Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.5.6.
  1// SPDX-License-Identifier: GPL-2.0+
  2//
  3// soc-ops.c  --  Generic ASoC operations
  4//
  5// Copyright 2005 Wolfson Microelectronics PLC.
  6// Copyright 2005 Openedhand Ltd.
  7// Copyright (C) 2010 Slimlogic Ltd.
  8// Copyright (C) 2010 Texas Instruments Inc.
  9//
 10// Author: Liam Girdwood <lrg@slimlogic.co.uk>
 11//         with code, comments and ideas from :-
 12//         Richard Purdie <richard@openedhand.com>
 13
 14#include <linux/module.h>
 15#include <linux/moduleparam.h>
 16#include <linux/init.h>
 17#include <linux/delay.h>
 18#include <linux/pm.h>
 19#include <linux/bitops.h>
 20#include <linux/ctype.h>
 21#include <linux/slab.h>
 22#include <sound/core.h>
 23#include <sound/jack.h>
 24#include <sound/pcm.h>
 25#include <sound/pcm_params.h>
 26#include <sound/soc.h>
 27#include <sound/soc-dpcm.h>
 28#include <sound/initval.h>
 29
 30/**
 31 * snd_soc_info_enum_double - enumerated double mixer info callback
 32 * @kcontrol: mixer control
 33 * @uinfo: control element information
 34 *
 35 * Callback to provide information about a double enumerated
 36 * mixer control.
 37 *
 38 * Returns 0 for success.
 39 */
 40int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
 41	struct snd_ctl_elem_info *uinfo)
 42{
 43	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
 44
 45	return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
 46				 e->items, e->texts);
 47}
 48EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
 49
 50/**
 51 * snd_soc_get_enum_double - enumerated double mixer get callback
 52 * @kcontrol: mixer control
 53 * @ucontrol: control element information
 54 *
 55 * Callback to get the value of a double enumerated mixer.
 56 *
 57 * Returns 0 for success.
 58 */
 59int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
 60	struct snd_ctl_elem_value *ucontrol)
 61{
 62	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 63	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
 64	unsigned int val, item;
 65	unsigned int reg_val;
 66	int ret;
 67
 68	ret = snd_soc_component_read(component, e->reg, &reg_val);
 69	if (ret)
 70		return ret;
 71	val = (reg_val >> e->shift_l) & e->mask;
 72	item = snd_soc_enum_val_to_item(e, val);
 73	ucontrol->value.enumerated.item[0] = item;
 74	if (e->shift_l != e->shift_r) {
 75		val = (reg_val >> e->shift_r) & e->mask;
 76		item = snd_soc_enum_val_to_item(e, val);
 77		ucontrol->value.enumerated.item[1] = item;
 78	}
 79
 80	return 0;
 81}
 82EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
 83
 84/**
 85 * snd_soc_put_enum_double - enumerated double mixer put callback
 86 * @kcontrol: mixer control
 87 * @ucontrol: control element information
 88 *
 89 * Callback to set the value of a double enumerated mixer.
 90 *
 91 * Returns 0 for success.
 92 */
 93int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
 94	struct snd_ctl_elem_value *ucontrol)
 95{
 96	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 97	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
 98	unsigned int *item = ucontrol->value.enumerated.item;
 99	unsigned int val;
100	unsigned int mask;
101
102	if (item[0] >= e->items)
103		return -EINVAL;
104	val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
105	mask = e->mask << e->shift_l;
106	if (e->shift_l != e->shift_r) {
107		if (item[1] >= e->items)
108			return -EINVAL;
109		val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
110		mask |= e->mask << e->shift_r;
111	}
112
113	return snd_soc_component_update_bits(component, e->reg, mask, val);
114}
115EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
116
117/**
118 * snd_soc_read_signed - Read a codec register and interpret as signed value
119 * @component: component
120 * @reg: Register to read
121 * @mask: Mask to use after shifting the register value
122 * @shift: Right shift of register value
123 * @sign_bit: Bit that describes if a number is negative or not.
