Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * GICv3 ITS emulation
   4 *
   5 * Copyright (C) 2015,2016 ARM Ltd.
   6 * Author: Andre Przywara <andre.przywara@arm.com>
   7 */
   8
   9#include <linux/cpu.h>
  10#include <linux/kvm.h>
  11#include <linux/kvm_host.h>
  12#include <linux/interrupt.h>
  13#include <linux/list.h>
  14#include <linux/uaccess.h>
  15#include <linux/list_sort.h>
  16
  17#include <linux/irqchip/arm-gic-v3.h>
  18
  19#include <asm/kvm_emulate.h>
  20#include <asm/kvm_arm.h>
  21#include <asm/kvm_mmu.h>
  22
  23#include "vgic.h"
  24#include "vgic-mmio.h"
  25
  26static int vgic_its_save_tables_v0(struct vgic_its *its);
  27static int vgic_its_restore_tables_v0(struct vgic_its *its);
  28static int vgic_its_commit_v0(struct vgic_its *its);
  29static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
  30			     struct kvm_vcpu *filter_vcpu, bool needs_inv);
  31
  32/*
  33 * Creates a new (reference to a) struct vgic_irq for a given LPI.
  34 * If this LPI is already mapped on another ITS, we increase its refcount
  35 * and return a pointer to the existing structure.
  36 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
  37 * This function returns a pointer to the _unlocked_ structure.
  38 */
  39static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
  40				     struct kvm_vcpu *vcpu)
  41{
  42	struct vgic_dist *dist = &kvm->arch.vgic;
  43	struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
  44	unsigned long flags;
  45	int ret;
  46
  47	/* In this case there is no put, since we keep the reference. */
  48	if (irq)
  49		return irq;
  50
  51	irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
  52	if (!irq)
  53		return ERR_PTR(-ENOMEM);
  54
  55	INIT_LIST_HEAD(&irq->lpi_list);
  56	INIT_LIST_HEAD(&irq->ap_list);
  57	raw_spin_lock_init(&irq->irq_lock);
  58
  59	irq->config = VGIC_CONFIG_EDGE;
  60	kref_init(&irq->refcount);
  61	irq->intid = intid;
  62	irq->target_vcpu = vcpu;
  63	irq->group = 1;
  64
  65	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
  66
  67	/*
  68	 * There could be a race with another vgic_add_lpi(), so we need to
  69	 * check that we don't add a second list entry with the same LPI.
  70	 */
  71	list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
  72		if (oldirq->intid != intid)
  73			continue;
  74
  75		/* Someone was faster with adding this LPI, lets use that. */
  76		kfree(irq);
  77		irq = oldirq;
  78
  79		/*
  80		 * This increases the refcount, the caller is expected to
  81		 * call vgic_put_irq() on the returned pointer once it's
  82		 * finished with the IRQ.
  83		 */
  84		vgic_get_irq_kref(irq);
  85
  86		goto out_unlock;
  87	}
  88
  89	list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
  90	dist->lpi_list_count++;
  91
  92out_unlock:
  93	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
  94
  95	/*
  96	 * We "cache" the configuration table entries in our struct vgic_irq's.
  97	 * However we only have those structs for mapped IRQs, so we read in
  98	 * the respective config data from memory here upon mapping the LPI.
  99	 */
 100	ret = update_lpi_config(kvm, irq, NULL, false);
 101	if (ret)
 102		return ERR_PTR(ret);
 103
 104	ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
 105	if (ret)
 106		return ERR_PTR(ret);
 107
 108	return irq;
 109}
 110
 111struct its_device {
 112	struct list_head dev_list;
 113
 114	/* the head for the list of ITTEs */
 115	struct list_head itt_head;
 116	u32 num_eventid_bits;
 117	gpa_t itt_addr;
 118	u32 device_id;
 119};
 120
 121#define COLLECTION_NOT_MAPPED ((u32)~0)
 122
 123struct its_collection {
 124	struct list_head coll_list;
 125
 126	u32 collection_id;
 127	u32 target_addr;
 128};
 129
 130#define its_is_collection_mapped(coll) ((coll) && \
 131				((coll)->target_addr != COLLECTION_NOT_MAPPED))
 132
 133struct its_ite {
 134	struct list_head ite_list;
 135
 136	struct vgic_irq *irq;
 137	struct its_collection *collection;
 138	u32 event_id;
 139};
 140
 141struct vgic_translation_cache_entry {
 142	struct list_head	entry;
 143	phys_addr_t		db;
 144	u32			devid;
 145	u32			eventid;
 146	struct vgic_irq		*irq;
 147};
 148
 149/**
 150 * struct vgic_its_abi - ITS abi ops and settings
 151 * @cte_esz: collection table entry size
 152 * @dte_esz: device table entry size
 153 * @ite_esz: interrupt translation table entry size
 154 * @save tables: save the ITS tables into guest RAM
 155 * @restore_tables: restore the ITS internal structs from tables
 156 *  stored in guest RAM
 157 * @commit: initialize the registers which expose the ABI settings,
 158 *  especially the entry sizes
 159 */
 160struct vgic_its_abi {
 161	int cte_esz;
 162	int dte_esz;
 163	int ite_esz;
 164	int (*save_tables)(struct vgic_its *its);
 165	int (*restore_tables)(struct vgic_its *its);
 166	int (*commit)(struct vgic_its *its);
 167};
 168
 169#define ABI_0_ESZ	8
 170#define ESZ_MAX		ABI_0_ESZ
 171
 172static const struct vgic_its_abi its_table_abi_versions[] = {
 173	[0] = {
 174	 .cte_esz = ABI_0_ESZ,
 175	 .dte_esz = ABI_0_ESZ,
 176	 .ite_esz = ABI_0_ESZ,
 177	 .save_tables = vgic_its_save_tables_v0,
 178	 .restore_tables = vgic_its_restore_tables_v0,
 179	 .commit = vgic_its_commit_v0,
 180	},
 181};
 182
 183#define NR_ITS_ABIS	ARRAY_SIZE(its_table_abi_versions)
 184
 185inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
 186{
 187	return &its_table_abi_versions[its->abi_rev];
 188}
 189
 190static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
 191{
 192	const struct vgic_its_abi *abi;
 193
 194	its->abi_rev = rev;
 195	abi = vgic_its_get_abi(its);
 196	return abi->commit(its);
 197}
 198
 199/*
 200 * Find and returns a device in the device table for an ITS.
 201 * Must be called with the its_lock mutex held.
 202 */
 203static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
 204{
 205	struct its_device *device;
 206
 207	list_for_each_entry(device, &its->device_list, dev_list)
 208		if (device_id == device->device_id)
 209			return device;
 210
 211	return NULL;
 212}
 213
 214/*
 215 * Find and returns an interrupt translation table entry (ITTE) for a given
 216 * Device ID/Event ID pair on an ITS.
 217 * Must be called with the its_lock mutex held.
 218 */
 219static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
 220				  u32 event_id)
 221{
 222	struct its_device *device;
 223	struct its_ite *ite;
 224
 225	device = find_its_device(its, device_id);
 226	if (device == NULL)
 227		return NULL;
 228
 229	list_for_each_entry(ite, &device->itt_head, ite_list)
 230		if (ite->event_id == event_id)
 231			return ite;
 232
 233	return NULL;
 234}
 235
 236/* To be used as an iterator this macro misses the enclosing parentheses */
 237#define for_each_lpi_its(dev, ite, its) \
 238	list_for_each_entry(dev, &(its)->device_list, dev_list) \
 239		list_for_each_entry(ite, &(dev)->itt_head, ite_list)
 240
 241#define GIC_LPI_OFFSET 8192
 242
 243#define VITS_TYPER_IDBITS 16
 244#define VITS_TYPER_DEVBITS 16
 245#define VITS_DTE_MAX_DEVID_OFFSET	(BIT(14) - 1)
 246#define VITS_ITE_MAX_EVENTID_OFFSET	(BIT(16) - 1)
 247
 248/*
 249 * Finds and returns a collection in the ITS collection table.
 250 * Must be called with the its_lock mutex held.
 251 */
 252static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
 253{
 254	struct its_collection *collection;
 255
 256	list_for_each_entry(collection, &its->collection_list, coll_list) {
 257		if (coll_id == collection->collection_id)
 258			return collection;
 259	}
 260
 261	return NULL;
 262}
 263
 264#define LPI_PROP_ENABLE_BIT(p)	((p) & LPI_PROP_ENABLED)
 265#define LPI_PROP_PRIORITY(p)	((p) & 0xfc)
 266
 267/*
 268 * Reads the configuration data for a given LPI from guest memory and
 269 * updates the fields in struct vgic_irq.
 270 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
 271 * VCPU. Unconditionally applies if filter_vcpu is NULL.
 272 */
 273static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
 274			     struct kvm_vcpu *filter_vcpu, bool needs_inv)
 275{
 276	u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
 277	u8 prop;
 278	int ret;
 279	unsigned long flags;
 280
 281	ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
 282				  &prop, 1);
 283
 284	if (ret)
 285		return ret;
 286
 287	raw_spin_lock_irqsave(&irq->irq_lock, flags);
 288
 289	if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
 290		irq->priority = LPI_PROP_PRIORITY(prop);
 291		irq->enabled = LPI_PROP_ENABLE_BIT(prop);
 292
 293		if (!irq->hw) {
 294			vgic_queue_irq_unlock(kvm, irq, flags);
 295			return 0;
 296		}
 297	}
 298
 299	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 300
 301	if (irq->hw)
 302		return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
 303
 304	return 0;
 305}
 306
 307/*
 308 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
 309 * enumerate those LPIs without holding any lock.
 310 * Returns their number and puts the kmalloc'ed array into intid_ptr.
 311 */
 312int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
 313{
 314	struct vgic_dist *dist = &kvm->arch.vgic;
 315	struct vgic_irq *irq;
 316	unsigned long flags;
 317	u32 *intids;
 318	int irq_count, i = 0;
 319
 320	/*
 321	 * There is an obvious race between allocating the array and LPIs
 322	 * being mapped/unmapped. If we ended up here as a result of a
 323	 * command, we're safe (locks are held, preventing another
 324	 * command). If coming from another path (such as enabling LPIs),
 325	 * we must be careful not to overrun the array.
