Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4/* ethtool support for e1000 */
5
6#include <linux/netdevice.h>
7#include <linux/interrupt.h>
8#include <linux/ethtool.h>
9#include <linux/pci.h>
10#include <linux/slab.h>
11#include <linux/delay.h>
12#include <linux/vmalloc.h>
13#include <linux/pm_runtime.h>
14
15#include "e1000.h"
16
17enum { NETDEV_STATS, E1000_STATS };
18
19struct e1000_stats {
20 char stat_string[ETH_GSTRING_LEN];
21 int type;
22 int sizeof_stat;
23 int stat_offset;
24};
25
26#define E1000_STAT(str, m) { \
27 .stat_string = str, \
28 .type = E1000_STATS, \
29 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
30 .stat_offset = offsetof(struct e1000_adapter, m) }
31#define E1000_NETDEV_STAT(str, m) { \
32 .stat_string = str, \
33 .type = NETDEV_STATS, \
34 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
35 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
36
37static const struct e1000_stats e1000_gstrings_stats[] = {
38 E1000_STAT("rx_packets", stats.gprc),
39 E1000_STAT("tx_packets", stats.gptc),
40 E1000_STAT("rx_bytes", stats.gorc),
41 E1000_STAT("tx_bytes", stats.gotc),
42 E1000_STAT("rx_broadcast", stats.bprc),
43 E1000_STAT("tx_broadcast", stats.bptc),
44 E1000_STAT("rx_multicast", stats.mprc),
45 E1000_STAT("tx_multicast", stats.mptc),
46 E1000_NETDEV_STAT("rx_errors", rx_errors),
47 E1000_NETDEV_STAT("tx_errors", tx_errors),
48 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
49 E1000_STAT("multicast", stats.mprc),
50 E1000_STAT("collisions", stats.colc),
51 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
52 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
53 E1000_STAT("rx_crc_errors", stats.crcerrs),
54 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
55 E1000_STAT("rx_no_buffer_count", stats.rnbc),
56 E1000_STAT("rx_missed_errors", stats.mpc),
57 E1000_STAT("tx_aborted_errors", stats.ecol),
58 E1000_STAT("tx_carrier_errors", stats.tncrs),
59 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
60 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
61 E1000_STAT("tx_window_errors", stats.latecol),
62 E1000_STAT("tx_abort_late_coll", stats.latecol),
63 E1000_STAT("tx_deferred_ok", stats.dc),
64 E1000_STAT("tx_single_coll_ok", stats.scc),
65 E1000_STAT("tx_multi_coll_ok", stats.mcc),
66 E1000_STAT("tx_timeout_count", tx_timeout_count),
67 E1000_STAT("tx_restart_queue", restart_queue),
68 E1000_STAT("rx_long_length_errors", stats.roc),
69 E1000_STAT("rx_short_length_errors", stats.ruc),
70 E1000_STAT("rx_align_errors", stats.algnerrc),
71 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
72 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
73 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
74 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
75 E1000_STAT("tx_flow_control_xon", stats.xontxc),
76 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
77 E1000_STAT("rx_csum_offload_good", hw_csum_good),
78 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
79 E1000_STAT("rx_header_split", rx_hdr_split),
80 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
81 E1000_STAT("tx_smbus", stats.mgptc),
82 E1000_STAT("rx_smbus", stats.mgprc),
83 E1000_STAT("dropped_smbus", stats.mgpdc),
84 E1000_STAT("rx_dma_failed", rx_dma_failed),
85 E1000_STAT("tx_dma_failed", tx_dma_failed),
86 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
87 E1000_STAT("uncorr_ecc_errors", uncorr_errors),
88 E1000_STAT("corr_ecc_errors", corr_errors),
89 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
90 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
91};
92
93#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
94#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
95static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
96 "Register test (offline)", "Eeprom test (offline)",
97 "Interrupt test (offline)", "Loopback test (offline)",
98 "Link test (on/offline)"
99};
100
101#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
102
103static int e1000_get_link_ksettings(struct net_device *netdev,
104 struct ethtool_link_ksettings *cmd)
105{
106 struct e1000_adapter *adapter = netdev_priv(netdev);
107 struct e1000_hw *hw = &adapter->hw;
108 u32 speed, supported, advertising;
109
110 if (hw->phy.media_type == e1000_media_type_copper) {
111 supported = (SUPPORTED_10baseT_Half |
112 SUPPORTED_10baseT_Full |
113 SUPPORTED_100baseT_Half |
114 SUPPORTED_100baseT_Full |
115 SUPPORTED_1000baseT_Full |
116 SUPPORTED_Autoneg |
117 SUPPORTED_TP);
118 if (hw->phy.type == e1000_phy_ife)
119 supported &= ~SUPPORTED_1000baseT_Full;
120 advertising = ADVERTISED_TP;
121
122 if (hw->mac.autoneg == 1) {
123 advertising |= ADVERTISED_Autoneg;
124 /* the e1000 autoneg seems to match ethtool nicely */
125 advertising |= hw->phy.autoneg_advertised;
126 }
127
128 cmd->base.port = PORT_TP;
129 cmd->base.phy_address = hw->phy.addr;
130 } else {
131 supported = (SUPPORTED_1000baseT_Full |
132 SUPPORTED_FIBRE |
133 SUPPORTED_Autoneg);
134
135 advertising = (ADVERTISED_1000baseT_Full |
136 ADVERTISED_FIBRE |
137 ADVERTISED_Autoneg);
138
139 cmd->base.port = PORT_FIBRE;
140 }
141
142 speed = SPEED_UNKNOWN;
143 cmd->base.duplex = DUPLEX_UNKNOWN;
144
145 if (netif_running(netdev)) {
146 if (netif_carrier_ok(netdev)) {
147 speed = adapter->link_speed;
148 cmd->base.duplex = adapter->link_duplex - 1;
149 }
150 } else if (!pm_runtime_suspended(netdev->dev.parent)) {
151 u32 status = er32(STATUS);
152
153 if (status & E1000_STATUS_LU) {
154 if (status & E1000_STATUS_SPEED_1000)
155 speed = SPEED_1000;
156 else if (status & E1000_STATUS_SPEED_100)
157 speed = SPEED_100;
158 else
159 speed = SPEED_10;
160
161 if (status & E1000_STATUS_FD)
162 cmd->base.duplex = DUPLEX_FULL;
163 else
164 cmd->base.duplex = DUPLEX_HALF;
165 }
166 }
167
168 cmd->base.speed = speed;
169 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
170 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
171
172 /* MDI-X => 2; MDI =>1; Invalid =>0 */
173 if ((hw->phy.media_type == e1000_media_type_copper) &&
174 netif_carrier_ok(netdev))
175 cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
176 ETH_TP_MDI_X : ETH_TP_MDI;
177 else
178 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
179
180 if (hw->phy.mdix == AUTO_ALL_MODES)
181 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
182 else
183 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
184
185 if (hw->phy.media_type != e1000_media_type_copper)
186 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
187
188 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
189 supported);
190 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
191 advertising);
192
193 return 0;
194}
195
196static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
197{
198 struct e1000_mac_info *mac = &adapter->hw.mac;
199
200 mac->autoneg = 0;
201
202 /* Make sure dplx is at most 1 bit and lsb of speed is not set
203 * for the switch() below to work
204 */
205 if ((spd & 1) || (dplx & ~1))
206 goto err_inval;
207
208 /* Fiber NICs only allow 1000 gbps Full duplex */
209 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
210 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
211 goto err_inval;
212 }
213
214 switch (spd + dplx) {
215 case SPEED_10 + DUPLEX_HALF:
216 mac->forced_speed_duplex = ADVERTISE_10_HALF;
217 break;
218 case SPEED_10 + DUPLEX_FULL:
219 mac->forced_speed_duplex = ADVERTISE_10_FULL;
220 break;
221 case SPEED_100 + DUPLEX_HALF:
222 mac->forced_speed_duplex = ADVERTISE_100_HALF;
223 break;
224 case SPEED_100 + DUPLEX_FULL:
225 mac->forced_speed_duplex = ADVERTISE_100_FULL;
226 break;
227 case SPEED_1000 + DUPLEX_FULL:
228 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
229 mac->autoneg = 1;
230 adapter->hw.phy.autoneg_advertised =
231 ADVERTISE_1000_FULL;
232 } else {
233 mac->forced_speed_duplex = ADVERTISE_1000_FULL;
234 }
235 break;
236 case SPEED_1000 + DUPLEX_HALF: /* not supported */
237 default:
238 goto err_inval;
239 }
240
241 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
242 adapter->hw.phy.mdix = AUTO_ALL_MODES;
243
244 return 0;
245
246err_inval:
247 e_err("Unsupported Speed/Duplex configuration\n");
248 return -EINVAL;
249}
250
251static int e1000_set_link_ksettings(struct net_device *netdev,
252 const struct ethtool_link_ksettings *cmd)
253{
254 struct e1000_adapter *adapter = netdev_priv(netdev);
255 struct e1000_hw *hw = &adapter->hw;
256 int ret_val = 0;
257 u32 advertising;
258
259 ethtool_convert_link_mode_to_legacy_u32(&advertising,
260 cmd->link_modes.advertising);
261
262 pm_runtime_get_sync(netdev->dev.parent);
263
264 /* When SoL/IDER sessions are active, autoneg/speed/duplex
265 * cannot be changed
266 */
267 if (hw->phy.ops.check_reset_block &&
268 hw->phy.ops.check_reset_block(hw)) {
269 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
270 ret_val = -EINVAL;
271 goto out;
272 }
273
274 /* MDI setting is only allowed when autoneg enabled because
275 * some hardware doesn't allow MDI setting when speed or
276 * duplex is forced.
277 */
278 if (cmd->base.eth_tp_mdix_ctrl) {
279 if (hw->phy.media_type != e1000_media_type_copper) {
280 ret_val = -EOPNOTSUPP;
281 goto out;
282 }
283
284 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
285 (cmd->base.autoneg != AUTONEG_ENABLE)) {
286 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
287 ret_val = -EINVAL;
288 goto out;
289 }
290 }
291
292 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
293 usleep_range(1000, 2000);
294
295 if (cmd->base.autoneg == AUTONEG_ENABLE) {
296 hw->mac.autoneg = 1;
297 if (hw->phy.media_type == e1000_media_type_fiber)
298 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
299 ADVERTISED_FIBRE | ADVERTISED_Autoneg;
300 else
301 hw->phy.autoneg_advertised = advertising |
302 ADVERTISED_TP | ADVERTISED_Autoneg;
303 advertising = hw->phy.autoneg_advertised;
304 if (adapter->fc_autoneg)
305 hw->fc.requested_mode = e1000_fc_default;
306 } else {
307 u32 speed = cmd->base.speed;
308 /* calling this overrides forced MDI setting */
309 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
310 ret_val = -EINVAL;
311 goto out;
312 }
313 }
314
315 /* MDI-X => 2; MDI => 1; Auto => 3 */
316 if (cmd->base.eth_tp_mdix_ctrl) {
317 /* fix up the value for auto (3 => 0) as zero is mapped
318 * internally to auto
319 */
320 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
321 hw->phy.mdix = AUTO_ALL_MODES;
322 else
323 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
324 }
325
326 /* reset the link */
327 if (netif_running(adapter->netdev)) {
328 e1000e_down(adapter, true);
329 e1000e_up(adapter);
330 } else {
331 e1000e_reset(adapter);
332 }
333
334out:
335 pm_runtime_put_sync(netdev->dev.parent);
336 clear_bit(__E1000_RESETTING, &adapter->state);
337 return ret_val;
338}
339
340static void e1000_get_pauseparam(struct net_device *netdev,
341 struct ethtool_pauseparam *pause)
342{
343 struct e1000_adapter *adapter = netdev_priv(netdev);
344 struct e1000_hw *hw = &adapter->hw;
345
346 pause->autoneg =
347 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
348
349 if (hw->fc.current_mode == e1000_fc_rx_pause) {
350 pause->rx_pause = 1;
351 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
352 pause->tx_pause = 1;
353 } else if (hw->fc.current_mode == e1000_fc_full) {
354 pause->rx_pause = 1;
355 pause->tx_pause = 1;
356 }
357}
358
359static int e1000_set_pauseparam(struct net_device *netdev,
360 struct ethtool_pauseparam *pause)
361{
362 struct e1000_adapter *adapter = netdev_priv(netdev);
363 struct e1000_hw *hw = &adapter->hw;
364 int retval = 0;
365
366 adapter->fc_autoneg = pause->autoneg;
367
368 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
369 usleep_range(1000, 2000);
370
371 pm_runtime_get_sync(netdev->dev.parent);
372
373 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
374 hw->fc.requested_mode = e1000_fc_default;
375 if (netif_running(adapter->netdev)) {
376 e1000e_down(adapter, true);
377 e1000e_up(adapter);
378 } else {
379 e1000e_reset(adapter);
380 }
381 } else {
382 if (pause->rx_pause && pause->tx_pause)
383 hw->fc.requested_mode = e1000_fc_full;
384 else if (pause->rx_pause && !pause->tx_pause)
385 hw->fc.requested_mode = e1000_fc_rx_pause;
386 else if (!pause->rx_pause && pause->tx_pause)
387 hw->fc.requested_mode = e1000_fc_tx_pause;
388 else if (!pause->rx_pause && !pause->tx_pause)
389 hw->fc.requested_mode = e1000_fc_none;
390
391 hw->fc.current_mode = hw->fc.requested_mode;
392
393 if (hw->phy.media_type == e1000_media_type_fiber) {
394 retval = hw->mac.ops.setup_link(hw);
395 /* implicit goto out */
396 } else {
397 retval = e1000e_force_mac_fc(hw);
398 if (retval)
399 goto out;
400 e1000e_set_fc_watermarks(hw);
401 }
402 }
403
404out:
405 pm_runtime_put_sync(netdev->dev.parent);
406 clear_bit(__E1000_RESETTING, &adapter->state);
407 return retval;
408}
409
410static u32 e1000_get_msglevel(struct net_device *netdev)
411{
412 struct e1000_adapter *adapter = netdev_priv(netdev);
413 return adapter->msg_enable;
414}
415
416static void e1000_set_msglevel(struct net_device *netdev, u32 data)
417{
418 struct e1000_adapter *adapter = netdev_priv(netdev);
419 adapter->msg_enable = data;
420}
421
422static int e1000_get_regs_len(struct net_device __always_unused *netdev)
423{
424#define E1000_REGS_LEN 32 /* overestimate */
425 return E1000_REGS_LEN * sizeof(u32);
426}
427
428static void e1000_get_regs(struct net_device *netdev,
429 struct ethtool_regs *regs, void *p)
430{
431 struct e1000_adapter *adapter = netdev_priv(netdev);
432 struct e1000_hw *hw = &adapter->hw;
433 u32 *regs_buff = p;
434 u16 phy_data;
435
436 pm_runtime_get_sync(netdev->dev.parent);
437
438 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
439
440 regs->version = (1u << 24) |
441 (adapter->pdev->revision << 16) |
442 adapter->pdev->device;
443
444 regs_buff[0] = er32(CTRL);
445 regs_buff[1] = er32(STATUS);
446
447 regs_buff[2] = er32(RCTL);
448 regs_buff[3] = er32(RDLEN(0));
449 regs_buff[4] = er32(RDH(0));
450 regs_buff[5] = er32(RDT(0));
451 regs_buff[6] = er32(RDTR);
452
453 regs_buff[7] = er32(TCTL);
454 regs_buff[8] = er32(TDLEN(0));
455 regs_buff[9] = er32(TDH(0));
456 regs_buff[10] = er32(TDT(0));
457 regs_buff[11] = er32(TIDV);
458
459 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
460
461 /* ethtool doesn't use anything past this point, so all this
462 * code is likely legacy junk for apps that may or may not exist
463 */
464 if (hw->phy.type == e1000_phy_m88) {
465 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
466 regs_buff[13] = (u32)phy_data; /* cable length */
467 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
468 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
469 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
470 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
471 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
472 regs_buff[18] = regs_buff[13]; /* cable polarity */
473 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
474 regs_buff[20] = regs_buff[17]; /* polarity correction */
475 /* phy receive errors */
476 regs_buff[22] = adapter->phy_stats.receive_errors;
477 regs_buff[23] = regs_buff[13]; /* mdix mode */
478 }
479 regs_buff[21] = 0; /* was idle_errors */
480 e1e_rphy(hw, MII_STAT1000, &phy_data);
481 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
482 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
483
484 pm_runtime_put_sync(netdev->dev.parent);
485}
486
487static int e1000_get_eeprom_len(struct net_device *netdev)
488{
489 struct e1000_adapter *adapter = netdev_priv(netdev);
490 return adapter->hw.nvm.word_size * 2;
491}
492
493static int e1000_get_eeprom(struct net_device *netdev,
494 struct ethtool_eeprom *eeprom, u8 *bytes)
495{
496 struct e1000_adapter *adapter = netdev_priv(netdev);
497 struct e1000_hw *hw = &adapter->hw;
498 u16 *eeprom_buff;
499 int first_word;
500 int last_word;
501 int ret_val = 0;
502 u16 i;
503
504 if (eeprom->len == 0)
505 return -EINVAL;
506
507 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
508
509 first_word = eeprom->offset >> 1;
510 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
511
