Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
   5 */
   6
   7#include <linux/mman.h>
   8#include <linux/kvm_host.h>
   9#include <linux/io.h>
  10#include <linux/hugetlb.h>
  11#include <linux/sched/signal.h>
  12#include <trace/events/kvm.h>
  13#include <asm/pgalloc.h>
  14#include <asm/cacheflush.h>
  15#include <asm/kvm_arm.h>
  16#include <asm/kvm_mmu.h>
  17#include <asm/kvm_mmio.h>
  18#include <asm/kvm_ras.h>
  19#include <asm/kvm_asm.h>
  20#include <asm/kvm_emulate.h>
  21#include <asm/virt.h>
  22
  23#include "trace.h"
  24
  25static pgd_t *boot_hyp_pgd;
  26static pgd_t *hyp_pgd;
  27static pgd_t *merged_hyp_pgd;
  28static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
  29
  30static unsigned long hyp_idmap_start;
  31static unsigned long hyp_idmap_end;
  32static phys_addr_t hyp_idmap_vector;
  33
  34static unsigned long io_map_base;
  35
  36#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
  37
  38#define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
  39#define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)
  40
  41static bool memslot_is_logging(struct kvm_memory_slot *memslot)
  42{
  43	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
  44}
  45
  46/**
  47 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
  48 * @kvm:	pointer to kvm structure.
  49 *
  50 * Interface to HYP function to flush all VM TLB entries
  51 */
  52void kvm_flush_remote_tlbs(struct kvm *kvm)
  53{
  54	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
  55}
  56
  57static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
  58{
  59	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
  60}
  61
  62/*
  63 * D-Cache management functions. They take the page table entries by
  64 * value, as they are flushing the cache using the kernel mapping (or
  65 * kmap on 32bit).
  66 */
  67static void kvm_flush_dcache_pte(pte_t pte)
  68{
  69	__kvm_flush_dcache_pte(pte);
  70}
  71
  72static void kvm_flush_dcache_pmd(pmd_t pmd)
  73{
  74	__kvm_flush_dcache_pmd(pmd);
  75}
  76
  77static void kvm_flush_dcache_pud(pud_t pud)
  78{
  79	__kvm_flush_dcache_pud(pud);
  80}
  81
  82static bool kvm_is_device_pfn(unsigned long pfn)
  83{
  84	return !pfn_valid(pfn);
  85}
  86
  87/**
  88 * stage2_dissolve_pmd() - clear and flush huge PMD entry
  89 * @kvm:	pointer to kvm structure.
  90 * @addr:	IPA
  91 * @pmd:	pmd pointer for IPA
  92 *
  93 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
  94 */
  95static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
  96{
  97	if (!pmd_thp_or_huge(*pmd))
  98		return;
  99
 100	pmd_clear(pmd);
 101	kvm_tlb_flush_vmid_ipa(kvm, addr);
 102	put_page(virt_to_page(pmd));
 103}
 104
 105/**
 106 * stage2_dissolve_pud() - clear and flush huge PUD entry
 107 * @kvm:	pointer to kvm structure.
 108 * @addr:	IPA
 109 * @pud:	pud pointer for IPA
 110 *
 111 * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
 112 */
 113static void stage2_dissolve_pud(struct kvm *kvm, phys_addr_t addr, pud_t *pudp)
 114{
 115	if (!stage2_pud_huge(kvm, *pudp))
 116		return;
 117
 118	stage2_pud_clear(kvm, pudp);
 119	kvm_tlb_flush_vmid_ipa(kvm, addr);
 120	put_page(virt_to_page(pudp));
 121}
 122
 123static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
 124				  int min, int max)
 125{
 126	void *page;
 127
 128	BUG_ON(max > KVM_NR_MEM_OBJS);
 129	if (cache->nobjs >= min)
 130		return 0;
 131	while (cache->nobjs < max) {
 132		page = (void *)__get_free_page(GFP_PGTABLE_USER);
 133		if (!page)
 134			return -ENOMEM;
 135		cache->objects[cache->nobjs++] = page;
 136	}
 137	return 0;
 138}
 139
 140static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
 141{
 142	while (mc->nobjs)
 143		free_page((unsigned long)mc->objects[--mc->nobjs]);
 144}
 145
 146static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
 147{
 148	void *p;
 149
 150	BUG_ON(!mc || !mc->nobjs);
 151	p = mc->objects[--mc->nobjs];
 152	return p;
 153}
 154
 155static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
 156{
 157	pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, pgd, 0UL);
 158	stage2_pgd_clear(kvm, pgd);
 159	kvm_tlb_flush_vmid_ipa(kvm, addr);
 160	stage2_pud_free(kvm, pud_table);
 161	put_page(virt_to_page(pgd));
 162}
 163
 164static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
 165{
 166	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
 167	VM_BUG_ON(stage2_pud_huge(kvm, *pud));
 168	stage2_pud_clear(kvm, pud);
 169	kvm_tlb_flush_vmid_ipa(kvm, addr);
 170	stage2_pmd_free(kvm, pmd_table);
 171	put_page(virt_to_page(pud));
 172}
 173
 174static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
 175{
 176	pte_t *pte_table = pte_offset_kernel(pmd, 0);
 177	VM_BUG_ON(pmd_thp_or_huge(*pmd));
 178	pmd_clear(pmd);
 179	kvm_tlb_flush_vmid_ipa(kvm, addr);
 180	free_page((unsigned long)pte_table);
 181	put_page(virt_to_page(pmd));
 182}
 183
 184static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
 185{
 186	WRITE_ONCE(*ptep, new_pte);
 187	dsb(ishst);
 188}
 189
 190static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
 191{
 192	WRITE_ONCE(*pmdp, new_pmd);
 193	dsb(ishst);
 194}
 195
 196static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
 197{
 198	kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
 199}
 200
 201static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
 202{
 203	WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
 204	dsb(ishst);
 205}
 206
 207static inline void kvm_pgd_populate(pgd_t *pgdp, pud_t *pudp)
 208{
 209	WRITE_ONCE(*pgdp, kvm_mk_pgd(pudp));
 210	dsb(ishst);
 211}
 212
 213/*
 214 * Unmapping vs dcache management:
 215 *
 216 * If a guest maps certain memory pages as uncached, all writes will
 217 * bypass the data cache and go directly to RAM.  However, the CPUs
 218 * can still speculate reads (not writes) and fill cache lines with
 219 * data.
 220 *
 221 * Those cache lines will be *clean* cache lines though, so a
 222 * clean+invalidate operation is equivalent to an invalidate
 223 * operation, because no cache lines are marked dirty.
 224 *
 225 * Those clean cache lines could be filled prior to an uncached write
 226 * by the guest, and the cache coherent IO subsystem would therefore
 227 * end up writing old data to disk.
 228 *
 229 * This is why right after unmapping a page/section and invalidating
 230 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
 231 * the IO subsystem will never hit in the cache.
 232 *
 233 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
 234 * we then fully enforce cacheability of RAM, no matter what the guest
 235 * does.
 236 */
 237static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
 238		       phys_addr_t addr, phys_addr_t end)
 239{
 240	phys_addr_t start_addr = addr;
 241	pte_t *pte, *start_pte;
 242
 243	start_pte = pte = pte_offset_kernel(pmd, addr);
 244	do {
 245		if (!pte_none(*pte)) {
 246			pte_t old_pte = *pte;
 247
 248			kvm_set_pte(pte, __pte(0));
 249			kvm_tlb_flush_vmid_ipa(kvm, addr);
 250
 251			/* No need to invalidate the cache for device mappings */
 252			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
 253				kvm_flush_dcache_pte(old_pte);
 254
 255			put_page(virt_to_page(pte));
 256		}
 257	} while (pte++, addr += PAGE_SIZE, addr != end);
 258
 259	if (stage2_pte_table_empty(kvm, start_pte))
 260		clear_stage2_pmd_entry(kvm, pmd, start_addr);
 261}
 262
 263static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
 264		       phys_addr_t addr, phys_addr_t end)
 265{
 266	phys_addr_t next, start_addr = addr;
 267	pmd_t *pmd, *start_pmd;
 268
 269	start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
 270	do {
 271		next = stage2_pmd_addr_end(kvm, addr, end);
 272		if (!pmd_none(*pmd)) {
 273			if (pmd_thp_or_huge(*pmd)) {
 274				pmd_t old_pmd = *pmd;
 275
 276				pmd_clear(pmd);
 277				kvm_tlb_flush_vmid_ipa(kvm, addr);
 278
 279				kvm_flush_dcache_pmd(old_pmd);
 280
 281				put_page(virt_to_page(pmd));
 282			} else {
 283				unmap_stage2_ptes(kvm, pmd, addr, next);
 284			}
 285		}
 286	} while (pmd++, addr = next, addr != end);
 287
 288	if (stage2_pmd_table_empty(kvm, start_pmd))
 289		clear_stage2_pud_entry(kvm, pud, start_addr);
 290}
 291
 292static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
 293		       phys_addr_t addr, phys_addr_t end)
 294{
 295	phys_addr_t next, start_addr = addr;
 296	pud_t *pud, *start_pud;
 297
 298	start_pud = pud = stage2_pud_offset(kvm, pgd, addr);
 299	do {
 300		next = stage2_pud_addr_end(kvm, addr, end);
 301		if (!stage2_pud_none(kvm, *pud)) {
 302			if (stage2_pud_huge(kvm, *pud)) {
 303				pud_t old_pud = *pud;
 304
 305				stage2_pud_clear(kvm, pud);
 306				kvm_tlb_flush_vmid_ipa(kvm, addr);
 307				kvm_flush_dcache_pud(old_pud);
 308				put_page(virt_to_page(pud));
 309			} else {
 310				unmap_stage2_pmds(kvm, pud, addr, next);
 311			}
 312		}
 313	} while (pud++, addr = next, addr != end);
 314
 315	if (stage2_pud_table_empty(kvm, start_pud))
 316		clear_stage2_pgd_entry(kvm, pgd, start_addr);
 317}
 318
 319/**
 320 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 321 * @kvm:   The VM pointer
 322 * @start: The intermediate physical base address of the range to unmap
 323 * @size:  The size of the area to unmap
 324 *
 325 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 326 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 327 * destroying the VM), otherwise another faulting VCPU may come in and mess
 328 * with things behind our backs.
