Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Linux performance counter support for MIPS.
   4 *
   5 * Copyright (C) 2010 MIPS Technologies, Inc.
   6 * Copyright (C) 2011 Cavium Networks, Inc.
   7 * Author: Deng-Cheng Zhu
   8 *
   9 * This code is based on the implementation for ARM, which is in turn
  10 * based on the sparc64 perf event code and the x86 code. Performance
  11 * counter access is based on the MIPS Oprofile code. And the callchain
  12 * support references the code of MIPS stacktrace.c.
 
 
 
 
  13 */
  14
  15#include <linux/cpumask.h>
  16#include <linux/interrupt.h>
  17#include <linux/smp.h>
  18#include <linux/kernel.h>
  19#include <linux/perf_event.h>
  20#include <linux/uaccess.h>
  21
  22#include <asm/irq.h>
  23#include <asm/irq_regs.h>
  24#include <asm/stacktrace.h>
  25#include <asm/time.h> /* For perf_irq */
  26
  27#define MIPS_MAX_HWEVENTS 4
  28#define MIPS_TCS_PER_COUNTER 2
  29#define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
  30
  31struct cpu_hw_events {
  32	/* Array of events on this cpu. */
  33	struct perf_event	*events[MIPS_MAX_HWEVENTS];
  34
  35	/*
  36	 * Set the bit (indexed by the counter number) when the counter
  37	 * is used for an event.
  38	 */
  39	unsigned long		used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
  40
  41	/*
  42	 * Software copy of the control register for each performance counter.
  43	 * MIPS CPUs vary in performance counters. They use this differently,
  44	 * and even may not use it.
  45	 */
  46	unsigned int		saved_ctrl[MIPS_MAX_HWEVENTS];
  47};
  48DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  49	.saved_ctrl = {0},
  50};
  51
  52/* The description of MIPS performance events. */
  53struct mips_perf_event {
  54	unsigned int event_id;
  55	/*
  56	 * MIPS performance counters are indexed starting from 0.
  57	 * CNTR_EVEN indicates the indexes of the counters to be used are
  58	 * even numbers.
  59	 */
  60	unsigned int cntr_mask;
  61	#define CNTR_EVEN	0x55555555
  62	#define CNTR_ODD	0xaaaaaaaa
  63	#define CNTR_ALL	0xffffffff
 
  64	enum {
  65		T  = 0,
  66		V  = 1,
  67		P  = 2,
  68	} range;
 
 
 
 
 
  69};
  70
  71static struct mips_perf_event raw_event;
  72static DEFINE_MUTEX(raw_event_mutex);
  73
  74#define C(x) PERF_COUNT_HW_CACHE_##x
  75
  76struct mips_pmu {
  77	u64		max_period;
  78	u64		valid_count;
  79	u64		overflow;
  80	const char	*name;
  81	int		irq;
  82	u64		(*read_counter)(unsigned int idx);
  83	void		(*write_counter)(unsigned int idx, u64 val);
  84	const struct mips_perf_event *(*map_raw_event)(u64 config);
  85	const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
  86	const struct mips_perf_event (*cache_event_map)
  87				[PERF_COUNT_HW_CACHE_MAX]
  88				[PERF_COUNT_HW_CACHE_OP_MAX]
  89				[PERF_COUNT_HW_CACHE_RESULT_MAX];
  90	unsigned int	num_counters;
  91};
  92
  93static struct mips_pmu mipspmu;
  94
  95#define M_PERFCTL_EVENT(event)		(((event) << MIPS_PERFCTRL_EVENT_S) & \
  96					 MIPS_PERFCTRL_EVENT)
  97#define M_PERFCTL_VPEID(vpe)		((vpe)	  << MIPS_PERFCTRL_VPEID_S)
 
 
 
 
  98
  99#ifdef CONFIG_CPU_BMIPS5000
 100#define M_PERFCTL_MT_EN(filter)		0
 101#else /* !CONFIG_CPU_BMIPS5000 */
 102#define M_PERFCTL_MT_EN(filter)		(filter)
 103#endif /* CONFIG_CPU_BMIPS5000 */
 104
 105#define	   M_TC_EN_ALL			M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL)
 106#define	   M_TC_EN_VPE			M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE)
 107#define	   M_TC_EN_TC			M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC)
 108
 109#define M_PERFCTL_COUNT_EVENT_WHENEVER	(MIPS_PERFCTRL_EXL |		\
 110					 MIPS_PERFCTRL_K |		\
 111					 MIPS_PERFCTRL_U |		\
 112					 MIPS_PERFCTRL_S |		\
 113					 MIPS_PERFCTRL_IE)
 
 
 
 
 114
 115#ifdef CONFIG_MIPS_MT_SMP
 116#define M_PERFCTL_CONFIG_MASK		0x3fff801f
 117#else
 118#define M_PERFCTL_CONFIG_MASK		0x1f
 119#endif
 
 120
 121
 122#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 
 
 123static DEFINE_RWLOCK(pmuint_rwlock);
 124
 125#if defined(CONFIG_CPU_BMIPS5000)
 126#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
 127			 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
 128#else
 
 
 
 
 129#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
 130			 0 : cpu_vpe_id(&current_cpu_data))
 131#endif
 132
 133/* Copied from op_model_mipsxx.c */
 134static unsigned int vpe_shift(void)
 135{
 136	if (num_possible_cpus() > 1)
 137		return 1;
 138
 139	return 0;
 140}
 141
 142static unsigned int counters_total_to_per_cpu(unsigned int counters)
 143{
 144	return counters >> vpe_shift();
 145}
 146
 147#else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
 148#define vpe_id()	0
 149
 150#endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
 151
 152static void resume_local_counters(void);
 153static void pause_local_counters(void);
 154static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
 155static int mipsxx_pmu_handle_shared_irq(void);
 156
 157static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
 158{
 159	if (vpe_id() == 1)
 160		idx = (idx + 2) & 3;
 161	return idx;
 162}
 163
 164static u64 mipsxx_pmu_read_counter(unsigned int idx)
 165{
 166	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 167
 168	switch (idx) {
 169	case 0:
 170		/*
 171		 * The counters are unsigned, we must cast to truncate
 172		 * off the high bits.
 173		 */
 174		return (u32)read_c0_perfcntr0();
 175	case 1:
 176		return (u32)read_c0_perfcntr1();
 177	case 2:
 178		return (u32)read_c0_perfcntr2();
 179	case 3:
 180		return (u32)read_c0_perfcntr3();
 181	default:
 182		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 183		return 0;
 184	}
 185}
 186
 187static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
 188{
 189	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 190
 191	switch (idx) {
 192	case 0:
 193		return read_c0_perfcntr0_64();
 194	case 1:
 195		return read_c0_perfcntr1_64();
 196	case 2:
 197		return read_c0_perfcntr2_64();
 198	case 3:
 199		return read_c0_perfcntr3_64();
 200	default:
 201		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 202		return 0;
 203	}
 204}
 205
 206static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
 207{
 208	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 209
 210	switch (idx) {
 211	case 0:
 212		write_c0_perfcntr0(val);
 213		return;
 214	case 1:
 215		write_c0_perfcntr1(val);
 216		return;
 217	case 2:
 218		write_c0_perfcntr2(val);
 219		return;
 220	case 3:
 221		write_c0_perfcntr3(val);
 222		return;
 223	}
 224}
 225
 226static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
 227{
 228	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 229
 230	switch (idx) {
 231	case 0:
 232		write_c0_perfcntr0_64(val);
 233		return;
 234	case 1:
 235		write_c0_perfcntr1_64(val);
 236		return;
 237	case 2:
 238		write_c0_perfcntr2_64(val);
 239		return;
 240	case 3:
 241		write_c0_perfcntr3_64(val);
 242		return;
 243	}
 244}
 245
 246static unsigned int mipsxx_pmu_read_control(unsigned int idx)
 247{
 248	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 249
 250	switch (idx) {
 251	case 0:
 252		return read_c0_perfctrl0();
 253	case 1:
 254		return read_c0_perfctrl1();
 255	case 2:
 256		return read_c0_perfctrl2();
 257	case 3:
 258		return read_c0_perfctrl3();
 259	default:
 260		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 261		return 0;
 262	}
 263}
 264
 265static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
 266{
 267	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 268
 269	switch (idx) {
 270	case 0:
 271		write_c0_perfctrl0(val);
 272		return;
 273	case 1:
 274		write_c0_perfctrl1(val);
 275		return;
 276	case 2:
 277		write_c0_perfctrl2(val);
 278		return;
 279	case 3:
 280		write_c0_perfctrl3(val);
 281		return;
 282	}
 283}
 284
 285static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
 286				    struct hw_perf_event *hwc)
 287{
 288	int i;
 289
 290	/*
 291	 * We only need to care the counter mask. The range has been
 292	 * checked definitely.
 293	 */
 294	unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
 295
 296	for (i = mipspmu.num_counters - 1; i >= 0; i--) {
 297		/*
 298		 * Note that some MIPS perf events can be counted by both
 299		 * even and odd counters, wheresas many other are only by
 300		 * even _or_ odd counters. This introduces an issue that
 301		 * when the former kind of event takes the counter the
 302		 * latter kind of event wants to use, then the "counter
 303		 * allocation" for the latter event will fail. In fact if
 304		 * they can be dynamically swapped, they both feel happy.
 305		 * But here we leave this issue alone for now.
 306		 */
 307		if (test_bit(i, &cntr_mask) &&
 308			!test_and_set_bit(i, cpuc->used_mask))
 309			return i;
 310	}
 311
 312	return -EAGAIN;
 313}
 314
 315static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
 316{
 317	struct perf_event *event = container_of(evt, struct perf_event, hw);
 318	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 319	unsigned int range = evt->event_base >> 24;
 320
 321	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 322
 323	cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
 324		(evt->config_base & M_PERFCTL_CONFIG_MASK) |
 325		/* Make sure interrupt enabled. */
 326		MIPS_PERFCTRL_IE;
 327
 328	if (IS_ENABLED(CONFIG_CPU_BMIPS5000)) {
 329		/* enable the counter for the calling thread */
 330		cpuc->saved_ctrl[idx] |=
 331			(1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC;
 332	} else if (IS_ENABLED(CONFIG_MIPS_MT_SMP) && range > V) {
 333		/* The counter is processor wide. Set it up to count all TCs. */
 334		pr_debug("Enabling perf counter for all TCs\n");
 335		cpuc->saved_ctrl[idx] |= M_TC_EN_ALL;
 336	} else {
 337		unsigned int cpu, ctrl;
 338
 339		/*
 340		 * Set up the counter for a particular CPU when event->cpu is
 341		 * a valid CPU number. Otherwise set up the counter for the CPU
 342		 * scheduling this thread.
 343		 */
 344		cpu = (event->cpu >= 0) ? event->cpu : smp_processor_id();
 345
 346		ctrl = M_PERFCTL_VPEID(cpu_vpe_id(&cpu_data[cpu]));
 347		ctrl |= M_TC_EN_VPE;
 348		cpuc->saved_ctrl[idx] |= ctrl;
 349		pr_debug("Enabling perf counter for CPU%d\n", cpu);
 350	}
 351	/*
 352	 * We do not actually let the counter run. Leave it until start().
 353	 */
 354}
 355
 356static void mipsxx_pmu_disable_event(int idx)
 357{
 358	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 359	unsigned long flags;
 360
 361	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 362
 363	local_irq_save(flags);
 364	cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
 365		~M_PERFCTL_COUNT_EVENT_WHENEVER;
 366	mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
 367	local_irq_restore(flags);
 368}
 369
 370static int mipspmu_event_set_period(struct perf_event *event,
 371				    struct hw_perf_event *hwc,
 372				    int idx)
 373{
 374	u64 left = local64_read(&hwc->period_left);
 375	u64 period = hwc->sample_period;
 376	int ret = 0;
 377
 378	if (unlikely((left + period) & (1ULL << 63))) {
 379		/* left underflowed by more than period. */
 380		left = period;
 381		local64_set(&hwc->period_left, left);
 382		hwc->last_period = period;
 383		ret = 1;
 384	} else	if (unlikely((left + period) <= period)) {
 385		/* left underflowed by less than period. */
 386		left += period;
 387		local64_set(&hwc->period_left, left);
 388		hwc->last_period = period;
 389		ret = 1;
 390	}
 391
 392	if (left > mipspmu.max_period) {
 393		left = mipspmu.max_period;
 394		local64_set(&hwc->period_left, left);
 395	}
 396
 397	local64_set(&hwc->prev_count, mipspmu.overflow - left);
 398
 399	mipspmu.write_counter(idx, mipspmu.overflow - left);
 400
 401	perf_event_update_userpage(event);
 402
 403	return ret;
 404}
 405
 406static void mipspmu_event_update(struct perf_event *event,
 407				 struct hw_perf_event *hwc,
 408				 int idx)
 409{
 410	u64 prev_raw_count, new_raw_count;
 411	u64 delta;
 412
 413again:
 414	prev_raw_count = local64_read(&hwc->prev_count);
 415	new_raw_count = mipspmu.read_counter(idx);
 416
 417	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 418				new_raw_count) != prev_raw_count)
 419		goto again;
 420
 421	delta = new_raw_count - prev_raw_count;
 422
 423	local64_add(delta, &event->count);
 424	local64_sub(delta, &hwc->period_left);
 425}
 426
 427static void mipspmu_start(struct perf_event *event, int flags)
 428{
 429	struct hw_perf_event *hwc = &event->hw;
 430
 431	if (flags & PERF_EF_RELOAD)
 432		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
 433
 434	hwc->state = 0;
 435
 436	/* Set the period for the event. */
 437	mipspmu_event_set_period(event, hwc, hwc->idx);
 438
 439	/* Enable the event. */
 440	mipsxx_pmu_enable_event(hwc, hwc->idx);
 441}
 442
 443static void mipspmu_stop(struct perf_event *event, int flags)
 444{
 445	struct hw_perf_event *hwc = &event->hw;
 446
 447	if (!(hwc->state & PERF_HES_STOPPED)) {
 448		/* We are working on a local event. */
 449		mipsxx_pmu_disable_event(hwc->idx);
 450		barrier();
 451		mipspmu_event_update(event, hwc, hwc->idx);
 452		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
 453	}
 454}
 455
 456static int mipspmu_add(struct perf_event *event, int flags)
 457{
 458	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 459	struct hw_perf_event *hwc = &event->hw;
 460	int idx;
 461	int err = 0;
 462
 463	perf_pmu_disable(event->pmu);
 464
 465	/* To look for a free counter for this event. */
 466	idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
 467	if (idx < 0) {
 468		err = idx;
 469		goto out;
 470	}
 471
 472	/*
 473	 * If there is an event in the counter we are going to use then
 474	 * make sure it is disabled.
 475	 */
 476	event->hw.idx = idx;
 477	mipsxx_pmu_disable_event(idx);
 478	cpuc->events[idx] = event;
 479
 480	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
 481	if (flags & PERF_EF_START)
 482		mipspmu_start(event, PERF_EF_RELOAD);
 483
 484	/* Propagate our changes to the userspace mapping. */
 485	perf_event_update_userpage(event);
 486
 487out:
 488	perf_pmu_enable(event->pmu);
 489	return err;
 490}
 491
 492static void mipspmu_del(struct perf_event *event, int flags)
 493{
 494	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 495	struct hw_perf_event *hwc = &event->hw;
 496	int idx = hwc->idx;
 497
 498	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 499
 500	mipspmu_stop(event, PERF_EF_UPDATE);
 501	cpuc->events[idx] = NULL;
 502	clear_bit(idx, cpuc->used_mask);
 503
 504	perf_event_update_userpage(event);
 505}
 506
 507static void mipspmu_read(struct perf_event *event)
 508{
 509	struct hw_perf_event *hwc = &event->hw;
 510
 511	/* Don't read disabled counters! */
 512	if (hwc->idx < 0)
 513		return;
 514
 515	mipspmu_event_update(event, hwc, hwc->idx);
 516}
 517
 518static void mipspmu_enable(struct pmu *pmu)
 519{
 520#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 521	write_unlock(&pmuint_rwlock);
 522#endif
 523	resume_local_counters();
 524}
 525
 526/*
 527 * MIPS performance counters can be per-TC. The control registers can
 528 * not be directly accessed across CPUs. Hence if we want to do global
 529 * control, we need cross CPU calls. on_each_cpu() can help us, but we
 530 * can not make sure this function is called with interrupts enabled. So
 531 * here we pause local counters and then grab a rwlock and leave the
 532 * counters on other CPUs alone. If any counter interrupt raises while
 533 * we own the write lock, simply pause local counters on that CPU and
 534 * spin in the handler. Also we know we won't be switched to another
 535 * CPU after pausing local counters and before grabbing the lock.
 536 */
 537static void mipspmu_disable(struct pmu *pmu)
 538{
 539	pause_local_counters();
 540#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 541	write_lock(&pmuint_rwlock);
 542#endif
 543}
 544
 545static atomic_t active_events = ATOMIC_INIT(0);
 546static DEFINE_MUTEX(pmu_reserve_mutex);
 547static int (*save_perf_irq)(void);
 548
 549static int mipspmu_get_irq(void)
 550{
 551	int err;
 552
 553	if (mipspmu.irq >= 0) {
 554		/* Request my own irq handler. */
 555		err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
 556				  IRQF_PERCPU | IRQF_NOBALANCING |
 557				  IRQF_NO_THREAD | IRQF_NO_SUSPEND |
 558				  IRQF_SHARED,
 559				  "mips_perf_pmu", &mipspmu);
 560		if (err) {
 561			pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
 562				mipspmu.irq);
 563		}
 564	} else if (cp0_perfcount_irq < 0) {
 565		/*
 566		 * We are sharing the irq number with the timer interrupt.
 567		 */
 568		save_perf_irq = perf_irq;
 569		perf_irq = mipsxx_pmu_handle_shared_irq;
 570		err = 0;
 571	} else {
 572		pr_warn("The platform hasn't properly defined its interrupt controller\n");
 573		err = -ENOENT;
 574	}
 575
 576	return err;
 577}
 578
 579static void mipspmu_free_irq(void)
 580{
 581	if (mipspmu.irq >= 0)
 582		free_irq(mipspmu.irq, &mipspmu);
 583	else if (cp0_perfcount_irq < 0)
 584		perf_irq = save_perf_irq;
 585}
 586
 587/*
 588 * mipsxx/rm9000/loongson2 have different performance counters, they have
 589 * specific low-level init routines.
 590 */
 591static void reset_counters(void *arg);
 592static int __hw_perf_event_init(struct perf_event *event);
 593
 594static void hw_perf_event_destroy(struct perf_event *event)
 595{
 596	if (atomic_dec_and_mutex_lock(&active_events,
 597				&pmu_reserve_mutex)) {
 598		/*
 599		 * We must not call the destroy function with interrupts
 600		 * disabled.
 601		 */
 602		on_each_cpu(reset_counters,
 603			(void *)(long)mipspmu.num_counters, 1);
 604		mipspmu_free_irq();
 605		mutex_unlock(&pmu_reserve_mutex);
 606	}
 607}
 608
 609static int mipspmu_event_init(struct perf_event *event)
 610{
 611	int err = 0;
 612
 613	/* does not support taken branch sampling */
 614	if (has_branch_stack(event))
 615		return -EOPNOTSUPP;
 616
 617	switch (event->attr.type) {
 618	case PERF_TYPE_RAW:
 619	case PERF_TYPE_HARDWARE:
 620	case PERF_TYPE_HW_CACHE:
 621		break;
 622
 623	default:
 624		return -ENOENT;
 625	}
 626
 627	if (event->cpu >= 0 && !cpu_online(event->cpu))
 
