Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		The Internet Protocol (IP) output module.
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Donald Becker, <becker@super.org>
  12 *		Alan Cox, <Alan.Cox@linux.org>
  13 *		Richard Underwood
  14 *		Stefan Becker, <stefanb@yello.ping.de>
  15 *		Jorge Cwik, <jorge@laser.satlink.net>
  16 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  17 *		Hirokazu Takahashi, <taka@valinux.co.jp>
  18 *
  19 *	See ip_input.c for original log
  20 *
  21 *	Fixes:
  22 *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
  23 *		Mike Kilburn	:	htons() missing in ip_build_xmit.
  24 *		Bradford Johnson:	Fix faulty handling of some frames when
  25 *					no route is found.
  26 *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
  27 *					(in case if packet not accepted by
  28 *					output firewall rules)
  29 *		Mike McLagan	:	Routing by source
  30 *		Alexey Kuznetsov:	use new route cache
  31 *		Andi Kleen:		Fix broken PMTU recovery and remove
  32 *					some redundant tests.
  33 *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
  34 *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
  35 *		Andi Kleen	:	Split fast and slow ip_build_xmit path
  36 *					for decreased register pressure on x86
  37 *					and more readibility.
  38 *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
  39 *					silently drop skb instead of failing with -EPERM.
  40 *		Detlev Wengorz	:	Copy protocol for fragments.
  41 *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
  42 *					datagrams.
  43 *		Hirokazu Takahashi:	sendfile() on UDP works now.
  44 */
  45
  46#include <linux/uaccess.h>
  47#include <linux/module.h>
  48#include <linux/types.h>
  49#include <linux/kernel.h>
  50#include <linux/mm.h>
  51#include <linux/string.h>
  52#include <linux/errno.h>
  53#include <linux/highmem.h>
  54#include <linux/slab.h>
  55
  56#include <linux/socket.h>
  57#include <linux/sockios.h>
  58#include <linux/in.h>
  59#include <linux/inet.h>
  60#include <linux/netdevice.h>
  61#include <linux/etherdevice.h>
  62#include <linux/proc_fs.h>
  63#include <linux/stat.h>
  64#include <linux/init.h>
  65
  66#include <net/snmp.h>
  67#include <net/ip.h>
  68#include <net/protocol.h>
  69#include <net/route.h>
  70#include <net/xfrm.h>
  71#include <linux/skbuff.h>
  72#include <net/sock.h>
  73#include <net/arp.h>
  74#include <net/icmp.h>
  75#include <net/checksum.h>
  76#include <net/inetpeer.h>
  77#include <net/lwtunnel.h>
  78#include <linux/bpf-cgroup.h>
  79#include <linux/igmp.h>
  80#include <linux/netfilter_ipv4.h>
  81#include <linux/netfilter_bridge.h>
 
  82#include <linux/netlink.h>
  83#include <linux/tcp.h>
  84
  85static int
  86ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
  87	    unsigned int mtu,
  88	    int (*output)(struct net *, struct sock *, struct sk_buff *));
  89
  90/* Generate a checksum for an outgoing IP datagram. */
  91void ip_send_check(struct iphdr *iph)
  92{
  93	iph->check = 0;
  94	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
  95}
  96EXPORT_SYMBOL(ip_send_check);
  97
  98int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
  99{
 100	struct iphdr *iph = ip_hdr(skb);
 101
 102	iph->tot_len = htons(skb->len);
 103	ip_send_check(iph);
 104
 105	/* if egress device is enslaved to an L3 master device pass the
 106	 * skb to its handler for processing
 107	 */
 108	skb = l3mdev_ip_out(sk, skb);
 109	if (unlikely(!skb))
 110		return 0;
 111
 112	skb->protocol = htons(ETH_P_IP);
 113
 114	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
 115		       net, sk, skb, NULL, skb_dst(skb)->dev,
 116		       dst_output);
 117}
 118
 119int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
 120{
 121	int err;
 122
 123	err = __ip_local_out(net, sk, skb);
 124	if (likely(err == 1))
 125		err = dst_output(net, sk, skb);
 126
 127	return err;
 128}
 129EXPORT_SYMBOL_GPL(ip_local_out);
 130
 
 
 
 
 
 
 
 
 
 
 
 
 
 131static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
 132{
 133	int ttl = inet->uc_ttl;
 134
 135	if (ttl < 0)
 136		ttl = ip4_dst_hoplimit(dst);
 137	return ttl;
 138}
 139
 140/*
 141 *		Add an ip header to a skbuff and send it out.
 142 *
 143 */
 144int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
 145			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
 146{
 147	struct inet_sock *inet = inet_sk(sk);
 148	struct rtable *rt = skb_rtable(skb);
 149	struct net *net = sock_net(sk);
 150	struct iphdr *iph;
 151
 152	/* Build the IP header. */
 153	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
 154	skb_reset_network_header(skb);
 155	iph = ip_hdr(skb);
 156	iph->version  = 4;
 157	iph->ihl      = 5;
 158	iph->tos      = inet->tos;
 
 
 
 
 159	iph->ttl      = ip_select_ttl(inet, &rt->dst);
 160	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
 161	iph->saddr    = saddr;
 162	iph->protocol = sk->sk_protocol;
 163	if (ip_dont_fragment(sk, &rt->dst)) {
 164		iph->frag_off = htons(IP_DF);
 165		iph->id = 0;
 166	} else {
 167		iph->frag_off = 0;
 168		__ip_select_ident(net, iph, 1);
 169	}
 170
 171	if (opt && opt->opt.optlen) {
 172		iph->ihl += opt->opt.optlen>>2;
 173		ip_options_build(skb, &opt->opt, daddr, rt, 0);
 174	}
 175
 176	skb->priority = sk->sk_priority;
 177	if (!skb->mark)
 178		skb->mark = sk->sk_mark;
 179
 180	/* Send it out. */
 181	return ip_local_out(net, skb->sk, skb);
 182}
 183EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
 184
 185static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
 186{
 187	struct dst_entry *dst = skb_dst(skb);
 188	struct rtable *rt = (struct rtable *)dst;
 189	struct net_device *dev = dst->dev;
 190	unsigned int hh_len = LL_RESERVED_SPACE(dev);
 191	struct neighbour *neigh;
 192	bool is_v6gw = false;
 193
 194	if (rt->rt_type == RTN_MULTICAST) {
 195		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
 196	} else if (rt->rt_type == RTN_BROADCAST)
 197		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
 198
 199	/* Be paranoid, rather than too clever. */
 200	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
 201		struct sk_buff *skb2;
 202
 203		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
 204		if (!skb2) {
 205			kfree_skb(skb);
 206			return -ENOMEM;
 207		}
 208		if (skb->sk)
 209			skb_set_owner_w(skb2, skb->sk);
 210		consume_skb(skb);
 211		skb = skb2;
 212	}
 213
 214	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
 215		int res = lwtunnel_xmit(skb);
 216
 217		if (res < 0 || res == LWTUNNEL_XMIT_DONE)
 218			return res;
 219	}
 220
 221	rcu_read_lock_bh();
 222	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
 223	if (!IS_ERR(neigh)) {
 224		int res;
 225
 226		sock_confirm_neigh(skb, neigh);
 227		/* if crossing protocols, can not use the cached header */
 228		res = neigh_output(neigh, skb, is_v6gw);
 229		rcu_read_unlock_bh();
 230		return res;
 231	}
 232	rcu_read_unlock_bh();
 233
 234	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
 235			    __func__);
 236	kfree_skb(skb);
 237	return -EINVAL;
 238}
 239
 240static int ip_finish_output_gso(struct net *net, struct sock *sk,
 241				struct sk_buff *skb, unsigned int mtu)
 242{
 243	netdev_features_t features;
 244	struct sk_buff *segs;
 245	int ret = 0;
 246
 247	/* common case: seglen is <= mtu
 248	 */
 249	if (skb_gso_validate_network_len(skb, mtu))
 250		return ip_finish_output2(net, sk, skb);
 251
 252	/* Slowpath -  GSO segment length exceeds the egress MTU.
 253	 *
 254	 * This can happen in several cases:
 255	 *  - Forwarding of a TCP GRO skb, when DF flag is not set.
 256	 *  - Forwarding of an skb that arrived on a virtualization interface
 257	 *    (virtio-net/vhost/tap) with TSO/GSO size set by other network
 258	 *    stack.
 259	 *  - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
 260	 *    interface with a smaller MTU.
 261	 *  - Arriving GRO skb (or GSO skb in a virtualized environment) that is
 262	 *    bridged to a NETIF_F_TSO tunnel stacked over an interface with an
 263	 *    insufficent MTU.
 264	 */
 265	features = netif_skb_features(skb);
 266	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
 267	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
 268	if (IS_ERR_OR_NULL(segs)) {
 269		kfree_skb(skb);
 270		return -ENOMEM;
 271	}
 272
 273	consume_skb(skb);
 274
 275	do {
 276		struct sk_buff *nskb = segs->next;
 277		int err;
 278
 279		skb_mark_not_on_list(segs);
 280		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
 281
 282		if (err && ret == 0)
 283			ret = err;
 284		segs = nskb;
 285	} while (segs);
 286
 287	return ret;
 288}
 289
 290static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 291{
 292	unsigned int mtu;
 293
 294#if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
 295	/* Policy lookup after SNAT yielded a new policy */
 296	if (skb_dst(skb)->xfrm) {
 297		IPCB(skb)->flags |= IPSKB_REROUTED;
 298		return dst_output(net, sk, skb);
 299	}
 300#endif
 301	mtu = ip_skb_dst_mtu(sk, skb);
 302	if (skb_is_gso(skb))
 303		return ip_finish_output_gso(net, sk, skb, mtu);
 304
 305	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
 306		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
 307
 308	return ip_finish_output2(net, sk, skb);
 309}
 310
 311static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 312{
 313	int ret;
 314
 315	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
 316	switch (ret) {
 317	case NET_XMIT_SUCCESS:
 318		return __ip_finish_output(net, sk, skb);
 319	case NET_XMIT_CN:
 320		return __ip_finish_output(net, sk, skb) ? : ret;
 321	default:
 322		kfree_skb(skb);
 323		return ret;
 324	}
 325}
 326
 327static int ip_mc_finish_output(struct net *net, struct sock *sk,
 328			       struct sk_buff *skb)
 329{
 330	struct rtable *new_rt;
 331	bool do_cn = false;
 332	int ret, err;
 333
 334	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
 335	switch (ret) {
 336	case NET_XMIT_CN:
 337		do_cn = true;
 338		/* fall through */
 339	case NET_XMIT_SUCCESS:
 340		break;
 341	default:
 342		kfree_skb(skb);
 343		return ret;
 344	}
 345
 346	/* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
 347	 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
 348	 * see ipv4_pktinfo_prepare().
 349	 */
 350	new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb));
 351	if (new_rt) {
 352		new_rt->rt_iif = 0;
 353		skb_dst_drop(skb);
 354		skb_dst_set(skb, &new_rt->dst);
 355	}
 356
 357	err = dev_loopback_xmit(net, sk, skb);
 358	return (do_cn && err) ? ret : err;
 359}
 360
 361int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 362{
 
 363	struct rtable *rt = skb_rtable(skb);
 364	struct net_device *dev = rt->dst.dev;
 365
 366	/*
 367	 *	If the indicated interface is up and running, send the packet.
 368	 */
 369	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
 370
 371	skb->dev = dev;
 372	skb->protocol = htons(ETH_P_IP);
 373
 374	/*
 375	 *	Multicasts are looped back for other local users
 376	 */
 377
 378	if (rt->rt_flags&RTCF_MULTICAST) {
 379		if (sk_mc_loop(sk)
 380#ifdef CONFIG_IP_MROUTE
 381		/* Small optimization: do not loopback not local frames,
 382		   which returned after forwarding; they will be  dropped
 383		   by ip_mr_input in any case.
 384		   Note, that local frames are looped back to be delivered
 385		   to local recipients.
 386
 387		   This check is duplicated in ip_mr_input at the moment.
 388		 */
 389		    &&
 390		    ((rt->rt_flags & RTCF_LOCAL) ||
 391		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
 392#endif
 393		   ) {
 394			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
 395			if (newskb)
 396				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 397					net, sk, newskb, NULL, newskb->dev,
 398					ip_mc_finish_output);
 399		}
 400
 401		/* Multicasts with ttl 0 must not go beyond the host */
 402
 403		if (ip_hdr(skb)->ttl == 0) {
 404			kfree_skb(skb);
 405			return 0;
 406		}
 407	}
 408
 409	if (rt->rt_flags&RTCF_BROADCAST) {
 410		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
 411		if (newskb)
 412			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 413				net, sk, newskb, NULL, newskb->dev,
 414				ip_mc_finish_output);
 415	}
 416
 417	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 418			    net, sk, skb, NULL, skb->dev,
 419			    ip_finish_output,
 420			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 421}
 422
 423int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 424{
 425	struct net_device *dev = skb_dst(skb)->dev;
 426
 427	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
 428
 429	skb->dev = dev;
 430	skb->protocol = htons(ETH_P_IP);
 431
 432	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 433			    net, sk, skb, NULL, dev,
 434			    ip_finish_output,
 435			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 436}
 437
 438/*
 439 * copy saddr and daddr, possibly using 64bit load/stores
 440 * Equivalent to :
 441 *   iph->saddr = fl4->saddr;
 442 *   iph->daddr = fl4->daddr;
 443 */
 444static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
 445{
 446	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
 447		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
 448	memcpy(&iph->saddr, &fl4->saddr,
 449	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
 450}
 451
 452/* Note: skb->sk can be different from sk, in case of tunnels */
 453int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
 454		    __u8 tos)
 455{
 
