983		if (as->current_remaining_bytes > 2)
 984			as->current_remaining_bytes -= 2;
 985		else
 986			as->current_remaining_bytes = 0;
 987	} else {
 988		as->current_remaining_bytes--;
 989	}
 990}
 991
 992static void
 993atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
 994{
 995	u32 fifolr = spi_readl(as, FLR);
 996	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
 997	u32 offset = xfer->len - as->current_remaining_bytes;
 998	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
 999	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1000	u16 rd; /* RD field is the lowest 16 bits of RDR */
1001
1002	/* Update the number of remaining bytes to transfer */
1003	num_bytes = ((xfer->bits_per_word > 8) ?
1004		     (num_data << 1) :
1005		     num_data);
1006
1007	if (as->current_remaining_bytes > num_bytes)
1008		as->current_remaining_bytes -= num_bytes;
1009	else
1010		as->current_remaining_bytes = 0;
1011
1012	/* Handle odd number of bytes when data are more than 8bit width */
1013	if (xfer->bits_per_word > 8)
1014		as->current_remaining_bytes &= ~0x1;
1015
1016	/* Read data */
1017	while (num_data) {
1018		rd = spi_readl(as, RDR);
1019		if (xfer->bits_per_word > 8)
1020			*words++ = rd;
1021		else
1022			*bytes++ = rd;
1023		num_data--;
1024	}
1025}
1026
1027/* Called from IRQ
1028 *
1029 * Must update "current_remaining_bytes" to keep track of data
1030 * to transfer.
1031 */
1032static void
1033atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1034{
1035	if (as->fifo_size)
1036		atmel_spi_pump_fifo_data(as, xfer);
1037	else
1038		atmel_spi_pump_single_data(as, xfer);
1039}
1040
1041/* Interrupt
1042 *
1043 * No need for locking in this Interrupt handler: done_status is the
1044 * only information modified.
1045 */
1046static irqreturn_t
1047atmel_spi_pio_interrupt(int irq, void *dev_id)
1048{
1049	struct spi_master	*master = dev_id;
1050	struct atmel_spi	*as = spi_master_get_devdata(master);
1051	u32			status, pending, imr;
1052	struct spi_transfer	*xfer;
1053	int			ret = IRQ_NONE;
1054
1055	imr = spi_readl(as, IMR);
1056	status = spi_readl(as, SR);
1057	pending = status & imr;
1058
1059	if (pending & SPI_BIT(OVRES)) {
1060		ret = IRQ_HANDLED;
1061		spi_writel(as, IDR, SPI_BIT(OVRES));
1062		dev_warn(master->dev.parent, "overrun\n");
1063
1064		/*
1065		 * When we get an overrun, we disregard the current
1066		 * transfer. Data will not be copied back from any
1067		 * bounce buffer and msg->actual_len will not be
1068		 * updated with the last xfer.
1069		 *
1070		 * We will also not process any remaning transfers in
1071		 * the message.
1072		 */
1073		as->done_status = -EIO;
1074		smp_wmb();
1075
1076		/* Clear any overrun happening while cleaning up */
1077		spi_readl(as, SR);
1078
1079		complete(&as->xfer_completion);
1080
1081	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1082		atmel_spi_lock(as);
1083
1084		if (as->current_remaining_bytes) {
