Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 ARM Ltd.
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
   5 */
   6
   7#include <linux/cpu.h>
   8#include <linux/kvm.h>
   9#include <linux/kvm_host.h>
  10#include <linux/interrupt.h>
  11#include <linux/irq.h>
  12#include <linux/uaccess.h>
  13
  14#include <clocksource/arm_arch_timer.h>
  15#include <asm/arch_timer.h>
  16#include <asm/kvm_emulate.h>
  17#include <asm/kvm_hyp.h>
  18
  19#include <kvm/arm_vgic.h>
  20#include <kvm/arm_arch_timer.h>
  21
  22#include "trace.h"
  23
  24static struct timecounter *timecounter;
  25static unsigned int host_vtimer_irq;
  26static unsigned int host_ptimer_irq;
  27static u32 host_vtimer_irq_flags;
  28static u32 host_ptimer_irq_flags;
  29
  30static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
  31
  32static const struct kvm_irq_level default_ptimer_irq = {
  33	.irq	= 30,
  34	.level	= 1,
  35};
  36
  37static const struct kvm_irq_level default_vtimer_irq = {
  38	.irq	= 27,
  39	.level	= 1,
  40};
  41
  42static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
  43static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
  44				 struct arch_timer_context *timer_ctx);
  45static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
  46static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
  47				struct arch_timer_context *timer,
  48				enum kvm_arch_timer_regs treg,
  49				u64 val);
  50static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
  51			      struct arch_timer_context *timer,
  52			      enum kvm_arch_timer_regs treg);
  53
  54u64 kvm_phys_timer_read(void)
  55{
  56	return timecounter->cc->read(timecounter->cc);
  57}
  58
  59static void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
  60{
  61	if (has_vhe()) {
  62		map->direct_vtimer = vcpu_vtimer(vcpu);
  63		map->direct_ptimer = vcpu_ptimer(vcpu);
  64		map->emul_ptimer = NULL;
  65	} else {
  66		map->direct_vtimer = vcpu_vtimer(vcpu);
  67		map->direct_ptimer = NULL;
  68		map->emul_ptimer = vcpu_ptimer(vcpu);
  69	}
  70
  71	trace_kvm_get_timer_map(vcpu->vcpu_id, map);
  72}
  73
  74static inline bool userspace_irqchip(struct kvm *kvm)
  75{
  76	return static_branch_unlikely(&userspace_irqchip_in_use) &&
  77		unlikely(!irqchip_in_kernel(kvm));
  78}
  79
  80static void soft_timer_start(struct hrtimer *hrt, u64 ns)
  81{
  82	hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
  83		      HRTIMER_MODE_ABS);
  84}
  85
  86static void soft_timer_cancel(struct hrtimer *hrt)
  87{
  88	hrtimer_cancel(hrt);
  89}
  90
  91static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
  92{
  93	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
  94	struct arch_timer_context *ctx;
  95	struct timer_map map;
  96
  97	/*
  98	 * We may see a timer interrupt after vcpu_put() has been called which
  99	 * sets the CPU's vcpu pointer to NULL, because even though the timer
 100	 * has been disabled in timer_save_state(), the hardware interrupt
 101	 * signal may not have been retired from the interrupt controller yet.
 102	 */
 103	if (!vcpu)
 104		return IRQ_HANDLED;
 105
 106	get_timer_map(vcpu, &map);
 107
 108	if (irq == host_vtimer_irq)
 109		ctx = map.direct_vtimer;
 110	else
 111		ctx = map.direct_ptimer;
 112
 113	if (kvm_timer_should_fire(ctx))
 114		kvm_timer_update_irq(vcpu, true, ctx);
 115
 116	if (userspace_irqchip(vcpu->kvm) &&
 117	    !static_branch_unlikely(&has_gic_active_state))
 118		disable_percpu_irq(host_vtimer_irq);
 119
 120	return IRQ_HANDLED;
 121}
 122
 123static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
 124{
 125	u64 cval, now;
 126
 127	cval = timer_ctx->cnt_cval;
 128	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
 129
 130	if (now < cval) {
 131		u64 ns;
 132
 133		ns = cyclecounter_cyc2ns(timecounter->cc,
 134					 cval - now,
 135					 timecounter->mask,
 136					 &timecounter->frac);
 137		return ns;
 138	}
 139
 140	return 0;
 141}
 142
 143static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
 144{
 145	WARN_ON(timer_ctx && timer_ctx->loaded);
 146	return timer_ctx &&
 147	       !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
 148		(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
 149}
 150
 151/*
 152 * Returns the earliest expiration time in ns among guest timers.