 326	 */
 327	irq_count = READ_ONCE(dist->lpi_list_count);
 328	intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
 329	if (!intids)
 330		return -ENOMEM;
 331
 332	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
 333	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
 334		if (i == irq_count)
 335			break;
 336		/* We don't need to "get" the IRQ, as we hold the list lock. */
 337		if (vcpu && irq->target_vcpu != vcpu)
 338			continue;
 339		intids[i++] = irq->intid;
 340	}
 341	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
 342
 343	*intid_ptr = intids;
 344	return i;
 345}
 346
 347static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
 348{
 349	int ret = 0;
 350	unsigned long flags;
 351
 352	raw_spin_lock_irqsave(&irq->irq_lock, flags);
 353	irq->target_vcpu = vcpu;
 354	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 355
 356	if (irq->hw) {
 357		struct its_vlpi_map map;
 358
 359		ret = its_get_vlpi(irq->host_irq, &map);
 360		if (ret)
 361			return ret;
 362
 363		map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
 364
 365		ret = its_map_vlpi(irq->host_irq, &map);
 366	}
 367
 368	return ret;
 369}
 370
 371/*
 372 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
 373 * is targeting) to the VGIC's view, which deals with target VCPUs.
 374 * Needs to be called whenever either the collection for a LPIs has
 375 * changed or the collection itself got retargeted.
 376 */
 377static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
 378{
 379	struct kvm_vcpu *vcpu;
 380
 381	if (!its_is_collection_mapped(ite->collection))
 382		return;
 383
 384	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
 385	update_affinity(ite->irq, vcpu);
 386}
 387
 388/*
 389 * Updates the target VCPU for every LPI targeting this collection.
 390 * Must be called with the its_lock mutex held.
 391 */
 392static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
 393				       struct its_collection *coll)
 394{
 395	struct its_device *device;
 396	struct its_ite *ite;
 397
 398	for_each_lpi_its(device, ite, its) {
 399		if (!ite->collection || coll != ite->collection)
 400			continue;
 401
 402		update_affinity_ite(kvm, ite);
 403	}
 404}
 405
 406static u32 max_lpis_propbaser(u64 propbaser)
 407{
 408	int nr_idbits = (propbaser & 0x1f) + 1;
 409
 410	return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
 411}
 412
 413/*
 414 * Sync the pending table pending bit of LPIs targeting @vcpu
 415 * with our own data structures. This relies on the LPI being
 416 * mapped before.
 417 */
 418static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
 419{
 420	gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
 421	struct vgic_irq *irq;
 422	int last_byte_offset = -1;
 423	int ret = 0;
 424	u32 *intids;
 425	int nr_irqs, i;
 426	unsigned long flags;
 427	u8 pendmask;
 428
 429	nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
 430	if (nr_irqs < 0)
 431		return nr_irqs;
 432
 433	for (i = 0; i < nr_irqs; i++) {
 434		int byte_offset, bit_nr;
 435
 436		byte_offset = intids[i] / BITS_PER_BYTE;
 437		bit_nr = intids[i] % BITS_PER_BYTE;
 438
 439		/*
 440		 * For contiguously allocated LPIs chances are we just read
 441		 * this very same byte in the last iteration. Reuse that.
 442		 */
 443		if (byte_offset != last_byte_offset) {
 444			ret = kvm_read_guest_lock(vcpu->kvm,
 445						  pendbase + byte_offset,
 446						  &pendmask, 1);
 447			if (ret) {
 448				kfree(intids);
 449				return ret;
 450			}
 451			last_byte_offset = byte_offset;
 452		}
 453
 454		irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
 455		raw_spin_lock_irqsave(&irq->irq_lock, flags);
 456		irq->pending_latch = pendmask & (1U << bit_nr);
 457		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
 458		vgic_put_irq(vcpu->kvm, irq);
 459	}
 460
 461	kfree(intids);
 462
 463	return ret;
 464}
 465
 466static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
 467					      struct vgic_its *its,
 468					      gpa_t addr, unsigned int len)
 469{
 470	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
 471	u64 reg = GITS_TYPER_PLPIS;
 472
 473	/*
 474	 * We use linear CPU numbers for redistributor addressing,
 475	 * so GITS_TYPER.PTA is 0.
 476	 * Also we force all PROPBASER registers to be the same, so
 477	 * CommonLPIAff is 0 as well.
 478	 * To avoid memory waste in the guest, we keep the number of IDBits and
 479	 * DevBits low - as least for the time being.
 480	 */
 481	reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
 482	reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
 483	reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
 484
 485	return extract_bytes(reg, addr & 7, len);
 486}
 487
 488static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
 489					     struct vgic_its *its,
 490					     gpa_t addr, unsigned int len)
 491{
 492	u32 val;
 493
 494	val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
 495	val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
 496	return val;
 497}
 498
 499static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
 500					    struct vgic_its *its,
 501					    gpa_t addr, unsigned int len,
 502					    unsigned long val)
 503{
 504	u32 rev = GITS_IIDR_REV(val);
 505
 506	if (rev >= NR_ITS_ABIS)
 507		return -EINVAL;
 508	return vgic_its_set_abi(its, rev);
 509}
 510
 511static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
 512					       struct vgic_its *its,
 513					       gpa_t addr, unsigned int len)
 514{
 515	switch (addr & 0xffff) {
 516	case GITS_PIDR0:
 517		return 0x92;	/* part number, bits[7:0] */
 518	case GITS_PIDR1:
 519		return 0xb4;	/* part number, bits[11:8] */
 520	case GITS_PIDR2:
 521		return GIC_PIDR2_ARCH_GICv3 | 0x0b;
 522	case GITS_PIDR4:
 523		return 0x40;	/* This is a 64K software visible page */
 524	/* The following are the ID registers for (any) GIC. */
 525	case GITS_CIDR0:
 526		return 0x0d;
 527	case GITS_CIDR1:
 528		return 0xf0;
 529	case GITS_CIDR2:
 530		return 0x05;
 531	case GITS_CIDR3:
 532		return 0xb1;
 533	}
 534
 535	return 0;
 536}
 537
 538static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist,
 539					       phys_addr_t db,
 540					       u32 devid, u32 eventid)
 541{
 542	struct vgic_translation_cache_entry *cte;
 543
 544	list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
 545		/*
 546		 * If we hit a NULL entry, there is nothing after this
 547		 * point.
 548		 */
 549		if (!cte->irq)
 550			break;
 551
 552		if (cte->db != db || cte->devid != devid ||
 553		    cte->eventid != eventid)
 554			continue;
 555
 556		/*
 557		 * Move this entry to the head, as it is the most
 558		 * recently used.
 559		 */
 560		if (!list_is_first(&cte->entry, &dist->lpi_translation_cache))
 561			list_move(&cte->entry, &dist->lpi_translation_cache);
 562
 563		return cte->irq;
 564	}
 565
 566	return NULL;
 567}
 568
 569static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
 570					     u32 devid, u32 eventid)
 571{
 572	struct vgic_dist *dist = &kvm->arch.vgic;
 573	struct vgic_irq *irq;
 574	unsigned long flags;
 575
 576	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
 577	irq = __vgic_its_check_cache(dist, db, devid, eventid);
 578	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
 579
 580	return irq;
 581}
 582
 583static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
 584				       u32 devid, u32 eventid,
 585				       struct vgic_irq *irq)
 586{
 587	struct vgic_dist *dist = &kvm->arch.vgic;
 588	struct vgic_translation_cache_entry *cte;
 589	unsigned long flags;
 590	phys_addr_t db;
 591
 592	/* Do not cache a directly injected interrupt */
 593	if (irq->hw)
 594		return;
 595
 596	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
 597
 598	if (unlikely(list_empty(&dist->lpi_translation_cache)))
 599		goto out;
 600
 601	/*
 602	 * We could have raced with another CPU caching the same
 603	 * translation behind our back, so let's check it is not in
 604	 * already
 605	 */
 606	db = its->vgic_its_base + GITS_TRANSLATER;
 607	if (__vgic_its_check_cache(dist, db, devid, eventid))
 608		goto out;
 609
 610	/* Always reuse the last entry (LRU policy) */
 611	cte = list_last_entry(&dist->lpi_translation_cache,
 612			      typeof(*cte), entry);
 613
 614	/*
 615	 * Caching the translation implies having an extra reference
 616	 * to the interrupt, so drop the potential reference on what
 617	 * was in the cache, and increment it on the new interrupt.
 618	 */
 619	if (cte->irq)
 620		__vgic_put_lpi_locked(kvm, cte->irq);
 621
 622	vgic_get_irq_kref(irq);
 623
 624	cte->db		= db;
 625	cte->devid	= devid;
 626	cte->eventid	= eventid;
 627	cte->irq	= irq;
 628
 629	/* Move the new translation to the head of the list */
 630	list_move(&cte->entry, &dist->lpi_translation_cache);
 631
 632out:
 633	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
 634}
 635
 636void vgic_its_invalidate_cache(struct kvm *kvm)
 637{
 638	struct vgic_dist *dist = &kvm->arch.vgic;
 639	struct vgic_translation_cache_entry *cte;
 640	unsigned long flags;
 641
 642	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
 643
 644	list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
 645		/*
 646		 * If we hit a NULL entry, there is nothing after this
 647		 * point.