 329 */
 330static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
 331{
 332	pgd_t *pgd;
 333	phys_addr_t addr = start, end = start + size;
 334	phys_addr_t next;
 335
 336	assert_spin_locked(&kvm->mmu_lock);
 337	WARN_ON(size & ~PAGE_MASK);
 338
 339	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
 340	do {
 341		/*
 342		 * Make sure the page table is still active, as another thread
 343		 * could have possibly freed the page table, while we released
 344		 * the lock.
 345		 */
 346		if (!READ_ONCE(kvm->arch.pgd))
 347			break;
 348		next = stage2_pgd_addr_end(kvm, addr, end);
 349		if (!stage2_pgd_none(kvm, *pgd))
 350			unmap_stage2_puds(kvm, pgd, addr, next);
 351		/*
 352		 * If the range is too large, release the kvm->mmu_lock
 353		 * to prevent starvation and lockup detector warnings.
 354		 */
 355		if (next != end)
 356			cond_resched_lock(&kvm->mmu_lock);
 357	} while (pgd++, addr = next, addr != end);
 358}
 359
 360static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
 361			      phys_addr_t addr, phys_addr_t end)
 362{
 363	pte_t *pte;
 364
 365	pte = pte_offset_kernel(pmd, addr);
 366	do {
 367		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
 368			kvm_flush_dcache_pte(*pte);
 369	} while (pte++, addr += PAGE_SIZE, addr != end);
 370}
 371
 372static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
 373			      phys_addr_t addr, phys_addr_t end)
 374{
 375	pmd_t *pmd;
 376	phys_addr_t next;
 377
 378	pmd = stage2_pmd_offset(kvm, pud, addr);
 379	do {
 380		next = stage2_pmd_addr_end(kvm, addr, end);
 381		if (!pmd_none(*pmd)) {
 382			if (pmd_thp_or_huge(*pmd))
 383				kvm_flush_dcache_pmd(*pmd);
 384			else
 385				stage2_flush_ptes(kvm, pmd, addr, next);
 386		}
 387	} while (pmd++, addr = next, addr != end);
 388}
 389
 390static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
 391			      phys_addr_t addr, phys_addr_t end)
 392{
 393	pud_t *pud;
 394	phys_addr_t next;
 395
 396	pud = stage2_pud_offset(kvm, pgd, addr);
 397	do {
 398		next = stage2_pud_addr_end(kvm, addr, end);
 399		if (!stage2_pud_none(kvm, *pud)) {
 400			if (stage2_pud_huge(kvm, *pud))
 401				kvm_flush_dcache_pud(*pud);
 402			else
 403				stage2_flush_pmds(kvm, pud, addr, next);
 404		}
 405	} while (pud++, addr = next, addr != end);
 406}
 407
 408static void stage2_flush_memslot(struct kvm *kvm,
 409				 struct kvm_memory_slot *memslot)
 410{
 411	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
 412	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
 413	phys_addr_t next;
 414	pgd_t *pgd;
 415
 416	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
 417	do {
 418		next = stage2_pgd_addr_end(kvm, addr, end);
 419		if (!stage2_pgd_none(kvm, *pgd))
 420			stage2_flush_puds(kvm, pgd, addr, next);
 421	} while (pgd++, addr = next, addr != end);
 422}
 423
 424/**
 425 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 426 * @kvm: The struct kvm pointer
 427 *
 428 * Go through the stage 2 page tables and invalidate any cache lines
 429 * backing memory already mapped to the VM.
 430 */
 431static void stage2_flush_vm(struct kvm *kvm)
 432{
 433	struct kvm_memslots *slots;
 434	struct kvm_memory_slot *memslot;
 435	int idx;
 436
 437	idx = srcu_read_lock(&kvm->srcu);
 438	spin_lock(&kvm->mmu_lock);
 439
 440	slots = kvm_memslots(kvm);
 441	kvm_for_each_memslot(memslot, slots)
 442		stage2_flush_memslot(kvm, memslot);
 443
 444	spin_unlock(&kvm->mmu_lock);
 445	srcu_read_unlock(&kvm->srcu, idx);
 446}
 447
 448static void clear_hyp_pgd_entry(pgd_t *pgd)
 449{
 450	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
 451	pgd_clear(pgd);
 452	pud_free(NULL, pud_table);
 453	put_page(virt_to_page(pgd));
 454}
 455
 456static void clear_hyp_pud_entry(pud_t *pud)
 457{
 458	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
 459	VM_BUG_ON(pud_huge(*pud));
 460	pud_clear(pud);
 461	pmd_free(NULL, pmd_table);
 462	put_page(virt_to_page(pud));
 463}
 464
 465static void clear_hyp_pmd_entry(pmd_t *pmd)
 466{
 467	pte_t *pte_table = pte_offset_kernel(pmd, 0);
 468	VM_BUG_ON(pmd_thp_or_huge(*pmd));
 469	pmd_clear(pmd);
 470	pte_free_kernel(NULL, pte_table);
 471	put_page(virt_to_page(pmd));
 472}
 473
 474static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
 475{
 476	pte_t *pte, *start_pte;
 477
 478	start_pte = pte = pte_offset_kernel(pmd, addr);
 479	do {
 480		if (!pte_none(*pte)) {
 481			kvm_set_pte(pte, __pte(0));
 482			put_page(virt_to_page(pte));
 483		}
 484	} while (pte++, addr += PAGE_SIZE, addr != end);
 485
 486	if (hyp_pte_table_empty(start_pte))
 487		clear_hyp_pmd_entry(pmd);
 488}
 489
 490static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
 491{
 492	phys_addr_t next;
 493	pmd_t *pmd, *start_pmd;
 494
 495	start_pmd = pmd = pmd_offset(pud, addr);
 496	do {
 497		next = pmd_addr_end(addr, end);
 498		/* Hyp doesn't use huge pmds */
 499		if (!pmd_none(*pmd))
 500			unmap_hyp_ptes(pmd, addr, next);
 501	} while (pmd++, addr = next, addr != end);
 502
 503	if (hyp_pmd_table_empty(start_pmd))
 504		clear_hyp_pud_entry(pud);
 505}
 506
 507static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
 508{
 509	phys_addr_t next;
 510	pud_t *pud, *start_pud;
 511
 512	start_pud = pud = pud_offset(pgd, addr);
 513	do {
 514		next = pud_addr_end(addr, end);
 515		/* Hyp doesn't use huge puds */
 516		if (!pud_none(*pud))
 517			unmap_hyp_pmds(pud, addr, next);
 518	} while (pud++, addr = next, addr != end);
 519
 520	if (hyp_pud_table_empty(start_pud))
 521		clear_hyp_pgd_entry(pgd);
 522}
 523
 524static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
 525{
 526	return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
 527}
 528
 529static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
 530			      phys_addr_t start, u64 size)
 531{
 532	pgd_t *pgd;
 533	phys_addr_t addr = start, end = start + size;
 534	phys_addr_t next;
 535
 536	/*
 537	 * We don't unmap anything from HYP, except at the hyp tear down.
 538	 * Hence, we don't have to invalidate the TLBs here.
 539	 */
 540	pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
 541	do {
 542		next = pgd_addr_end(addr, end);
 543		if (!pgd_none(*pgd))
 544			unmap_hyp_puds(pgd, addr, next);
 545	} while (pgd++, addr = next, addr != end);
 546}
 547
 548static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
 549{
 550	__unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
 551}
 552
 553static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
 554{
 555	__unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
 556}
 557
 558/**
 559 * free_hyp_pgds - free Hyp-mode page tables
 560 *
 561 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 562 * therefore contains either mappings in the kernel memory area (above
 563 * PAGE_OFFSET), or device mappings in the idmap range.
 564 *
 565 * boot_hyp_pgd should only map the idmap range, and is only used in
 566 * the extended idmap case.