 153 * Note that it will return 0 if none of timers can fire.
 154 */
 155static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
 156{
 157	u64 min_delta = ULLONG_MAX;
 158	int i;
 159
 160	for (i = 0; i < NR_KVM_TIMERS; i++) {
 161		struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
 162
 163		WARN(ctx->loaded, "timer %d loaded\n", i);
 164		if (kvm_timer_irq_can_fire(ctx))
 165			min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
 166	}
 167
 168	/* If none of timers can fire, then return 0 */
 169	if (min_delta == ULLONG_MAX)
 170		return 0;
 171
 172	return min_delta;
 173}
 174
 175static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
 176{
 177	struct arch_timer_cpu *timer;
 178	struct kvm_vcpu *vcpu;
 179	u64 ns;
 180
 181	timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
 182	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
 183
 184	/*
 185	 * Check that the timer has really expired from the guest's
 186	 * PoV (NTP on the host may have forced it to expire
 187	 * early). If we should have slept longer, restart it.
 188	 */
 189	ns = kvm_timer_earliest_exp(vcpu);
 190	if (unlikely(ns)) {
 191		hrtimer_forward_now(hrt, ns_to_ktime(ns));
 192		return HRTIMER_RESTART;
 193	}
 194
 195	kvm_vcpu_wake_up(vcpu);
 196	return HRTIMER_NORESTART;
 197}
 198
 199static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
 200{
 201	struct arch_timer_context *ctx;
 202	struct kvm_vcpu *vcpu;
 203	u64 ns;
 204
 205	ctx = container_of(hrt, struct arch_timer_context, hrtimer);
 206	vcpu = ctx->vcpu;
 207
 208	trace_kvm_timer_hrtimer_expire(ctx);
 209
 210	/*
 211	 * Check that the timer has really expired from the guest's
 212	 * PoV (NTP on the host may have forced it to expire
 213	 * early). If not ready, schedule for a later time.
 214	 */
 215	ns = kvm_timer_compute_delta(ctx);
 216	if (unlikely(ns)) {
 217		hrtimer_forward_now(hrt, ns_to_ktime(ns));
 218		return HRTIMER_RESTART;
 219	}
 220
 221	kvm_timer_update_irq(vcpu, true, ctx);
 222	return HRTIMER_NORESTART;
 223}
 224
 225static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
 226{
 227	enum kvm_arch_timers index;
 228	u64 cval, now;
 229
 230	if (!timer_ctx)
 231		return false;
 232
 233	index = arch_timer_ctx_index(timer_ctx);
 234
 235	if (timer_ctx->loaded) {
 236		u32 cnt_ctl = 0;
 237
 238		switch (index) {
 239		case TIMER_VTIMER:
 240			cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
 241			break;
 242		case TIMER_PTIMER:
 243			cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
 244			break;
 245		case NR_KVM_TIMERS:
 246			/* GCC is braindead */
 247			cnt_ctl = 0;
 248			break;
 249		}
 250
 251		return  (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
 252		        (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
 253		       !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
 254	}
 255
 256	if (!kvm_timer_irq_can_fire(timer_ctx))
 257		return false;
 258
 259	cval = timer_ctx->cnt_cval;
 260	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
 261
 262	return cval <= now;
 263}
 264
 265bool kvm_timer_is_pending(struct kvm_vcpu *vcpu)
 266{
 267	struct timer_map map;
 268
 269	get_timer_map(vcpu, &map);
 270
 271	return kvm_timer_should_fire(map.direct_vtimer) ||
 272	       kvm_timer_should_fire(map.direct_ptimer) ||
 273	       kvm_timer_should_fire(map.emul_ptimer);
 274}
 275
 276/*
 277 * Reflect the timer output level into the kvm_run structure
 278 */
 279void kvm_timer_update_run(struct kvm_vcpu *vcpu)
 280{
 281	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
 282	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
 283	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
 284
 285	/* Populate the device bitmap with the timer states */
 286	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
 287				    KVM_ARM_DEV_EL1_PTIMER);
 288	if (kvm_timer_should_fire(vtimer))
 289		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
 290	if (kvm_timer_should_fire(ptimer))
 291		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
 292}
 293
 294static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
 295				 struct arch_timer_context *timer_ctx)
 296{
 297	int ret;
 298
 299	timer_ctx->irq.level = new_level;
 300	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
 301				   timer_ctx->irq.level);
 302
 303	if (!userspace_irqchip(vcpu->kvm)) {
 304		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
 305					  timer_ctx->irq.irq,
 306					  timer_ctx->irq.level,
 307					  timer_ctx);
 308		WARN_ON(ret);
 309	}
 310}
 311
 312/* Only called for a fully emulated timer */
 313static void timer_emulate(struct arch_timer_context *ctx)
 314{
 315	bool should_fire = kvm_timer_should_fire(ctx);
 316
 317	trace_kvm_timer_emulate(ctx, should_fire);
 318
 319	if (should_fire != ctx->irq.level) {
 320		kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
 321		return;
 322	}
 323
 324	/*
 325	 * If the timer can fire now, we don't need to have a soft timer
 326	 * scheduled for the future.  If the timer cannot fire at all,
 327	 * then we also don't need a soft timer.