 456	struct inet_sock *inet = inet_sk(sk);
 457	struct net *net = sock_net(sk);
 458	struct ip_options_rcu *inet_opt;
 459	struct flowi4 *fl4;
 460	struct rtable *rt;
 461	struct iphdr *iph;
 462	int res;
 463
 464	/* Skip all of this if the packet is already routed,
 465	 * f.e. by something like SCTP.
 466	 */
 467	rcu_read_lock();
 468	inet_opt = rcu_dereference(inet->inet_opt);
 469	fl4 = &fl->u.ip4;
 470	rt = skb_rtable(skb);
 471	if (rt)
 472		goto packet_routed;
 473
 474	/* Make sure we can route this packet. */
 475	rt = (struct rtable *)__sk_dst_check(sk, 0);
 476	if (!rt) {
 477		__be32 daddr;
 478
 479		/* Use correct destination address if we have options. */
 480		daddr = inet->inet_daddr;
 481		if (inet_opt && inet_opt->opt.srr)
 482			daddr = inet_opt->opt.faddr;
 483
 484		/* If this fails, retransmit mechanism of transport layer will
 485		 * keep trying until route appears or the connection times
 486		 * itself out.
 487		 */
 488		rt = ip_route_output_ports(net, fl4, sk,
 489					   daddr, inet->inet_saddr,
 490					   inet->inet_dport,
 491					   inet->inet_sport,
 492					   sk->sk_protocol,
 493					   RT_CONN_FLAGS_TOS(sk, tos),
 494					   sk->sk_bound_dev_if);
 495		if (IS_ERR(rt))
 496			goto no_route;
 497		sk_setup_caps(sk, &rt->dst);
 498	}
 499	skb_dst_set_noref(skb, &rt->dst);
 500
 501packet_routed:
 502	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
 503		goto no_route;
 504
 505	/* OK, we know where to send it, allocate and build IP header. */
 506	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
 507	skb_reset_network_header(skb);
 508	iph = ip_hdr(skb);
 509	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
 510	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
 511		iph->frag_off = htons(IP_DF);
 512	else
 513		iph->frag_off = 0;
 514	iph->ttl      = ip_select_ttl(inet, &rt->dst);
 515	iph->protocol = sk->sk_protocol;
 516	ip_copy_addrs(iph, fl4);
 517
 518	/* Transport layer set skb->h.foo itself. */
 519
 520	if (inet_opt && inet_opt->opt.optlen) {
 521		iph->ihl += inet_opt->opt.optlen >> 2;
 522		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
 523	}
 524
 525	ip_select_ident_segs(net, skb, sk,
 526			     skb_shinfo(skb)->gso_segs ?: 1);
 527
 528	/* TODO : should we use skb->sk here instead of sk ? */
 529	skb->priority = sk->sk_priority;
 530	skb->mark = sk->sk_mark;
 531
 532	res = ip_local_out(net, sk, skb);
 533	rcu_read_unlock();
 534	return res;
 535
 536no_route:
 537	rcu_read_unlock();
 538	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
 539	kfree_skb(skb);
 540	return -EHOSTUNREACH;
 541}
 542EXPORT_SYMBOL(__ip_queue_xmit);
 
 543
 544static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
 545{
 546	to->pkt_type = from->pkt_type;
 547	to->priority = from->priority;
 548	to->protocol = from->protocol;
 549	to->skb_iif = from->skb_iif;
 550	skb_dst_drop(to);
 551	skb_dst_copy(to, from);
 552	to->dev = from->dev;
 553	to->mark = from->mark;
 554
 555	skb_copy_hash(to, from);
 
 556
 557#ifdef CONFIG_NET_SCHED
 558	to->tc_index = from->tc_index;
 559#endif
 560	nf_copy(to, from);
 561	skb_ext_copy(to, from);
 562#if IS_ENABLED(CONFIG_IP_VS)
 
 
 
 563	to->ipvs_property = from->ipvs_property;
 564#endif
 565	skb_copy_secmark(to, from);
 566}
 567
 568static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
 569		       unsigned int mtu,
 570		       int (*output)(struct net *, struct sock *, struct sk_buff *))
 571{
 572	struct iphdr *iph = ip_hdr(skb);
 573
 574	if ((iph->frag_off & htons(IP_DF)) == 0)
 575		return ip_do_fragment(net, sk, skb, output);
 576
 577	if (unlikely(!skb->ignore_df ||
 578		     (IPCB(skb)->frag_max_size &&
 579		      IPCB(skb)->frag_max_size > mtu))) {
 580		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
 581		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
 582			  htonl(mtu));
 583		kfree_skb(skb);
 584		return -EMSGSIZE;
 585	}
 586
 587	return ip_do_fragment(net, sk, skb, output);
 588}
 589
 590void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph,
 591		      unsigned int hlen, struct ip_fraglist_iter *iter)
 592{
 593	unsigned int first_len = skb_pagelen(skb);
 594
 595	iter->frag = skb_shinfo(skb)->frag_list;
 596	skb_frag_list_init(skb);
 597
 598	iter->offset = 0;
 599	iter->iph = iph;
 600	iter->hlen = hlen;
 601
 602	skb->data_len = first_len - skb_headlen(skb);
 603	skb->len = first_len;
 604	iph->tot_len = htons(first_len);
 605	iph->frag_off = htons(IP_MF);
 606	ip_send_check(iph);
 607}
 608EXPORT_SYMBOL(ip_fraglist_init);
 609
 610static void ip_fraglist_ipcb_prepare(struct sk_buff *skb,
 611				     struct ip_fraglist_iter *iter)
 612{
 613	struct sk_buff *to = iter->frag;
 614
 615	/* Copy the flags to each fragment. */
 616	IPCB(to)->flags = IPCB(skb)->flags;
 617
 618	if (iter->offset == 0)
 619		ip_options_fragment(to);
 620}
 621
 622void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter)
 623{
 624	unsigned int hlen = iter->hlen;
 625	struct iphdr *iph = iter->iph;
 626	struct sk_buff *frag;
 627
 628	frag = iter->frag;
 629	frag->ip_summed = CHECKSUM_NONE;
 630	skb_reset_transport_header(frag);
 631	__skb_push(frag, hlen);
 632	skb_reset_network_header(frag);
 633	memcpy(skb_network_header(frag), iph, hlen);
 634	iter->iph = ip_hdr(frag);
 635	iph = iter->iph;
 636	iph->tot_len = htons(frag->len);
 637	ip_copy_metadata(frag, skb);
 638	iter->offset += skb->len - hlen;
 639	iph->frag_off = htons(iter->offset >> 3);
 640	if (frag->next)
 641		iph->frag_off |= htons(IP_MF);
 642	/* Ready, complete checksum */
 643	ip_send_check(iph);
 644}
 645EXPORT_SYMBOL(ip_fraglist_prepare);
 646
 647void ip_frag_init(struct sk_buff *skb, unsigned int hlen,
 648		  unsigned int ll_rs, unsigned int mtu, bool DF,
 649		  struct ip_frag_state *state)
 650{
 651	struct iphdr *iph = ip_hdr(skb);
 652
 653	state->DF = DF;
 654	state->hlen = hlen;
 655	state->ll_rs = ll_rs;
 656	state->mtu = mtu;
 657
 658	state->left = skb->len - hlen;	/* Space per frame */
 659	state->ptr = hlen;		/* Where to start from */
 660
 661	state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
 662	state->not_last_frag = iph->frag_off & htons(IP_MF);
 663}
 664EXPORT_SYMBOL(ip_frag_init);
 665
 666static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to,
 667			 bool first_frag, struct ip_frag_state *state)
 668{
 669	/* Copy the flags to each fragment. */
 670	IPCB(to)->flags = IPCB(from)->flags;
 671
 672	/* ANK: dirty, but effective trick. Upgrade options only if
 673	 * the segment to be fragmented was THE FIRST (otherwise,
 674	 * options are already fixed) and make it ONCE
 675	 * on the initial skb, so that all the following fragments
 676	 * will inherit fixed options.
 677	 */
 678	if (first_frag)
 679		ip_options_fragment(from);
 680}
 681
 682struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state)
 683{
 684	unsigned int len = state->left;
 685	struct sk_buff *skb2;
 686	struct iphdr *iph;
 687
 688	len = state->left;
 689	/* IF: it doesn't fit, use 'mtu' - the data space left */
 690	if (len > state->mtu)
 691		len = state->mtu;
 692	/* IF: we are not sending up to and including the packet end
 693	   then align the next start on an eight byte boundary */
 694	if (len < state->left)	{
 695		len &= ~7;
 696	}
 697
 698	/* Allocate buffer */
 699	skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC);
 700	if (!skb2)
 701		return ERR_PTR(-ENOMEM);
 702
 703	/*
 704	 *	Set up data on packet
 705	 */
 706
 707	ip_copy_metadata(skb2, skb);
 708	skb_reserve(skb2, state->ll_rs);
 709	skb_put(skb2, len + state->hlen);
 710	skb_reset_network_header(skb2);
 711	skb2->transport_header = skb2->network_header + state->hlen;
 712
 713	/*
 714	 *	Charge the memory for the fragment to any owner
 715	 *	it might possess
 716	 */
 717
 718	if (skb->sk)
 719		skb_set_owner_w(skb2, skb->sk);
 720
 721	/*
 722	 *	Copy the packet header into the new buffer.
 723	 */
 724
 725	skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen);
 726
 727	/*
 728	 *	Copy a block of the IP datagram.
 729	 */
 730	if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len))
 731		BUG();
 732	state->left -= len;
 733
 734	/*
 735	 *	Fill in the new header fields.
 736	 */
 737	iph = ip_hdr(skb2);
 738	iph->frag_off = htons((state->offset >> 3));
 739	if (state->DF)
 740		iph->frag_off |= htons(IP_DF);
 741
 742	/*
 743	 *	Added AC : If we are fragmenting a fragment that's not the
 744	 *		   last fragment then keep MF on each bit
 745	 */
 746	if (state->left > 0 || state->not_last_frag)
 747		iph->frag_off |= htons(IP_MF);
 748	state->ptr += len;
 749	state->offset += len;
 750
 751	iph->tot_len = htons(len + state->hlen);
 752
 753	ip_send_check(iph);
 754
 755	return skb2;
 756}
 757EXPORT_SYMBOL(ip_frag_next);
 758
 759/*
 760 *	This IP datagram is too large to be sent in one piece.  Break it up into
 761 *	smaller pieces (each of size equal to IP header plus
 762 *	a block of the data of the original IP data part) that will yet fit in a
 763 *	single device frame, and queue such a frame for sending.
 764 */
 765
 766int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
 767		   int (*output)(struct net *, struct sock *, struct sk_buff *))
 768{
 769	struct iphdr *iph;
 
 
 770	struct sk_buff *skb2;
 
 
 
 771	struct rtable *rt = skb_rtable(skb);
 772	unsigned int mtu, hlen, ll_rs;
 773	struct ip_fraglist_iter iter;
 774	ktime_t tstamp = skb->tstamp;
 775	struct ip_frag_state state;
 776	int err = 0;
 777
 778	/* for offloaded checksums cleanup checksum before fragmentation */
 779	if (skb->ip_summed == CHECKSUM_PARTIAL &&
 780	    (err = skb_checksum_help(skb)))
 781		goto fail;
 782
 783	/*
 784	 *	Point into the IP datagram header.
 785	 */
 786
 787	iph = ip_hdr(skb);
 788
 789	mtu = ip_skb_dst_mtu(sk, skb);
 790	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
 791		mtu = IPCB(skb)->frag_max_size;
 