 628		return -ENODEV;
 629
 630	if (!atomic_inc_not_zero(&active_events)) {
 631		mutex_lock(&pmu_reserve_mutex);
 632		if (atomic_read(&active_events) == 0)
 633			err = mipspmu_get_irq();
 634
 635		if (!err)
 636			atomic_inc(&active_events);
 637		mutex_unlock(&pmu_reserve_mutex);
 638	}
 639
 640	if (err)
 641		return err;
 642
 643	return __hw_perf_event_init(event);
 644}
 645
 646static struct pmu pmu = {
 647	.pmu_enable	= mipspmu_enable,
 648	.pmu_disable	= mipspmu_disable,
 649	.event_init	= mipspmu_event_init,
 650	.add		= mipspmu_add,
 651	.del		= mipspmu_del,
 652	.start		= mipspmu_start,
 653	.stop		= mipspmu_stop,
 654	.read		= mipspmu_read,
 655};
 656
 657static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
 658{
 659/*
 660 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
 661 * event_id.
 662 */
 663#ifdef CONFIG_MIPS_MT_SMP
 664	if (num_possible_cpus() > 1)
 665		return ((unsigned int)pev->range << 24) |
 666			(pev->cntr_mask & 0xffff00) |
 667			(pev->event_id & 0xff);
 668	else
 669#endif /* CONFIG_MIPS_MT_SMP */
 670		return ((pev->cntr_mask & 0xffff00) |
 671			(pev->event_id & 0xff));
 672}
 673
 674static const struct mips_perf_event *mipspmu_map_general_event(int idx)
 675{
 676
 677	if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
 678		return ERR_PTR(-EOPNOTSUPP);
 679	return &(*mipspmu.general_event_map)[idx];
 680}
 681
 682static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
 683{
 684	unsigned int cache_type, cache_op, cache_result;
 685	const struct mips_perf_event *pev;
 686
 687	cache_type = (config >> 0) & 0xff;
 688	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 689		return ERR_PTR(-EINVAL);
 690
 691	cache_op = (config >> 8) & 0xff;
 692	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 693		return ERR_PTR(-EINVAL);
 694
 695	cache_result = (config >> 16) & 0xff;
 696	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 697		return ERR_PTR(-EINVAL);
 698
 699	pev = &((*mipspmu.cache_event_map)
 700					[cache_type]
 701					[cache_op]
 702					[cache_result]);
 703
 704	if (pev->cntr_mask == 0)
 705		return ERR_PTR(-EOPNOTSUPP);
 706
 707	return pev;
 708
 709}
 710
 711static int validate_group(struct perf_event *event)
 712{
 713	struct perf_event *sibling, *leader = event->group_leader;
 714	struct cpu_hw_events fake_cpuc;
 715
 716	memset(&fake_cpuc, 0, sizeof(fake_cpuc));
 717
 718	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
 719		return -EINVAL;
 720
 721	for_each_sibling_event(sibling, leader) {
 722		if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
 723			return -EINVAL;
 724	}
 725
 726	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
 727		return -EINVAL;
 728
 729	return 0;
 730}
 731
 732/* This is needed by specific irq handlers in perf_event_*.c */
 733static void handle_associated_event(struct cpu_hw_events *cpuc,
 734				    int idx, struct perf_sample_data *data,
 735				    struct pt_regs *regs)
 736{
 737	struct perf_event *event = cpuc->events[idx];
 738	struct hw_perf_event *hwc = &event->hw;
 739
 740	mipspmu_event_update(event, hwc, idx);
 741	data->period = event->hw.last_period;
 742	if (!mipspmu_event_set_period(event, hwc, idx))
 743		return;
 744
 745	if (perf_event_overflow(event, data, regs))
 746		mipsxx_pmu_disable_event(idx);
 747}
 748
 749
 750static int __n_counters(void)
 751{
 752	if (!cpu_has_perf)
 753		return 0;
 754	if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M))
 755		return 1;
 756	if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M))
 757		return 2;
 758	if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M))
 759		return 3;
 760
 761	return 4;
 762}
 763
 764static int n_counters(void)
 765{
 766	int counters;
 767
 768	switch (current_cpu_type()) {
 769	case CPU_R10000:
 770		counters = 2;
 771		break;
 772
 773	case CPU_R12000:
 774	case CPU_R14000:
 775	case CPU_R16000:
 776		counters = 4;
 777		break;
 778
 779	default:
 780		counters = __n_counters();
 781	}
 782
 783	return counters;
 784}
 785
 786static void reset_counters(void *arg)
 787{
 788	int counters = (int)(long)arg;
 789	switch (counters) {
 790	case 4:
 791		mipsxx_pmu_write_control(3, 0);
 792		mipspmu.write_counter(3, 0);
 793		/* fall through */
 794	case 3:
 795		mipsxx_pmu_write_control(2, 0);
 796		mipspmu.write_counter(2, 0);
 797		/* fall through */
 798	case 2:
 799		mipsxx_pmu_write_control(1, 0);
 800		mipspmu.write_counter(1, 0);
 801		/* fall through */
 802	case 1:
 803		mipsxx_pmu_write_control(0, 0);
 804		mipspmu.write_counter(0, 0);
 805		/* fall through */
 806	}
 807}
 808
 809/* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
 810static const struct mips_perf_event mipsxxcore_event_map
 811				[PERF_COUNT_HW_MAX] = {
 812	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 813	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 814	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
 815	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
 816};
 817
 818/* 74K/proAptiv core has different branch event code. */
 819static const struct mips_perf_event mipsxxcore_event_map2
 820				[PERF_COUNT_HW_MAX] = {
 821	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 822	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 823	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
 824	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
 825};
 826
 827static const struct mips_perf_event i6x00_event_map[PERF_COUNT_HW_MAX] = {
 828	[PERF_COUNT_HW_CPU_CYCLES]          = { 0x00, CNTR_EVEN | CNTR_ODD },
 829	[PERF_COUNT_HW_INSTRUCTIONS]        = { 0x01, CNTR_EVEN | CNTR_ODD },
 830	/* These only count dcache, not icache */
 831	[PERF_COUNT_HW_CACHE_REFERENCES]    = { 0x45, CNTR_EVEN | CNTR_ODD },
 832	[PERF_COUNT_HW_CACHE_MISSES]        = { 0x48, CNTR_EVEN | CNTR_ODD },
 833	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD },
 834	[PERF_COUNT_HW_BRANCH_MISSES]       = { 0x16, CNTR_EVEN | CNTR_ODD },
 835};
 836
 837static const struct mips_perf_event loongson3_event_map[PERF_COUNT_HW_MAX] = {
 838	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
 839	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
 840	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
 841	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
 842};
 843
 844static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
 845	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
 846	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
 847	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
 848	[PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL	 },
 849	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
 850	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
 851	[PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
 852};
 853
 854static const struct mips_perf_event bmips5000_event_map
 855				[PERF_COUNT_HW_MAX] = {
 856	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
 857	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 858	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
 859};
 860
 861static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
 862	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
 863	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
 864	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
 865	[PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
 866	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
 867	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
 868};
 869
 870/* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
 871static const struct mips_perf_event mipsxxcore_cache_map
 872				[PERF_COUNT_HW_CACHE_MAX]
 873				[PERF_COUNT_HW_CACHE_OP_MAX]
 874				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 875[C(L1D)] = {
 876	/*
 877	 * Like some other architectures (e.g. ARM), the performance
 878	 * counters don't differentiate between read and write
 879	 * accesses/misses, so this isn't strictly correct, but it's the
 880	 * best we can do. Writes and reads get combined.
 881	 */
 882	[C(OP_READ)] = {
 883		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
 884		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
 885	},
 886	[C(OP_WRITE)] = {
 887		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
 888		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
 889	},
 890},
 891[C(L1I)] = {
 892	[C(OP_READ)] = {
 893		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
 894		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
 895	},
 896	[C(OP_WRITE)] = {
 897		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
 898		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
 899	},
 900	[C(OP_PREFETCH)] = {
 901		[C(RESULT_ACCESS)]	= { 0x14, CNTR_EVEN, T },
 902		/*
 903		 * Note that MIPS has only "hit" events countable for
 904		 * the prefetch operation.
 905		 */
 906	},
 907},
 908[C(LL)] = {
 909	[C(OP_READ)] = {
 910		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
 911		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
 912	},
 913	[C(OP_WRITE)] = {
 914		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
 915		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
 916	},
 917},
 918[C(DTLB)] = {
 919	[C(OP_READ)] = {
 920		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 921		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 922	},
 923	[C(OP_WRITE)] = {
 924		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 925		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 926	},
 927},
 928[C(ITLB)] = {
 929	[C(OP_READ)] = {
 930		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
 931		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
 932	},
 933	[C(OP_WRITE)] = {
 934		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
 935		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
 936	},
 937},
 938[C(BPU)] = {
 939	/* Using the same code for *HW_BRANCH* */
 940	[C(OP_READ)] = {
 941		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
 942		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
 943	},
 944	[C(OP_WRITE)] = {
 945		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
 946		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
 947	},
 948},
 949};
 950
 951/* 74K/proAptiv core has completely different cache event map. */
 952static const struct mips_perf_event mipsxxcore_cache_map2
 953				[PERF_COUNT_HW_CACHE_MAX]
 954				[PERF_COUNT_HW_CACHE_OP_MAX]
 955				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 956[C(L1D)] = {
 957	/*
 958	 * Like some other architectures (e.g. ARM), the performance
 959	 * counters don't differentiate between read and write
 960	 * accesses/misses, so this isn't strictly correct, but it's the
 961	 * best we can do. Writes and reads get combined.
 962	 */
 963	[C(OP_READ)] = {
 964		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
 965		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
 966	},
 967	[C(OP_WRITE)] = {
 968		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
 969		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
 970	},
 971},
 972[C(L1I)] = {
 973	[C(OP_READ)] = {
 974		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 975		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 976	},
 977	[C(OP_WRITE)] = {
 978		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 979		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 980	},
 981	[C(OP_PREFETCH)] = {
 982		[C(RESULT_ACCESS)]	= { 0x34, CNTR_EVEN, T },
 983		/*
 984		 * Note that MIPS has only "hit" events countable for
 985		 * the prefetch operation.
 986		 */
 987	},
 988},
 989[C(LL)] = {
 990	[C(OP_READ)] = {
 991		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
 992		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN, P },
 993	},
 994	[C(OP_WRITE)] = {
 995		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
 996		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN, P },
 997	},
 998},
 999/*
1000 * 74K core does not have specific DTLB events. proAptiv core has
1001 * "speculative" DTLB events which are numbered 0x63 (even/odd) and
1002 * not included here. One can use raw events if really needed.
1003 */
1004[C(ITLB)] = {
1005	[C(OP_READ)] = {
1006		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1007		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1008	},
1009	[C(OP_WRITE)] = {
1010		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1011		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1012	},
1013},
1014[C(BPU)] = {
1015	/* Using the same code for *HW_BRANCH* */
1016	[C(OP_READ)] = {
1017		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1018		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1019	},
1020	[C(OP_WRITE)] = {
1021		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1022		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1023	},
1024},
1025};
1026
1027static const struct mips_perf_event i6x00_cache_map
1028				[PERF_COUNT_HW_CACHE_MAX]
1029				[PERF_COUNT_HW_CACHE_OP_MAX]
1030				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1031[C(L1D)] = {
1032	[C(OP_READ)] = {
1033		[C(RESULT_ACCESS)]	= { 0x46, CNTR_EVEN | CNTR_ODD },
1034		[C(RESULT_MISS)]	= { 0x49, CNTR_EVEN | CNTR_ODD },
1035	},
1036	[C(OP_WRITE)] = {
1037		[C(RESULT_ACCESS)]	= { 0x47, CNTR_EVEN | CNTR_ODD },
1038		[C(RESULT_MISS)]	= { 0x4a, CNTR_EVEN | CNTR_ODD },
1039	},
1040},
1041[C(L1I)] = {
1042	[C(OP_READ)] = {
1043		[C(RESULT_ACCESS)]	= { 0x84, CNTR_EVEN | CNTR_ODD },
1044		[C(RESULT_MISS)]	= { 0x85, CNTR_EVEN | CNTR_ODD },
1045	},
1046},
1047[C(DTLB)] = {
1048	/* Can't distinguish read & write */
1049	[C(OP_READ)] = {
1050		[C(RESULT_ACCESS)]	= { 0x40, CNTR_EVEN | CNTR_ODD },
1051		[C(RESULT_MISS)]	= { 0x41, CNTR_EVEN | CNTR_ODD },
1052	},
1053	[C(OP_WRITE)] = {
1054		[C(RESULT_ACCESS)]	= { 0x40, CNTR_EVEN | CNTR_ODD },
1055		[C(RESULT_MISS)]	= { 0x41, CNTR_EVEN | CNTR_ODD },
1056	},
1057},
1058[C(BPU)] = {
1059	/* Conditional branches / mispredicted */
1060	[C(OP_READ)] = {
1061		[C(RESULT_ACCESS)]	= { 0x15, CNTR_EVEN | CNTR_ODD },
1062		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN | CNTR_ODD },
1063	},
1064},
1065};
1066
1067static const struct mips_perf_event loongson3_cache_map
1068				[PERF_COUNT_HW_CACHE_MAX]
1069				[PERF_COUNT_HW_CACHE_OP_MAX]
1070				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1071[C(L1D)] = {
1072	/*
1073	 * Like some other architectures (e.g. ARM), the performance
1074	 * counters don't differentiate between read and write
1075	 * accesses/misses, so this isn't strictly correct, but it's the
1076	 * best we can do. Writes and reads get combined.
1077	 */
1078	[C(OP_READ)] = {
1079		[C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1080	},
1081	[C(OP_WRITE)] = {
1082		[C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1083	},
1084},
1085[C(L1I)] = {
1086	[C(OP_READ)] = {
1087		[C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1088	},
1089	[C(OP_WRITE)] = {
1090		[C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1091	},
1092},
1093[C(DTLB)] = {
1094	[C(OP_READ)] = {
1095		[C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1096	},
1097	[C(OP_WRITE)] = {
1098		[C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1099	},
1100},
1101[C(ITLB)] = {
1102	[C(OP_READ)] = {
1103		[C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1104	},
1105	[C(OP_WRITE)] = {
1106		[C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1107	},
1108},
1109[C(BPU)] = {
1110	/* Using the same code for *HW_BRANCH* */
1111	[C(OP_READ)] = {
1112		[C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN },
1113		[C(RESULT_MISS)]        = { 0x02, CNTR_ODD },
1114	},
1115	[C(OP_WRITE)] = {
1116		[C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN },
1117		[C(RESULT_MISS)]        = { 0x02, CNTR_ODD },
1118	},
1119},
1120};
1121
1122/* BMIPS5000 */
1123static const struct mips_perf_event bmips5000_cache_map
1124				[PERF_COUNT_HW_CACHE_MAX]
1125				[PERF_COUNT_HW_CACHE_OP_MAX]
1126				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1127[C(L1D)] = {
1128	/*
1129	 * Like some other architectures (e.g. ARM), the performance
1130	 * counters don't differentiate between read and write
1131	 * accesses/misses, so this isn't strictly correct, but it's the
1132	 * best we can do. Writes and reads get combined.
1133	 */
1134	[C(OP_READ)] = {
1135		[C(RESULT_ACCESS)]	= { 12, CNTR_EVEN, T },
1136		[C(RESULT_MISS)]	= { 12, CNTR_ODD, T },
1137	},
1138	[C(OP_WRITE)] = {
1139		[C(RESULT_ACCESS)]	= { 12, CNTR_EVEN, T },
1140		[C(RESULT_MISS)]	= { 12, CNTR_ODD, T },
1141	},
1142},
1143[C(L1I)] = {
1144	[C(OP_READ)] = {
1145		[C(RESULT_ACCESS)]	= { 10, CNTR_EVEN, T },
1146		[C(RESULT_MISS)]	= { 10, CNTR_ODD, T },
1147	},
1148	[C(OP_WRITE)] = {
1149		[C(RESULT_ACCESS)]	= { 10, CNTR_EVEN, T },
1150		[C(RESULT_MISS)]	= { 10, CNTR_ODD, T },
1151	},
1152	[C(OP_PREFETCH)] = {
1153		[C(RESULT_ACCESS)]	= { 23, CNTR_EVEN, T },
1154		/*
1155		 * Note that MIPS has only "hit" events countable for
1156		 * the prefetch operation.
1157		 */
1158	},
1159},
1160[C(LL)] = {
1161	[C(OP_READ)] = {
1162		[C(RESULT_ACCESS)]	= { 28, CNTR_EVEN, P },
1163		[C(RESULT_MISS)]	= { 28, CNTR_ODD, P },
1164	},
1165	[C(OP_WRITE)] = {
1166		[C(RESULT_ACCESS)]	= { 28, CNTR_EVEN, P },
1167		[C(RESULT_MISS)]	= { 28, CNTR_ODD, P },
1168	},
1169},
1170[C(BPU)] = {
1171	/* Using the same code for *HW_BRANCH* */
1172	[C(OP_READ)] = {
1173		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1174	},
1175	[C(OP_WRITE)] = {
1176		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1177	},
1178},
1179};
1180
1181
1182static const struct mips_perf_event octeon_cache_map
1183				[PERF_COUNT_HW_CACHE_MAX]
1184				[PERF_COUNT_HW_CACHE_OP_MAX]
1185				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1186[C(L1D)] = {
1187	[C(OP_READ)] = {
1188		[C(RESULT_ACCESS)]	= { 0x2b, CNTR_ALL },
1189		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL },
1190	},
1191	[C(OP_WRITE)] = {
1192		[C(RESULT_ACCESS)]	= { 0x30, CNTR_ALL },
1193	},
1194},
1195[C(L1I)] = {
1196	[C(OP_READ)] = {
1197		[C(RESULT_ACCESS)]	= { 0x18, CNTR_ALL },
1198	},
1199	[C(OP_PREFETCH)] = {
1200		[C(RESULT_ACCESS)]	= { 0x19, CNTR_ALL },
1201	},
1202},
1203[C(DTLB)] = {
1204	/*
1205	 * Only general DTLB misses are counted use the same event for
1206	 * read and write.
1207	 */
1208	[C(OP_READ)] = {
1209		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1210	},
1211	[C(OP_WRITE)] = {
1212		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1213	},
1214},
1215[C(ITLB)] = {
1216	[C(OP_READ)] = {
1217		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL },
1218	},
1219},
1220};
1221
1222static const struct mips_perf_event xlp_cache_map
1223				[PERF_COUNT_HW_CACHE_MAX]
1224				[PERF_COUNT_HW_CACHE_OP_MAX]
1225				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1226[C(L1D)] = {
1227	[C(OP_READ)] = {
1228		[C(RESULT_ACCESS)]	= { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1229		[C(RESULT_MISS)]	= { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1230	},
1231	[C(OP_WRITE)] = {
1232		[C(RESULT_ACCESS)]	= { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1233		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1234	},
1235},
1236[C(L1I)] = {
1237	[C(OP_READ)] = {
1238		[C(RESULT_ACCESS)]	= { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1239		[C(RESULT_MISS)]	= { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1240	},
1241},
1242[C(LL)] = {
1243	[C(OP_READ)] = {
1244		[C(RESULT_ACCESS)]	= { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1245		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1246	},
1247	[C(OP_WRITE)] = {
1248		[C(RESULT_ACCESS)]	= { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1249		[C(RESULT_MISS)]	= { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1250	},
1251},
1252[C(DTLB)] = {
1253	/*
1254	 * Only general DTLB misses are counted use the same event for
1255	 * read and write.
1256	 */
1257	[C(OP_READ)] = {
1258		[C(RESULT_MISS)]	= { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1259	},
1260	[C(OP_WRITE)] = {
1261		[C(RESULT_MISS)]	= { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1262	},
1263},
1264[C(ITLB)] = {
1265	[C(OP_READ)] = {
1266		[C(RESULT_MISS)]	= { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1267	},
1268	[C(OP_WRITE)] = {
1269		[C(RESULT_MISS)]	= { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1270	},
1271},
1272[C(BPU)] = {
1273	[C(OP_READ)] = {
1274		[C(RESULT_MISS)]	= { 0x25, CNTR_ALL },
1275	},
1276},
1277};
1278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1279static int __hw_perf_event_init(struct perf_event *event)
1280{
1281	struct perf_event_attr *attr = &event->attr;
1282	struct hw_perf_event *hwc = &event->hw;
1283	const struct mips_perf_event *pev;
1284	int err;
1285
1286	/* Returning MIPS event descriptor for generic perf event. */
1287	if (PERF_TYPE_HARDWARE == event->attr.type) {
1288		if (event->attr.config >= PERF_COUNT_HW_MAX)
1289			return -EINVAL;
1290		pev = mipspmu_map_general_event(event->attr.config);
1291	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1292		pev = mipspmu_map_cache_event(event->attr.config);
1293	} else if (PERF_TYPE_RAW == event->attr.type) {
1294		/* We are working on the global raw event. */
1295		mutex_lock(&raw_event_mutex);
1296		pev = mipspmu.map_raw_event(event->attr.config);
1297	} else {
1298		/* The event type is not (yet) supported. */
1299		return -EOPNOTSUPP;
1300	}
1301
1302	if (IS_ERR(pev)) {
1303		if (PERF_TYPE_RAW == event->attr.type)
1304			mutex_unlock(&raw_event_mutex);
1305		return PTR_ERR(pev);
1306	}
1307
1308	/*
1309	 * We allow max flexibility on how each individual counter shared
1310	 * by the single CPU operates (the mode exclusion and the range).
1311	 */
1312	hwc->config_base = MIPS_PERFCTRL_IE;
 