 567 */
 568void free_hyp_pgds(void)
 569{
 570	pgd_t *id_pgd;
 571
 572	mutex_lock(&kvm_hyp_pgd_mutex);
 573
 574	id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;
 575
 576	if (id_pgd) {
 577		/* In case we never called hyp_mmu_init() */
 578		if (!io_map_base)
 579			io_map_base = hyp_idmap_start;
 580		unmap_hyp_idmap_range(id_pgd, io_map_base,
 581				      hyp_idmap_start + PAGE_SIZE - io_map_base);
 582	}
 583
 584	if (boot_hyp_pgd) {
 585		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
 586		boot_hyp_pgd = NULL;
 587	}
 588
 589	if (hyp_pgd) {
 590		unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
 591				(uintptr_t)high_memory - PAGE_OFFSET);
 592
 593		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
 594		hyp_pgd = NULL;
 595	}
 596	if (merged_hyp_pgd) {
 597		clear_page(merged_hyp_pgd);
 598		free_page((unsigned long)merged_hyp_pgd);
 599		merged_hyp_pgd = NULL;
 600	}
 601
 602	mutex_unlock(&kvm_hyp_pgd_mutex);
 603}
 604
 605static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
 606				    unsigned long end, unsigned long pfn,
 607				    pgprot_t prot)
 608{
 609	pte_t *pte;
 610	unsigned long addr;
 611
 612	addr = start;
 613	do {
 614		pte = pte_offset_kernel(pmd, addr);
 615		kvm_set_pte(pte, kvm_pfn_pte(pfn, prot));
 616		get_page(virt_to_page(pte));
 617		pfn++;
 618	} while (addr += PAGE_SIZE, addr != end);
 619}
 620
 621static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
 622				   unsigned long end, unsigned long pfn,
 623				   pgprot_t prot)
 624{
 625	pmd_t *pmd;
 626	pte_t *pte;
 627	unsigned long addr, next;
 628
 629	addr = start;
 630	do {
 631		pmd = pmd_offset(pud, addr);
 632
 633		BUG_ON(pmd_sect(*pmd));
 634
 635		if (pmd_none(*pmd)) {
 636			pte = pte_alloc_one_kernel(NULL);
 637			if (!pte) {
 638				kvm_err("Cannot allocate Hyp pte\n");
 639				return -ENOMEM;
 640			}
 641			kvm_pmd_populate(pmd, pte);
 642			get_page(virt_to_page(pmd));
 643		}
 644
 645		next = pmd_addr_end(addr, end);
 646
 647		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
 648		pfn += (next - addr) >> PAGE_SHIFT;
 649	} while (addr = next, addr != end);
 650
 651	return 0;
 652}
 653
 654static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
 655				   unsigned long end, unsigned long pfn,
 656				   pgprot_t prot)
 657{
 658	pud_t *pud;
 659	pmd_t *pmd;
 660	unsigned long addr, next;
 661	int ret;
 662
 663	addr = start;
 664	do {
 665		pud = pud_offset(pgd, addr);
 666
 667		if (pud_none_or_clear_bad(pud)) {
 668			pmd = pmd_alloc_one(NULL, addr);
 669			if (!pmd) {
 670				kvm_err("Cannot allocate Hyp pmd\n");
 671				return -ENOMEM;
 672			}
 673			kvm_pud_populate(pud, pmd);
 674			get_page(virt_to_page(pud));
 675		}
 676
 677		next = pud_addr_end(addr, end);
 678		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
 679		if (ret)
 680			return ret;
 681		pfn += (next - addr) >> PAGE_SHIFT;
 682	} while (addr = next, addr != end);
 683
 684	return 0;
 685}
 686
 687static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
 688				 unsigned long start, unsigned long end,
 689				 unsigned long pfn, pgprot_t prot)
 690{
 691	pgd_t *pgd;
 692	pud_t *pud;
 693	unsigned long addr, next;
 694	int err = 0;
 695
 696	mutex_lock(&kvm_hyp_pgd_mutex);
 697	addr = start & PAGE_MASK;
 698	end = PAGE_ALIGN(end);
 699	do {
 700		pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
 701
 702		if (pgd_none(*pgd)) {
 703			pud = pud_alloc_one(NULL, addr);
 704			if (!pud) {
 705				kvm_err("Cannot allocate Hyp pud\n");
 706				err = -ENOMEM;
 707				goto out;
 708			}
 709			kvm_pgd_populate(pgd, pud);
 710			get_page(virt_to_page(pgd));
 711		}
 712
 713		next = pgd_addr_end(addr, end);
 714		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
 715		if (err)
 716			goto out;
 717		pfn += (next - addr) >> PAGE_SHIFT;
 718	} while (addr = next, addr != end);
 719out:
 720	mutex_unlock(&kvm_hyp_pgd_mutex);
 721	return err;
 722}
 723
 724static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
 725{
 726	if (!is_vmalloc_addr(kaddr)) {
 727		BUG_ON(!virt_addr_valid(kaddr));
 728		return __pa(kaddr);
 729	} else {
 730		return page_to_phys(vmalloc_to_page(kaddr)) +
 731		       offset_in_page(kaddr);
 732	}
 733}
 734
 735/**
 736 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
 737 * @from:	The virtual kernel start address of the range
 738 * @to:		The virtual kernel end address of the range (exclusive)
 739 * @prot:	The protection to be applied to this range
 740 *
 741 * The same virtual address as the kernel virtual address is also used
 742 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 743 * physical pages.
 744 */
 745int create_hyp_mappings(void *from, void *to, pgprot_t prot)
 746{
 747	phys_addr_t phys_addr;
 748	unsigned long virt_addr;
 749	unsigned long start = kern_hyp_va((unsigned long)from);
 750	unsigned long end = kern_hyp_va((unsigned long)to);
 751
 752	if (is_kernel_in_hyp_mode())
 753		return 0;
 754
 755	start = start & PAGE_MASK;
 756	end = PAGE_ALIGN(end);
 757
 758	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
 759		int err;
 760
 761		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
 762		err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
 763					    virt_addr, virt_addr + PAGE_SIZE,
 764					    __phys_to_pfn(phys_addr),
 765					    prot);
 766		if (err)
 767			return err;
 768	}
 769
 770	return 0;
 771}
 772
 773static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
 774					unsigned long *haddr, pgprot_t prot)
 775{
 776	pgd_t *pgd = hyp_pgd;
 777	unsigned long base;
 778	int ret = 0;
 779
 780	mutex_lock(&kvm_hyp_pgd_mutex);
 781
 782	/*
 783	 * This assumes that we we have enough space below the idmap
 784	 * page to allocate our VAs. If not, the check below will
 785	 * kick. A potential alternative would be to detect that
 786	 * overflow and switch to an allocation above the idmap.
 787	 *
 788	 * The allocated size is always a multiple of PAGE_SIZE.
 789	 */
 790	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
 791	base = io_map_base - size;
 792
 793	/*
 794	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
 795	 * allocating the new area, as it would indicate we've
 796	 * overflowed the idmap/IO address range.
 797	 */
 798	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
 799		ret = -ENOMEM;
 800	else
 801		io_map_base = base;
 802
 803	mutex_unlock(&kvm_hyp_pgd_mutex);
 804
 805	if (ret)
 806		goto out;
 807
 808	if (__kvm_cpu_uses_extended_idmap())
 809		pgd = boot_hyp_pgd;
 810
 811	ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
 812				    base, base + size,
 813				    __phys_to_pfn(phys_addr), prot);
 814	if (ret)
 815		goto out;
 816
 817	*haddr = base + offset_in_page(phys_addr);
 818
 819out:
 820	return ret;
 821}
 822
 823/**
 824 * create_hyp_io_mappings - Map IO into both kernel and HYP
 825 * @phys_addr:	The physical start address which gets mapped
 826 * @size:	Size of the region being mapped
 827 * @kaddr:	Kernel VA for this mapping
 828 * @haddr:	HYP VA for this mapping
 829 */
 830int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
 831			   void __iomem **kaddr,
 832			   void __iomem **haddr)
 833{
 834	unsigned long addr;
 835	int ret;
 836
 837	*kaddr = ioremap(phys_addr, size);
 838	if (!*kaddr)
 839		return -ENOMEM;
 840
 841	if (is_kernel_in_hyp_mode()) {
 842		*haddr = *kaddr;
 843		return 0;
 844	}
 845
 846	ret = __create_hyp_private_mapping(phys_addr, size,
 847					   &addr, PAGE_HYP_DEVICE);
 848	if (ret) {
 849		iounmap(*kaddr);
 850		*kaddr = NULL;
 851		*haddr = NULL;
 852		return ret;
 853	}
 854
 855	*haddr = (void __iomem *)addr;
 856	return 0;
 857}
 858
 859/**
 860 * create_hyp_exec_mappings - Map an executable range into HYP
 861 * @phys_addr:	The physical start address which gets mapped
 862 * @size:	Size of the region being mapped
 863 * @haddr:	HYP VA for this mapping
 864 */
 865int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
 866			     void **haddr)
 867{
 868	unsigned long addr;
 869	int ret;
 870
 871	BUG_ON(is_kernel_in_hyp_mode());
 872
 873	ret = __create_hyp_private_mapping(phys_addr, size,
 874					   &addr, PAGE_HYP_EXEC);
 875	if (ret) {
 876		*haddr = NULL;
 877		return ret;
 878	}
 879
 880	*haddr = (void *)addr;
 881	return 0;
 882}
 883
 884/**
 885 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 886 * @kvm:	The KVM struct pointer for the VM.
 887 *
 888 * Allocates only the stage-2 HW PGD level table(s) of size defined by
 889 * stage2_pgd_size(kvm).
 890 *
 891 * Note we don't need locking here as this is only called when the VM is
 892 * created, which can only be done once.
 893 */
 894int kvm_alloc_stage2_pgd(struct kvm *kvm)
 895{
 896	phys_addr_t pgd_phys;
 897	pgd_t *pgd;
 898
 899	if (kvm->arch.pgd != NULL) {
 900		kvm_err("kvm_arch already initialized?\n");
 901		return -EINVAL;
 902	}
 903
 904	/* Allocate the HW PGD, making sure that each page gets its own refcount */
 905	pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
 906	if (!pgd)
 907		return -ENOMEM;
 908
 909	pgd_phys = virt_to_phys(pgd);
 910	if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm)))
 911		return -EINVAL;
 912
 913	kvm->arch.pgd = pgd;
 914	kvm->arch.pgd_phys = pgd_phys;
 915	return 0;
 916}
 917
 918static void stage2_unmap_memslot(struct kvm *kvm,
 919				 struct kvm_memory_slot *memslot)
 920{
 921	hva_t hva = memslot->userspace_addr;
 922	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
 923	phys_addr_t size = PAGE_SIZE * memslot->npages;
 924	hva_t reg_end = hva + size;
 925
 926	/*
 927	 * A memory region could potentially cover multiple VMAs, and any holes
 928	 * between them, so iterate over all of them to find out if we should
 929	 * unmap any of them.