 648		 */
 649		if (!cte->irq)
 650			break;
 651
 652		__vgic_put_lpi_locked(kvm, cte->irq);
 653		cte->irq = NULL;
 654	}
 655
 656	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
 657}
 658
 659int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
 660			 u32 devid, u32 eventid, struct vgic_irq **irq)
 661{
 662	struct kvm_vcpu *vcpu;
 663	struct its_ite *ite;
 664
 665	if (!its->enabled)
 666		return -EBUSY;
 667
 668	ite = find_ite(its, devid, eventid);
 669	if (!ite || !its_is_collection_mapped(ite->collection))
 670		return E_ITS_INT_UNMAPPED_INTERRUPT;
 671
 672	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
 673	if (!vcpu)
 674		return E_ITS_INT_UNMAPPED_INTERRUPT;
 675
 676	if (!vcpu->arch.vgic_cpu.lpis_enabled)
 677		return -EBUSY;
 678
 679	vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
 680
 681	*irq = ite->irq;
 682	return 0;
 683}
 684
 685struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
 686{
 687	u64 address;
 688	struct kvm_io_device *kvm_io_dev;
 689	struct vgic_io_device *iodev;
 690
 691	if (!vgic_has_its(kvm))
 692		return ERR_PTR(-ENODEV);
 693
 694	if (!(msi->flags & KVM_MSI_VALID_DEVID))
 695		return ERR_PTR(-EINVAL);
 696
 697	address = (u64)msi->address_hi << 32 | msi->address_lo;
 698
 699	kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
 700	if (!kvm_io_dev)
 701		return ERR_PTR(-EINVAL);
 702
 703	if (kvm_io_dev->ops != &kvm_io_gic_ops)
 704		return ERR_PTR(-EINVAL);
 705
 706	iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
 707	if (iodev->iodev_type != IODEV_ITS)
 708		return ERR_PTR(-EINVAL);
 709
 710	return iodev->its;
 711}
 712
 713/*
 714 * Find the target VCPU and the LPI number for a given devid/eventid pair
 715 * and make this IRQ pending, possibly injecting it.
 716 * Must be called with the its_lock mutex held.
 717 * Returns 0 on success, a positive error value for any ITS mapping
 718 * related errors and negative error values for generic errors.
 719 */
 720static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
 721				u32 devid, u32 eventid)
 722{
 723	struct vgic_irq *irq = NULL;
 724	unsigned long flags;
 725	int err;
 726
 727	err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
 728	if (err)
 729		return err;
 730
 731	if (irq->hw)
 732		return irq_set_irqchip_state(irq->host_irq,
 733					     IRQCHIP_STATE_PENDING, true);
 734
 735	raw_spin_lock_irqsave(&irq->irq_lock, flags);
 736	irq->pending_latch = true;
 737	vgic_queue_irq_unlock(kvm, irq, flags);
 738
 739	return 0;
 740}
 741
 742int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
 743{
 744	struct vgic_irq *irq;
 745	unsigned long flags;
 746	phys_addr_t db;
 747
 748	db = (u64)msi->address_hi << 32 | msi->address_lo;
 749	irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
 750
 751	if (!irq)
 752		return -1;
 753
 754	raw_spin_lock_irqsave(&irq->irq_lock, flags);
 755	irq->pending_latch = true;
 756	vgic_queue_irq_unlock(kvm, irq, flags);
 757
 758	return 0;
 759}
 760
 761/*
 762 * Queries the KVM IO bus framework to get the ITS pointer from the given
 763 * doorbell address.
 764 * We then call vgic_its_trigger_msi() with the decoded data.
 765 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
 766 */
 767int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
 768{
 769	struct vgic_its *its;
 770	int ret;
 771
 772	if (!vgic_its_inject_cached_translation(kvm, msi))
 773		return 1;
 774
 775	its = vgic_msi_to_its(kvm, msi);
 776	if (IS_ERR(its))
 777		return PTR_ERR(its);
 778
 779	mutex_lock(&its->its_lock);
 780	ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
 781	mutex_unlock(&its->its_lock);
 782
 783	if (ret < 0)
 784		return ret;
 785
 786	/*
 787	 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
 788	 * if the guest has blocked the MSI. So we map any LPI mapping
 789	 * related error to that.
 790	 */
 791	if (ret)
 792		return 0;
 793	else
 794		return 1;
 795}
 796
 797/* Requires the its_lock to be held. */
 798static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
 799{
 800	list_del(&ite->ite_list);
 801
 802	/* This put matches the get in vgic_add_lpi. */
 803	if (ite->irq) {
 804		if (ite->irq->hw)
 805			WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
 806
 807		vgic_put_irq(kvm, ite->irq);
 808	}
 809
 810	kfree(ite);
 811}
 812
 813static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
 814{
 815	return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
 816}
 817
 818#define its_cmd_get_command(cmd)	its_cmd_mask_field(cmd, 0,  0,  8)
 819#define its_cmd_get_deviceid(cmd)	its_cmd_mask_field(cmd, 0, 32, 32)
 820#define its_cmd_get_size(cmd)		(its_cmd_mask_field(cmd, 1,  0,  5) + 1)
 821#define its_cmd_get_id(cmd)		its_cmd_mask_field(cmd, 1,  0, 32)
 822#define its_cmd_get_physical_id(cmd)	its_cmd_mask_field(cmd, 1, 32, 32)
 823#define its_cmd_get_collection(cmd)	its_cmd_mask_field(cmd, 2,  0, 16)
 824#define its_cmd_get_ittaddr(cmd)	(its_cmd_mask_field(cmd, 2,  8, 44) << 8)
 825#define its_cmd_get_target_addr(cmd)	its_cmd_mask_field(cmd, 2, 16, 32)
 826#define its_cmd_get_validbit(cmd)	its_cmd_mask_field(cmd, 2, 63,  1)
 827
 828/*
 829 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
 830 * Must be called with the its_lock mutex held.
 831 */
 832static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
 833				       u64 *its_cmd)
 834{
 835	u32 device_id = its_cmd_get_deviceid(its_cmd);
 836	u32 event_id = its_cmd_get_id(its_cmd);
 837	struct its_ite *ite;
 838
 839
 840	ite = find_ite(its, device_id, event_id);
 841	if (ite && ite->collection) {
 842		/*
 843		 * Though the spec talks about removing the pending state, we
 844		 * don't bother here since we clear the ITTE anyway and the
 845		 * pending state is a property of the ITTE struct.
 846		 */
 847		vgic_its_invalidate_cache(kvm);
 848
 849		its_free_ite(kvm, ite);
 850		return 0;
 851	}
 852
 853	return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
 854}
 855
 856/*
 857 * The MOVI command moves an ITTE to a different collection.
 858 * Must be called with the its_lock mutex held.
 859 */
 860static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
 861				    u64 *its_cmd)
 862{
 863	u32 device_id = its_cmd_get_deviceid(its_cmd);
 864	u32 event_id = its_cmd_get_id(its_cmd);
 865	u32 coll_id = its_cmd_get_collection(its_cmd);
 866	struct kvm_vcpu *vcpu;
 867	struct its_ite *ite;
 868	struct its_collection *collection;
 869
 870	ite = find_ite(its, device_id, event_id);
 871	if (!ite)
 872		return E_ITS_MOVI_UNMAPPED_INTERRUPT;
 873
 874	if (!its_is_collection_mapped(ite->collection))
 875		return E_ITS_MOVI_UNMAPPED_COLLECTION;
 876
 877	collection = find_collection(its, coll_id);
 878	if (!its_is_collection_mapped(collection))
 879		return E_ITS_MOVI_UNMAPPED_COLLECTION;
 880
 881	ite->collection = collection;
 882	vcpu = kvm_get_vcpu(kvm, collection->target_addr);
 883
 884	vgic_its_invalidate_cache(kvm);
 885
 886	return update_affinity(ite->irq, vcpu);
 887}
 888
 889/*
 890 * Check whether an ID can be stored into the corresponding guest table.
 891 * For a direct table this is pretty easy, but gets a bit nasty for
 892 * indirect tables. We check whether the resulting guest physical address
 893 * is actually valid (covered by a memslot and guest accessible).
 894 * For this we have to read the respective first level entry.
 895 */
 896static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
 897			      gpa_t *eaddr)
 898{
 899	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
 900	u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
 901	phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
 902	int esz = GITS_BASER_ENTRY_SIZE(baser);
 903	int index, idx;
 904	gfn_t gfn;
 905	bool ret;
 906
 907	switch (type) {
 908	case GITS_BASER_TYPE_DEVICE:
 909		if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
 910			return false;
 911		break;
 912	case GITS_BASER_TYPE_COLLECTION:
 913		/* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
 914		if (id >= BIT_ULL(16))
 915			return false;
 916		break;
 917	default:
 918		return false;
 919	}
 920
 921	if (!(baser & GITS_BASER_INDIRECT)) {
 922		phys_addr_t addr;
 923
 924		if (id >= (l1_tbl_size / esz))
 925			return false;
 926
 927		addr = base + id * esz;
 928		gfn = addr >> PAGE_SHIFT;
 929
 930		if (eaddr)
 931			*eaddr = addr;
 932
 933		goto out;
 934	}
 935
 936	/* calculate and check the index into the 1st level */
 937	index = id / (SZ_64K / esz);
 938	if (index >= (l1_tbl_size / sizeof(u64)))
 939		return false;
 940
 941	/* Each 1st level entry is represented by a 64-bit value. */
 942	if (kvm_read_guest_lock(its->dev->kvm,
 943			   base + index * sizeof(indirect_ptr),
 944			   &indirect_ptr, sizeof(indirect_ptr)))
 945		return false;
 946
 947	indirect_ptr = le64_to_cpu(indirect_ptr);
 948
 949	/* check the valid bit of the first level entry */
 950	if (!(indirect_ptr & BIT_ULL(63)))
 951		return false;
 952
 953	/* Mask the guest physical address and calculate the frame number. */
 954	indirect_ptr &= GENMASK_ULL(51, 16);
 955
 956	/* Find the address of the actual entry */
 957	index = id % (SZ_64K / esz);
 958	indirect_ptr += index * esz;
 959	gfn = indirect_ptr >> PAGE_SHIFT;
 960
 961	if (eaddr)
 962		*eaddr = indirect_ptr;
 963
 964out:
 965	idx = srcu_read_lock(&its->dev->kvm->srcu);
 966	ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
 967	srcu_read_unlock(&its->dev->kvm->srcu, idx);
 968	return ret;
 969}
 970
 971static int vgic_its_alloc_collection(struct vgic_its *its,
 972				     struct its_collection **colp,
 973				     u32 coll_id)
 974{
 975	struct its_collection *collection;
 976
 977	if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
 978		return E_ITS_MAPC_COLLECTION_OOR;
 979
 980	collection = kzalloc(sizeof(*collection), GFP_KERNEL);
 981	if (!collection)
 982		return -ENOMEM;
 983
 984	collection->collection_id = coll_id;
 985	collection->target_addr = COLLECTION_NOT_MAPPED;
 986
 987	list_add_tail(&collection->coll_list, &its->collection_list);
 988	*colp = collection;
 989
 990	return 0;
 991}
 992
 993static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
 994{
 995	struct its_collection *collection;
 996	struct its_device *device;
 997	struct its_ite *ite;
 998
 999	/*
1000	 * Clearing the mapping for that collection ID removes the
1001	 * entry from the list. If there wasn't any before, we can
1002	 * go home early.