 
 
 
1313
1314	hwc->event_base = mipspmu_perf_event_encode(pev);
1315	if (PERF_TYPE_RAW == event->attr.type)
1316		mutex_unlock(&raw_event_mutex);
1317
1318	if (!attr->exclude_user)
1319		hwc->config_base |= MIPS_PERFCTRL_U;
1320	if (!attr->exclude_kernel) {
1321		hwc->config_base |= MIPS_PERFCTRL_K;
1322		/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1323		hwc->config_base |= MIPS_PERFCTRL_EXL;
1324	}
1325	if (!attr->exclude_hv)
1326		hwc->config_base |= MIPS_PERFCTRL_S;
1327
1328	hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1329	/*
1330	 * The event can belong to another cpu. We do not assign a local
1331	 * counter for it for now.
1332	 */
1333	hwc->idx = -1;
1334	hwc->config = 0;
1335
1336	if (!hwc->sample_period) {
1337		hwc->sample_period  = mipspmu.max_period;
1338		hwc->last_period    = hwc->sample_period;
1339		local64_set(&hwc->period_left, hwc->sample_period);
1340	}
1341
1342	err = 0;
1343	if (event->group_leader != event)
1344		err = validate_group(event);
1345
1346	event->destroy = hw_perf_event_destroy;
1347
1348	if (err)
1349		event->destroy(event);
1350
1351	return err;
1352}
1353
1354static void pause_local_counters(void)
1355{
1356	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1357	int ctr = mipspmu.num_counters;
1358	unsigned long flags;
1359
1360	local_irq_save(flags);
1361	do {
1362		ctr--;
1363		cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1364		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1365					 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1366	} while (ctr > 0);
1367	local_irq_restore(flags);
1368}
1369
1370static void resume_local_counters(void)
1371{
1372	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1373	int ctr = mipspmu.num_counters;
1374
1375	do {
1376		ctr--;
1377		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1378	} while (ctr > 0);
1379}
1380
1381static int mipsxx_pmu_handle_shared_irq(void)
1382{
1383	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1384	struct perf_sample_data data;
1385	unsigned int counters = mipspmu.num_counters;
1386	u64 counter;
1387	int n, handled = IRQ_NONE;
1388	struct pt_regs *regs;
1389
1390	if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1391		return handled;
1392	/*
1393	 * First we pause the local counters, so that when we are locked
1394	 * here, the counters are all paused. When it gets locked due to
1395	 * perf_disable(), the timer interrupt handler will be delayed.
1396	 *
1397	 * See also mipsxx_pmu_start().
1398	 */
1399	pause_local_counters();
1400#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1401	read_lock(&pmuint_rwlock);
1402#endif
1403
1404	regs = get_irq_regs();
1405
1406	perf_sample_data_init(&data, 0, 0);
1407
1408	for (n = counters - 1; n >= 0; n--) {
1409		if (!test_bit(n, cpuc->used_mask))
1410			continue;
1411
1412		counter = mipspmu.read_counter(n);
1413		if (!(counter & mipspmu.overflow))
1414			continue;
1415
1416		handle_associated_event(cpuc, n, &data, regs);
1417		handled = IRQ_HANDLED;
 