512 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
513 GFP_KERNEL);
514 if (!eeprom_buff)
515 return -ENOMEM;
516
517 pm_runtime_get_sync(netdev->dev.parent);
518
519 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
520 ret_val = e1000_read_nvm(hw, first_word,
521 last_word - first_word + 1,
522 eeprom_buff);
523 } else {
524 for (i = 0; i < last_word - first_word + 1; i++) {
525 ret_val = e1000_read_nvm(hw, first_word + i, 1,
526 &eeprom_buff[i]);
527 if (ret_val)
528 break;
529 }
530 }
531
532 pm_runtime_put_sync(netdev->dev.parent);
533
534 if (ret_val) {
535 /* a read error occurred, throw away the result */
536 memset(eeprom_buff, 0xff, sizeof(u16) *
537 (last_word - first_word + 1));
538 } else {
539 /* Device's eeprom is always little-endian, word addressable */
540 for (i = 0; i < last_word - first_word + 1; i++)
541 le16_to_cpus(&eeprom_buff[i]);
542 }
543
544 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
545 kfree(eeprom_buff);
546
547 return ret_val;
548}
549
550static int e1000_set_eeprom(struct net_device *netdev,
551 struct ethtool_eeprom *eeprom, u8 *bytes)
552{
553 struct e1000_adapter *adapter = netdev_priv(netdev);
554 struct e1000_hw *hw = &adapter->hw;
555 u16 *eeprom_buff;
556 void *ptr;
557 int max_len;
558 int first_word;
559 int last_word;
560 int ret_val = 0;
561 u16 i;
562
563 if (eeprom->len == 0)
564 return -EOPNOTSUPP;
565
566 if (eeprom->magic !=
567 (adapter->pdev->vendor | (adapter->pdev->device << 16)))
568 return -EFAULT;
569
570 if (adapter->flags & FLAG_READ_ONLY_NVM)
571 return -EINVAL;
572
573 max_len = hw->nvm.word_size * 2;
574
575 first_word = eeprom->offset >> 1;
576 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
577 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
578 if (!eeprom_buff)
579 return -ENOMEM;
580
581 ptr = (void *)eeprom_buff;
582
583 pm_runtime_get_sync(netdev->dev.parent);
584
585 if (eeprom->offset & 1) {
586 /* need read/modify/write of first changed EEPROM word */
587 /* only the second byte of the word is being modified */
588 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
589 ptr++;
590 }
591 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
592 /* need read/modify/write of last changed EEPROM word */
593 /* only the first byte of the word is being modified */
594 ret_val = e1000_read_nvm(hw, last_word, 1,
595 &eeprom_buff[last_word - first_word]);
596
597 if (ret_val)
598 goto out;
599
600 /* Device's eeprom is always little-endian, word addressable */
601 for (i = 0; i < last_word - first_word + 1; i++)
602 le16_to_cpus(&eeprom_buff[i]);
603
604 memcpy(ptr, bytes, eeprom->len);
605
606 for (i = 0; i < last_word - first_word + 1; i++)
607 cpu_to_le16s(&eeprom_buff[i]);
608
609 ret_val = e1000_write_nvm(hw, first_word,
610 last_word - first_word + 1, eeprom_buff);
611
612 if (ret_val)
613 goto out;
614
615 /* Update the checksum over the first part of the EEPROM if needed
616 * and flush shadow RAM for applicable controllers
617 */
618 if ((first_word <= NVM_CHECKSUM_REG) ||
619 (hw->mac.type == e1000_82583) ||
620 (hw->mac.type == e1000_82574) ||
621 (hw->mac.type == e1000_82573))
622 ret_val = e1000e_update_nvm_checksum(hw);
623
624out:
625 pm_runtime_put_sync(netdev->dev.parent);
626 kfree(eeprom_buff);
627 return ret_val;
628}
629
630static void e1000_get_drvinfo(struct net_device *netdev,
631 struct ethtool_drvinfo *drvinfo)
632{
633 struct e1000_adapter *adapter = netdev_priv(netdev);
634
635 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
636 strlcpy(drvinfo->version, e1000e_driver_version,
637 sizeof(drvinfo->version));
638
639 /* EEPROM image version # is reported as firmware version # for
640 * PCI-E controllers
641 */
642 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
643 "%d.%d-%d",
644 (adapter->eeprom_vers & 0xF000) >> 12,
645 (adapter->eeprom_vers & 0x0FF0) >> 4,
646 (adapter->eeprom_vers & 0x000F));
647
648 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
649 sizeof(drvinfo->bus_info));
650}
651
652static void e1000_get_ringparam(struct net_device *netdev,
653 struct ethtool_ringparam *ring)
654{
655 struct e1000_adapter *adapter = netdev_priv(netdev);
656
657 ring->rx_max_pending = E1000_MAX_RXD;
658 ring->tx_max_pending = E1000_MAX_TXD;
659 ring->rx_pending = adapter->rx_ring_count;
660 ring->tx_pending = adapter->tx_ring_count;
661}
662
663static int e1000_set_ringparam(struct net_device *netdev,
664 struct ethtool_ringparam *ring)
665{
666 struct e1000_adapter *adapter = netdev_priv(netdev);
667 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
668 int err = 0, size = sizeof(struct e1000_ring);
669 bool set_tx = false, set_rx = false;
670 u16 new_rx_count, new_tx_count;
671
672 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
673 return -EINVAL;
674
675 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
676 E1000_MAX_RXD);
677 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
678
679 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
680 E1000_MAX_TXD);
681 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
682
683 if ((new_tx_count == adapter->tx_ring_count) &&
684 (new_rx_count == adapter->rx_ring_count))
685 /* nothing to do */
686 return 0;
687
688 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
689 usleep_range(1000, 2000);
690
691 if (!netif_running(adapter->netdev)) {
692 /* Set counts now and allocate resources during open() */
693 adapter->tx_ring->count = new_tx_count;
694 adapter->rx_ring->count = new_rx_count;
695 adapter->tx_ring_count = new_tx_count;
696 adapter->rx_ring_count = new_rx_count;
697 goto clear_reset;
698 }
699
700 set_tx = (new_tx_count != adapter->tx_ring_count);
701 set_rx = (new_rx_count != adapter->rx_ring_count);
702
703 /* Allocate temporary storage for ring updates */
704 if (set_tx) {
705 temp_tx = vmalloc(size);
706 if (!temp_tx) {
707 err = -ENOMEM;
708 goto free_temp;
709 }
710 }
711 if (set_rx) {
712 temp_rx = vmalloc(size);
713 if (!temp_rx) {
714 err = -ENOMEM;
715 goto free_temp;
716 }
717 }
718
719 pm_runtime_get_sync(netdev->dev.parent);
720
721 e1000e_down(adapter, true);
722
723 /* We can't just free everything and then setup again, because the
724 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
725 * structs. First, attempt to allocate new resources...
726 */
727 if (set_tx) {
728 memcpy(temp_tx, adapter->tx_ring, size);
729 temp_tx->count = new_tx_count;
730 err = e1000e_setup_tx_resources(temp_tx);
731 if (err)
732 goto err_setup;
733 }
734 if (set_rx) {
735 memcpy(temp_rx, adapter->rx_ring, size);
736 temp_rx->count = new_rx_count;
737 err = e1000e_setup_rx_resources(temp_rx);
738 if (err)
739 goto err_setup_rx;
740 }
741
742 /* ...then free the old resources and copy back any new ring data */
743 if (set_tx) {
744 e1000e_free_tx_resources(adapter->tx_ring);
745 memcpy(adapter->tx_ring, temp_tx, size);
746 adapter->tx_ring_count = new_tx_count;
747 }
748 if (set_rx) {
749 e1000e_free_rx_resources(adapter->rx_ring);
750 memcpy(adapter->rx_ring, temp_rx, size);
751 adapter->rx_ring_count = new_rx_count;
752 }
753
754err_setup_rx:
755 if (err && set_tx)
756 e1000e_free_tx_resources(temp_tx);
757err_setup:
758 e1000e_up(adapter);
759 pm_runtime_put_sync(netdev->dev.parent);
760free_temp:
761 vfree(temp_tx);
762 vfree(temp_rx);
763clear_reset:
764 clear_bit(__E1000_RESETTING, &adapter->state);
765 return err;
766}
767
768static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
769 int reg, int offset, u32 mask, u32 write)
770{
771 u32 pat, val;
772 static const u32 test[] = {
773 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
774 };
775 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
776 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
777 (test[pat] & write));
778 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
779 if (val != (test[pat] & write & mask)) {
780 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
781 reg + (offset << 2), val,
782 (test[pat] & write & mask));
783 *data = reg;
784 return true;
785 }
786 }
787 return false;
788}
789
790static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
791 int reg, u32 mask, u32 write)
792{
793 u32 val;
794
795 __ew32(&adapter->hw, reg, write & mask);
796 val = __er32(&adapter->hw, reg);
797 if ((write & mask) != (val & mask)) {
798 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
799 reg, (val & mask), (write & mask));
800 *data = reg;
801 return true;
802 }
803 return false;
804}
805
806#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
807 do { \
808 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
809 return 1; \
810 } while (0)
811#define REG_PATTERN_TEST(reg, mask, write) \
812 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
813
814#define REG_SET_AND_CHECK(reg, mask, write) \
815 do { \
816 if (reg_set_and_check(adapter, data, reg, mask, write)) \
817 return 1; \
818 } while (0)
819
820static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
821{
822 struct e1000_hw *hw = &adapter->hw;
823 struct e1000_mac_info *mac = &adapter->hw.mac;
824 u32 value;
825 u32 before;
826 u32 after;
827 u32 i;
828 u32 toggle;
829 u32 mask;
830 u32 wlock_mac = 0;
831
832 /* The status register is Read Only, so a write should fail.
833 * Some bits that get toggled are ignored. There are several bits
834 * on newer hardware that are r/w.
835 */
836 switch (mac->type) {
837 case e1000_82571:
838 case e1000_82572:
839 case e1000_80003es2lan:
840 toggle = 0x7FFFF3FF;
841 break;
842 default:
843 toggle = 0x7FFFF033;
844 break;
845 }
846
847 before = er32(STATUS);
848 value = (er32(STATUS) & toggle);
849 ew32(STATUS, toggle);
850 after = er32(STATUS) & toggle;
851 if (value != after) {
852 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
853 after, value);
854 *data = 1;
855 return 1;
856 }
857 /* restore previous status */
858 ew32(STATUS, before);
859
860 if (!(adapter->flags & FLAG_IS_ICH)) {
861 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
862 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
863 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
864 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
865 }
866
867 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
868 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
869 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
870 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
871 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
872 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
873 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
874 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
875 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
876 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
877
878 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
879
880 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
881 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
882 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
883
884 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
885 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
886 if (!(adapter->flags & FLAG_IS_ICH))
887 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
888 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
889 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
890 mask = 0x8003FFFF;
891 switch (mac->type) {
892 case e1000_ich10lan:
893 case e1000_pchlan:
894 case e1000_pch2lan:
895 case e1000_pch_lpt:
896 case e1000_pch_spt:
897 /* fall through */
898 case e1000_pch_cnp:
899 mask |= BIT(18);
900 break;
901 default:
902 break;
903 }
904
905 if (mac->type >= e1000_pch_lpt)
906 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
907 E1000_FWSM_WLOCK_MAC_SHIFT;
908
909 for (i = 0; i < mac->rar_entry_count; i++) {
910 if (mac->type >= e1000_pch_lpt) {
911 /* Cannot test write-protected SHRAL[n] registers */
912 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
913 continue;
914
915 /* SHRAH[9] different than the others */
916 if (i == 10)
917 mask |= BIT(30);
918 else
919 mask &= ~BIT(30);
920 }
921 if (mac->type == e1000_pch2lan) {
922 /* SHRAH[0,1,2] different than previous */
923 if (i == 1)
924 mask &= 0xFFF4FFFF;
925 /* SHRAH[3] different than SHRAH[0,1,2] */
926 if (i == 4)
927 mask |= BIT(30);
928 /* RAR[1-6] owned by management engine - skipping */
929 if (i > 0)
930 i += 6;
931 }
932
933 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
934 0xFFFFFFFF);
935 /* reset index to actual value */
936 if ((mac->type == e1000_pch2lan) && (i > 6))
937 i -= 6;
938 }
939
940 for (i = 0; i < mac->mta_reg_count; i++)
941 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
942
943 *data = 0;
944
945 return 0;
946}
947
948static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
949{
950 u16 temp;
951 u16 checksum = 0;
952 u16 i;
953
954 *data = 0;
955 /* Read and add up the contents of the EEPROM */
956 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
957 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
958 *data = 1;
959 return *data;
960 }
961 checksum += temp;
962 }
963
964 /* If Checksum is not Correct return error else test passed */
965 if ((checksum != (u16)NVM_SUM) && !(*data))
966 *data = 2;
967
968 return *data;
969}
970
971static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
972{
973 struct net_device *netdev = (struct net_device *)data;
974 struct e1000_adapter *adapter = netdev_priv(netdev);
975 struct e1000_hw *hw = &adapter->hw;
976
977 adapter->test_icr |= er32(ICR);
978
979 return IRQ_HANDLED;
980}
981
982static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
983{
984 struct net_device *netdev = adapter->netdev;
985 struct e1000_hw *hw = &adapter->hw;
986 u32 mask;
987 u32 shared_int = 1;
988 u32 irq = adapter->pdev->irq;
989 int i;
990 int ret_val = 0;
991 int int_mode = E1000E_INT_MODE_LEGACY;
992
993 *data = 0;
994
995 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
996 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
997 int_mode = adapter->int_mode;
998 e1000e_reset_interrupt_capability(adapter);
999 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1000 e1000e_set_interrupt_capability(adapter);
1001 }
1002 /* Hook up test interrupt handler just for this test */
1003 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1004 netdev)) {
1005 shared_int = 0;
1006 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1007 netdev)) {
1008 *data = 1;
1009 ret_val = -1;
1010 goto out;
1011 }
1012 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1013
1014 /* Disable all the interrupts */
1015 ew32(IMC, 0xFFFFFFFF);
1016 e1e_flush();
1017 usleep_range(10000, 11000);
1018
1019 /* Test each interrupt */
1020 for (i = 0; i < 10; i++) {
1021 /* Interrupt to test */
1022 mask = BIT(i);
1023
1024 if (adapter->flags & FLAG_IS_ICH) {
1025 switch (mask) {
1026 case E1000_ICR_RXSEQ:
1027 continue;
1028 case 0x00000100:
1029 if (adapter->hw.mac.type == e1000_ich8lan ||
1030 adapter->hw.mac.type == e1000_ich9lan)
1031 continue;
1032 break;
1033 default:
1034 break;
1035 }
1036 }
1037
1038 if (!shared_int) {
1039 /* Disable the interrupt to be reported in
1040 * the cause register and then force the same
1041 * interrupt and see if one gets posted. If
1042 * an interrupt was posted to the bus, the
1043 * test failed.
1044 */
1045 adapter->test_icr = 0;
1046 ew32(IMC, mask);
1047 ew32(ICS, mask);
1048 e1e_flush();
1049 usleep_range(10000, 11000);
1050
1051 if (adapter->test_icr & mask) {
1052 *data = 3;
1053 break;
1054 }
1055 }
1056
1057 /* Enable the interrupt to be reported in
1058 * the cause register and then force the same
1059 * interrupt and see if one gets posted. If
1060 * an interrupt was not posted to the bus, the
1061 * test failed.
1062 */
1063 adapter->test_icr = 0;
1064 ew32(IMS, mask);
1065 ew32(ICS, mask);
1066 e1e_flush();
1067 usleep_range(10000, 11000);
1068
1069 if (!(adapter->test_icr & mask)) {
1070 *data = 4;
1071 break;
1072 }
1073
1074 if (!shared_int) {
1075 /* Disable the other interrupts to be reported in
1076 * the cause register and then force the other
1077 * interrupts and see if any get posted. If
1078 * an interrupt was posted to the bus, the
1079 * test failed.