1003	 */
1004	collection = find_collection(its, coll_id);
1005	if (!collection)
1006		return;
1007
1008	for_each_lpi_its(device, ite, its)
1009		if (ite->collection &&
1010		    ite->collection->collection_id == coll_id)
1011			ite->collection = NULL;
1012
1013	list_del(&collection->coll_list);
1014	kfree(collection);
1015}
1016
1017/* Must be called with its_lock mutex held */
1018static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1019					  struct its_collection *collection,
1020					  u32 event_id)
1021{
1022	struct its_ite *ite;
1023
1024	ite = kzalloc(sizeof(*ite), GFP_KERNEL);
1025	if (!ite)
1026		return ERR_PTR(-ENOMEM);
1027
1028	ite->event_id	= event_id;
1029	ite->collection = collection;
1030
1031	list_add_tail(&ite->ite_list, &device->itt_head);
1032	return ite;
1033}
1034
1035/*
1036 * The MAPTI and MAPI commands map LPIs to ITTEs.
1037 * Must be called with its_lock mutex held.
1038 */
1039static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1040				    u64 *its_cmd)
1041{
1042	u32 device_id = its_cmd_get_deviceid(its_cmd);
1043	u32 event_id = its_cmd_get_id(its_cmd);
1044	u32 coll_id = its_cmd_get_collection(its_cmd);
1045	struct its_ite *ite;
1046	struct kvm_vcpu *vcpu = NULL;
1047	struct its_device *device;
1048	struct its_collection *collection, *new_coll = NULL;
1049	struct vgic_irq *irq;
1050	int lpi_nr;
1051
1052	device = find_its_device(its, device_id);
1053	if (!device)
1054		return E_ITS_MAPTI_UNMAPPED_DEVICE;
1055
1056	if (event_id >= BIT_ULL(device->num_eventid_bits))
1057		return E_ITS_MAPTI_ID_OOR;
1058
1059	if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1060		lpi_nr = its_cmd_get_physical_id(its_cmd);
1061	else
1062		lpi_nr = event_id;
1063	if (lpi_nr < GIC_LPI_OFFSET ||
1064	    lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1065		return E_ITS_MAPTI_PHYSICALID_OOR;
1066
1067	/* If there is an existing mapping, behavior is UNPREDICTABLE. */
1068	if (find_ite(its, device_id, event_id))
1069		return 0;
1070
1071	collection = find_collection(its, coll_id);
1072	if (!collection) {
1073		int ret = vgic_its_alloc_collection(its, &collection, coll_id);
1074		if (ret)
1075			return ret;
1076		new_coll = collection;
1077	}
1078
1079	ite = vgic_its_alloc_ite(device, collection, event_id);
1080	if (IS_ERR(ite)) {
1081		if (new_coll)
1082			vgic_its_free_collection(its, coll_id);
1083		return PTR_ERR(ite);
1084	}
1085
1086	if (its_is_collection_mapped(collection))
1087		vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1088
1089	irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1090	if (IS_ERR(irq)) {
1091		if (new_coll)
1092			vgic_its_free_collection(its, coll_id);
1093		its_free_ite(kvm, ite);
1094		return PTR_ERR(irq);
1095	}
1096	ite->irq = irq;
1097
1098	return 0;
1099}
1100
1101/* Requires the its_lock to be held. */
1102static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
1103{
1104	struct its_ite *ite, *temp;
1105
1106	/*
1107	 * The spec says that unmapping a device with still valid
1108	 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1109	 * since we cannot leave the memory unreferenced.
1110	 */
1111	list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1112		its_free_ite(kvm, ite);
1113
1114	vgic_its_invalidate_cache(kvm);
1115
1116	list_del(&device->dev_list);
1117	kfree(device);
1118}
1119
1120/* its lock must be held */
1121static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1122{
1123	struct its_device *cur, *temp;
1124
1125	list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1126		vgic_its_free_device(kvm, cur);
1127}
1128
1129/* its lock must be held */
1130static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1131{
1132	struct its_collection *cur, *temp;
1133
1134	list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1135		vgic_its_free_collection(its, cur->collection_id);
1136}
1137
1138/* Must be called with its_lock mutex held */
1139static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1140						u32 device_id, gpa_t itt_addr,
1141						u8 num_eventid_bits)
1142{
1143	struct its_device *device;
1144
1145	device = kzalloc(sizeof(*device), GFP_KERNEL);
1146	if (!device)
1147		return ERR_PTR(-ENOMEM);
1148
1149	device->device_id = device_id;
1150	device->itt_addr = itt_addr;
1151	device->num_eventid_bits = num_eventid_bits;
1152	INIT_LIST_HEAD(&device->itt_head);
1153
1154	list_add_tail(&device->dev_list, &its->device_list);
1155	return device;
1156}
1157
1158/*
1159 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1160 * Must be called with the its_lock mutex held.
1161 */
1162static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1163				    u64 *its_cmd)
1164{
1165	u32 device_id = its_cmd_get_deviceid(its_cmd);
1166	bool valid = its_cmd_get_validbit(its_cmd);
1167	u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1168	gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1169	struct its_device *device;
1170
1171	if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1172		return E_ITS_MAPD_DEVICE_OOR;
1173
1174	if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1175		return E_ITS_MAPD_ITTSIZE_OOR;
1176
1177	device = find_its_device(its, device_id);
1178
1179	/*
1180	 * The spec says that calling MAPD on an already mapped device
1181	 * invalidates all cached data for this device. We implement this
1182	 * by removing the mapping and re-establishing it.
1183	 */
1184	if (device)
1185		vgic_its_free_device(kvm, device);
1186
1187	/*
1188	 * The spec does not say whether unmapping a not-mapped device
1189	 * is an error, so we are done in any case.
1190	 */
1191	if (!valid)
1192		return 0;
1193
1194	device = vgic_its_alloc_device(its, device_id, itt_addr,
1195				       num_eventid_bits);
1196
1197	return PTR_ERR_OR_ZERO(device);
1198}
1199
1200/*
1201 * The MAPC command maps collection IDs to redistributors.
1202 * Must be called with the its_lock mutex held.
1203 */
1204static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1205				    u64 *its_cmd)
1206{
1207	u16 coll_id;
1208	u32 target_addr;
1209	struct its_collection *collection;
1210	bool valid;
1211
1212	valid = its_cmd_get_validbit(its_cmd);
1213	coll_id = its_cmd_get_collection(its_cmd);
1214	target_addr = its_cmd_get_target_addr(its_cmd);
1215
1216	if (target_addr >= atomic_read(&kvm->online_vcpus))
1217		return E_ITS_MAPC_PROCNUM_OOR;
1218
1219	if (!valid) {
1220		vgic_its_free_collection(its, coll_id);
1221		vgic_its_invalidate_cache(kvm);
1222	} else {
1223		collection = find_collection(its, coll_id);
1224
1225		if (!collection) {
1226			int ret;
1227
1228			ret = vgic_its_alloc_collection(its, &collection,
1229							coll_id);
1230			if (ret)
1231				return ret;
1232			collection->target_addr = target_addr;
1233		} else {
1234			collection->target_addr = target_addr;
1235			update_affinity_collection(kvm, its, collection);
1236		}
1237	}
1238
1239	return 0;
1240}
1241
1242/*
1243 * The CLEAR command removes the pending state for a particular LPI.
1244 * Must be called with the its_lock mutex held.
1245 */
1246static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1247				     u64 *its_cmd)
1248{
1249	u32 device_id = its_cmd_get_deviceid(its_cmd);
1250	u32 event_id = its_cmd_get_id(its_cmd);
1251	struct its_ite *ite;
1252
1253
1254	ite = find_ite(its, device_id, event_id);
1255	if (!ite)
1256		return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1257
1258	ite->irq->pending_latch = false;
1259
1260	if (ite->irq->hw)
1261		return irq_set_irqchip_state(ite->irq->host_irq,
1262					     IRQCHIP_STATE_PENDING, false);
1263
1264	return 0;
1265}
1266
1267/*
1268 * The INV command syncs the configuration bits from the memory table.
1269 * Must be called with the its_lock mutex held.
1270 */
1271static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1272				   u64 *its_cmd)
1273{
1274	u32 device_id = its_cmd_get_deviceid(its_cmd);
1275	u32 event_id = its_cmd_get_id(its_cmd);
1276	struct its_ite *ite;
1277
1278
1279	ite = find_ite(its, device_id, event_id);
1280	if (!ite)
1281		return E_ITS_INV_UNMAPPED_INTERRUPT;
1282
1283	return update_lpi_config(kvm, ite->irq, NULL, true);
1284}
1285
1286/*
1287 * The INVALL command requests flushing of all IRQ data in this collection.
1288 * Find the VCPU mapped to that collection, then iterate over the VM's list
1289 * of mapped LPIs and update the configuration for each IRQ which targets
1290 * the specified vcpu. The configuration will be read from the in-memory
1291 * configuration table.
1292 * Must be called with the its_lock mutex held.
1293 */
1294static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1295				      u64 *its_cmd)
1296{
1297	u32 coll_id = its_cmd_get_collection(its_cmd);
1298	struct its_collection *collection;
1299	struct kvm_vcpu *vcpu;
1300	struct vgic_irq *irq;
1301	u32 *intids;
1302	int irq_count, i;
1303
1304	collection = find_collection(its, coll_id);
1305	if (!its_is_collection_mapped(collection))
1306		return E_ITS_INVALL_UNMAPPED_COLLECTION;
1307
1308	vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1309
1310	irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1311	if (irq_count < 0)
1312		return irq_count;
1313
1314	for (i = 0; i < irq_count; i++) {
1315		irq = vgic_get_irq(kvm, NULL, intids[i]);
1316		if (!irq)
1317			continue;
1318		update_lpi_config(kvm, irq, vcpu, false);
1319		vgic_put_irq(kvm, irq);
1320	}
1321
1322	kfree(intids);
1323
1324	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1325		its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1326
1327	return 0;
1328}
1329
1330/*
1331 * The MOVALL command moves the pending state of all IRQs targeting one
1332 * redistributor to another. We don't hold the pending state in the VCPUs,
1333 * but in the IRQs instead, so there is really not much to do for us here.