 
 
 
 792
 793	/*
 794	 *	Setup starting values.
 795	 */
 796
 797	hlen = iph->ihl * 4;
 798	mtu = mtu - hlen;	/* Size of data space */
 
 
 
 
 799	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
 800	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
 801
 802	/* When frag_list is given, use it. First, check its validity:
 803	 * some transformers could create wrong frag_list or break existing
 804	 * one, it is not prohibited. In this case fall back to copying.
 805	 *
 806	 * LATER: this step can be merged to real generation of fragments,
 807	 * we can switch to copy when see the first bad fragment.
 808	 */
 809	if (skb_has_frag_list(skb)) {
 810		struct sk_buff *frag, *frag2;
 811		unsigned int first_len = skb_pagelen(skb);
 812
 813		if (first_len - hlen > mtu ||
 814		    ((first_len - hlen) & 7) ||
 815		    ip_is_fragment(iph) ||
 816		    skb_cloned(skb) ||
 817		    skb_headroom(skb) < ll_rs)
 818			goto slow_path;
 819
 820		skb_walk_frags(skb, frag) {
 821			/* Correct geometry. */
 822			if (frag->len > mtu ||
 823			    ((frag->len & 7) && frag->next) ||
 824			    skb_headroom(frag) < hlen + ll_rs)
 825				goto slow_path_clean;
 826
 827			/* Partially cloned skb? */
 828			if (skb_shared(frag))
 829				goto slow_path_clean;
 830
 831			BUG_ON(frag->sk);
 832			if (skb->sk) {
 833				frag->sk = skb->sk;
 834				frag->destructor = sock_wfree;
 835			}
 836			skb->truesize -= frag->truesize;
 837		}
 838
 839		/* Everything is OK. Generate! */
 840		ip_fraglist_init(skb, iph, hlen, &iter);
 
 
 
 
 
 
 
 
 
 841
 842		for (;;) {
 843			/* Prepare header of the next frame,
 844			 * before previous one went down. */
 845			if (iter.frag) {
 846				ip_fraglist_ipcb_prepare(skb, &iter);
 847				ip_fraglist_prepare(skb, &iter);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 848			}
 849
 850			skb->tstamp = tstamp;
 851			err = output(net, sk, skb);
 852
 853			if (!err)
 854				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
 855			if (err || !iter.frag)
 856				break;
 857
 858			skb = ip_fraglist_next(&iter);
 
 
 859		}
 860
 861		if (err == 0) {
 862			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
 863			return 0;
 864		}
 865
 866		kfree_skb_list(iter.frag);
 867
 868		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
 
 
 
 869		return err;
 870
 871slow_path_clean:
 872		skb_walk_frags(skb, frag2) {
 873			if (frag2 == frag)
 874				break;
 875			frag2->sk = NULL;
 876			frag2->destructor = NULL;
 877			skb->truesize += frag2->truesize;
 878		}
 879	}
 880
 881slow_path:
 
 
 
 
 
 
 
 
 882	/*
 883	 *	Fragment the datagram.
 884	 */
 885
 886	ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU,
 887		     &state);
 888
 889	/*
 890	 *	Keep copying data until we run out.
 891	 */
 892
 893	while (state.left > 0) {
 894		bool first_frag = (state.offset == 0);
 
 
 
 
 
 
 
 
 
 
 
 895
 896		skb2 = ip_frag_next(skb, &state);
 897		if (IS_ERR(skb2)) {
 898			err = PTR_ERR(skb2);
 899			goto fail;
 900		}
 901		ip_frag_ipcb(skb, skb2, first_frag, &state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902
 903		/*
 904		 *	Put this fragment into the sending queue.
 905		 */
 906		skb2->tstamp = tstamp;
 907		err = output(net, sk, skb2);
 
 
 
 908		if (err)
 909			goto fail;
 910
 911		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
 912	}
 913	consume_skb(skb);
 914	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
 915	return err;
 916
 917fail:
 918	kfree_skb(skb);
 919	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
 920	return err;
 921}
 922EXPORT_SYMBOL(ip_do_fragment);
 923
 924int
 925ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
 926{
 927	struct msghdr *msg = from;
 928
 929	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 930		if (!copy_from_iter_full(to, len, &msg->msg_iter))
 931			return -EFAULT;
 932	} else {
 933		__wsum csum = 0;
 934		if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
 935			return -EFAULT;
 936		skb->csum = csum_block_add(skb->csum, csum, odd);
 937	}
 938	return 0;
 939}
 940EXPORT_SYMBOL(ip_generic_getfrag);
 941
 942static inline __wsum
 943csum_page(struct page *page, int offset, int copy)
 944{
 945	char *kaddr;
 946	__wsum csum;
 947	kaddr = kmap(page);
 948	csum = csum_partial(kaddr + offset, copy, 0);
 949	kunmap(page);
 950	return csum;
 951}
 952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 953static int __ip_append_data(struct sock *sk,
 954			    struct flowi4 *fl4,
 955			    struct sk_buff_head *queue,
 956			    struct inet_cork *cork,
 957			    struct page_frag *pfrag,
 958			    int getfrag(void *from, char *to, int offset,
 959					int len, int odd, struct sk_buff *skb),
 960			    void *from, int length, int transhdrlen,
 961			    unsigned int flags)
 962{
 963	struct inet_sock *inet = inet_sk(sk);
 964	struct ubuf_info *uarg = NULL;
 965	struct sk_buff *skb;
 966
 967	struct ip_options *opt = cork->opt;
 968	int hh_len;
 969	int exthdrlen;
 970	int mtu;
 971	int copy;
 972	int err;
 973	int offset = 0;
 974	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
 975	int csummode = CHECKSUM_NONE;
 976	struct rtable *rt = (struct rtable *)cork->dst;
 977	unsigned int wmem_alloc_delta = 0;
 978	bool paged, extra_uref = false;
 979	u32 tskey = 0;
 980
 981	skb = skb_peek_tail(queue);
 982
 983	exthdrlen = !skb ? rt->dst.header_len : 0;
 984	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
 985	paged = !!cork->gso_size;
 986
 987	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
 988	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
 989		tskey = sk->sk_tskey++;
 990
 991	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
 992
 993	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
 994	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
 995	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
 996
 997	if (cork->length + length > maxnonfragsize - fragheaderlen) {
 998		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
 999			       mtu - (opt ? opt->optlen : 0));
1000		return -EMSGSIZE;
1001	}
1002
1003	/*
1004	 * transhdrlen > 0 means that this is the first fragment and we wish
1005	 * it won't be fragmented in the future.
1006	 */
1007	if (transhdrlen &&
1008	    length + fragheaderlen <= mtu &&
1009	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
1010	    (!(flags & MSG_MORE) || cork->gso_size) &&
1011	    (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
1012		csummode = CHECKSUM_PARTIAL;
1013
1014	if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) {
1015		uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb));
1016		if (!uarg)
1017			return -ENOBUFS;
1018		extra_uref = !skb_zcopy(skb);	/* only ref on new uarg */
1019		if (rt->dst.dev->features & NETIF_F_SG &&
1020		    csummode == CHECKSUM_PARTIAL) {
1021			paged = true;
1022		} else {
1023			uarg->zerocopy = 0;
1024			skb_zcopy_set(skb, uarg, &extra_uref);
1025		}
1026	}
1027
1028	cork->length += length;
 
 
 
 
 
 
 
 
 
 
1029
1030	/* So, what's going on in the loop below?
1031	 *
1032	 * We use calculated fragment length to generate chained skb,
1033	 * each of segments is IP fragment ready for sending to network after
1034	 * adding appropriate IP header.
1035	 */
1036
1037	if (!skb)
1038		goto alloc_new_skb;
1039
1040	while (length > 0) {
1041		/* Check if the remaining data fits into current packet. */
1042		copy = mtu - skb->len;
1043		if (copy < length)
1044			copy = maxfraglen - skb->len;
1045		if (copy <= 0) {
1046			char *data;
1047			unsigned int datalen;
1048			unsigned int fraglen;
1049			unsigned int fraggap;
1050			unsigned int alloclen;
1051			unsigned int pagedlen;
1052			struct sk_buff *skb_prev;
1053alloc_new_skb:
1054			skb_prev = skb;
1055			if (skb_prev)
1056				fraggap = skb_prev->len - maxfraglen;
1057			else
1058				fraggap = 0;
1059
1060			/*
1061			 * If remaining data exceeds the mtu,
1062			 * we know we need more fragment(s).
1063			 */
1064			datalen = length + fraggap;
1065			if (datalen > mtu - fragheaderlen)
1066				datalen = maxfraglen - fragheaderlen;
1067			fraglen = datalen + fragheaderlen;
1068			pagedlen = 0;
1069
1070			if ((flags & MSG_MORE) &&
1071			    !(rt->dst.dev->features&NETIF_F_SG))
1072				alloclen = mtu;
1073			else if (!paged)
1074				alloclen = fraglen;
1075			else {
1076				alloclen = min_t(int, fraglen, MAX_HEADER);
1077				pagedlen = fraglen - alloclen;
1078			}
1079
1080			alloclen += exthdrlen;
1081
1082			/* The last fragment gets additional space at tail.
1083			 * Note, with MSG_MORE we overallocate on fragments,
1084			 * because we have no idea what fragment will be
1085			 * the last.
1086			 */
1087			if (datalen == length + fraggap)
1088				alloclen += rt->dst.trailer_len;
1089
1090			if (transhdrlen) {
1091				skb = sock_alloc_send_skb(sk,
1092						alloclen + hh_len + 15,
1093						(flags & MSG_DONTWAIT), &err);
1094			} else {
1095				skb = NULL;
1096				if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1097				    2 * sk->sk_sndbuf)
1098					skb = alloc_skb(alloclen + hh_len + 15,
1099							sk->sk_allocation);
1100				if (unlikely(!skb))
 
1101					err = -ENOBUFS;
 
 
 
 
1102			}
1103			if (!skb)
1104				goto error;
1105
1106			/*
1107			 *	Fill in the control structures
1108			 */
1109			skb->ip_summed = csummode;
1110			skb->csum = 0;
1111			skb_reserve(skb, hh_len);
 
1112
1113			/*
1114			 *	Find where to start putting bytes.
1115			 */
1116			data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1117			skb_set_network_header(skb, exthdrlen);
1118			skb->transport_header = (skb->network_header +
1119						 fragheaderlen);
1120			data += fragheaderlen + exthdrlen;
1121
1122			if (fraggap) {
1123				skb->csum = skb_copy_and_csum_bits(
1124					skb_prev, maxfraglen,
1125					data + transhdrlen, fraggap, 0);
1126				skb_prev->csum = csum_sub(skb_prev->csum,
1127							  skb->csum);
1128				data += fraggap;
1129				pskb_trim_unique(skb_prev, maxfraglen);
1130			}
1131
1132			copy = datalen - transhdrlen - fraggap - pagedlen;
1133			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1134				err = -EFAULT;
1135				kfree_skb(skb);
1136				goto error;
1137			}
1138
1139			offset += copy;
1140			length -= copy + transhdrlen;
1141			transhdrlen = 0;
1142			exthdrlen = 0;
1143			csummode = CHECKSUM_NONE;
1144
1145			/* only the initial fragment is time stamped */
1146			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1147			cork->tx_flags = 0;
1148			skb_shinfo(skb)->tskey = tskey;
1149			tskey = 0;
1150			skb_zcopy_set(skb, uarg, &extra_uref);
1151
1152			if ((flags & MSG_CONFIRM) && !skb_prev)
1153				skb_set_dst_pending_confirm(skb, 1);
1154
1155			/*
1156			 * Put the packet on the pending queue.
1157			 */
1158			if (!skb->destructor) {
1159				skb->destructor = sock_wfree;
1160				skb->sk = sk;
1161				wmem_alloc_delta += skb->truesize;
1162			}
1163			__skb_queue_tail(queue, skb);
1164			continue;
1165		}
1166
1167		if (copy > length)
1168			copy = length;
1169
1170		if (!(rt->dst.dev->features&NETIF_F_SG) &&
1171		    skb_tailroom(skb) >= copy) {
1172			unsigned int off;
1173
1174			off = skb->len;
1175			if (getfrag(from, skb_put(skb, copy),
1176					offset, copy, off, skb) < 0) {
1177				__skb_trim(skb, off);
1178				err = -EFAULT;
1179				goto error;
1180			}
1181		} else if (!uarg || !uarg->zerocopy) {
1182			int i = skb_shinfo(skb)->nr_frags;
1183
1184			err = -ENOMEM;
1185			if (!sk_page_frag_refill(sk, pfrag))
1186				goto error;
1187
1188			if (!skb_can_coalesce(skb, i, pfrag->page,
1189					      pfrag->offset)) {
1190				err = -EMSGSIZE;
1191				if (i == MAX_SKB_FRAGS)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1192					goto error;
 