1080 */
1081 adapter->test_icr = 0;
1082 ew32(IMC, ~mask & 0x00007FFF);
1083 ew32(ICS, ~mask & 0x00007FFF);
1084 e1e_flush();
1085 usleep_range(10000, 11000);
1086
1087 if (adapter->test_icr) {
1088 *data = 5;
1089 break;
1090 }
1091 }
1092 }
1093
1094 /* Disable all the interrupts */
1095 ew32(IMC, 0xFFFFFFFF);
1096 e1e_flush();
1097 usleep_range(10000, 11000);
1098
1099 /* Unhook test interrupt handler */
1100 free_irq(irq, netdev);
1101
1102out:
1103 if (int_mode == E1000E_INT_MODE_MSIX) {
1104 e1000e_reset_interrupt_capability(adapter);
1105 adapter->int_mode = int_mode;
1106 e1000e_set_interrupt_capability(adapter);
1107 }
1108
1109 return ret_val;
1110}
1111
1112static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1113{
1114 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1115 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1116 struct pci_dev *pdev = adapter->pdev;
1117 struct e1000_buffer *buffer_info;
1118 int i;
1119
1120 if (tx_ring->desc && tx_ring->buffer_info) {
1121 for (i = 0; i < tx_ring->count; i++) {
1122 buffer_info = &tx_ring->buffer_info[i];
1123
1124 if (buffer_info->dma)
1125 dma_unmap_single(&pdev->dev,
1126 buffer_info->dma,
1127 buffer_info->length,
1128 DMA_TO_DEVICE);
1129 dev_kfree_skb(buffer_info->skb);
1130 }
1131 }
1132
1133 if (rx_ring->desc && rx_ring->buffer_info) {
1134 for (i = 0; i < rx_ring->count; i++) {
1135 buffer_info = &rx_ring->buffer_info[i];
1136
1137 if (buffer_info->dma)
1138 dma_unmap_single(&pdev->dev,
1139 buffer_info->dma,
1140 2048, DMA_FROM_DEVICE);
1141 dev_kfree_skb(buffer_info->skb);
1142 }
1143 }
1144
1145 if (tx_ring->desc) {
1146 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1147 tx_ring->dma);
1148 tx_ring->desc = NULL;
1149 }
1150 if (rx_ring->desc) {
1151 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1152 rx_ring->dma);
1153 rx_ring->desc = NULL;
1154 }
1155
1156 kfree(tx_ring->buffer_info);
1157 tx_ring->buffer_info = NULL;
1158 kfree(rx_ring->buffer_info);
1159 rx_ring->buffer_info = NULL;
1160}
1161
1162static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1163{
1164 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1165 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1166 struct pci_dev *pdev = adapter->pdev;
1167 struct e1000_hw *hw = &adapter->hw;
1168 u32 rctl;
1169 int i;
1170 int ret_val;
1171
1172 /* Setup Tx descriptor ring and Tx buffers */
1173
1174 if (!tx_ring->count)
1175 tx_ring->count = E1000_DEFAULT_TXD;
1176
1177 tx_ring->buffer_info = kcalloc(tx_ring->count,
1178 sizeof(struct e1000_buffer), GFP_KERNEL);
1179 if (!tx_ring->buffer_info) {
1180 ret_val = 1;
1181 goto err_nomem;
1182 }
1183
1184 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1185 tx_ring->size = ALIGN(tx_ring->size, 4096);
1186 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1187 &tx_ring->dma, GFP_KERNEL);
1188 if (!tx_ring->desc) {
1189 ret_val = 2;
1190 goto err_nomem;
1191 }
1192 tx_ring->next_to_use = 0;
1193 tx_ring->next_to_clean = 0;
1194
1195 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1196 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1197 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1198 ew32(TDH(0), 0);
1199 ew32(TDT(0), 0);
1200 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1201 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1202 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1203
1204 for (i = 0; i < tx_ring->count; i++) {
1205 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1206 struct sk_buff *skb;
1207 unsigned int skb_size = 1024;
1208
1209 skb = alloc_skb(skb_size, GFP_KERNEL);
1210 if (!skb) {
1211 ret_val = 3;
1212 goto err_nomem;
1213 }
1214 skb_put(skb, skb_size);
1215 tx_ring->buffer_info[i].skb = skb;
1216 tx_ring->buffer_info[i].length = skb->len;
1217 tx_ring->buffer_info[i].dma =
1218 dma_map_single(&pdev->dev, skb->data, skb->len,
1219 DMA_TO_DEVICE);
1220 if (dma_mapping_error(&pdev->dev,
1221 tx_ring->buffer_info[i].dma)) {
1222 ret_val = 4;
1223 goto err_nomem;
1224 }
1225 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1226 tx_desc->lower.data = cpu_to_le32(skb->len);
1227 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1228 E1000_TXD_CMD_IFCS |
1229 E1000_TXD_CMD_RS);
1230 tx_desc->upper.data = 0;
1231 }
1232
1233 /* Setup Rx descriptor ring and Rx buffers */
1234
1235 if (!rx_ring->count)
1236 rx_ring->count = E1000_DEFAULT_RXD;
1237
1238 rx_ring->buffer_info = kcalloc(rx_ring->count,
1239 sizeof(struct e1000_buffer), GFP_KERNEL);
1240 if (!rx_ring->buffer_info) {
1241 ret_val = 5;
1242 goto err_nomem;
1243 }
1244
1245 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1246 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1247 &rx_ring->dma, GFP_KERNEL);
1248 if (!rx_ring->desc) {
1249 ret_val = 6;
1250 goto err_nomem;
1251 }
1252 rx_ring->next_to_use = 0;
1253 rx_ring->next_to_clean = 0;
1254
1255 rctl = er32(RCTL);
1256 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1257 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1258 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1259 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1260 ew32(RDLEN(0), rx_ring->size);
1261 ew32(RDH(0), 0);
1262 ew32(RDT(0), 0);
1263 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1264 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1265 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1266 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1267 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1268 ew32(RCTL, rctl);
1269
1270 for (i = 0; i < rx_ring->count; i++) {
1271 union e1000_rx_desc_extended *rx_desc;
1272 struct sk_buff *skb;
1273
1274 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1275 if (!skb) {
1276 ret_val = 7;
1277 goto err_nomem;
1278 }
1279 skb_reserve(skb, NET_IP_ALIGN);
1280 rx_ring->buffer_info[i].skb = skb;
1281 rx_ring->buffer_info[i].dma =
1282 dma_map_single(&pdev->dev, skb->data, 2048,
1283 DMA_FROM_DEVICE);
1284 if (dma_mapping_error(&pdev->dev,
1285 rx_ring->buffer_info[i].dma)) {
1286 ret_val = 8;
1287 goto err_nomem;
1288 }
1289 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1290 rx_desc->read.buffer_addr =
1291 cpu_to_le64(rx_ring->buffer_info[i].dma);
1292 memset(skb->data, 0x00, skb->len);
1293 }
1294
1295 return 0;
1296
1297err_nomem:
1298 e1000_free_desc_rings(adapter);
1299 return ret_val;
1300}
1301
1302static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1303{
1304 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1305 e1e_wphy(&adapter->hw, 29, 0x001F);
1306 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1307 e1e_wphy(&adapter->hw, 29, 0x001A);
1308 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1309}
1310
1311static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1312{
1313 struct e1000_hw *hw = &adapter->hw;
1314 u32 ctrl_reg = 0;
1315 u16 phy_reg = 0;
1316 s32 ret_val = 0;
1317
1318 hw->mac.autoneg = 0;
1319
1320 if (hw->phy.type == e1000_phy_ife) {
1321 /* force 100, set loopback */
1322 e1e_wphy(hw, MII_BMCR, 0x6100);
1323
1324 /* Now set up the MAC to the same speed/duplex as the PHY. */
1325 ctrl_reg = er32(CTRL);
1326 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1327 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1328 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1329 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1330 E1000_CTRL_FD); /* Force Duplex to FULL */
1331
1332 ew32(CTRL, ctrl_reg);
1333 e1e_flush();
1334 usleep_range(500, 1000);
1335
1336 return 0;
1337 }
1338
1339 /* Specific PHY configuration for loopback */
1340 switch (hw->phy.type) {
1341 case e1000_phy_m88:
1342 /* Auto-MDI/MDIX Off */
1343 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1344 /* reset to update Auto-MDI/MDIX */
1345 e1e_wphy(hw, MII_BMCR, 0x9140);
1346 /* autoneg off */
1347 e1e_wphy(hw, MII_BMCR, 0x8140);
1348 break;
1349 case e1000_phy_gg82563:
1350 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1351 break;
1352 case e1000_phy_bm:
1353 /* Set Default MAC Interface speed to 1GB */
1354 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1355 phy_reg &= ~0x0007;
1356 phy_reg |= 0x006;
1357 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1358 /* Assert SW reset for above settings to take effect */
1359 hw->phy.ops.commit(hw);
1360 usleep_range(1000, 2000);
1361 /* Force Full Duplex */
1362 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1363 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1364 /* Set Link Up (in force link) */
1365 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1366 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1367 /* Force Link */
1368 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1369 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1370 /* Set Early Link Enable */
1371 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1372 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1373 break;
1374 case e1000_phy_82577:
1375 case e1000_phy_82578:
1376 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1377 ret_val = hw->phy.ops.acquire(hw);
1378 if (ret_val) {
1379 e_err("Cannot setup 1Gbps loopback.\n");
1380 return ret_val;
1381 }
1382 e1000_configure_k1_ich8lan(hw, false);
1383 hw->phy.ops.release(hw);
1384 break;
1385 case e1000_phy_82579:
1386 /* Disable PHY energy detect power down */
1387 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1388 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1389 /* Disable full chip energy detect */
1390 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1391 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1392 /* Enable loopback on the PHY */
1393 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1394 break;
1395 default:
1396 break;
1397 }
1398
1399 /* force 1000, set loopback */
1400 e1e_wphy(hw, MII_BMCR, 0x4140);
1401 msleep(250);
1402
1403 /* Now set up the MAC to the same speed/duplex as the PHY. */
1404 ctrl_reg = er32(CTRL);
1405 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1406 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1407 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1408 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1409 E1000_CTRL_FD); /* Force Duplex to FULL */
1410
1411 if (adapter->flags & FLAG_IS_ICH)
1412 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1413
1414 if (hw->phy.media_type == e1000_media_type_copper &&
1415 hw->phy.type == e1000_phy_m88) {
1416 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1417 } else {
1418 /* Set the ILOS bit on the fiber Nic if half duplex link is
1419 * detected.
1420 */
1421 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1422 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1423 }
1424
1425 ew32(CTRL, ctrl_reg);
1426
1427 /* Disable the receiver on the PHY so when a cable is plugged in, the
1428 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1429 */
1430 if (hw->phy.type == e1000_phy_m88)
1431 e1000_phy_disable_receiver(adapter);
1432
1433 usleep_range(500, 1000);
1434
1435 return 0;
1436}
1437
1438static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1439{
1440 struct e1000_hw *hw = &adapter->hw;
1441 u32 ctrl = er32(CTRL);
1442 int link;
1443
1444 /* special requirements for 82571/82572 fiber adapters */
1445
1446 /* jump through hoops to make sure link is up because serdes
1447 * link is hardwired up
1448 */
1449 ctrl |= E1000_CTRL_SLU;
1450 ew32(CTRL, ctrl);
1451
1452 /* disable autoneg */
1453 ctrl = er32(TXCW);
1454 ctrl &= ~BIT(31);
1455 ew32(TXCW, ctrl);
1456
1457 link = (er32(STATUS) & E1000_STATUS_LU);
1458
1459 if (!link) {
1460 /* set invert loss of signal */
1461 ctrl = er32(CTRL);
1462 ctrl |= E1000_CTRL_ILOS;
1463 ew32(CTRL, ctrl);
1464 }
1465
1466 /* special write to serdes control register to enable SerDes analog
1467 * loopback
1468 */
1469 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1470 e1e_flush();
1471 usleep_range(10000, 11000);
1472
1473 return 0;
1474}
1475
1476/* only call this for fiber/serdes connections to es2lan */
1477static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1478{
1479 struct e1000_hw *hw = &adapter->hw;
1480 u32 ctrlext = er32(CTRL_EXT);
1481 u32 ctrl = er32(CTRL);
1482
1483 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1484 * on mac_type 80003es2lan)
1485 */
1486 adapter->tx_fifo_head = ctrlext;
1487
1488 /* clear the serdes mode bits, putting the device into mac loopback */
1489 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1490 ew32(CTRL_EXT, ctrlext);
1491
1492 /* force speed to 1000/FD, link up */
1493 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1494 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1495 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1496 ew32(CTRL, ctrl);
1497
1498 /* set mac loopback */
1499 ctrl = er32(RCTL);
1500 ctrl |= E1000_RCTL_LBM_MAC;
1501 ew32(RCTL, ctrl);
1502
1503 /* set testing mode parameters (no need to reset later) */
1504#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1505#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1506 ew32(KMRNCTRLSTA,
1507 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1508
1509 return 0;
1510}
1511
1512static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1513{
1514 struct e1000_hw *hw = &adapter->hw;
1515 u32 rctl, fext_nvm11, tarc0;
1516
1517 if (hw->mac.type >= e1000_pch_spt) {
1518 fext_nvm11 = er32(FEXTNVM11);
1519 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1520 ew32(FEXTNVM11, fext_nvm11);
1521 tarc0 = er32(TARC(0));
1522 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1523 tarc0 &= 0xcfffffff;
1524 /* set bit 29 (value of MULR requests is now 2) */
1525 tarc0 |= 0x20000000;
1526 ew32(TARC(0), tarc0);
1527 }
1528 if (hw->phy.media_type == e1000_media_type_fiber ||
1529 hw->phy.media_type == e1000_media_type_internal_serdes) {
1530 switch (hw->mac.type) {
1531 case e1000_80003es2lan:
1532 return e1000_set_es2lan_mac_loopback(adapter);
1533 case e1000_82571:
1534 case e1000_82572:
1535 return e1000_set_82571_fiber_loopback(adapter);
1536 default:
1537 rctl = er32(RCTL);
1538 rctl |= E1000_RCTL_LBM_TCVR;
1539 ew32(RCTL, rctl);
1540 return 0;
1541 }
1542 } else if (hw->phy.media_type == e1000_media_type_copper) {
1543 return e1000_integrated_phy_loopback(adapter);
1544 }
1545
1546 return 7;
1547}
1548
1549static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1550{
1551 struct e1000_hw *hw = &adapter->hw;
1552 u32 rctl, fext_nvm11, tarc0;
1553 u16 phy_reg;
1554
1555 rctl = er32(RCTL);
1556 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1557 ew32(RCTL, rctl);
1558
1559 switch (hw->mac.type) {
1560 case e1000_pch_spt:
1561 case e1000_pch_cnp:
1562 fext_nvm11 = er32(FEXTNVM11);
1563 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1564 ew32(FEXTNVM11, fext_nvm11);
1565 tarc0 = er32(TARC(0));
1566 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1567 /* set bit 29 (value of MULR requests is now 0) */
1568 tarc0 &= 0xcfffffff;
1569 ew32(TARC(0), tarc0);
1570 /* fall through */
1571 case e1000_80003es2lan:
1572 if (hw->phy.media_type == e1000_media_type_fiber ||
1573 hw->phy.media_type == e1000_media_type_internal_serdes) {
1574 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1575 ew32(CTRL_EXT, adapter->tx_fifo_head);
1576 adapter->tx_fifo_head = 0;
1577 }
1578 /* fall through */
1579 case e1000_82571:
1580 case e1000_82572:
1581 if (hw->phy.media_type == e1000_media_type_fiber ||
1582 hw->phy.media_type == e1000_media_type_internal_serdes) {
1583 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1584 e1e_flush();
1585 usleep_range(10000, 11000);
1586 break;
1587 }
1588 /* Fall Through */
1589 default:
1590 hw->mac.autoneg = 1;
1591 if (hw->phy.type == e1000_phy_gg82563)
1592 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1593 e1e_rphy(hw, MII_BMCR, &phy_reg);
1594 if (phy_reg & BMCR_LOOPBACK) {
1595 phy_reg &= ~BMCR_LOOPBACK;
1596 e1e_wphy(hw, MII_BMCR, phy_reg);
1597 if (hw->phy.ops.commit)
1598 hw->phy.ops.commit(hw);
1599 }
1600 break;
1601 }
1602}
1603
1604static void e1000_create_lbtest_frame(struct sk_buff *skb,
1605 unsigned int frame_size)
1606{
1607 memset(skb->data, 0xFF, frame_size);
1608 frame_size &= ~1;
1609 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1610 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1611 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1612}
1613
1614static int e1000_check_lbtest_frame(struct sk_buff *skb,
1615 unsigned int frame_size)
1616{
1617 frame_size &= ~1;
1618 if (*(skb->data + 3) == 0xFF)
1619 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1620 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1621 return 0;
1622 return 13;
1623}
1624
1625static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1626{
1627 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1628 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1629 struct pci_dev *pdev = adapter->pdev;
1630 struct e1000_hw *hw = &adapter->hw;
1631 struct e1000_buffer *buffer_info;
1632 int i, j, k, l;
1633 int lc;
1634 int good_cnt;
1635 int ret_val = 0;
1636 unsigned long time;
1637
1638 ew32(RDT(0), rx_ring->count - 1);
1639
1640 /* Calculate the loop count based on the largest descriptor ring
1641 * The idea is to wrap the largest ring a number of times using 64
1642 * send/receive pairs during each loop
1643 */
1644
1645 if (rx_ring->count <= tx_ring->count)
1646 lc = ((tx_ring->count / 64) * 2) + 1;
1647 else
1648 lc = ((rx_ring->count / 64) * 2) + 1;
1649
1650 k = 0;
1651 l = 0;
1652 /* loop count loop */
1653 for (j = 0; j <= lc; j++) {
1654 /* send the packets */
1655 for (i = 0; i < 64; i++) {
1656 buffer_info = &tx_ring->buffer_info[k];
1657
1658 e1000_create_lbtest_frame(buffer_info->skb, 1024);
1659 dma_sync_single_for_device(&pdev->dev,
1660 buffer_info->dma,
1661 buffer_info->length,
1662 DMA_TO_DEVICE);
1663 k++;
1664 if (k == tx_ring->count)
1665 k = 0;
1666 }
1667 ew32(TDT(0), k);
1668 e1e_flush();
1669 msleep(200);
1670 time = jiffies; /* set the start time for the receive */
1671 good_cnt = 0;
1672 /* receive the sent packets */
1673 do {
1674 buffer_info = &rx_ring->buffer_info[l];
1675
1676 dma_sync_single_for_cpu(&pdev->dev,
1677 buffer_info->dma, 2048,
1678 DMA_FROM_DEVICE);
1679
1680 ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1681 1024);
1682 if (!ret_val)
1683 good_cnt++;
1684 l++;
1685 if (l == rx_ring->count)
1686 l = 0;
1687 /* time + 20 msecs (200 msecs on 2.4) is more than
1688 * enough time to complete the receives, if it's
1689 * exceeded, break and error off
1690 */
1691 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1692 if (good_cnt != 64) {
1693 ret_val = 13; /* ret_val is the same as mis-compare */
1694 break;
1695 }
1696 if (time_after(jiffies, time + 20)) {
1697 ret_val = 14; /* error code for time out error */
1698 break;
1699 }
1700 }
1701 return ret_val;
1702}
1703
1704static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1705{
1706 struct e1000_hw *hw = &adapter->hw;
1707
1708 /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1709 if (hw->phy.ops.check_reset_block &&
1710 hw->phy.ops.check_reset_block(hw)) {
1711 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1712 *data = 0;
1713 goto out;
1714 }
1715
1716 *data = e1000_setup_desc_rings(adapter);
1717 if (*data)
1718 goto out;
1719
1720 *data = e1000_setup_loopback_test(adapter);
1721 if (*data)
1722 goto err_loopback;
1723
1724 *data = e1000_run_loopback_test(adapter);
1725 e1000_loopback_cleanup(adapter);
1726
1727err_loopback:
1728 e1000_free_desc_rings(adapter);
1729out:
1730 return *data;
1731}
1732
1733static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1734{
1735 struct e1000_hw *hw = &adapter->hw;
1736
1737 *data = 0;
1738 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1739 int i = 0;
1740
1741 hw->mac.serdes_has_link = false;
1742
1743 /* On some blade server designs, link establishment
1744 * could take as long as 2-3 minutes
1745 */
1746 do {
1747 hw->mac.ops.check_for_link(hw);
1748 if (hw->mac.serdes_has_link)
1749 return *data;
1750 msleep(20);
1751 } while (i++ < 3750);
1752
1753 *data = 1;
1754 } else {
1755 hw->mac.ops.check_for_link(hw);
1756 if (hw->mac.autoneg)
1757 /* On some Phy/switch combinations, link establishment
1758 * can take a few seconds more than expected.