1334 * However the spec says that no IRQ must target the old redistributor
1335 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1336 * This command affects all LPIs in the system that target that redistributor.
1337 */
1338static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1339				      u64 *its_cmd)
1340{
1341	u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1342	u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1343	struct kvm_vcpu *vcpu1, *vcpu2;
1344	struct vgic_irq *irq;
1345	u32 *intids;
1346	int irq_count, i;
1347
1348	if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1349	    target2_addr >= atomic_read(&kvm->online_vcpus))
1350		return E_ITS_MOVALL_PROCNUM_OOR;
1351
1352	if (target1_addr == target2_addr)
1353		return 0;
1354
1355	vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1356	vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1357
1358	irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1359	if (irq_count < 0)
1360		return irq_count;
1361
1362	for (i = 0; i < irq_count; i++) {
1363		irq = vgic_get_irq(kvm, NULL, intids[i]);
1364
1365		update_affinity(irq, vcpu2);
1366
1367		vgic_put_irq(kvm, irq);
1368	}
1369
1370	vgic_its_invalidate_cache(kvm);
1371
1372	kfree(intids);
1373	return 0;
1374}
1375
1376/*
1377 * The INT command injects the LPI associated with that DevID/EvID pair.
1378 * Must be called with the its_lock mutex held.
1379 */
1380static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1381				   u64 *its_cmd)
1382{
1383	u32 msi_data = its_cmd_get_id(its_cmd);
1384	u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1385
1386	return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1387}
1388
1389/*
1390 * This function is called with the its_cmd lock held, but the ITS data
1391 * structure lock dropped.
1392 */
1393static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1394				   u64 *its_cmd)
1395{
1396	int ret = -ENODEV;
1397
1398	mutex_lock(&its->its_lock);
1399	switch (its_cmd_get_command(its_cmd)) {
1400	case GITS_CMD_MAPD:
1401		ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1402		break;
1403	case GITS_CMD_MAPC:
1404		ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1405		break;
1406	case GITS_CMD_MAPI:
1407		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1408		break;
1409	case GITS_CMD_MAPTI:
1410		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1411		break;
1412	case GITS_CMD_MOVI:
1413		ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1414		break;
1415	case GITS_CMD_DISCARD:
1416		ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1417		break;
1418	case GITS_CMD_CLEAR:
1419		ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1420		break;
1421	case GITS_CMD_MOVALL:
1422		ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1423		break;
1424	case GITS_CMD_INT:
1425		ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1426		break;
1427	case GITS_CMD_INV:
1428		ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1429		break;
1430	case GITS_CMD_INVALL:
1431		ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1432		break;
1433	case GITS_CMD_SYNC:
1434		/* we ignore this command: we are in sync all of the time */
1435		ret = 0;
1436		break;
1437	}
1438	mutex_unlock(&its->its_lock);
1439
1440	return ret;
1441}
1442
1443static u64 vgic_sanitise_its_baser(u64 reg)
1444{
1445	reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1446				  GITS_BASER_SHAREABILITY_SHIFT,
1447				  vgic_sanitise_shareability);
1448	reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1449				  GITS_BASER_INNER_CACHEABILITY_SHIFT,
1450				  vgic_sanitise_inner_cacheability);
1451	reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1452				  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1453				  vgic_sanitise_outer_cacheability);
1454
1455	/* We support only one (ITS) page size: 64K */
1456	reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1457
1458	return reg;
1459}
1460
1461static u64 vgic_sanitise_its_cbaser(u64 reg)
1462{
1463	reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1464				  GITS_CBASER_SHAREABILITY_SHIFT,
1465				  vgic_sanitise_shareability);
1466	reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1467				  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1468				  vgic_sanitise_inner_cacheability);
1469	reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1470				  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1471				  vgic_sanitise_outer_cacheability);
1472
1473	/* Sanitise the physical address to be 64k aligned. */
1474	reg &= ~GENMASK_ULL(15, 12);
1475
1476	return reg;
1477}
1478
1479static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1480					       struct vgic_its *its,
1481					       gpa_t addr, unsigned int len)
1482{
1483	return extract_bytes(its->cbaser, addr & 7, len);
1484}
1485
1486static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1487				       gpa_t addr, unsigned int len,
1488				       unsigned long val)
1489{
1490	/* When GITS_CTLR.Enable is 1, this register is RO. */
1491	if (its->enabled)
1492		return;
1493
1494	mutex_lock(&its->cmd_lock);
1495	its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1496	its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1497	its->creadr = 0;
1498	/*
1499	 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1500	 * it to CREADR to make sure we start with an empty command buffer.
1501	 */
1502	its->cwriter = its->creadr;
1503	mutex_unlock(&its->cmd_lock);
1504}
1505
1506#define ITS_CMD_BUFFER_SIZE(baser)	((((baser) & 0xff) + 1) << 12)
1507#define ITS_CMD_SIZE			32
1508#define ITS_CMD_OFFSET(reg)		((reg) & GENMASK(19, 5))
1509
1510/* Must be called with the cmd_lock held. */
1511static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1512{
1513	gpa_t cbaser;
1514	u64 cmd_buf[4];
1515
1516	/* Commands are only processed when the ITS is enabled. */
1517	if (!its->enabled)
1518		return;
1519
1520	cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1521
1522	while (its->cwriter != its->creadr) {
1523		int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1524					      cmd_buf, ITS_CMD_SIZE);
1525		/*
1526		 * If kvm_read_guest() fails, this could be due to the guest
1527		 * programming a bogus value in CBASER or something else going
1528		 * wrong from which we cannot easily recover.
1529		 * According to section 6.3.2 in the GICv3 spec we can just
1530		 * ignore that command then.
1531		 */
1532		if (!ret)
1533			vgic_its_handle_command(kvm, its, cmd_buf);
1534
1535		its->creadr += ITS_CMD_SIZE;
1536		if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1537			its->creadr = 0;
1538	}
1539}
1540
1541/*
1542 * By writing to CWRITER the guest announces new commands to be processed.
1543 * To avoid any races in the first place, we take the its_cmd lock, which
1544 * protects our ring buffer variables, so that there is only one user
1545 * per ITS handling commands at a given time.
1546 */
1547static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1548					gpa_t addr, unsigned int len,
1549					unsigned long val)
1550{
1551	u64 reg;
1552
1553	if (!its)
1554		return;
1555
1556	mutex_lock(&its->cmd_lock);
1557
1558	reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1559	reg = ITS_CMD_OFFSET(reg);
1560	if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1561		mutex_unlock(&its->cmd_lock);
1562		return;
1563	}
1564	its->cwriter = reg;
1565
1566	vgic_its_process_commands(kvm, its);
1567
1568	mutex_unlock(&its->cmd_lock);
1569}
1570
1571static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1572						struct vgic_its *its,
1573						gpa_t addr, unsigned int len)
1574{
1575	return extract_bytes(its->cwriter, addr & 0x7, len);
1576}
1577
1578static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1579					       struct vgic_its *its,
1580					       gpa_t addr, unsigned int len)
1581{
1582	return extract_bytes(its->creadr, addr & 0x7, len);
1583}
1584
1585static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1586					      struct vgic_its *its,
1587					      gpa_t addr, unsigned int len,
1588					      unsigned long val)
1589{
1590	u32 cmd_offset;
1591	int ret = 0;
1592
1593	mutex_lock(&its->cmd_lock);
1594
1595	if (its->enabled) {
1596		ret = -EBUSY;
1597		goto out;
1598	}
1599
1600	cmd_offset = ITS_CMD_OFFSET(val);
1601	if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1602		ret = -EINVAL;
1603		goto out;
1604	}
1605
1606	its->creadr = cmd_offset;
1607out:
1608	mutex_unlock(&its->cmd_lock);
1609	return ret;
1610}
1611
1612#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1613static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1614					      struct vgic_its *its,
1615					      gpa_t addr, unsigned int len)
1616{
1617	u64 reg;
1618
1619	switch (BASER_INDEX(addr)) {
1620	case 0:
1621		reg = its->baser_device_table;
1622		break;
1623	case 1:
1624		reg = its->baser_coll_table;
1625		break;
1626	default:
1627		reg = 0;
1628		break;
1629	}
1630
1631	return extract_bytes(reg, addr & 7, len);
1632}
1633
1634#define GITS_BASER_RO_MASK	(GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1635static void vgic_mmio_write_its_baser(struct kvm *kvm,
1636				      struct vgic_its *its,
1637				      gpa_t addr, unsigned int len,
1638				      unsigned long val)
1639{
1640	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1641	u64 entry_size, table_type;
1642	u64 reg, *regptr, clearbits = 0;
1643
1644	/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1645	if (its->enabled)
1646		return;
1647
1648	switch (BASER_INDEX(addr)) {
1649	case 0:
1650		regptr = &its->baser_device_table;
1651		entry_size = abi->dte_esz;
1652		table_type = GITS_BASER_TYPE_DEVICE;
1653		break;
1654	case 1:
1655		regptr = &its->baser_coll_table;
1656		entry_size = abi->cte_esz;
1657		table_type = GITS_BASER_TYPE_COLLECTION;
1658		clearbits = GITS_BASER_INDIRECT;
1659		break;
1660	default:
1661		return;
1662	}
1663
1664	reg = update_64bit_reg(*regptr, addr & 7, len, val);
1665	reg &= ~GITS_BASER_RO_MASK;
1666	reg &= ~clearbits;
1667
1668	reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1669	reg |= table_type << GITS_BASER_TYPE_SHIFT;
1670	reg = vgic_sanitise_its_baser(reg);
1671
1672	*regptr = reg;
1673
1674	if (!(reg & GITS_BASER_VALID)) {
1675		/* Take the its_lock to prevent a race with a save/restore */
1676		mutex_lock(&its->its_lock);
1677		switch (table_type) {
1678		case GITS_BASER_TYPE_DEVICE:
1679			vgic_its_free_device_list(kvm, its);
1680			break;
1681		case GITS_BASER_TYPE_COLLECTION:
1682			vgic_its_free_collection_list(kvm, its);
1683			break;
1684		}
1685		mutex_unlock(&its->its_lock);
1686	}
1687}
1688
1689static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1690					     struct vgic_its *its,
1691					     gpa_t addr, unsigned int len)
1692{
1693	u32 reg = 0;
1694
1695	mutex_lock(&its->cmd_lock);
1696	if (its->creadr == its->cwriter)
1697		reg |= GITS_CTLR_QUIESCENT;
1698	if (its->enabled)
1699		reg |= GITS_CTLR_ENABLE;
1700	mutex_unlock(&its->cmd_lock);
1701
1702	return reg;
1703}
1704
1705static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1706				     gpa_t addr, unsigned int len,
1707				     unsigned long val)
1708{
1709	mutex_lock(&its->cmd_lock);
1710
1711	/*
1712	 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1713	 * device/collection BASER are invalid
1714	 */
1715	if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1716		(!(its->baser_device_table & GITS_BASER_VALID) ||
1717		 !(its->baser_coll_table & GITS_BASER_VALID) ||
1718		 !(its->cbaser & GITS_CBASER_VALID)))
1719		goto out;
1720
1721	its->enabled = !!(val & GITS_CTLR_ENABLE);
1722	if (!its->enabled)
1723		vgic_its_invalidate_cache(kvm);
1724
1725	/*
1726	 * Try to process any pending commands. This function bails out early
1727	 * if the ITS is disabled or no commands have been queued.