 
 
1193
1194				__skb_fill_page_desc(skb, i, pfrag->page,
1195						     pfrag->offset, 0);
1196				skb_shinfo(skb)->nr_frags = ++i;
1197				get_page(pfrag->page);
 
1198			}
1199			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1200			if (getfrag(from,
1201				    page_address(pfrag->page) + pfrag->offset,
1202				    offset, copy, skb->len, skb) < 0)
1203				goto error_efault;
1204
1205			pfrag->offset += copy;
1206			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1207			skb->len += copy;
1208			skb->data_len += copy;
1209			skb->truesize += copy;
1210			wmem_alloc_delta += copy;
1211		} else {
1212			err = skb_zerocopy_iter_dgram(skb, from, copy);
1213			if (err < 0)
1214				goto error;
1215		}
1216		offset += copy;
1217		length -= copy;
1218	}
1219
1220	if (wmem_alloc_delta)
1221		refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1222	return 0;
1223
1224error_efault:
1225	err = -EFAULT;
1226error:
1227	if (uarg)
1228		sock_zerocopy_put_abort(uarg, extra_uref);
1229	cork->length -= length;
1230	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1231	refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1232	return err;
1233}
1234
1235static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1236			 struct ipcm_cookie *ipc, struct rtable **rtp)
1237{
 
1238	struct ip_options_rcu *opt;
1239	struct rtable *rt;
1240
1241	rt = *rtp;
1242	if (unlikely(!rt))
1243		return -EFAULT;
1244
1245	/*
1246	 * setup for corking.
1247	 */
1248	opt = ipc->opt;
1249	if (opt) {
1250		if (!cork->opt) {
1251			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1252					    sk->sk_allocation);
1253			if (unlikely(!cork->opt))
1254				return -ENOBUFS;
1255		}
1256		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1257		cork->flags |= IPCORK_OPT;
1258		cork->addr = ipc->addr;
1259	}
1260
 
 
1261	/*
1262	 * We steal reference to this route, caller should not release it
1263	 */
1264	*rtp = NULL;
1265	cork->fragsize = ip_sk_use_pmtu(sk) ?
1266			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1267
1268	cork->gso_size = ipc->gso_size;
1269	cork->dst = &rt->dst;
1270	cork->length = 0;
1271	cork->ttl = ipc->ttl;
1272	cork->tos = ipc->tos;
1273	cork->mark = ipc->sockc.mark;
1274	cork->priority = ipc->priority;
1275	cork->transmit_time = ipc->sockc.transmit_time;
1276	cork->tx_flags = 0;
1277	sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags);
1278
1279	return 0;
1280}
1281
1282/*
1283 *	ip_append_data() and ip_append_page() can make one large IP datagram
1284 *	from many pieces of data. Each pieces will be holded on the socket
1285 *	until ip_push_pending_frames() is called. Each piece can be a page
1286 *	or non-page data.
1287 *
1288 *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1289 *	this interface potentially.
1290 *
1291 *	LATER: length must be adjusted by pad at tail, when it is required.
1292 */
1293int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1294		   int getfrag(void *from, char *to, int offset, int len,
1295			       int odd, struct sk_buff *skb),
1296		   void *from, int length, int transhdrlen,
1297		   struct ipcm_cookie *ipc, struct rtable **rtp,
1298		   unsigned int flags)
1299{
1300	struct inet_sock *inet = inet_sk(sk);
1301	int err;
1302
1303	if (flags&MSG_PROBE)
1304		return 0;
1305
1306	if (skb_queue_empty(&sk->sk_write_queue)) {
1307		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1308		if (err)
1309			return err;
1310	} else {
1311		transhdrlen = 0;
1312	}
1313
1314	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1315				sk_page_frag(sk), getfrag,
1316				from, length, transhdrlen, flags);
1317}
1318
1319ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1320		       int offset, size_t size, int flags)
1321{
1322	struct inet_sock *inet = inet_sk(sk);
1323	struct sk_buff *skb;
1324	struct rtable *rt;
1325	struct ip_options *opt = NULL;
1326	struct inet_cork *cork;
1327	int hh_len;
1328	int mtu;
1329	int len;
1330	int err;
1331	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1332
1333	if (inet->hdrincl)
1334		return -EPERM;
1335
1336	if (flags&MSG_PROBE)
1337		return 0;
1338
1339	if (skb_queue_empty(&sk->sk_write_queue))
1340		return -EINVAL;
1341
1342	cork = &inet->cork.base;
1343	rt = (struct rtable *)cork->dst;
1344	if (cork->flags & IPCORK_OPT)
1345		opt = cork->opt;
1346
1347	if (!(rt->dst.dev->features&NETIF_F_SG))
1348		return -EOPNOTSUPP;
1349
1350	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1351	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
1352
1353	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1354	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1355	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1356
1357	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1358		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1359			       mtu - (opt ? opt->optlen : 0));
1360		return -EMSGSIZE;
1361	}
1362
1363	skb = skb_peek_tail(&sk->sk_write_queue);
1364	if (!skb)
1365		return -EINVAL;
1366
1367	cork->length += size;
 
 
 
 
 
 
 
1368
1369	while (size > 0) {
1370		/* Check if the remaining data fits into current packet. */
1371		len = mtu - skb->len;
1372		if (len < size)
1373			len = maxfraglen - skb->len;
 
1374
 
 
 
 
 
1375		if (len <= 0) {
1376			struct sk_buff *skb_prev;
1377			int alloclen;
1378
1379			skb_prev = skb;
1380			fraggap = skb_prev->len - maxfraglen;
1381
1382			alloclen = fragheaderlen + hh_len + fraggap + 15;
1383			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1384			if (unlikely(!skb)) {
1385				err = -ENOBUFS;
1386				goto error;
1387			}
1388
1389			/*
1390			 *	Fill in the control structures
1391			 */
1392			skb->ip_summed = CHECKSUM_NONE;
1393			skb->csum = 0;
1394			skb_reserve(skb, hh_len);
1395
1396			/*
1397			 *	Find where to start putting bytes.
1398			 */
1399			skb_put(skb, fragheaderlen + fraggap);
1400			skb_reset_network_header(skb);
1401			skb->transport_header = (skb->network_header +
1402						 fragheaderlen);
1403			if (fraggap) {
1404				skb->csum = skb_copy_and_csum_bits(skb_prev,
1405								   maxfraglen,
1406						    skb_transport_header(skb),
1407								   fraggap, 0);
1408				skb_prev->csum = csum_sub(skb_prev->csum,
1409							  skb->csum);
1410				pskb_trim_unique(skb_prev, maxfraglen);
1411			}
1412
1413			/*
1414			 * Put the packet on the pending queue.
1415			 */
1416			__skb_queue_tail(&sk->sk_write_queue, skb);
1417			continue;
1418		}
1419
 
1420		if (len > size)
1421			len = size;
1422
1423		if (skb_append_pagefrags(skb, page, offset, len)) {
 
 
 
 
1424			err = -EMSGSIZE;
1425			goto error;
1426		}
1427
1428		if (skb->ip_summed == CHECKSUM_NONE) {
1429			__wsum csum;
1430			csum = csum_page(page, offset, len);
1431			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1432		}
1433
1434		skb->len += len;
1435		skb->data_len += len;
1436		skb->truesize += len;
1437		refcount_add(len, &sk->sk_wmem_alloc);
1438		offset += len;
1439		size -= len;
1440	}
1441	return 0;
1442
1443error:
1444	cork->length -= size;
1445	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1446	return err;
1447}
1448
1449static void ip_cork_release(struct inet_cork *cork)
1450{
1451	cork->flags &= ~IPCORK_OPT;
1452	kfree(cork->opt);
1453	cork->opt = NULL;
1454	dst_release(cork->dst);
1455	cork->dst = NULL;
1456}
1457
1458/*
1459 *	Combined all pending IP fragments on the socket as one IP datagram
1460 *	and push them out.
1461 */
1462struct sk_buff *__ip_make_skb(struct sock *sk,
1463			      struct flowi4 *fl4,
1464			      struct sk_buff_head *queue,
1465			      struct inet_cork *cork)
1466{
1467	struct sk_buff *skb, *tmp_skb;
1468	struct sk_buff **tail_skb;
1469	struct inet_sock *inet = inet_sk(sk);
1470	struct net *net = sock_net(sk);
1471	struct ip_options *opt = NULL;
1472	struct rtable *rt = (struct rtable *)cork->dst;
1473	struct iphdr *iph;
1474	__be16 df = 0;
1475	__u8 ttl;
1476
1477	skb = __skb_dequeue(queue);
1478	if (!skb)
1479		goto out;
1480	tail_skb = &(skb_shinfo(skb)->frag_list);
1481
1482	/* move skb->data to ip header from ext header */
1483	if (skb->data < skb_network_header(skb))
1484		__skb_pull(skb, skb_network_offset(skb));
1485	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1486		__skb_pull(tmp_skb, skb_network_header_len(skb));
1487		*tail_skb = tmp_skb;
1488		tail_skb = &(tmp_skb->next);
1489		skb->len += tmp_skb->len;
1490		skb->data_len += tmp_skb->len;
1491		skb->truesize += tmp_skb->truesize;
1492		tmp_skb->destructor = NULL;
1493		tmp_skb->sk = NULL;
1494	}
1495
1496	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1497	 * to fragment the frame generated here. No matter, what transforms
1498	 * how transforms change size of the packet, it will come out.
1499	 */
1500	skb->ignore_df = ip_sk_ignore_df(sk);
 
1501
1502	/* DF bit is set when we want to see DF on outgoing frames.
1503	 * If ignore_df is set too, we still allow to fragment this frame
1504	 * locally. */
1505	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1506	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1507	    (skb->len <= dst_mtu(&rt->dst) &&
1508	     ip_dont_fragment(sk, &rt->dst)))
1509		df = htons(IP_DF);
1510
1511	if (cork->flags & IPCORK_OPT)
1512		opt = cork->opt;
1513
1514	if (cork->ttl != 0)
1515		ttl = cork->ttl;
1516	else if (rt->rt_type == RTN_MULTICAST)
1517		ttl = inet->mc_ttl;
1518	else
1519		ttl = ip_select_ttl(inet, &rt->dst);
1520
1521	iph = ip_hdr(skb);
1522	iph->version = 4;
1523	iph->ihl = 5;
1524	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1525	iph->frag_off = df;
 
1526	iph->ttl = ttl;
1527	iph->protocol = sk->sk_protocol;
1528	ip_copy_addrs(iph, fl4);
1529	ip_select_ident(net, skb, sk);
1530
1531	if (opt) {
1532		iph->ihl += opt->optlen>>2;
1533		ip_options_build(skb, opt, cork->addr, rt, 0);
1534	}
1535
1536	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1537	skb->mark = cork->mark;
1538	skb->tstamp = cork->transmit_time;
1539	/*
1540	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1541	 * on dst refcount
1542	 */
1543	cork->dst = NULL;
1544	skb_dst_set(skb, &rt->dst);
1545
1546	if (iph->protocol == IPPROTO_ICMP)
1547		icmp_out_count(net, ((struct icmphdr *)
1548			skb_transport_header(skb))->type);
1549
1550	ip_cork_release(cork);
1551out:
1552	return skb;
1553}
1554
1555int ip_send_skb(struct net *net, struct sk_buff *skb)
1556{
 
