Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* Common capabilities, needed by capability.o.
3 */
4
5#include <linux/capability.h>
6#include <linux/audit.h>
7#include <linux/init.h>
8#include <linux/kernel.h>
9#include <linux/lsm_hooks.h>
10#include <linux/file.h>
11#include <linux/mm.h>
12#include <linux/mman.h>
13#include <linux/pagemap.h>
14#include <linux/swap.h>
15#include <linux/skbuff.h>
16#include <linux/netlink.h>
17#include <linux/ptrace.h>
18#include <linux/xattr.h>
19#include <linux/hugetlb.h>
20#include <linux/mount.h>
21#include <linux/sched.h>
22#include <linux/prctl.h>
23#include <linux/securebits.h>
24#include <linux/user_namespace.h>
25#include <linux/binfmts.h>
26#include <linux/personality.h>
27
28/*
29 * If a non-root user executes a setuid-root binary in
30 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
31 * However if fE is also set, then the intent is for only
32 * the file capabilities to be applied, and the setuid-root
33 * bit is left on either to change the uid (plausible) or
34 * to get full privilege on a kernel without file capabilities
35 * support. So in that case we do not raise capabilities.
36 *
37 * Warn if that happens, once per boot.
38 */
39static void warn_setuid_and_fcaps_mixed(const char *fname)
40{
41 static int warned;
42 if (!warned) {
43 printk(KERN_INFO "warning: `%s' has both setuid-root and"
44 " effective capabilities. Therefore not raising all"
45 " capabilities.\n", fname);
46 warned = 1;
47 }
48}
49
50/**
51 * cap_capable - Determine whether a task has a particular effective capability
52 * @cred: The credentials to use
53 * @ns: The user namespace in which we need the capability
54 * @cap: The capability to check for
55 * @opts: Bitmask of options defined in include/linux/security.h
56 *
57 * Determine whether the nominated task has the specified capability amongst
58 * its effective set, returning 0 if it does, -ve if it does not.
59 *
60 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
61 * and has_capability() functions. That is, it has the reverse semantics:
62 * cap_has_capability() returns 0 when a task has a capability, but the
63 * kernel's capable() and has_capability() returns 1 for this case.
64 */
65int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
66 int cap, unsigned int opts)
67{
68 struct user_namespace *ns = targ_ns;
69
70 /* See if cred has the capability in the target user namespace
71 * by examining the target user namespace and all of the target
72 * user namespace's parents.
73 */
74 for (;;) {
75 /* Do we have the necessary capabilities? */
76 if (ns == cred->user_ns)
77 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
78
79 /*
80 * If we're already at a lower level than we're looking for,
81 * we're done searching.
82 */
83 if (ns->level <= cred->user_ns->level)
84 return -EPERM;
85
86 /*
87 * The owner of the user namespace in the parent of the
88 * user namespace has all caps.
89 */
90 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
91 return 0;
92
93 /*
94 * If you have a capability in a parent user ns, then you have
95 * it over all children user namespaces as well.
96 */
97 ns = ns->parent;
98 }
99
100 /* We never get here */
101}
102
103/**
104 * cap_settime - Determine whether the current process may set the system clock
105 * @ts: The time to set
106 * @tz: The timezone to set
107 *
108 * Determine whether the current process may set the system clock and timezone
109 * information, returning 0 if permission granted, -ve if denied.
110 */
111int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
112{
113 if (!capable(CAP_SYS_TIME))
114 return -EPERM;
115 return 0;
116}
117
118/**
119 * cap_ptrace_access_check - Determine whether the current process may access
120 * another
121 * @child: The process to be accessed
122 * @mode: The mode of attachment.
123 *
124 * If we are in the same or an ancestor user_ns and have all the target
125 * task's capabilities, then ptrace access is allowed.
126 * If we have the ptrace capability to the target user_ns, then ptrace
127 * access is allowed.
128 * Else denied.
129 *
130 * Determine whether a process may access another, returning 0 if permission
131 * granted, -ve if denied.
132 */
133int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
134{
135 int ret = 0;
136 const struct cred *cred, *child_cred;
137 const kernel_cap_t *caller_caps;
138
139 rcu_read_lock();
140 cred = current_cred();
141 child_cred = __task_cred(child);
142 if (mode & PTRACE_MODE_FSCREDS)
143 caller_caps = &cred->cap_effective;
144 else
145 caller_caps = &cred->cap_permitted;
146 if (cred->user_ns == child_cred->user_ns &&
147 cap_issubset(child_cred->cap_permitted, *caller_caps))
148 goto out;
149 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
150 goto out;
151 ret = -EPERM;
152out:
153 rcu_read_unlock();
154 return ret;
155}
156
157/**
158 * cap_ptrace_traceme - Determine whether another process may trace the current
159 * @parent: The task proposed to be the tracer
160 *
161 * If parent is in the same or an ancestor user_ns and has all current's
162 * capabilities, then ptrace access is allowed.
163 * If parent has the ptrace capability to current's user_ns, then ptrace
164 * access is allowed.
165 * Else denied.
166 *
167 * Determine whether the nominated task is permitted to trace the current
168 * process, returning 0 if permission is granted, -ve if denied.
169 */
170int cap_ptrace_traceme(struct task_struct *parent)
171{
172 int ret = 0;
173 const struct cred *cred, *child_cred;
174
175 rcu_read_lock();
176 cred = __task_cred(parent);
177 child_cred = current_cred();
178 if (cred->user_ns == child_cred->user_ns &&
179 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
180 goto out;
181 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
182 goto out;
183 ret = -EPERM;
184out:
185 rcu_read_unlock();
186 return ret;
187}
188
189/**
190 * cap_capget - Retrieve a task's capability sets
191 * @target: The task from which to retrieve the capability sets
192 * @effective: The place to record the effective set
193 * @inheritable: The place to record the inheritable set
194 * @permitted: The place to record the permitted set
195 *
196 * This function retrieves the capabilities of the nominated task and returns
197 * them to the caller.
198 */
199int cap_capget(struct task_struct *target, kernel_cap_t *effective,
200 kernel_cap_t *inheritable, kernel_cap_t *permitted)
201{
202 const struct cred *cred;
203
204 /* Derived from kernel/capability.c:sys_capget. */
205 rcu_read_lock();
206 cred = __task_cred(target);
207 *effective = cred->cap_effective;
208 *inheritable = cred->cap_inheritable;
209 *permitted = cred->cap_permitted;
210 rcu_read_unlock();
211 return 0;
212}
213
214/*
215 * Determine whether the inheritable capabilities are limited to the old
216 * permitted set. Returns 1 if they are limited, 0 if they are not.
217 */
218static inline int cap_inh_is_capped(void)
219{
220 /* they are so limited unless the current task has the CAP_SETPCAP
221 * capability
222 */
223 if (cap_capable(current_cred(), current_cred()->user_ns,
224 CAP_SETPCAP, CAP_OPT_NONE) == 0)
225 return 0;
226 return 1;
227}
228
229/**
230 * cap_capset - Validate and apply proposed changes to current's capabilities
231 * @new: The proposed new credentials; alterations should be made here
232 * @old: The current task's current credentials
233 * @effective: A pointer to the proposed new effective capabilities set
234 * @inheritable: A pointer to the proposed new inheritable capabilities set
235 * @permitted: A pointer to the proposed new permitted capabilities set
236 *
237 * This function validates and applies a proposed mass change to the current
238 * process's capability sets. The changes are made to the proposed new
239 * credentials, and assuming no error, will be committed by the caller of LSM.
240 */
241int cap_capset(struct cred *new,
242 const struct cred *old,
243 const kernel_cap_t *effective,
244 const kernel_cap_t *inheritable,
245 const kernel_cap_t *permitted)
246{
247 if (cap_inh_is_capped() &&
248 !cap_issubset(*inheritable,
249 cap_combine(old->cap_inheritable,
250 old->cap_permitted)))
251 /* incapable of using this inheritable set */
252 return -EPERM;
253
254 if (!cap_issubset(*inheritable,
255 cap_combine(old->cap_inheritable,
256 old->cap_bset)))
257 /* no new pI capabilities outside bounding set */
258 return -EPERM;
259
260 /* verify restrictions on target's new Permitted set */
261 if (!cap_issubset(*permitted, old->cap_permitted))
262 return -EPERM;
263
264 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
265 if (!cap_issubset(*effective, *permitted))
266 return -EPERM;
267
268 new->cap_effective = *effective;
269 new->cap_inheritable = *inheritable;
270 new->cap_permitted = *permitted;
271
272 /*
273 * Mask off ambient bits that are no longer both permitted and
274 * inheritable.
275 */
276 new->cap_ambient = cap_intersect(new->cap_ambient,
277 cap_intersect(*permitted,
278 *inheritable));
279 if (WARN_ON(!cap_ambient_invariant_ok(new)))
280 return -EINVAL;
281 return 0;
282}
283
284/**
285 * cap_inode_need_killpriv - Determine if inode change affects privileges
286 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
287 *
288 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
289 * affects the security markings on that inode, and if it is, should
290 * inode_killpriv() be invoked or the change rejected.