 
 
 
1418	}
1419
1420#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1421	read_unlock(&pmuint_rwlock);
1422#endif
1423	resume_local_counters();
1424
1425	/*
1426	 * Do all the work for the pending perf events. We can do this
1427	 * in here because the performance counter interrupt is a regular
1428	 * interrupt, not NMI.
1429	 */
1430	if (handled == IRQ_HANDLED)
1431		irq_work_run();
1432
 
 
 
 
1433	return handled;
1434}
1435
1436static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1437{
1438	return mipsxx_pmu_handle_shared_irq();
1439}
1440
1441/* 24K */
1442#define IS_BOTH_COUNTERS_24K_EVENT(b)					\
1443	((b) == 0 || (b) == 1 || (b) == 11)
1444
1445/* 34K */
1446#define IS_BOTH_COUNTERS_34K_EVENT(b)					\
1447	((b) == 0 || (b) == 1 || (b) == 11)
1448#ifdef CONFIG_MIPS_MT_SMP
1449#define IS_RANGE_P_34K_EVENT(r, b)					\
1450	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1451	 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||		\
1452	 (r) == 176 || ((b) >= 50 && (b) <= 55) ||			\
1453	 ((b) >= 64 && (b) <= 67))
1454#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1455#endif
1456
1457/* 74K */
1458#define IS_BOTH_COUNTERS_74K_EVENT(b)					\
1459	((b) == 0 || (b) == 1)
1460
1461/* proAptiv */
1462#define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b)				\
1463	((b) == 0 || (b) == 1)
1464/* P5600 */
1465#define IS_BOTH_COUNTERS_P5600_EVENT(b)					\
1466	((b) == 0 || (b) == 1)
1467
1468/* 1004K */
1469#define IS_BOTH_COUNTERS_1004K_EVENT(b)					\
1470	((b) == 0 || (b) == 1 || (b) == 11)
1471#ifdef CONFIG_MIPS_MT_SMP
1472#define IS_RANGE_P_1004K_EVENT(r, b)					\
1473	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1474	 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||		\
1475	 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||	\
1476	 (r) == 188 || (b) == 61 || (b) == 62 ||			\
1477	 ((b) >= 64 && (b) <= 67))
1478#define IS_RANGE_V_1004K_EVENT(r)	((r) == 47)
1479#endif
1480
1481/* interAptiv */
1482#define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b)				\
1483	((b) == 0 || (b) == 1 || (b) == 11)
1484#ifdef CONFIG_MIPS_MT_SMP
1485/* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1486#define IS_RANGE_P_INTERAPTIV_EVENT(r, b)				\
1487	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1488	 (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 ||		\
1489	 (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 &&		\
1490	 (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 ||		\
1491	 ((b) >= 64 && (b) <= 67))
1492#define IS_RANGE_V_INTERAPTIV_EVENT(r)	((r) == 47 || (r) == 175)
1493#endif
1494
1495/* BMIPS5000 */
1496#define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b)				\
1497	((b) == 0 || (b) == 1)
1498
1499
1500/*
1501 * For most cores the user can use 0-255 raw events, where 0-127 for the events
1502 * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1503 * indicate the even/odd bank selector. So, for example, when user wants to take
1504 * the Event Num of 15 for odd counters (by referring to the user manual), then
1505 * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1506 * to be used.
1507 *
1508 * Some newer cores have even more events, in which case the user can use raw
1509 * events 0-511, where 0-255 are for the events of even counters, and 256-511
1510 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1511 */
1512static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1513{
1514	/* currently most cores have 7-bit event numbers */
1515	unsigned int raw_id = config & 0xff;
1516	unsigned int base_id = raw_id & 0x7f;
1517
1518	switch (current_cpu_type()) {
1519	case CPU_24K:
1520		if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1521			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1522		else
1523			raw_event.cntr_mask =
1524				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1525#ifdef CONFIG_MIPS_MT_SMP
1526		/*
1527		 * This is actually doing nothing. Non-multithreading
1528		 * CPUs will not check and calculate the range.
1529		 */
1530		raw_event.range = P;
1531#endif
1532		break;
1533	case CPU_34K:
1534		if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1535			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1536		else
1537			raw_event.cntr_mask =
1538				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1539#ifdef CONFIG_MIPS_MT_SMP
1540		if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1541			raw_event.range = P;
1542		else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1543			raw_event.range = V;
1544		else
1545			raw_event.range = T;
1546#endif
1547		break;
1548	case CPU_74K:
1549	case CPU_1074K:
1550		if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1551			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1552		else
1553			raw_event.cntr_mask =
1554				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1555#ifdef CONFIG_MIPS_MT_SMP
1556		raw_event.range = P;
1557#endif
1558		break;
1559	case CPU_PROAPTIV:
1560		if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1561			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1562		else
1563			raw_event.cntr_mask =
1564				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1565#ifdef CONFIG_MIPS_MT_SMP
1566		raw_event.range = P;
1567#endif
1568		break;
1569	case CPU_P5600:
1570	case CPU_P6600:
 
1571		/* 8-bit event numbers */
1572		raw_id = config & 0x1ff;
1573		base_id = raw_id & 0xff;
1574		if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1575			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1576		else
1577			raw_event.cntr_mask =
1578				raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1579#ifdef CONFIG_MIPS_MT_SMP
1580		raw_event.range = P;
1581#endif
1582		break;
1583	case CPU_I6400:
1584	case CPU_I6500:
1585		/* 8-bit event numbers */
1586		base_id = config & 0xff;
1587		raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1588		break;
1589	case CPU_1004K:
1590		if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1591			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1592		else
1593			raw_event.cntr_mask =
1594				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1595#ifdef CONFIG_MIPS_MT_SMP
1596		if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1597			raw_event.range = P;
1598		else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1599			raw_event.range = V;
1600		else
1601			raw_event.range = T;
1602#endif
1603		break;
1604	case CPU_INTERAPTIV:
1605		if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1606			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1607		else
1608			raw_event.cntr_mask =
1609				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1610#ifdef CONFIG_MIPS_MT_SMP
1611		if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1612			raw_event.range = P;
1613		else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1614			raw_event.range = V;
1615		else
1616			raw_event.range = T;
1617#endif
1618		break;
1619	case CPU_BMIPS5000:
1620		if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1621			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1622		else
1623			raw_event.cntr_mask =
1624				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1625		break;
1626	case CPU_LOONGSON3:
1627		raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1628	break;
1629	}
1630
1631	raw_event.event_id = base_id;
1632
1633	return &raw_event;
1634}
1635
1636static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1637{
1638	unsigned int raw_id = config & 0xff;
1639	unsigned int base_id = raw_id & 0x7f;
1640
1641
1642	raw_event.cntr_mask = CNTR_ALL;
1643	raw_event.event_id = base_id;
1644
1645	if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1646		if (base_id > 0x42)
1647			return ERR_PTR(-EOPNOTSUPP);
1648	} else {
1649		if (base_id > 0x3a)
1650			return ERR_PTR(-EOPNOTSUPP);
1651	}
1652
1653	switch (base_id) {
1654	case 0x00:
1655	case 0x0f:
1656	case 0x1e:
1657	case 0x1f:
1658	case 0x2f:
1659	case 0x34:
1660	case 0x3b ... 0x3f:
1661		return ERR_PTR(-EOPNOTSUPP);
1662	default:
1663		break;
1664	}
1665
1666	return &raw_event;
1667}
1668
1669static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1670{
1671	unsigned int raw_id = config & 0xff;
1672
1673	/* Only 1-63 are defined */
1674	if ((raw_id < 0x01) || (raw_id > 0x3f))
1675		return ERR_PTR(-EOPNOTSUPP);
1676
1677	raw_event.cntr_mask = CNTR_ALL;
1678	raw_event.event_id = raw_id;
1679
1680	return &raw_event;
1681}
1682
1683static int __init
1684init_hw_perf_events(void)
1685{
1686	int counters, irq;
1687	int counter_bits;
1688
1689	pr_info("Performance counters: ");
1690
1691	counters = n_counters();
1692	if (counters == 0) {
1693		pr_cont("No available PMU.\n");
1694		return -ENODEV;
1695	}
1696
1697#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 
1698	if (!cpu_has_mipsmt_pertccounters)
1699		counters = counters_total_to_per_cpu(counters);
1700#endif
1701
1702	if (get_c0_perfcount_int)
1703		irq = get_c0_perfcount_int();
1704	else if (cp0_perfcount_irq >= 0)
1705		irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1706	else
1707		irq = -1;
1708
1709	mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1710
1711	switch (current_cpu_type()) {
1712	case CPU_24K:
1713		mipspmu.name = "mips/24K";
1714		mipspmu.general_event_map = &mipsxxcore_event_map;
1715		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1716		break;
1717	case CPU_34K:
1718		mipspmu.name = "mips/34K";
1719		mipspmu.general_event_map = &mipsxxcore_event_map;
1720		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1721		break;
1722	case CPU_74K:
1723		mipspmu.name = "mips/74K";
1724		mipspmu.general_event_map = &mipsxxcore_event_map2;
1725		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1726		break;
1727	case CPU_PROAPTIV:
1728		mipspmu.name = "mips/proAptiv";
1729		mipspmu.general_event_map = &mipsxxcore_event_map2;
1730		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1731		break;
1732	case CPU_P5600:
1733		mipspmu.name = "mips/P5600";
1734		mipspmu.general_event_map = &mipsxxcore_event_map2;
1735		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1736		break;
1737	case CPU_P6600:
1738		mipspmu.name = "mips/P6600";
1739		mipspmu.general_event_map = &mipsxxcore_event_map2;
1740		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1741		break;
1742	case CPU_I6400:
1743		mipspmu.name = "mips/I6400";
1744		mipspmu.general_event_map = &i6x00_event_map;
1745		mipspmu.cache_event_map = &i6x00_cache_map;
1746		break;
1747	case CPU_I6500:
1748		mipspmu.name = "mips/I6500";
1749		mipspmu.general_event_map = &i6x00_event_map;
1750		mipspmu.cache_event_map = &i6x00_cache_map;
1751		break;
1752	case CPU_1004K:
1753		mipspmu.name = "mips/1004K";
1754		mipspmu.general_event_map = &mipsxxcore_event_map;
1755		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1756		break;
1757	case CPU_1074K:
1758		mipspmu.name = "mips/1074K";
1759		mipspmu.general_event_map = &mipsxxcore_event_map;
1760		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1761		break;
1762	case CPU_INTERAPTIV:
1763		mipspmu.name = "mips/interAptiv";
1764		mipspmu.general_event_map = &mipsxxcore_event_map;
1765		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1766		break;
1767	case CPU_LOONGSON1:
1768		mipspmu.name = "mips/loongson1";
1769		mipspmu.general_event_map = &mipsxxcore_event_map;
1770		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1771		break;
1772	case CPU_LOONGSON3:
1773		mipspmu.name = "mips/loongson3";
1774		mipspmu.general_event_map = &loongson3_event_map;
1775		mipspmu.cache_event_map = &loongson3_cache_map;
1776		break;
1777	case CPU_CAVIUM_OCTEON:
1778	case CPU_CAVIUM_OCTEON_PLUS:
1779	case CPU_CAVIUM_OCTEON2:
1780		mipspmu.name = "octeon";
1781		mipspmu.general_event_map = &octeon_event_map;
1782		mipspmu.cache_event_map = &octeon_cache_map;
1783		mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1784		break;
1785	case CPU_BMIPS5000:
1786		mipspmu.name = "BMIPS5000";
1787		mipspmu.general_event_map = &bmips5000_event_map;
1788		mipspmu.cache_event_map = &bmips5000_cache_map;
1789		break;
1790	case CPU_XLP:
1791		mipspmu.name = "xlp";
1792		mipspmu.general_event_map = &xlp_event_map;
1793		mipspmu.cache_event_map = &xlp_cache_map;
1794		mipspmu.map_raw_event = xlp_pmu_map_raw_event;
1795		break;
1796	default:
1797		pr_cont("Either hardware does not support performance "
1798			"counters, or not yet implemented.\n");
1799		return -ENODEV;
1800	}
1801
1802	mipspmu.num_counters = counters;
1803	mipspmu.irq = irq;
1804
1805	if (read_c0_perfctrl0() & MIPS_PERFCTRL_W) {
1806		mipspmu.max_period = (1ULL << 63) - 1;
1807		mipspmu.valid_count = (1ULL << 63) - 1;
1808		mipspmu.overflow = 1ULL << 63;
1809		mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1810		mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1811		counter_bits = 64;
1812	} else {
1813		mipspmu.max_period = (1ULL << 31) - 1;
1814		mipspmu.valid_count = (1ULL << 31) - 1;
1815		mipspmu.overflow = 1ULL << 31;
1816		mipspmu.read_counter = mipsxx_pmu_read_counter;
1817		mipspmu.write_counter = mipsxx_pmu_write_counter;
1818		counter_bits = 32;
1819	}
1820
1821	on_each_cpu(reset_counters, (void *)(long)counters, 1);
1822
1823	pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1824		"CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1825		irq < 0 ? " (share with timer interrupt)" : "");
1826
1827	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1828
1829	return 0;
1830}
1831early_initcall(init_hw_perf_events);
v4.10.11
 