1759 */
1760 msleep_interruptible(5000);
1761
1762 if (!(er32(STATUS) & E1000_STATUS_LU))
1763 *data = 1;
1764 }
1765 return *data;
1766}
1767
1768static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1769 int sset)
1770{
1771 switch (sset) {
1772 case ETH_SS_TEST:
1773 return E1000_TEST_LEN;
1774 case ETH_SS_STATS:
1775 return E1000_STATS_LEN;
1776 default:
1777 return -EOPNOTSUPP;
1778 }
1779}
1780
1781static void e1000_diag_test(struct net_device *netdev,
1782 struct ethtool_test *eth_test, u64 *data)
1783{
1784 struct e1000_adapter *adapter = netdev_priv(netdev);
1785 u16 autoneg_advertised;
1786 u8 forced_speed_duplex;
1787 u8 autoneg;
1788 bool if_running = netif_running(netdev);
1789
1790 pm_runtime_get_sync(netdev->dev.parent);
1791
1792 set_bit(__E1000_TESTING, &adapter->state);
1793
1794 if (!if_running) {
1795 /* Get control of and reset hardware */
1796 if (adapter->flags & FLAG_HAS_AMT)
1797 e1000e_get_hw_control(adapter);
1798
1799 e1000e_power_up_phy(adapter);
1800
1801 adapter->hw.phy.autoneg_wait_to_complete = 1;
1802 e1000e_reset(adapter);
1803 adapter->hw.phy.autoneg_wait_to_complete = 0;
1804 }
1805
1806 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1807 /* Offline tests */
1808
1809 /* save speed, duplex, autoneg settings */
1810 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1811 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1812 autoneg = adapter->hw.mac.autoneg;
1813
1814 e_info("offline testing starting\n");
1815
1816 if (if_running)
1817 /* indicate we're in test mode */
1818 e1000e_close(netdev);
1819
1820 if (e1000_reg_test(adapter, &data[0]))
1821 eth_test->flags |= ETH_TEST_FL_FAILED;
1822
1823 e1000e_reset(adapter);
1824 if (e1000_eeprom_test(adapter, &data[1]))
1825 eth_test->flags |= ETH_TEST_FL_FAILED;
1826
1827 e1000e_reset(adapter);
1828 if (e1000_intr_test(adapter, &data[2]))
1829 eth_test->flags |= ETH_TEST_FL_FAILED;
1830
1831 e1000e_reset(adapter);
1832 if (e1000_loopback_test(adapter, &data[3]))
1833 eth_test->flags |= ETH_TEST_FL_FAILED;
1834
1835 /* force this routine to wait until autoneg complete/timeout */
1836 adapter->hw.phy.autoneg_wait_to_complete = 1;
1837 e1000e_reset(adapter);
1838 adapter->hw.phy.autoneg_wait_to_complete = 0;
1839
1840 if (e1000_link_test(adapter, &data[4]))
1841 eth_test->flags |= ETH_TEST_FL_FAILED;
1842
1843 /* restore speed, duplex, autoneg settings */
1844 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1845 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1846 adapter->hw.mac.autoneg = autoneg;
1847 e1000e_reset(adapter);
1848
1849 clear_bit(__E1000_TESTING, &adapter->state);
1850 if (if_running)
1851 e1000e_open(netdev);
1852 } else {
1853 /* Online tests */
1854
1855 e_info("online testing starting\n");
1856
1857 /* register, eeprom, intr and loopback tests not run online */
1858 data[0] = 0;
1859 data[1] = 0;
1860 data[2] = 0;
1861 data[3] = 0;
1862
1863 if (e1000_link_test(adapter, &data[4]))
1864 eth_test->flags |= ETH_TEST_FL_FAILED;
1865
1866 clear_bit(__E1000_TESTING, &adapter->state);
1867 }
1868
1869 if (!if_running) {
1870 e1000e_reset(adapter);
1871
1872 if (adapter->flags & FLAG_HAS_AMT)
1873 e1000e_release_hw_control(adapter);
1874 }
1875
1876 msleep_interruptible(4 * 1000);
1877
1878 pm_runtime_put_sync(netdev->dev.parent);
1879}
1880
1881static void e1000_get_wol(struct net_device *netdev,
1882 struct ethtool_wolinfo *wol)
1883{
1884 struct e1000_adapter *adapter = netdev_priv(netdev);
1885
1886 wol->supported = 0;
1887 wol->wolopts = 0;
1888
1889 if (!(adapter->flags & FLAG_HAS_WOL) ||
1890 !device_can_wakeup(&adapter->pdev->dev))
1891 return;
1892
1893 wol->supported = WAKE_UCAST | WAKE_MCAST |
1894 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1895
1896 /* apply any specific unsupported masks here */
1897 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1898 wol->supported &= ~WAKE_UCAST;
1899
1900 if (adapter->wol & E1000_WUFC_EX)
1901 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1902 }
1903
1904 if (adapter->wol & E1000_WUFC_EX)
1905 wol->wolopts |= WAKE_UCAST;
1906 if (adapter->wol & E1000_WUFC_MC)
1907 wol->wolopts |= WAKE_MCAST;
1908 if (adapter->wol & E1000_WUFC_BC)
1909 wol->wolopts |= WAKE_BCAST;
1910 if (adapter->wol & E1000_WUFC_MAG)
1911 wol->wolopts |= WAKE_MAGIC;
1912 if (adapter->wol & E1000_WUFC_LNKC)
1913 wol->wolopts |= WAKE_PHY;
1914}
1915
1916static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1917{
1918 struct e1000_adapter *adapter = netdev_priv(netdev);
1919
1920 if (!(adapter->flags & FLAG_HAS_WOL) ||
1921 !device_can_wakeup(&adapter->pdev->dev) ||
1922 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1923 WAKE_MAGIC | WAKE_PHY)))
1924 return -EOPNOTSUPP;
1925
1926 /* these settings will always override what we currently have */
1927 adapter->wol = 0;
1928
1929 if (wol->wolopts & WAKE_UCAST)
1930 adapter->wol |= E1000_WUFC_EX;
1931 if (wol->wolopts & WAKE_MCAST)
1932 adapter->wol |= E1000_WUFC_MC;
1933 if (wol->wolopts & WAKE_BCAST)
1934 adapter->wol |= E1000_WUFC_BC;
1935 if (wol->wolopts & WAKE_MAGIC)
1936 adapter->wol |= E1000_WUFC_MAG;
1937 if (wol->wolopts & WAKE_PHY)
1938 adapter->wol |= E1000_WUFC_LNKC;
1939
1940 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1941
1942 return 0;
1943}
1944
1945static int e1000_set_phys_id(struct net_device *netdev,
1946 enum ethtool_phys_id_state state)
1947{
1948 struct e1000_adapter *adapter = netdev_priv(netdev);
1949 struct e1000_hw *hw = &adapter->hw;
1950
1951 switch (state) {
1952 case ETHTOOL_ID_ACTIVE:
1953 pm_runtime_get_sync(netdev->dev.parent);
1954
1955 if (!hw->mac.ops.blink_led)
1956 return 2; /* cycle on/off twice per second */
1957
1958 hw->mac.ops.blink_led(hw);
1959 break;
1960
1961 case ETHTOOL_ID_INACTIVE:
1962 if (hw->phy.type == e1000_phy_ife)
1963 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1964 hw->mac.ops.led_off(hw);
1965 hw->mac.ops.cleanup_led(hw);
1966 pm_runtime_put_sync(netdev->dev.parent);
1967 break;
1968
1969 case ETHTOOL_ID_ON:
1970 hw->mac.ops.led_on(hw);
1971 break;
1972
1973 case ETHTOOL_ID_OFF:
1974 hw->mac.ops.led_off(hw);
1975 break;
1976 }
1977
1978 return 0;
1979}
1980
1981static int e1000_get_coalesce(struct net_device *netdev,
1982 struct ethtool_coalesce *ec)
1983{
1984 struct e1000_adapter *adapter = netdev_priv(netdev);
1985
1986 if (adapter->itr_setting <= 4)
1987 ec->rx_coalesce_usecs = adapter->itr_setting;
1988 else
1989 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1990
1991 return 0;
1992}
1993
1994static int e1000_set_coalesce(struct net_device *netdev,
1995 struct ethtool_coalesce *ec)
1996{
1997 struct e1000_adapter *adapter = netdev_priv(netdev);
1998
1999 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2000 ((ec->rx_coalesce_usecs > 4) &&
2001 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2002 (ec->rx_coalesce_usecs == 2))
2003 return -EINVAL;
2004
2005 if (ec->rx_coalesce_usecs == 4) {
2006 adapter->itr_setting = 4;
2007 adapter->itr = adapter->itr_setting;
2008 } else if (ec->rx_coalesce_usecs <= 3) {
2009 adapter->itr = 20000;
2010 adapter->itr_setting = ec->rx_coalesce_usecs;
2011 } else {
2012 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2013 adapter->itr_setting = adapter->itr & ~3;
2014 }
2015
2016 pm_runtime_get_sync(netdev->dev.parent);
2017
2018 if (adapter->itr_setting != 0)
2019 e1000e_write_itr(adapter, adapter->itr);
2020 else
2021 e1000e_write_itr(adapter, 0);
2022
2023 pm_runtime_put_sync(netdev->dev.parent);
2024
2025 return 0;
2026}
2027
2028static int e1000_nway_reset(struct net_device *netdev)
2029{
2030 struct e1000_adapter *adapter = netdev_priv(netdev);
2031
2032 if (!netif_running(netdev))
2033 return -EAGAIN;
2034
2035 if (!adapter->hw.mac.autoneg)
2036 return -EINVAL;
2037
2038 pm_runtime_get_sync(netdev->dev.parent);
2039 e1000e_reinit_locked(adapter);
2040 pm_runtime_put_sync(netdev->dev.parent);
2041
2042 return 0;
2043}
2044
2045static void e1000_get_ethtool_stats(struct net_device *netdev,
2046 struct ethtool_stats __always_unused *stats,
2047 u64 *data)
2048{
2049 struct e1000_adapter *adapter = netdev_priv(netdev);
2050 struct rtnl_link_stats64 net_stats;
2051 int i;
2052 char *p = NULL;
2053
2054 pm_runtime_get_sync(netdev->dev.parent);
2055
2056 dev_get_stats(netdev, &net_stats);
2057
2058 pm_runtime_put_sync(netdev->dev.parent);
2059
2060 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2061 switch (e1000_gstrings_stats[i].type) {
2062 case NETDEV_STATS:
2063 p = (char *)&net_stats +
2064 e1000_gstrings_stats[i].stat_offset;
2065 break;
2066 case E1000_STATS:
2067 p = (char *)adapter +
2068 e1000_gstrings_stats[i].stat_offset;
2069 break;
2070 default:
2071 data[i] = 0;
2072 continue;
2073 }
2074
2075 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2076 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2077 }
2078}
2079
2080static void e1000_get_strings(struct net_device __always_unused *netdev,
2081 u32 stringset, u8 *data)
2082{
2083 u8 *p = data;
2084 int i;
2085
2086 switch (stringset) {
2087 case ETH_SS_TEST:
2088 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2089 break;
2090 case ETH_SS_STATS:
2091 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2092 memcpy(p, e1000_gstrings_stats[i].stat_string,
2093 ETH_GSTRING_LEN);
2094 p += ETH_GSTRING_LEN;
2095 }
2096 break;
2097 }
2098}
2099
2100static int e1000_get_rxnfc(struct net_device *netdev,
2101 struct ethtool_rxnfc *info,
2102 u32 __always_unused *rule_locs)
2103{
2104 info->data = 0;
2105
2106 switch (info->cmd) {
2107 case ETHTOOL_GRXFH: {
2108 struct e1000_adapter *adapter = netdev_priv(netdev);
2109 struct e1000_hw *hw = &adapter->hw;
2110 u32 mrqc;
2111
2112 pm_runtime_get_sync(netdev->dev.parent);
2113 mrqc = er32(MRQC);
2114 pm_runtime_put_sync(netdev->dev.parent);
2115
2116 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2117 return 0;
2118
2119 switch (info->flow_type) {
2120 case TCP_V4_FLOW:
2121 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2122 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2123 /* fall through */
2124 case UDP_V4_FLOW:
2125 case SCTP_V4_FLOW:
2126 case AH_ESP_V4_FLOW:
2127 case IPV4_FLOW:
2128 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2129 info->data |= RXH_IP_SRC | RXH_IP_DST;
2130 break;
2131 case TCP_V6_FLOW:
2132 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2133 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2134 /* fall through */
2135 case UDP_V6_FLOW:
2136 case SCTP_V6_FLOW:
2137 case AH_ESP_V6_FLOW:
2138 case IPV6_FLOW:
2139 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2140 info->data |= RXH_IP_SRC | RXH_IP_DST;
2141 break;
2142 default:
2143 break;
2144 }
2145 return 0;
2146 }
2147 default:
2148 return -EOPNOTSUPP;
2149 }
2150}
2151
2152static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2153{
2154 struct e1000_adapter *adapter = netdev_priv(netdev);
2155 struct e1000_hw *hw = &adapter->hw;
2156 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2157 u32 ret_val;
2158
2159 if (!(adapter->flags2 & FLAG2_HAS_EEE))
2160 return -EOPNOTSUPP;
2161
2162 switch (hw->phy.type) {
2163 case e1000_phy_82579:
2164 cap_addr = I82579_EEE_CAPABILITY;
2165 lpa_addr = I82579_EEE_LP_ABILITY;
2166 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2167 break;
2168 case e1000_phy_i217:
2169 cap_addr = I217_EEE_CAPABILITY;
2170 lpa_addr = I217_EEE_LP_ABILITY;
2171 pcs_stat_addr = I217_EEE_PCS_STATUS;
2172 break;
2173 default:
2174 return -EOPNOTSUPP;
2175 }
2176
2177 pm_runtime_get_sync(netdev->dev.parent);
2178
2179 ret_val = hw->phy.ops.acquire(hw);
2180 if (ret_val) {
2181 pm_runtime_put_sync(netdev->dev.parent);
2182 return -EBUSY;
2183 }
2184
2185 /* EEE Capability */
2186 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2187 if (ret_val)
2188 goto release;
2189 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2190
2191 /* EEE Advertised */
2192 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2193
2194 /* EEE Link Partner Advertised */
2195 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2196 if (ret_val)
2197 goto release;
2198 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2199
2200 /* EEE PCS Status */
2201 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2202 if (ret_val)
2203 goto release;
2204 if (hw->phy.type == e1000_phy_82579)
2205 phy_data <<= 8;
2206
2207 /* Result of the EEE auto negotiation - there is no register that
2208 * has the status of the EEE negotiation so do a best-guess based
2209 * on whether Tx or Rx LPI indications have been received.