1085			ret = IRQ_HANDLED;
1086			xfer = as->current_transfer;
1087			atmel_spi_pump_pio_data(as, xfer);
1088			if (!as->current_remaining_bytes)
1089				spi_writel(as, IDR, pending);
1090
1091			complete(&as->xfer_completion);
1092		}
1093
1094		atmel_spi_unlock(as);
1095	} else {
1096		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1097		ret = IRQ_HANDLED;
1098		spi_writel(as, IDR, pending);
1099	}
1100
1101	return ret;
1102}
1103
1104static irqreturn_t
1105atmel_spi_pdc_interrupt(int irq, void *dev_id)
1106{
1107	struct spi_master	*master = dev_id;
1108	struct atmel_spi	*as = spi_master_get_devdata(master);
1109	u32			status, pending, imr;
1110	int			ret = IRQ_NONE;
1111
1112	imr = spi_readl(as, IMR);
1113	status = spi_readl(as, SR);
1114	pending = status & imr;
1115
1116	if (pending & SPI_BIT(OVRES)) {
1117
1118		ret = IRQ_HANDLED;
1119
1120		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1121				     | SPI_BIT(OVRES)));
1122
1123		/* Clear any overrun happening while cleaning up */
1124		spi_readl(as, SR);
1125
1126		as->done_status = -EIO;
1127
1128		complete(&as->xfer_completion);
1129
1130	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1131		ret = IRQ_HANDLED;
1132
1133		spi_writel(as, IDR, pending);
1134
1135		complete(&as->xfer_completion);
1136	}
1137
1138	return ret;
1139}
1140
1141static int atmel_spi_setup(struct spi_device *spi)
1142{
1143	struct atmel_spi	*as;
1144	struct atmel_spi_device	*asd;
1145	u32			csr;
1146	unsigned int		bits = spi->bits_per_word;
1147	unsigned int		npcs_pin;
1148
1149	as = spi_master_get_devdata(spi->master);
1150
1151	/* see notes above re chipselect */
1152	if (!atmel_spi_is_v2(as)
1153			&& spi->chip_select == 0
1154			&& (spi->mode & SPI_CS_HIGH)) {
1155		dev_dbg(&spi->dev, "setup: can't be active-high\n");
1156		return -EINVAL;
1157	}
1158
1159	csr = SPI_BF(BITS, bits - 8);
1160	if (spi->mode & SPI_CPOL)
1161		csr |= SPI_BIT(CPOL);
1162	if (!(spi->mode & SPI_CPHA))
1163		csr |= SPI_BIT(NCPHA);
1164	if (!as->use_cs_gpios)
1165		csr |= SPI_BIT(CSAAT);
1166
1167	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1168	 *
1169	 * DLYBCT would add delays between words, slowing down transfers.
1170	 * It could potentially be useful to cope with DMA bottlenecks, but
1171	 * in those cases it's probably best to just use a lower bitrate.
1172	 */
1173	csr |= SPI_BF(DLYBS, 0);
1174	csr |= SPI_BF(DLYBCT, 0);
1175
1176	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1177	npcs_pin = (unsigned long)spi->controller_data;
1178
1179	if (!as->use_cs_gpios)
1180		npcs_pin = spi->chip_select;
1181	else if (gpio_is_valid(spi->cs_gpio))
1182		npcs_pin = spi->cs_gpio;
1183
1184	asd = spi->controller_state;
1185	if (!asd) {
1186		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1187		if (!asd)
1188			return -ENOMEM;
1189
1190		if (as->use_cs_gpios)
1191			gpio_direction_output(npcs_pin,
1192					      !(spi->mode & SPI_CS_HIGH));
 