   1/*
   2 * Linux performance counter support for MIPS.
   3 *
   4 * Copyright (C) 2010 MIPS Technologies, Inc.
   5 * Copyright (C) 2011 Cavium Networks, Inc.
   6 * Author: Deng-Cheng Zhu
   7 *
   8 * This code is based on the implementation for ARM, which is in turn
   9 * based on the sparc64 perf event code and the x86 code. Performance
  10 * counter access is based on the MIPS Oprofile code. And the callchain
  11 * support references the code of MIPS stacktrace.c.
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
  16 */
  17
  18#include <linux/cpumask.h>
  19#include <linux/interrupt.h>
  20#include <linux/smp.h>
  21#include <linux/kernel.h>
  22#include <linux/perf_event.h>
  23#include <linux/uaccess.h>
  24
  25#include <asm/irq.h>
  26#include <asm/irq_regs.h>
  27#include <asm/stacktrace.h>
  28#include <asm/time.h> /* For perf_irq */
  29
  30#define MIPS_MAX_HWEVENTS 4
  31#define MIPS_TCS_PER_COUNTER 2
  32#define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
  33
  34struct cpu_hw_events {
  35	/* Array of events on this cpu. */
  36	struct perf_event	*events[MIPS_MAX_HWEVENTS];
  37
  38	/*
  39	 * Set the bit (indexed by the counter number) when the counter
  40	 * is used for an event.
  41	 */
  42	unsigned long		used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
  43
  44	/*
  45	 * Software copy of the control register for each performance counter.
  46	 * MIPS CPUs vary in performance counters. They use this differently,
  47	 * and even may not use it.
  48	 */
  49	unsigned int		saved_ctrl[MIPS_MAX_HWEVENTS];
  50};
  51DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  52	.saved_ctrl = {0},
  53};
  54
  55/* The description of MIPS performance events. */
  56struct mips_perf_event {
  57	unsigned int event_id;
  58	/*
  59	 * MIPS performance counters are indexed starting from 0.
  60	 * CNTR_EVEN indicates the indexes of the counters to be used are
  61	 * even numbers.
  62	 */
  63	unsigned int cntr_mask;
  64	#define CNTR_EVEN	0x55555555
  65	#define CNTR_ODD	0xaaaaaaaa
  66	#define CNTR_ALL	0xffffffff
  67#ifdef CONFIG_MIPS_MT_SMP
  68	enum {
  69		T  = 0,
  70		V  = 1,
  71		P  = 2,
  72	} range;
  73#else
  74	#define T
  75	#define V
  76	#define P
  77#endif
  78};
  79
  80static struct mips_perf_event raw_event;
  81static DEFINE_MUTEX(raw_event_mutex);
  82
  83#define C(x) PERF_COUNT_HW_CACHE_##x
  84
  85struct mips_pmu {
  86	u64		max_period;
  87	u64		valid_count;
  88	u64		overflow;
  89	const char	*name;
  90	int		irq;
  91	u64		(*read_counter)(unsigned int idx);
  92	void		(*write_counter)(unsigned int idx, u64 val);
  93	const struct mips_perf_event *(*map_raw_event)(u64 config);
  94	const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
  95	const struct mips_perf_event (*cache_event_map)
  96				[PERF_COUNT_HW_CACHE_MAX]
  97				[PERF_COUNT_HW_CACHE_OP_MAX]
  98				[PERF_COUNT_HW_CACHE_RESULT_MAX];
  99	unsigned int	num_counters;
 100};
 101
 102static struct mips_pmu mipspmu;
 103
 104#define M_PERFCTL_EXL			(1	<<  0)
 105#define M_PERFCTL_KERNEL		(1	<<  1)
 106#define M_PERFCTL_SUPERVISOR		(1	<<  2)
 107#define M_PERFCTL_USER			(1	<<  3)
 108#define M_PERFCTL_INTERRUPT_ENABLE	(1	<<  4)
 109#define M_PERFCTL_EVENT(event)		(((event) & 0x3ff)  << 5)
 110#define M_PERFCTL_VPEID(vpe)		((vpe)	  << 16)
 111
 112#ifdef CONFIG_CPU_BMIPS5000
 113#define M_PERFCTL_MT_EN(filter)		0
 114#else /* !CONFIG_CPU_BMIPS5000 */
 115#define M_PERFCTL_MT_EN(filter)		((filter) << 20)
 116#endif /* CONFIG_CPU_BMIPS5000 */
 117
 118#define	   M_TC_EN_ALL			M_PERFCTL_MT_EN(0)
 119#define	   M_TC_EN_VPE			M_PERFCTL_MT_EN(1)
 120#define	   M_TC_EN_TC			M_PERFCTL_MT_EN(2)
 121#define M_PERFCTL_TCID(tcid)		((tcid)	  << 22)
 122#define M_PERFCTL_WIDE			(1	<< 30)
 123#define M_PERFCTL_MORE			(1	<< 31)
 124#define M_PERFCTL_TC			(1	<< 30)
 125
 126#define M_PERFCTL_COUNT_EVENT_WHENEVER	(M_PERFCTL_EXL |		\
 127					M_PERFCTL_KERNEL |		\
 128					M_PERFCTL_USER |		\
 129					M_PERFCTL_SUPERVISOR |		\
 130					M_PERFCTL_INTERRUPT_ENABLE)
 131
 132#ifdef CONFIG_MIPS_MT_SMP
 133#define M_PERFCTL_CONFIG_MASK		0x3fff801f
 134#else
 135#define M_PERFCTL_CONFIG_MASK		0x1f
 136#endif
 137#define M_PERFCTL_EVENT_MASK		0xfe0
 138
 139
 140#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 141static int cpu_has_mipsmt_pertccounters;
 142
 143static DEFINE_RWLOCK(pmuint_rwlock);
 144
 145#if defined(CONFIG_CPU_BMIPS5000)
 146#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
 147			 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
 148#else
 149/*
 150 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
 151 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
 152 */
 153#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
 154			 0 : smp_processor_id())
 155#endif
 156
 157/* Copied from op_model_mipsxx.c */
 158static unsigned int vpe_shift(void)
 159{
 160	if (num_possible_cpus() > 1)
 161		return 1;
 162
 163	return 0;
 164}
 165
 166static unsigned int counters_total_to_per_cpu(unsigned int counters)
 167{
 168	return counters >> vpe_shift();
 169}
 170
 171#else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
 172#define vpe_id()	0
 173
 174#endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
 175
 176static void resume_local_counters(void);
 177static void pause_local_counters(void);
 178static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
 179static int mipsxx_pmu_handle_shared_irq(void);
 180
 181static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
 182{
 183	if (vpe_id() == 1)
 184		idx = (idx + 2) & 3;
 185	return idx;
 186}
 187
 188static u64 mipsxx_pmu_read_counter(unsigned int idx)
 189{
 190	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 191
 192	switch (idx) {
 193	case 0:
 194		/*
 195		 * The counters are unsigned, we must cast to truncate
 196		 * off the high bits.
 197		 */
 198		return (u32)read_c0_perfcntr0();
 199	case 1:
 200		return (u32)read_c0_perfcntr1();
 201	case 2:
 202		return (u32)read_c0_perfcntr2();
 203	case 3:
 204		return (u32)read_c0_perfcntr3();
 205	default:
 206		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 207		return 0;
 208	}
 209}
 210
 211static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
 212{
 213	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 214
 215	switch (idx) {
 216	case 0:
 217		return read_c0_perfcntr0_64();
 218	case 1:
 219		return read_c0_perfcntr1_64();
 220	case 2:
 221		return read_c0_perfcntr2_64();
 222	case 3:
 223		return read_c0_perfcntr3_64();
 224	default:
 225		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 226		return 0;
 227	}
 228}
 229
 230static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
 231{
 232	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 233
 234	switch (idx) {
 235	case 0:
 236		write_c0_perfcntr0(val);
 237		return;
 238	case 1:
 239		write_c0_perfcntr1(val);
 240		return;
 241	case 2:
 242		write_c0_perfcntr2(val);
 243		return;
 244	case 3:
 245		write_c0_perfcntr3(val);
 246		return;
 247	}
 248}
 249
 250static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
 251{
 252	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 253
 254	switch (idx) {
 255	case 0:
 256		write_c0_perfcntr0_64(val);
 257		return;
 258	case 1:
 259		write_c0_perfcntr1_64(val);
 260		return;
 261	case 2:
 262		write_c0_perfcntr2_64(val);
 263		return;
 264	case 3:
 265		write_c0_perfcntr3_64(val);
 266		return;
 267	}
 268}
 269
 270static unsigned int mipsxx_pmu_read_control(unsigned int idx)
 271{
 272	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 273
 274	switch (idx) {
 275	case 0:
 276		return read_c0_perfctrl0();
 277	case 1:
 278		return read_c0_perfctrl1();
 279	case 2:
 280		return read_c0_perfctrl2();
 281	case 3:
 282		return read_c0_perfctrl3();
 283	default:
 284		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 285		return 0;
 286	}
 287}
 288
 289static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
 290{
 291	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 292
 293	switch (idx) {
 294	case 0:
 295		write_c0_perfctrl0(val);
 296		return;
 297	case 1:
 298		write_c0_perfctrl1(val);
 299		return;
 300	case 2:
 301		write_c0_perfctrl2(val);
 302		return;
 303	case 3:
 304		write_c0_perfctrl3(val);
 305		return;
 306	}
 307}
 308
 309static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
 310				    struct hw_perf_event *hwc)
 311{
 312	int i;
 313
 314	/*
 315	 * We only need to care the counter mask. The range has been
 316	 * checked definitely.
 317	 */
 318	unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
 319
 320	for (i = mipspmu.num_counters - 1; i >= 0; i--) {
 321		/*
 322		 * Note that some MIPS perf events can be counted by both
 323		 * even and odd counters, wheresas many other are only by
 324		 * even _or_ odd counters. This introduces an issue that
 325		 * when the former kind of event takes the counter the
 326		 * latter kind of event wants to use, then the "counter
 327		 * allocation" for the latter event will fail. In fact if
 328		 * they can be dynamically swapped, they both feel happy.
 329		 * But here we leave this issue alone for now.
 330		 */
 331		if (test_bit(i, &cntr_mask) &&
 332			!test_and_set_bit(i, cpuc->used_mask))
 333			return i;
 334	}
 335
 336	return -EAGAIN;
 337}
 338
 339static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
 340{
 
 341	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 
 342
 343	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 344
 345	cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
 346		(evt->config_base & M_PERFCTL_CONFIG_MASK) |
 347		/* Make sure interrupt enabled. */
 348		M_PERFCTL_INTERRUPT_ENABLE;
 349	if (IS_ENABLED(CONFIG_CPU_BMIPS5000))
 
 350		/* enable the counter for the calling thread */
 351		cpuc->saved_ctrl[idx] |=
 352			(1 << (12 + vpe_id())) | M_PERFCTL_TC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 353
 
 
 
 
 