291 *
292 * Returns 1 if security.capability has a value, meaning inode_killpriv()
293 * is required, 0 otherwise, meaning inode_killpriv() is not required.
294 */
295int cap_inode_need_killpriv(struct dentry *dentry)
296{
297 struct inode *inode = d_backing_inode(dentry);
298 int error;
299
300 error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
301 return error > 0;
302}
303
304/**
305 * cap_inode_killpriv - Erase the security markings on an inode
306 * @dentry: The inode/dentry to alter
307 *
308 * Erase the privilege-enhancing security markings on an inode.
309 *
310 * Returns 0 if successful, -ve on error.
311 */
312int cap_inode_killpriv(struct dentry *dentry)
313{
314 int error;
315
316 error = __vfs_removexattr(dentry, XATTR_NAME_CAPS);
317 if (error == -EOPNOTSUPP)
318 error = 0;
319 return error;
320}
321
322static bool rootid_owns_currentns(kuid_t kroot)
323{
324 struct user_namespace *ns;
325
326 if (!uid_valid(kroot))
327 return false;
328
329 for (ns = current_user_ns(); ; ns = ns->parent) {
330 if (from_kuid(ns, kroot) == 0)
331 return true;
332 if (ns == &init_user_ns)
333 break;
334 }
335
336 return false;
337}
338
339static __u32 sansflags(__u32 m)
340{
341 return m & ~VFS_CAP_FLAGS_EFFECTIVE;
342}
343
344static bool is_v2header(size_t size, const struct vfs_cap_data *cap)
345{
346 if (size != XATTR_CAPS_SZ_2)
347 return false;
348 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2;
349}
350
351static bool is_v3header(size_t size, const struct vfs_cap_data *cap)
352{
353 if (size != XATTR_CAPS_SZ_3)
354 return false;
355 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3;
356}
357
358/*
359 * getsecurity: We are called for security.* before any attempt to read the
360 * xattr from the inode itself.
361 *
362 * This gives us a chance to read the on-disk value and convert it. If we
363 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
364 *
365 * Note we are not called by vfs_getxattr_alloc(), but that is only called
366 * by the integrity subsystem, which really wants the unconverted values -
367 * so that's good.
368 */
369int cap_inode_getsecurity(struct inode *inode, const char *name, void **buffer,
370 bool alloc)
371{
372 int size, ret;
373 kuid_t kroot;
374 uid_t root, mappedroot;
375 char *tmpbuf = NULL;
376 struct vfs_cap_data *cap;
377 struct vfs_ns_cap_data *nscap;
378 struct dentry *dentry;
379 struct user_namespace *fs_ns;
380
381 if (strcmp(name, "capability") != 0)
382 return -EOPNOTSUPP;
383
384 dentry = d_find_any_alias(inode);
385 if (!dentry)
386 return -EINVAL;
387
388 size = sizeof(struct vfs_ns_cap_data);
389 ret = (int) vfs_getxattr_alloc(dentry, XATTR_NAME_CAPS,
390 &tmpbuf, size, GFP_NOFS);
391 dput(dentry);
392
393 if (ret < 0)
394 return ret;
395
396 fs_ns = inode->i_sb->s_user_ns;
397 cap = (struct vfs_cap_data *) tmpbuf;
398 if (is_v2header((size_t) ret, cap)) {
399 /* If this is sizeof(vfs_cap_data) then we're ok with the
400 * on-disk value, so return that. */
401 if (alloc)
402 *buffer = tmpbuf;
403 else
404 kfree(tmpbuf);
405 return ret;
406 } else if (!is_v3header((size_t) ret, cap)) {
407 kfree(tmpbuf);
408 return -EINVAL;
409 }
410
411 nscap = (struct vfs_ns_cap_data *) tmpbuf;
412 root = le32_to_cpu(nscap->rootid);
413 kroot = make_kuid(fs_ns, root);
414
415 /* If the root kuid maps to a valid uid in current ns, then return
416 * this as a nscap. */
417 mappedroot = from_kuid(current_user_ns(), kroot);
418 if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
419 if (alloc) {
420 *buffer = tmpbuf;
421 nscap->rootid = cpu_to_le32(mappedroot);
422 } else
423 kfree(tmpbuf);
424 return size;
425 }
426
427 if (!rootid_owns_currentns(kroot)) {
428 kfree(tmpbuf);
429 return -EOPNOTSUPP;
430 }
431
432 /* This comes from a parent namespace. Return as a v2 capability */
433 size = sizeof(struct vfs_cap_data);
434 if (alloc) {
435 *buffer = kmalloc(size, GFP_ATOMIC);
436 if (*buffer) {
437 struct vfs_cap_data *cap = *buffer;
438 __le32 nsmagic, magic;
439 magic = VFS_CAP_REVISION_2;
440 nsmagic = le32_to_cpu(nscap->magic_etc);
441 if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
442 magic |= VFS_CAP_FLAGS_EFFECTIVE;
443 memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
444 cap->magic_etc = cpu_to_le32(magic);
445 } else {
446 size = -ENOMEM;
447 }
448 }
449 kfree(tmpbuf);
450 return size;
451}
452
453static kuid_t rootid_from_xattr(const void *value, size_t size,
454 struct user_namespace *task_ns)
455{
456 const struct vfs_ns_cap_data *nscap = value;
457 uid_t rootid = 0;
458
459 if (size == XATTR_CAPS_SZ_3)
460 rootid = le32_to_cpu(nscap->rootid);
461
462 return make_kuid(task_ns, rootid);
463}
464
465static bool validheader(size_t size, const struct vfs_cap_data *cap)
466{
467 return is_v2header(size, cap) || is_v3header(size, cap);
468}
469
470/*
471 * User requested a write of security.capability. If needed, update the
472 * xattr to change from v2 to v3, or to fixup the v3 rootid.
473 *
474 * If all is ok, we return the new size, on error return < 0.
475 */
476int cap_convert_nscap(struct dentry *dentry, void **ivalue, size_t size)
477{
478 struct vfs_ns_cap_data *nscap;
479 uid_t nsrootid;
480 const struct vfs_cap_data *cap = *ivalue;
481 __u32 magic, nsmagic;
482 struct inode *inode = d_backing_inode(dentry);
483 struct user_namespace *task_ns = current_user_ns(),
484 *fs_ns = inode->i_sb->s_user_ns;
485 kuid_t rootid;
486 size_t newsize;
487
488 if (!*ivalue)
489 return -EINVAL;
490 if (!validheader(size, cap))
491 return -EINVAL;
492 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
493 return -EPERM;
494 if (size == XATTR_CAPS_SZ_2)
495 if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
496 /* user is privileged, just write the v2 */
497 return size;
498
499 rootid = rootid_from_xattr(*ivalue, size, task_ns);
500 if (!uid_valid(rootid))
501 return -EINVAL;
502
503 nsrootid = from_kuid(fs_ns, rootid);
504 if (nsrootid == -1)
505 return -EINVAL;
506
507 newsize = sizeof(struct vfs_ns_cap_data);
508 nscap = kmalloc(newsize, GFP_ATOMIC);
509 if (!nscap)
510 return -ENOMEM;
511 nscap->rootid = cpu_to_le32(nsrootid);
512 nsmagic = VFS_CAP_REVISION_3;
513 magic = le32_to_cpu(cap->magic_etc);
514 if (magic & VFS_CAP_FLAGS_EFFECTIVE)
515 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
516 nscap->magic_etc = cpu_to_le32(nsmagic);
517 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
518
519 kvfree(*ivalue);
520 *ivalue = nscap;
521 return newsize;
522}
523
524/*
525 * Calculate the new process capability sets from the capability sets attached
526 * to a file.
527 */
528static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
529 struct linux_binprm *bprm,
530 bool *effective,
531 bool *has_fcap)
532{
533 struct cred *new = bprm->cred;
534 unsigned i;
535 int ret = 0;
536
537 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
538 *effective = true;
539
540 if (caps->magic_etc & VFS_CAP_REVISION_MASK)
541 *has_fcap = true;
542
543 CAP_FOR_EACH_U32(i) {
544 __u32 permitted = caps->permitted.cap[i];
545 __u32 inheritable = caps->inheritable.cap[i];
546
547 /*
548 * pP' = (X & fP) | (pI & fI)
549 * The addition of pA' is handled later.
550 */
551 new->cap_permitted.cap[i] =
552 (new->cap_bset.cap[i] & permitted) |
553 (new->cap_inheritable.cap[i] & inheritable);
554
555 if (permitted & ~new->cap_permitted.cap[i])
556 /* insufficient to execute correctly */
557 ret = -EPERM;
558 }
559
560 /*
561 * For legacy apps, with no internal support for recognizing they
562 * do not have enough capabilities, we return an error if they are
563 * missing some "forced" (aka file-permitted) capabilities.
564 */
565 return *effective ? ret : 0;
566}
567
568/*
569 * Extract the on-exec-apply capability sets for an executable file.