2210 */
2211 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2212 edata->eee_active = true;
2213
2214 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2215 edata->tx_lpi_enabled = true;
2216 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2217
2218release:
2219 hw->phy.ops.release(hw);
2220 if (ret_val)
2221 ret_val = -ENODATA;
2222
2223 pm_runtime_put_sync(netdev->dev.parent);
2224
2225 return ret_val;
2226}
2227
2228static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2229{
2230 struct e1000_adapter *adapter = netdev_priv(netdev);
2231 struct e1000_hw *hw = &adapter->hw;
2232 struct ethtool_eee eee_curr;
2233 s32 ret_val;
2234
2235 ret_val = e1000e_get_eee(netdev, &eee_curr);
2236 if (ret_val)
2237 return ret_val;
2238
2239 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2240 e_err("Setting EEE tx-lpi is not supported\n");
2241 return -EINVAL;
2242 }
2243
2244 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2245 e_err("Setting EEE Tx LPI timer is not supported\n");
2246 return -EINVAL;
2247 }
2248
2249 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2250 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2251 return -EINVAL;
2252 }
2253
2254 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2255
2256 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2257
2258 pm_runtime_get_sync(netdev->dev.parent);
2259
2260 /* reset the link */
2261 if (netif_running(netdev))
2262 e1000e_reinit_locked(adapter);
2263 else
2264 e1000e_reset(adapter);
2265
2266 pm_runtime_put_sync(netdev->dev.parent);
2267
2268 return 0;
2269}
2270
2271static int e1000e_get_ts_info(struct net_device *netdev,
2272 struct ethtool_ts_info *info)
2273{
2274 struct e1000_adapter *adapter = netdev_priv(netdev);
2275
2276 ethtool_op_get_ts_info(netdev, info);
2277
2278 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2279 return 0;
2280
2281 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2282 SOF_TIMESTAMPING_RX_HARDWARE |
2283 SOF_TIMESTAMPING_RAW_HARDWARE);
2284
2285 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2286
2287 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2288 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2289 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2290 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2291 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2292 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2293 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2294 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2295 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2296 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2297 BIT(HWTSTAMP_FILTER_ALL));
2298
2299 if (adapter->ptp_clock)
2300 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2301
2302 return 0;
2303}
2304
2305static const struct ethtool_ops e1000_ethtool_ops = {
2306 .get_drvinfo = e1000_get_drvinfo,
2307 .get_regs_len = e1000_get_regs_len,
2308 .get_regs = e1000_get_regs,
2309 .get_wol = e1000_get_wol,
2310 .set_wol = e1000_set_wol,
2311 .get_msglevel = e1000_get_msglevel,
2312 .set_msglevel = e1000_set_msglevel,
2313 .nway_reset = e1000_nway_reset,
2314 .get_link = ethtool_op_get_link,
2315 .get_eeprom_len = e1000_get_eeprom_len,
2316 .get_eeprom = e1000_get_eeprom,
2317 .set_eeprom = e1000_set_eeprom,
2318 .get_ringparam = e1000_get_ringparam,
2319 .set_ringparam = e1000_set_ringparam,
2320 .get_pauseparam = e1000_get_pauseparam,
2321 .set_pauseparam = e1000_set_pauseparam,
2322 .self_test = e1000_diag_test,
2323 .get_strings = e1000_get_strings,
2324 .set_phys_id = e1000_set_phys_id,
2325 .get_ethtool_stats = e1000_get_ethtool_stats,
2326 .get_sset_count = e1000e_get_sset_count,
2327 .get_coalesce = e1000_get_coalesce,
2328 .set_coalesce = e1000_set_coalesce,
2329 .get_rxnfc = e1000_get_rxnfc,
2330 .get_ts_info = e1000e_get_ts_info,
2331 .get_eee = e1000e_get_eee,
2332 .set_eee = e1000e_set_eee,
2333 .get_link_ksettings = e1000_get_link_ksettings,
2334 .set_link_ksettings = e1000_set_link_ksettings,
2335};
2336
2337void e1000e_set_ethtool_ops(struct net_device *netdev)
2338{
2339 netdev->ethtool_ops = &e1000_ethtool_ops;
2340}
1/* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22/* ethtool support for e1000 */
23
24#include <linux/netdevice.h>
25#include <linux/interrupt.h>
26#include <linux/ethtool.h>
27#include <linux/pci.h>
28#include <linux/slab.h>
29#include <linux/delay.h>
30#include <linux/vmalloc.h>
31#include <linux/pm_runtime.h>
32
33#include "e1000.h"
34
35enum { NETDEV_STATS, E1000_STATS };
36
37struct e1000_stats {
38 char stat_string[ETH_GSTRING_LEN];
39 int type;
40 int sizeof_stat;
41 int stat_offset;
42};
43
44#define E1000_STAT(str, m) { \
45 .stat_string = str, \
46 .type = E1000_STATS, \
47 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
48 .stat_offset = offsetof(struct e1000_adapter, m) }
49#define E1000_NETDEV_STAT(str, m) { \
50 .stat_string = str, \
51 .type = NETDEV_STATS, \
52 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
53 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
54
55static const struct e1000_stats e1000_gstrings_stats[] = {
56 E1000_STAT("rx_packets", stats.gprc),
57 E1000_STAT("tx_packets", stats.gptc),
58 E1000_STAT("rx_bytes", stats.gorc),
59 E1000_STAT("tx_bytes", stats.gotc),
60 E1000_STAT("rx_broadcast", stats.bprc),
61 E1000_STAT("tx_broadcast", stats.bptc),
62 E1000_STAT("rx_multicast", stats.mprc),
63 E1000_STAT("tx_multicast", stats.mptc),
64 E1000_NETDEV_STAT("rx_errors", rx_errors),
65 E1000_NETDEV_STAT("tx_errors", tx_errors),
66 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
67 E1000_STAT("multicast", stats.mprc),
68 E1000_STAT("collisions", stats.colc),
69 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
70 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
71 E1000_STAT("rx_crc_errors", stats.crcerrs),
72 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
73 E1000_STAT("rx_no_buffer_count", stats.rnbc),
74 E1000_STAT("rx_missed_errors", stats.mpc),
75 E1000_STAT("tx_aborted_errors", stats.ecol),
76 E1000_STAT("tx_carrier_errors", stats.tncrs),
77 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
78 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
79 E1000_STAT("tx_window_errors", stats.latecol),
80 E1000_STAT("tx_abort_late_coll", stats.latecol),
81 E1000_STAT("tx_deferred_ok", stats.dc),
82 E1000_STAT("tx_single_coll_ok", stats.scc),
83 E1000_STAT("tx_multi_coll_ok", stats.mcc),
84 E1000_STAT("tx_timeout_count", tx_timeout_count),
85 E1000_STAT("tx_restart_queue", restart_queue),
86 E1000_STAT("rx_long_length_errors", stats.roc),
87 E1000_STAT("rx_short_length_errors", stats.ruc),
88 E1000_STAT("rx_align_errors", stats.algnerrc),
89 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
90 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
91 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
92 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
93 E1000_STAT("tx_flow_control_xon", stats.xontxc),
94 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
95 E1000_STAT("rx_csum_offload_good", hw_csum_good),
96 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
97 E1000_STAT("rx_header_split", rx_hdr_split),
98 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
99 E1000_STAT("tx_smbus", stats.mgptc),
100 E1000_STAT("rx_smbus", stats.mgprc),
101 E1000_STAT("dropped_smbus", stats.mgpdc),
102 E1000_STAT("rx_dma_failed", rx_dma_failed),
103 E1000_STAT("tx_dma_failed", tx_dma_failed),
104 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
105 E1000_STAT("uncorr_ecc_errors", uncorr_errors),
106 E1000_STAT("corr_ecc_errors", corr_errors),
107 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
108};
109
110#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
111#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
112static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
113 "Register test (offline)", "Eeprom test (offline)",
114 "Interrupt test (offline)", "Loopback test (offline)",
115 "Link test (on/offline)"
116};
117
118#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
119
120static int e1000_get_settings(struct net_device *netdev,
121 struct ethtool_cmd *ecmd)
122{
123 struct e1000_adapter *adapter = netdev_priv(netdev);
124 struct e1000_hw *hw = &adapter->hw;
125 u32 speed;
126
127 if (hw->phy.media_type == e1000_media_type_copper) {
128 ecmd->supported = (SUPPORTED_10baseT_Half |
129 SUPPORTED_10baseT_Full |
130 SUPPORTED_100baseT_Half |
131 SUPPORTED_100baseT_Full |
132 SUPPORTED_1000baseT_Full |
133 SUPPORTED_Autoneg |
134 SUPPORTED_TP);
135 if (hw->phy.type == e1000_phy_ife)
136 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
137 ecmd->advertising = ADVERTISED_TP;
138
139 if (hw->mac.autoneg == 1) {
140 ecmd->advertising |= ADVERTISED_Autoneg;
141 /* the e1000 autoneg seems to match ethtool nicely */
142 ecmd->advertising |= hw->phy.autoneg_advertised;
143 }
144
145 ecmd->port = PORT_TP;
146 ecmd->phy_address = hw->phy.addr;
147 ecmd->transceiver = XCVR_INTERNAL;
148
149 } else {
150 ecmd->supported = (SUPPORTED_1000baseT_Full |
151 SUPPORTED_FIBRE |
152 SUPPORTED_Autoneg);
153
154 ecmd->advertising = (ADVERTISED_1000baseT_Full |
155 ADVERTISED_FIBRE |
156 ADVERTISED_Autoneg);
157
158 ecmd->port = PORT_FIBRE;
159 ecmd->transceiver = XCVR_EXTERNAL;
160 }
161
162 speed = SPEED_UNKNOWN;
163 ecmd->duplex = DUPLEX_UNKNOWN;
164
165 if (netif_running(netdev)) {
166 if (netif_carrier_ok(netdev)) {
167 speed = adapter->link_speed;
168 ecmd->duplex = adapter->link_duplex - 1;
169 }
170 } else if (!pm_runtime_suspended(netdev->dev.parent)) {
171 u32 status = er32(STATUS);
172
173 if (status & E1000_STATUS_LU) {
174 if (status & E1000_STATUS_SPEED_1000)
175 speed = SPEED_1000;
176 else if (status & E1000_STATUS_SPEED_100)
177 speed = SPEED_100;
178 else
179 speed = SPEED_10;
180
181 if (status & E1000_STATUS_FD)
182 ecmd->duplex = DUPLEX_FULL;
183 else
184 ecmd->duplex = DUPLEX_HALF;
185 }
186 }
187
188 ethtool_cmd_speed_set(ecmd, speed);
189 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
190 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
191
192 /* MDI-X => 2; MDI =>1; Invalid =>0 */
193 if ((hw->phy.media_type == e1000_media_type_copper) &&
194 netif_carrier_ok(netdev))
195 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI;
196 else
197 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
198
199 if (hw->phy.mdix == AUTO_ALL_MODES)
200 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
201 else
202 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
203
204 if (hw->phy.media_type != e1000_media_type_copper)
205 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
206
207 return 0;
208}
209
210static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
211{
212 struct e1000_mac_info *mac = &adapter->hw.mac;
213
214 mac->autoneg = 0;
215
216 /* Make sure dplx is at most 1 bit and lsb of speed is not set
217 * for the switch() below to work
218 */
219 if ((spd & 1) || (dplx & ~1))
220 goto err_inval;
221
222 /* Fiber NICs only allow 1000 gbps Full duplex */
223 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
224 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
225 goto err_inval;
226 }
227
228 switch (spd + dplx) {
229 case SPEED_10 + DUPLEX_HALF:
230 mac->forced_speed_duplex = ADVERTISE_10_HALF;
231 break;
232 case SPEED_10 + DUPLEX_FULL:
233 mac->forced_speed_duplex = ADVERTISE_10_FULL;
234 break;
235 case SPEED_100 + DUPLEX_HALF:
236 mac->forced_speed_duplex = ADVERTISE_100_HALF;
237 break;
238 case SPEED_100 + DUPLEX_FULL:
239 mac->forced_speed_duplex = ADVERTISE_100_FULL;
240 break;
241 case SPEED_1000 + DUPLEX_FULL:
242 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
243 mac->autoneg = 1;
244 adapter->hw.phy.autoneg_advertised =
245 ADVERTISE_1000_FULL;
246 } else {
247 mac->forced_speed_duplex = ADVERTISE_1000_FULL;
248 }
249 break;
250 case SPEED_1000 + DUPLEX_HALF: /* not supported */
251 default:
252 goto err_inval;
253 }
254
255 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
256 adapter->hw.phy.mdix = AUTO_ALL_MODES;
257
258 return 0;
259
260err_inval:
261 e_err("Unsupported Speed/Duplex configuration\n");
262 return -EINVAL;
263}
264
265static int e1000_set_settings(struct net_device *netdev,
266 struct ethtool_cmd *ecmd)
267{
268 struct e1000_adapter *adapter = netdev_priv(netdev);
269 struct e1000_hw *hw = &adapter->hw;
270 int ret_val = 0;
271
272 pm_runtime_get_sync(netdev->dev.parent);
273
274 /* When SoL/IDER sessions are active, autoneg/speed/duplex
275 * cannot be changed
276 */
277 if (hw->phy.ops.check_reset_block &&
278 hw->phy.ops.check_reset_block(hw)) {
279 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
280 ret_val = -EINVAL;
281 goto out;
282 }
283
284 /* MDI setting is only allowed when autoneg enabled because
285 * some hardware doesn't allow MDI setting when speed or
286 * duplex is forced.
287 */
288 if (ecmd->eth_tp_mdix_ctrl) {
289 if (hw->phy.media_type != e1000_media_type_copper) {
290 ret_val = -EOPNOTSUPP;
291 goto out;
292 }
293
294 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
295 (ecmd->autoneg != AUTONEG_ENABLE)) {
296 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
297 ret_val = -EINVAL;
298 goto out;
299 }
300 }
301
302 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
303 usleep_range(1000, 2000);
304
305 if (ecmd->autoneg == AUTONEG_ENABLE) {
306 hw->mac.autoneg = 1;
307 if (hw->phy.media_type == e1000_media_type_fiber)
308 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
309 ADVERTISED_FIBRE | ADVERTISED_Autoneg;
310 else
311 hw->phy.autoneg_advertised = ecmd->advertising |
312 ADVERTISED_TP | ADVERTISED_Autoneg;
313 ecmd->advertising = hw->phy.autoneg_advertised;
314 if (adapter->fc_autoneg)
315 hw->fc.requested_mode = e1000_fc_default;
316 } else {
317 u32 speed = ethtool_cmd_speed(ecmd);
318 /* calling this overrides forced MDI setting */
319 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
320 ret_val = -EINVAL;
321 goto out;
322 }
323 }
324
325 /* MDI-X => 2; MDI => 1; Auto => 3 */
326 if (ecmd->eth_tp_mdix_ctrl) {
327 /* fix up the value for auto (3 => 0) as zero is mapped
328 * internally to auto
329 */
330 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
331 hw->phy.mdix = AUTO_ALL_MODES;
332 else
333 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
334 }
335
336 /* reset the link */
337 if (netif_running(adapter->netdev)) {
338 e1000e_down(adapter, true);
339 e1000e_up(adapter);
340 } else {
341 e1000e_reset(adapter);
342 }
343
344out:
345 pm_runtime_put_sync(netdev->dev.parent);
346 clear_bit(__E1000_RESETTING, &adapter->state);
347 return ret_val;
348}
349
350static void e1000_get_pauseparam(struct net_device *netdev,
351 struct ethtool_pauseparam *pause)
352{
353 struct e1000_adapter *adapter = netdev_priv(netdev);
354 struct e1000_hw *hw = &adapter->hw;
355
356 pause->autoneg =
357 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
358
359 if (hw->fc.current_mode == e1000_fc_rx_pause) {
360 pause->rx_pause = 1;
361 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
362 pause->tx_pause = 1;
363 } else if (hw->fc.current_mode == e1000_fc_full) {
364 pause->rx_pause = 1;
365 pause->tx_pause = 1;
366 }
367}
368
369static int e1000_set_pauseparam(struct net_device *netdev,
370 struct ethtool_pauseparam *pause)
371{
372 struct e1000_adapter *adapter = netdev_priv(netdev);
373 struct e1000_hw *hw = &adapter->hw;
374 int retval = 0;
375
376 adapter->fc_autoneg = pause->autoneg;
377
378 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
379 usleep_range(1000, 2000);
380
381 pm_runtime_get_sync(netdev->dev.parent);
382
383 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
384 hw->fc.requested_mode = e1000_fc_default;
385 if (netif_running(adapter->netdev)) {
386 e1000e_down(adapter, true);
387 e1000e_up(adapter);
388 } else {
389 e1000e_reset(adapter);
390 }
391 } else {
392 if (pause->rx_pause && pause->tx_pause)
393 hw->fc.requested_mode = e1000_fc_full;
394 else if (pause->rx_pause && !pause->tx_pause)
395 hw->fc.requested_mode = e1000_fc_rx_pause;
396 else if (!pause->rx_pause && pause->tx_pause)
397 hw->fc.requested_mode = e1000_fc_tx_pause;
398 else if (!pause->rx_pause && !pause->tx_pause)
399 hw->fc.requested_mode = e1000_fc_none;
400
401 hw->fc.current_mode = hw->fc.requested_mode;
402
403 if (hw->phy.media_type == e1000_media_type_fiber) {
404 retval = hw->mac.ops.setup_link(hw);
405 /* implicit goto out */
406 } else {
407 retval = e1000e_force_mac_fc(hw);
408 if (retval)
409 goto out;
410 e1000e_set_fc_watermarks(hw);
411 }
412 }
413
414out:
415 pm_runtime_put_sync(netdev->dev.parent);
416 clear_bit(__E1000_RESETTING, &adapter->state);
417 return retval;
418}
419
420static u32 e1000_get_msglevel(struct net_device *netdev)
421{
422 struct e1000_adapter *adapter = netdev_priv(netdev);
423 return adapter->msg_enable;
424}
425
426static void e1000_set_msglevel(struct net_device *netdev, u32 data)
427{
428 struct e1000_adapter *adapter = netdev_priv(netdev);
429 adapter->msg_enable = data;
430}
431
432static int e1000_get_regs_len(struct net_device __always_unused *netdev)
433{
434#define E1000_REGS_LEN 32 /* overestimate */
435 return E1000_REGS_LEN * sizeof(u32);
436}
437
438static void e1000_get_regs(struct net_device *netdev,
439 struct ethtool_regs *regs, void *p)
440{
441 struct e1000_adapter *adapter = netdev_priv(netdev);
442 struct e1000_hw *hw = &adapter->hw;
443 u32 *regs_buff = p;
444 u16 phy_data;
445
446 pm_runtime_get_sync(netdev->dev.parent);
447
448 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
449
450 regs->version = (1u << 24) |
451 (adapter->pdev->revision << 16) |
452 adapter->pdev->device;
453
454 regs_buff[0] = er32(CTRL);
455 regs_buff[1] = er32(STATUS);
456
457 regs_buff[2] = er32(RCTL);
458 regs_buff[3] = er32(RDLEN(0));
459 regs_buff[4] = er32(RDH(0));
460 regs_buff[5] = er32(RDT(0));
461 regs_buff[6] = er32(RDTR);
462
463 regs_buff[7] = er32(TCTL);
464 regs_buff[8] = er32(TDLEN(0));
465 regs_buff[9] = er32(TDH(0));
466 regs_buff[10] = er32(TDT(0));
467 regs_buff[11] = er32(TIDV);