1557	int err;
1558
1559	err = ip_local_out(net, skb->sk, skb);
1560	if (err) {
1561		if (err > 0)
1562			err = net_xmit_errno(err);
1563		if (err)
1564			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1565	}
1566
1567	return err;
1568}
1569
1570int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1571{
1572	struct sk_buff *skb;
1573
1574	skb = ip_finish_skb(sk, fl4);
1575	if (!skb)
1576		return 0;
1577
1578	/* Netfilter gets whole the not fragmented skb. */
1579	return ip_send_skb(sock_net(sk), skb);
1580}
1581
1582/*
1583 *	Throw away all pending data on the socket.
1584 */
1585static void __ip_flush_pending_frames(struct sock *sk,
1586				      struct sk_buff_head *queue,
1587				      struct inet_cork *cork)
1588{
1589	struct sk_buff *skb;
1590
1591	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1592		kfree_skb(skb);
1593
1594	ip_cork_release(cork);
1595}
1596
1597void ip_flush_pending_frames(struct sock *sk)
1598{
1599	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1600}
1601
1602struct sk_buff *ip_make_skb(struct sock *sk,
1603			    struct flowi4 *fl4,
1604			    int getfrag(void *from, char *to, int offset,
1605					int len, int odd, struct sk_buff *skb),
1606			    void *from, int length, int transhdrlen,
1607			    struct ipcm_cookie *ipc, struct rtable **rtp,
1608			    struct inet_cork *cork, unsigned int flags)
1609{
 
1610	struct sk_buff_head queue;
1611	int err;
1612
1613	if (flags & MSG_PROBE)
1614		return NULL;
1615
1616	__skb_queue_head_init(&queue);
1617
1618	cork->flags = 0;
1619	cork->addr = 0;
1620	cork->opt = NULL;
1621	err = ip_setup_cork(sk, cork, ipc, rtp);
1622	if (err)
1623		return ERR_PTR(err);
1624
1625	err = __ip_append_data(sk, fl4, &queue, cork,
1626			       &current->task_frag, getfrag,
1627			       from, length, transhdrlen, flags);
1628	if (err) {
1629		__ip_flush_pending_frames(sk, &queue, cork);
1630		return ERR_PTR(err);
1631	}
1632
1633	return __ip_make_skb(sk, fl4, &queue, cork);
1634}
1635
1636/*
1637 *	Fetch data from kernel space and fill in checksum if needed.
1638 */
1639static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1640			      int len, int odd, struct sk_buff *skb)
1641{
1642	__wsum csum;
1643
1644	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1645	skb->csum = csum_block_add(skb->csum, csum, odd);
1646	return 0;
1647}
1648
1649/*
1650 *	Generic function to send a packet as reply to another packet.
1651 *	Used to send some TCP resets/acks so far.
 
 
 
1652 */
1653void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1654			   const struct ip_options *sopt,
1655			   __be32 daddr, __be32 saddr,
1656			   const struct ip_reply_arg *arg,
1657			   unsigned int len, u64 transmit_time)
1658{
 
1659	struct ip_options_data replyopts;
1660	struct ipcm_cookie ipc;
1661	struct flowi4 fl4;
1662	struct rtable *rt = skb_rtable(skb);
1663	struct net *net = sock_net(sk);
1664	struct sk_buff *nskb;
1665	int err;
1666	int oif;
1667
1668	if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1669		return;
1670
1671	ipcm_init(&ipc);
1672	ipc.addr = daddr;
1673	ipc.sockc.transmit_time = transmit_time;
 
1674
1675	if (replyopts.opt.opt.optlen) {
1676		ipc.opt = &replyopts.opt;
1677
1678		if (replyopts.opt.opt.srr)
1679			daddr = replyopts.opt.opt.faddr;
1680	}
1681
1682	oif = arg->bound_dev_if;
1683	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1684		oif = skb->skb_iif;
1685
1686	flowi4_init_output(&fl4, oif,
1687			   IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1688			   RT_TOS(arg->tos),
1689			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1690			   ip_reply_arg_flowi_flags(arg),
1691			   daddr, saddr,
1692			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1693			   arg->uid);
1694	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1695	rt = ip_route_output_key(net, &fl4);
1696	if (IS_ERR(rt))
1697		return;
1698
1699	inet_sk(sk)->tos = arg->tos;
1700
 
 
 
 
 
 
 
1701	sk->sk_protocol = ip_hdr(skb)->protocol;
1702	sk->sk_bound_dev_if = arg->bound_dev_if;
1703	sk->sk_sndbuf = sysctl_wmem_default;
1704	sk->sk_mark = fl4.flowi4_mark;
1705	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1706			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1707	if (unlikely(err)) {
1708		ip_flush_pending_frames(sk);
1709		goto out;
1710	}
1711
1712	nskb = skb_peek(&sk->sk_write_queue);
1713	if (nskb) {
1714		if (arg->csumoffset >= 0)
1715			*((__sum16 *)skb_transport_header(nskb) +
1716			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1717								arg->csum));
1718		nskb->ip_summed = CHECKSUM_NONE;
1719		ip_push_pending_frames(sk, &fl4);
1720	}
1721out:
 
 
1722	ip_rt_put(rt);
1723}
1724
1725void __init ip_init(void)
1726{
1727	ip_rt_init();
1728	inet_initpeers();
1729
1730#if defined(CONFIG_IP_MULTICAST)
1731	igmp_mc_init();
1732#endif
1733}
v3.5.6
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		The Internet Protocol (IP) output module.
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Donald Becker, <becker@super.org>
  11 *		Alan Cox, <Alan.Cox@linux.org>
  12 *		Richard Underwood
  13 *		Stefan Becker, <stefanb@yello.ping.de>
  14 *		Jorge Cwik, <jorge@laser.satlink.net>
  15 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  16 *		Hirokazu Takahashi, <taka@valinux.co.jp>
  17 *
  18 *	See ip_input.c for original log
  19 *
  20 *	Fixes:
  21 *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
  22 *		Mike Kilburn	:	htons() missing in ip_build_xmit.
  23 *		Bradford Johnson:	Fix faulty handling of some frames when
  24 *					no route is found.
  25 *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
  26 *					(in case if packet not accepted by
  27 *					output firewall rules)
  28 *		Mike McLagan	:	Routing by source
  29 *		Alexey Kuznetsov:	use new route cache
  30 *		Andi Kleen:		Fix broken PMTU recovery and remove
  31 *					some redundant tests.
  32 *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
  33 *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
  34 *		Andi Kleen	:	Split fast and slow ip_build_xmit path
  35 *					for decreased register pressure on x86
  36 *					and more readibility.
  37 *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
  38 *					silently drop skb instead of failing with -EPERM.
  39 *		Detlev Wengorz	:	Copy protocol for fragments.
  40 *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
  41 *					datagrams.
  42 *		Hirokazu Takahashi:	sendfile() on UDP works now.
  43 */
  44
  45#include <asm/uaccess.h>
  46#include <linux/module.h>
  47#include <linux/types.h>
  48#include <linux/kernel.h>
  49#include <linux/mm.h>
  50#include <linux/string.h>
  51#include <linux/errno.h>
  52#include <linux/highmem.h>
  53#include <linux/slab.h>
  54
  55#include <linux/socket.h>
  56#include <linux/sockios.h>
  57#include <linux/in.h>
  58#include <linux/inet.h>
  59#include <linux/netdevice.h>
  60#include <linux/etherdevice.h>
  61#include <linux/proc_fs.h>
  62#include <linux/stat.h>
  63#include <linux/init.h>
  64
  65#include <net/snmp.h>
  66#include <net/ip.h>
  67#include <net/protocol.h>
  68#include <net/route.h>
  69#include <net/xfrm.h>
  70#include <linux/skbuff.h>
  71#include <net/sock.h>
  72#include <net/arp.h>
  73#include <net/icmp.h>
  74#include <net/checksum.h>
  75#include <net/inetpeer.h>
 
 
  76#include <linux/igmp.h>
  77#include <linux/netfilter_ipv4.h>
  78#include <linux/netfilter_bridge.h>
  79#include <linux/mroute.h>
  80#include <linux/netlink.h>
  81#include <linux/tcp.h>
  82
  83int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
  84EXPORT_SYMBOL(sysctl_ip_default_ttl);
 
 
  85
  86/* Generate a checksum for an outgoing IP datagram. */
  87__inline__ void ip_send_check(struct iphdr *iph)
  88{
  89	iph->check = 0;
  90	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
  91}
  92EXPORT_SYMBOL(ip_send_check);
  93
  94int __ip_local_out(struct sk_buff *skb)
  95{
  96	struct iphdr *iph = ip_hdr(skb);
  97
  98	iph->tot_len = htons(skb->len);
  99	ip_send_check(iph);
 100	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
 101		       skb_dst(skb)->dev, dst_output);
 
 
 
 
 
 
 
 
 
 
 
 102}
 103
 104int ip_local_out(struct sk_buff *skb)
 105{
 106	int err;
 107
 108	err = __ip_local_out(skb);
 109	if (likely(err == 1))
 110		err = dst_output(skb);
 111
 112	return err;
 113}
 114EXPORT_SYMBOL_GPL(ip_local_out);
 115
 116/* dev_loopback_xmit for use with netfilter. */
 117static int ip_dev_loopback_xmit(struct sk_buff *newskb)
 118{
 119	skb_reset_mac_header(newskb);
 120	__skb_pull(newskb, skb_network_offset(newskb));
 121	newskb->pkt_type = PACKET_LOOPBACK;
 122	newskb->ip_summed = CHECKSUM_UNNECESSARY;
 123	WARN_ON(!skb_dst(newskb));
 124	skb_dst_force(newskb);
 125	netif_rx_ni(newskb);
 126	return 0;
 127}
 128
 129static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
 130{
 131	int ttl = inet->uc_ttl;
 132
 133	if (ttl < 0)
 134		ttl = ip4_dst_hoplimit(dst);
 135	return ttl;
 136}
 137
 138/*
 139 *		Add an ip header to a skbuff and send it out.
 140 *
 141 */
 142int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
 143			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
 144{
 145	struct inet_sock *inet = inet_sk(sk);
 146	struct rtable *rt = skb_rtable(skb);
 
 147	struct iphdr *iph;
 148
 149	/* Build the IP header. */
 150	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
 151	skb_reset_network_header(skb);
 152	iph = ip_hdr(skb);
 153	iph->version  = 4;
 154	iph->ihl      = 5;
 155	iph->tos      = inet->tos;
 156	if (ip_dont_fragment(sk, &rt->dst))
 157		iph->frag_off = htons(IP_DF);
 158	else
 159		iph->frag_off = 0;
 160	iph->ttl      = ip_select_ttl(inet, &rt->dst);
 161	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
 162	iph->saddr    = saddr;
 163	iph->protocol = sk->sk_protocol;
 164	ip_select_ident(iph, &rt->dst, sk);
 
 
 
 
 
 
 165
 166	if (opt && opt->opt.optlen) {
 167		iph->ihl += opt->opt.optlen>>2;
 168		ip_options_build(skb, &opt->opt, daddr, rt, 0);
 169	}
 170
 171	skb->priority = sk->sk_priority;
 172	skb->mark = sk->sk_mark;
 
 173
 174	/* Send it out. */
 175	return ip_local_out(skb);
 176}
 177EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
 178
 179static inline int ip_finish_output2(struct sk_buff *skb)
 180{
 181	struct dst_entry *dst = skb_dst(skb);
 182	struct rtable *rt = (struct rtable *)dst;
 183	struct net_device *dev = dst->dev;
 184	unsigned int hh_len = LL_RESERVED_SPACE(dev);
 185	struct neighbour *neigh;
 
 186
 187	if (rt->rt_type == RTN_MULTICAST) {
 188		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
 189	} else if (rt->rt_type == RTN_BROADCAST)
 190		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
 191
 192	/* Be paranoid, rather than too clever. */
 193	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
 194		struct sk_buff *skb2;
 195
 196		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
 197		if (skb2 == NULL) {
 198			kfree_skb(skb);
 199			return -ENOMEM;
 200		}
 201		if (skb->sk)
 202			skb_set_owner_w(skb2, skb->sk);
 203		kfree_skb(skb);
 204		skb = skb2;
 205	}
 206
 207	rcu_read_lock();
 208	neigh = dst_get_neighbour_noref(dst);
 209	if (neigh) {
 210		int res = neigh_output(neigh, skb);
 
 
 211
 212		rcu_read_unlock();
 
 
 
 
 
 
 
 
 213		return res;
 214	}
 215	rcu_read_unlock();
 216
 217	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
 218			    __func__);
 219	kfree_skb(skb);
 220	return -EINVAL;
 221}
 222
 223static inline int ip_skb_dst_mtu(struct sk_buff *skb)
 
 224{
 225	struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 226
 227	return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
 228	       skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
 
 
 