 328	 */
 329	if (!kvm_timer_irq_can_fire(ctx)) {
 330		soft_timer_cancel(&ctx->hrtimer);
 331		return;
 332	}
 333
 334	soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
 335}
 336
 337static void timer_save_state(struct arch_timer_context *ctx)
 338{
 339	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
 340	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
 341	unsigned long flags;
 342
 343	if (!timer->enabled)
 344		return;
 345
 346	local_irq_save(flags);
 347
 348	if (!ctx->loaded)
 349		goto out;
 350
 351	switch (index) {
 352	case TIMER_VTIMER:
 353		ctx->cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
 354		ctx->cnt_cval = read_sysreg_el0(SYS_CNTV_CVAL);
 355
 356		/* Disable the timer */
 357		write_sysreg_el0(0, SYS_CNTV_CTL);
 358		isb();
 359
 360		break;
 361	case TIMER_PTIMER:
 362		ctx->cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
 363		ctx->cnt_cval = read_sysreg_el0(SYS_CNTP_CVAL);
 364
 365		/* Disable the timer */
 366		write_sysreg_el0(0, SYS_CNTP_CTL);
 367		isb();
 368
 369		break;
 370	case NR_KVM_TIMERS:
 371		BUG();
 372	}
 373
 374	trace_kvm_timer_save_state(ctx);
 375
 376	ctx->loaded = false;
 377out:
 378	local_irq_restore(flags);
 379}
 380
 381/*
 382 * Schedule the background timer before calling kvm_vcpu_block, so that this
 383 * thread is removed from its waitqueue and made runnable when there's a timer
 384 * interrupt to handle.
 385 */
 386static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
 387{
 388	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 389	struct timer_map map;
 390
 391	get_timer_map(vcpu, &map);
 392
 393	/*
 394	 * If no timers are capable of raising interrupts (disabled or
 395	 * masked), then there's no more work for us to do.
 396	 */
 397	if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
 398	    !kvm_timer_irq_can_fire(map.direct_ptimer) &&
 399	    !kvm_timer_irq_can_fire(map.emul_ptimer))
 400		return;
 401
 402	/*
 403	 * At least one guest time will expire. Schedule a background timer.
 404	 * Set the earliest expiration time among the guest timers.
 405	 */
 406	soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
 407}
 408
 409static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
 410{
 411	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 412
 413	soft_timer_cancel(&timer->bg_timer);
 414}
 415
 416static void timer_restore_state(struct arch_timer_context *ctx)
 417{
 418	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
 419	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
 420	unsigned long flags;
 421
 422	if (!timer->enabled)
 423		return;
 424
 425	local_irq_save(flags);
 426
 427	if (ctx->loaded)
 428		goto out;
 429
 430	switch (index) {
 431	case TIMER_VTIMER:
 432		write_sysreg_el0(ctx->cnt_cval, SYS_CNTV_CVAL);
 433		isb();
 434		write_sysreg_el0(ctx->cnt_ctl, SYS_CNTV_CTL);
 435		break;
 436	case TIMER_PTIMER:
 437		write_sysreg_el0(ctx->cnt_cval, SYS_CNTP_CVAL);
 438		isb();
 439		write_sysreg_el0(ctx->cnt_ctl, SYS_CNTP_CTL);
 440		break;
 441	case NR_KVM_TIMERS:
 442		BUG();
 443	}
 444
 445	trace_kvm_timer_restore_state(ctx);
 446
 447	ctx->loaded = true;
 448out:
 449	local_irq_restore(flags);
 450}
 451
 452static void set_cntvoff(u64 cntvoff)
 453{
 454	u32 low = lower_32_bits(cntvoff);
 455	u32 high = upper_32_bits(cntvoff);
 456
 457	/*
 458	 * Since kvm_call_hyp doesn't fully support the ARM PCS especially on
 459	 * 32-bit systems, but rather passes register by register shifted one
 460	 * place (we put the function address in r0/x0), we cannot simply pass
 461	 * a 64-bit value as an argument, but have to split the value in two
 462	 * 32-bit halves.