124 * @signed_val: Pointer to where the read value should be stored
125 *
126 * This functions reads a codec register. The register value is shifted right
127 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
128 * the given registervalue into a signed integer if sign_bit is non-zero.
129 *
130 * Returns 0 on sucess, otherwise an error value
131 */
132static int snd_soc_read_signed(struct snd_soc_component *component,
133	unsigned int reg, unsigned int mask, unsigned int shift,
134	unsigned int sign_bit, int *signed_val)
135{
136	int ret;
137	unsigned int val;
138
139	ret = snd_soc_component_read(component, reg, &val);
140	if (ret < 0)
141		return ret;
142
143	val = (val >> shift) & mask;
144
145	if (!sign_bit) {
146		*signed_val = val;
147		return 0;
148	}
149
150	/* non-negative number */
151	if (!(val & BIT(sign_bit))) {
152		*signed_val = val;
153		return 0;
154	}
155
156	ret = val;
157
158	/*
159	 * The register most probably does not contain a full-sized int.
160	 * Instead we have an arbitrary number of bits in a signed
161	 * representation which has to be translated into a full-sized int.
162	 * This is done by filling up all bits above the sign-bit.
163	 */
164	ret |= ~((int)(BIT(sign_bit) - 1));
165
166	*signed_val = ret;
167
168	return 0;
169}
170
171/**
172 * snd_soc_info_volsw - single mixer info callback
173 * @kcontrol: mixer control
174 * @uinfo: control element information
175 *
176 * Callback to provide information about a single mixer control, or a double
177 * mixer control that spans 2 registers.
178 *
179 * Returns 0 for success.
180 */
181int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
182	struct snd_ctl_elem_info *uinfo)
183{
184	struct soc_mixer_control *mc =
185		(struct soc_mixer_control *)kcontrol->private_value;
186	int platform_max;
187
188	if (!mc->platform_max)
189		mc->platform_max = mc->max;
190	platform_max = mc->platform_max;
191
192	if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
193		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
194	else
195		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
196
197	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
198	uinfo->value.integer.min = 0;
199	uinfo->value.integer.max = platform_max - mc->min;
200	return 0;
201}
202EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
203
204/**
205 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
206 * @kcontrol: mixer control
207 * @uinfo: control element information
208 *
209 * Callback to provide information about a single mixer control, or a double
210 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
211 * have a range that represents both positive and negative values either side
212 * of zero but without a sign bit.
213 *
214 * Returns 0 for success.
215 */
216int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
217			  struct snd_ctl_elem_info *uinfo)
218{
219	struct soc_mixer_control *mc =
220		(struct soc_mixer_control *)kcontrol->private_value;
221
222	snd_soc_info_volsw(kcontrol, uinfo);
223	/* Max represents the number of levels in an SX control not the
224	 * maximum value, so add the minimum value back on
225	 */
226	uinfo->value.integer.max += mc->min;
227
228	return 0;
229}
230EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
231
232/**
233 * snd_soc_get_volsw - single mixer get callback
234 * @kcontrol: mixer control
235 * @ucontrol: control element information
236 *
237 * Callback to get the value of a single mixer control, or a double mixer
238 * control that spans 2 registers.
239 *
240 * Returns 0 for success.
241 */
242int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
243	struct snd_ctl_elem_value *ucontrol)
244{
245	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
246	struct soc_mixer_control *mc =
247		(struct soc_mixer_control *)kcontrol->private_value;
248	unsigned int reg = mc->reg;
249	unsigned int reg2 = mc->rreg;
250	unsigned int shift = mc->shift;
251	unsigned int rshift = mc->rshift;
252	int max = mc->max;
253	int min = mc->min;
254	int sign_bit = mc->sign_bit;
255	unsigned int mask = (1 << fls(max)) - 1;
256	unsigned int invert = mc->invert;
257	int val;
258	int ret;
259
260	if (sign_bit)
261		mask = BIT(sign_bit + 1) - 1;
262
263	ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
264	if (ret)
265		return ret;
266
267	ucontrol->value.integer.value[0] = val - min;
268	if (invert)
269		ucontrol->value.integer.value[0] =
270			max - ucontrol->value.integer.value[0];
271
272	if (snd_soc_volsw_is_stereo(mc)) {
273		if (reg == reg2)
274			ret = snd_soc_read_signed(component, reg, mask, rshift,
275				sign_bit, &val);
276		else
277			ret = snd_soc_read_signed(component, reg2, mask, shift,
278				sign_bit, &val);
279		if (ret)
280			return ret;
281
282		ucontrol->value.integer.value[1] = val - min;
283		if (invert)
284			ucontrol->value.integer.value[1] =
285				max - ucontrol->value.integer.value[1];
286	}
287
288	return 0;
289}
290EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
291
292/**
293 * snd_soc_put_volsw - single mixer put callback
294 * @kcontrol: mixer control
295 * @ucontrol: control element information
296 *
297 * Callback to set the value of a single mixer control, or a double mixer
298 * control that spans 2 registers.