 
 229}
 230
 231static int ip_finish_output(struct sk_buff *skb)
 232{
 
 
 233#if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
 234	/* Policy lookup after SNAT yielded a new policy */
 235	if (skb_dst(skb)->xfrm != NULL) {
 236		IPCB(skb)->flags |= IPSKB_REROUTED;
 237		return dst_output(skb);
 238	}
 239#endif
 240	if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
 241		return ip_fragment(skb, ip_finish_output2);
 242	else
 243		return ip_finish_output2(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244}
 245
 246int ip_mc_output(struct sk_buff *skb)
 247{
 248	struct sock *sk = skb->sk;
 249	struct rtable *rt = skb_rtable(skb);
 250	struct net_device *dev = rt->dst.dev;
 251
 252	/*
 253	 *	If the indicated interface is up and running, send the packet.
 254	 */
 255	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
 256
 257	skb->dev = dev;
 258	skb->protocol = htons(ETH_P_IP);
 259
 260	/*
 261	 *	Multicasts are looped back for other local users
 262	 */
 263
 264	if (rt->rt_flags&RTCF_MULTICAST) {
 265		if (sk_mc_loop(sk)
 266#ifdef CONFIG_IP_MROUTE
 267		/* Small optimization: do not loopback not local frames,
 268		   which returned after forwarding; they will be  dropped
 269		   by ip_mr_input in any case.
 270		   Note, that local frames are looped back to be delivered
 271		   to local recipients.
 272
 273		   This check is duplicated in ip_mr_input at the moment.
 274		 */
 275		    &&
 276		    ((rt->rt_flags & RTCF_LOCAL) ||
 277		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
 278#endif
 279		   ) {
 280			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
 281			if (newskb)
 282				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 283					newskb, NULL, newskb->dev,
 284					ip_dev_loopback_xmit);
 285		}
 286
 287		/* Multicasts with ttl 0 must not go beyond the host */
 288
 289		if (ip_hdr(skb)->ttl == 0) {
 290			kfree_skb(skb);
 291			return 0;
 292		}
 293	}
 294
 295	if (rt->rt_flags&RTCF_BROADCAST) {
 296		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
 297		if (newskb)
 298			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
 299				NULL, newskb->dev, ip_dev_loopback_xmit);
 
 300	}
 301
 302	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
 303			    skb->dev, ip_finish_output,
 
 304			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 305}
 306
 307int ip_output(struct sk_buff *skb)
 308{
 309	struct net_device *dev = skb_dst(skb)->dev;
 310
 311	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
 312
 313	skb->dev = dev;
 314	skb->protocol = htons(ETH_P_IP);
 315
 316	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
 
 317			    ip_finish_output,
 318			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 319}
 320
 321/*
 322 * copy saddr and daddr, possibly using 64bit load/stores
 323 * Equivalent to :
 324 *   iph->saddr = fl4->saddr;
 325 *   iph->daddr = fl4->daddr;
 326 */
 327static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
 328{
 329	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
 330		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
 331	memcpy(&iph->saddr, &fl4->saddr,
 332	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
 333}
 334
 335int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl)
 
 
 336{
 337	struct sock *sk = skb->sk;
 338	struct inet_sock *inet = inet_sk(sk);
 
 339	struct ip_options_rcu *inet_opt;
 340	struct flowi4 *fl4;
 341	struct rtable *rt;
 342	struct iphdr *iph;
 343	int res;
 344
 345	/* Skip all of this if the packet is already routed,
 346	 * f.e. by something like SCTP.
 347	 */
 348	rcu_read_lock();
 349	inet_opt = rcu_dereference(inet->inet_opt);
 350	fl4 = &fl->u.ip4;
 351	rt = skb_rtable(skb);
 352	if (rt != NULL)
 353		goto packet_routed;
 354
 355	/* Make sure we can route this packet. */
 356	rt = (struct rtable *)__sk_dst_check(sk, 0);
 357	if (rt == NULL) {
 358		__be32 daddr;
 359
 360		/* Use correct destination address if we have options. */
 361		daddr = inet->inet_daddr;
 362		if (inet_opt && inet_opt->opt.srr)
 363			daddr = inet_opt->opt.faddr;
 364
 365		/* If this fails, retransmit mechanism of transport layer will
 366		 * keep trying until route appears or the connection times
 367		 * itself out.
 368		 */
 369		rt = ip_route_output_ports(sock_net(sk), fl4, sk,
 370					   daddr, inet->inet_saddr,
 371					   inet->inet_dport,
 372					   inet->inet_sport,
 373					   sk->sk_protocol,
 374					   RT_CONN_FLAGS(sk),
 375					   sk->sk_bound_dev_if);
 376		if (IS_ERR(rt))
 377			goto no_route;
 378		sk_setup_caps(sk, &rt->dst);
 379	}
 380	skb_dst_set_noref(skb, &rt->dst);
 381
 382packet_routed:
 383	if (inet_opt && inet_opt->opt.is_strictroute && fl4->daddr != rt->rt_gateway)
 384		goto no_route;
 385
 386	/* OK, we know where to send it, allocate and build IP header. */
 387	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
 388	skb_reset_network_header(skb);
 389	iph = ip_hdr(skb);
 390	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
 391	if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
 392		iph->frag_off = htons(IP_DF);
 393	else
 394		iph->frag_off = 0;
 395	iph->ttl      = ip_select_ttl(inet, &rt->dst);
 396	iph->protocol = sk->sk_protocol;
 397	ip_copy_addrs(iph, fl4);
 398
 399	/* Transport layer set skb->h.foo itself. */
 400
 401	if (inet_opt && inet_opt->opt.optlen) {
 402		iph->ihl += inet_opt->opt.optlen >> 2;
 403		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
 404	}
 405
 406	ip_select_ident_more(iph, &rt->dst, sk,
 407			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
 408
 
 409	skb->priority = sk->sk_priority;
 410	skb->mark = sk->sk_mark;
 411
 412	res = ip_local_out(skb);
 413	rcu_read_unlock();
 414	return res;
 415
 416no_route:
 417	rcu_read_unlock();
 418	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
 419	kfree_skb(skb);
 420	return -EHOSTUNREACH;
 421}
 422EXPORT_SYMBOL(ip_queue_xmit);
 423
 424
 425static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
 426{
 427	to->pkt_type = from->pkt_type;
 428	to->priority = from->priority;
 429	to->protocol = from->protocol;
 
 430	skb_dst_drop(to);
 431	skb_dst_copy(to, from);
 432	to->dev = from->dev;
 433	to->mark = from->mark;
 434
 435	/* Copy the flags to each fragment. */
 436	IPCB(to)->flags = IPCB(from)->flags;
 437
 438#ifdef CONFIG_NET_SCHED
 439	to->tc_index = from->tc_index;
 440#endif
 441	nf_copy(to, from);
 442#if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
 443    defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
 444	to->nf_trace = from->nf_trace;
 445#endif
 446#if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
 447	to->ipvs_property = from->ipvs_property;
 448#endif
 449	skb_copy_secmark(to, from);
 450}
 451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 452/*
 453 *	This IP datagram is too large to be sent in one piece.  Break it up into
 454 *	smaller pieces (each of size equal to IP header plus
 455 *	a block of the data of the original IP data part) that will yet fit in a
 456 *	single device frame, and queue such a frame for sending.
 457 */
 458
 459int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
 
 460{
 461	struct iphdr *iph;
 462	int ptr;
 463	struct net_device *dev;
 464	struct sk_buff *skb2;
 465	unsigned int mtu, hlen, left, len, ll_rs;
 466	int offset;
 467	__be16 not_last_frag;
 468	struct rtable *rt = skb_rtable(skb);
 
 
 
 
 469	int err = 0;
 470
 471	dev = rt->dst.dev;
 
 
 
 472
 473	/*
 474	 *	Point into the IP datagram header.
 475	 */
 476
 477	iph = ip_hdr(skb);
 478
 479	if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
 480		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
 481		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
 482			  htonl(ip_skb_dst_mtu(skb)));
 483		kfree_skb(skb);
 484		return -EMSGSIZE;
 485	}
 486
 487	/*
 488	 *	Setup starting values.
 489	 */
 490
 491	hlen = iph->ihl * 4;
 492	mtu = dst_mtu(&rt->dst) - hlen;	/* Size of data space */
 493#ifdef CONFIG_BRIDGE_NETFILTER
 494	if (skb->nf_bridge)
 495		mtu -= nf_bridge_mtu_reduction(skb);
 496#endif
 497	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
 
 498
 499	/* When frag_list is given, use it. First, check its validity:
 500	 * some transformers could create wrong frag_list or break existing
 501	 * one, it is not prohibited. In this case fall back to copying.
 502	 *
 503	 * LATER: this step can be merged to real generation of fragments,
 504	 * we can switch to copy when see the first bad fragment.
 505	 */
 506	if (skb_has_frag_list(skb)) {
 507		struct sk_buff *frag, *frag2;
 508		int first_len = skb_pagelen(skb);
 509
 510		if (first_len - hlen > mtu ||
 511		    ((first_len - hlen) & 7) ||
 512		    ip_is_fragment(iph) ||
 513		    skb_cloned(skb))
 
 514			goto slow_path;
 515
 516		skb_walk_frags(skb, frag) {
 517			/* Correct geometry. */
 518			if (frag->len > mtu ||
 519			    ((frag->len & 7) && frag->next) ||
 520			    skb_headroom(frag) < hlen)
 521				goto slow_path_clean;
 522
 523			/* Partially cloned skb? */
 524			if (skb_shared(frag))
 525				goto slow_path_clean;
 526
 527			BUG_ON(frag->sk);
 528			if (skb->sk) {
 529				frag->sk = skb->sk;
 530				frag->destructor = sock_wfree;
 531			}
 532			skb->truesize -= frag->truesize;
 533		}
 534
 535		/* Everything is OK. Generate! */
 536
 537		err = 0;
 538		offset = 0;
 539		frag = skb_shinfo(skb)->frag_list;
 540		skb_frag_list_init(skb);
 541		skb->data_len = first_len - skb_headlen(skb);
 542		skb->len = first_len;
 543		iph->tot_len = htons(first_len);
 544		iph->frag_off = htons(IP_MF);
 545		ip_send_check(iph);
 546
 547		for (;;) {
 548			/* Prepare header of the next frame,
 549			 * before previous one went down. */
 550			if (frag) {
 551				frag->ip_summed = CHECKSUM_NONE;
 552				skb_reset_transport_header(frag);
 553				__skb_push(frag, hlen);
 554				skb_reset_network_header(frag);
 555				memcpy(skb_network_header(frag), iph, hlen);
 556				iph = ip_hdr(frag);
 557				iph->tot_len = htons(frag->len);
 558				ip_copy_metadata(frag, skb);
 559				if (offset == 0)
 560					ip_options_fragment(frag);
 561				offset += skb->len - hlen;
 562				iph->frag_off = htons(offset>>3);
 563				if (frag->next != NULL)
 564					iph->frag_off |= htons(IP_MF);
 565				/* Ready, complete checksum */
 566				ip_send_check(iph);
 567			}
 568
 569			err = output(skb);
 