 354	/*
 355	 * We do not actually let the counter run. Leave it until start().
 356	 */
 357}
 358
 359static void mipsxx_pmu_disable_event(int idx)
 360{
 361	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 362	unsigned long flags;
 363
 364	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 365
 366	local_irq_save(flags);
 367	cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
 368		~M_PERFCTL_COUNT_EVENT_WHENEVER;
 369	mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
 370	local_irq_restore(flags);
 371}
 372
 373static int mipspmu_event_set_period(struct perf_event *event,
 374				    struct hw_perf_event *hwc,
 375				    int idx)
 376{
 377	u64 left = local64_read(&hwc->period_left);
 378	u64 period = hwc->sample_period;
 379	int ret = 0;
 380
 381	if (unlikely((left + period) & (1ULL << 63))) {
 382		/* left underflowed by more than period. */
 383		left = period;
 384		local64_set(&hwc->period_left, left);
 385		hwc->last_period = period;
 386		ret = 1;
 387	} else	if (unlikely((left + period) <= period)) {
 388		/* left underflowed by less than period. */
 389		left += period;
 390		local64_set(&hwc->period_left, left);
 391		hwc->last_period = period;
 392		ret = 1;
 393	}
 394
 395	if (left > mipspmu.max_period) {
 396		left = mipspmu.max_period;
 397		local64_set(&hwc->period_left, left);
 398	}
 399
 400	local64_set(&hwc->prev_count, mipspmu.overflow - left);
 401
 402	mipspmu.write_counter(idx, mipspmu.overflow - left);
 403
 404	perf_event_update_userpage(event);
 405
 406	return ret;
 407}
 408
 409static void mipspmu_event_update(struct perf_event *event,
 410				 struct hw_perf_event *hwc,
 411				 int idx)
 412{
 413	u64 prev_raw_count, new_raw_count;
 414	u64 delta;
 415
 416again:
 417	prev_raw_count = local64_read(&hwc->prev_count);
 418	new_raw_count = mipspmu.read_counter(idx);
 419
 420	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 421				new_raw_count) != prev_raw_count)
 422		goto again;
 423
 424	delta = new_raw_count - prev_raw_count;
 425
 426	local64_add(delta, &event->count);
 427	local64_sub(delta, &hwc->period_left);
 428}
 429
 430static void mipspmu_start(struct perf_event *event, int flags)
 431{
 432	struct hw_perf_event *hwc = &event->hw;
 433
 434	if (flags & PERF_EF_RELOAD)
 435		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
 436
 437	hwc->state = 0;
 438
 439	/* Set the period for the event. */
 440	mipspmu_event_set_period(event, hwc, hwc->idx);
 441
 442	/* Enable the event. */
 443	mipsxx_pmu_enable_event(hwc, hwc->idx);
 444}
 445
 446static void mipspmu_stop(struct perf_event *event, int flags)
 447{
 448	struct hw_perf_event *hwc = &event->hw;
 449
 450	if (!(hwc->state & PERF_HES_STOPPED)) {
 451		/* We are working on a local event. */
 452		mipsxx_pmu_disable_event(hwc->idx);
 453		barrier();
 454		mipspmu_event_update(event, hwc, hwc->idx);
 455		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
 456	}
 457}
 458
 459static int mipspmu_add(struct perf_event *event, int flags)
 460{
 461	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 462	struct hw_perf_event *hwc = &event->hw;
 463	int idx;
 464	int err = 0;
 465
 466	perf_pmu_disable(event->pmu);
 467
 468	/* To look for a free counter for this event. */
 469	idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
 470	if (idx < 0) {
 471		err = idx;
 472		goto out;
 473	}
 474
 475	/*
 476	 * If there is an event in the counter we are going to use then
 477	 * make sure it is disabled.
 478	 */
 479	event->hw.idx = idx;
 480	mipsxx_pmu_disable_event(idx);
 481	cpuc->events[idx] = event;
 482
 483	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
 484	if (flags & PERF_EF_START)
 485		mipspmu_start(event, PERF_EF_RELOAD);
 486
 487	/* Propagate our changes to the userspace mapping. */
 488	perf_event_update_userpage(event);
 489
 490out:
 491	perf_pmu_enable(event->pmu);
 492	return err;
 493}
 494
 495static void mipspmu_del(struct perf_event *event, int flags)
 496{
 497	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 498	struct hw_perf_event *hwc = &event->hw;
 499	int idx = hwc->idx;
 500
 501	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 502
 503	mipspmu_stop(event, PERF_EF_UPDATE);
 504	cpuc->events[idx] = NULL;
 505	clear_bit(idx, cpuc->used_mask);
 506
 507	perf_event_update_userpage(event);
 508}
 509
 510static void mipspmu_read(struct perf_event *event)
 511{
 512	struct hw_perf_event *hwc = &event->hw;
 513
 514	/* Don't read disabled counters! */
 515	if (hwc->idx < 0)
 516		return;
 517
 518	mipspmu_event_update(event, hwc, hwc->idx);
 519}
 520
 521static void mipspmu_enable(struct pmu *pmu)
 522{
 523#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 524	write_unlock(&pmuint_rwlock);
 525#endif
 526	resume_local_counters();
 527}
 528
 529/*
 530 * MIPS performance counters can be per-TC. The control registers can
 531 * not be directly accessed across CPUs. Hence if we want to do global
 532 * control, we need cross CPU calls. on_each_cpu() can help us, but we
 533 * can not make sure this function is called with interrupts enabled. So
 534 * here we pause local counters and then grab a rwlock and leave the
 535 * counters on other CPUs alone. If any counter interrupt raises while
 536 * we own the write lock, simply pause local counters on that CPU and
 537 * spin in the handler. Also we know we won't be switched to another
 538 * CPU after pausing local counters and before grabbing the lock.
 539 */
 540static void mipspmu_disable(struct pmu *pmu)
 541{
 542	pause_local_counters();
 543#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 544	write_lock(&pmuint_rwlock);
 545#endif
 546}
 547
 548static atomic_t active_events = ATOMIC_INIT(0);
 549static DEFINE_MUTEX(pmu_reserve_mutex);
 550static int (*save_perf_irq)(void);
 551
 552static int mipspmu_get_irq(void)
 553{
 554	int err;
 555
 556	if (mipspmu.irq >= 0) {
 557		/* Request my own irq handler. */
 558		err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
 559				  IRQF_PERCPU | IRQF_NOBALANCING |
 560				  IRQF_NO_THREAD | IRQF_NO_SUSPEND |
 561				  IRQF_SHARED,
 562				  "mips_perf_pmu", &mipspmu);
 563		if (err) {
 564			pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
 565				mipspmu.irq);
 566		}
 567	} else if (cp0_perfcount_irq < 0) {
 568		/*
 569		 * We are sharing the irq number with the timer interrupt.
 570		 */
 571		save_perf_irq = perf_irq;
 572		perf_irq = mipsxx_pmu_handle_shared_irq;
 573		err = 0;
 574	} else {
 575		pr_warn("The platform hasn't properly defined its interrupt controller\n");
 576		err = -ENOENT;
 577	}
 578
 579	return err;
 580}
 581
 582static void mipspmu_free_irq(void)
 583{
 584	if (mipspmu.irq >= 0)
 585		free_irq(mipspmu.irq, &mipspmu);
 586	else if (cp0_perfcount_irq < 0)
 587		perf_irq = save_perf_irq;
 588}
 589
 590/*
 591 * mipsxx/rm9000/loongson2 have different performance counters, they have
 592 * specific low-level init routines.
 593 */
 594static void reset_counters(void *arg);
 595static int __hw_perf_event_init(struct perf_event *event);
 596
 597static void hw_perf_event_destroy(struct perf_event *event)
 598{
 599	if (atomic_dec_and_mutex_lock(&active_events,
 600				&pmu_reserve_mutex)) {
 601		/*
 602		 * We must not call the destroy function with interrupts
 603		 * disabled.
 604		 */
 605		on_each_cpu(reset_counters,
 606			(void *)(long)mipspmu.num_counters, 1);
 607		mipspmu_free_irq();
 608		mutex_unlock(&pmu_reserve_mutex);
 609	}
 610}
 611
 612static int mipspmu_event_init(struct perf_event *event)
 613{
 614	int err = 0;
 615
 616	/* does not support taken branch sampling */
 617	if (has_branch_stack(event))
 618		return -EOPNOTSUPP;
 619
 620	switch (event->attr.type) {
 621	case PERF_TYPE_RAW:
 622	case PERF_TYPE_HARDWARE:
 623	case PERF_TYPE_HW_CACHE:
 624		break;
 625
 626	default:
 627		return -ENOENT;
 628	}
 629
 630	if (event->cpu >= nr_cpumask_bits ||
 631	    (event->cpu >= 0 && !cpu_online(event->cpu)))
 632		return -ENODEV;
 633
 634	if (!atomic_inc_not_zero(&active_events)) {
 635		mutex_lock(&pmu_reserve_mutex);
 636		if (atomic_read(&active_events) == 0)
 637			err = mipspmu_get_irq();
 638
 639		if (!err)
 640			atomic_inc(&active_events);
 641		mutex_unlock(&pmu_reserve_mutex);
 642	}
 643
 644	if (err)
 645		return err;
 646
 647	return __hw_perf_event_init(event);
 648}
 649
 650static struct pmu pmu = {
 651	.pmu_enable	= mipspmu_enable,
 652	.pmu_disable	= mipspmu_disable,
 653	.event_init	= mipspmu_event_init,
 654	.add		= mipspmu_add,
 655	.del		= mipspmu_del,
 656	.start		= mipspmu_start,
 657	.stop		= mipspmu_stop,
 658	.read		= mipspmu_read,
 659};
 660
 661static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
 662{
 663/*
 664 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
 665 * event_id.
 666 */
 667#ifdef CONFIG_MIPS_MT_SMP
 668	return ((unsigned int)pev->range << 24) |
 669		(pev->cntr_mask & 0xffff00) |
 670		(pev->event_id & 0xff);
 671#else
 672	return (pev->cntr_mask & 0xffff00) |
 673		(pev->event_id & 0xff);
 674#endif
 
 675}
 676
 677static const struct mips_perf_event *mipspmu_map_general_event(int idx)
 678{
 679
 680	if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
 681		return ERR_PTR(-EOPNOTSUPP);
 682	return &(*mipspmu.general_event_map)[idx];
 683}
 684
 685static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
 686{
 687	unsigned int cache_type, cache_op, cache_result;
 688	const struct mips_perf_event *pev;
 689
 690	cache_type = (config >> 0) & 0xff;
 691	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 692		return ERR_PTR(-EINVAL);
 693
 694	cache_op = (config >> 8) & 0xff;
 695	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 696		return ERR_PTR(-EINVAL);
 697
 698	cache_result = (config >> 16) & 0xff;
 699	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 700		return ERR_PTR(-EINVAL);
 701
 702	pev = &((*mipspmu.cache_event_map)
 703					[cache_type]
 704					[cache_op]
 705					[cache_result]);
 706
 707	if (pev->cntr_mask == 0)
 708		return ERR_PTR(-EOPNOTSUPP);
 709
 710	return pev;
 711
 712}
 713
 714static int validate_group(struct perf_event *event)
 715{
 716	struct perf_event *sibling, *leader = event->group_leader;
 717	struct cpu_hw_events fake_cpuc;
 718
 719	memset(&fake_cpuc, 0, sizeof(fake_cpuc));
 720
 721	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
 722		return -EINVAL;
 723
 724	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
 725		if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
 726			return -EINVAL;
 727	}
 728
 729	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
 730		return -EINVAL;
 731
 732	return 0;
 733}
 734
 735/* This is needed by specific irq handlers in perf_event_*.c */
 736static void handle_associated_event(struct cpu_hw_events *cpuc,
 737				    int idx, struct perf_sample_data *data,
 738				    struct pt_regs *regs)
 739{
 740	struct perf_event *event = cpuc->events[idx];
 741	struct hw_perf_event *hwc = &event->hw;
 742
 743	mipspmu_event_update(event, hwc, idx);
 744	data->period = event->hw.last_period;
 745	if (!mipspmu_event_set_period(event, hwc, idx))
 746		return;
 747
 748	if (perf_event_overflow(event, data, regs))
 749		mipsxx_pmu_disable_event(idx);
 750}
 751
 752
 753static int __n_counters(void)
 754{
 755	if (!cpu_has_perf)
 756		return 0;
 757	if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
 758		return 1;
 759	if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
 760		return 2;
 761	if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
 762		return 3;
 763
 764	return 4;
 765}
 766
 767static int n_counters(void)
 768{
 769	int counters;
 770
 771	switch (current_cpu_type()) {
 772	case CPU_R10000:
 773		counters = 2;
 774		break;
 775
 776	case CPU_R12000:
 777	case CPU_R14000:
 778	case CPU_R16000:
 779		counters = 4;
 780		break;
 781
 782	default:
 783		counters = __n_counters();
 784	}
 785
 786	return counters;
 787}
 788
 789static void reset_counters(void *arg)
 790{
 791	int counters = (int)(long)arg;
 792	switch (counters) {
 793	case 4:
 794		mipsxx_pmu_write_control(3, 0);
 795		mipspmu.write_counter(3, 0);
 
 796	case 3:
 797		mipsxx_pmu_write_control(2, 0);
 798		mipspmu.write_counter(2, 0);
 
 799	case 2:
 800		mipsxx_pmu_write_control(1, 0);
 801		mipspmu.write_counter(1, 0);
 
 802	case 1:
 803		mipsxx_pmu_write_control(0, 0);
 804		mipspmu.write_counter(0, 0);
 