299 *
300 * Returns 0 for success.
301 */
302int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
303	struct snd_ctl_elem_value *ucontrol)
304{
305	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
306	struct soc_mixer_control *mc =
307		(struct soc_mixer_control *)kcontrol->private_value;
308	unsigned int reg = mc->reg;
309	unsigned int reg2 = mc->rreg;
310	unsigned int shift = mc->shift;
311	unsigned int rshift = mc->rshift;
312	int max = mc->max;
313	int min = mc->min;
314	unsigned int sign_bit = mc->sign_bit;
315	unsigned int mask = (1 << fls(max)) - 1;
316	unsigned int invert = mc->invert;
317	int err;
318	bool type_2r = false;
319	unsigned int val2 = 0;
320	unsigned int val, val_mask;
321
322	if (sign_bit)
323		mask = BIT(sign_bit + 1) - 1;
324
325	val = ((ucontrol->value.integer.value[0] + min) & mask);
326	if (invert)
327		val = max - val;
328	val_mask = mask << shift;
329	val = val << shift;
330	if (snd_soc_volsw_is_stereo(mc)) {
331		val2 = ((ucontrol->value.integer.value[1] + min) & mask);
332		if (invert)
333			val2 = max - val2;
334		if (reg == reg2) {
335			val_mask |= mask << rshift;
336			val |= val2 << rshift;
337		} else {
338			val2 = val2 << shift;
339			type_2r = true;
340		}
341	}
342	err = snd_soc_component_update_bits(component, reg, val_mask, val);
343	if (err < 0)
344		return err;
345
346	if (type_2r)
347		err = snd_soc_component_update_bits(component, reg2, val_mask,
348			val2);
349
350	return err;
351}
352EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
353
354/**
355 * snd_soc_get_volsw_sx - single mixer get callback
356 * @kcontrol: mixer control
357 * @ucontrol: control element information
358 *
359 * Callback to get the value of a single mixer control, or a double mixer
360 * control that spans 2 registers.
361 *
362 * Returns 0 for success.
363 */
364int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
365		      struct snd_ctl_elem_value *ucontrol)
366{
367	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
368	struct soc_mixer_control *mc =
369	    (struct soc_mixer_control *)kcontrol->private_value;
370	unsigned int reg = mc->reg;
371	unsigned int reg2 = mc->rreg;
372	unsigned int shift = mc->shift;
373	unsigned int rshift = mc->rshift;
374	int max = mc->max;
375	int min = mc->min;
376	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
377	unsigned int val;
378	int ret;
379
380	ret = snd_soc_component_read(component, reg, &val);
381	if (ret < 0)
382		return ret;
383
384	ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
385
386	if (snd_soc_volsw_is_stereo(mc)) {
387		ret = snd_soc_component_read(component, reg2, &val);
388		if (ret < 0)
389			return ret;
390
391		val = ((val >> rshift) - min) & mask;
392		ucontrol->value.integer.value[1] = val;
393	}
394
395	return 0;
396}
397EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
398
399/**
400 * snd_soc_put_volsw_sx - double mixer set callback
401 * @kcontrol: mixer control
402 * @ucontrol: control element information
403 *
404 * Callback to set the value of a double mixer control that spans 2 registers.
405 *
406 * Returns 0 for success.