570 */
571int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
572{
573 struct inode *inode = d_backing_inode(dentry);
574 __u32 magic_etc;
575 unsigned tocopy, i;
576 int size;
577 struct vfs_ns_cap_data data, *nscaps = &data;
578 struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
579 kuid_t rootkuid;
580 struct user_namespace *fs_ns;
581
582 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
583
584 if (!inode)
585 return -ENODATA;
586
587 fs_ns = inode->i_sb->s_user_ns;
588 size = __vfs_getxattr((struct dentry *)dentry, inode,
589 XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
590 if (size == -ENODATA || size == -EOPNOTSUPP)
591 /* no data, that's ok */
592 return -ENODATA;
593
594 if (size < 0)
595 return size;
596
597 if (size < sizeof(magic_etc))
598 return -EINVAL;
599
600 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
601
602 rootkuid = make_kuid(fs_ns, 0);
603 switch (magic_etc & VFS_CAP_REVISION_MASK) {
604 case VFS_CAP_REVISION_1:
605 if (size != XATTR_CAPS_SZ_1)
606 return -EINVAL;
607 tocopy = VFS_CAP_U32_1;
608 break;
609 case VFS_CAP_REVISION_2:
610 if (size != XATTR_CAPS_SZ_2)
611 return -EINVAL;
612 tocopy = VFS_CAP_U32_2;
613 break;
614 case VFS_CAP_REVISION_3:
615 if (size != XATTR_CAPS_SZ_3)
616 return -EINVAL;
617 tocopy = VFS_CAP_U32_3;
618 rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
619 break;
620
621 default:
622 return -EINVAL;
623 }
624 /* Limit the caps to the mounter of the filesystem
625 * or the more limited uid specified in the xattr.
626 */
627 if (!rootid_owns_currentns(rootkuid))
628 return -ENODATA;
629
630 CAP_FOR_EACH_U32(i) {
631 if (i >= tocopy)
632 break;
633 cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted);
634 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable);
635 }
636
637 cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
638 cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
639
640 cpu_caps->rootid = rootkuid;
641
642 return 0;
643}
644
645/*
646 * Attempt to get the on-exec apply capability sets for an executable file from
647 * its xattrs and, if present, apply them to the proposed credentials being
648 * constructed by execve().
649 */
650static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_fcap)
651{
652 int rc = 0;
653 struct cpu_vfs_cap_data vcaps;
654
655 cap_clear(bprm->cred->cap_permitted);
656
657 if (!file_caps_enabled)
658 return 0;
659
660 if (!mnt_may_suid(bprm->file->f_path.mnt))
661 return 0;
662
663 /*
664 * This check is redundant with mnt_may_suid() but is kept to make
665 * explicit that capability bits are limited to s_user_ns and its
666 * descendants.
667 */
668 if (!current_in_userns(bprm->file->f_path.mnt->mnt_sb->s_user_ns))
669 return 0;
670
671 rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
672 if (rc < 0) {
673 if (rc == -EINVAL)
674 printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
675 bprm->filename);
676 else if (rc == -ENODATA)
677 rc = 0;
678 goto out;
679 }
680
681 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
682
683out:
684 if (rc)
685 cap_clear(bprm->cred->cap_permitted);
686
687 return rc;
688}
689
690static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
691
692static inline bool __is_real(kuid_t uid, struct cred *cred)
693{ return uid_eq(cred->uid, uid); }
694
695static inline bool __is_eff(kuid_t uid, struct cred *cred)
696{ return uid_eq(cred->euid, uid); }
697
698static inline bool __is_suid(kuid_t uid, struct cred *cred)
699{ return !__is_real(uid, cred) && __is_eff(uid, cred); }
700
701/*
702 * handle_privileged_root - Handle case of privileged root
703 * @bprm: The execution parameters, including the proposed creds
704 * @has_fcap: Are any file capabilities set?
705 * @effective: Do we have effective root privilege?
706 * @root_uid: This namespace' root UID WRT initial USER namespace
707 *
708 * Handle the case where root is privileged and hasn't been neutered by
709 * SECURE_NOROOT. If file capabilities are set, they won't be combined with
710 * set UID root and nothing is changed. If we are root, cap_permitted is
711 * updated. If we have become set UID root, the effective bit is set.
712 */
713static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
714 bool *effective, kuid_t root_uid)
715{
716 const struct cred *old = current_cred();
717 struct cred *new = bprm->cred;
718
719 if (!root_privileged())
720 return;
721 /*
722 * If the legacy file capability is set, then don't set privs
723 * for a setuid root binary run by a non-root user. Do set it
724 * for a root user just to cause least surprise to an admin.
725 */
726 if (has_fcap && __is_suid(root_uid, new)) {
727 warn_setuid_and_fcaps_mixed(bprm->filename);
728 return;
729 }
730 /*
731 * To support inheritance of root-permissions and suid-root
732 * executables under compatibility mode, we override the
733 * capability sets for the file.
734 */
735 if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
736 /* pP' = (cap_bset & ~0) | (pI & ~0) */
737 new->cap_permitted = cap_combine(old->cap_bset,
738 old->cap_inheritable);
739 }
740 /*
741 * If only the real uid is 0, we do not set the effective bit.
742 */
743 if (__is_eff(root_uid, new))
744 *effective = true;
745}
746
747#define __cap_gained(field, target, source) \
748 !cap_issubset(target->cap_##field, source->cap_##field)
749#define __cap_grew(target, source, cred) \
750 !cap_issubset(cred->cap_##target, cred->cap_##source)
751#define __cap_full(field, cred) \
752 cap_issubset(CAP_FULL_SET, cred->cap_##field)
753
754static inline bool __is_setuid(struct cred *new, const struct cred *old)
755{ return !uid_eq(new->euid, old->uid); }
756
757static inline bool __is_setgid(struct cred *new, const struct cred *old)
758{ return !gid_eq(new->egid, old->gid); }
759
760/*
761 * 1) Audit candidate if current->cap_effective is set
762 *
763 * We do not bother to audit if 3 things are true:
764 * 1) cap_effective has all caps
765 * 2) we became root *OR* are were already root
766 * 3) root is supposed to have all caps (SECURE_NOROOT)
767 * Since this is just a normal root execing a process.
768 *
769 * Number 1 above might fail if you don't have a full bset, but I think
770 * that is interesting information to audit.
771 *
772 * A number of other conditions require logging:
773 * 2) something prevented setuid root getting all caps
774 * 3) non-setuid root gets fcaps
775 * 4) non-setuid root gets ambient
776 */
777static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old,
778 kuid_t root, bool has_fcap)
779{
780 bool ret = false;
781
782 if ((__cap_grew(effective, ambient, new) &&
783 !(__cap_full(effective, new) &&
784 (__is_eff(root, new) || __is_real(root, new)) &&
785 root_privileged())) ||
786 (root_privileged() &&
787 __is_suid(root, new) &&
788 !__cap_full(effective, new)) ||
789 (!__is_setuid(new, old) &&
790 ((has_fcap &&
791 __cap_gained(permitted, new, old)) ||
792 __cap_gained(ambient, new, old))))
793
794 ret = true;
795
796 return ret;
797}
798
799/**
800 * cap_bprm_set_creds - Set up the proposed credentials for execve().
801 * @bprm: The execution parameters, including the proposed creds
802 *
803 * Set up the proposed credentials for a new execution context being
804 * constructed by execve(). The proposed creds in @bprm->cred is altered,
805 * which won't take effect immediately. Returns 0 if successful, -ve on error.
806 */
807int cap_bprm_set_creds(struct linux_binprm *bprm)
808{
809 const struct cred *old = current_cred();
810 struct cred *new = bprm->cred;
811 bool effective = false, has_fcap = false, is_setid;
812 int ret;
813 kuid_t root_uid;
814
815 if (WARN_ON(!cap_ambient_invariant_ok(old)))
816 return -EPERM;
817
818 ret = get_file_caps(bprm, &effective, &has_fcap);
819 if (ret < 0)
820 return ret;
821
822 root_uid = make_kuid(new->user_ns, 0);
823
824 handle_privileged_root(bprm, has_fcap, &effective, root_uid);
825
826 /* if we have fs caps, clear dangerous personality flags */
827 if (__cap_gained(permitted, new, old))
828 bprm->per_clear |= PER_CLEAR_ON_SETID;
829
830 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
831 * credentials unless they have the appropriate permit.
832 *
833 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
834 */
835 is_setid = __is_setuid(new, old) || __is_setgid(new, old);
836
837 if ((is_setid || __cap_gained(permitted, new, old)) &&
838 ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
839 !ptracer_capable(current, new->user_ns))) {
840 /* downgrade; they get no more than they had, and maybe less */
841 if (!ns_capable(new->user_ns, CAP_SETUID) ||
842 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
843 new->euid = new->uid;
844 new->egid = new->gid;
845 }
846 new->cap_permitted = cap_intersect(new->cap_permitted,
847 old->cap_permitted);
848 }
849
850 new->suid = new->fsuid = new->euid;
851 new->sgid = new->fsgid = new->egid;
852
853 /* File caps or setid cancels ambient. */
854 if (has_fcap || is_setid)
855 cap_clear(new->cap_ambient);
856
857 /*
858 * Now that we've computed pA', update pP' to give:
859 * pP' = (X & fP) | (pI & fI) | pA'
860 */
861 new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
862
863 /*
864 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
865 * this is the same as pE' = (fE ? pP' : 0) | pA'.
