Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2017 ARM Ltd.
  4 * Author: Marc Zyngier <marc.zyngier@arm.com>
  5 */
  6
  7#include <linux/interrupt.h>
  8#include <linux/irq.h>
  9#include <linux/irqdomain.h>
 10#include <linux/kvm_host.h>
 11#include <linux/irqchip/arm-gic-v3.h>
 12
 13#include "vgic.h"
 14
 15/*
 16 * How KVM uses GICv4 (insert rude comments here):
 17 *
 18 * The vgic-v4 layer acts as a bridge between several entities:
 19 * - The GICv4 ITS representation offered by the ITS driver
 20 * - VFIO, which is in charge of the PCI endpoint
 21 * - The virtual ITS, which is the only thing the guest sees
 22 *
 23 * The configuration of VLPIs is triggered by a callback from VFIO,
 24 * instructing KVM that a PCI device has been configured to deliver
 25 * MSIs to a vITS.
 26 *
 27 * kvm_vgic_v4_set_forwarding() is thus called with the routing entry,
 28 * and this is used to find the corresponding vITS data structures
 29 * (ITS instance, device, event and irq) using a process that is
 30 * extremely similar to the injection of an MSI.
 31 *
 32 * At this stage, we can link the guest's view of an LPI (uniquely
 33 * identified by the routing entry) and the host irq, using the GICv4
 34 * driver mapping operation. Should the mapping succeed, we've then
 35 * successfully upgraded the guest's LPI to a VLPI. We can then start
 36 * with updating GICv4's view of the property table and generating an
 37 * INValidation in order to kickstart the delivery of this VLPI to the
 38 * guest directly, without software intervention. Well, almost.
 39 *
 40 * When the PCI endpoint is deconfigured, this operation is reversed
 41 * with VFIO calling kvm_vgic_v4_unset_forwarding().
 42 *
 43 * Once the VLPI has been mapped, it needs to follow any change the
 44 * guest performs on its LPI through the vITS. For that, a number of
 45 * command handlers have hooks to communicate these changes to the HW:
 46 * - Any invalidation triggers a call to its_prop_update_vlpi()
 47 * - The INT command results in a irq_set_irqchip_state(), which
 48 *   generates an INT on the corresponding VLPI.
 49 * - The CLEAR command results in a irq_set_irqchip_state(), which
 50 *   generates an CLEAR on the corresponding VLPI.
 51 * - DISCARD translates into an unmap, similar to a call to
 52 *   kvm_vgic_v4_unset_forwarding().
 53 * - MOVI is translated by an update of the existing mapping, changing
 54 *   the target vcpu, resulting in a VMOVI being generated.
 55 * - MOVALL is translated by a string of mapping updates (similar to
 56 *   the handling of MOVI). MOVALL is horrible.
 57 *
 58 * Note that a DISCARD/MAPTI sequence emitted from the guest without
 59 * reprogramming the PCI endpoint after MAPTI does not result in a
 60 * VLPI being mapped, as there is no callback from VFIO (the guest
 61 * will get the interrupt via the normal SW injection). Fixing this is
 62 * not trivial, and requires some horrible messing with the VFIO
 63 * internals. Not fun. Don't do that.
 64 *
 65 * Then there is the scheduling. Each time a vcpu is about to run on a
 66 * physical CPU, KVM must tell the corresponding redistributor about
 67 * it. And if we've migrated our vcpu from one CPU to another, we must
 68 * tell the ITS (so that the messages reach the right redistributor).
 69 * This is done in two steps: first issue a irq_set_affinity() on the
 70 * irq corresponding to the vcpu, then call its_schedule_vpe(). You
 71 * must be in a non-preemptible context. On exit, another call to
 72 * its_schedule_vpe() tells the redistributor that we're done with the
 73 * vcpu.
 74 *
 75 * Finally, the doorbell handling: Each vcpu is allocated an interrupt
 76 * which will fire each time a VLPI is made pending whilst the vcpu is
 77 * not running. Each time the vcpu gets blocked, the doorbell
 78 * interrupt gets enabled. When the vcpu is unblocked (for whatever
 79 * reason), the doorbell interrupt is disabled.