 463	 */
 464	kvm_call_hyp(__kvm_timer_set_cntvoff, low, high);
 465}
 466
 467static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
 468{
 469	int r;
 470	r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
 471	WARN_ON(r);
 472}
 473
 474static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
 475{
 476	struct kvm_vcpu *vcpu = ctx->vcpu;
 477	bool phys_active = false;
 478
 479	/*
 480	 * Update the timer output so that it is likely to match the
 481	 * state we're about to restore. If the timer expires between
 482	 * this point and the register restoration, we'll take the
 483	 * interrupt anyway.
 484	 */
 485	kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
 486
 487	if (irqchip_in_kernel(vcpu->kvm))
 488		phys_active = kvm_vgic_map_is_active(vcpu, ctx->irq.irq);
 489
 490	phys_active |= ctx->irq.level;
 491
 492	set_timer_irq_phys_active(ctx, phys_active);
 493}
 494
 495static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
 496{
 497	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
 498
 499	/*
 500	 * Update the timer output so that it is likely to match the
 501	 * state we're about to restore. If the timer expires between
 502	 * this point and the register restoration, we'll take the
 503	 * interrupt anyway.
 504	 */
 505	kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
 506
 507	/*
 508	 * When using a userspace irqchip with the architected timers and a
 509	 * host interrupt controller that doesn't support an active state, we
 510	 * must still prevent continuously exiting from the guest, and
 511	 * therefore mask the physical interrupt by disabling it on the host
 512	 * interrupt controller when the virtual level is high, such that the
 513	 * guest can make forward progress.  Once we detect the output level
 514	 * being de-asserted, we unmask the interrupt again so that we exit
 515	 * from the guest when the timer fires.
 516	 */
 517	if (vtimer->irq.level)
 518		disable_percpu_irq(host_vtimer_irq);
 519	else
 520		enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
 521}
 522
 523void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
 524{
 525	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 526	struct timer_map map;
 527
 528	if (unlikely(!timer->enabled))
 529		return;
 530
 531	get_timer_map(vcpu, &map);
 532
 533	if (static_branch_likely(&has_gic_active_state)) {
 534		kvm_timer_vcpu_load_gic(map.direct_vtimer);
 535		if (map.direct_ptimer)
 536			kvm_timer_vcpu_load_gic(map.direct_ptimer);
 537	} else {
 538		kvm_timer_vcpu_load_nogic(vcpu);
 539	}
 540
 541	set_cntvoff(map.direct_vtimer->cntvoff);
 542
 543	kvm_timer_unblocking(vcpu);
 544
 545	timer_restore_state(map.direct_vtimer);
 546	if (map.direct_ptimer)
 547		timer_restore_state(map.direct_ptimer);
 548
 549	if (map.emul_ptimer)
 550		timer_emulate(map.emul_ptimer);
 551}
 552
 553bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
 554{
 555	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
 556	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
 557	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
 558	bool vlevel, plevel;
 559
 560	if (likely(irqchip_in_kernel(vcpu->kvm)))
 561		return false;
 562
 563	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
 564	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
 565
 566	return kvm_timer_should_fire(vtimer) != vlevel ||
 567	       kvm_timer_should_fire(ptimer) != plevel;
 568}
 569
 570void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
 571{
 572	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 573	struct timer_map map;
 574
 575	if (unlikely(!timer->enabled))
 576		return;
 577
 578	get_timer_map(vcpu, &map);
 579
 580	timer_save_state(map.direct_vtimer);
 581	if (map.direct_ptimer)
 582		timer_save_state(map.direct_ptimer);
 583
 584	/*
 585	 * Cancel soft timer emulation, because the only case where we
 586	 * need it after a vcpu_put is in the context of a sleeping VCPU, and
 587	 * in that case we already factor in the deadline for the physical
 588	 * timer when scheduling the bg_timer.
 589	 *
 590	 * In any case, we re-schedule the hrtimer for the physical timer when
 591	 * coming back to the VCPU thread in kvm_timer_vcpu_load().