1728	 */
1729	vgic_its_process_commands(kvm, its);
1730
1731out:
1732	mutex_unlock(&its->cmd_lock);
1733}
1734
1735#define REGISTER_ITS_DESC(off, rd, wr, length, acc)		\
1736{								\
1737	.reg_offset = off,					\
1738	.len = length,						\
1739	.access_flags = acc,					\
1740	.its_read = rd,						\
1741	.its_write = wr,					\
1742}
1743
1744#define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1745{								\
1746	.reg_offset = off,					\
1747	.len = length,						\
1748	.access_flags = acc,					\
1749	.its_read = rd,						\
1750	.its_write = wr,					\
1751	.uaccess_its_write = uwr,				\
1752}
1753
1754static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1755			      gpa_t addr, unsigned int len, unsigned long val)
1756{
1757	/* Ignore */
1758}
1759
1760static struct vgic_register_region its_registers[] = {
1761	REGISTER_ITS_DESC(GITS_CTLR,
1762		vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1763		VGIC_ACCESS_32bit),
1764	REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1765		vgic_mmio_read_its_iidr, its_mmio_write_wi,
1766		vgic_mmio_uaccess_write_its_iidr, 4,
1767		VGIC_ACCESS_32bit),
1768	REGISTER_ITS_DESC(GITS_TYPER,
1769		vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1770		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1771	REGISTER_ITS_DESC(GITS_CBASER,
1772		vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1773		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1774	REGISTER_ITS_DESC(GITS_CWRITER,
1775		vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1776		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1777	REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1778		vgic_mmio_read_its_creadr, its_mmio_write_wi,
1779		vgic_mmio_uaccess_write_its_creadr, 8,
1780		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1781	REGISTER_ITS_DESC(GITS_BASER,
1782		vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1783		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1784	REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1785		vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1786		VGIC_ACCESS_32bit),
1787};
1788
1789/* This is called on setting the LPI enable bit in the redistributor. */
1790void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1791{
1792	if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1793		its_sync_lpi_pending_table(vcpu);
1794}
1795
1796static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1797				   u64 addr)
1798{
1799	struct vgic_io_device *iodev = &its->iodev;
1800	int ret;
1801
1802	mutex_lock(&kvm->slots_lock);
1803	if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1804		ret = -EBUSY;
1805		goto out;
1806	}
1807
1808	its->vgic_its_base = addr;
1809	iodev->regions = its_registers;
1810	iodev->nr_regions = ARRAY_SIZE(its_registers);
1811	kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1812
1813	iodev->base_addr = its->vgic_its_base;
1814	iodev->iodev_type = IODEV_ITS;
1815	iodev->its = its;
1816	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1817				      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1818out:
1819	mutex_unlock(&kvm->slots_lock);
1820
1821	return ret;
1822}
1823
1824/* Default is 16 cached LPIs per vcpu */
1825#define LPI_DEFAULT_PCPU_CACHE_SIZE	16
1826
1827void vgic_lpi_translation_cache_init(struct kvm *kvm)
1828{
1829	struct vgic_dist *dist = &kvm->arch.vgic;
1830	unsigned int sz;
1831	int i;
1832
1833	if (!list_empty(&dist->lpi_translation_cache))
1834		return;
1835
1836	sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE;
1837
1838	for (i = 0; i < sz; i++) {
1839		struct vgic_translation_cache_entry *cte;
1840
1841		/* An allocation failure is not fatal */
1842		cte = kzalloc(sizeof(*cte), GFP_KERNEL);
1843		if (WARN_ON(!cte))
1844			break;
1845
1846		INIT_LIST_HEAD(&cte->entry);
1847		list_add(&cte->entry, &dist->lpi_translation_cache);
1848	}
1849}
1850
1851void vgic_lpi_translation_cache_destroy(struct kvm *kvm)
1852{
1853	struct vgic_dist *dist = &kvm->arch.vgic;
1854	struct vgic_translation_cache_entry *cte, *tmp;
1855
1856	vgic_its_invalidate_cache(kvm);
1857
1858	list_for_each_entry_safe(cte, tmp,
1859				 &dist->lpi_translation_cache, entry) {
1860		list_del(&cte->entry);
1861		kfree(cte);
1862	}
1863}
1864
1865#define INITIAL_BASER_VALUE						  \
1866	(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)		| \
1867	 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)		| \
1868	 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)		| \
1869	 GITS_BASER_PAGE_SIZE_64K)
1870
1871#define INITIAL_PROPBASER_VALUE						  \
1872	(GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)		| \
1873	 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)	| \
1874	 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1875
1876static int vgic_its_create(struct kvm_device *dev, u32 type)
1877{
1878	struct vgic_its *its;
1879
1880	if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1881		return -ENODEV;
1882
1883	its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1884	if (!its)
1885		return -ENOMEM;
1886
1887	if (vgic_initialized(dev->kvm)) {
1888		int ret = vgic_v4_init(dev->kvm);
1889		if (ret < 0) {
1890			kfree(its);
1891			return ret;
1892		}
1893
1894		vgic_lpi_translation_cache_init(dev->kvm);
1895	}
1896
1897	mutex_init(&its->its_lock);
1898	mutex_init(&its->cmd_lock);
1899
1900	its->vgic_its_base = VGIC_ADDR_UNDEF;
1901
1902	INIT_LIST_HEAD(&its->device_list);
1903	INIT_LIST_HEAD(&its->collection_list);
1904
1905	dev->kvm->arch.vgic.msis_require_devid = true;
1906	dev->kvm->arch.vgic.has_its = true;
1907	its->enabled = false;
1908	its->dev = dev;
1909
1910	its->baser_device_table = INITIAL_BASER_VALUE			|
1911		((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1912	its->baser_coll_table = INITIAL_BASER_VALUE |
1913		((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1914	dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1915
1916	dev->private = its;
1917
1918	return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1919}
1920
1921static void vgic_its_destroy(struct kvm_device *kvm_dev)
1922{
1923	struct kvm *kvm = kvm_dev->kvm;
1924	struct vgic_its *its = kvm_dev->private;
1925
1926	mutex_lock(&its->its_lock);
1927
1928	vgic_its_free_device_list(kvm, its);
1929	vgic_its_free_collection_list(kvm, its);
1930
1931	mutex_unlock(&its->its_lock);
1932	kfree(its);
1933	kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
1934}
1935
1936static int vgic_its_has_attr_regs(struct kvm_device *dev,
1937				  struct kvm_device_attr *attr)
1938{
1939	const struct vgic_register_region *region;
1940	gpa_t offset = attr->attr;
1941	int align;
1942
1943	align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1944
1945	if (offset & align)
1946		return -EINVAL;
1947
1948	region = vgic_find_mmio_region(its_registers,
1949				       ARRAY_SIZE(its_registers),
1950				       offset);
1951	if (!region)
1952		return -ENXIO;
1953
1954	return 0;
1955}
1956
1957static int vgic_its_attr_regs_access(struct kvm_device *dev,
1958				     struct kvm_device_attr *attr,
1959				     u64 *reg, bool is_write)
1960{
1961	const struct vgic_register_region *region;
1962	struct vgic_its *its;
1963	gpa_t addr, offset;
1964	unsigned int len;
1965	int align, ret = 0;
1966
1967	its = dev->private;
1968	offset = attr->attr;
1969
1970	/*
1971	 * Although the spec supports upper/lower 32-bit accesses to
1972	 * 64-bit ITS registers, the userspace ABI requires 64-bit
1973	 * accesses to all 64-bit wide registers. We therefore only
1974	 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1975	 * registers
1976	 */
1977	if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1978		align = 0x3;
1979	else
1980		align = 0x7;
1981
1982	if (offset & align)
1983		return -EINVAL;
1984
1985	mutex_lock(&dev->kvm->lock);
1986
1987	if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1988		ret = -ENXIO;
1989		goto out;
1990	}
1991
1992	region = vgic_find_mmio_region(its_registers,
1993				       ARRAY_SIZE(its_registers),
1994				       offset);
1995	if (!region) {
1996		ret = -ENXIO;
1997		goto out;
1998	}
1999
2000	if (!lock_all_vcpus(dev->kvm)) {
2001		ret = -EBUSY;
2002		goto out;
2003	}
2004
2005	addr = its->vgic_its_base + offset;
2006
2007	len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
2008
2009	if (is_write) {
2010		if (region->uaccess_its_write)
2011			ret = region->uaccess_its_write(dev->kvm, its, addr,
2012							len, *reg);
2013		else
2014			region->its_write(dev->kvm, its, addr, len, *reg);
2015	} else {
2016		*reg = region->its_read(dev->kvm, its, addr, len);
2017	}
2018	unlock_all_vcpus(dev->kvm);
2019out:
2020	mutex_unlock(&dev->kvm->lock);
2021	return ret;
2022}
2023
2024static u32 compute_next_devid_offset(struct list_head *h,
2025				     struct its_device *dev)
2026{
2027	struct its_device *next;
2028	u32 next_offset;
2029
2030	if (list_is_last(&dev->dev_list, h))
2031		return 0;
2032	next = list_next_entry(dev, dev_list);
2033	next_offset = next->device_id - dev->device_id;
2034
2035	return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2036}
2037
2038static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2039{
2040	struct its_ite *next;
2041	u32 next_offset;
2042
2043	if (list_is_last(&ite->ite_list, h))
2044		return 0;
2045	next = list_next_entry(ite, ite_list);
2046	next_offset = next->event_id - ite->event_id;
2047
2048	return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2049}
2050
2051/**
2052 * entry_fn_t - Callback called on a table entry restore path
2053 * @its: its handle
2054 * @id: id of the entry
2055 * @entry: pointer to the entry
2056 * @opaque: pointer to an opaque data
2057 *
2058 * Return: < 0 on error, 0 if last element was identified, id offset to next
2059 * element otherwise
2060 */
2061typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2062			  void *opaque);
2063
2064/**
2065 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2066 * to each entry