866 */
867 if (effective)
868 new->cap_effective = new->cap_permitted;
869 else
870 new->cap_effective = new->cap_ambient;
871
872 if (WARN_ON(!cap_ambient_invariant_ok(new)))
873 return -EPERM;
874
875 if (nonroot_raised_pE(new, old, root_uid, has_fcap)) {
876 ret = audit_log_bprm_fcaps(bprm, new, old);
877 if (ret < 0)
878 return ret;
879 }
880
881 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
882
883 if (WARN_ON(!cap_ambient_invariant_ok(new)))
884 return -EPERM;
885
886 /* Check for privilege-elevated exec. */
887 bprm->cap_elevated = 0;
888 if (is_setid ||
889 (!__is_real(root_uid, new) &&
890 (effective ||
891 __cap_grew(permitted, ambient, new))))
892 bprm->cap_elevated = 1;
893
894 return 0;
895}
896
897/**
898 * cap_inode_setxattr - Determine whether an xattr may be altered
899 * @dentry: The inode/dentry being altered
900 * @name: The name of the xattr to be changed
901 * @value: The value that the xattr will be changed to
902 * @size: The size of value
903 * @flags: The replacement flag
904 *
905 * Determine whether an xattr may be altered or set on an inode, returning 0 if
906 * permission is granted, -ve if denied.
907 *
908 * This is used to make sure security xattrs don't get updated or set by those
909 * who aren't privileged to do so.
910 */
911int cap_inode_setxattr(struct dentry *dentry, const char *name,
912 const void *value, size_t size, int flags)
913{
914 struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
915
916 /* Ignore non-security xattrs */
917 if (strncmp(name, XATTR_SECURITY_PREFIX,
918 XATTR_SECURITY_PREFIX_LEN) != 0)
919 return 0;
920
921 /*
922 * For XATTR_NAME_CAPS the check will be done in
923 * cap_convert_nscap(), called by setxattr()
924 */
925 if (strcmp(name, XATTR_NAME_CAPS) == 0)
926 return 0;
927
928 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
929 return -EPERM;
930 return 0;
931}
932
933/**
934 * cap_inode_removexattr - Determine whether an xattr may be removed
935 * @dentry: The inode/dentry being altered
936 * @name: The name of the xattr to be changed
937 *
938 * Determine whether an xattr may be removed from an inode, returning 0 if
939 * permission is granted, -ve if denied.
940 *
941 * This is used to make sure security xattrs don't get removed by those who
942 * aren't privileged to remove them.
943 */
944int cap_inode_removexattr(struct dentry *dentry, const char *name)
945{
946 struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
947
948 /* Ignore non-security xattrs */
949 if (strncmp(name, XATTR_SECURITY_PREFIX,
950 XATTR_SECURITY_PREFIX_LEN) != 0)
951 return 0;
952
953 if (strcmp(name, XATTR_NAME_CAPS) == 0) {
954 /* security.capability gets namespaced */
955 struct inode *inode = d_backing_inode(dentry);
956 if (!inode)
957 return -EINVAL;
958 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
959 return -EPERM;
960 return 0;
961 }
962
963 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
964 return -EPERM;
965 return 0;
966}
967
968/*
969 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
970 * a process after a call to setuid, setreuid, or setresuid.
971 *
972 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
973 * {r,e,s}uid != 0, the permitted and effective capabilities are
974 * cleared.
975 *
976 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
977 * capabilities of the process are cleared.
978 *
979 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
980 * capabilities are set to the permitted capabilities.
981 *
982 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
983 * never happen.
984 *
985 * -astor
986 *
987 * cevans - New behaviour, Oct '99
988 * A process may, via prctl(), elect to keep its capabilities when it
989 * calls setuid() and switches away from uid==0. Both permitted and
990 * effective sets will be retained.
991 * Without this change, it was impossible for a daemon to drop only some
992 * of its privilege. The call to setuid(!=0) would drop all privileges!
993 * Keeping uid 0 is not an option because uid 0 owns too many vital
994 * files..
995 * Thanks to Olaf Kirch and Peter Benie for spotting this.
996 */
997static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
998{
999 kuid_t root_uid = make_kuid(old->user_ns, 0);
1000
1001 if ((uid_eq(old->uid, root_uid) ||
1002 uid_eq(old->euid, root_uid) ||
1003 uid_eq(old->suid, root_uid)) &&
1004 (!uid_eq(new->uid, root_uid) &&
1005 !uid_eq(new->euid, root_uid) &&
1006 !uid_eq(new->suid, root_uid))) {
1007 if (!issecure(SECURE_KEEP_CAPS)) {
1008 cap_clear(new->cap_permitted);
1009 cap_clear(new->cap_effective);
1010 }
1011
1012 /*
1013 * Pre-ambient programs expect setresuid to nonroot followed
1014 * by exec to drop capabilities. We should make sure that
1015 * this remains the case.
1016 */
1017 cap_clear(new->cap_ambient);
1018 }
1019 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
1020 cap_clear(new->cap_effective);
1021 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
1022 new->cap_effective = new->cap_permitted;
1023}
1024
1025/**
1026 * cap_task_fix_setuid - Fix up the results of setuid() call
1027 * @new: The proposed credentials
1028 * @old: The current task's current credentials
1029 * @flags: Indications of what has changed
1030 *
1031 * Fix up the results of setuid() call before the credential changes are
1032 * actually applied, returning 0 to grant the changes, -ve to deny them.
1033 */
1034int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
1035{
1036 switch (flags) {
1037 case LSM_SETID_RE:
1038 case LSM_SETID_ID:
1039 case LSM_SETID_RES:
1040 /* juggle the capabilities to follow [RES]UID changes unless
1041 * otherwise suppressed */
1042 if (!issecure(SECURE_NO_SETUID_FIXUP))
1043 cap_emulate_setxuid(new, old);
1044 break;
1045
1046 case LSM_SETID_FS:
1047 /* juggle the capabilties to follow FSUID changes, unless
1048 * otherwise suppressed
1049 *
1050 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
1051 * if not, we might be a bit too harsh here.
1052 */
1053 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
1054 kuid_t root_uid = make_kuid(old->user_ns, 0);
1055 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
1056 new->cap_effective =
1057 cap_drop_fs_set(new->cap_effective);
1058
1059 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
1060 new->cap_effective =
1061 cap_raise_fs_set(new->cap_effective,
1062 new->cap_permitted);
1063 }
1064 break;
1065
1066 default:
1067 return -EINVAL;
1068 }
1069
1070 return 0;
1071}
1072
1073/*
1074 * Rationale: code calling task_setscheduler, task_setioprio, and
1075 * task_setnice, assumes that
1076 * . if capable(cap_sys_nice), then those actions should be allowed
1077 * . if not capable(cap_sys_nice), but acting on your own processes,
1078 * then those actions should be allowed
1079 * This is insufficient now since you can call code without suid, but
1080 * yet with increased caps.
1081 * So we check for increased caps on the target process.
1082 */
1083static int cap_safe_nice(struct task_struct *p)
1084{
1085 int is_subset, ret = 0;
1086
1087 rcu_read_lock();
1088 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
1089 current_cred()->cap_permitted);
1090 if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1091 ret = -EPERM;
1092 rcu_read_unlock();
1093
1094 return ret;
1095}
1096
1097/**
1098 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
1099 * @p: The task to affect
1100 *
1101 * Detemine if the requested scheduler policy change is permitted for the
1102 * specified task, returning 0 if permission is granted, -ve if denied.
1103 */
1104int cap_task_setscheduler(struct task_struct *p)
1105{
1106 return cap_safe_nice(p);
1107}
1108
1109/**
1110 * cap_task_ioprio - Detemine if I/O priority change is permitted
1111 * @p: The task to affect
1112 * @ioprio: The I/O priority to set
1113 *
1114 * Detemine if the requested I/O priority change is permitted for the specified
1115 * task, returning 0 if permission is granted, -ve if denied.
1116 */
1117int cap_task_setioprio(struct task_struct *p, int ioprio)
1118{
1119 return cap_safe_nice(p);
1120}
1121
1122/**
1123 * cap_task_ioprio - Detemine if task priority change is permitted
1124 * @p: The task to affect
1125 * @nice: The nice value to set
1126 *
1127 * Detemine if the requested task priority change is permitted for the
1128 * specified task, returning 0 if permission is granted, -ve if denied.
1129 */
1130int cap_task_setnice(struct task_struct *p, int nice)
1131{
1132 return cap_safe_nice(p);
1133}
1134
1135/*
1136 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
1137 * the current task's bounding set. Returns 0 on success, -ve on error.