 592	 */
 593	if (map.emul_ptimer)
 594		soft_timer_cancel(&map.emul_ptimer->hrtimer);
 595
 596	if (swait_active(kvm_arch_vcpu_wq(vcpu)))
 597		kvm_timer_blocking(vcpu);
 598
 599	/*
 600	 * The kernel may decide to run userspace after calling vcpu_put, so
 601	 * we reset cntvoff to 0 to ensure a consistent read between user
 602	 * accesses to the virtual counter and kernel access to the physical
 603	 * counter of non-VHE case. For VHE, the virtual counter uses a fixed
 604	 * virtual offset of zero, so no need to zero CNTVOFF_EL2 register.
 605	 */
 606	set_cntvoff(0);
 607}
 608
 609/*
 610 * With a userspace irqchip we have to check if the guest de-asserted the
 611 * timer and if so, unmask the timer irq signal on the host interrupt
 612 * controller to ensure that we see future timer signals.
 613 */
 614static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
 615{
 616	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
 617
 618	if (!kvm_timer_should_fire(vtimer)) {
 619		kvm_timer_update_irq(vcpu, false, vtimer);
 620		if (static_branch_likely(&has_gic_active_state))
 621			set_timer_irq_phys_active(vtimer, false);
 622		else
 623			enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
 624	}
 625}
 626
 627void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
 628{
 629	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 630
 631	if (unlikely(!timer->enabled))
 632		return;
 633
 634	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
 635		unmask_vtimer_irq_user(vcpu);
 636}
 637
 638int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
 639{
 640	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 641	struct timer_map map;
 642
 643	get_timer_map(vcpu, &map);
 644
 645	/*
 646	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
 647	 * and to 0 for ARMv7.  We provide an implementation that always
 648	 * resets the timer to be disabled and unmasked and is compliant with
 649	 * the ARMv7 architecture.
 650	 */
 651	vcpu_vtimer(vcpu)->cnt_ctl = 0;
 652	vcpu_ptimer(vcpu)->cnt_ctl = 0;
 653
 654	if (timer->enabled) {
 655		kvm_timer_update_irq(vcpu, false, vcpu_vtimer(vcpu));
 656		kvm_timer_update_irq(vcpu, false, vcpu_ptimer(vcpu));
 657
 658		if (irqchip_in_kernel(vcpu->kvm)) {
 659			kvm_vgic_reset_mapped_irq(vcpu, map.direct_vtimer->irq.irq);
 660			if (map.direct_ptimer)
 661				kvm_vgic_reset_mapped_irq(vcpu, map.direct_ptimer->irq.irq);
 662		}
 663	}
 664
 665	if (map.emul_ptimer)
 666		soft_timer_cancel(&map.emul_ptimer->hrtimer);
 667
 668	return 0;
 669}
 670
 671/* Make the updates of cntvoff for all vtimer contexts atomic */
 672static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
 673{
 674	int i;
 675	struct kvm *kvm = vcpu->kvm;
 676	struct kvm_vcpu *tmp;
 677
 678	mutex_lock(&kvm->lock);
 679	kvm_for_each_vcpu(i, tmp, kvm)
 680		vcpu_vtimer(tmp)->cntvoff = cntvoff;
 681
 682	/*
 683	 * When called from the vcpu create path, the CPU being created is not
 684	 * included in the loop above, so we just set it here as well.