 930	 *
 931	 *     +--------------------------------------------+
 932	 * +---------------+----------------+   +----------------+
 933	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
 934	 * +---------------+----------------+   +----------------+
 935	 *     |               memory region                |
 936	 *     +--------------------------------------------+
 937	 */
 938	do {
 939		struct vm_area_struct *vma = find_vma(current->mm, hva);
 940		hva_t vm_start, vm_end;
 941
 942		if (!vma || vma->vm_start >= reg_end)
 943			break;
 944
 945		/*
 946		 * Take the intersection of this VMA with the memory region
 947		 */
 948		vm_start = max(hva, vma->vm_start);
 949		vm_end = min(reg_end, vma->vm_end);
 950
 951		if (!(vma->vm_flags & VM_PFNMAP)) {
 952			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
 953			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
 954		}
 955		hva = vm_end;
 956	} while (hva < reg_end);
 957}
 958
 959/**
 960 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 961 * @kvm: The struct kvm pointer
 962 *
 963 * Go through the memregions and unmap any reguler RAM
 964 * backing memory already mapped to the VM.
 965 */
 966void stage2_unmap_vm(struct kvm *kvm)
 967{
 968	struct kvm_memslots *slots;
 969	struct kvm_memory_slot *memslot;
 970	int idx;
 971
 972	idx = srcu_read_lock(&kvm->srcu);
 973	down_read(&current->mm->mmap_sem);
 974	spin_lock(&kvm->mmu_lock);
 975
 976	slots = kvm_memslots(kvm);
 977	kvm_for_each_memslot(memslot, slots)
 978		stage2_unmap_memslot(kvm, memslot);
 979
 980	spin_unlock(&kvm->mmu_lock);
 981	up_read(&current->mm->mmap_sem);
 982	srcu_read_unlock(&kvm->srcu, idx);
 983}
 984
 985/**
 986 * kvm_free_stage2_pgd - free all stage-2 tables
 987 * @kvm:	The KVM struct pointer for the VM.
 988 *
 989 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 990 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 991 * and setting the struct pointer to NULL.
 992 */
 993void kvm_free_stage2_pgd(struct kvm *kvm)
 994{
 995	void *pgd = NULL;
 996
 997	spin_lock(&kvm->mmu_lock);
 998	if (kvm->arch.pgd) {
 999		unmap_stage2_range(kvm, 0, kvm_phys_size(kvm));
1000		pgd = READ_ONCE(kvm->arch.pgd);
1001		kvm->arch.pgd = NULL;
1002		kvm->arch.pgd_phys = 0;
1003	}
1004	spin_unlock(&kvm->mmu_lock);
1005
1006	/* Free the HW pgd, one page at a time */
1007	if (pgd)
1008		free_pages_exact(pgd, stage2_pgd_size(kvm));
1009}
1010
1011static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1012			     phys_addr_t addr)
1013{
1014	pgd_t *pgd;
1015	pud_t *pud;
1016
1017	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1018	if (stage2_pgd_none(kvm, *pgd)) {
1019		if (!cache)
1020			return NULL;
1021		pud = mmu_memory_cache_alloc(cache);
1022		stage2_pgd_populate(kvm, pgd, pud);
1023		get_page(virt_to_page(pgd));
1024	}
1025
1026	return stage2_pud_offset(kvm, pgd, addr);
1027}
1028
1029static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1030			     phys_addr_t addr)
1031{
1032	pud_t *pud;
1033	pmd_t *pmd;
1034
1035	pud = stage2_get_pud(kvm, cache, addr);
1036	if (!pud || stage2_pud_huge(kvm, *pud))
1037		return NULL;
1038
1039	if (stage2_pud_none(kvm, *pud)) {
1040		if (!cache)
1041			return NULL;
1042		pmd = mmu_memory_cache_alloc(cache);
1043		stage2_pud_populate(kvm, pud, pmd);
1044		get_page(virt_to_page(pud));
1045	}
1046
1047	return stage2_pmd_offset(kvm, pud, addr);
1048}
1049
1050static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
1051			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
1052{
1053	pmd_t *pmd, old_pmd;
1054
1055retry:
1056	pmd = stage2_get_pmd(kvm, cache, addr);
1057	VM_BUG_ON(!pmd);
1058
1059	old_pmd = *pmd;
1060	/*
1061	 * Multiple vcpus faulting on the same PMD entry, can
1062	 * lead to them sequentially updating the PMD with the
1063	 * same value. Following the break-before-make
1064	 * (pmd_clear() followed by tlb_flush()) process can
1065	 * hinder forward progress due to refaults generated
1066	 * on missing translations.
1067	 *
1068	 * Skip updating the page table if the entry is
1069	 * unchanged.
1070	 */
1071	if (pmd_val(old_pmd) == pmd_val(*new_pmd))
1072		return 0;
1073
1074	if (pmd_present(old_pmd)) {
1075		/*
1076		 * If we already have PTE level mapping for this block,
1077		 * we must unmap it to avoid inconsistent TLB state and
1078		 * leaking the table page. We could end up in this situation
1079		 * if the memory slot was marked for dirty logging and was
1080		 * reverted, leaving PTE level mappings for the pages accessed
1081		 * during the period. So, unmap the PTE level mapping for this
1082		 * block and retry, as we could have released the upper level
1083		 * table in the process.
1084		 *
1085		 * Normal THP split/merge follows mmu_notifier callbacks and do
1086		 * get handled accordingly.
1087		 */
1088		if (!pmd_thp_or_huge(old_pmd)) {
1089			unmap_stage2_range(kvm, addr & S2_PMD_MASK, S2_PMD_SIZE);
1090			goto retry;
1091		}
1092		/*
1093		 * Mapping in huge pages should only happen through a
1094		 * fault.  If a page is merged into a transparent huge
1095		 * page, the individual subpages of that huge page
1096		 * should be unmapped through MMU notifiers before we
1097		 * get here.
1098		 *
1099		 * Merging of CompoundPages is not supported; they
1100		 * should become splitting first, unmapped, merged,
1101		 * and mapped back in on-demand.
1102		 */
1103		WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
1104		pmd_clear(pmd);
1105		kvm_tlb_flush_vmid_ipa(kvm, addr);
1106	} else {
1107		get_page(virt_to_page(pmd));
1108	}
1109
1110	kvm_set_pmd(pmd, *new_pmd);
1111	return 0;
1112}
1113
1114static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1115			       phys_addr_t addr, const pud_t *new_pudp)
1116{
1117	pud_t *pudp, old_pud;
1118
1119retry:
1120	pudp = stage2_get_pud(kvm, cache, addr);
1121	VM_BUG_ON(!pudp);
1122
1123	old_pud = *pudp;
1124
1125	/*
1126	 * A large number of vcpus faulting on the same stage 2 entry,
1127	 * can lead to a refault due to the stage2_pud_clear()/tlb_flush().
1128	 * Skip updating the page tables if there is no change.
1129	 */
1130	if (pud_val(old_pud) == pud_val(*new_pudp))
1131		return 0;
1132
1133	if (stage2_pud_present(kvm, old_pud)) {
1134		/*
1135		 * If we already have table level mapping for this block, unmap
1136		 * the range for this block and retry.
1137		 */
1138		if (!stage2_pud_huge(kvm, old_pud)) {
1139			unmap_stage2_range(kvm, addr & S2_PUD_MASK, S2_PUD_SIZE);
1140			goto retry;
1141		}
1142
1143		WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp));
1144		stage2_pud_clear(kvm, pudp);
1145		kvm_tlb_flush_vmid_ipa(kvm, addr);
1146	} else {
1147		get_page(virt_to_page(pudp));
1148	}
1149
1150	kvm_set_pud(pudp, *new_pudp);
1151	return 0;
1152}
1153
1154/*
1155 * stage2_get_leaf_entry - walk the stage2 VM page tables and return
1156 * true if a valid and present leaf-entry is found. A pointer to the
1157 * leaf-entry is returned in the appropriate level variable - pudpp,
1158 * pmdpp, ptepp.
1159 */
1160static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
1161				  pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
1162{
1163	pud_t *pudp;
1164	pmd_t *pmdp;
1165	pte_t *ptep;
1166
1167	*pudpp = NULL;
1168	*pmdpp = NULL;
1169	*ptepp = NULL;
1170
1171	pudp = stage2_get_pud(kvm, NULL, addr);
1172	if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
1173		return false;
1174
1175	if (stage2_pud_huge(kvm, *pudp)) {
1176		*pudpp = pudp;
1177		return true;
1178	}
1179
1180	pmdp = stage2_pmd_offset(kvm, pudp, addr);
1181	if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
1182		return false;
1183
1184	if (pmd_thp_or_huge(*pmdp)) {
1185		*pmdpp = pmdp;
1186		return true;
1187	}
1188
1189	ptep = pte_offset_kernel(pmdp, addr);
1190	if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
1191		return false;
1192
1193	*ptepp = ptep;
1194	return true;
1195}
1196
1197static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
1198{
1199	pud_t *pudp;
1200	pmd_t *pmdp;
1201	pte_t *ptep;
1202	bool found;
1203
1204	found = stage2_get_leaf_entry(kvm, addr, &pudp, &pmdp, &ptep);
1205	if (!found)
1206		return false;
1207
1208	if (pudp)
1209		return kvm_s2pud_exec(pudp);
1210	else if (pmdp)
1211		return kvm_s2pmd_exec(pmdp);
1212	else
1213		return kvm_s2pte_exec(ptep);
1214}
1215
1216static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1217			  phys_addr_t addr, const pte_t *new_pte,
1218			  unsigned long flags)
1219{
1220	pud_t *pud;
1221	pmd_t *pmd;
1222	pte_t *pte, old_pte;
1223	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
1224	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
1225
1226	VM_BUG_ON(logging_active && !cache);
1227
1228	/* Create stage-2 page table mapping - Levels 0 and 1 */
1229	pud = stage2_get_pud(kvm, cache, addr);
1230	if (!pud) {
1231		/*
1232		 * Ignore calls from kvm_set_spte_hva for unallocated
1233		 * address ranges.