1138 */
1139static int cap_prctl_drop(unsigned long cap)
1140{
1141 struct cred *new;
1142
1143 if (!ns_capable(current_user_ns(), CAP_SETPCAP))
1144 return -EPERM;
1145 if (!cap_valid(cap))
1146 return -EINVAL;
1147
1148 new = prepare_creds();
1149 if (!new)
1150 return -ENOMEM;
1151 cap_lower(new->cap_bset, cap);
1152 return commit_creds(new);
1153}
1154
1155/**
1156 * cap_task_prctl - Implement process control functions for this security module
1157 * @option: The process control function requested
1158 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
1159 *
1160 * Allow process control functions (sys_prctl()) to alter capabilities; may
1161 * also deny access to other functions not otherwise implemented here.
1162 *
1163 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
1164 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
1165 * modules will consider performing the function.
1166 */
1167int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1168 unsigned long arg4, unsigned long arg5)
1169{
1170 const struct cred *old = current_cred();
1171 struct cred *new;
1172
1173 switch (option) {
1174 case PR_CAPBSET_READ:
1175 if (!cap_valid(arg2))
1176 return -EINVAL;
1177 return !!cap_raised(old->cap_bset, arg2);
1178
1179 case PR_CAPBSET_DROP:
1180 return cap_prctl_drop(arg2);
1181
1182 /*
1183 * The next four prctl's remain to assist with transitioning a
1184 * system from legacy UID=0 based privilege (when filesystem
1185 * capabilities are not in use) to a system using filesystem
1186 * capabilities only - as the POSIX.1e draft intended.
1187 *
1188 * Note:
1189 *
1190 * PR_SET_SECUREBITS =
1191 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
1192 * | issecure_mask(SECURE_NOROOT)
1193 * | issecure_mask(SECURE_NOROOT_LOCKED)
1194 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
1195 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
1196 *
1197 * will ensure that the current process and all of its
1198 * children will be locked into a pure
1199 * capability-based-privilege environment.
1200 */
1201 case PR_SET_SECUREBITS:
1202 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
1203 & (old->securebits ^ arg2)) /*[1]*/
1204 || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
1205 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
1206 || (cap_capable(current_cred(),
1207 current_cred()->user_ns,
1208 CAP_SETPCAP,
1209 CAP_OPT_NONE) != 0) /*[4]*/
1210 /*
1211 * [1] no changing of bits that are locked
1212 * [2] no unlocking of locks
1213 * [3] no setting of unsupported bits
1214 * [4] doing anything requires privilege (go read about
1215 * the "sendmail capabilities bug")
1216 */
1217 )
1218 /* cannot change a locked bit */
1219 return -EPERM;
1220
1221 new = prepare_creds();
1222 if (!new)
1223 return -ENOMEM;
1224 new->securebits = arg2;
1225 return commit_creds(new);
1226
1227 case PR_GET_SECUREBITS:
1228 return old->securebits;
1229
1230 case PR_GET_KEEPCAPS:
1231 return !!issecure(SECURE_KEEP_CAPS);
1232
1233 case PR_SET_KEEPCAPS:
1234 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
1235 return -EINVAL;
1236 if (issecure(SECURE_KEEP_CAPS_LOCKED))
1237 return -EPERM;
1238
1239 new = prepare_creds();
1240 if (!new)
1241 return -ENOMEM;
1242 if (arg2)
1243 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
1244 else
1245 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
1246 return commit_creds(new);
1247
1248 case PR_CAP_AMBIENT:
1249 if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
1250 if (arg3 | arg4 | arg5)
1251 return -EINVAL;
1252
1253 new = prepare_creds();
1254 if (!new)
1255 return -ENOMEM;
1256 cap_clear(new->cap_ambient);
1257 return commit_creds(new);
1258 }
1259
1260 if (((!cap_valid(arg3)) | arg4 | arg5))
1261 return -EINVAL;
1262
1263 if (arg2 == PR_CAP_AMBIENT_IS_SET) {
1264 return !!cap_raised(current_cred()->cap_ambient, arg3);
1265 } else if (arg2 != PR_CAP_AMBIENT_RAISE &&
1266 arg2 != PR_CAP_AMBIENT_LOWER) {
1267 return -EINVAL;
1268 } else {
1269 if (arg2 == PR_CAP_AMBIENT_RAISE &&
1270 (!cap_raised(current_cred()->cap_permitted, arg3) ||
1271 !cap_raised(current_cred()->cap_inheritable,
1272 arg3) ||
1273 issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
1274 return -EPERM;
1275
1276 new = prepare_creds();
1277 if (!new)
1278 return -ENOMEM;
1279 if (arg2 == PR_CAP_AMBIENT_RAISE)
1280 cap_raise(new->cap_ambient, arg3);
1281 else
1282 cap_lower(new->cap_ambient, arg3);
1283 return commit_creds(new);
1284 }
1285
1286 default:
1287 /* No functionality available - continue with default */
1288 return -ENOSYS;
1289 }
1290}
1291
1292/**
1293 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1294 * @mm: The VM space in which the new mapping is to be made
1295 * @pages: The size of the mapping
1296 *
1297 * Determine whether the allocation of a new virtual mapping by the current
1298 * task is permitted, returning 1 if permission is granted, 0 if not.
1299 */
1300int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1301{
1302 int cap_sys_admin = 0;
1303
1304 if (cap_capable(current_cred(), &init_user_ns,
1305 CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) == 0)
1306 cap_sys_admin = 1;
1307
1308 return cap_sys_admin;
1309}
1310
1311/*
1312 * cap_mmap_addr - check if able to map given addr
1313 * @addr: address attempting to be mapped
1314 *
1315 * If the process is attempting to map memory below dac_mmap_min_addr they need
1316 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
1317 * capability security module. Returns 0 if this mapping should be allowed
1318 * -EPERM if not.
1319 */
1320int cap_mmap_addr(unsigned long addr)
1321{
1322 int ret = 0;
1323
1324 if (addr < dac_mmap_min_addr) {
1325 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
1326 CAP_OPT_NONE);
1327 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
1328 if (ret == 0)
1329 current->flags |= PF_SUPERPRIV;
1330 }
1331 return ret;
1332}
1333
1334int cap_mmap_file(struct file *file, unsigned long reqprot,
1335 unsigned long prot, unsigned long flags)
1336{
1337 return 0;
1338}
1339
1340#ifdef CONFIG_SECURITY
1341
1342static struct security_hook_list capability_hooks[] __lsm_ro_after_init = {
1343 LSM_HOOK_INIT(capable, cap_capable),
1344 LSM_HOOK_INIT(settime, cap_settime),
1345 LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1346 LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1347 LSM_HOOK_INIT(capget, cap_capget),
1348 LSM_HOOK_INIT(capset, cap_capset),
1349 LSM_HOOK_INIT(bprm_set_creds, cap_bprm_set_creds),
1350 LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1351 LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
1352 LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
1353 LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1354 LSM_HOOK_INIT(mmap_file, cap_mmap_file),
1355 LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1356 LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1357 LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1358 LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1359 LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1360 LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1361};
1362
1363static int __init capability_init(void)
1364{
1365 security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
1366 "capability");
1367 return 0;
1368}
1369
1370DEFINE_LSM(capability) = {
1371 .name = "capability",
1372 .order = LSM_ORDER_FIRST,
1373 .init = capability_init,
1374};
1375
1376#endif /* CONFIG_SECURITY */
1/* Common capabilities, needed by capability.o.
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
7 *
8 */
9
10#include <linux/capability.h>
11#include <linux/audit.h>
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/kernel.h>
15#include <linux/security.h>
16#include <linux/file.h>
17#include <linux/mm.h>
18#include <linux/mman.h>
19#include <linux/pagemap.h>
20#include <linux/swap.h>
21#include <linux/skbuff.h>
22#include <linux/netlink.h>
23#include <linux/ptrace.h>
24#include <linux/xattr.h>
25#include <linux/hugetlb.h>
26#include <linux/mount.h>
27#include <linux/sched.h>
28#include <linux/prctl.h>
29#include <linux/securebits.h>
30#include <linux/user_namespace.h>
31#include <linux/binfmts.h>
32#include <linux/personality.h>
33
34/*
35 * If a non-root user executes a setuid-root binary in
36 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
37 * However if fE is also set, then the intent is for only
38 * the file capabilities to be applied, and the setuid-root
39 * bit is left on either to change the uid (plausible) or
40 * to get full privilege on a kernel without file capabilities
41 * support. So in that case we do not raise capabilities.
42 *
43 * Warn if that happens, once per boot.
44 */
45static void warn_setuid_and_fcaps_mixed(const char *fname)
46{
47 static int warned;
48 if (!warned) {
49 printk(KERN_INFO "warning: `%s' has both setuid-root and"
50 " effective capabilities. Therefore not raising all"
51 " capabilities.\n", fname);
52 warned = 1;
53 }
54}
55
56int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
57{
58 return 0;
59}
60
61/**
62 * cap_capable - Determine whether a task has a particular effective capability
63 * @cred: The credentials to use
64 * @ns: The user namespace in which we need the capability
65 * @cap: The capability to check for
66 * @audit: Whether to write an audit message or not
67 *
68 * Determine whether the nominated task has the specified capability amongst
69 * its effective set, returning 0 if it does, -ve if it does not.