 685	 */
 686	vcpu_vtimer(vcpu)->cntvoff = cntvoff;
 687	mutex_unlock(&kvm->lock);
 688}
 689
 690void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
 691{
 692	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 693	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
 694	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
 695
 696	/* Synchronize cntvoff across all vtimers of a VM. */
 697	update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
 698	ptimer->cntvoff = 0;
 699
 700	hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
 701	timer->bg_timer.function = kvm_bg_timer_expire;
 702
 703	hrtimer_init(&vtimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
 704	hrtimer_init(&ptimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
 705	vtimer->hrtimer.function = kvm_hrtimer_expire;
 706	ptimer->hrtimer.function = kvm_hrtimer_expire;
 707
 708	vtimer->irq.irq = default_vtimer_irq.irq;
 709	ptimer->irq.irq = default_ptimer_irq.irq;
 710
 711	vtimer->host_timer_irq = host_vtimer_irq;
 712	ptimer->host_timer_irq = host_ptimer_irq;
 713
 714	vtimer->host_timer_irq_flags = host_vtimer_irq_flags;
 715	ptimer->host_timer_irq_flags = host_ptimer_irq_flags;
 716
 717	vtimer->vcpu = vcpu;
 718	ptimer->vcpu = vcpu;
 719}
 720
 721static void kvm_timer_init_interrupt(void *info)
 722{
 723	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
 724	enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
 725}
 726
 727int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
 728{
 729	struct arch_timer_context *timer;
 730
 731	switch (regid) {
 732	case KVM_REG_ARM_TIMER_CTL:
 733		timer = vcpu_vtimer(vcpu);
 734		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
 735		break;
 736	case KVM_REG_ARM_TIMER_CNT:
 737		timer = vcpu_vtimer(vcpu);
 738		update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
 739		break;
 740	case KVM_REG_ARM_TIMER_CVAL:
 741		timer = vcpu_vtimer(vcpu);
 742		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
 743		break;
 744	case KVM_REG_ARM_PTIMER_CTL:
 745		timer = vcpu_ptimer(vcpu);
 746		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
 747		break;
 748	case KVM_REG_ARM_PTIMER_CVAL:
 749		timer = vcpu_ptimer(vcpu);
 750		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
 751		break;
 752
 753	default:
 754		return -1;
 755	}
 756
 757	return 0;
 758}
 759
 760static u64 read_timer_ctl(struct arch_timer_context *timer)
 761{
 762	/*
 763	 * Set ISTATUS bit if it's expired.
 764	 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
 765	 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
 766	 * regardless of ENABLE bit for our implementation convenience.
 767	 */
 768	if (!kvm_timer_compute_delta(timer))
 769		return timer->cnt_ctl | ARCH_TIMER_CTRL_IT_STAT;
 770	else
 771		return timer->cnt_ctl;
 772}
 773
 774u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
 775{
 776	switch (regid) {
 777	case KVM_REG_ARM_TIMER_CTL:
 778		return kvm_arm_timer_read(vcpu,
 779					  vcpu_vtimer(vcpu), TIMER_REG_CTL);
 780	case KVM_REG_ARM_TIMER_CNT:
 781		return kvm_arm_timer_read(vcpu,
 782					  vcpu_vtimer(vcpu), TIMER_REG_CNT);
 783	case KVM_REG_ARM_TIMER_CVAL:
 784		return kvm_arm_timer_read(vcpu,
 785					  vcpu_vtimer(vcpu), TIMER_REG_CVAL);
 786	case KVM_REG_ARM_PTIMER_CTL:
 787		return kvm_arm_timer_read(vcpu,
 788					  vcpu_ptimer(vcpu), TIMER_REG_CTL);
 789	case KVM_REG_ARM_PTIMER_CNT:
 790		return kvm_arm_timer_read(vcpu,
 791					  vcpu_vtimer(vcpu), TIMER_REG_CNT);
 792	case KVM_REG_ARM_PTIMER_CVAL:
 793		return kvm_arm_timer_read(vcpu,
 794					  vcpu_ptimer(vcpu), TIMER_REG_CVAL);
 795	}
 796	return (u64)-1;
 797}
 798
 799static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
 800			      struct arch_timer_context *timer,
 801			      enum kvm_arch_timer_regs treg)
 802{
 803	u64 val;
 804
 805	switch (treg) {
 806	case TIMER_REG_TVAL:
 807		val = timer->cnt_cval - kvm_phys_timer_read() + timer->cntvoff;
 808		break;
 809
 810	case TIMER_REG_CTL:
 811		val = read_timer_ctl(timer);
 812		break;
 813
 814	case TIMER_REG_CVAL:
 815		val = timer->cnt_cval;
 816		break;
 817
 818	case TIMER_REG_CNT:
 819		val = kvm_phys_timer_read() - timer->cntvoff;
 820		break;
 821
 822	default:
 823		BUG();
 824	}
 825
 826	return val;
 827}
 828
 829u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
 830			      enum kvm_arch_timers tmr,
 831			      enum kvm_arch_timer_regs treg)
 832{
 833	u64 val;
 834
 835	preempt_disable();
 836	kvm_timer_vcpu_put(vcpu);
 837
 838	val = kvm_arm_timer_read(vcpu, vcpu_get_timer(vcpu, tmr), treg);
 839
 840	kvm_timer_vcpu_load(vcpu);