 80 */
 81
 82#define DB_IRQ_FLAGS	(IRQ_NOAUTOEN | IRQ_DISABLE_UNLAZY | IRQ_NO_BALANCING)
 83
 84static irqreturn_t vgic_v4_doorbell_handler(int irq, void *info)
 85{
 86	struct kvm_vcpu *vcpu = info;
 87
 88	vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last = true;
 89	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
 90	kvm_vcpu_kick(vcpu);
 91
 92	return IRQ_HANDLED;
 93}
 94
 95/**
 96 * vgic_v4_init - Initialize the GICv4 data structures
 97 * @kvm:	Pointer to the VM being initialized
 98 *
 99 * We may be called each time a vITS is created, or when the
100 * vgic is initialized. This relies on kvm->lock to be
101 * held. In both cases, the number of vcpus should now be
102 * fixed.
103 */
104int vgic_v4_init(struct kvm *kvm)
105{
106	struct vgic_dist *dist = &kvm->arch.vgic;
107	struct kvm_vcpu *vcpu;
108	int i, nr_vcpus, ret;
109
110	if (!kvm_vgic_global_state.has_gicv4)
111		return 0; /* Nothing to see here... move along. */
112
113	if (dist->its_vm.vpes)
114		return 0;
115
116	nr_vcpus = atomic_read(&kvm->online_vcpus);
117
118	dist->its_vm.vpes = kcalloc(nr_vcpus, sizeof(*dist->its_vm.vpes),
119				    GFP_KERNEL);
120	if (!dist->its_vm.vpes)
121		return -ENOMEM;
122
123	dist->its_vm.nr_vpes = nr_vcpus;
124
125	kvm_for_each_vcpu(i, vcpu, kvm)
126		dist->its_vm.vpes[i] = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
127
128	ret = its_alloc_vcpu_irqs(&dist->its_vm);
129	if (ret < 0) {
130		kvm_err("VPE IRQ allocation failure\n");
131		kfree(dist->its_vm.vpes);
132		dist->its_vm.nr_vpes = 0;
133		dist->its_vm.vpes = NULL;
134		return ret;
135	}
136
137	kvm_for_each_vcpu(i, vcpu, kvm) {
138		int irq = dist->its_vm.vpes[i]->irq;
139
140		/*
141		 * Don't automatically enable the doorbell, as we're
142		 * flipping it back and forth when the vcpu gets
143		 * blocked. Also disable the lazy disabling, as the
144		 * doorbell could kick us out of the guest too
145		 * early...
146		 */
147		irq_set_status_flags(irq, DB_IRQ_FLAGS);
148		ret = request_irq(irq, vgic_v4_doorbell_handler,
149				  0, "vcpu", vcpu);
150		if (ret) {
151			kvm_err("failed to allocate vcpu IRQ%d\n", irq);
152			/*
153			 * Trick: adjust the number of vpes so we know
154			 * how many to nuke on teardown...
155			 */
156			dist->its_vm.nr_vpes = i;
157			break;
158		}
159	}
160
161	if (ret)
162		vgic_v4_teardown(kvm);
163
164	return ret;
165}
166
167/**
168 * vgic_v4_teardown - Free the GICv4 data structures
169 * @kvm:	Pointer to the VM being destroyed
170 *
171 * Relies on kvm->lock to be held.
172 */
173void vgic_v4_teardown(struct kvm *kvm)
174{
175	struct its_vm *its_vm = &kvm->arch.vgic.its_vm;
176	int i;
177
178	if (!its_vm->vpes)
179		return;
180
181	for (i = 0; i < its_vm->nr_vpes; i++) {
182		struct kvm_vcpu *vcpu = kvm_get_vcpu(kvm, i);
183		int irq = its_vm->vpes[i]->irq;
184
185		irq_clear_status_flags(irq, DB_IRQ_FLAGS);
186		free_irq(irq, vcpu);
187	}
188
189	its_free_vcpu_irqs(its_vm);
190	kfree(its_vm->vpes);
191	its_vm->nr_vpes = 0;
192	its_vm->vpes = NULL;
193}
194
195int vgic_v4_sync_hwstate(struct kvm_vcpu *vcpu)
196{
197	if (!vgic_supports_direct_msis(vcpu->kvm))
198		return 0;
199
200	return its_schedule_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe, false);
201}
202
203int vgic_v4_flush_hwstate(struct kvm_vcpu *vcpu)
204{
205	int irq = vcpu->arch.vgic_cpu.vgic_v3.its_vpe.irq;
206	int err;
207
208	if (!vgic_supports_direct_msis(vcpu->kvm))
209		return 0;
210
211	/*
212	 * Before making the VPE resident, make sure the redistributor
213	 * corresponding to our current CPU expects us here. See the
214	 * doc in drivers/irqchip/irq-gic-v4.c to understand how this
215	 * turns into a VMOVP command at the ITS level.