2067 *
2068 * @its: its handle
2069 * @base: base gpa of the table
2070 * @size: size of the table in bytes
2071 * @esz: entry size in bytes
2072 * @start_id: the ID of the first entry in the table
2073 * (non zero for 2d level tables)
2074 * @fn: function to apply on each entry
2075 *
2076 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2077 * (the last element may not be found on second level tables)
2078 */
2079static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2080			  int start_id, entry_fn_t fn, void *opaque)
2081{
2082	struct kvm *kvm = its->dev->kvm;
2083	unsigned long len = size;
2084	int id = start_id;
2085	gpa_t gpa = base;
2086	char entry[ESZ_MAX];
2087	int ret;
2088
2089	memset(entry, 0, esz);
2090
2091	while (len > 0) {
2092		int next_offset;
2093		size_t byte_offset;
2094
2095		ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2096		if (ret)
2097			return ret;
2098
2099		next_offset = fn(its, id, entry, opaque);
2100		if (next_offset <= 0)
2101			return next_offset;
2102
2103		byte_offset = next_offset * esz;
2104		id += next_offset;
2105		gpa += byte_offset;
2106		len -= byte_offset;
2107	}
2108	return 1;
2109}
2110
2111/**
2112 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2113 */
2114static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2115			      struct its_ite *ite, gpa_t gpa, int ite_esz)
2116{
2117	struct kvm *kvm = its->dev->kvm;
2118	u32 next_offset;
2119	u64 val;
2120
2121	next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2122	val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2123	       ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2124		ite->collection->collection_id;
2125	val = cpu_to_le64(val);
2126	return kvm_write_guest_lock(kvm, gpa, &val, ite_esz);
2127}
2128
2129/**
2130 * vgic_its_restore_ite - restore an interrupt translation entry
2131 * @event_id: id used for indexing
2132 * @ptr: pointer to the ITE entry
2133 * @opaque: pointer to the its_device
2134 */
2135static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2136				void *ptr, void *opaque)
2137{
2138	struct its_device *dev = (struct its_device *)opaque;
2139	struct its_collection *collection;
2140	struct kvm *kvm = its->dev->kvm;
2141	struct kvm_vcpu *vcpu = NULL;
2142	u64 val;
2143	u64 *p = (u64 *)ptr;
2144	struct vgic_irq *irq;
2145	u32 coll_id, lpi_id;
2146	struct its_ite *ite;
2147	u32 offset;
2148
2149	val = *p;
2150
2151	val = le64_to_cpu(val);
2152
2153	coll_id = val & KVM_ITS_ITE_ICID_MASK;
2154	lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2155
2156	if (!lpi_id)
2157		return 1; /* invalid entry, no choice but to scan next entry */
2158
2159	if (lpi_id < VGIC_MIN_LPI)
2160		return -EINVAL;
2161
2162	offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2163	if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2164		return -EINVAL;
2165
2166	collection = find_collection(its, coll_id);
2167	if (!collection)
2168		return -EINVAL;
2169
2170	ite = vgic_its_alloc_ite(dev, collection, event_id);
2171	if (IS_ERR(ite))
2172		return PTR_ERR(ite);
2173
2174	if (its_is_collection_mapped(collection))
2175		vcpu = kvm_get_vcpu(kvm, collection->target_addr);
2176
2177	irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2178	if (IS_ERR(irq))
2179		return PTR_ERR(irq);
2180	ite->irq = irq;
2181
2182	return offset;
2183}
2184
2185static int vgic_its_ite_cmp(void *priv, struct list_head *a,
2186			    struct list_head *b)
2187{
2188	struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2189	struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2190
2191	if (itea->event_id < iteb->event_id)
2192		return -1;
2193	else
2194		return 1;
2195}
2196
2197static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2198{
2199	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2200	gpa_t base = device->itt_addr;
2201	struct its_ite *ite;
2202	int ret;
2203	int ite_esz = abi->ite_esz;
2204
2205	list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2206
2207	list_for_each_entry(ite, &device->itt_head, ite_list) {
2208		gpa_t gpa = base + ite->event_id * ite_esz;
2209
2210		/*
2211		 * If an LPI carries the HW bit, this means that this
2212		 * interrupt is controlled by GICv4, and we do not
2213		 * have direct access to that state. Let's simply fail
2214		 * the save operation...
2215		 */
2216		if (ite->irq->hw)
2217			return -EACCES;
2218
2219		ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2220		if (ret)
2221			return ret;
2222	}
2223	return 0;
2224}
2225
2226/**
2227 * vgic_its_restore_itt - restore the ITT of a device
2228 *
2229 * @its: its handle
2230 * @dev: device handle
2231 *
2232 * Return 0 on success, < 0 on error
2233 */
2234static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2235{
2236	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2237	gpa_t base = dev->itt_addr;
2238	int ret;
2239	int ite_esz = abi->ite_esz;
2240	size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2241
2242	ret = scan_its_table(its, base, max_size, ite_esz, 0,
2243			     vgic_its_restore_ite, dev);
2244
2245	/* scan_its_table returns +1 if all ITEs are invalid */
2246	if (ret > 0)
2247		ret = 0;
2248
2249	return ret;
2250}
2251
2252/**
2253 * vgic_its_save_dte - Save a device table entry at a given GPA
2254 *
2255 * @its: ITS handle
2256 * @dev: ITS device
2257 * @ptr: GPA
2258 */
2259static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2260			     gpa_t ptr, int dte_esz)
2261{
2262	struct kvm *kvm = its->dev->kvm;
2263	u64 val, itt_addr_field;
2264	u32 next_offset;
2265
2266	itt_addr_field = dev->itt_addr >> 8;
2267	next_offset = compute_next_devid_offset(&its->device_list, dev);
2268	val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2269	       ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2270	       (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2271		(dev->num_eventid_bits - 1));
2272	val = cpu_to_le64(val);
2273	return kvm_write_guest_lock(kvm, ptr, &val, dte_esz);
2274}
2275
2276/**
2277 * vgic_its_restore_dte - restore a device table entry
2278 *
2279 * @its: its handle
2280 * @id: device id the DTE corresponds to
2281 * @ptr: kernel VA where the 8 byte DTE is located
2282 * @opaque: unused
2283 *
2284 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2285 * next dte otherwise
2286 */
2287static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2288				void *ptr, void *opaque)
2289{
2290	struct its_device *dev;
2291	gpa_t itt_addr;
2292	u8 num_eventid_bits;
2293	u64 entry = *(u64 *)ptr;
2294	bool valid;
2295	u32 offset;
2296	int ret;
2297
2298	entry = le64_to_cpu(entry);
2299
2300	valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2301	num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2302	itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2303			>> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2304
2305	if (!valid)
2306		return 1;
2307
2308	/* dte entry is valid */
2309	offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2310
2311	dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2312	if (IS_ERR(dev))
2313		return PTR_ERR(dev);
2314
2315	ret = vgic_its_restore_itt(its, dev);
2316	if (ret) {
2317		vgic_its_free_device(its->dev->kvm, dev);
2318		return ret;
2319	}
2320
2321	return offset;
2322}
2323
2324static int vgic_its_device_cmp(void *priv, struct list_head *a,
2325			       struct list_head *b)
2326{
2327	struct its_device *deva = container_of(a, struct its_device, dev_list);
2328	struct its_device *devb = container_of(b, struct its_device, dev_list);
2329
2330	if (deva->device_id < devb->device_id)
2331		return -1;
2332	else
2333		return 1;
2334}
2335
2336/**
2337 * vgic_its_save_device_tables - Save the device table and all ITT
2338 * into guest RAM
2339 *
2340 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2341 * returns the GPA of the device entry
2342 */
2343static int vgic_its_save_device_tables(struct vgic_its *its)
2344{
2345	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2346	u64 baser = its->baser_device_table;
2347	struct its_device *dev;
2348	int dte_esz = abi->dte_esz;
2349
2350	if (!(baser & GITS_BASER_VALID))
2351		return 0;
2352
2353	list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2354
2355	list_for_each_entry(dev, &its->device_list, dev_list) {
2356		int ret;
2357		gpa_t eaddr;
2358
2359		if (!vgic_its_check_id(its, baser,
2360				       dev->device_id, &eaddr))
2361			return -EINVAL;
2362
2363		ret = vgic_its_save_itt(its, dev);
2364		if (ret)
2365			return ret;
2366
2367		ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2368		if (ret)
2369			return ret;
2370	}
2371	return 0;
2372}
2373
2374/**
2375 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2376 *
2377 * @its: its handle
2378 * @id: index of the entry in the L1 table
2379 * @addr: kernel VA
2380 * @opaque: unused
2381 *
2382 * L1 table entries are scanned by steps of 1 entry
2383 * Return < 0 if error, 0 if last dte was found when scanning the L2
2384 * table, +1 otherwise (meaning next L1 entry must be scanned)
2385 */
2386static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2387			 void *opaque)
2388{
2389	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2390	int l2_start_id = id * (SZ_64K / abi->dte_esz);
2391	u64 entry = *(u64 *)addr;
2392	int dte_esz = abi->dte_esz;
2393	gpa_t gpa;
2394	int ret;
2395
2396	entry = le64_to_cpu(entry);
2397
2398	if (!(entry & KVM_ITS_L1E_VALID_MASK))
2399		return 1;
2400
2401	gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2402
2403	ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2404			     l2_start_id, vgic_its_restore_dte, NULL);
2405
2406	return ret;
2407}
2408
2409/**
2410 * vgic_its_restore_device_tables - Restore the device table and all ITT
2411 * from guest RAM to internal data structs
2412 */
2413static int vgic_its_restore_device_tables(struct vgic_its *its)
2414{