 
 
 
 
 
 
 
 
 
 
1193
1194		asd->npcs_pin = npcs_pin;
1195		spi->controller_state = asd;
1196	}
1197
1198	asd->csr = csr;
1199
1200	dev_dbg(&spi->dev,
1201		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1202		bits, spi->mode, spi->chip_select, csr);
1203
1204	if (!atmel_spi_is_v2(as))
1205		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1206
1207	return 0;
1208}
1209
1210static int atmel_spi_one_transfer(struct spi_master *master,
1211					struct spi_message *msg,
1212					struct spi_transfer *xfer)
1213{
1214	struct atmel_spi	*as;
1215	struct spi_device	*spi = msg->spi;
1216	u8			bits;
1217	u32			len;
1218	struct atmel_spi_device	*asd;
1219	int			timeout;
1220	int			ret;
1221	unsigned long		dma_timeout;
1222
1223	as = spi_master_get_devdata(master);
1224
1225	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1226		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1227		return -EINVAL;
1228	}
1229
1230	asd = spi->controller_state;
1231	bits = (asd->csr >> 4) & 0xf;
1232	if (bits != xfer->bits_per_word - 8) {
1233		dev_dbg(&spi->dev,
1234			"you can't yet change bits_per_word in transfers\n");
1235		return -ENOPROTOOPT;
1236	}
1237
1238	/*
1239	 * DMA map early, for performance (empties dcache ASAP) and
1240	 * better fault reporting.
1241	 */
1242	if ((!msg->is_dma_mapped)
1243		&& as->use_pdc) {
1244		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1245			return -ENOMEM;
1246	}
1247
1248	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1249
1250	as->done_status = 0;
1251	as->current_transfer = xfer;
1252	as->current_remaining_bytes = xfer->len;
1253	while (as->current_remaining_bytes) {
1254		reinit_completion(&as->xfer_completion);
1255
1256		if (as->use_pdc) {
1257			atmel_spi_pdc_next_xfer(master, msg, xfer);
1258		} else if (atmel_spi_use_dma(as, xfer)) {
1259			len = as->current_remaining_bytes;
1260			ret = atmel_spi_next_xfer_dma_submit(master,
1261								xfer, &len);
1262			if (ret) {
1263				dev_err(&spi->dev,
1264					"unable to use DMA, fallback to PIO\n");
1265				atmel_spi_next_xfer_pio(master, xfer);
1266			} else {
1267				as->current_remaining_bytes -= len;
1268				if (as->current_remaining_bytes < 0)
1269					as->current_remaining_bytes = 0;
1270			}
1271		} else {
1272			atmel_spi_next_xfer_pio(master, xfer);
1273		}
1274
1275		/* interrupts are disabled, so free the lock for schedule */
1276		atmel_spi_unlock(as);
1277		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1278							  SPI_DMA_TIMEOUT);
1279		atmel_spi_lock(as);
1280		if (WARN_ON(dma_timeout == 0)) {
1281			dev_err(&spi->dev, "spi transfer timeout\n");
1282			as->done_status = -EIO;
1283		}
1284
1285		if (as->done_status)
1286			break;
1287	}
1288
1289	if (as->done_status) {
1290		if (as->use_pdc) {
1291			dev_warn(master->dev.parent,
1292				"overrun (%u/%u remaining)\n",
1293				spi_readl(as, TCR), spi_readl(as, RCR));
1294
1295			/*
1296			 * Clean up DMA registers and make sure the data
1297			 * registers are empty.
1298			 */
1299			spi_writel(as, RNCR, 0);
1300			spi_writel(as, TNCR, 0);
1301			spi_writel(as, RCR, 0);
1302			spi_writel(as, TCR, 0);
1303			for (timeout = 1000; timeout; timeout--)
1304				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1305					break;
1306			if (!timeout)
1307				dev_warn(master->dev.parent,
1308					 "timeout waiting for TXEMPTY");
1309			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1310				spi_readl(as, RDR);
1311
1312			/* Clear any overrun happening while cleaning up */
1313			spi_readl(as, SR);
1314
1315		} else if (atmel_spi_use_dma(as, xfer)) {
1316			atmel_spi_stop_dma(master);
1317		}
1318
1319		if (!msg->is_dma_mapped
1320			&& as->use_pdc)
1321			atmel_spi_dma_unmap_xfer(master, xfer);
1322
1323		return 0;
1324
1325	} else {
1326		/* only update length if no error */
1327		msg->actual_length += xfer->len;
1328	}
1329
1330	if (!msg->is_dma_mapped
1331		&& as->use_pdc)
1332		atmel_spi_dma_unmap_xfer(master, xfer);
1333
1334	if (xfer->delay_usecs)
1335		udelay(xfer->delay_usecs);
1336
1337	if (xfer->cs_change) {
1338		if (list_is_last(&xfer->transfer_list,
1339				 &msg->transfers)) {
1340			as->keep_cs = true;
1341		} else {
1342			as->cs_active = !as->cs_active;
1343			if (as->cs_active)
1344				cs_activate(as, msg->spi);
1345			else
1346				cs_deactivate(as, msg->spi);
1347		}
1348	}
1349
1350	return 0;
1351}
1352
1353static int atmel_spi_transfer_one_message(struct spi_master *master,
1354						struct spi_message *msg)
1355{
1356	struct atmel_spi *as;
1357	struct spi_transfer *xfer;
1358	struct spi_device *spi = msg->spi;
1359	int ret = 0;
1360
1361	as = spi_master_get_devdata(master);
1362
1363	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1364					msg, dev_name(&spi->dev));
1365
1366	atmel_spi_lock(as);
1367	cs_activate(as, spi);
1368
1369	as->cs_active = true;
1370	as->keep_cs = false;
1371
1372	msg->status = 0;
1373	msg->actual_length = 0;
1374
1375	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 
 