 570
 571			if (!err)
 572				IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
 573			if (err || !frag)
 574				break;
 575
 576			skb = frag;
 577			frag = skb->next;
 578			skb->next = NULL;
 579		}
 580
 581		if (err == 0) {
 582			IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
 583			return 0;
 584		}
 585
 586		while (frag) {
 587			skb = frag->next;
 588			kfree_skb(frag);
 589			frag = skb;
 590		}
 591		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
 592		return err;
 593
 594slow_path_clean:
 595		skb_walk_frags(skb, frag2) {
 596			if (frag2 == frag)
 597				break;
 598			frag2->sk = NULL;
 599			frag2->destructor = NULL;
 600			skb->truesize += frag2->truesize;
 601		}
 602	}
 603
 604slow_path:
 605	left = skb->len - hlen;		/* Space per frame */
 606	ptr = hlen;		/* Where to start from */
 607
 608	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
 609	 * we need to make room for the encapsulating header
 610	 */
 611	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
 612
 613	/*
 614	 *	Fragment the datagram.
 615	 */
 616
 617	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
 618	not_last_frag = iph->frag_off & htons(IP_MF);
 619
 620	/*
 621	 *	Keep copying data until we run out.
 622	 */
 623
 624	while (left > 0) {
 625		len = left;
 626		/* IF: it doesn't fit, use 'mtu' - the data space left */
 627		if (len > mtu)
 628			len = mtu;
 629		/* IF: we are not sending up to and including the packet end
 630		   then align the next start on an eight byte boundary */
 631		if (len < left)	{
 632			len &= ~7;
 633		}
 634		/*
 635		 *	Allocate buffer.
 636		 */
 637
 638		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
 639			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
 640			err = -ENOMEM;
 641			goto fail;
 642		}
 643
 644		/*
 645		 *	Set up data on packet
 646		 */
 647
 648		ip_copy_metadata(skb2, skb);
 649		skb_reserve(skb2, ll_rs);
 650		skb_put(skb2, len + hlen);
 651		skb_reset_network_header(skb2);
 652		skb2->transport_header = skb2->network_header + hlen;
 653
 654		/*
 655		 *	Charge the memory for the fragment to any owner
 656		 *	it might possess
 657		 */
 658
 659		if (skb->sk)
 660			skb_set_owner_w(skb2, skb->sk);
 661
 662		/*
 663		 *	Copy the packet header into the new buffer.
 664		 */
 665
 666		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
 667
 668		/*
 669		 *	Copy a block of the IP datagram.
 670		 */
 671		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
 672			BUG();
 673		left -= len;
 674
 675		/*
 676		 *	Fill in the new header fields.
 677		 */
 678		iph = ip_hdr(skb2);
 679		iph->frag_off = htons((offset >> 3));
 680
 681		/* ANK: dirty, but effective trick. Upgrade options only if
 682		 * the segment to be fragmented was THE FIRST (otherwise,
 683		 * options are already fixed) and make it ONCE
 684		 * on the initial skb, so that all the following fragments
 685		 * will inherit fixed options.
 686		 */
 687		if (offset == 0)
 688			ip_options_fragment(skb);
 689
 690		/*
 691		 *	Added AC : If we are fragmenting a fragment that's not the
 692		 *		   last fragment then keep MF on each bit
 693		 */
 694		if (left > 0 || not_last_frag)
 695			iph->frag_off |= htons(IP_MF);
 696		ptr += len;
 697		offset += len;
 698
 699		/*
 700		 *	Put this fragment into the sending queue.
 701		 */
 702		iph->tot_len = htons(len + hlen);
 703
 704		ip_send_check(iph);
 705
 706		err = output(skb2);
 707		if (err)
 708			goto fail;
 709
 710		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
 711	}
 712	kfree_skb(skb);
 713	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
 714	return err;
 715
 716fail:
 717	kfree_skb(skb);
 718	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
 719	return err;
 720}
 721EXPORT_SYMBOL(ip_fragment);
 722
 723int
 724ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
 725{
 726	struct iovec *iov = from;
 727
 728	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 729		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
 730			return -EFAULT;
 731	} else {
 732		__wsum csum = 0;
 733		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
 734			return -EFAULT;
 735		skb->csum = csum_block_add(skb->csum, csum, odd);
 736	}
 737	return 0;
 738}
 739EXPORT_SYMBOL(ip_generic_getfrag);
 740
 741static inline __wsum
 742csum_page(struct page *page, int offset, int copy)
 743{
 744	char *kaddr;
 745	__wsum csum;
 746	kaddr = kmap(page);
 747	csum = csum_partial(kaddr + offset, copy, 0);
 748	kunmap(page);
 749	return csum;
 750}
 751
 752static inline int ip_ufo_append_data(struct sock *sk,
 753			struct sk_buff_head *queue,
 754			int getfrag(void *from, char *to, int offset, int len,
 755			       int odd, struct sk_buff *skb),
 756			void *from, int length, int hh_len, int fragheaderlen,
 757			int transhdrlen, int maxfraglen, unsigned int flags)
 758{
 759	struct sk_buff *skb;
 760	int err;
 761
 762	/* There is support for UDP fragmentation offload by network
 763	 * device, so create one single skb packet containing complete
 764	 * udp datagram
 765	 */
 766	if ((skb = skb_peek_tail(queue)) == NULL) {
 767		skb = sock_alloc_send_skb(sk,
 768			hh_len + fragheaderlen + transhdrlen + 20,
 769			(flags & MSG_DONTWAIT), &err);
 770
 771		if (skb == NULL)
 772			return err;
 773
 774		/* reserve space for Hardware header */
 775		skb_reserve(skb, hh_len);
 776
 777		/* create space for UDP/IP header */
 778		skb_put(skb, fragheaderlen + transhdrlen);
 779
 780		/* initialize network header pointer */
 781		skb_reset_network_header(skb);
 782
 783		/* initialize protocol header pointer */
 784		skb->transport_header = skb->network_header + fragheaderlen;
 785
 786		skb->ip_summed = CHECKSUM_PARTIAL;
 787		skb->csum = 0;
 788
 789		/* specify the length of each IP datagram fragment */
 790		skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
 791		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
 792		__skb_queue_tail(queue, skb);
 793	}
 794
 795	return skb_append_datato_frags(sk, skb, getfrag, from,
 796				       (length - transhdrlen));
 797}
 798
 799static int __ip_append_data(struct sock *sk,
 800			    struct flowi4 *fl4,
 801			    struct sk_buff_head *queue,
 802			    struct inet_cork *cork,
 
 803			    int getfrag(void *from, char *to, int offset,
 804					int len, int odd, struct sk_buff *skb),
 805			    void *from, int length, int transhdrlen,
 806			    unsigned int flags)
 807{
 808	struct inet_sock *inet = inet_sk(sk);
 
 809	struct sk_buff *skb;
 810
 811	struct ip_options *opt = cork->opt;
 812	int hh_len;
 813	int exthdrlen;
 814	int mtu;
 815	int copy;
 816	int err;
 817	int offset = 0;
 818	unsigned int maxfraglen, fragheaderlen;
 819	int csummode = CHECKSUM_NONE;
 820	struct rtable *rt = (struct rtable *)cork->dst;
 
 
 
 821
 822	skb = skb_peek_tail(queue);
 823
 824	exthdrlen = !skb ? rt->dst.header_len : 0;
 825	mtu = cork->fragsize;
 
 
 
 
 
 826
 827	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
 828
 829	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
 830	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
 
 831
 832	if (cork->length + length > 0xFFFF - fragheaderlen) {
 833		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
 834			       mtu-exthdrlen);
 835		return -EMSGSIZE;
 836	}
 837
 838	/*
 839	 * transhdrlen > 0 means that this is the first fragment and we wish
 840	 * it won't be fragmented in the future.
 841	 */
 842	if (transhdrlen &&
 843	    length + fragheaderlen <= mtu &&
 844	    rt->dst.dev->features & NETIF_F_V4_CSUM &&
 845	    !exthdrlen)
 
 846		csummode = CHECKSUM_PARTIAL;
 847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 848	cork->length += length;
 849	if (((length > mtu) || (skb && skb_is_gso(skb))) &&
 850	    (sk->sk_protocol == IPPROTO_UDP) &&
 851	    (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len) {
 852		err = ip_ufo_append_data(sk, queue, getfrag, from, length,
 853					 hh_len, fragheaderlen, transhdrlen,
 854					 maxfraglen, flags);
 855		if (err)
 856			goto error;
 857		return 0;
 858	}
 859
 860	/* So, what's going on in the loop below?
 861	 *
 862	 * We use calculated fragment length to generate chained skb,
 863	 * each of segments is IP fragment ready for sending to network after
 864	 * adding appropriate IP header.
 865	 */
 866
 867	if (!skb)
 868		goto alloc_new_skb;
 869
 870	while (length > 0) {
 871		/* Check if the remaining data fits into current packet. */
 872		copy = mtu - skb->len;
 873		if (copy < length)
 874			copy = maxfraglen - skb->len;
 875		if (copy <= 0) {
 876			char *data;
 877			unsigned int datalen;
 878			unsigned int fraglen;
 879			unsigned int fraggap;
 880			unsigned int alloclen;
 
 881			struct sk_buff *skb_prev;
 882alloc_new_skb:
 883			skb_prev = skb;
 884			if (skb_prev)
 885				fraggap = skb_prev->len - maxfraglen;
 886			else
 887				fraggap = 0;
 888
 889			/*
 890			 * If remaining data exceeds the mtu,
 891			 * we know we need more fragment(s).
 892			 */
 893			datalen = length + fraggap;
 894			if (datalen > mtu - fragheaderlen)
 895				datalen = maxfraglen - fragheaderlen;
 896			fraglen = datalen + fragheaderlen;
 
 897
 898			if ((flags & MSG_MORE) &&
 899			    !(rt->dst.dev->features&NETIF_F_SG))
 900				alloclen = mtu;
 901			else
 902				alloclen = fraglen;
 
 
 
 
 903
 904			alloclen += exthdrlen;
 905
 906			/* The last fragment gets additional space at tail.
 907			 * Note, with MSG_MORE we overallocate on fragments,
 908			 * because we have no idea what fragment will be
 909			 * the last.
 910			 */
 911			if (datalen == length + fraggap)
 912				alloclen += rt->dst.trailer_len;
 913
 914			if (transhdrlen) {
 915				skb = sock_alloc_send_skb(sk,
 916						alloclen + hh_len + 15,
 917						(flags & MSG_DONTWAIT), &err);
 918			} else {
 919				skb = NULL;
 920				if (atomic_read(&sk->sk_wmem_alloc) <=
 921				    2 * sk->sk_sndbuf)
 922					skb = sock_wmalloc(sk,
 923							   alloclen + hh_len + 15, 1,
 924							   sk->sk_allocation);
 925				if (unlikely(skb == NULL))
 926					err = -ENOBUFS;
 927				else
 928					/* only the initial fragment is
 929					   time stamped */
 930					cork->tx_flags = 0;
 931			}
 932			if (skb == NULL)
 933				goto error;
 934
 935			/*
 936			 *	Fill in the control structures
 937			 */
 938			skb->ip_summed = csummode;
 939			skb->csum = 0;
 940			skb_reserve(skb, hh_len);
 941			skb_shinfo(skb)->tx_flags = cork->tx_flags;
 942
 943			/*
 944			 *	Find where to start putting bytes.
 945			 */
 946			data = skb_put(skb, fraglen + exthdrlen);
 947			skb_set_network_header(skb, exthdrlen);
 948			skb->transport_header = (skb->network_header +
 949						 fragheaderlen);
 950			data += fragheaderlen + exthdrlen;
 951
 952			if (fraggap) {
 953				skb->csum = skb_copy_and_csum_bits(
 954					skb_prev, maxfraglen,
 955					data + transhdrlen, fraggap, 0);
 956				skb_prev->csum = csum_sub(skb_prev->csum,
 957							  skb->csum);
 958				data += fraggap;
 959				pskb_trim_unique(skb_prev, maxfraglen);
 960			}
 961
 962			copy = datalen - transhdrlen - fraggap;
 963			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
 964				err = -EFAULT;
 965				kfree_skb(skb);
 966				goto error;
 967			}
 968
 969			offset += copy;
 970			length -= datalen - fraggap;
 971			transhdrlen = 0;
 972			exthdrlen = 0;
 973			csummode = CHECKSUM_NONE;
 974
 
 
 
 
 
 
 
 
 
 
 975			/*
 976			 * Put the packet on the pending queue.
 977			 */
 
 
 
 
 
 978			__skb_queue_tail(queue, skb);
 979			continue;
 980		}
 981
 982		if (copy > length)
 983			copy = length;
 984
 985		if (!(rt->dst.dev->features&NETIF_F_SG)) {
 
 986			unsigned int off;
 987
 988			off = skb->len;
 989			if (getfrag(from, skb_put(skb, copy),
 990					offset, copy, off, skb) < 0) {
 991				__skb_trim(skb, off);
 992				err = -EFAULT;
 993				goto error;
 994			}
 995		} else {
 996			int i = skb_shinfo(skb)->nr_frags;
 997			skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
 998			struct page *page = cork->page;
 999			int off = cork->off;
1000			unsigned int left;
1001
1002			if (page && (left = PAGE_SIZE - off) > 0) {
1003				if (copy >= left)
1004					copy = left;
1005				if (page != skb_frag_page(frag)) {
1006					if (i == MAX_SKB_FRAGS) {
1007						err = -EMSGSIZE;
1008						goto error;
1009					}
1010					skb_fill_page_desc(skb, i, page, off, 0);
1011					skb_frag_ref(skb, i);
1012					frag = &skb_shinfo(skb)->frags[i];
1013				}
1014			} else if (i < MAX_SKB_FRAGS) {
1015				if (copy > PAGE_SIZE)
1016					copy = PAGE_SIZE;
1017				page = alloc_pages(sk->sk_allocation, 0);
1018				if (page == NULL)  {
1019					err = -ENOMEM;
1020					goto error;
1021				}
1022				cork->page = page;
1023				cork->off = 0;
1024
1025				skb_fill_page_desc(skb, i, page, 0, 0);
1026				frag = &skb_shinfo(skb)->frags[i];
1027			} else {
1028				err = -EMSGSIZE;
1029				goto error;
1030			}
1031			if (getfrag(from, skb_frag_address(frag)+skb_frag_size(frag),
1032				    offset, copy, skb->len, skb) < 0) {
1033				err = -EFAULT;
1034				goto error;
1035			}
1036			cork->off += copy;
1037			skb_frag_size_add(frag, copy);
 