1234		 */
1235		return 0;
1236	}
1237
1238	/*
1239	 * While dirty page logging - dissolve huge PUD, then continue
1240	 * on to allocate page.
1241	 */
1242	if (logging_active)
1243		stage2_dissolve_pud(kvm, addr, pud);
1244
1245	if (stage2_pud_none(kvm, *pud)) {
1246		if (!cache)
1247			return 0; /* ignore calls from kvm_set_spte_hva */
1248		pmd = mmu_memory_cache_alloc(cache);
1249		stage2_pud_populate(kvm, pud, pmd);
1250		get_page(virt_to_page(pud));
1251	}
1252
1253	pmd = stage2_pmd_offset(kvm, pud, addr);
1254	if (!pmd) {
1255		/*
1256		 * Ignore calls from kvm_set_spte_hva for unallocated
1257		 * address ranges.
1258		 */
1259		return 0;
1260	}
1261
1262	/*
1263	 * While dirty page logging - dissolve huge PMD, then continue on to
1264	 * allocate page.
1265	 */
1266	if (logging_active)
1267		stage2_dissolve_pmd(kvm, addr, pmd);
1268
1269	/* Create stage-2 page mappings - Level 2 */
1270	if (pmd_none(*pmd)) {
1271		if (!cache)
1272			return 0; /* ignore calls from kvm_set_spte_hva */
1273		pte = mmu_memory_cache_alloc(cache);
1274		kvm_pmd_populate(pmd, pte);
1275		get_page(virt_to_page(pmd));
1276	}
1277
1278	pte = pte_offset_kernel(pmd, addr);
1279
1280	if (iomap && pte_present(*pte))
1281		return -EFAULT;
1282
1283	/* Create 2nd stage page table mapping - Level 3 */
1284	old_pte = *pte;
1285	if (pte_present(old_pte)) {
1286		/* Skip page table update if there is no change */
1287		if (pte_val(old_pte) == pte_val(*new_pte))
1288			return 0;
1289
1290		kvm_set_pte(pte, __pte(0));
1291		kvm_tlb_flush_vmid_ipa(kvm, addr);
1292	} else {
1293		get_page(virt_to_page(pte));
1294	}
1295
1296	kvm_set_pte(pte, *new_pte);
1297	return 0;
1298}
1299
1300#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1301static int stage2_ptep_test_and_clear_young(pte_t *pte)
1302{
1303	if (pte_young(*pte)) {
1304		*pte = pte_mkold(*pte);
1305		return 1;
1306	}
1307	return 0;
1308}
1309#else
1310static int stage2_ptep_test_and_clear_young(pte_t *pte)
1311{
1312	return __ptep_test_and_clear_young(pte);
1313}
1314#endif
1315
1316static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1317{
1318	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1319}
1320
1321static int stage2_pudp_test_and_clear_young(pud_t *pud)
1322{
1323	return stage2_ptep_test_and_clear_young((pte_t *)pud);
1324}
1325
1326/**
1327 * kvm_phys_addr_ioremap - map a device range to guest IPA
1328 *
1329 * @kvm:	The KVM pointer
1330 * @guest_ipa:	The IPA at which to insert the mapping
1331 * @pa:		The physical address of the device
1332 * @size:	The size of the mapping
1333 */
1334int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1335			  phys_addr_t pa, unsigned long size, bool writable)
1336{
1337	phys_addr_t addr, end;
1338	int ret = 0;
1339	unsigned long pfn;
1340	struct kvm_mmu_memory_cache cache = { 0, };
1341
1342	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1343	pfn = __phys_to_pfn(pa);
1344
1345	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1346		pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE);
1347
1348		if (writable)
1349			pte = kvm_s2pte_mkwrite(pte);
1350
1351		ret = mmu_topup_memory_cache(&cache,
1352					     kvm_mmu_cache_min_pages(kvm),
1353					     KVM_NR_MEM_OBJS);
1354		if (ret)
1355			goto out;
1356		spin_lock(&kvm->mmu_lock);
1357		ret = stage2_set_pte(kvm, &cache, addr, &pte,
1358						KVM_S2PTE_FLAG_IS_IOMAP);
1359		spin_unlock(&kvm->mmu_lock);
1360		if (ret)
1361			goto out;
1362
1363		pfn++;
1364	}
1365
1366out:
1367	mmu_free_memory_cache(&cache);
1368	return ret;
1369}
1370
1371static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1372{
1373	kvm_pfn_t pfn = *pfnp;
1374	gfn_t gfn = *ipap >> PAGE_SHIFT;
1375	struct page *page = pfn_to_page(pfn);
1376
1377	/*
1378	 * PageTransCompoundMap() returns true for THP and
1379	 * hugetlbfs. Make sure the adjustment is done only for THP
1380	 * pages.
1381	 */
1382	if (!PageHuge(page) && PageTransCompoundMap(page)) {
1383		unsigned long mask;
1384		/*
1385		 * The address we faulted on is backed by a transparent huge
1386		 * page.  However, because we map the compound huge page and
1387		 * not the individual tail page, we need to transfer the
1388		 * refcount to the head page.  We have to be careful that the
1389		 * THP doesn't start to split while we are adjusting the
1390		 * refcounts.
1391		 *
1392		 * We are sure this doesn't happen, because mmu_notifier_retry
1393		 * was successful and we are holding the mmu_lock, so if this
1394		 * THP is trying to split, it will be blocked in the mmu
1395		 * notifier before touching any of the pages, specifically
1396		 * before being able to call __split_huge_page_refcount().
1397		 *
1398		 * We can therefore safely transfer the refcount from PG_tail
1399		 * to PG_head and switch the pfn from a tail page to the head
1400		 * page accordingly.
1401		 */
1402		mask = PTRS_PER_PMD - 1;
1403		VM_BUG_ON((gfn & mask) != (pfn & mask));
1404		if (pfn & mask) {
1405			*ipap &= PMD_MASK;
1406			kvm_release_pfn_clean(pfn);
1407			pfn &= ~mask;
1408			kvm_get_pfn(pfn);
1409			*pfnp = pfn;
1410		}
1411
1412		return true;
1413	}
1414
1415	return false;
1416}
1417
1418/**
1419 * stage2_wp_ptes - write protect PMD range
1420 * @pmd:	pointer to pmd entry
1421 * @addr:	range start address
1422 * @end:	range end address
1423 */
1424static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1425{
1426	pte_t *pte;
1427
1428	pte = pte_offset_kernel(pmd, addr);
1429	do {
1430		if (!pte_none(*pte)) {
1431			if (!kvm_s2pte_readonly(pte))
1432				kvm_set_s2pte_readonly(pte);
1433		}
1434	} while (pte++, addr += PAGE_SIZE, addr != end);
1435}
1436
1437/**
1438 * stage2_wp_pmds - write protect PUD range
1439 * kvm:		kvm instance for the VM
1440 * @pud:	pointer to pud entry
1441 * @addr:	range start address
1442 * @end:	range end address
1443 */
1444static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud,
1445			   phys_addr_t addr, phys_addr_t end)
1446{
1447	pmd_t *pmd;
1448	phys_addr_t next;
1449
1450	pmd = stage2_pmd_offset(kvm, pud, addr);
1451
1452	do {
1453		next = stage2_pmd_addr_end(kvm, addr, end);
1454		if (!pmd_none(*pmd)) {
1455			if (pmd_thp_or_huge(*pmd)) {
1456				if (!kvm_s2pmd_readonly(pmd))
1457					kvm_set_s2pmd_readonly(pmd);
1458			} else {
1459				stage2_wp_ptes(pmd, addr, next);
1460			}
1461		}
1462	} while (pmd++, addr = next, addr != end);
1463}
1464
1465/**
1466 * stage2_wp_puds - write protect PGD range
1467 * @pgd:	pointer to pgd entry
1468 * @addr:	range start address
1469 * @end:	range end address
1470 */
1471static void  stage2_wp_puds(struct kvm *kvm, pgd_t *pgd,
1472			    phys_addr_t addr, phys_addr_t end)
1473{
1474	pud_t *pud;
1475	phys_addr_t next;
1476
1477	pud = stage2_pud_offset(kvm, pgd, addr);
1478	do {
1479		next = stage2_pud_addr_end(kvm, addr, end);
1480		if (!stage2_pud_none(kvm, *pud)) {
1481			if (stage2_pud_huge(kvm, *pud)) {
1482				if (!kvm_s2pud_readonly(pud))
1483					kvm_set_s2pud_readonly(pud);
1484			} else {
1485				stage2_wp_pmds(kvm, pud, addr, next);
1486			}
1487		}
1488	} while (pud++, addr = next, addr != end);
1489}
1490
1491/**
1492 * stage2_wp_range() - write protect stage2 memory region range
1493 * @kvm:	The KVM pointer
1494 * @addr:	Start address of range
1495 * @end:	End address of range
1496 */
1497static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1498{
1499	pgd_t *pgd;
1500	phys_addr_t next;
1501
1502	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1503	do {
1504		/*
1505		 * Release kvm_mmu_lock periodically if the memory region is
1506		 * large. Otherwise, we may see kernel panics with
1507		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1508		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1509		 * will also starve other vCPUs. We have to also make sure
1510		 * that the page tables are not freed while we released
1511		 * the lock.