 805	}
 806}
 807
 808/* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
 809static const struct mips_perf_event mipsxxcore_event_map
 810				[PERF_COUNT_HW_MAX] = {
 811	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 812	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 813	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
 814	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
 815};
 816
 817/* 74K/proAptiv core has different branch event code. */
 818static const struct mips_perf_event mipsxxcore_event_map2
 819				[PERF_COUNT_HW_MAX] = {
 820	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 821	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 822	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
 823	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
 824};
 825
 826static const struct mips_perf_event i6400_event_map[PERF_COUNT_HW_MAX] = {
 827	[PERF_COUNT_HW_CPU_CYCLES]          = { 0x00, CNTR_EVEN | CNTR_ODD },
 828	[PERF_COUNT_HW_INSTRUCTIONS]        = { 0x01, CNTR_EVEN | CNTR_ODD },
 829	/* These only count dcache, not icache */
 830	[PERF_COUNT_HW_CACHE_REFERENCES]    = { 0x45, CNTR_EVEN | CNTR_ODD },
 831	[PERF_COUNT_HW_CACHE_MISSES]        = { 0x48, CNTR_EVEN | CNTR_ODD },
 832	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD },
 833	[PERF_COUNT_HW_BRANCH_MISSES]       = { 0x16, CNTR_EVEN | CNTR_ODD },
 834};
 835
 836static const struct mips_perf_event loongson3_event_map[PERF_COUNT_HW_MAX] = {
 837	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
 838	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
 839	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
 840	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
 841};
 842
 843static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
 844	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
 845	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
 846	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
 847	[PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL	 },
 848	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
 849	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
 850	[PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
 851};
 852
 853static const struct mips_perf_event bmips5000_event_map
 854				[PERF_COUNT_HW_MAX] = {
 855	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
 856	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 857	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
 858};
 859
 860static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
 861	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
 862	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
 863	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
 864	[PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
 865	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
 866	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
 867};
 868
 869/* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
 870static const struct mips_perf_event mipsxxcore_cache_map
 871				[PERF_COUNT_HW_CACHE_MAX]
 872				[PERF_COUNT_HW_CACHE_OP_MAX]
 873				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 874[C(L1D)] = {
 875	/*
 876	 * Like some other architectures (e.g. ARM), the performance
 877	 * counters don't differentiate between read and write
 878	 * accesses/misses, so this isn't strictly correct, but it's the
 879	 * best we can do. Writes and reads get combined.
 880	 */
 881	[C(OP_READ)] = {
 882		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
 883		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
 884	},
 885	[C(OP_WRITE)] = {
 886		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
 887		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
 888	},
 889},
 890[C(L1I)] = {
 891	[C(OP_READ)] = {
 892		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
 893		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
 894	},
 895	[C(OP_WRITE)] = {
 896		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
 897		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
 898	},
 899	[C(OP_PREFETCH)] = {
 900		[C(RESULT_ACCESS)]	= { 0x14, CNTR_EVEN, T },
 901		/*
 902		 * Note that MIPS has only "hit" events countable for
 903		 * the prefetch operation.
 904		 */
 905	},
 906},
 907[C(LL)] = {
 908	[C(OP_READ)] = {
 909		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
 910		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
 911	},
 912	[C(OP_WRITE)] = {
 913		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
 914		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
 915	},
 916},
 917[C(DTLB)] = {
 918	[C(OP_READ)] = {
 919		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 920		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 921	},
 922	[C(OP_WRITE)] = {
 923		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 924		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 925	},
 926},
 927[C(ITLB)] = {
 928	[C(OP_READ)] = {
 929		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
 930		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
 931	},
 932	[C(OP_WRITE)] = {
 933		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
 934		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
 935	},
 936},
 937[C(BPU)] = {
 938	/* Using the same code for *HW_BRANCH* */
 939	[C(OP_READ)] = {
 940		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
 941		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
 942	},
 943	[C(OP_WRITE)] = {
 944		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
 945		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
 946	},
 947},
 948};
 949
 950/* 74K/proAptiv core has completely different cache event map. */
 951static const struct mips_perf_event mipsxxcore_cache_map2
 952				[PERF_COUNT_HW_CACHE_MAX]
 953				[PERF_COUNT_HW_CACHE_OP_MAX]
 954				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 955[C(L1D)] = {
 956	/*
 957	 * Like some other architectures (e.g. ARM), the performance
 958	 * counters don't differentiate between read and write
 959	 * accesses/misses, so this isn't strictly correct, but it's the
 960	 * best we can do. Writes and reads get combined.
 961	 */
 962	[C(OP_READ)] = {
 963		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
 964		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
 965	},
 966	[C(OP_WRITE)] = {
 967		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
 968		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
 969	},
 970},
 971[C(L1I)] = {
 972	[C(OP_READ)] = {
 973		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 974		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 975	},
 976	[C(OP_WRITE)] = {
 977		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 978		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 979	},
 980	[C(OP_PREFETCH)] = {
 981		[C(RESULT_ACCESS)]	= { 0x34, CNTR_EVEN, T },
 982		/*
 983		 * Note that MIPS has only "hit" events countable for
 984		 * the prefetch operation.
 985		 */
 986	},
 987},
 988[C(LL)] = {
 989	[C(OP_READ)] = {
 990		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
 991		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN, P },
 992	},
 993	[C(OP_WRITE)] = {
 994		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
 995		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN, P },
 996	},
 997},
 998/*
 999 * 74K core does not have specific DTLB events. proAptiv core has
1000 * "speculative" DTLB events which are numbered 0x63 (even/odd) and
1001 * not included here. One can use raw events if really needed.
1002 */
1003[C(ITLB)] = {
1004	[C(OP_READ)] = {
1005		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1006		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1007	},
1008	[C(OP_WRITE)] = {
1009		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1010		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1011	},
1012},
1013[C(BPU)] = {
1014	/* Using the same code for *HW_BRANCH* */
1015	[C(OP_READ)] = {
1016		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1017		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1018	},
1019	[C(OP_WRITE)] = {
1020		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1021		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1022	},
1023},
1024};
1025
1026static const struct mips_perf_event i6400_cache_map
1027				[PERF_COUNT_HW_CACHE_MAX]
1028				[PERF_COUNT_HW_CACHE_OP_MAX]
1029				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1030[C(L1D)] = {
1031	[C(OP_READ)] = {
1032		[C(RESULT_ACCESS)]	= { 0x46, CNTR_EVEN | CNTR_ODD },
1033		[C(RESULT_MISS)]	= { 0x49, CNTR_EVEN | CNTR_ODD },
1034	},
1035	[C(OP_WRITE)] = {
1036		[C(RESULT_ACCESS)]	= { 0x47, CNTR_EVEN | CNTR_ODD },
1037		[C(RESULT_MISS)]	= { 0x4a, CNTR_EVEN | CNTR_ODD },
1038	},
1039},
1040[C(L1I)] = {
1041	[C(OP_READ)] = {
1042		[C(RESULT_ACCESS)]	= { 0x84, CNTR_EVEN | CNTR_ODD },
1043		[C(RESULT_MISS)]	= { 0x85, CNTR_EVEN | CNTR_ODD },
1044	},
1045},
1046[C(DTLB)] = {
1047	/* Can't distinguish read & write */
1048	[C(OP_READ)] = {
1049		[C(RESULT_ACCESS)]	= { 0x40, CNTR_EVEN | CNTR_ODD },
1050		[C(RESULT_MISS)]	= { 0x41, CNTR_EVEN | CNTR_ODD },
1051	},
1052	[C(OP_WRITE)] = {
1053		[C(RESULT_ACCESS)]	= { 0x40, CNTR_EVEN | CNTR_ODD },
1054		[C(RESULT_MISS)]	= { 0x41, CNTR_EVEN | CNTR_ODD },
1055	},
1056},
1057[C(BPU)] = {
1058	/* Conditional branches / mispredicted */
1059	[C(OP_READ)] = {
1060		[C(RESULT_ACCESS)]	= { 0x15, CNTR_EVEN | CNTR_ODD },
1061		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN | CNTR_ODD },
1062	},
1063},
1064};
1065
1066static const struct mips_perf_event loongson3_cache_map
1067				[PERF_COUNT_HW_CACHE_MAX]
1068				[PERF_COUNT_HW_CACHE_OP_MAX]
1069				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1070[C(L1D)] = {
1071	/*
1072	 * Like some other architectures (e.g. ARM), the performance
1073	 * counters don't differentiate between read and write
1074	 * accesses/misses, so this isn't strictly correct, but it's the
1075	 * best we can do. Writes and reads get combined.
1076	 */
1077	[C(OP_READ)] = {
1078		[C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1079	},
1080	[C(OP_WRITE)] = {
1081		[C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1082	},
1083},
1084[C(L1I)] = {
1085	[C(OP_READ)] = {
1086		[C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1087	},
1088	[C(OP_WRITE)] = {
1089		[C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1090	},
1091},
1092[C(DTLB)] = {
1093	[C(OP_READ)] = {
1094		[C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1095	},
1096	[C(OP_WRITE)] = {
1097		[C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1098	},
1099},
1100[C(ITLB)] = {
1101	[C(OP_READ)] = {
1102		[C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1103	},
1104	[C(OP_WRITE)] = {
1105		[C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1106	},
1107},
1108[C(BPU)] = {
1109	/* Using the same code for *HW_BRANCH* */
1110	[C(OP_READ)] = {
1111		[C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN },
1112		[C(RESULT_MISS)]        = { 0x02, CNTR_ODD },
1113	},
1114	[C(OP_WRITE)] = {
1115		[C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN },
1116		[C(RESULT_MISS)]        = { 0x02, CNTR_ODD },
1117	},
1118},
1119};
1120
1121/* BMIPS5000 */
1122static const struct mips_perf_event bmips5000_cache_map
1123				[PERF_COUNT_HW_CACHE_MAX]
1124				[PERF_COUNT_HW_CACHE_OP_MAX]
1125				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1126[C(L1D)] = {
1127	/*
1128	 * Like some other architectures (e.g. ARM), the performance
1129	 * counters don't differentiate between read and write
1130	 * accesses/misses, so this isn't strictly correct, but it's the
1131	 * best we can do. Writes and reads get combined.
1132	 */
1133	[C(OP_READ)] = {
1134		[C(RESULT_ACCESS)]	= { 12, CNTR_EVEN, T },
1135		[C(RESULT_MISS)]	= { 12, CNTR_ODD, T },
1136	},
1137	[C(OP_WRITE)] = {
1138		[C(RESULT_ACCESS)]	= { 12, CNTR_EVEN, T },
1139		[C(RESULT_MISS)]	= { 12, CNTR_ODD, T },
1140	},
1141},
1142[C(L1I)] = {
1143	[C(OP_READ)] = {
1144		[C(RESULT_ACCESS)]	= { 10, CNTR_EVEN, T },
1145		[C(RESULT_MISS)]	= { 10, CNTR_ODD, T },
1146	},
1147	[C(OP_WRITE)] = {
1148		[C(RESULT_ACCESS)]	= { 10, CNTR_EVEN, T },
1149		[C(RESULT_MISS)]	= { 10, CNTR_ODD, T },
1150	},
1151	[C(OP_PREFETCH)] = {
1152		[C(RESULT_ACCESS)]	= { 23, CNTR_EVEN, T },
1153		/*
1154		 * Note that MIPS has only "hit" events countable for
1155		 * the prefetch operation.
1156		 */
1157	},
1158},
1159[C(LL)] = {
1160	[C(OP_READ)] = {
1161		[C(RESULT_ACCESS)]	= { 28, CNTR_EVEN, P },
1162		[C(RESULT_MISS)]	= { 28, CNTR_ODD, P },
1163	},
1164	[C(OP_WRITE)] = {
1165		[C(RESULT_ACCESS)]	= { 28, CNTR_EVEN, P },
1166		[C(RESULT_MISS)]	= { 28, CNTR_ODD, P },
1167	},
1168},
1169[C(BPU)] = {
1170	/* Using the same code for *HW_BRANCH* */
1171	[C(OP_READ)] = {
1172		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1173	},
1174	[C(OP_WRITE)] = {
1175		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1176	},
1177},
1178};
1179
1180
1181static const struct mips_perf_event octeon_cache_map
1182				[PERF_COUNT_HW_CACHE_MAX]
1183				[PERF_COUNT_HW_CACHE_OP_MAX]
1184				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1185[C(L1D)] = {
1186	[C(OP_READ)] = {
1187		[C(RESULT_ACCESS)]	= { 0x2b, CNTR_ALL },
1188		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL },
1189	},
1190	[C(OP_WRITE)] = {
1191		[C(RESULT_ACCESS)]	= { 0x30, CNTR_ALL },
1192	},
1193},
1194[C(L1I)] = {
1195	[C(OP_READ)] = {
1196		[C(RESULT_ACCESS)]	= { 0x18, CNTR_ALL },
1197	},
1198	[C(OP_PREFETCH)] = {
1199		[C(RESULT_ACCESS)]	= { 0x19, CNTR_ALL },
1200	},
1201},
1202[C(DTLB)] = {
1203	/*
1204	 * Only general DTLB misses are counted use the same event for
1205	 * read and write.
1206	 */
1207	[C(OP_READ)] = {
1208		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1209	},
1210	[C(OP_WRITE)] = {
1211		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1212	},
1213},
1214[C(ITLB)] = {
1215	[C(OP_READ)] = {
1216		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL },
1217	},
1218},
1219};
1220
1221static const struct mips_perf_event xlp_cache_map
1222				[PERF_COUNT_HW_CACHE_MAX]
1223				[PERF_COUNT_HW_CACHE_OP_MAX]
1224				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1225[C(L1D)] = {
1226	[C(OP_READ)] = {
1227		[C(RESULT_ACCESS)]	= { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1228		[C(RESULT_MISS)]	= { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1229	},
1230	[C(OP_WRITE)] = {
1231		[C(RESULT_ACCESS)]	= { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1232		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1233	},
1234},
1235[C(L1I)] = {
1236	[C(OP_READ)] = {
1237		[C(RESULT_ACCESS)]	= { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1238		[C(RESULT_MISS)]	= { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1239	},
1240},
1241[C(LL)] = {
1242	[C(OP_READ)] = {
1243		[C(RESULT_ACCESS)]	= { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1244		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1245	},
1246	[C(OP_WRITE)] = {
1247		[C(RESULT_ACCESS)]	= { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1248		[C(RESULT_MISS)]	= { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1249	},
1250},
1251[C(DTLB)] = {
1252	/*
1253	 * Only general DTLB misses are counted use the same event for
1254	 * read and write.
1255	 */
1256	[C(OP_READ)] = {
1257		[C(RESULT_MISS)]	= { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1258	},
1259	[C(OP_WRITE)] = {
1260		[C(RESULT_MISS)]	= { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1261	},
1262},
1263[C(ITLB)] = {
1264	[C(OP_READ)] = {
1265		[C(RESULT_MISS)]	= { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1266	},
1267	[C(OP_WRITE)] = {
1268		[C(RESULT_MISS)]	= { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1269	},
1270},
1271[C(BPU)] = {
1272	[C(OP_READ)] = {
1273		[C(RESULT_MISS)]	= { 0x25, CNTR_ALL },
1274	},
1275},
1276};
1277
1278#ifdef CONFIG_MIPS_MT_SMP
1279static void check_and_calc_range(struct perf_event *event,
1280				 const struct mips_perf_event *pev)
1281{
1282	struct hw_perf_event *hwc = &event->hw;
1283
1284	if (event->cpu >= 0) {
1285		if (pev->range > V) {
1286			/*
1287			 * The user selected an event that is processor
1288			 * wide, while expecting it to be VPE wide.
1289			 */
1290			hwc->config_base |= M_TC_EN_ALL;
1291		} else {
1292			/*
1293			 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1294			 * for both CPUs.
1295			 */
1296			hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1297			hwc->config_base |= M_TC_EN_VPE;
1298		}
1299	} else
1300		hwc->config_base |= M_TC_EN_ALL;
1301}
1302#else
1303static void check_and_calc_range(struct perf_event *event,
1304				 const struct mips_perf_event *pev)
1305{
1306}
1307#endif
1308
1309static int __hw_perf_event_init(struct perf_event *event)
1310{
1311	struct perf_event_attr *attr = &event->attr;
1312	struct hw_perf_event *hwc = &event->hw;
1313	const struct mips_perf_event *pev;
1314	int err;
1315
1316	/* Returning MIPS event descriptor for generic perf event. */
1317	if (PERF_TYPE_HARDWARE == event->attr.type) {
1318		if (event->attr.config >= PERF_COUNT_HW_MAX)
1319			return -EINVAL;
1320		pev = mipspmu_map_general_event(event->attr.config);
1321	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1322		pev = mipspmu_map_cache_event(event->attr.config);
1323	} else if (PERF_TYPE_RAW == event->attr.type) {
1324		/* We are working on the global raw event. */
1325		mutex_lock(&raw_event_mutex);
1326		pev = mipspmu.map_raw_event(event->attr.config);
1327	} else {
1328		/* The event type is not (yet) supported. */
1329		return -EOPNOTSUPP;
1330	}
1331
1332	if (IS_ERR(pev)) {
1333		if (PERF_TYPE_RAW == event->attr.type)
1334			mutex_unlock(&raw_event_mutex);
1335		return PTR_ERR(pev);
1336	}
1337
1338	/*
1339	 * We allow max flexibility on how each individual counter shared
1340	 * by the single CPU operates (the mode exclusion and the range).
1341	 */
1342	hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1343
1344	/* Calculate range bits and validate it. */
1345	if (num_possible_cpus() > 1)
1346		check_and_calc_range(event, pev);
1347
1348	hwc->event_base = mipspmu_perf_event_encode(pev);
1349	if (PERF_TYPE_RAW == event->attr.type)
1350		mutex_unlock(&raw_event_mutex);
1351
1352	if (!attr->exclude_user)
1353		hwc->config_base |= M_PERFCTL_USER;
1354	if (!attr->exclude_kernel) {
1355		hwc->config_base |= M_PERFCTL_KERNEL;
1356		/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1357		hwc->config_base |= M_PERFCTL_EXL;
1358	}
1359	if (!attr->exclude_hv)
1360		hwc->config_base |= M_PERFCTL_SUPERVISOR;
1361
1362	hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1363	/*
1364	 * The event can belong to another cpu. We do not assign a local
1365	 * counter for it for now.
1366	 */
1367	hwc->idx = -1;
1368	hwc->config = 0;
1369
1370	if (!hwc->sample_period) {
1371		hwc->sample_period  = mipspmu.max_period;
1372		hwc->last_period    = hwc->sample_period;
1373		local64_set(&hwc->period_left, hwc->sample_period);
1374	}
1375
1376	err = 0;
1377	if (event->group_leader != event)
1378		err = validate_group(event);
1379
1380	event->destroy = hw_perf_event_destroy;
1381
1382	if (err)
1383		event->destroy(event);
1384
1385	return err;
1386}
1387
1388static void pause_local_counters(void)
1389{
1390	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1391	int ctr = mipspmu.num_counters;
1392	unsigned long flags;
1393
1394	local_irq_save(flags);
1395	do {
1396		ctr--;
1397		cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1398		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1399					 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1400	} while (ctr > 0);
1401	local_irq_restore(flags);
1402}
1403
1404static void resume_local_counters(void)
1405{
1406	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1407	int ctr = mipspmu.num_counters;
1408
1409	do {
1410		ctr--;
1411		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1412	} while (ctr > 0);
1413}
1414
1415static int mipsxx_pmu_handle_shared_irq(void)
1416{
1417	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1418	struct perf_sample_data data;
1419	unsigned int counters = mipspmu.num_counters;
1420	u64 counter;
1421	int handled = IRQ_NONE;
1422	struct pt_regs *regs;
1423
1424	if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1425		return handled;
1426	/*
1427	 * First we pause the local counters, so that when we are locked
1428	 * here, the counters are all paused. When it gets locked due to
1429	 * perf_disable(), the timer interrupt handler will be delayed.
1430	 *
1431	 * See also mipsxx_pmu_start().
1432	 */
1433	pause_local_counters();
1434#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1435	read_lock(&pmuint_rwlock);
1436#endif
1437
1438	regs = get_irq_regs();
1439
1440	perf_sample_data_init(&data, 0, 0);
1441
1442	switch (counters) {
1443#define HANDLE_COUNTER(n)						\
1444	case n + 1:							\
1445		if (test_bit(n, cpuc->used_mask)) {			\
1446			counter = mipspmu.read_counter(n);		\
1447			if (counter & mipspmu.overflow) {		\
1448				handle_associated_event(cpuc, n, &data, regs); \
1449				handled = IRQ_HANDLED;			\
1450			}						\
1451		}
1452	HANDLE_COUNTER(3)
1453	HANDLE_COUNTER(2)
1454	HANDLE_COUNTER(1)
1455	HANDLE_COUNTER(0)
1456	}
1457
 