216	 */
217	err = irq_set_affinity(irq, cpumask_of(smp_processor_id()));
218	if (err)
219		return err;
220
221	err = its_schedule_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe, true);
222	if (err)
223		return err;
224
225	/*
226	 * Now that the VPE is resident, let's get rid of a potential
227	 * doorbell interrupt that would still be pending.
228	 */
229	err = irq_set_irqchip_state(irq, IRQCHIP_STATE_PENDING, false);
230
231	return err;
232}
233
234static struct vgic_its *vgic_get_its(struct kvm *kvm,
235				     struct kvm_kernel_irq_routing_entry *irq_entry)
236{
237	struct kvm_msi msi  = (struct kvm_msi) {
238		.address_lo	= irq_entry->msi.address_lo,
239		.address_hi	= irq_entry->msi.address_hi,
240		.data		= irq_entry->msi.data,
241		.flags		= irq_entry->msi.flags,
242		.devid		= irq_entry->msi.devid,
243	};
244
245	return vgic_msi_to_its(kvm, &msi);
246}
247
248int kvm_vgic_v4_set_forwarding(struct kvm *kvm, int virq,
249			       struct kvm_kernel_irq_routing_entry *irq_entry)
250{
251	struct vgic_its *its;
252	struct vgic_irq *irq;
253	struct its_vlpi_map map;
254	int ret;
255
256	if (!vgic_supports_direct_msis(kvm))
257		return 0;
258
259	/*
260	 * Get the ITS, and escape early on error (not a valid
261	 * doorbell for any of our vITSs).
262	 */
263	its = vgic_get_its(kvm, irq_entry);
264	if (IS_ERR(its))
265		return 0;
266
267	mutex_lock(&its->its_lock);
268
269	/* Perform then actual DevID/EventID -> LPI translation. */
270	ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
271				   irq_entry->msi.data, &irq);
272	if (ret)
273		goto out;
274
275	/*
276	 * Emit the mapping request. If it fails, the ITS probably
277	 * isn't v4 compatible, so let's silently bail out. Holding
278	 * the ITS lock should ensure that nothing can modify the
279	 * target vcpu.
280	 */
281	map = (struct its_vlpi_map) {
282		.vm		= &kvm->arch.vgic.its_vm,
283		.vpe		= &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe,
284		.vintid		= irq->intid,
285		.properties	= ((irq->priority & 0xfc) |
286				   (irq->enabled ? LPI_PROP_ENABLED : 0) |
287				   LPI_PROP_GROUP1),
288		.db_enabled	= true,
289	};
290
291	ret = its_map_vlpi(virq, &map);
292	if (ret)
293		goto out;
294
295	irq->hw		= true;
296	irq->host_irq	= virq;
297
298out:
299	mutex_unlock(&its->its_lock);
300	return ret;
301}
302
303int kvm_vgic_v4_unset_forwarding(struct kvm *kvm, int virq,
304				 struct kvm_kernel_irq_routing_entry *irq_entry)
305{
306	struct vgic_its *its;
307	struct vgic_irq *irq;
308	int ret;
309
310	if (!vgic_supports_direct_msis(kvm))
311		return 0;
312
313	/*
314	 * Get the ITS, and escape early on error (not a valid
315	 * doorbell for any of our vITSs).
316	 */
317	its = vgic_get_its(kvm, irq_entry);
318	if (IS_ERR(its))
319		return 0;
320
321	mutex_lock(&its->its_lock);
322
323	ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
324				   irq_entry->msi.data, &irq);
325	if (ret)
326		goto out;
327
328	WARN_ON(!(irq->hw && irq->host_irq == virq));
329	if (irq->hw) {
330		irq->hw = false;
331		ret = its_unmap_vlpi(virq);
332	}
333
334out:
335	mutex_unlock(&its->its_lock);
336	return ret;
337}
338
339void kvm_vgic_v4_enable_doorbell(struct kvm_vcpu *vcpu)
340{
341	if (vgic_supports_direct_msis(vcpu->kvm)) {
342		int irq = vcpu->arch.vgic_cpu.vgic_v3.its_vpe.irq;
343		if (irq)
344			enable_irq(irq);
345	}
346}
347
348void kvm_vgic_v4_disable_doorbell(struct kvm_vcpu *vcpu)
349{
350	if (vgic_supports_direct_msis(vcpu->kvm)) {
351		int irq = vcpu->arch.vgic_cpu.vgic_v3.its_vpe.irq;
352		if (irq)
353			disable_irq(irq);
354	}
355}