1512		 */
1513		cond_resched_lock(&kvm->mmu_lock);
1514		if (!READ_ONCE(kvm->arch.pgd))
1515			break;
1516		next = stage2_pgd_addr_end(kvm, addr, end);
1517		if (stage2_pgd_present(kvm, *pgd))
1518			stage2_wp_puds(kvm, pgd, addr, next);
1519	} while (pgd++, addr = next, addr != end);
1520}
1521
1522/**
1523 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1524 * @kvm:	The KVM pointer
1525 * @slot:	The memory slot to write protect
1526 *
1527 * Called to start logging dirty pages after memory region
1528 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1529 * all present PUD, PMD and PTEs are write protected in the memory region.
1530 * Afterwards read of dirty page log can be called.
1531 *
1532 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1533 * serializing operations for VM memory regions.
1534 */
1535void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1536{
1537	struct kvm_memslots *slots = kvm_memslots(kvm);
1538	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1539	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1540	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1541
1542	spin_lock(&kvm->mmu_lock);
1543	stage2_wp_range(kvm, start, end);
1544	spin_unlock(&kvm->mmu_lock);
1545	kvm_flush_remote_tlbs(kvm);
1546}
1547
1548/**
1549 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1550 * @kvm:	The KVM pointer
1551 * @slot:	The memory slot associated with mask
1552 * @gfn_offset:	The gfn offset in memory slot
1553 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
1554 *		slot to be write protected
1555 *
1556 * Walks bits set in mask write protects the associated pte's. Caller must
1557 * acquire kvm_mmu_lock.
1558 */
1559static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1560		struct kvm_memory_slot *slot,
1561		gfn_t gfn_offset, unsigned long mask)
1562{
1563	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1564	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1565	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1566
1567	stage2_wp_range(kvm, start, end);
1568}
1569
1570/*
1571 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1572 * dirty pages.
1573 *
1574 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1575 * enable dirty logging for them.
1576 */
1577void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1578		struct kvm_memory_slot *slot,
1579		gfn_t gfn_offset, unsigned long mask)
1580{
1581	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1582}
1583
1584static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1585{
1586	__clean_dcache_guest_page(pfn, size);
1587}
1588
1589static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1590{
1591	__invalidate_icache_guest_page(pfn, size);
1592}
1593
1594static void kvm_send_hwpoison_signal(unsigned long address,
1595				     struct vm_area_struct *vma)
1596{
1597	short lsb;
1598
1599	if (is_vm_hugetlb_page(vma))
1600		lsb = huge_page_shift(hstate_vma(vma));
1601	else
1602		lsb = PAGE_SHIFT;
1603
1604	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1605}
1606
1607static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1608					       unsigned long hva,
1609					       unsigned long map_size)
1610{
1611	gpa_t gpa_start;
1612	hva_t uaddr_start, uaddr_end;
1613	size_t size;
1614
1615	size = memslot->npages * PAGE_SIZE;
1616
1617	gpa_start = memslot->base_gfn << PAGE_SHIFT;
1618
1619	uaddr_start = memslot->userspace_addr;
1620	uaddr_end = uaddr_start + size;
1621
1622	/*
1623	 * Pages belonging to memslots that don't have the same alignment
1624	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1625	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1626	 *
1627	 * Consider a layout like the following:
1628	 *
1629	 *    memslot->userspace_addr:
1630	 *    +-----+--------------------+--------------------+---+
1631	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1632	 *    +-----+--------------------+--------------------+---+
1633	 *
1634	 *    memslot->base_gfn << PAGE_SIZE:
1635	 *      +---+--------------------+--------------------+-----+
1636	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1637	 *      +---+--------------------+--------------------+-----+
1638	 *
1639	 * If we create those stage-2 blocks, we'll end up with this incorrect
1640	 * mapping:
1641	 *   d -> f
1642	 *   e -> g
1643	 *   f -> h
1644	 */
1645	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1646		return false;
1647
1648	/*
1649	 * Next, let's make sure we're not trying to map anything not covered
1650	 * by the memslot. This means we have to prohibit block size mappings
1651	 * for the beginning and end of a non-block aligned and non-block sized
1652	 * memory slot (illustrated by the head and tail parts of the
1653	 * userspace view above containing pages 'abcde' and 'xyz',
1654	 * respectively).
1655	 *
1656	 * Note that it doesn't matter if we do the check using the
1657	 * userspace_addr or the base_gfn, as both are equally aligned (per
1658	 * the check above) and equally sized.
1659	 */
1660	return (hva & ~(map_size - 1)) >= uaddr_start &&
1661	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1662}
1663
1664static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1665			  struct kvm_memory_slot *memslot, unsigned long hva,
1666			  unsigned long fault_status)
1667{
1668	int ret;
1669	bool write_fault, writable, force_pte = false;
1670	bool exec_fault, needs_exec;
1671	unsigned long mmu_seq;
1672	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1673	struct kvm *kvm = vcpu->kvm;
1674	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1675	struct vm_area_struct *vma;
1676	kvm_pfn_t pfn;
1677	pgprot_t mem_type = PAGE_S2;
1678	bool logging_active = memslot_is_logging(memslot);
1679	unsigned long vma_pagesize, flags = 0;
1680
1681	write_fault = kvm_is_write_fault(vcpu);
1682	exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
1683	VM_BUG_ON(write_fault && exec_fault);
1684
1685	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1686		kvm_err("Unexpected L2 read permission error\n");
1687		return -EFAULT;
1688	}
1689
1690	/* Let's check if we will get back a huge page backed by hugetlbfs */
1691	down_read(&current->mm->mmap_sem);
1692	vma = find_vma_intersection(current->mm, hva, hva + 1);
1693	if (unlikely(!vma)) {
1694		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1695		up_read(&current->mm->mmap_sem);
1696		return -EFAULT;
1697	}
1698
1699	vma_pagesize = vma_kernel_pagesize(vma);
1700	if (logging_active ||
1701	    !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) {
1702		force_pte = true;
1703		vma_pagesize = PAGE_SIZE;
1704	}
1705
1706	/*
1707	 * The stage2 has a minimum of 2 level table (For arm64 see
1708	 * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can
1709	 * use PMD_SIZE huge mappings (even when the PMD is folded into PGD).
1710	 * As for PUD huge maps, we must make sure that we have at least
1711	 * 3 levels, i.e, PMD is not folded.
1712	 */
1713	if (vma_pagesize == PMD_SIZE ||
1714	    (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm)))
1715		gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
1716	up_read(&current->mm->mmap_sem);
1717
1718	/* We need minimum second+third level pages */
1719	ret = mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm),
1720				     KVM_NR_MEM_OBJS);
1721	if (ret)
1722		return ret;
1723
1724	mmu_seq = vcpu->kvm->mmu_notifier_seq;
1725	/*
1726	 * Ensure the read of mmu_notifier_seq happens before we call
1727	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1728	 * the page we just got a reference to gets unmapped before we have a
1729	 * chance to grab the mmu_lock, which ensure that if the page gets
1730	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1731	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1732	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1733	 */
1734	smp_rmb();
1735
1736	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1737	if (pfn == KVM_PFN_ERR_HWPOISON) {
1738		kvm_send_hwpoison_signal(hva, vma);
1739		return 0;
1740	}
1741	if (is_error_noslot_pfn(pfn))
1742		return -EFAULT;
1743
1744	if (kvm_is_device_pfn(pfn)) {
1745		mem_type = PAGE_S2_DEVICE;
1746		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1747	} else if (logging_active) {
1748		/*
1749		 * Faults on pages in a memslot with logging enabled
1750		 * should not be mapped with huge pages (it introduces churn
1751		 * and performance degradation), so force a pte mapping.
1752		 */
1753		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1754
1755		/*
1756		 * Only actually map the page as writable if this was a write
1757		 * fault.
1758		 */
1759		if (!write_fault)
1760			writable = false;
1761	}
1762
1763	spin_lock(&kvm->mmu_lock);
1764	if (mmu_notifier_retry(kvm, mmu_seq))
1765		goto out_unlock;
1766
1767	if (vma_pagesize == PAGE_SIZE && !force_pte) {
1768		/*
1769		 * Only PMD_SIZE transparent hugepages(THP) are
1770		 * currently supported. This code will need to be
1771		 * updated to support other THP sizes.
1772		 *
1773		 * Make sure the host VA and the guest IPA are sufficiently
1774		 * aligned and that the block is contained within the memslot.
1775		 */
1776		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) &&
1777		    transparent_hugepage_adjust(&pfn, &fault_ipa))
1778			vma_pagesize = PMD_SIZE;
1779	}
1780
1781	if (writable)
1782		kvm_set_pfn_dirty(pfn);
1783
1784	if (fault_status != FSC_PERM)
1785		clean_dcache_guest_page(pfn, vma_pagesize);
1786
1787	if (exec_fault)
1788		invalidate_icache_guest_page(pfn, vma_pagesize);
1789
1790	/*
1791	 * If we took an execution fault we have made the
1792	 * icache/dcache coherent above and should now let the s2
1793	 * mapping be executable.
1794	 *
1795	 * Write faults (!exec_fault && FSC_PERM) are orthogonal to
1796	 * execute permissions, and we preserve whatever we have.