1376		ret = atmel_spi_one_transfer(master, msg, xfer);
1377		if (ret)
1378			goto msg_done;
 
 
1379	}
1380
1381	if (as->use_pdc)
1382		atmel_spi_disable_pdc_transfer(as);
1383
1384	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1385		dev_dbg(&spi->dev,
1386			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1387			xfer, xfer->len,
1388			xfer->tx_buf, &xfer->tx_dma,
1389			xfer->rx_buf, &xfer->rx_dma);
1390	}
1391
1392msg_done:
1393	if (!as->keep_cs)
1394		cs_deactivate(as, msg->spi);
1395
1396	atmel_spi_unlock(as);
1397
1398	msg->status = as->done_status;
1399	spi_finalize_current_message(spi->master);
1400
1401	return ret;
1402}
1403
1404static void atmel_spi_cleanup(struct spi_device *spi)
1405{
1406	struct atmel_spi_device	*asd = spi->controller_state;
1407
1408	if (!asd)
1409		return;
1410
1411	spi->controller_state = NULL;
1412	kfree(asd);
1413}
1414
1415static inline unsigned int atmel_get_version(struct atmel_spi *as)
1416{
1417	return spi_readl(as, VERSION) & 0x00000fff;
1418}
1419
1420static void atmel_get_caps(struct atmel_spi *as)
1421{
1422	unsigned int version;
1423
1424	version = atmel_get_version(as);
1425	dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1426
1427	as->caps.is_spi2 = version > 0x121;
1428	as->caps.has_wdrbt = version >= 0x210;
1429	as->caps.has_dma_support = version >= 0x212;
 
1430}
1431
1432/*-------------------------------------------------------------------------*/
1433static int atmel_spi_gpio_cs(struct platform_device *pdev)
1434{
1435	struct spi_master	*master = platform_get_drvdata(pdev);
1436	struct atmel_spi	*as = spi_master_get_devdata(master);
1437	struct device_node	*np = master->dev.of_node;
1438	int			i;
1439	int			ret = 0;
1440	int			nb = 0;
1441
1442	if (!as->use_cs_gpios)
1443		return 0;
 
1444
1445	if (!np)
1446		return 0;
1447
1448	nb = of_gpio_named_count(np, "cs-gpios");
1449	for (i = 0; i < nb; i++) {
1450		int cs_gpio = of_get_named_gpio(pdev->dev.of_node,
1451						"cs-gpios", i);
1452
1453		if (cs_gpio == -EPROBE_DEFER)
1454			return cs_gpio;
1455
1456		if (gpio_is_valid(cs_gpio)) {
1457			ret = devm_gpio_request(&pdev->dev, cs_gpio,
1458						dev_name(&pdev->dev));
1459			if (ret)
1460				return ret;
1461		}
1462	}
1463
1464	return 0;
 
 
1465}
1466
1467static int atmel_spi_probe(struct platform_device *pdev)
1468{
1469	struct resource		*regs;
1470	int			irq;
1471	struct clk		*clk;
1472	int			ret;
1473	struct spi_master	*master;
1474	struct atmel_spi	*as;
1475
1476	/* Select default pin state */
1477	pinctrl_pm_select_default_state(&pdev->dev);
1478
1479	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1480	if (!regs)
1481		return -ENXIO;
1482
1483	irq = platform_get_irq(pdev, 0);
1484	if (irq < 0)
1485		return irq;
1486
1487	clk = devm_clk_get(&pdev->dev, "spi_clk");
1488	if (IS_ERR(clk))
1489		return PTR_ERR(clk);
1490
1491	/* setup spi core then atmel-specific driver state */
1492	ret = -ENOMEM;
1493	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1494	if (!master)
1495		goto out_free;
1496
1497	/* the spi->mode bits understood by this driver: */
 