407 */
408int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
409			 struct snd_ctl_elem_value *ucontrol)
410{
411	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
412	struct soc_mixer_control *mc =
413	    (struct soc_mixer_control *)kcontrol->private_value;
414
415	unsigned int reg = mc->reg;
416	unsigned int reg2 = mc->rreg;
417	unsigned int shift = mc->shift;
418	unsigned int rshift = mc->rshift;
419	int max = mc->max;
420	int min = mc->min;
421	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
422	int err = 0;
423	unsigned int val, val_mask, val2 = 0;
424
425	val_mask = mask << shift;
426	val = (ucontrol->value.integer.value[0] + min) & mask;
427	val = val << shift;
428
429	err = snd_soc_component_update_bits(component, reg, val_mask, val);
430	if (err < 0)
431		return err;
432
433	if (snd_soc_volsw_is_stereo(mc)) {
434		val_mask = mask << rshift;
435		val2 = (ucontrol->value.integer.value[1] + min) & mask;
436		val2 = val2 << rshift;
437
438		err = snd_soc_component_update_bits(component, reg2, val_mask,
439			val2);
440	}
441	return err;
442}
443EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
444
445/**
446 * snd_soc_info_volsw_range - single mixer info callback with range.
447 * @kcontrol: mixer control
448 * @uinfo: control element information
449 *
450 * Callback to provide information, within a range, about a single
451 * mixer control.
452 *
453 * returns 0 for success.
454 */
455int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
456	struct snd_ctl_elem_info *uinfo)
457{
458	struct soc_mixer_control *mc =
459		(struct soc_mixer_control *)kcontrol->private_value;
460	int platform_max;
461	int min = mc->min;
462
463	if (!mc->platform_max)
464		mc->platform_max = mc->max;
465	platform_max = mc->platform_max;
466
467	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
468	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
469	uinfo->value.integer.min = 0;
470	uinfo->value.integer.max = platform_max - min;
471
472	return 0;
473}
474EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
475
476/**
477 * snd_soc_put_volsw_range - single mixer put value callback with range.
478 * @kcontrol: mixer control
479 * @ucontrol: control element information
480 *
481 * Callback to set the value, within a range, for a single mixer control.
482 *
483 * Returns 0 for success.
484 */
485int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
486	struct snd_ctl_elem_value *ucontrol)
487{
488	struct soc_mixer_control *mc =
489		(struct soc_mixer_control *)kcontrol->private_value;
490	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
491	unsigned int reg = mc->reg;
492	unsigned int rreg = mc->rreg;
493	unsigned int shift = mc->shift;
494	int min = mc->min;
495	int max = mc->max;
496	unsigned int mask = (1 << fls(max)) - 1;
497	unsigned int invert = mc->invert;
498	unsigned int val, val_mask;
499	int ret;
500
501	if (invert)
502		val = (max - ucontrol->value.integer.value[0]) & mask;
503	else
504		val = ((ucontrol->value.integer.value[0] + min) & mask);
505	val_mask = mask << shift;
506	val = val << shift;
507
508	ret = snd_soc_component_update_bits(component, reg, val_mask, val);
509	if (ret < 0)
510		return ret;
511
512	if (snd_soc_volsw_is_stereo(mc)) {
513		if (invert)
514			val = (max - ucontrol->value.integer.value[1]) & mask;
515		else
516			val = ((ucontrol->value.integer.value[1] + min) & mask);
517		val_mask = mask << shift;
518		val = val << shift;
519
520		ret = snd_soc_component_update_bits(component, rreg, val_mask,
521			val);
522	}
523
524	return ret;
525}
526EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
527
528/**
529 * snd_soc_get_volsw_range - single mixer get callback with range
530 * @kcontrol: mixer control
531 * @ucontrol: control element information
532 *
533 * Callback to get the value, within a range, of a single mixer control.
534 *
535 * Returns 0 for success.