468
469 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
470
471 /* ethtool doesn't use anything past this point, so all this
472 * code is likely legacy junk for apps that may or may not exist
473 */
474 if (hw->phy.type == e1000_phy_m88) {
475 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
476 regs_buff[13] = (u32)phy_data; /* cable length */
477 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
478 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
479 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
480 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
481 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
482 regs_buff[18] = regs_buff[13]; /* cable polarity */
483 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
484 regs_buff[20] = regs_buff[17]; /* polarity correction */
485 /* phy receive errors */
486 regs_buff[22] = adapter->phy_stats.receive_errors;
487 regs_buff[23] = regs_buff[13]; /* mdix mode */
488 }
489 regs_buff[21] = 0; /* was idle_errors */
490 e1e_rphy(hw, MII_STAT1000, &phy_data);
491 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
492 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
493
494 pm_runtime_put_sync(netdev->dev.parent);
495}
496
497static int e1000_get_eeprom_len(struct net_device *netdev)
498{
499 struct e1000_adapter *adapter = netdev_priv(netdev);
500 return adapter->hw.nvm.word_size * 2;
501}
502
503static int e1000_get_eeprom(struct net_device *netdev,
504 struct ethtool_eeprom *eeprom, u8 *bytes)
505{
506 struct e1000_adapter *adapter = netdev_priv(netdev);
507 struct e1000_hw *hw = &adapter->hw;
508 u16 *eeprom_buff;
509 int first_word;
510 int last_word;
511 int ret_val = 0;
512 u16 i;
513
514 if (eeprom->len == 0)
515 return -EINVAL;
516
517 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
518
519 first_word = eeprom->offset >> 1;
520 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
521
522 eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
523 GFP_KERNEL);
524 if (!eeprom_buff)
525 return -ENOMEM;
526
527 pm_runtime_get_sync(netdev->dev.parent);
528
529 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
530 ret_val = e1000_read_nvm(hw, first_word,
531 last_word - first_word + 1,
532 eeprom_buff);
533 } else {
534 for (i = 0; i < last_word - first_word + 1; i++) {
535 ret_val = e1000_read_nvm(hw, first_word + i, 1,
536 &eeprom_buff[i]);
537 if (ret_val)
538 break;
539 }
540 }
541
542 pm_runtime_put_sync(netdev->dev.parent);
543
544 if (ret_val) {
545 /* a read error occurred, throw away the result */
546 memset(eeprom_buff, 0xff, sizeof(u16) *
547 (last_word - first_word + 1));
548 } else {
549 /* Device's eeprom is always little-endian, word addressable */
550 for (i = 0; i < last_word - first_word + 1; i++)
551 le16_to_cpus(&eeprom_buff[i]);
552 }
553
554 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
555 kfree(eeprom_buff);
556
557 return ret_val;
558}
559
560static int e1000_set_eeprom(struct net_device *netdev,
561 struct ethtool_eeprom *eeprom, u8 *bytes)
562{
563 struct e1000_adapter *adapter = netdev_priv(netdev);
564 struct e1000_hw *hw = &adapter->hw;
565 u16 *eeprom_buff;
566 void *ptr;
567 int max_len;
568 int first_word;
569 int last_word;
570 int ret_val = 0;
571 u16 i;
572
573 if (eeprom->len == 0)
574 return -EOPNOTSUPP;
575
576 if (eeprom->magic !=
577 (adapter->pdev->vendor | (adapter->pdev->device << 16)))
578 return -EFAULT;
579
580 if (adapter->flags & FLAG_READ_ONLY_NVM)
581 return -EINVAL;
582
583 max_len = hw->nvm.word_size * 2;
584
585 first_word = eeprom->offset >> 1;
586 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
587 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
588 if (!eeprom_buff)
589 return -ENOMEM;
590
591 ptr = (void *)eeprom_buff;
592
593 pm_runtime_get_sync(netdev->dev.parent);
594
595 if (eeprom->offset & 1) {
596 /* need read/modify/write of first changed EEPROM word */
597 /* only the second byte of the word is being modified */
598 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
599 ptr++;
600 }
601 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
602 /* need read/modify/write of last changed EEPROM word */
603 /* only the first byte of the word is being modified */
604 ret_val = e1000_read_nvm(hw, last_word, 1,
605 &eeprom_buff[last_word - first_word]);
606
607 if (ret_val)
608 goto out;
609
610 /* Device's eeprom is always little-endian, word addressable */
611 for (i = 0; i < last_word - first_word + 1; i++)
612 le16_to_cpus(&eeprom_buff[i]);
613
614 memcpy(ptr, bytes, eeprom->len);
615
616 for (i = 0; i < last_word - first_word + 1; i++)
617 cpu_to_le16s(&eeprom_buff[i]);
618
619 ret_val = e1000_write_nvm(hw, first_word,
620 last_word - first_word + 1, eeprom_buff);
621
622 if (ret_val)
623 goto out;
624
625 /* Update the checksum over the first part of the EEPROM if needed
626 * and flush shadow RAM for applicable controllers
627 */
628 if ((first_word <= NVM_CHECKSUM_REG) ||
629 (hw->mac.type == e1000_82583) ||
630 (hw->mac.type == e1000_82574) ||
631 (hw->mac.type == e1000_82573))
632 ret_val = e1000e_update_nvm_checksum(hw);
633
634out:
635 pm_runtime_put_sync(netdev->dev.parent);
636 kfree(eeprom_buff);
637 return ret_val;
638}
639
640static void e1000_get_drvinfo(struct net_device *netdev,
641 struct ethtool_drvinfo *drvinfo)
642{
643 struct e1000_adapter *adapter = netdev_priv(netdev);
644
645 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
646 strlcpy(drvinfo->version, e1000e_driver_version,
647 sizeof(drvinfo->version));
648
649 /* EEPROM image version # is reported as firmware version # for
650 * PCI-E controllers
651 */
652 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
653 "%d.%d-%d",
654 (adapter->eeprom_vers & 0xF000) >> 12,
655 (adapter->eeprom_vers & 0x0FF0) >> 4,
656 (adapter->eeprom_vers & 0x000F));
657
658 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
659 sizeof(drvinfo->bus_info));
660}
661
662static void e1000_get_ringparam(struct net_device *netdev,
663 struct ethtool_ringparam *ring)
664{
665 struct e1000_adapter *adapter = netdev_priv(netdev);
666
667 ring->rx_max_pending = E1000_MAX_RXD;
668 ring->tx_max_pending = E1000_MAX_TXD;
669 ring->rx_pending = adapter->rx_ring_count;
670 ring->tx_pending = adapter->tx_ring_count;
671}
672
673static int e1000_set_ringparam(struct net_device *netdev,
674 struct ethtool_ringparam *ring)
675{
676 struct e1000_adapter *adapter = netdev_priv(netdev);
677 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
678 int err = 0, size = sizeof(struct e1000_ring);
679 bool set_tx = false, set_rx = false;
680 u16 new_rx_count, new_tx_count;
681
682 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
683 return -EINVAL;
684
685 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
686 E1000_MAX_RXD);
687 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
688
689 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
690 E1000_MAX_TXD);
691 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
692
693 if ((new_tx_count == adapter->tx_ring_count) &&
694 (new_rx_count == adapter->rx_ring_count))
695 /* nothing to do */
696 return 0;
697
698 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
699 usleep_range(1000, 2000);
700
701 if (!netif_running(adapter->netdev)) {
702 /* Set counts now and allocate resources during open() */
703 adapter->tx_ring->count = new_tx_count;
704 adapter->rx_ring->count = new_rx_count;
705 adapter->tx_ring_count = new_tx_count;
706 adapter->rx_ring_count = new_rx_count;
707 goto clear_reset;
708 }
709
710 set_tx = (new_tx_count != adapter->tx_ring_count);
711 set_rx = (new_rx_count != adapter->rx_ring_count);
712
713 /* Allocate temporary storage for ring updates */
714 if (set_tx) {
715 temp_tx = vmalloc(size);
716 if (!temp_tx) {
717 err = -ENOMEM;
718 goto free_temp;
719 }
720 }
721 if (set_rx) {
722 temp_rx = vmalloc(size);
723 if (!temp_rx) {
724 err = -ENOMEM;
725 goto free_temp;
726 }
727 }
728
729 pm_runtime_get_sync(netdev->dev.parent);
730
731 e1000e_down(adapter, true);
732
733 /* We can't just free everything and then setup again, because the
734 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
735 * structs. First, attempt to allocate new resources...
736 */
737 if (set_tx) {
738 memcpy(temp_tx, adapter->tx_ring, size);
739 temp_tx->count = new_tx_count;
740 err = e1000e_setup_tx_resources(temp_tx);
741 if (err)
742 goto err_setup;
743 }
744 if (set_rx) {
745 memcpy(temp_rx, adapter->rx_ring, size);
746 temp_rx->count = new_rx_count;
747 err = e1000e_setup_rx_resources(temp_rx);
748 if (err)
749 goto err_setup_rx;
750 }
751
752 /* ...then free the old resources and copy back any new ring data */
753 if (set_tx) {
754 e1000e_free_tx_resources(adapter->tx_ring);
755 memcpy(adapter->tx_ring, temp_tx, size);
756 adapter->tx_ring_count = new_tx_count;
757 }
758 if (set_rx) {
759 e1000e_free_rx_resources(adapter->rx_ring);
760 memcpy(adapter->rx_ring, temp_rx, size);
761 adapter->rx_ring_count = new_rx_count;
762 }
763
764err_setup_rx:
765 if (err && set_tx)
766 e1000e_free_tx_resources(temp_tx);
767err_setup:
768 e1000e_up(adapter);
769 pm_runtime_put_sync(netdev->dev.parent);
770free_temp:
771 vfree(temp_tx);
772 vfree(temp_rx);
773clear_reset:
774 clear_bit(__E1000_RESETTING, &adapter->state);
775 return err;
776}
777
778static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
779 int reg, int offset, u32 mask, u32 write)
780{
781 u32 pat, val;
782 static const u32 test[] = {
783 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
784 };
785 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
786 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
787 (test[pat] & write));
788 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
789 if (val != (test[pat] & write & mask)) {
790 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
791 reg + (offset << 2), val,
792 (test[pat] & write & mask));
793 *data = reg;
794 return true;
795 }
796 }
797 return false;
798}
799
800static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
801 int reg, u32 mask, u32 write)
802{
803 u32 val;
804
805 __ew32(&adapter->hw, reg, write & mask);
806 val = __er32(&adapter->hw, reg);
807 if ((write & mask) != (val & mask)) {
808 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
809 reg, (val & mask), (write & mask));
810 *data = reg;
811 return true;
812 }
813 return false;
814}
815
816#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
817 do { \
818 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
819 return 1; \
820 } while (0)
821#define REG_PATTERN_TEST(reg, mask, write) \
822 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
823
824#define REG_SET_AND_CHECK(reg, mask, write) \
825 do { \
826 if (reg_set_and_check(adapter, data, reg, mask, write)) \
827 return 1; \
828 } while (0)
829
830static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
831{
832 struct e1000_hw *hw = &adapter->hw;
833 struct e1000_mac_info *mac = &adapter->hw.mac;
834 u32 value;
835 u32 before;
836 u32 after;
837 u32 i;
838 u32 toggle;
839 u32 mask;
840 u32 wlock_mac = 0;
841
842 /* The status register is Read Only, so a write should fail.
843 * Some bits that get toggled are ignored. There are several bits
844 * on newer hardware that are r/w.
845 */
846 switch (mac->type) {
847 case e1000_82571:
848 case e1000_82572:
849 case e1000_80003es2lan:
850 toggle = 0x7FFFF3FF;
851 break;
852 default:
853 toggle = 0x7FFFF033;
854 break;
855 }
856
857 before = er32(STATUS);
858 value = (er32(STATUS) & toggle);
859 ew32(STATUS, toggle);
860 after = er32(STATUS) & toggle;
861 if (value != after) {
862 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
863 after, value);
864 *data = 1;
865 return 1;
866 }
867 /* restore previous status */
868 ew32(STATUS, before);
869
870 if (!(adapter->flags & FLAG_IS_ICH)) {
871 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
872 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
873 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
874 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
875 }
876
877 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
878 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
879 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
880 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
881 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
882 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
883 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
884 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
885 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
886 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
887
888 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
889
890 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
891 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
892 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
893
894 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
895 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
896 if (!(adapter->flags & FLAG_IS_ICH))
897 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
898 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
899 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
900 mask = 0x8003FFFF;
901 switch (mac->type) {
902 case e1000_ich10lan:
903 case e1000_pchlan:
904 case e1000_pch2lan:
905 case e1000_pch_lpt:
906 case e1000_pch_spt:
907 mask |= BIT(18);
908 break;
909 default:
910 break;
911 }
912
913 if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt))
914 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
915 E1000_FWSM_WLOCK_MAC_SHIFT;
916
917 for (i = 0; i < mac->rar_entry_count; i++) {
918 if ((mac->type == e1000_pch_lpt) ||
919 (mac->type == e1000_pch_spt)) {
920 /* Cannot test write-protected SHRAL[n] registers */
921 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
922 continue;
923
924 /* SHRAH[9] different than the others */
925 if (i == 10)
926 mask |= BIT(30);
927 else
928 mask &= ~BIT(30);
929 }
930 if (mac->type == e1000_pch2lan) {
931 /* SHRAH[0,1,2] different than previous */
932 if (i == 1)
933 mask &= 0xFFF4FFFF;
934 /* SHRAH[3] different than SHRAH[0,1,2] */
935 if (i == 4)
936 mask |= BIT(30);
937 /* RAR[1-6] owned by management engine - skipping */
938 if (i > 0)
939 i += 6;
940 }
941
942 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
943 0xFFFFFFFF);
944 /* reset index to actual value */
945 if ((mac->type == e1000_pch2lan) && (i > 6))
946 i -= 6;
947 }
948
949 for (i = 0; i < mac->mta_reg_count; i++)
950 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
951
952 *data = 0;
953
954 return 0;
955}
956
957static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
958{
959 u16 temp;
960 u16 checksum = 0;
961 u16 i;
962
963 *data = 0;
964 /* Read and add up the contents of the EEPROM */
965 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
966 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
967 *data = 1;
968 return *data;
969 }
970 checksum += temp;
971 }
972
973 /* If Checksum is not Correct return error else test passed */
974 if ((checksum != (u16)NVM_SUM) && !(*data))
975 *data = 2;
976
977 return *data;
978}
979
980static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
981{
982 struct net_device *netdev = (struct net_device *)data;
983 struct e1000_adapter *adapter = netdev_priv(netdev);
984 struct e1000_hw *hw = &adapter->hw;
985
986 adapter->test_icr |= er32(ICR);
987
988 return IRQ_HANDLED;
989}
990
991static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
992{
993 struct net_device *netdev = adapter->netdev;
994 struct e1000_hw *hw = &adapter->hw;
995 u32 mask;
996 u32 shared_int = 1;
997 u32 irq = adapter->pdev->irq;
998 int i;
999 int ret_val = 0;
1000 int int_mode = E1000E_INT_MODE_LEGACY;
1001
1002 *data = 0;
1003
1004 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1005 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
1006 int_mode = adapter->int_mode;
1007 e1000e_reset_interrupt_capability(adapter);
1008 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1009 e1000e_set_interrupt_capability(adapter);
1010 }
1011 /* Hook up test interrupt handler just for this test */
1012 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1013 netdev)) {
1014 shared_int = 0;
1015 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1016 netdev)) {
1017 *data = 1;
1018 ret_val = -1;
1019 goto out;
1020 }
1021 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1022
1023 /* Disable all the interrupts */
1024 ew32(IMC, 0xFFFFFFFF);
1025 e1e_flush();
1026 usleep_range(10000, 20000);
1027
1028 /* Test each interrupt */
1029 for (i = 0; i < 10; i++) {
1030 /* Interrupt to test */
1031 mask = BIT(i);
1032
1033 if (adapter->flags & FLAG_IS_ICH) {
1034 switch (mask) {
1035 case E1000_ICR_RXSEQ:
1036 continue;
1037 case 0x00000100:
1038 if (adapter->hw.mac.type == e1000_ich8lan ||
1039 adapter->hw.mac.type == e1000_ich9lan)
1040 continue;
1041 break;
1042 default:
1043 break;
1044 }
1045 }
1046
1047 if (!shared_int) {
1048 /* Disable the interrupt to be reported in
1049 * the cause register and then force the same
1050 * interrupt and see if one gets posted. If
1051 * an interrupt was posted to the bus, the
1052 * test failed.
1053 */
1054 adapter->test_icr = 0;
1055 ew32(IMC, mask);
1056 ew32(ICS, mask);
1057 e1e_flush();
1058 usleep_range(10000, 20000);
1059
1060 if (adapter->test_icr & mask) {
1061 *data = 3;
1062 break;
1063 }
1064 }
1065
1066 /* Enable the interrupt to be reported in
1067 * the cause register and then force the same
1068 * interrupt and see if one gets posted. If
1069 * an interrupt was not posted to the bus, the
1070 * test failed.
1071 */
1072 adapter->test_icr = 0;
1073 ew32(IMS, mask);
1074 ew32(ICS, mask);
1075 e1e_flush();
1076 usleep_range(10000, 20000);
1077
1078 if (!(adapter->test_icr & mask)) {
1079 *data = 4;
1080 break;
1081 }
1082
1083 if (!shared_int) {
1084 /* Disable the other interrupts to be reported in
1085 * the cause register and then force the other
1086 * interrupts and see if any get posted. If
1087 * an interrupt was posted to the bus, the
1088 * test failed.