1498	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1499	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1500	master->dev.of_node = pdev->dev.of_node;
1501	master->bus_num = pdev->id;
1502	master->num_chipselect = master->dev.of_node ? 0 : 4;
1503	master->setup = atmel_spi_setup;
1504	master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1505	master->transfer_one_message = atmel_spi_transfer_one_message;
1506	master->cleanup = atmel_spi_cleanup;
1507	master->auto_runtime_pm = true;
1508	master->max_dma_len = SPI_MAX_DMA_XFER;
1509	master->can_dma = atmel_spi_can_dma;
1510	platform_set_drvdata(pdev, master);
1511
1512	as = spi_master_get_devdata(master);
1513
1514	spin_lock_init(&as->lock);
1515
1516	as->pdev = pdev;
1517	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1518	if (IS_ERR(as->regs)) {
1519		ret = PTR_ERR(as->regs);
1520		goto out_unmap_regs;
1521	}
1522	as->phybase = regs->start;
1523	as->irq = irq;
1524	as->clk = clk;
1525
1526	init_completion(&as->xfer_completion);
1527
1528	atmel_get_caps(as);
1529
 
 
 
 
 
1530	as->use_cs_gpios = true;
1531	if (atmel_spi_is_v2(as) &&
1532	    pdev->dev.of_node &&
1533	    !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1534		as->use_cs_gpios = false;
1535		master->num_chipselect = 4;
1536	}
1537
1538	ret = atmel_spi_gpio_cs(pdev);
1539	if (ret)
1540		goto out_unmap_regs;
1541
1542	as->use_dma = false;
1543	as->use_pdc = false;
1544	if (as->caps.has_dma_support) {
1545		ret = atmel_spi_configure_dma(master, as);
1546		if (ret == 0) {
1547			as->use_dma = true;
1548		} else if (ret == -EPROBE_DEFER) {
1549			return ret;
1550		}
1551	} else {
1552		as->use_pdc = true;
1553	}
1554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1555	if (as->caps.has_dma_support && !as->use_dma)
1556		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1557
1558	if (as->use_pdc) {
1559		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1560					0, dev_name(&pdev->dev), master);
1561	} else {
1562		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1563					0, dev_name(&pdev->dev), master);
1564	}
1565	if (ret)
1566		goto out_unmap_regs;
1567
1568	/* Initialize the hardware */
1569	ret = clk_prepare_enable(clk);
1570	if (ret)
1571		goto out_free_irq;
1572
1573	as->spi_clk = clk_get_rate(clk);
1574
1575	spi_writel(as, CR, SPI_BIT(SWRST));
1576	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1577	if (as->caps.has_wdrbt) {
1578		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1579				| SPI_BIT(MSTR));
1580	} else {
1581		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1582	}
1583
1584	if (as->use_pdc)
1585		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1586	spi_writel(as, CR, SPI_BIT(SPIEN));
1587
1588	as->fifo_size = 0;
1589	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1590				  &as->fifo_size)) {
1591		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1592		spi_writel(as, CR, SPI_BIT(FIFOEN));
1593	}
1594
 
 
1595	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1596	pm_runtime_use_autosuspend(&pdev->dev);
1597	pm_runtime_set_active(&pdev->dev);
1598	pm_runtime_enable(&pdev->dev);
1599
1600	ret = devm_spi_register_master(&pdev->dev, master);
1601	if (ret)
1602		goto out_free_dma;
1603
1604	/* go! */
1605	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1606			(unsigned long)regs->start, irq);
 