 841	preempt_enable();
 842
 843	return val;
 844}
 845
 846static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
 847				struct arch_timer_context *timer,
 848				enum kvm_arch_timer_regs treg,
 849				u64 val)
 850{
 851	switch (treg) {
 852	case TIMER_REG_TVAL:
 853		timer->cnt_cval = kvm_phys_timer_read() - timer->cntvoff + val;
 854		break;
 855
 856	case TIMER_REG_CTL:
 857		timer->cnt_ctl = val & ~ARCH_TIMER_CTRL_IT_STAT;
 858		break;
 859
 860	case TIMER_REG_CVAL:
 861		timer->cnt_cval = val;
 862		break;
 863
 864	default:
 865		BUG();
 866	}
 867}
 868
 869void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
 870				enum kvm_arch_timers tmr,
 871				enum kvm_arch_timer_regs treg,
 872				u64 val)
 873{
 874	preempt_disable();
 875	kvm_timer_vcpu_put(vcpu);
 876
 877	kvm_arm_timer_write(vcpu, vcpu_get_timer(vcpu, tmr), treg, val);
 878
 879	kvm_timer_vcpu_load(vcpu);
 880	preempt_enable();
 881}
 882
 883static int kvm_timer_starting_cpu(unsigned int cpu)
 884{
 885	kvm_timer_init_interrupt(NULL);
 886	return 0;
 887}
 888
 889static int kvm_timer_dying_cpu(unsigned int cpu)
 890{
 891	disable_percpu_irq(host_vtimer_irq);
 892	return 0;
 893}
 894
 895int kvm_timer_hyp_init(bool has_gic)
 896{
 897	struct arch_timer_kvm_info *info;
 898	int err;
 899
 900	info = arch_timer_get_kvm_info();
 901	timecounter = &info->timecounter;
 902
 903	if (!timecounter->cc) {
 904		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
 905		return -ENODEV;
 906	}
 907
 908	/* First, do the virtual EL1 timer irq */
 909
 910	if (info->virtual_irq <= 0) {
 911		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
 912			info->virtual_irq);
 913		return -ENODEV;
 914	}
 915	host_vtimer_irq = info->virtual_irq;
 916
 917	host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
 918	if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
 919	    host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
 920		kvm_err("Invalid trigger for vtimer IRQ%d, assuming level low\n",
 921			host_vtimer_irq);
 922		host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
 923	}
 924
 925	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
 926				 "kvm guest vtimer", kvm_get_running_vcpus());
 927	if (err) {
 928		kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
 929			host_vtimer_irq, err);
 930		return err;
 931	}
 932
 933	if (has_gic) {
 934		err = irq_set_vcpu_affinity(host_vtimer_irq,
 935					    kvm_get_running_vcpus());
 936		if (err) {
 937			kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
 938			goto out_free_irq;
 939		}
 940
 941		static_branch_enable(&has_gic_active_state);
 942	}
 943
 944	kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
 945
 946	/* Now let's do the physical EL1 timer irq */
 947
 948	if (info->physical_irq > 0) {
 949		host_ptimer_irq = info->physical_irq;
 950		host_ptimer_irq_flags = irq_get_trigger_type(host_ptimer_irq);
 951		if (host_ptimer_irq_flags != IRQF_TRIGGER_HIGH &&
 952		    host_ptimer_irq_flags != IRQF_TRIGGER_LOW) {
 953			kvm_err("Invalid trigger for ptimer IRQ%d, assuming level low\n",
 954				host_ptimer_irq);
 955			host_ptimer_irq_flags = IRQF_TRIGGER_LOW;
 956		}
 957
 958		err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
 959					 "kvm guest ptimer", kvm_get_running_vcpus());
 960		if (err) {
 961			kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
 962				host_ptimer_irq, err);
 963			return err;
 964		}
 965
 966		if (has_gic) {
 967			err = irq_set_vcpu_affinity(host_ptimer_irq,
 968						    kvm_get_running_vcpus());
 969			if (err) {
 970				kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
 971				goto out_free_irq;
 972			}
 973		}
 974
 975		kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
 976	} else if (has_vhe()) {
 977		kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
 978			info->physical_irq);
 979		err = -ENODEV;
 980		goto out_free_irq;
 981	}
 982
 983	cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
 984			  "kvm/arm/timer:starting", kvm_timer_starting_cpu,
 985			  kvm_timer_dying_cpu);
 986	return 0;
 987out_free_irq:
 988	free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
 989	return err;
 990}
 991
 992void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
 993{
 994	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 995
 996	soft_timer_cancel(&timer->bg_timer);
 997}
 998
 999static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
1000{
1001	int vtimer_irq, ptimer_irq;
1002	int i, ret;
1003
1004	vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
1005	ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