70 *
71 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
72 * and has_capability() functions. That is, it has the reverse semantics:
73 * cap_has_capability() returns 0 when a task has a capability, but the
74 * kernel's capable() and has_capability() returns 1 for this case.
75 */
76int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
77 int cap, int audit)
78{
79 for (;;) {
80 /* The owner of the user namespace has all caps. */
81 if (targ_ns != &init_user_ns && uid_eq(targ_ns->owner, cred->euid))
82 return 0;
83
84 /* Do we have the necessary capabilities? */
85 if (targ_ns == cred->user_ns)
86 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
87
88 /* Have we tried all of the parent namespaces? */
89 if (targ_ns == &init_user_ns)
90 return -EPERM;
91
92 /*
93 *If you have a capability in a parent user ns, then you have
94 * it over all children user namespaces as well.
95 */
96 targ_ns = targ_ns->parent;
97 }
98
99 /* We never get here */
100}
101
102/**
103 * cap_settime - Determine whether the current process may set the system clock
104 * @ts: The time to set
105 * @tz: The timezone to set
106 *
107 * Determine whether the current process may set the system clock and timezone
108 * information, returning 0 if permission granted, -ve if denied.
109 */
110int cap_settime(const struct timespec *ts, const struct timezone *tz)
111{
112 if (!capable(CAP_SYS_TIME))
113 return -EPERM;
114 return 0;
115}
116
117/**
118 * cap_ptrace_access_check - Determine whether the current process may access
119 * another
120 * @child: The process to be accessed
121 * @mode: The mode of attachment.
122 *
123 * If we are in the same or an ancestor user_ns and have all the target
124 * task's capabilities, then ptrace access is allowed.
125 * If we have the ptrace capability to the target user_ns, then ptrace
126 * access is allowed.
127 * Else denied.
128 *
129 * Determine whether a process may access another, returning 0 if permission
130 * granted, -ve if denied.
131 */
132int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
133{
134 int ret = 0;
135 const struct cred *cred, *child_cred;
136
137 rcu_read_lock();
138 cred = current_cred();
139 child_cred = __task_cred(child);
140 if (cred->user_ns == child_cred->user_ns &&
141 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
142 goto out;
143 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
144 goto out;
145 ret = -EPERM;
146out:
147 rcu_read_unlock();
148 return ret;
149}
150
151/**
152 * cap_ptrace_traceme - Determine whether another process may trace the current
153 * @parent: The task proposed to be the tracer
154 *
155 * If parent is in the same or an ancestor user_ns and has all current's
156 * capabilities, then ptrace access is allowed.
157 * If parent has the ptrace capability to current's user_ns, then ptrace
158 * access is allowed.
159 * Else denied.
160 *
161 * Determine whether the nominated task is permitted to trace the current
162 * process, returning 0 if permission is granted, -ve if denied.
163 */
164int cap_ptrace_traceme(struct task_struct *parent)
165{
166 int ret = 0;
167 const struct cred *cred, *child_cred;
168
169 rcu_read_lock();
170 cred = __task_cred(parent);
171 child_cred = current_cred();
172 if (cred->user_ns == child_cred->user_ns &&
173 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
174 goto out;
175 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
176 goto out;
177 ret = -EPERM;
178out:
179 rcu_read_unlock();
180 return ret;
181}
182
183/**
184 * cap_capget - Retrieve a task's capability sets
185 * @target: The task from which to retrieve the capability sets
186 * @effective: The place to record the effective set
187 * @inheritable: The place to record the inheritable set
188 * @permitted: The place to record the permitted set
189 *
190 * This function retrieves the capabilities of the nominated task and returns
191 * them to the caller.
192 */
193int cap_capget(struct task_struct *target, kernel_cap_t *effective,
194 kernel_cap_t *inheritable, kernel_cap_t *permitted)
195{
196 const struct cred *cred;
197
198 /* Derived from kernel/capability.c:sys_capget. */
199 rcu_read_lock();
200 cred = __task_cred(target);
201 *effective = cred->cap_effective;
202 *inheritable = cred->cap_inheritable;
203 *permitted = cred->cap_permitted;
204 rcu_read_unlock();
205 return 0;
206}
207
208/*
209 * Determine whether the inheritable capabilities are limited to the old
210 * permitted set. Returns 1 if they are limited, 0 if they are not.
211 */
212static inline int cap_inh_is_capped(void)
213{
214
215 /* they are so limited unless the current task has the CAP_SETPCAP
216 * capability
217 */
218 if (cap_capable(current_cred(), current_cred()->user_ns,
219 CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
220 return 0;
221 return 1;
222}
223
224/**
225 * cap_capset - Validate and apply proposed changes to current's capabilities
226 * @new: The proposed new credentials; alterations should be made here
227 * @old: The current task's current credentials
228 * @effective: A pointer to the proposed new effective capabilities set
229 * @inheritable: A pointer to the proposed new inheritable capabilities set
230 * @permitted: A pointer to the proposed new permitted capabilities set
231 *
232 * This function validates and applies a proposed mass change to the current
233 * process's capability sets. The changes are made to the proposed new
234 * credentials, and assuming no error, will be committed by the caller of LSM.
235 */
236int cap_capset(struct cred *new,
237 const struct cred *old,
238 const kernel_cap_t *effective,
239 const kernel_cap_t *inheritable,
240 const kernel_cap_t *permitted)
241{
242 if (cap_inh_is_capped() &&
243 !cap_issubset(*inheritable,
244 cap_combine(old->cap_inheritable,
245 old->cap_permitted)))
246 /* incapable of using this inheritable set */
247 return -EPERM;
248
249 if (!cap_issubset(*inheritable,
250 cap_combine(old->cap_inheritable,
251 old->cap_bset)))
252 /* no new pI capabilities outside bounding set */
253 return -EPERM;
254
255 /* verify restrictions on target's new Permitted set */
256 if (!cap_issubset(*permitted, old->cap_permitted))
257 return -EPERM;
258
259 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
260 if (!cap_issubset(*effective, *permitted))
261 return -EPERM;
262
263 new->cap_effective = *effective;
264 new->cap_inheritable = *inheritable;
265 new->cap_permitted = *permitted;
266 return 0;
267}
268
269/*
270 * Clear proposed capability sets for execve().
271 */
272static inline void bprm_clear_caps(struct linux_binprm *bprm)
273{
274 cap_clear(bprm->cred->cap_permitted);
275 bprm->cap_effective = false;
276}
277
278/**
279 * cap_inode_need_killpriv - Determine if inode change affects privileges
280 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
281 *
282 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
283 * affects the security markings on that inode, and if it is, should
284 * inode_killpriv() be invoked or the change rejected?
285 *
286 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
287 * -ve to deny the change.
288 */
289int cap_inode_need_killpriv(struct dentry *dentry)
290{
291 struct inode *inode = dentry->d_inode;
292 int error;
293
294 if (!inode->i_op->getxattr)
295 return 0;
296
297 error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
298 if (error <= 0)
299 return 0;
300 return 1;
301}
302
303/**
304 * cap_inode_killpriv - Erase the security markings on an inode
305 * @dentry: The inode/dentry to alter
306 *
307 * Erase the privilege-enhancing security markings on an inode.
308 *
309 * Returns 0 if successful, -ve on error.
310 */
311int cap_inode_killpriv(struct dentry *dentry)
312{
313 struct inode *inode = dentry->d_inode;
314
315 if (!inode->i_op->removexattr)
316 return 0;
317
318 return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
319}
320
321/*
322 * Calculate the new process capability sets from the capability sets attached
323 * to a file.
324 */
325static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
326 struct linux_binprm *bprm,
327 bool *effective,
328 bool *has_cap)
329{
330 struct cred *new = bprm->cred;
331 unsigned i;
332 int ret = 0;
333
334 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
335 *effective = true;
336
337 if (caps->magic_etc & VFS_CAP_REVISION_MASK)
338 *has_cap = true;
339
340 CAP_FOR_EACH_U32(i) {
341 __u32 permitted = caps->permitted.cap[i];
342 __u32 inheritable = caps->inheritable.cap[i];
343
344 /*
345 * pP' = (X & fP) | (pI & fI)
346 */
347 new->cap_permitted.cap[i] =
348 (new->cap_bset.cap[i] & permitted) |
349 (new->cap_inheritable.cap[i] & inheritable);
350
351 if (permitted & ~new->cap_permitted.cap[i])
352 /* insufficient to execute correctly */
353 ret = -EPERM;
354 }
355
356 /*
357 * For legacy apps, with no internal support for recognizing they
358 * do not have enough capabilities, we return an error if they are
359 * missing some "forced" (aka file-permitted) capabilities.
360 */
361 return *effective ? ret : 0;
362}
363
364/*
365 * Extract the on-exec-apply capability sets for an executable file.