536 */
537int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
538	struct snd_ctl_elem_value *ucontrol)
539{
540	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
541	struct soc_mixer_control *mc =
542		(struct soc_mixer_control *)kcontrol->private_value;
543	unsigned int reg = mc->reg;
544	unsigned int rreg = mc->rreg;
545	unsigned int shift = mc->shift;
546	int min = mc->min;
547	int max = mc->max;
548	unsigned int mask = (1 << fls(max)) - 1;
549	unsigned int invert = mc->invert;
550	unsigned int val;
551	int ret;
552
553	ret = snd_soc_component_read(component, reg, &val);
554	if (ret)
555		return ret;
556
557	ucontrol->value.integer.value[0] = (val >> shift) & mask;
558	if (invert)
559		ucontrol->value.integer.value[0] =
560			max - ucontrol->value.integer.value[0];
561	else
562		ucontrol->value.integer.value[0] =
563			ucontrol->value.integer.value[0] - min;
564
565	if (snd_soc_volsw_is_stereo(mc)) {
566		ret = snd_soc_component_read(component, rreg, &val);
567		if (ret)
568			return ret;
569
570		ucontrol->value.integer.value[1] = (val >> shift) & mask;
571		if (invert)
572			ucontrol->value.integer.value[1] =
573				max - ucontrol->value.integer.value[1];
574		else
575			ucontrol->value.integer.value[1] =
576				ucontrol->value.integer.value[1] - min;
577	}
578
579	return 0;
580}
581EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
582
583/**
584 * snd_soc_limit_volume - Set new limit to an existing volume control.
585 *
586 * @card: where to look for the control
587 * @name: Name of the control
588 * @max: new maximum limit
589 *
590 * Return 0 for success, else error.
591 */
592int snd_soc_limit_volume(struct snd_soc_card *card,
593	const char *name, int max)
594{
595	struct snd_card *snd_card = card->snd_card;
596	struct snd_kcontrol *kctl;
597	struct soc_mixer_control *mc;
598	int found = 0;
599	int ret = -EINVAL;
600
601	/* Sanity check for name and max */
602	if (unlikely(!name || max <= 0))
603		return -EINVAL;
604
605	list_for_each_entry(kctl, &snd_card->controls, list) {
606		if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
607			found = 1;
608			break;
609		}
610	}
611	if (found) {
612		mc = (struct soc_mixer_control *)kctl->private_value;
613		if (max <= mc->max) {
614			mc->platform_max = max;
615			ret = 0;
616		}
617	}
618	return ret;
619}
620EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
621
622int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
623		       struct snd_ctl_elem_info *uinfo)
624{
625	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
626	struct soc_bytes *params = (void *)kcontrol->private_value;
627
628	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
629	uinfo->count = params->num_regs * component->val_bytes;
630
631	return 0;
632}
633EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
634
635int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
636		      struct snd_ctl_elem_value *ucontrol)
637{
638	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
639	struct soc_bytes *params = (void *)kcontrol->private_value;
640	int ret;
641
642	if (component->regmap)
643		ret = regmap_raw_read(component->regmap, params->base,
644				      ucontrol->value.bytes.data,
645				      params->num_regs * component->val_bytes);
646	else
647		ret = -EINVAL;
648
649	/* Hide any masked bytes to ensure consistent data reporting */
650	if (ret == 0 && params->mask) {
651		switch (component->val_bytes) {
652		case 1:
653			ucontrol->value.bytes.data[0] &= ~params->mask;
654			break;
655		case 2:
656			((u16 *)(&ucontrol->value.bytes.data))[0]
657				&= cpu_to_be16(~params->mask);
658			break;
659		case 4:
660			((u32 *)(&ucontrol->value.bytes.data))[0]
661				&= cpu_to_be32(~params->mask);
662			break;
663		default:
664			return -EINVAL;
665		}
666	}
667
668	return ret;
669}
670EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
671
672int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
673		      struct snd_ctl_elem_value *ucontrol)
674{
675	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
676	struct soc_bytes *params = (void *)kcontrol->private_value;
677	int ret, len;
678	unsigned int val, mask;
679	void *data;
680
681	if (!component->regmap || !params->num_regs)
682		return -EINVAL;
683
684	len = params->num_regs * component->val_bytes;
685
686	data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
687	if (!data)
688		return -ENOMEM;
689
690	/*
691	 * If we've got a mask then we need to preserve the register
692	 * bits.  We shouldn't modify the incoming data so take a
693	 * copy.