1797	 */
1798	needs_exec = exec_fault ||
1799		(fault_status == FSC_PERM && stage2_is_exec(kvm, fault_ipa));
1800
1801	if (vma_pagesize == PUD_SIZE) {
1802		pud_t new_pud = kvm_pfn_pud(pfn, mem_type);
1803
1804		new_pud = kvm_pud_mkhuge(new_pud);
1805		if (writable)
1806			new_pud = kvm_s2pud_mkwrite(new_pud);
1807
1808		if (needs_exec)
1809			new_pud = kvm_s2pud_mkexec(new_pud);
1810
1811		ret = stage2_set_pud_huge(kvm, memcache, fault_ipa, &new_pud);
1812	} else if (vma_pagesize == PMD_SIZE) {
1813		pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);
1814
1815		new_pmd = kvm_pmd_mkhuge(new_pmd);
1816
1817		if (writable)
1818			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1819
1820		if (needs_exec)
1821			new_pmd = kvm_s2pmd_mkexec(new_pmd);
1822
1823		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1824	} else {
1825		pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
1826
1827		if (writable) {
1828			new_pte = kvm_s2pte_mkwrite(new_pte);
1829			mark_page_dirty(kvm, gfn);
1830		}
1831
1832		if (needs_exec)
1833			new_pte = kvm_s2pte_mkexec(new_pte);
1834
1835		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1836	}
1837
1838out_unlock:
1839	spin_unlock(&kvm->mmu_lock);
1840	kvm_set_pfn_accessed(pfn);
1841	kvm_release_pfn_clean(pfn);
1842	return ret;
1843}
1844
1845/*
1846 * Resolve the access fault by making the page young again.
1847 * Note that because the faulting entry is guaranteed not to be
1848 * cached in the TLB, we don't need to invalidate anything.
1849 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1850 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1851 */
1852static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1853{
1854	pud_t *pud;
1855	pmd_t *pmd;
1856	pte_t *pte;
1857	kvm_pfn_t pfn;
1858	bool pfn_valid = false;
1859
1860	trace_kvm_access_fault(fault_ipa);
1861
1862	spin_lock(&vcpu->kvm->mmu_lock);
1863
1864	if (!stage2_get_leaf_entry(vcpu->kvm, fault_ipa, &pud, &pmd, &pte))
1865		goto out;
1866
1867	if (pud) {		/* HugeTLB */
1868		*pud = kvm_s2pud_mkyoung(*pud);
1869		pfn = kvm_pud_pfn(*pud);
1870		pfn_valid = true;
1871	} else	if (pmd) {	/* THP, HugeTLB */
1872		*pmd = pmd_mkyoung(*pmd);
1873		pfn = pmd_pfn(*pmd);
1874		pfn_valid = true;
1875	} else {
1876		*pte = pte_mkyoung(*pte);	/* Just a page... */
1877		pfn = pte_pfn(*pte);
1878		pfn_valid = true;
1879	}
1880
1881out:
1882	spin_unlock(&vcpu->kvm->mmu_lock);
1883	if (pfn_valid)
1884		kvm_set_pfn_accessed(pfn);
1885}
1886
1887/**
1888 * kvm_handle_guest_abort - handles all 2nd stage aborts
1889 * @vcpu:	the VCPU pointer
1890 * @run:	the kvm_run structure
1891 *
1892 * Any abort that gets to the host is almost guaranteed to be caused by a
1893 * missing second stage translation table entry, which can mean that either the
1894 * guest simply needs more memory and we must allocate an appropriate page or it
1895 * can mean that the guest tried to access I/O memory, which is emulated by user
1896 * space. The distinction is based on the IPA causing the fault and whether this
1897 * memory region has been registered as standard RAM by user space.
1898 */
1899int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1900{
1901	unsigned long fault_status;
1902	phys_addr_t fault_ipa;
1903	struct kvm_memory_slot *memslot;
1904	unsigned long hva;
1905	bool is_iabt, write_fault, writable;
1906	gfn_t gfn;
1907	int ret, idx;
1908
1909	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1910
1911	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1912	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1913
1914	/* Synchronous External Abort? */
1915	if (kvm_vcpu_dabt_isextabt(vcpu)) {
1916		/*
1917		 * For RAS the host kernel may handle this abort.
1918		 * There is no need to pass the error into the guest.
1919		 */
1920		if (!kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
1921			return 1;
1922
1923		if (unlikely(!is_iabt)) {
1924			kvm_inject_vabt(vcpu);
1925			return 1;
1926		}
1927	}
1928
1929	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1930			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1931
1932	/* Check the stage-2 fault is trans. fault or write fault */
1933	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1934	    fault_status != FSC_ACCESS) {
1935		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1936			kvm_vcpu_trap_get_class(vcpu),
1937			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1938			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1939		return -EFAULT;
1940	}
1941
1942	idx = srcu_read_lock(&vcpu->kvm->srcu);
1943
1944	gfn = fault_ipa >> PAGE_SHIFT;
1945	memslot = gfn_to_memslot(vcpu->kvm, gfn);
1946	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1947	write_fault = kvm_is_write_fault(vcpu);
1948	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1949		if (is_iabt) {
1950			/* Prefetch Abort on I/O address */
1951			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1952			ret = 1;
1953			goto out_unlock;
1954		}
1955
1956		/*
1957		 * Check for a cache maintenance operation. Since we
1958		 * ended-up here, we know it is outside of any memory
1959		 * slot. But we can't find out if that is for a device,
1960		 * or if the guest is just being stupid. The only thing
1961		 * we know for sure is that this range cannot be cached.
1962		 *
1963		 * So let's assume that the guest is just being
1964		 * cautious, and skip the instruction.
1965		 */
1966		if (kvm_vcpu_dabt_is_cm(vcpu)) {
1967			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1968			ret = 1;
1969			goto out_unlock;
1970		}
1971
1972		/*
1973		 * The IPA is reported as [MAX:12], so we need to
1974		 * complement it with the bottom 12 bits from the
1975		 * faulting VA. This is always 12 bits, irrespective
1976		 * of the page size.
1977		 */
1978		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1979		ret = io_mem_abort(vcpu, run, fault_ipa);
1980		goto out_unlock;
1981	}
1982
1983	/* Userspace should not be able to register out-of-bounds IPAs */
1984	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1985
1986	if (fault_status == FSC_ACCESS) {
1987		handle_access_fault(vcpu, fault_ipa);
1988		ret = 1;
1989		goto out_unlock;
1990	}
1991
1992	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1993	if (ret == 0)
1994		ret = 1;
1995out_unlock:
1996	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1997	return ret;
1998}
1999
2000static int handle_hva_to_gpa(struct kvm *kvm,
2001			     unsigned long start,
2002			     unsigned long end,
2003			     int (*handler)(struct kvm *kvm,
2004					    gpa_t gpa, u64 size,
2005					    void *data),
2006			     void *data)
2007{
2008	struct kvm_memslots *slots;
2009	struct kvm_memory_slot *memslot;
2010	int ret = 0;
2011
2012	slots = kvm_memslots(kvm);
2013
2014	/* we only care about the pages that the guest sees */
2015	kvm_for_each_memslot(memslot, slots) {
2016		unsigned long hva_start, hva_end;
2017		gfn_t gpa;
2018
2019		hva_start = max(start, memslot->userspace_addr);
2020		hva_end = min(end, memslot->userspace_addr +
2021					(memslot->npages << PAGE_SHIFT));
2022		if (hva_start >= hva_end)
2023			continue;
2024
2025		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
2026		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
2027	}
2028
2029	return ret;
2030}
2031
2032static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2033{
2034	unmap_stage2_range(kvm, gpa, size);
2035	return 0;
2036}
2037
2038int kvm_unmap_hva_range(struct kvm *kvm,
2039			unsigned long start, unsigned long end)
2040{
2041	if (!kvm->arch.pgd)
2042		return 0;
2043
2044	trace_kvm_unmap_hva_range(start, end);
2045	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
2046	return 0;
2047}
2048
2049static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2050{
2051	pte_t *pte = (pte_t *)data;
2052
2053	WARN_ON(size != PAGE_SIZE);
2054	/*
2055	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
2056	 * flag clear because MMU notifiers will have unmapped a huge PMD before
2057	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
2058	 * therefore stage2_set_pte() never needs to clear out a huge PMD
2059	 * through this calling path.
2060	 */
2061	stage2_set_pte(kvm, NULL, gpa, pte, 0);
2062	return 0;
2063}
2064
2065
2066int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2067{
2068	unsigned long end = hva + PAGE_SIZE;
2069	kvm_pfn_t pfn = pte_pfn(pte);
2070	pte_t stage2_pte;
2071
2072	if (!kvm->arch.pgd)
2073		return 0;
2074
2075	trace_kvm_set_spte_hva(hva);
2076
2077	/*
2078	 * We've moved a page around, probably through CoW, so let's treat it
2079	 * just like a translation fault and clean the cache to the PoC.