366 */
367int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
368{
369 struct inode *inode = dentry->d_inode;
370 __u32 magic_etc;
371 unsigned tocopy, i;
372 int size;
373 struct vfs_cap_data caps;
374
375 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
376
377 if (!inode || !inode->i_op->getxattr)
378 return -ENODATA;
379
380 size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
381 XATTR_CAPS_SZ);
382 if (size == -ENODATA || size == -EOPNOTSUPP)
383 /* no data, that's ok */
384 return -ENODATA;
385 if (size < 0)
386 return size;
387
388 if (size < sizeof(magic_etc))
389 return -EINVAL;
390
391 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
392
393 switch (magic_etc & VFS_CAP_REVISION_MASK) {
394 case VFS_CAP_REVISION_1:
395 if (size != XATTR_CAPS_SZ_1)
396 return -EINVAL;
397 tocopy = VFS_CAP_U32_1;
398 break;
399 case VFS_CAP_REVISION_2:
400 if (size != XATTR_CAPS_SZ_2)
401 return -EINVAL;
402 tocopy = VFS_CAP_U32_2;
403 break;
404 default:
405 return -EINVAL;
406 }
407
408 CAP_FOR_EACH_U32(i) {
409 if (i >= tocopy)
410 break;
411 cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
412 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
413 }
414
415 return 0;
416}
417
418/*
419 * Attempt to get the on-exec apply capability sets for an executable file from
420 * its xattrs and, if present, apply them to the proposed credentials being
421 * constructed by execve().
422 */
423static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_cap)
424{
425 struct dentry *dentry;
426 int rc = 0;
427 struct cpu_vfs_cap_data vcaps;
428
429 bprm_clear_caps(bprm);
430
431 if (!file_caps_enabled)
432 return 0;
433
434 if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
435 return 0;
436
437 dentry = dget(bprm->file->f_dentry);
438
439 rc = get_vfs_caps_from_disk(dentry, &vcaps);
440 if (rc < 0) {
441 if (rc == -EINVAL)
442 printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
443 __func__, rc, bprm->filename);
444 else if (rc == -ENODATA)
445 rc = 0;
446 goto out;
447 }
448
449 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_cap);
450 if (rc == -EINVAL)
451 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
452 __func__, rc, bprm->filename);
453
454out:
455 dput(dentry);
456 if (rc)
457 bprm_clear_caps(bprm);
458
459 return rc;
460}
461
462/**
463 * cap_bprm_set_creds - Set up the proposed credentials for execve().
464 * @bprm: The execution parameters, including the proposed creds
465 *
466 * Set up the proposed credentials for a new execution context being
467 * constructed by execve(). The proposed creds in @bprm->cred is altered,
468 * which won't take effect immediately. Returns 0 if successful, -ve on error.
469 */
470int cap_bprm_set_creds(struct linux_binprm *bprm)
471{
472 const struct cred *old = current_cred();
473 struct cred *new = bprm->cred;
474 bool effective, has_cap = false;
475 int ret;
476 kuid_t root_uid;
477
478 effective = false;
479 ret = get_file_caps(bprm, &effective, &has_cap);
480 if (ret < 0)
481 return ret;
482
483 root_uid = make_kuid(new->user_ns, 0);
484
485 if (!issecure(SECURE_NOROOT)) {
486 /*
487 * If the legacy file capability is set, then don't set privs
488 * for a setuid root binary run by a non-root user. Do set it
489 * for a root user just to cause least surprise to an admin.
490 */
491 if (has_cap && !uid_eq(new->uid, root_uid) && uid_eq(new->euid, root_uid)) {
492 warn_setuid_and_fcaps_mixed(bprm->filename);
493 goto skip;
494 }
495 /*
496 * To support inheritance of root-permissions and suid-root
497 * executables under compatibility mode, we override the
498 * capability sets for the file.
499 *
500 * If only the real uid is 0, we do not set the effective bit.
501 */
502 if (uid_eq(new->euid, root_uid) || uid_eq(new->uid, root_uid)) {
503 /* pP' = (cap_bset & ~0) | (pI & ~0) */
504 new->cap_permitted = cap_combine(old->cap_bset,
505 old->cap_inheritable);
506 }
507 if (uid_eq(new->euid, root_uid))
508 effective = true;
509 }
510skip:
511
512 /* if we have fs caps, clear dangerous personality flags */
513 if (!cap_issubset(new->cap_permitted, old->cap_permitted))
514 bprm->per_clear |= PER_CLEAR_ON_SETID;
515
516
517 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
518 * credentials unless they have the appropriate permit.
519 *
520 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
521 */
522 if ((!uid_eq(new->euid, old->uid) ||
523 !gid_eq(new->egid, old->gid) ||
524 !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
525 bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
526 /* downgrade; they get no more than they had, and maybe less */
527 if (!capable(CAP_SETUID) ||
528 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
529 new->euid = new->uid;
530 new->egid = new->gid;
531 }
532 new->cap_permitted = cap_intersect(new->cap_permitted,
533 old->cap_permitted);
534 }
535
536 new->suid = new->fsuid = new->euid;
537 new->sgid = new->fsgid = new->egid;
538
539 if (effective)
540 new->cap_effective = new->cap_permitted;
541 else
542 cap_clear(new->cap_effective);
543 bprm->cap_effective = effective;
544
545 /*
546 * Audit candidate if current->cap_effective is set
547 *
548 * We do not bother to audit if 3 things are true:
549 * 1) cap_effective has all caps
550 * 2) we are root
551 * 3) root is supposed to have all caps (SECURE_NOROOT)
552 * Since this is just a normal root execing a process.
553 *
554 * Number 1 above might fail if you don't have a full bset, but I think
555 * that is interesting information to audit.
556 */
557 if (!cap_isclear(new->cap_effective)) {
558 if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
559 !uid_eq(new->euid, root_uid) || !uid_eq(new->uid, root_uid) ||
560 issecure(SECURE_NOROOT)) {
561 ret = audit_log_bprm_fcaps(bprm, new, old);
562 if (ret < 0)
563 return ret;
564 }
565 }
566
567 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
568 return 0;
569}
570
571/**
572 * cap_bprm_secureexec - Determine whether a secure execution is required
573 * @bprm: The execution parameters
574 *
575 * Determine whether a secure execution is required, return 1 if it is, and 0
576 * if it is not.
577 *
578 * The credentials have been committed by this point, and so are no longer
579 * available through @bprm->cred.
580 */
581int cap_bprm_secureexec(struct linux_binprm *bprm)
582{
583 const struct cred *cred = current_cred();
584 kuid_t root_uid = make_kuid(cred->user_ns, 0);
585
586 if (!uid_eq(cred->uid, root_uid)) {
587 if (bprm->cap_effective)
588 return 1;
589 if (!cap_isclear(cred->cap_permitted))
590 return 1;
591 }
592
593 return (!uid_eq(cred->euid, cred->uid) ||
594 !gid_eq(cred->egid, cred->gid));
595}
596
597/**
598 * cap_inode_setxattr - Determine whether an xattr may be altered
599 * @dentry: The inode/dentry being altered
600 * @name: The name of the xattr to be changed
601 * @value: The value that the xattr will be changed to
602 * @size: The size of value
603 * @flags: The replacement flag
604 *
605 * Determine whether an xattr may be altered or set on an inode, returning 0 if
606 * permission is granted, -ve if denied.
607 *
608 * This is used to make sure security xattrs don't get updated or set by those
609 * who aren't privileged to do so.
610 */
611int cap_inode_setxattr(struct dentry *dentry, const char *name,
612 const void *value, size_t size, int flags)
613{
614 if (!strcmp(name, XATTR_NAME_CAPS)) {
615 if (!capable(CAP_SETFCAP))
616 return -EPERM;
617 return 0;
618 }
619
620 if (!strncmp(name, XATTR_SECURITY_PREFIX,
621 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
622 !capable(CAP_SYS_ADMIN))
623 return -EPERM;
624 return 0;
625}
626
627/**
628 * cap_inode_removexattr - Determine whether an xattr may be removed
629 * @dentry: The inode/dentry being altered
630 * @name: The name of the xattr to be changed
631 *
632 * Determine whether an xattr may be removed from an inode, returning 0 if
633 * permission is granted, -ve if denied.
634 *
635 * This is used to make sure security xattrs don't get removed by those who
636 * aren't privileged to remove them.
637 */
638int cap_inode_removexattr(struct dentry *dentry, const char *name)
639{
640 if (!strcmp(name, XATTR_NAME_CAPS)) {
641 if (!capable(CAP_SETFCAP))
642 return -EPERM;
643 return 0;
644 }
645
646 if (!strncmp(name, XATTR_SECURITY_PREFIX,
647 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
648 !capable(CAP_SYS_ADMIN))
649 return -EPERM;
650 return 0;
651}
652
653/*
654 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
655 * a process after a call to setuid, setreuid, or setresuid.
656 *
657 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
658 * {r,e,s}uid != 0, the permitted and effective capabilities are
659 * cleared.
660 *
661 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
662 * capabilities of the process are cleared.
663 *
664 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
665 * capabilities are set to the permitted capabilities.
666 *
667 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
668 * never happen.
669 *
670 * -astor
671 *
672 * cevans - New behaviour, Oct '99
673 * A process may, via prctl(), elect to keep its capabilities when it
674 * calls setuid() and switches away from uid==0. Both permitted and
675 * effective sets will be retained.