1006	if (ret)
1007		return false;
1008
1009	ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
1010	ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
1011	if (ret)
1012		return false;
1013
1014	kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
1015		if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
1016		    vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
1017			return false;
1018	}
1019
1020	return true;
1021}
1022
1023bool kvm_arch_timer_get_input_level(int vintid)
1024{
1025	struct kvm_vcpu *vcpu = kvm_arm_get_running_vcpu();
1026	struct arch_timer_context *timer;
1027
1028	if (vintid == vcpu_vtimer(vcpu)->irq.irq)
1029		timer = vcpu_vtimer(vcpu);
1030	else if (vintid == vcpu_ptimer(vcpu)->irq.irq)
1031		timer = vcpu_ptimer(vcpu);
1032	else
1033		BUG();
1034
1035	return kvm_timer_should_fire(timer);
1036}
1037
1038int kvm_timer_enable(struct kvm_vcpu *vcpu)
1039{
1040	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1041	struct timer_map map;
1042	int ret;
1043
1044	if (timer->enabled)
1045		return 0;
1046
1047	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
1048	if (!irqchip_in_kernel(vcpu->kvm))
1049		goto no_vgic;
1050
1051	if (!vgic_initialized(vcpu->kvm))
1052		return -ENODEV;
1053
1054	if (!timer_irqs_are_valid(vcpu)) {
1055		kvm_debug("incorrectly configured timer irqs\n");
1056		return -EINVAL;
1057	}
1058
1059	get_timer_map(vcpu, &map);
1060
1061	ret = kvm_vgic_map_phys_irq(vcpu,
1062				    map.direct_vtimer->host_timer_irq,
1063				    map.direct_vtimer->irq.irq,
1064				    kvm_arch_timer_get_input_level);
1065	if (ret)
1066		return ret;
1067
1068	if (map.direct_ptimer) {
1069		ret = kvm_vgic_map_phys_irq(vcpu,
1070					    map.direct_ptimer->host_timer_irq,
1071					    map.direct_ptimer->irq.irq,
1072					    kvm_arch_timer_get_input_level);
1073	}
1074
1075	if (ret)
1076		return ret;
1077
1078no_vgic:
1079	timer->enabled = 1;
1080	return 0;
1081}
1082
1083/*
1084 * On VHE system, we only need to configure the EL2 timer trap register once,
1085 * not for every world switch.
1086 * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
1087 * and this makes those bits have no effect for the host kernel execution.
1088 */
1089void kvm_timer_init_vhe(void)
1090{
1091	/* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
1092	u32 cnthctl_shift = 10;
1093	u64 val;
1094
1095	/*
1096	 * VHE systems allow the guest direct access to the EL1 physical
1097	 * timer/counter.
1098	 */
1099	val = read_sysreg(cnthctl_el2);
1100	val |= (CNTHCTL_EL1PCEN << cnthctl_shift);
1101	val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
1102	write_sysreg(val, cnthctl_el2);
1103}
1104
1105static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
1106{
1107	struct kvm_vcpu *vcpu;
1108	int i;
1109
1110	kvm_for_each_vcpu(i, vcpu, kvm) {
1111		vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
1112		vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
1113	}
1114}
1115
1116int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1117{
1118	int __user *uaddr = (int __user *)(long)attr->addr;
1119	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
1120	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
1121	int irq;
1122
1123	if (!irqchip_in_kernel(vcpu->kvm))
1124		return -EINVAL;
1125
1126	if (get_user(irq, uaddr))
1127		return -EFAULT;
1128
1129	if (!(irq_is_ppi(irq)))
1130		return -EINVAL;
1131
1132	if (vcpu->arch.timer_cpu.enabled)
1133		return -EBUSY;
1134
1135	switch (attr->attr) {
1136	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1137		set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
1138		break;
1139	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1140		set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
1141		break;
1142	default:
1143		return -ENXIO;
1144	}
1145
1146	return 0;
1147}
1148
1149int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1150{
1151	int __user *uaddr = (int __user *)(long)attr->addr;
1152	struct arch_timer_context *timer;
1153	int irq;
1154
1155	switch (attr->attr) {
1156	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1157		timer = vcpu_vtimer(vcpu);
1158		break;
1159	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1160		timer = vcpu_ptimer(vcpu);
1161		break;
1162	default:
1163		return -ENXIO;
1164	}
1165
1166	irq = timer->irq.irq;
1167	return put_user(irq, uaddr);
1168}
1169
1170int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1171{
1172	switch (attr->attr) {
1173	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1174	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1175		return 0;
1176	}
1177
1178	return -ENXIO;
1179}