694	 */
695	if (params->mask) {
696		ret = regmap_read(component->regmap, params->base, &val);
697		if (ret != 0)
698			goto out;
699
700		val &= params->mask;
701
702		switch (component->val_bytes) {
703		case 1:
704			((u8 *)data)[0] &= ~params->mask;
705			((u8 *)data)[0] |= val;
706			break;
707		case 2:
708			mask = ~params->mask;
709			ret = regmap_parse_val(component->regmap,
710							&mask, &mask);
711			if (ret != 0)
712				goto out;
713
714			((u16 *)data)[0] &= mask;
715
716			ret = regmap_parse_val(component->regmap,
717							&val, &val);
718			if (ret != 0)
719				goto out;
720
721			((u16 *)data)[0] |= val;
722			break;
723		case 4:
724			mask = ~params->mask;
725			ret = regmap_parse_val(component->regmap,
726							&mask, &mask);
727			if (ret != 0)
728				goto out;
729
730			((u32 *)data)[0] &= mask;
731
732			ret = regmap_parse_val(component->regmap,
733							&val, &val);
734			if (ret != 0)
735				goto out;
736
737			((u32 *)data)[0] |= val;
738			break;
739		default:
740			ret = -EINVAL;
741			goto out;
742		}
743	}
744
745	ret = regmap_raw_write(component->regmap, params->base,
746			       data, len);
747
748out:
749	kfree(data);
750
751	return ret;
752}
753EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
754
755int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
756			struct snd_ctl_elem_info *ucontrol)
757{
758	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
759
760	ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
761	ucontrol->count = params->max;
762
763	return 0;
764}
765EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
766
767int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
768				unsigned int size, unsigned int __user *tlv)
769{
770	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
771	unsigned int count = size < params->max ? size : params->max;
772	int ret = -ENXIO;
773
774	switch (op_flag) {
775	case SNDRV_CTL_TLV_OP_READ:
776		if (params->get)
777			ret = params->get(kcontrol, tlv, count);
778		break;
779	case SNDRV_CTL_TLV_OP_WRITE:
780		if (params->put)
781			ret = params->put(kcontrol, tlv, count);
782		break;
783	}
784	return ret;
785}
786EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
787
788/**
789 * snd_soc_info_xr_sx - signed multi register info callback
790 * @kcontrol: mreg control
791 * @uinfo: control element information
792 *
793 * Callback to provide information of a control that can
794 * span multiple codec registers which together
795 * forms a single signed value in a MSB/LSB manner.
796 *
797 * Returns 0 for success.
798 */
799int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
800	struct snd_ctl_elem_info *uinfo)
801{
802	struct soc_mreg_control *mc =
803		(struct soc_mreg_control *)kcontrol->private_value;
804	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
805	uinfo->count = 1;
806	uinfo->value.integer.min = mc->min;
807	uinfo->value.integer.max = mc->max;
808
809	return 0;
810}
811EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
812
813/**
814 * snd_soc_get_xr_sx - signed multi register get callback
815 * @kcontrol: mreg control
816 * @ucontrol: control element information
817 *
818 * Callback to get the value of a control that can span
819 * multiple codec registers which together forms a single
820 * signed value in a MSB/LSB manner. The control supports
821 * specifying total no of bits used to allow for bitfields
822 * across the multiple codec registers.
823 *
824 * Returns 0 for success.