1089 */
1090 adapter->test_icr = 0;
1091 ew32(IMC, ~mask & 0x00007FFF);
1092 ew32(ICS, ~mask & 0x00007FFF);
1093 e1e_flush();
1094 usleep_range(10000, 20000);
1095
1096 if (adapter->test_icr) {
1097 *data = 5;
1098 break;
1099 }
1100 }
1101 }
1102
1103 /* Disable all the interrupts */
1104 ew32(IMC, 0xFFFFFFFF);
1105 e1e_flush();
1106 usleep_range(10000, 20000);
1107
1108 /* Unhook test interrupt handler */
1109 free_irq(irq, netdev);
1110
1111out:
1112 if (int_mode == E1000E_INT_MODE_MSIX) {
1113 e1000e_reset_interrupt_capability(adapter);
1114 adapter->int_mode = int_mode;
1115 e1000e_set_interrupt_capability(adapter);
1116 }
1117
1118 return ret_val;
1119}
1120
1121static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1122{
1123 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1124 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1125 struct pci_dev *pdev = adapter->pdev;
1126 struct e1000_buffer *buffer_info;
1127 int i;
1128
1129 if (tx_ring->desc && tx_ring->buffer_info) {
1130 for (i = 0; i < tx_ring->count; i++) {
1131 buffer_info = &tx_ring->buffer_info[i];
1132
1133 if (buffer_info->dma)
1134 dma_unmap_single(&pdev->dev,
1135 buffer_info->dma,
1136 buffer_info->length,
1137 DMA_TO_DEVICE);
1138 if (buffer_info->skb)
1139 dev_kfree_skb(buffer_info->skb);
1140 }
1141 }
1142
1143 if (rx_ring->desc && rx_ring->buffer_info) {
1144 for (i = 0; i < rx_ring->count; i++) {
1145 buffer_info = &rx_ring->buffer_info[i];
1146
1147 if (buffer_info->dma)
1148 dma_unmap_single(&pdev->dev,
1149 buffer_info->dma,
1150 2048, DMA_FROM_DEVICE);
1151 if (buffer_info->skb)
1152 dev_kfree_skb(buffer_info->skb);
1153 }
1154 }
1155
1156 if (tx_ring->desc) {
1157 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1158 tx_ring->dma);
1159 tx_ring->desc = NULL;
1160 }
1161 if (rx_ring->desc) {
1162 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1163 rx_ring->dma);
1164 rx_ring->desc = NULL;
1165 }
1166
1167 kfree(tx_ring->buffer_info);
1168 tx_ring->buffer_info = NULL;
1169 kfree(rx_ring->buffer_info);
1170 rx_ring->buffer_info = NULL;
1171}
1172
1173static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1174{
1175 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1176 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1177 struct pci_dev *pdev = adapter->pdev;
1178 struct e1000_hw *hw = &adapter->hw;
1179 u32 rctl;
1180 int i;
1181 int ret_val;
1182
1183 /* Setup Tx descriptor ring and Tx buffers */
1184
1185 if (!tx_ring->count)
1186 tx_ring->count = E1000_DEFAULT_TXD;
1187
1188 tx_ring->buffer_info = kcalloc(tx_ring->count,
1189 sizeof(struct e1000_buffer), GFP_KERNEL);
1190 if (!tx_ring->buffer_info) {
1191 ret_val = 1;
1192 goto err_nomem;
1193 }
1194
1195 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1196 tx_ring->size = ALIGN(tx_ring->size, 4096);
1197 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1198 &tx_ring->dma, GFP_KERNEL);
1199 if (!tx_ring->desc) {
1200 ret_val = 2;
1201 goto err_nomem;
1202 }
1203 tx_ring->next_to_use = 0;
1204 tx_ring->next_to_clean = 0;
1205
1206 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1207 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1208 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1209 ew32(TDH(0), 0);
1210 ew32(TDT(0), 0);
1211 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1212 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1213 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1214
1215 for (i = 0; i < tx_ring->count; i++) {
1216 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1217 struct sk_buff *skb;
1218 unsigned int skb_size = 1024;
1219
1220 skb = alloc_skb(skb_size, GFP_KERNEL);
1221 if (!skb) {
1222 ret_val = 3;
1223 goto err_nomem;
1224 }
1225 skb_put(skb, skb_size);
1226 tx_ring->buffer_info[i].skb = skb;
1227 tx_ring->buffer_info[i].length = skb->len;
1228 tx_ring->buffer_info[i].dma =
1229 dma_map_single(&pdev->dev, skb->data, skb->len,
1230 DMA_TO_DEVICE);
1231 if (dma_mapping_error(&pdev->dev,
1232 tx_ring->buffer_info[i].dma)) {
1233 ret_val = 4;
1234 goto err_nomem;
1235 }
1236 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1237 tx_desc->lower.data = cpu_to_le32(skb->len);
1238 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1239 E1000_TXD_CMD_IFCS |
1240 E1000_TXD_CMD_RS);
1241 tx_desc->upper.data = 0;
1242 }
1243
1244 /* Setup Rx descriptor ring and Rx buffers */
1245
1246 if (!rx_ring->count)
1247 rx_ring->count = E1000_DEFAULT_RXD;
1248
1249 rx_ring->buffer_info = kcalloc(rx_ring->count,
1250 sizeof(struct e1000_buffer), GFP_KERNEL);
1251 if (!rx_ring->buffer_info) {
1252 ret_val = 5;
1253 goto err_nomem;
1254 }
1255
1256 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1257 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1258 &rx_ring->dma, GFP_KERNEL);
1259 if (!rx_ring->desc) {
1260 ret_val = 6;
1261 goto err_nomem;
1262 }
1263 rx_ring->next_to_use = 0;
1264 rx_ring->next_to_clean = 0;
1265
1266 rctl = er32(RCTL);
1267 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1268 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1269 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1270 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1271 ew32(RDLEN(0), rx_ring->size);
1272 ew32(RDH(0), 0);
1273 ew32(RDT(0), 0);
1274 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1275 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1276 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1277 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1278 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1279 ew32(RCTL, rctl);
1280
1281 for (i = 0; i < rx_ring->count; i++) {
1282 union e1000_rx_desc_extended *rx_desc;
1283 struct sk_buff *skb;
1284
1285 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1286 if (!skb) {
1287 ret_val = 7;
1288 goto err_nomem;
1289 }
1290 skb_reserve(skb, NET_IP_ALIGN);
1291 rx_ring->buffer_info[i].skb = skb;
1292 rx_ring->buffer_info[i].dma =
1293 dma_map_single(&pdev->dev, skb->data, 2048,
1294 DMA_FROM_DEVICE);
1295 if (dma_mapping_error(&pdev->dev,
1296 rx_ring->buffer_info[i].dma)) {
1297 ret_val = 8;
1298 goto err_nomem;
1299 }
1300 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1301 rx_desc->read.buffer_addr =
1302 cpu_to_le64(rx_ring->buffer_info[i].dma);
1303 memset(skb->data, 0x00, skb->len);
1304 }
1305
1306 return 0;
1307
1308err_nomem:
1309 e1000_free_desc_rings(adapter);
1310 return ret_val;
1311}
1312
1313static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1314{
1315 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1316 e1e_wphy(&adapter->hw, 29, 0x001F);
1317 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1318 e1e_wphy(&adapter->hw, 29, 0x001A);
1319 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1320}
1321
1322static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1323{
1324 struct e1000_hw *hw = &adapter->hw;
1325 u32 ctrl_reg = 0;
1326 u16 phy_reg = 0;
1327 s32 ret_val = 0;
1328
1329 hw->mac.autoneg = 0;
1330
1331 if (hw->phy.type == e1000_phy_ife) {
1332 /* force 100, set loopback */
1333 e1e_wphy(hw, MII_BMCR, 0x6100);
1334
1335 /* Now set up the MAC to the same speed/duplex as the PHY. */
1336 ctrl_reg = er32(CTRL);
1337 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1338 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1339 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1340 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1341 E1000_CTRL_FD); /* Force Duplex to FULL */
1342
1343 ew32(CTRL, ctrl_reg);
1344 e1e_flush();
1345 usleep_range(500, 1000);
1346
1347 return 0;
1348 }
1349
1350 /* Specific PHY configuration for loopback */
1351 switch (hw->phy.type) {
1352 case e1000_phy_m88:
1353 /* Auto-MDI/MDIX Off */
1354 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1355 /* reset to update Auto-MDI/MDIX */
1356 e1e_wphy(hw, MII_BMCR, 0x9140);
1357 /* autoneg off */
1358 e1e_wphy(hw, MII_BMCR, 0x8140);
1359 break;
1360 case e1000_phy_gg82563:
1361 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1362 break;
1363 case e1000_phy_bm:
1364 /* Set Default MAC Interface speed to 1GB */
1365 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1366 phy_reg &= ~0x0007;
1367 phy_reg |= 0x006;
1368 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1369 /* Assert SW reset for above settings to take effect */
1370 hw->phy.ops.commit(hw);
1371 usleep_range(1000, 2000);
1372 /* Force Full Duplex */
1373 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1374 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1375 /* Set Link Up (in force link) */
1376 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1377 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1378 /* Force Link */
1379 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1380 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1381 /* Set Early Link Enable */
1382 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1383 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1384 break;
1385 case e1000_phy_82577:
1386 case e1000_phy_82578:
1387 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1388 ret_val = hw->phy.ops.acquire(hw);
1389 if (ret_val) {
1390 e_err("Cannot setup 1Gbps loopback.\n");
1391 return ret_val;
1392 }
1393 e1000_configure_k1_ich8lan(hw, false);
1394 hw->phy.ops.release(hw);
1395 break;
1396 case e1000_phy_82579:
1397 /* Disable PHY energy detect power down */
1398 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1399 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1400 /* Disable full chip energy detect */
1401 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1402 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1403 /* Enable loopback on the PHY */
1404 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1405 break;
1406 default:
1407 break;
1408 }
1409
1410 /* force 1000, set loopback */
1411 e1e_wphy(hw, MII_BMCR, 0x4140);
1412 msleep(250);
1413
1414 /* Now set up the MAC to the same speed/duplex as the PHY. */
1415 ctrl_reg = er32(CTRL);
1416 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1417 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1418 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1419 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1420 E1000_CTRL_FD); /* Force Duplex to FULL */
1421
1422 if (adapter->flags & FLAG_IS_ICH)
1423 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1424
1425 if (hw->phy.media_type == e1000_media_type_copper &&
1426 hw->phy.type == e1000_phy_m88) {
1427 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1428 } else {
1429 /* Set the ILOS bit on the fiber Nic if half duplex link is
1430 * detected.
1431 */
1432 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1433 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1434 }
1435
1436 ew32(CTRL, ctrl_reg);
1437
1438 /* Disable the receiver on the PHY so when a cable is plugged in, the
1439 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1440 */
1441 if (hw->phy.type == e1000_phy_m88)
1442 e1000_phy_disable_receiver(adapter);
1443
1444 usleep_range(500, 1000);
1445
1446 return 0;
1447}
1448
1449static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1450{
1451 struct e1000_hw *hw = &adapter->hw;
1452 u32 ctrl = er32(CTRL);
1453 int link;
1454
1455 /* special requirements for 82571/82572 fiber adapters */
1456
1457 /* jump through hoops to make sure link is up because serdes
1458 * link is hardwired up
1459 */
1460 ctrl |= E1000_CTRL_SLU;
1461 ew32(CTRL, ctrl);
1462
1463 /* disable autoneg */
1464 ctrl = er32(TXCW);
1465 ctrl &= ~BIT(31);
1466 ew32(TXCW, ctrl);
1467
1468 link = (er32(STATUS) & E1000_STATUS_LU);
1469
1470 if (!link) {
1471 /* set invert loss of signal */
1472 ctrl = er32(CTRL);
1473 ctrl |= E1000_CTRL_ILOS;
1474 ew32(CTRL, ctrl);
1475 }
1476
1477 /* special write to serdes control register to enable SerDes analog
1478 * loopback
1479 */
1480 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1481 e1e_flush();
1482 usleep_range(10000, 20000);
1483
1484 return 0;
1485}
1486
1487/* only call this for fiber/serdes connections to es2lan */
1488static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1489{
1490 struct e1000_hw *hw = &adapter->hw;
1491 u32 ctrlext = er32(CTRL_EXT);
1492 u32 ctrl = er32(CTRL);
1493
1494 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1495 * on mac_type 80003es2lan)
1496 */
1497 adapter->tx_fifo_head = ctrlext;
1498
1499 /* clear the serdes mode bits, putting the device into mac loopback */
1500 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1501 ew32(CTRL_EXT, ctrlext);
1502
1503 /* force speed to 1000/FD, link up */
1504 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1505 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1506 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1507 ew32(CTRL, ctrl);
1508
1509 /* set mac loopback */
1510 ctrl = er32(RCTL);
1511 ctrl |= E1000_RCTL_LBM_MAC;
1512 ew32(RCTL, ctrl);
1513
1514 /* set testing mode parameters (no need to reset later) */
1515#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1516#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1517 ew32(KMRNCTRLSTA,
1518 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1519
1520 return 0;
1521}
1522
1523static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1524{
1525 struct e1000_hw *hw = &adapter->hw;
1526 u32 rctl, fext_nvm11, tarc0;
1527
1528 if (hw->mac.type == e1000_pch_spt) {
1529 fext_nvm11 = er32(FEXTNVM11);
1530 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1531 ew32(FEXTNVM11, fext_nvm11);
1532 tarc0 = er32(TARC(0));
1533 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1534 tarc0 &= 0xcfffffff;
1535 /* set bit 29 (value of MULR requests is now 2) */
1536 tarc0 |= 0x20000000;
1537 ew32(TARC(0), tarc0);
1538 }
1539 if (hw->phy.media_type == e1000_media_type_fiber ||
1540 hw->phy.media_type == e1000_media_type_internal_serdes) {
1541 switch (hw->mac.type) {
1542 case e1000_80003es2lan:
1543 return e1000_set_es2lan_mac_loopback(adapter);
1544 case e1000_82571:
1545 case e1000_82572:
1546 return e1000_set_82571_fiber_loopback(adapter);
1547 default:
1548 rctl = er32(RCTL);
1549 rctl |= E1000_RCTL_LBM_TCVR;
1550 ew32(RCTL, rctl);
1551 return 0;
1552 }
1553 } else if (hw->phy.media_type == e1000_media_type_copper) {
1554 return e1000_integrated_phy_loopback(adapter);
1555 }
1556
1557 return 7;
1558}
1559
1560static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1561{
1562 struct e1000_hw *hw = &adapter->hw;
1563 u32 rctl, fext_nvm11, tarc0;
1564 u16 phy_reg;
1565
1566 rctl = er32(RCTL);
1567 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1568 ew32(RCTL, rctl);
1569
1570 switch (hw->mac.type) {
1571 case e1000_pch_spt:
1572 fext_nvm11 = er32(FEXTNVM11);
1573 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1574 ew32(FEXTNVM11, fext_nvm11);
1575 tarc0 = er32(TARC(0));
1576 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1577 /* set bit 29 (value of MULR requests is now 0) */
1578 tarc0 &= 0xcfffffff;
1579 ew32(TARC(0), tarc0);
1580 /* fall through */
1581 case e1000_80003es2lan:
1582 if (hw->phy.media_type == e1000_media_type_fiber ||
1583 hw->phy.media_type == e1000_media_type_internal_serdes) {
1584 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1585 ew32(CTRL_EXT, adapter->tx_fifo_head);
1586 adapter->tx_fifo_head = 0;
1587 }
1588 /* fall through */
1589 case e1000_82571:
1590 case e1000_82572:
1591 if (hw->phy.media_type == e1000_media_type_fiber ||
1592 hw->phy.media_type == e1000_media_type_internal_serdes) {
1593 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1594 e1e_flush();
1595 usleep_range(10000, 20000);
1596 break;
1597 }
1598 /* Fall Through */
1599 default:
1600 hw->mac.autoneg = 1;
1601 if (hw->phy.type == e1000_phy_gg82563)
1602 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1603 e1e_rphy(hw, MII_BMCR, &phy_reg);
1604 if (phy_reg & BMCR_LOOPBACK) {
1605 phy_reg &= ~BMCR_LOOPBACK;
1606 e1e_wphy(hw, MII_BMCR, phy_reg);
1607 if (hw->phy.ops.commit)
1608 hw->phy.ops.commit(hw);
1609 }
1610 break;
1611 }
1612}
1613
1614static void e1000_create_lbtest_frame(struct sk_buff *skb,
1615 unsigned int frame_size)
1616{
1617 memset(skb->data, 0xFF, frame_size);
1618 frame_size &= ~1;
1619 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1620 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1621 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1622}
1623
1624static int e1000_check_lbtest_frame(struct sk_buff *skb,
1625 unsigned int frame_size)
1626{
1627 frame_size &= ~1;
1628 if (*(skb->data + 3) == 0xFF)
1629 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1630 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1631 return 0;
1632 return 13;
1633}
1634
1635static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1636{
1637 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1638 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1639 struct pci_dev *pdev = adapter->pdev;
1640 struct e1000_hw *hw = &adapter->hw;
1641 struct e1000_buffer *buffer_info;
1642 int i, j, k, l;
1643 int lc;
1644 int good_cnt;
1645 int ret_val = 0;
1646 unsigned long time;
1647
1648 ew32(RDT(0), rx_ring->count - 1);
1649
1650 /* Calculate the loop count based on the largest descriptor ring
1651 * The idea is to wrap the largest ring a number of times using 64
1652 * send/receive pairs during each loop
1653 */
1654
1655 if (rx_ring->count <= tx_ring->count)
1656 lc = ((tx_ring->count / 64) * 2) + 1;
1657 else
1658 lc = ((rx_ring->count / 64) * 2) + 1;
1659
1660 k = 0;
1661 l = 0;
1662 /* loop count loop */
1663 for (j = 0; j <= lc; j++) {
1664 /* send the packets */
1665 for (i = 0; i < 64; i++) {
1666 buffer_info = &tx_ring->buffer_info[k];
1667
1668 e1000_create_lbtest_frame(buffer_info->skb, 1024);
1669 dma_sync_single_for_device(&pdev->dev,
1670 buffer_info->dma,
1671 buffer_info->length,
1672 DMA_TO_DEVICE);
1673 k++;
1674 if (k == tx_ring->count)
1675 k = 0;
1676 }
1677 ew32(TDT(0), k);
1678 e1e_flush();
1679 msleep(200);
1680 time = jiffies; /* set the start time for the receive */
1681 good_cnt = 0;
1682 /* receive the sent packets */
1683 do {
1684 buffer_info = &rx_ring->buffer_info[l];
1685
1686 dma_sync_single_for_cpu(&pdev->dev,
1687 buffer_info->dma, 2048,
1688 DMA_FROM_DEVICE);
1689
1690 ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1691 1024);
1692 if (!ret_val)
1693 good_cnt++;
1694 l++;
1695 if (l == rx_ring->count)
1696 l = 0;
1697 /* time + 20 msecs (200 msecs on 2.4) is more than
1698 * enough time to complete the receives, if it's
1699 * exceeded, break and error off
1700 */
1701 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1702 if (good_cnt != 64) {
1703 ret_val = 13; /* ret_val is the same as mis-compare */
1704 break;
1705 }
1706 if (time_after(jiffies, time + 20)) {
1707 ret_val = 14; /* error code for time out error */
1708 break;
1709 }
1710 }
1711 return ret_val;
1712}
1713
1714static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1715{
1716 struct e1000_hw *hw = &adapter->hw;
1717
1718 /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1719 if (hw->phy.ops.check_reset_block &&
1720 hw->phy.ops.check_reset_block(hw)) {
1721 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1722 *data = 0;
1723 goto out;
1724 }
1725
1726 *data = e1000_setup_desc_rings(adapter);
1727 if (*data)
1728 goto out;
1729
1730 *data = e1000_setup_loopback_test(adapter);
1731 if (*data)
1732 goto err_loopback;
1733
1734 *data = e1000_run_loopback_test(adapter);
1735 e1000_loopback_cleanup(adapter);
1736
1737err_loopback:
1738 e1000_free_desc_rings(adapter);
1739out:
1740 return *data;
1741}
1742
1743static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1744{
1745 struct e1000_hw *hw = &adapter->hw;
1746
1747 *data = 0;
1748 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1749 int i = 0;
1750
1751 hw->mac.serdes_has_link = false;
1752
1753 /* On some blade server designs, link establishment
1754 * could take as long as 2-3 minutes
1755 */
1756 do {
1757 hw->mac.ops.check_for_link(hw);
1758 if (hw->mac.serdes_has_link)
1759 return *data;
1760 msleep(20);
1761 } while (i++ < 3750);
1762
1763 *data = 1;
1764 } else {
1765 hw->mac.ops.check_for_link(hw);
1766 if (hw->mac.autoneg)
1767 /* On some Phy/switch combinations, link establishment
1768 * can take a few seconds more than expected.