676 * Without this change, it was impossible for a daemon to drop only some
677 * of its privilege. The call to setuid(!=0) would drop all privileges!
678 * Keeping uid 0 is not an option because uid 0 owns too many vital
679 * files..
680 * Thanks to Olaf Kirch and Peter Benie for spotting this.
681 */
682static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
683{
684 kuid_t root_uid = make_kuid(old->user_ns, 0);
685
686 if ((uid_eq(old->uid, root_uid) ||
687 uid_eq(old->euid, root_uid) ||
688 uid_eq(old->suid, root_uid)) &&
689 (!uid_eq(new->uid, root_uid) &&
690 !uid_eq(new->euid, root_uid) &&
691 !uid_eq(new->suid, root_uid)) &&
692 !issecure(SECURE_KEEP_CAPS)) {
693 cap_clear(new->cap_permitted);
694 cap_clear(new->cap_effective);
695 }
696 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
697 cap_clear(new->cap_effective);
698 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
699 new->cap_effective = new->cap_permitted;
700}
701
702/**
703 * cap_task_fix_setuid - Fix up the results of setuid() call
704 * @new: The proposed credentials
705 * @old: The current task's current credentials
706 * @flags: Indications of what has changed
707 *
708 * Fix up the results of setuid() call before the credential changes are
709 * actually applied, returning 0 to grant the changes, -ve to deny them.
710 */
711int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
712{
713 switch (flags) {
714 case LSM_SETID_RE:
715 case LSM_SETID_ID:
716 case LSM_SETID_RES:
717 /* juggle the capabilities to follow [RES]UID changes unless
718 * otherwise suppressed */
719 if (!issecure(SECURE_NO_SETUID_FIXUP))
720 cap_emulate_setxuid(new, old);
721 break;
722
723 case LSM_SETID_FS:
724 /* juggle the capabilties to follow FSUID changes, unless
725 * otherwise suppressed
726 *
727 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
728 * if not, we might be a bit too harsh here.
729 */
730 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
731 kuid_t root_uid = make_kuid(old->user_ns, 0);
732 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
733 new->cap_effective =
734 cap_drop_fs_set(new->cap_effective);
735
736 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
737 new->cap_effective =
738 cap_raise_fs_set(new->cap_effective,
739 new->cap_permitted);
740 }
741 break;
742
743 default:
744 return -EINVAL;
745 }
746
747 return 0;
748}
749
750/*
751 * Rationale: code calling task_setscheduler, task_setioprio, and
752 * task_setnice, assumes that
753 * . if capable(cap_sys_nice), then those actions should be allowed
754 * . if not capable(cap_sys_nice), but acting on your own processes,
755 * then those actions should be allowed
756 * This is insufficient now since you can call code without suid, but
757 * yet with increased caps.
758 * So we check for increased caps on the target process.
759 */
760static int cap_safe_nice(struct task_struct *p)
761{
762 int is_subset;
763
764 rcu_read_lock();
765 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
766 current_cred()->cap_permitted);
767 rcu_read_unlock();
768
769 if (!is_subset && !capable(CAP_SYS_NICE))
770 return -EPERM;
771 return 0;
772}
773
774/**
775 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
776 * @p: The task to affect
777 *
778 * Detemine if the requested scheduler policy change is permitted for the
779 * specified task, returning 0 if permission is granted, -ve if denied.
780 */
781int cap_task_setscheduler(struct task_struct *p)
782{
783 return cap_safe_nice(p);
784}
785
786/**
787 * cap_task_ioprio - Detemine if I/O priority change is permitted
788 * @p: The task to affect
789 * @ioprio: The I/O priority to set
790 *
791 * Detemine if the requested I/O priority change is permitted for the specified
792 * task, returning 0 if permission is granted, -ve if denied.
793 */
794int cap_task_setioprio(struct task_struct *p, int ioprio)
795{
796 return cap_safe_nice(p);
797}
798
799/**
800 * cap_task_ioprio - Detemine if task priority change is permitted
801 * @p: The task to affect
802 * @nice: The nice value to set
803 *
804 * Detemine if the requested task priority change is permitted for the
805 * specified task, returning 0 if permission is granted, -ve if denied.
806 */
807int cap_task_setnice(struct task_struct *p, int nice)
808{
809 return cap_safe_nice(p);
810}
811
812/*
813 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
814 * the current task's bounding set. Returns 0 on success, -ve on error.
815 */
816static long cap_prctl_drop(struct cred *new, unsigned long cap)
817{
818 if (!capable(CAP_SETPCAP))
819 return -EPERM;
820 if (!cap_valid(cap))
821 return -EINVAL;
822
823 cap_lower(new->cap_bset, cap);
824 return 0;
825}
826
827/**
828 * cap_task_prctl - Implement process control functions for this security module
829 * @option: The process control function requested
830 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
831 *
832 * Allow process control functions (sys_prctl()) to alter capabilities; may
833 * also deny access to other functions not otherwise implemented here.
834 *
835 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
836 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
837 * modules will consider performing the function.
838 */
839int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
840 unsigned long arg4, unsigned long arg5)
841{
842 struct cred *new;
843 long error = 0;
844
845 new = prepare_creds();
846 if (!new)
847 return -ENOMEM;
848
849 switch (option) {
850 case PR_CAPBSET_READ:
851 error = -EINVAL;
852 if (!cap_valid(arg2))
853 goto error;
854 error = !!cap_raised(new->cap_bset, arg2);
855 goto no_change;
856
857 case PR_CAPBSET_DROP:
858 error = cap_prctl_drop(new, arg2);
859 if (error < 0)
860 goto error;
861 goto changed;
862
863 /*
864 * The next four prctl's remain to assist with transitioning a
865 * system from legacy UID=0 based privilege (when filesystem
866 * capabilities are not in use) to a system using filesystem
867 * capabilities only - as the POSIX.1e draft intended.
868 *
869 * Note:
870 *
871 * PR_SET_SECUREBITS =
872 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
873 * | issecure_mask(SECURE_NOROOT)
874 * | issecure_mask(SECURE_NOROOT_LOCKED)
875 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
876 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
877 *
878 * will ensure that the current process and all of its
879 * children will be locked into a pure
880 * capability-based-privilege environment.
881 */
882 case PR_SET_SECUREBITS:
883 error = -EPERM;
884 if ((((new->securebits & SECURE_ALL_LOCKS) >> 1)
885 & (new->securebits ^ arg2)) /*[1]*/
886 || ((new->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
887 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
888 || (cap_capable(current_cred(),
889 current_cred()->user_ns, CAP_SETPCAP,
890 SECURITY_CAP_AUDIT) != 0) /*[4]*/
891 /*
892 * [1] no changing of bits that are locked
893 * [2] no unlocking of locks
894 * [3] no setting of unsupported bits
895 * [4] doing anything requires privilege (go read about
896 * the "sendmail capabilities bug")
897 */
898 )
899 /* cannot change a locked bit */
900 goto error;
901 new->securebits = arg2;
902 goto changed;
903
904 case PR_GET_SECUREBITS:
905 error = new->securebits;
906 goto no_change;
907
908 case PR_GET_KEEPCAPS:
909 if (issecure(SECURE_KEEP_CAPS))
910 error = 1;
911 goto no_change;
912
913 case PR_SET_KEEPCAPS:
914 error = -EINVAL;
915 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
916 goto error;
917 error = -EPERM;
918 if (issecure(SECURE_KEEP_CAPS_LOCKED))
919 goto error;
920 if (arg2)
921 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
922 else
923 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
924 goto changed;
925
926 default:
927 /* No functionality available - continue with default */
928 error = -ENOSYS;
929 goto error;
930 }
931
932 /* Functionality provided */
933changed:
934 return commit_creds(new);
935
936no_change:
937error:
938 abort_creds(new);
939 return error;
940}
941
942/**
943 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
944 * @mm: The VM space in which the new mapping is to be made
945 * @pages: The size of the mapping
946 *
947 * Determine whether the allocation of a new virtual mapping by the current
948 * task is permitted, returning 0 if permission is granted, -ve if not.
949 */
950int cap_vm_enough_memory(struct mm_struct *mm, long pages)
951{
952 int cap_sys_admin = 0;
953
954 if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
955 SECURITY_CAP_NOAUDIT) == 0)
956 cap_sys_admin = 1;
957 return __vm_enough_memory(mm, pages, cap_sys_admin);
958}
959
960/*
961 * cap_mmap_addr - check if able to map given addr
962 * @addr: address attempting to be mapped
963 *
964 * If the process is attempting to map memory below dac_mmap_min_addr they need
965 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
966 * capability security module. Returns 0 if this mapping should be allowed
967 * -EPERM if not.
968 */
969int cap_mmap_addr(unsigned long addr)
970{
971 int ret = 0;
972
973 if (addr < dac_mmap_min_addr) {
974 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
975 SECURITY_CAP_AUDIT);
976 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
977 if (ret == 0)
978 current->flags |= PF_SUPERPRIV;
979 }
980 return ret;
981}
982
983int cap_mmap_file(struct file *file, unsigned long reqprot,
984 unsigned long prot, unsigned long flags)
985{
986 return 0;
987}