825 */
826int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
827	struct snd_ctl_elem_value *ucontrol)
828{
829	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
830	struct soc_mreg_control *mc =
831		(struct soc_mreg_control *)kcontrol->private_value;
832	unsigned int regbase = mc->regbase;
833	unsigned int regcount = mc->regcount;
834	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
835	unsigned int regwmask = (1<<regwshift)-1;
836	unsigned int invert = mc->invert;
837	unsigned long mask = (1UL<<mc->nbits)-1;
838	long min = mc->min;
839	long max = mc->max;
840	long val = 0;
841	unsigned int regval;
842	unsigned int i;
843	int ret;
844
845	for (i = 0; i < regcount; i++) {
846		ret = snd_soc_component_read(component, regbase+i, &regval);
847		if (ret)
848			return ret;
849		val |= (regval & regwmask) << (regwshift*(regcount-i-1));
850	}
851	val &= mask;
852	if (min < 0 && val > max)
853		val |= ~mask;
854	if (invert)
855		val = max - val;
856	ucontrol->value.integer.value[0] = val;
857
858	return 0;
859}
860EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
861
862/**
863 * snd_soc_put_xr_sx - signed multi register get callback
864 * @kcontrol: mreg control
865 * @ucontrol: control element information
866 *
867 * Callback to set the value of a control that can span
868 * multiple codec registers which together forms a single
869 * signed value in a MSB/LSB manner. The control supports
870 * specifying total no of bits used to allow for bitfields
871 * across the multiple codec registers.
872 *
873 * Returns 0 for success.
874 */
875int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
876	struct snd_ctl_elem_value *ucontrol)
877{
878	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
879	struct soc_mreg_control *mc =
880		(struct soc_mreg_control *)kcontrol->private_value;
881	unsigned int regbase = mc->regbase;
882	unsigned int regcount = mc->regcount;
883	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
884	unsigned int regwmask = (1<<regwshift)-1;
885	unsigned int invert = mc->invert;
886	unsigned long mask = (1UL<<mc->nbits)-1;
887	long max = mc->max;
888	long val = ucontrol->value.integer.value[0];
889	unsigned int i, regval, regmask;
890	int err;
891
892	if (invert)
893		val = max - val;
894	val &= mask;
895	for (i = 0; i < regcount; i++) {
896		regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
897		regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
898		err = snd_soc_component_update_bits(component, regbase+i,
899				regmask, regval);
900		if (err < 0)
901			return err;
902	}
903
904	return 0;
905}
906EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
907
908/**
909 * snd_soc_get_strobe - strobe get callback
910 * @kcontrol: mixer control
911 * @ucontrol: control element information
912 *
913 * Callback get the value of a strobe mixer control.
914 *
915 * Returns 0 for success.
916 */
917int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
918	struct snd_ctl_elem_value *ucontrol)
919{
920	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
921	struct soc_mixer_control *mc =
922		(struct soc_mixer_control *)kcontrol->private_value;
923	unsigned int reg = mc->reg;
924	unsigned int shift = mc->shift;
925	unsigned int mask = 1 << shift;
926	unsigned int invert = mc->invert != 0;
927	unsigned int val;
928	int ret;
929
930	ret = snd_soc_component_read(component, reg, &val);
931	if (ret)
932		return ret;
933
934	val &= mask;
935
936	if (shift != 0 && val != 0)
937		val = val >> shift;
938	ucontrol->value.enumerated.item[0] = val ^ invert;
939
940	return 0;
941}
942EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
943
944/**
945 * snd_soc_put_strobe - strobe put callback
946 * @kcontrol: mixer control
947 * @ucontrol: control element information
948 *
949 * Callback strobe a register bit to high then low (or the inverse)
950 * in one pass of a single mixer enum control.
951 *
952 * Returns 1 for success.
953 */
954int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
955	struct snd_ctl_elem_value *ucontrol)
956{
957	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
958	struct soc_mixer_control *mc =
959		(struct soc_mixer_control *)kcontrol->private_value;
960	unsigned int reg = mc->reg;
961	unsigned int shift = mc->shift;
962	unsigned int mask = 1 << shift;
963	unsigned int invert = mc->invert != 0;
964	unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
965	unsigned int val1 = (strobe ^ invert) ? mask : 0;
966	unsigned int val2 = (strobe ^ invert) ? 0 : mask;
967	int err;
968
969	err = snd_soc_component_update_bits(component, reg, mask, val1);
970	if (err < 0)
971		return err;
972
973	return snd_soc_component_update_bits(component, reg, mask, val2);
974}
975EXPORT_SYMBOL_GPL(snd_soc_put_strobe);