 
 
 
 
1458	/*
1459	 * Do all the work for the pending perf events. We can do this
1460	 * in here because the performance counter interrupt is a regular
1461	 * interrupt, not NMI.
1462	 */
1463	if (handled == IRQ_HANDLED)
1464		irq_work_run();
1465
1466#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1467	read_unlock(&pmuint_rwlock);
1468#endif
1469	resume_local_counters();
1470	return handled;
1471}
1472
1473static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1474{
1475	return mipsxx_pmu_handle_shared_irq();
1476}
1477
1478/* 24K */
1479#define IS_BOTH_COUNTERS_24K_EVENT(b)					\
1480	((b) == 0 || (b) == 1 || (b) == 11)
1481
1482/* 34K */
1483#define IS_BOTH_COUNTERS_34K_EVENT(b)					\
1484	((b) == 0 || (b) == 1 || (b) == 11)
1485#ifdef CONFIG_MIPS_MT_SMP
1486#define IS_RANGE_P_34K_EVENT(r, b)					\
1487	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1488	 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||		\
1489	 (r) == 176 || ((b) >= 50 && (b) <= 55) ||			\
1490	 ((b) >= 64 && (b) <= 67))
1491#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1492#endif
1493
1494/* 74K */
1495#define IS_BOTH_COUNTERS_74K_EVENT(b)					\
1496	((b) == 0 || (b) == 1)
1497
1498/* proAptiv */
1499#define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b)				\
1500	((b) == 0 || (b) == 1)
1501/* P5600 */
1502#define IS_BOTH_COUNTERS_P5600_EVENT(b)					\
1503	((b) == 0 || (b) == 1)
1504
1505/* 1004K */
1506#define IS_BOTH_COUNTERS_1004K_EVENT(b)					\
1507	((b) == 0 || (b) == 1 || (b) == 11)
1508#ifdef CONFIG_MIPS_MT_SMP
1509#define IS_RANGE_P_1004K_EVENT(r, b)					\
1510	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1511	 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||		\
1512	 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||	\
1513	 (r) == 188 || (b) == 61 || (b) == 62 ||			\
1514	 ((b) >= 64 && (b) <= 67))
1515#define IS_RANGE_V_1004K_EVENT(r)	((r) == 47)
1516#endif
1517
1518/* interAptiv */
1519#define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b)				\
1520	((b) == 0 || (b) == 1 || (b) == 11)
1521#ifdef CONFIG_MIPS_MT_SMP
1522/* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1523#define IS_RANGE_P_INTERAPTIV_EVENT(r, b)				\
1524	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1525	 (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 ||		\
1526	 (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 &&		\
1527	 (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 ||		\
1528	 ((b) >= 64 && (b) <= 67))
1529#define IS_RANGE_V_INTERAPTIV_EVENT(r)	((r) == 47 || (r) == 175)
1530#endif
1531
1532/* BMIPS5000 */
1533#define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b)				\
1534	((b) == 0 || (b) == 1)
1535
1536
1537/*
1538 * For most cores the user can use 0-255 raw events, where 0-127 for the events
1539 * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1540 * indicate the even/odd bank selector. So, for example, when user wants to take
1541 * the Event Num of 15 for odd counters (by referring to the user manual), then
1542 * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1543 * to be used.
1544 *
1545 * Some newer cores have even more events, in which case the user can use raw
1546 * events 0-511, where 0-255 are for the events of even counters, and 256-511
1547 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1548 */
1549static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1550{
1551	/* currently most cores have 7-bit event numbers */
1552	unsigned int raw_id = config & 0xff;
1553	unsigned int base_id = raw_id & 0x7f;
1554
1555	switch (current_cpu_type()) {
1556	case CPU_24K:
1557		if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1558			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1559		else
1560			raw_event.cntr_mask =
1561				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1562#ifdef CONFIG_MIPS_MT_SMP
1563		/*
1564		 * This is actually doing nothing. Non-multithreading
1565		 * CPUs will not check and calculate the range.
1566		 */
1567		raw_event.range = P;
1568#endif
1569		break;
1570	case CPU_34K:
1571		if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1572			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1573		else
1574			raw_event.cntr_mask =
1575				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1576#ifdef CONFIG_MIPS_MT_SMP
1577		if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1578			raw_event.range = P;
1579		else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1580			raw_event.range = V;
1581		else
1582			raw_event.range = T;
1583#endif
1584		break;
1585	case CPU_74K:
1586	case CPU_1074K:
1587		if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1588			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1589		else
1590			raw_event.cntr_mask =
1591				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1592#ifdef CONFIG_MIPS_MT_SMP
1593		raw_event.range = P;
1594#endif
1595		break;
1596	case CPU_PROAPTIV:
1597		if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1598			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1599		else
1600			raw_event.cntr_mask =
1601				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1602#ifdef CONFIG_MIPS_MT_SMP
1603		raw_event.range = P;
1604#endif
1605		break;
1606	case CPU_P5600:
1607	case CPU_P6600:
1608	case CPU_I6400:
1609		/* 8-bit event numbers */
1610		raw_id = config & 0x1ff;
1611		base_id = raw_id & 0xff;
1612		if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1613			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1614		else
1615			raw_event.cntr_mask =
1616				raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1617#ifdef CONFIG_MIPS_MT_SMP
1618		raw_event.range = P;
1619#endif
1620		break;
 
 
 
 
 
 
1621	case CPU_1004K:
1622		if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1623			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1624		else
1625			raw_event.cntr_mask =
1626				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1627#ifdef CONFIG_MIPS_MT_SMP
1628		if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1629			raw_event.range = P;
1630		else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1631			raw_event.range = V;
1632		else
1633			raw_event.range = T;
1634#endif
1635		break;
1636	case CPU_INTERAPTIV:
1637		if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1638			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1639		else
1640			raw_event.cntr_mask =
1641				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1642#ifdef CONFIG_MIPS_MT_SMP
1643		if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1644			raw_event.range = P;
1645		else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1646			raw_event.range = V;
1647		else
1648			raw_event.range = T;
1649#endif
1650		break;
1651	case CPU_BMIPS5000:
1652		if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1653			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1654		else
1655			raw_event.cntr_mask =
1656				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1657		break;
1658	case CPU_LOONGSON3:
1659		raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1660	break;
1661	}
1662
1663	raw_event.event_id = base_id;
1664
1665	return &raw_event;
1666}
1667
1668static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1669{
1670	unsigned int raw_id = config & 0xff;
1671	unsigned int base_id = raw_id & 0x7f;
1672
1673
1674	raw_event.cntr_mask = CNTR_ALL;
1675	raw_event.event_id = base_id;
1676
1677	if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1678		if (base_id > 0x42)
1679			return ERR_PTR(-EOPNOTSUPP);
1680	} else {
1681		if (base_id > 0x3a)
1682			return ERR_PTR(-EOPNOTSUPP);
1683	}
1684
1685	switch (base_id) {
1686	case 0x00:
1687	case 0x0f:
1688	case 0x1e:
1689	case 0x1f:
1690	case 0x2f:
1691	case 0x34:
1692	case 0x3b ... 0x3f:
1693		return ERR_PTR(-EOPNOTSUPP);
1694	default:
1695		break;
1696	}
1697
1698	return &raw_event;
1699}
1700
1701static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1702{
1703	unsigned int raw_id = config & 0xff;
1704
1705	/* Only 1-63 are defined */
1706	if ((raw_id < 0x01) || (raw_id > 0x3f))
1707		return ERR_PTR(-EOPNOTSUPP);
1708
1709	raw_event.cntr_mask = CNTR_ALL;
1710	raw_event.event_id = raw_id;
1711
1712	return &raw_event;
1713}
1714
1715static int __init
1716init_hw_perf_events(void)
1717{
1718	int counters, irq;
1719	int counter_bits;
1720
1721	pr_info("Performance counters: ");
1722
1723	counters = n_counters();
1724	if (counters == 0) {
1725		pr_cont("No available PMU.\n");
1726		return -ENODEV;
1727	}
1728
1729#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1730	cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1731	if (!cpu_has_mipsmt_pertccounters)
1732		counters = counters_total_to_per_cpu(counters);
1733#endif
1734
1735	if (get_c0_perfcount_int)
1736		irq = get_c0_perfcount_int();
1737	else if (cp0_perfcount_irq >= 0)
1738		irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1739	else
1740		irq = -1;
1741
1742	mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1743
1744	switch (current_cpu_type()) {
1745	case CPU_24K:
1746		mipspmu.name = "mips/24K";
1747		mipspmu.general_event_map = &mipsxxcore_event_map;
1748		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1749		break;
1750	case CPU_34K:
1751		mipspmu.name = "mips/34K";
1752		mipspmu.general_event_map = &mipsxxcore_event_map;
1753		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1754		break;
1755	case CPU_74K:
1756		mipspmu.name = "mips/74K";
1757		mipspmu.general_event_map = &mipsxxcore_event_map2;
1758		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1759		break;
1760	case CPU_PROAPTIV:
1761		mipspmu.name = "mips/proAptiv";
1762		mipspmu.general_event_map = &mipsxxcore_event_map2;
1763		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1764		break;
1765	case CPU_P5600:
1766		mipspmu.name = "mips/P5600";
1767		mipspmu.general_event_map = &mipsxxcore_event_map2;
1768		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1769		break;
1770	case CPU_P6600:
1771		mipspmu.name = "mips/P6600";
1772		mipspmu.general_event_map = &mipsxxcore_event_map2;
1773		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1774		break;
1775	case CPU_I6400:
1776		mipspmu.name = "mips/I6400";
1777		mipspmu.general_event_map = &i6400_event_map;
1778		mipspmu.cache_event_map = &i6400_cache_map;
 
 
 
 
 
1779		break;
1780	case CPU_1004K:
1781		mipspmu.name = "mips/1004K";
1782		mipspmu.general_event_map = &mipsxxcore_event_map;
1783		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1784		break;
1785	case CPU_1074K:
1786		mipspmu.name = "mips/1074K";
1787		mipspmu.general_event_map = &mipsxxcore_event_map;
1788		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1789		break;
1790	case CPU_INTERAPTIV:
1791		mipspmu.name = "mips/interAptiv";
1792		mipspmu.general_event_map = &mipsxxcore_event_map;
1793		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1794		break;
1795	case CPU_LOONGSON1:
1796		mipspmu.name = "mips/loongson1";
1797		mipspmu.general_event_map = &mipsxxcore_event_map;
1798		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1799		break;
1800	case CPU_LOONGSON3:
1801		mipspmu.name = "mips/loongson3";
1802		mipspmu.general_event_map = &loongson3_event_map;
1803		mipspmu.cache_event_map = &loongson3_cache_map;
1804		break;
1805	case CPU_CAVIUM_OCTEON:
1806	case CPU_CAVIUM_OCTEON_PLUS:
1807	case CPU_CAVIUM_OCTEON2:
1808		mipspmu.name = "octeon";
1809		mipspmu.general_event_map = &octeon_event_map;
1810		mipspmu.cache_event_map = &octeon_cache_map;
1811		mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1812		break;
1813	case CPU_BMIPS5000:
1814		mipspmu.name = "BMIPS5000";
1815		mipspmu.general_event_map = &bmips5000_event_map;
1816		mipspmu.cache_event_map = &bmips5000_cache_map;
1817		break;
1818	case CPU_XLP:
1819		mipspmu.name = "xlp";
1820		mipspmu.general_event_map = &xlp_event_map;
1821		mipspmu.cache_event_map = &xlp_cache_map;
1822		mipspmu.map_raw_event = xlp_pmu_map_raw_event;
1823		break;
1824	default:
1825		pr_cont("Either hardware does not support performance "
1826			"counters, or not yet implemented.\n");
1827		return -ENODEV;
1828	}
1829
1830	mipspmu.num_counters = counters;
1831	mipspmu.irq = irq;
1832
1833	if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1834		mipspmu.max_period = (1ULL << 63) - 1;
1835		mipspmu.valid_count = (1ULL << 63) - 1;
1836		mipspmu.overflow = 1ULL << 63;
1837		mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1838		mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1839		counter_bits = 64;
1840	} else {
1841		mipspmu.max_period = (1ULL << 31) - 1;
1842		mipspmu.valid_count = (1ULL << 31) - 1;
1843		mipspmu.overflow = 1ULL << 31;
1844		mipspmu.read_counter = mipsxx_pmu_read_counter;
1845		mipspmu.write_counter = mipsxx_pmu_write_counter;
1846		counter_bits = 32;
1847	}
1848
1849	on_each_cpu(reset_counters, (void *)(long)counters, 1);
1850
1851	pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1852		"CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1853		irq < 0 ? " (share with timer interrupt)" : "");
1854
1855	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1856
1857	return 0;
1858}
1859early_initcall(init_hw_perf_events);