1769 */
1770 msleep_interruptible(5000);
1771
1772 if (!(er32(STATUS) & E1000_STATUS_LU))
1773 *data = 1;
1774 }
1775 return *data;
1776}
1777
1778static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1779 int sset)
1780{
1781 switch (sset) {
1782 case ETH_SS_TEST:
1783 return E1000_TEST_LEN;
1784 case ETH_SS_STATS:
1785 return E1000_STATS_LEN;
1786 default:
1787 return -EOPNOTSUPP;
1788 }
1789}
1790
1791static void e1000_diag_test(struct net_device *netdev,
1792 struct ethtool_test *eth_test, u64 *data)
1793{
1794 struct e1000_adapter *adapter = netdev_priv(netdev);
1795 u16 autoneg_advertised;
1796 u8 forced_speed_duplex;
1797 u8 autoneg;
1798 bool if_running = netif_running(netdev);
1799
1800 pm_runtime_get_sync(netdev->dev.parent);
1801
1802 set_bit(__E1000_TESTING, &adapter->state);
1803
1804 if (!if_running) {
1805 /* Get control of and reset hardware */
1806 if (adapter->flags & FLAG_HAS_AMT)
1807 e1000e_get_hw_control(adapter);
1808
1809 e1000e_power_up_phy(adapter);
1810
1811 adapter->hw.phy.autoneg_wait_to_complete = 1;
1812 e1000e_reset(adapter);
1813 adapter->hw.phy.autoneg_wait_to_complete = 0;
1814 }
1815
1816 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1817 /* Offline tests */
1818
1819 /* save speed, duplex, autoneg settings */
1820 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1821 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1822 autoneg = adapter->hw.mac.autoneg;
1823
1824 e_info("offline testing starting\n");
1825
1826 if (if_running)
1827 /* indicate we're in test mode */
1828 e1000e_close(netdev);
1829
1830 if (e1000_reg_test(adapter, &data[0]))
1831 eth_test->flags |= ETH_TEST_FL_FAILED;
1832
1833 e1000e_reset(adapter);
1834 if (e1000_eeprom_test(adapter, &data[1]))
1835 eth_test->flags |= ETH_TEST_FL_FAILED;
1836
1837 e1000e_reset(adapter);
1838 if (e1000_intr_test(adapter, &data[2]))
1839 eth_test->flags |= ETH_TEST_FL_FAILED;
1840
1841 e1000e_reset(adapter);
1842 if (e1000_loopback_test(adapter, &data[3]))
1843 eth_test->flags |= ETH_TEST_FL_FAILED;
1844
1845 /* force this routine to wait until autoneg complete/timeout */
1846 adapter->hw.phy.autoneg_wait_to_complete = 1;
1847 e1000e_reset(adapter);
1848 adapter->hw.phy.autoneg_wait_to_complete = 0;
1849
1850 if (e1000_link_test(adapter, &data[4]))
1851 eth_test->flags |= ETH_TEST_FL_FAILED;
1852
1853 /* restore speed, duplex, autoneg settings */
1854 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1855 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1856 adapter->hw.mac.autoneg = autoneg;
1857 e1000e_reset(adapter);
1858
1859 clear_bit(__E1000_TESTING, &adapter->state);
1860 if (if_running)
1861 e1000e_open(netdev);
1862 } else {
1863 /* Online tests */
1864
1865 e_info("online testing starting\n");
1866
1867 /* register, eeprom, intr and loopback tests not run online */
1868 data[0] = 0;
1869 data[1] = 0;
1870 data[2] = 0;
1871 data[3] = 0;
1872
1873 if (e1000_link_test(adapter, &data[4]))
1874 eth_test->flags |= ETH_TEST_FL_FAILED;
1875
1876 clear_bit(__E1000_TESTING, &adapter->state);
1877 }
1878
1879 if (!if_running) {
1880 e1000e_reset(adapter);
1881
1882 if (adapter->flags & FLAG_HAS_AMT)
1883 e1000e_release_hw_control(adapter);
1884 }
1885
1886 msleep_interruptible(4 * 1000);
1887
1888 pm_runtime_put_sync(netdev->dev.parent);
1889}
1890
1891static void e1000_get_wol(struct net_device *netdev,
1892 struct ethtool_wolinfo *wol)
1893{
1894 struct e1000_adapter *adapter = netdev_priv(netdev);
1895
1896 wol->supported = 0;
1897 wol->wolopts = 0;
1898
1899 if (!(adapter->flags & FLAG_HAS_WOL) ||
1900 !device_can_wakeup(&adapter->pdev->dev))
1901 return;
1902
1903 wol->supported = WAKE_UCAST | WAKE_MCAST |
1904 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1905
1906 /* apply any specific unsupported masks here */
1907 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1908 wol->supported &= ~WAKE_UCAST;
1909
1910 if (adapter->wol & E1000_WUFC_EX)
1911 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1912 }
1913
1914 if (adapter->wol & E1000_WUFC_EX)
1915 wol->wolopts |= WAKE_UCAST;
1916 if (adapter->wol & E1000_WUFC_MC)
1917 wol->wolopts |= WAKE_MCAST;
1918 if (adapter->wol & E1000_WUFC_BC)
1919 wol->wolopts |= WAKE_BCAST;
1920 if (adapter->wol & E1000_WUFC_MAG)
1921 wol->wolopts |= WAKE_MAGIC;
1922 if (adapter->wol & E1000_WUFC_LNKC)
1923 wol->wolopts |= WAKE_PHY;
1924}
1925
1926static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1927{
1928 struct e1000_adapter *adapter = netdev_priv(netdev);
1929
1930 if (!(adapter->flags & FLAG_HAS_WOL) ||
1931 !device_can_wakeup(&adapter->pdev->dev) ||
1932 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1933 WAKE_MAGIC | WAKE_PHY)))
1934 return -EOPNOTSUPP;
1935
1936 /* these settings will always override what we currently have */
1937 adapter->wol = 0;
1938
1939 if (wol->wolopts & WAKE_UCAST)
1940 adapter->wol |= E1000_WUFC_EX;
1941 if (wol->wolopts & WAKE_MCAST)
1942 adapter->wol |= E1000_WUFC_MC;
1943 if (wol->wolopts & WAKE_BCAST)
1944 adapter->wol |= E1000_WUFC_BC;
1945 if (wol->wolopts & WAKE_MAGIC)
1946 adapter->wol |= E1000_WUFC_MAG;
1947 if (wol->wolopts & WAKE_PHY)
1948 adapter->wol |= E1000_WUFC_LNKC;
1949
1950 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1951
1952 return 0;
1953}
1954
1955static int e1000_set_phys_id(struct net_device *netdev,
1956 enum ethtool_phys_id_state state)
1957{
1958 struct e1000_adapter *adapter = netdev_priv(netdev);
1959 struct e1000_hw *hw = &adapter->hw;
1960
1961 switch (state) {
1962 case ETHTOOL_ID_ACTIVE:
1963 pm_runtime_get_sync(netdev->dev.parent);
1964
1965 if (!hw->mac.ops.blink_led)
1966 return 2; /* cycle on/off twice per second */
1967
1968 hw->mac.ops.blink_led(hw);
1969 break;
1970
1971 case ETHTOOL_ID_INACTIVE:
1972 if (hw->phy.type == e1000_phy_ife)
1973 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1974 hw->mac.ops.led_off(hw);
1975 hw->mac.ops.cleanup_led(hw);
1976 pm_runtime_put_sync(netdev->dev.parent);
1977 break;
1978
1979 case ETHTOOL_ID_ON:
1980 hw->mac.ops.led_on(hw);
1981 break;
1982
1983 case ETHTOOL_ID_OFF:
1984 hw->mac.ops.led_off(hw);
1985 break;
1986 }
1987
1988 return 0;
1989}
1990
1991static int e1000_get_coalesce(struct net_device *netdev,
1992 struct ethtool_coalesce *ec)
1993{
1994 struct e1000_adapter *adapter = netdev_priv(netdev);
1995
1996 if (adapter->itr_setting <= 4)
1997 ec->rx_coalesce_usecs = adapter->itr_setting;
1998 else
1999 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
2000
2001 return 0;
2002}
2003
2004static int e1000_set_coalesce(struct net_device *netdev,
2005 struct ethtool_coalesce *ec)
2006{
2007 struct e1000_adapter *adapter = netdev_priv(netdev);
2008
2009 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2010 ((ec->rx_coalesce_usecs > 4) &&
2011 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2012 (ec->rx_coalesce_usecs == 2))
2013 return -EINVAL;
2014
2015 if (ec->rx_coalesce_usecs == 4) {
2016 adapter->itr_setting = 4;
2017 adapter->itr = adapter->itr_setting;
2018 } else if (ec->rx_coalesce_usecs <= 3) {
2019 adapter->itr = 20000;
2020 adapter->itr_setting = ec->rx_coalesce_usecs;
2021 } else {
2022 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2023 adapter->itr_setting = adapter->itr & ~3;
2024 }
2025
2026 pm_runtime_get_sync(netdev->dev.parent);
2027
2028 if (adapter->itr_setting != 0)
2029 e1000e_write_itr(adapter, adapter->itr);
2030 else
2031 e1000e_write_itr(adapter, 0);
2032
2033 pm_runtime_put_sync(netdev->dev.parent);
2034
2035 return 0;
2036}
2037
2038static int e1000_nway_reset(struct net_device *netdev)
2039{
2040 struct e1000_adapter *adapter = netdev_priv(netdev);
2041
2042 if (!netif_running(netdev))
2043 return -EAGAIN;
2044
2045 if (!adapter->hw.mac.autoneg)
2046 return -EINVAL;
2047
2048 pm_runtime_get_sync(netdev->dev.parent);
2049 e1000e_reinit_locked(adapter);
2050 pm_runtime_put_sync(netdev->dev.parent);
2051
2052 return 0;
2053}
2054
2055static void e1000_get_ethtool_stats(struct net_device *netdev,
2056 struct ethtool_stats __always_unused *stats,
2057 u64 *data)
2058{
2059 struct e1000_adapter *adapter = netdev_priv(netdev);
2060 struct rtnl_link_stats64 net_stats;
2061 int i;
2062 char *p = NULL;
2063
2064 pm_runtime_get_sync(netdev->dev.parent);
2065
2066 e1000e_get_stats64(netdev, &net_stats);
2067
2068 pm_runtime_put_sync(netdev->dev.parent);
2069
2070 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2071 switch (e1000_gstrings_stats[i].type) {
2072 case NETDEV_STATS:
2073 p = (char *)&net_stats +
2074 e1000_gstrings_stats[i].stat_offset;
2075 break;
2076 case E1000_STATS:
2077 p = (char *)adapter +
2078 e1000_gstrings_stats[i].stat_offset;
2079 break;
2080 default:
2081 data[i] = 0;
2082 continue;
2083 }
2084
2085 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2086 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2087 }
2088}
2089
2090static void e1000_get_strings(struct net_device __always_unused *netdev,
2091 u32 stringset, u8 *data)
2092{
2093 u8 *p = data;
2094 int i;
2095
2096 switch (stringset) {
2097 case ETH_SS_TEST:
2098 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2099 break;
2100 case ETH_SS_STATS:
2101 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2102 memcpy(p, e1000_gstrings_stats[i].stat_string,
2103 ETH_GSTRING_LEN);
2104 p += ETH_GSTRING_LEN;
2105 }
2106 break;
2107 }
2108}
2109
2110static int e1000_get_rxnfc(struct net_device *netdev,
2111 struct ethtool_rxnfc *info,
2112 u32 __always_unused *rule_locs)
2113{
2114 info->data = 0;
2115
2116 switch (info->cmd) {
2117 case ETHTOOL_GRXFH: {
2118 struct e1000_adapter *adapter = netdev_priv(netdev);
2119 struct e1000_hw *hw = &adapter->hw;
2120 u32 mrqc;
2121
2122 pm_runtime_get_sync(netdev->dev.parent);
2123 mrqc = er32(MRQC);
2124 pm_runtime_put_sync(netdev->dev.parent);
2125
2126 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2127 return 0;
2128
2129 switch (info->flow_type) {
2130 case TCP_V4_FLOW:
2131 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2132 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2133 /* fall through */
2134 case UDP_V4_FLOW:
2135 case SCTP_V4_FLOW:
2136 case AH_ESP_V4_FLOW:
2137 case IPV4_FLOW:
2138 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2139 info->data |= RXH_IP_SRC | RXH_IP_DST;
2140 break;
2141 case TCP_V6_FLOW:
2142 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2143 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2144 /* fall through */
2145 case UDP_V6_FLOW:
2146 case SCTP_V6_FLOW:
2147 case AH_ESP_V6_FLOW:
2148 case IPV6_FLOW:
2149 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2150 info->data |= RXH_IP_SRC | RXH_IP_DST;
2151 break;
2152 default:
2153 break;
2154 }
2155 return 0;
2156 }
2157 default:
2158 return -EOPNOTSUPP;
2159 }
2160}
2161
2162static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2163{
2164 struct e1000_adapter *adapter = netdev_priv(netdev);
2165 struct e1000_hw *hw = &adapter->hw;
2166 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2167 u32 ret_val;
2168
2169 if (!(adapter->flags2 & FLAG2_HAS_EEE))
2170 return -EOPNOTSUPP;
2171
2172 switch (hw->phy.type) {
2173 case e1000_phy_82579:
2174 cap_addr = I82579_EEE_CAPABILITY;
2175 lpa_addr = I82579_EEE_LP_ABILITY;
2176 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2177 break;
2178 case e1000_phy_i217:
2179 cap_addr = I217_EEE_CAPABILITY;
2180 lpa_addr = I217_EEE_LP_ABILITY;
2181 pcs_stat_addr = I217_EEE_PCS_STATUS;
2182 break;
2183 default:
2184 return -EOPNOTSUPP;
2185 }
2186
2187 pm_runtime_get_sync(netdev->dev.parent);
2188
2189 ret_val = hw->phy.ops.acquire(hw);
2190 if (ret_val) {
2191 pm_runtime_put_sync(netdev->dev.parent);
2192 return -EBUSY;
2193 }
2194
2195 /* EEE Capability */
2196 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2197 if (ret_val)
2198 goto release;
2199 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2200
2201 /* EEE Advertised */
2202 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2203
2204 /* EEE Link Partner Advertised */
2205 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2206 if (ret_val)
2207 goto release;
2208 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2209
2210 /* EEE PCS Status */
2211 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2212 if (ret_val)
2213 goto release;
2214 if (hw->phy.type == e1000_phy_82579)
2215 phy_data <<= 8;
2216
2217 /* Result of the EEE auto negotiation - there is no register that
2218 * has the status of the EEE negotiation so do a best-guess based
2219 * on whether Tx or Rx LPI indications have been received.
2220 */
2221 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2222 edata->eee_active = true;
2223
2224 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2225 edata->tx_lpi_enabled = true;
2226 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2227
2228release:
2229 hw->phy.ops.release(hw);
2230 if (ret_val)
2231 ret_val = -ENODATA;
2232
2233 pm_runtime_put_sync(netdev->dev.parent);
2234
2235 return ret_val;
2236}
2237
2238static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2239{
2240 struct e1000_adapter *adapter = netdev_priv(netdev);
2241 struct e1000_hw *hw = &adapter->hw;
2242 struct ethtool_eee eee_curr;
2243 s32 ret_val;
2244
2245 ret_val = e1000e_get_eee(netdev, &eee_curr);
2246 if (ret_val)
2247 return ret_val;
2248
2249 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2250 e_err("Setting EEE tx-lpi is not supported\n");
2251 return -EINVAL;
2252 }
2253
2254 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2255 e_err("Setting EEE Tx LPI timer is not supported\n");
2256 return -EINVAL;
2257 }
2258
2259 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2260 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2261 return -EINVAL;
2262 }
2263
2264 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2265
2266 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2267
2268 pm_runtime_get_sync(netdev->dev.parent);
2269
2270 /* reset the link */
2271 if (netif_running(netdev))
2272 e1000e_reinit_locked(adapter);
2273 else
2274 e1000e_reset(adapter);
2275
2276 pm_runtime_put_sync(netdev->dev.parent);
2277
2278 return 0;
2279}
2280
2281static int e1000e_get_ts_info(struct net_device *netdev,
2282 struct ethtool_ts_info *info)
2283{
2284 struct e1000_adapter *adapter = netdev_priv(netdev);
2285
2286 ethtool_op_get_ts_info(netdev, info);
2287
2288 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2289 return 0;
2290
2291 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2292 SOF_TIMESTAMPING_RX_HARDWARE |
2293 SOF_TIMESTAMPING_RAW_HARDWARE);
2294
2295 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2296
2297 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2298 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2299 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2300 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2301 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2302 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2303 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2304 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2305 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2306 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2307 BIT(HWTSTAMP_FILTER_ALL));
2308
2309 if (adapter->ptp_clock)
2310 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2311
2312 return 0;
2313}
2314
2315static const struct ethtool_ops e1000_ethtool_ops = {
2316 .get_settings = e1000_get_settings,
2317 .set_settings = e1000_set_settings,
2318 .get_drvinfo = e1000_get_drvinfo,
2319 .get_regs_len = e1000_get_regs_len,
2320 .get_regs = e1000_get_regs,
2321 .get_wol = e1000_get_wol,
2322 .set_wol = e1000_set_wol,
2323 .get_msglevel = e1000_get_msglevel,
2324 .set_msglevel = e1000_set_msglevel,
2325 .nway_reset = e1000_nway_reset,
2326 .get_link = ethtool_op_get_link,
2327 .get_eeprom_len = e1000_get_eeprom_len,
2328 .get_eeprom = e1000_get_eeprom,
2329 .set_eeprom = e1000_set_eeprom,
2330 .get_ringparam = e1000_get_ringparam,
2331 .set_ringparam = e1000_set_ringparam,
2332 .get_pauseparam = e1000_get_pauseparam,
2333 .set_pauseparam = e1000_set_pauseparam,
2334 .self_test = e1000_diag_test,
2335 .get_strings = e1000_get_strings,
2336 .set_phys_id = e1000_set_phys_id,
2337 .get_ethtool_stats = e1000_get_ethtool_stats,
2338 .get_sset_count = e1000e_get_sset_count,
2339 .get_coalesce = e1000_get_coalesce,
2340 .set_coalesce = e1000_set_coalesce,
2341 .get_rxnfc = e1000_get_rxnfc,
2342 .get_ts_info = e1000e_get_ts_info,
2343 .get_eee = e1000e_get_eee,
2344 .set_eee = e1000e_set_eee,
2345};
2346
2347void e1000e_set_ethtool_ops(struct net_device *netdev)
2348{
2349 netdev->ethtool_ops = &e1000_ethtool_ops;
2350}