2415	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2416	u64 baser = its->baser_device_table;
2417	int l1_esz, ret;
2418	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2419	gpa_t l1_gpa;
2420
2421	if (!(baser & GITS_BASER_VALID))
2422		return 0;
2423
2424	l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2425
2426	if (baser & GITS_BASER_INDIRECT) {
2427		l1_esz = GITS_LVL1_ENTRY_SIZE;
2428		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2429				     handle_l1_dte, NULL);
2430	} else {
2431		l1_esz = abi->dte_esz;
2432		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2433				     vgic_its_restore_dte, NULL);
2434	}
2435
2436	/* scan_its_table returns +1 if all entries are invalid */
2437	if (ret > 0)
2438		ret = 0;
2439
2440	return ret;
2441}
2442
2443static int vgic_its_save_cte(struct vgic_its *its,
2444			     struct its_collection *collection,
2445			     gpa_t gpa, int esz)
2446{
2447	u64 val;
2448
2449	val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2450	       ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2451	       collection->collection_id);
2452	val = cpu_to_le64(val);
2453	return kvm_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2454}
2455
2456static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2457{
2458	struct its_collection *collection;
2459	struct kvm *kvm = its->dev->kvm;
2460	u32 target_addr, coll_id;
2461	u64 val;
2462	int ret;
2463
2464	BUG_ON(esz > sizeof(val));
2465	ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2466	if (ret)
2467		return ret;
2468	val = le64_to_cpu(val);
2469	if (!(val & KVM_ITS_CTE_VALID_MASK))
2470		return 0;
2471
2472	target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2473	coll_id = val & KVM_ITS_CTE_ICID_MASK;
2474
2475	if (target_addr >= atomic_read(&kvm->online_vcpus))
2476		return -EINVAL;
2477
2478	collection = find_collection(its, coll_id);
2479	if (collection)
2480		return -EEXIST;
2481	ret = vgic_its_alloc_collection(its, &collection, coll_id);
2482	if (ret)
2483		return ret;
2484	collection->target_addr = target_addr;
2485	return 1;
2486}
2487
2488/**
2489 * vgic_its_save_collection_table - Save the collection table into
2490 * guest RAM
2491 */
2492static int vgic_its_save_collection_table(struct vgic_its *its)
2493{
2494	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2495	u64 baser = its->baser_coll_table;
2496	gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2497	struct its_collection *collection;
2498	u64 val;
2499	size_t max_size, filled = 0;
2500	int ret, cte_esz = abi->cte_esz;
2501
2502	if (!(baser & GITS_BASER_VALID))
2503		return 0;
2504
2505	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2506
2507	list_for_each_entry(collection, &its->collection_list, coll_list) {
2508		ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2509		if (ret)
2510			return ret;
2511		gpa += cte_esz;
2512		filled += cte_esz;
2513	}
2514
2515	if (filled == max_size)
2516		return 0;
2517
2518	/*
2519	 * table is not fully filled, add a last dummy element
2520	 * with valid bit unset
2521	 */
2522	val = 0;
2523	BUG_ON(cte_esz > sizeof(val));
2524	ret = kvm_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2525	return ret;
2526}
2527
2528/**
2529 * vgic_its_restore_collection_table - reads the collection table
2530 * in guest memory and restores the ITS internal state. Requires the
2531 * BASER registers to be restored before.
2532 */
2533static int vgic_its_restore_collection_table(struct vgic_its *its)
2534{
2535	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2536	u64 baser = its->baser_coll_table;
2537	int cte_esz = abi->cte_esz;
2538	size_t max_size, read = 0;
2539	gpa_t gpa;
2540	int ret;
2541
2542	if (!(baser & GITS_BASER_VALID))
2543		return 0;
2544
2545	gpa = GITS_BASER_ADDR_48_to_52(baser);
2546
2547	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2548
2549	while (read < max_size) {
2550		ret = vgic_its_restore_cte(its, gpa, cte_esz);
2551		if (ret <= 0)
2552			break;
2553		gpa += cte_esz;
2554		read += cte_esz;
2555	}
2556
2557	if (ret > 0)
2558		return 0;
2559
2560	return ret;
2561}
2562
2563/**
2564 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2565 * according to v0 ABI
2566 */
2567static int vgic_its_save_tables_v0(struct vgic_its *its)
2568{
2569	int ret;
2570
2571	ret = vgic_its_save_device_tables(its);
2572	if (ret)
2573		return ret;
2574
2575	return vgic_its_save_collection_table(its);
2576}
2577
2578/**
2579 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2580 * to internal data structs according to V0 ABI
2581 *
2582 */
2583static int vgic_its_restore_tables_v0(struct vgic_its *its)
2584{
2585	int ret;
2586
2587	ret = vgic_its_restore_collection_table(its);
2588	if (ret)
2589		return ret;
2590
2591	return vgic_its_restore_device_tables(its);
2592}
2593
2594static int vgic_its_commit_v0(struct vgic_its *its)
2595{
2596	const struct vgic_its_abi *abi;
2597
2598	abi = vgic_its_get_abi(its);
2599	its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2600	its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2601
2602	its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2603					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2604
2605	its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2606					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2607	return 0;
2608}
2609
2610static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2611{
2612	/* We need to keep the ABI specific field values */
2613	its->baser_coll_table &= ~GITS_BASER_VALID;
2614	its->baser_device_table &= ~GITS_BASER_VALID;
2615	its->cbaser = 0;
2616	its->creadr = 0;
2617	its->cwriter = 0;
2618	its->enabled = 0;
2619	vgic_its_free_device_list(kvm, its);
2620	vgic_its_free_collection_list(kvm, its);
2621}
2622
2623static int vgic_its_has_attr(struct kvm_device *dev,
2624			     struct kvm_device_attr *attr)
2625{
2626	switch (attr->group) {
2627	case KVM_DEV_ARM_VGIC_GRP_ADDR:
2628		switch (attr->attr) {
2629		case KVM_VGIC_ITS_ADDR_TYPE:
2630			return 0;
2631		}
2632		break;
2633	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2634		switch (attr->attr) {
2635		case KVM_DEV_ARM_VGIC_CTRL_INIT:
2636			return 0;
2637		case KVM_DEV_ARM_ITS_CTRL_RESET:
2638			return 0;
2639		case KVM_DEV_ARM_ITS_SAVE_TABLES:
2640			return 0;
2641		case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2642			return 0;
2643		}
2644		break;
2645	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2646		return vgic_its_has_attr_regs(dev, attr);
2647	}
2648	return -ENXIO;
2649}
2650
2651static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2652{
2653	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2654	int ret = 0;
2655
2656	if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2657		return 0;
2658
2659	mutex_lock(&kvm->lock);
2660	mutex_lock(&its->its_lock);
2661
2662	if (!lock_all_vcpus(kvm)) {
2663		mutex_unlock(&its->its_lock);
2664		mutex_unlock(&kvm->lock);
2665		return -EBUSY;
2666	}
2667
2668	switch (attr) {
2669	case KVM_DEV_ARM_ITS_CTRL_RESET:
2670		vgic_its_reset(kvm, its);
2671		break;
2672	case KVM_DEV_ARM_ITS_SAVE_TABLES:
2673		ret = abi->save_tables(its);
2674		break;
2675	case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2676		ret = abi->restore_tables(its);
2677		break;
2678	}
2679
2680	unlock_all_vcpus(kvm);
2681	mutex_unlock(&its->its_lock);
2682	mutex_unlock(&kvm->lock);
2683	return ret;
2684}
2685
2686static int vgic_its_set_attr(struct kvm_device *dev,
2687			     struct kvm_device_attr *attr)
2688{
2689	struct vgic_its *its = dev->private;
2690	int ret;
2691
2692	switch (attr->group) {
2693	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2694		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2695		unsigned long type = (unsigned long)attr->attr;
2696		u64 addr;
2697
2698		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2699			return -ENODEV;
2700
2701		if (copy_from_user(&addr, uaddr, sizeof(addr)))
2702			return -EFAULT;
2703
2704		ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2705					addr, SZ_64K);
2706		if (ret)
2707			return ret;
2708
2709		return vgic_register_its_iodev(dev->kvm, its, addr);
2710	}
2711	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2712		return vgic_its_ctrl(dev->kvm, its, attr->attr);
2713	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2714		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2715		u64 reg;
2716
2717		if (get_user(reg, uaddr))
2718			return -EFAULT;
2719
2720		return vgic_its_attr_regs_access(dev, attr, &reg, true);
2721	}
2722	}
2723	return -ENXIO;
2724}
2725
2726static int vgic_its_get_attr(struct kvm_device *dev,
2727			     struct kvm_device_attr *attr)
2728{
2729	switch (attr->group) {
2730	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2731		struct vgic_its *its = dev->private;
2732		u64 addr = its->vgic_its_base;
2733		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2734		unsigned long type = (unsigned long)attr->attr;
2735
2736		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2737			return -ENODEV;
2738
2739		if (copy_to_user(uaddr, &addr, sizeof(addr)))
2740			return -EFAULT;
2741		break;
2742	}
2743	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2744		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2745		u64 reg;
2746		int ret;
2747
2748		ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2749		if (ret)
2750			return ret;
2751		return put_user(reg, uaddr);
2752	}
2753	default:
2754		return -ENXIO;
2755	}
2756
2757	return 0;
2758}
2759
2760static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2761	.name = "kvm-arm-vgic-its",
2762	.create = vgic_its_create,
2763	.destroy = vgic_its_destroy,
2764	.set_attr = vgic_its_set_attr,
2765	.get_attr = vgic_its_get_attr,
2766	.has_attr = vgic_its_has_attr,
2767};
2768
2769int kvm_vgic_register_its_device(void)
2770{
2771	return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2772				       KVM_DEV_TYPE_ARM_VGIC_ITS);
2773}