2080	 */
2081	clean_dcache_guest_page(pfn, PAGE_SIZE);
2082	stage2_pte = kvm_pfn_pte(pfn, PAGE_S2);
2083	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
2084
2085	return 0;
2086}
2087
2088static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2089{
2090	pud_t *pud;
2091	pmd_t *pmd;
2092	pte_t *pte;
2093
2094	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2095	if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2096		return 0;
2097
2098	if (pud)
2099		return stage2_pudp_test_and_clear_young(pud);
2100	else if (pmd)
2101		return stage2_pmdp_test_and_clear_young(pmd);
2102	else
2103		return stage2_ptep_test_and_clear_young(pte);
2104}
2105
2106static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2107{
2108	pud_t *pud;
2109	pmd_t *pmd;
2110	pte_t *pte;
2111
2112	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2113	if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2114		return 0;
2115
2116	if (pud)
2117		return kvm_s2pud_young(*pud);
2118	else if (pmd)
2119		return pmd_young(*pmd);
2120	else
2121		return pte_young(*pte);
2122}
2123
2124int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2125{
2126	if (!kvm->arch.pgd)
2127		return 0;
2128	trace_kvm_age_hva(start, end);
2129	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
2130}
2131
2132int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2133{
2134	if (!kvm->arch.pgd)
2135		return 0;
2136	trace_kvm_test_age_hva(hva);
2137	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
2138}
2139
2140void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
2141{
2142	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
2143}
2144
2145phys_addr_t kvm_mmu_get_httbr(void)
2146{
2147	if (__kvm_cpu_uses_extended_idmap())
2148		return virt_to_phys(merged_hyp_pgd);
2149	else
2150		return virt_to_phys(hyp_pgd);
2151}
2152
2153phys_addr_t kvm_get_idmap_vector(void)
2154{
2155	return hyp_idmap_vector;
2156}
2157
2158static int kvm_map_idmap_text(pgd_t *pgd)
2159{
2160	int err;
2161
2162	/* Create the idmap in the boot page tables */
2163	err = 	__create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
2164				      hyp_idmap_start, hyp_idmap_end,
2165				      __phys_to_pfn(hyp_idmap_start),
2166				      PAGE_HYP_EXEC);
2167	if (err)
2168		kvm_err("Failed to idmap %lx-%lx\n",
2169			hyp_idmap_start, hyp_idmap_end);
2170
2171	return err;
2172}
2173
2174int kvm_mmu_init(void)
2175{
2176	int err;
2177
2178	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
2179	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2180	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
2181	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2182	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
2183
2184	/*
2185	 * We rely on the linker script to ensure at build time that the HYP
2186	 * init code does not cross a page boundary.
2187	 */
2188	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2189
2190	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
2191	kvm_debug("HYP VA range: %lx:%lx\n",
2192		  kern_hyp_va(PAGE_OFFSET),
2193		  kern_hyp_va((unsigned long)high_memory - 1));
2194
2195	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2196	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
2197	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2198		/*
2199		 * The idmap page is intersecting with the VA space,
2200		 * it is not safe to continue further.
2201		 */
2202		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2203		err = -EINVAL;
2204		goto out;
2205	}
2206
2207	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
2208	if (!hyp_pgd) {
2209		kvm_err("Hyp mode PGD not allocated\n");
2210		err = -ENOMEM;
2211		goto out;
2212	}
2213
2214	if (__kvm_cpu_uses_extended_idmap()) {
2215		boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2216							 hyp_pgd_order);
2217		if (!boot_hyp_pgd) {
2218			kvm_err("Hyp boot PGD not allocated\n");
2219			err = -ENOMEM;
2220			goto out;
2221		}
2222
2223		err = kvm_map_idmap_text(boot_hyp_pgd);
2224		if (err)
2225			goto out;
2226
2227		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
2228		if (!merged_hyp_pgd) {
2229			kvm_err("Failed to allocate extra HYP pgd\n");
2230			goto out;
2231		}
2232		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
2233				    hyp_idmap_start);
2234	} else {
2235		err = kvm_map_idmap_text(hyp_pgd);
2236		if (err)
2237			goto out;
2238	}
2239
2240	io_map_base = hyp_idmap_start;
2241	return 0;
2242out:
2243	free_hyp_pgds();
2244	return err;
2245}
2246
2247void kvm_arch_commit_memory_region(struct kvm *kvm,
2248				   const struct kvm_userspace_memory_region *mem,
2249				   const struct kvm_memory_slot *old,
2250				   const struct kvm_memory_slot *new,
2251				   enum kvm_mr_change change)
2252{
2253	/*
2254	 * At this point memslot has been committed and there is an
2255	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
2256	 * memory slot is write protected.
2257	 */
2258	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
2259		kvm_mmu_wp_memory_region(kvm, mem->slot);
2260}
2261
2262int kvm_arch_prepare_memory_region(struct kvm *kvm,
2263				   struct kvm_memory_slot *memslot,
2264				   const struct kvm_userspace_memory_region *mem,
2265				   enum kvm_mr_change change)
2266{
2267	hva_t hva = mem->userspace_addr;
2268	hva_t reg_end = hva + mem->memory_size;
2269	bool writable = !(mem->flags & KVM_MEM_READONLY);
2270	int ret = 0;
2271
2272	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2273			change != KVM_MR_FLAGS_ONLY)
2274		return 0;
2275
2276	/*
2277	 * Prevent userspace from creating a memory region outside of the IPA
2278	 * space addressable by the KVM guest IPA space.
2279	 */
2280	if (memslot->base_gfn + memslot->npages >=
2281	    (kvm_phys_size(kvm) >> PAGE_SHIFT))
2282		return -EFAULT;
2283
2284	down_read(&current->mm->mmap_sem);
2285	/*
2286	 * A memory region could potentially cover multiple VMAs, and any holes
2287	 * between them, so iterate over all of them to find out if we can map
2288	 * any of them right now.
2289	 *
2290	 *     +--------------------------------------------+
2291	 * +---------------+----------------+   +----------------+
2292	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2293	 * +---------------+----------------+   +----------------+
2294	 *     |               memory region                |
2295	 *     +--------------------------------------------+
2296	 */
2297	do {
2298		struct vm_area_struct *vma = find_vma(current->mm, hva);
2299		hva_t vm_start, vm_end;
2300
2301		if (!vma || vma->vm_start >= reg_end)
2302			break;
2303
2304		/*
2305		 * Mapping a read-only VMA is only allowed if the
2306		 * memory region is configured as read-only.
2307		 */
2308		if (writable && !(vma->vm_flags & VM_WRITE)) {
2309			ret = -EPERM;
2310			break;
2311		}
2312
2313		/*
2314		 * Take the intersection of this VMA with the memory region
2315		 */
2316		vm_start = max(hva, vma->vm_start);
2317		vm_end = min(reg_end, vma->vm_end);
2318
2319		if (vma->vm_flags & VM_PFNMAP) {
2320			gpa_t gpa = mem->guest_phys_addr +
2321				    (vm_start - mem->userspace_addr);
2322			phys_addr_t pa;
2323
2324			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
2325			pa += vm_start - vma->vm_start;
2326
2327			/* IO region dirty page logging not allowed */
2328			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2329				ret = -EINVAL;
2330				goto out;
2331			}
2332
2333			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
2334						    vm_end - vm_start,
2335						    writable);
2336			if (ret)
2337				break;
2338		}
2339		hva = vm_end;
2340	} while (hva < reg_end);
2341
2342	if (change == KVM_MR_FLAGS_ONLY)
2343		goto out;
2344
2345	spin_lock(&kvm->mmu_lock);
2346	if (ret)
2347		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
2348	else
2349		stage2_flush_memslot(kvm, memslot);
2350	spin_unlock(&kvm->mmu_lock);
2351out:
2352	up_read(&current->mm->mmap_sem);
2353	return ret;
2354}
2355
2356void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
2357			   struct kvm_memory_slot *dont)
2358{
2359}
2360
2361int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
2362			    unsigned long npages)
2363{
2364	return 0;
2365}
2366
2367void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2368{
2369}
2370
2371void kvm_arch_flush_shadow_all(struct kvm *kvm)
2372{
2373	kvm_free_stage2_pgd(kvm);
2374}
2375
2376void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2377				   struct kvm_memory_slot *slot)
2378{
2379	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2380	phys_addr_t size = slot->npages << PAGE_SHIFT;
2381
2382	spin_lock(&kvm->mmu_lock);
2383	unmap_stage2_range(kvm, gpa, size);
2384	spin_unlock(&kvm->mmu_lock);
2385}
2386
2387/*
2388 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2389 *
2390 * Main problems:
2391 * - S/W ops are local to a CPU (not broadcast)
2392 * - We have line migration behind our back (speculation)
2393 * - System caches don't support S/W at all (damn!)
2394 *
2395 * In the face of the above, the best we can do is to try and convert
2396 * S/W ops to VA ops. Because the guest is not allowed to infer the
2397 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2398 * which is a rather good thing for us.
2399 *
2400 * Also, it is only used when turning caches on/off ("The expected
2401 * usage of the cache maintenance instructions that operate by set/way
2402 * is associated with the cache maintenance instructions associated
2403 * with the powerdown and powerup of caches, if this is required by
2404 * the implementation.").
2405 *
2406 * We use the following policy:
2407 *
2408 * - If we trap a S/W operation, we enable VM trapping to detect
2409 *   caches being turned on/off, and do a full clean.
2410 *
2411 * - We flush the caches on both caches being turned on and off.
2412 *
2413 * - Once the caches are enabled, we stop trapping VM ops.
2414 */
2415void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2416{
2417	unsigned long hcr = *vcpu_hcr(vcpu);
2418
2419	/*
2420	 * If this is the first time we do a S/W operation
2421	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2422	 * VM trapping.
2423	 *
2424	 * Otherwise, rely on the VM trapping to wait for the MMU +
2425	 * Caches to be turned off. At that point, we'll be able to
2426	 * clean the caches again.
2427	 */
2428	if (!(hcr & HCR_TVM)) {
2429		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2430					vcpu_has_cache_enabled(vcpu));
2431		stage2_flush_vm(vcpu->kvm);
2432		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2433	}
2434}
2435
2436void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2437{
2438	bool now_enabled = vcpu_has_cache_enabled(vcpu);
2439
2440	/*
2441	 * If switching the MMU+caches on, need to invalidate the caches.
2442	 * If switching it off, need to clean the caches.
2443	 * Clean + invalidate does the trick always.
2444	 */
2445	if (now_enabled != was_enabled)
2446		stage2_flush_vm(vcpu->kvm);
2447
2448	/* Caches are now on, stop trapping VM ops (until a S/W op) */
2449	if (now_enabled)
2450		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2451
2452	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2453}