1607
1608	return 0;
1609
1610out_free_dma:
1611	pm_runtime_disable(&pdev->dev);
1612	pm_runtime_set_suspended(&pdev->dev);
1613
1614	if (as->use_dma)
1615		atmel_spi_release_dma(master);
1616
1617	spi_writel(as, CR, SPI_BIT(SWRST));
1618	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1619	clk_disable_unprepare(clk);
1620out_free_irq:
1621out_unmap_regs:
1622out_free:
1623	spi_master_put(master);
1624	return ret;
1625}
1626
1627static int atmel_spi_remove(struct platform_device *pdev)
1628{
1629	struct spi_master	*master = platform_get_drvdata(pdev);
1630	struct atmel_spi	*as = spi_master_get_devdata(master);
1631
1632	pm_runtime_get_sync(&pdev->dev);
1633
1634	/* reset the hardware and block queue progress */
1635	spin_lock_irq(&as->lock);
1636	if (as->use_dma) {
1637		atmel_spi_stop_dma(master);
1638		atmel_spi_release_dma(master);
 
 
 
 
 
 
 
 
1639	}
1640
 
1641	spi_writel(as, CR, SPI_BIT(SWRST));
1642	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1643	spi_readl(as, SR);
1644	spin_unlock_irq(&as->lock);
1645
1646	clk_disable_unprepare(as->clk);
1647
1648	pm_runtime_put_noidle(&pdev->dev);
1649	pm_runtime_disable(&pdev->dev);
1650
1651	return 0;
1652}
1653
1654#ifdef CONFIG_PM
1655static int atmel_spi_runtime_suspend(struct device *dev)
1656{
1657	struct spi_master *master = dev_get_drvdata(dev);
1658	struct atmel_spi *as = spi_master_get_devdata(master);
1659
1660	clk_disable_unprepare(as->clk);
1661	pinctrl_pm_select_sleep_state(dev);
1662
1663	return 0;
1664}
1665
1666static int atmel_spi_runtime_resume(struct device *dev)
1667{
1668	struct spi_master *master = dev_get_drvdata(dev);
1669	struct atmel_spi *as = spi_master_get_devdata(master);
1670
1671	pinctrl_pm_select_default_state(dev);
1672
1673	return clk_prepare_enable(as->clk);
1674}
1675
1676#ifdef CONFIG_PM_SLEEP
1677static int atmel_spi_suspend(struct device *dev)
1678{
1679	struct spi_master *master = dev_get_drvdata(dev);
1680	int ret;
1681
1682	/* Stop the queue running */
1683	ret = spi_master_suspend(master);
1684	if (ret) {
1685		dev_warn(dev, "cannot suspend master\n");
1686		return ret;
1687	}
1688
1689	if (!pm_runtime_suspended(dev))
1690		atmel_spi_runtime_suspend(dev);
1691
1692	return 0;
1693}
1694
1695static int atmel_spi_resume(struct device *dev)
1696{
1697	struct spi_master *master = dev_get_drvdata(dev);
 
1698	int ret;
1699
 
 
 
 
 
 
 
 
1700	if (!pm_runtime_suspended(dev)) {
1701		ret = atmel_spi_runtime_resume(dev);
1702		if (ret)
1703			return ret;
1704	}
1705
1706	/* Start the queue running */
1707	ret = spi_master_resume(master);
1708	if (ret)
1709		dev_err(dev, "problem starting queue (%d)\n", ret);
1710
1711	return ret;
1712}
1713#endif
1714
1715static const struct dev_pm_ops atmel_spi_pm_ops = {
1716	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1717	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1718			   atmel_spi_runtime_resume, NULL)
1719};
1720#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1721#else
1722#define ATMEL_SPI_PM_OPS	NULL
1723#endif
1724
1725#if defined(CONFIG_OF)
1726static const struct of_device_id atmel_spi_dt_ids[] = {
1727	{ .compatible = "atmel,at91rm9200-spi" },
1728	{ /* sentinel */ }
1729};
1730
1731MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1732#endif
1733
1734static struct platform_driver atmel_spi_driver = {
1735	.driver		= {
1736		.name	= "atmel_spi",
1737		.pm	= ATMEL_SPI_PM_OPS,
1738		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1739	},
1740	.probe		= atmel_spi_probe,
1741	.remove		= atmel_spi_remove,
1742};
1743module_platform_driver(atmel_spi_driver);
1744
1745MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1746MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1747MODULE_LICENSE("GPL");
1748MODULE_ALIAS("platform:atmel_spi");