1038			skb->len += copy;
1039			skb->data_len += copy;
1040			skb->truesize += copy;
1041			atomic_add(copy, &sk->sk_wmem_alloc);
 
 
 
 
1042		}
1043		offset += copy;
1044		length -= copy;
1045	}
1046
 
 
1047	return 0;
1048
 
 
1049error:
 
 
1050	cork->length -= length;
1051	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
 
1052	return err;
1053}
1054
1055static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1056			 struct ipcm_cookie *ipc, struct rtable **rtp)
1057{
1058	struct inet_sock *inet = inet_sk(sk);
1059	struct ip_options_rcu *opt;
1060	struct rtable *rt;
1061
 
 
 
 
1062	/*
1063	 * setup for corking.
1064	 */
1065	opt = ipc->opt;
1066	if (opt) {
1067		if (cork->opt == NULL) {
1068			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1069					    sk->sk_allocation);
1070			if (unlikely(cork->opt == NULL))
1071				return -ENOBUFS;
1072		}
1073		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1074		cork->flags |= IPCORK_OPT;
1075		cork->addr = ipc->addr;
1076	}
1077	rt = *rtp;
1078	if (unlikely(!rt))
1079		return -EFAULT;
1080	/*
1081	 * We steal reference to this route, caller should not release it
1082	 */
1083	*rtp = NULL;
1084	cork->fragsize = inet->pmtudisc == IP_PMTUDISC_PROBE ?
1085			 rt->dst.dev->mtu : dst_mtu(&rt->dst);
 
 
1086	cork->dst = &rt->dst;
1087	cork->length = 0;
1088	cork->tx_flags = ipc->tx_flags;
1089	cork->page = NULL;
1090	cork->off = 0;
 
 
 
 
1091
1092	return 0;
1093}
1094
1095/*
1096 *	ip_append_data() and ip_append_page() can make one large IP datagram
1097 *	from many pieces of data. Each pieces will be holded on the socket
1098 *	until ip_push_pending_frames() is called. Each piece can be a page
1099 *	or non-page data.
1100 *
1101 *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1102 *	this interface potentially.
1103 *
1104 *	LATER: length must be adjusted by pad at tail, when it is required.
1105 */
1106int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1107		   int getfrag(void *from, char *to, int offset, int len,
1108			       int odd, struct sk_buff *skb),
1109		   void *from, int length, int transhdrlen,
1110		   struct ipcm_cookie *ipc, struct rtable **rtp,
1111		   unsigned int flags)
1112{
1113	struct inet_sock *inet = inet_sk(sk);
1114	int err;
1115
1116	if (flags&MSG_PROBE)
1117		return 0;
1118
1119	if (skb_queue_empty(&sk->sk_write_queue)) {
1120		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1121		if (err)
1122			return err;
1123	} else {
1124		transhdrlen = 0;
1125	}
1126
1127	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, getfrag,
 
1128				from, length, transhdrlen, flags);
1129}
1130
1131ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1132		       int offset, size_t size, int flags)
1133{
1134	struct inet_sock *inet = inet_sk(sk);
1135	struct sk_buff *skb;
1136	struct rtable *rt;
1137	struct ip_options *opt = NULL;
1138	struct inet_cork *cork;
1139	int hh_len;
1140	int mtu;
1141	int len;
1142	int err;
1143	unsigned int maxfraglen, fragheaderlen, fraggap;
1144
1145	if (inet->hdrincl)
1146		return -EPERM;
1147
1148	if (flags&MSG_PROBE)
1149		return 0;
1150
1151	if (skb_queue_empty(&sk->sk_write_queue))
1152		return -EINVAL;
1153
1154	cork = &inet->cork.base;
1155	rt = (struct rtable *)cork->dst;
1156	if (cork->flags & IPCORK_OPT)
1157		opt = cork->opt;
1158
1159	if (!(rt->dst.dev->features&NETIF_F_SG))
1160		return -EOPNOTSUPP;
1161
1162	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1163	mtu = cork->fragsize;
1164
1165	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1166	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
 
1167
1168	if (cork->length + size > 0xFFFF - fragheaderlen) {
1169		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, mtu);
 
1170		return -EMSGSIZE;
1171	}
1172
1173	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
 
1174		return -EINVAL;
1175
1176	cork->length += size;
1177	if ((size + skb->len > mtu) &&
1178	    (sk->sk_protocol == IPPROTO_UDP) &&
1179	    (rt->dst.dev->features & NETIF_F_UFO)) {
1180		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1181		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1182	}
1183
1184
1185	while (size > 0) {
1186		int i;
1187
1188		if (skb_is_gso(skb))
1189			len = size;
1190		else {
1191
1192			/* Check if the remaining data fits into current packet. */
1193			len = mtu - skb->len;
1194			if (len < size)
1195				len = maxfraglen - skb->len;
1196		}
1197		if (len <= 0) {
1198			struct sk_buff *skb_prev;
1199			int alloclen;
1200
1201			skb_prev = skb;
1202			fraggap = skb_prev->len - maxfraglen;
1203
1204			alloclen = fragheaderlen + hh_len + fraggap + 15;
1205			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1206			if (unlikely(!skb)) {
1207				err = -ENOBUFS;
1208				goto error;
1209			}
1210
1211			/*
1212			 *	Fill in the control structures
1213			 */
1214			skb->ip_summed = CHECKSUM_NONE;
1215			skb->csum = 0;
1216			skb_reserve(skb, hh_len);
1217
1218			/*
1219			 *	Find where to start putting bytes.
1220			 */
1221			skb_put(skb, fragheaderlen + fraggap);
1222			skb_reset_network_header(skb);
1223			skb->transport_header = (skb->network_header +
1224						 fragheaderlen);
1225			if (fraggap) {
1226				skb->csum = skb_copy_and_csum_bits(skb_prev,
1227								   maxfraglen,
1228						    skb_transport_header(skb),
1229								   fraggap, 0);
1230				skb_prev->csum = csum_sub(skb_prev->csum,
1231							  skb->csum);
1232				pskb_trim_unique(skb_prev, maxfraglen);
1233			}
1234
1235			/*
1236			 * Put the packet on the pending queue.
1237			 */
1238			__skb_queue_tail(&sk->sk_write_queue, skb);
1239			continue;
1240		}
1241
1242		i = skb_shinfo(skb)->nr_frags;
1243		if (len > size)
1244			len = size;
1245		if (skb_can_coalesce(skb, i, page, offset)) {
1246			skb_frag_size_add(&skb_shinfo(skb)->frags[i-1], len);
1247		} else if (i < MAX_SKB_FRAGS) {
1248			get_page(page);
1249			skb_fill_page_desc(skb, i, page, offset, len);
1250		} else {
1251			err = -EMSGSIZE;
1252			goto error;
1253		}
1254
1255		if (skb->ip_summed == CHECKSUM_NONE) {
1256			__wsum csum;
1257			csum = csum_page(page, offset, len);
1258			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1259		}
1260
1261		skb->len += len;
1262		skb->data_len += len;
1263		skb->truesize += len;
1264		atomic_add(len, &sk->sk_wmem_alloc);
1265		offset += len;
1266		size -= len;
1267	}
1268	return 0;
1269
1270error:
1271	cork->length -= size;
1272	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1273	return err;
1274}
1275
1276static void ip_cork_release(struct inet_cork *cork)
1277{
1278	cork->flags &= ~IPCORK_OPT;
1279	kfree(cork->opt);
1280	cork->opt = NULL;
1281	dst_release(cork->dst);
1282	cork->dst = NULL;
1283}
1284
1285/*
1286 *	Combined all pending IP fragments on the socket as one IP datagram
1287 *	and push them out.
1288 */
1289struct sk_buff *__ip_make_skb(struct sock *sk,
1290			      struct flowi4 *fl4,
1291			      struct sk_buff_head *queue,
1292			      struct inet_cork *cork)
1293{
1294	struct sk_buff *skb, *tmp_skb;
1295	struct sk_buff **tail_skb;
1296	struct inet_sock *inet = inet_sk(sk);
1297	struct net *net = sock_net(sk);
1298	struct ip_options *opt = NULL;
1299	struct rtable *rt = (struct rtable *)cork->dst;
1300	struct iphdr *iph;
1301	__be16 df = 0;
1302	__u8 ttl;
1303
1304	if ((skb = __skb_dequeue(queue)) == NULL)
 
1305		goto out;
1306	tail_skb = &(skb_shinfo(skb)->frag_list);
1307
1308	/* move skb->data to ip header from ext header */
1309	if (skb->data < skb_network_header(skb))
1310		__skb_pull(skb, skb_network_offset(skb));
1311	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1312		__skb_pull(tmp_skb, skb_network_header_len(skb));
1313		*tail_skb = tmp_skb;
1314		tail_skb = &(tmp_skb->next);
1315		skb->len += tmp_skb->len;
1316		skb->data_len += tmp_skb->len;
1317		skb->truesize += tmp_skb->truesize;
1318		tmp_skb->destructor = NULL;
1319		tmp_skb->sk = NULL;
1320	}
1321
1322	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1323	 * to fragment the frame generated here. No matter, what transforms
1324	 * how transforms change size of the packet, it will come out.
1325	 */
1326	if (inet->pmtudisc < IP_PMTUDISC_DO)
1327		skb->local_df = 1;
1328
1329	/* DF bit is set when we want to see DF on outgoing frames.
1330	 * If local_df is set too, we still allow to fragment this frame
1331	 * locally. */
1332	if (inet->pmtudisc >= IP_PMTUDISC_DO ||
 
1333	    (skb->len <= dst_mtu(&rt->dst) &&
1334	     ip_dont_fragment(sk, &rt->dst)))
1335		df = htons(IP_DF);
1336
1337	if (cork->flags & IPCORK_OPT)
1338		opt = cork->opt;
1339
1340	if (rt->rt_type == RTN_MULTICAST)
 
 
1341		ttl = inet->mc_ttl;
1342	else
1343		ttl = ip_select_ttl(inet, &rt->dst);
1344
1345	iph = (struct iphdr *)skb->data;
1346	iph->version = 4;
1347	iph->ihl = 5;
1348	iph->tos = inet->tos;
1349	iph->frag_off = df;
1350	ip_select_ident(iph, &rt->dst, sk);
1351	iph->ttl = ttl;
1352	iph->protocol = sk->sk_protocol;
1353	ip_copy_addrs(iph, fl4);
 
1354
1355	if (opt) {
1356		iph->ihl += opt->optlen>>2;
1357		ip_options_build(skb, opt, cork->addr, rt, 0);
1358	}
1359
1360	skb->priority = sk->sk_priority;
1361	skb->mark = sk->sk_mark;
 
1362	/*
1363	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1364	 * on dst refcount
1365	 */
1366	cork->dst = NULL;
1367	skb_dst_set(skb, &rt->dst);
1368
1369	if (iph->protocol == IPPROTO_ICMP)
1370		icmp_out_count(net, ((struct icmphdr *)
1371			skb_transport_header(skb))->type);
1372
1373	ip_cork_release(cork);
1374out:
1375	return skb;
1376}
1377
1378int ip_send_skb(struct sk_buff *skb)
1379{
1380	struct net *net = sock_net(skb->sk);
1381	int err;
1382
1383	err = ip_local_out(skb);
1384	if (err) {
1385		if (err > 0)
1386			err = net_xmit_errno(err);
1387		if (err)
1388			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1389	}
1390
1391	return err;
1392}
1393
1394int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1395{
1396	struct sk_buff *skb;
1397
1398	skb = ip_finish_skb(sk, fl4);
1399	if (!skb)
1400		return 0;
1401
1402	/* Netfilter gets whole the not fragmented skb. */
1403	return ip_send_skb(skb);
1404}
1405
1406/*
1407 *	Throw away all pending data on the socket.
1408 */
1409static void __ip_flush_pending_frames(struct sock *sk,
1410				      struct sk_buff_head *queue,
1411				      struct inet_cork *cork)
1412{
1413	struct sk_buff *skb;
1414
1415	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1416		kfree_skb(skb);
1417
1418	ip_cork_release(cork);
1419}
1420
1421void ip_flush_pending_frames(struct sock *sk)
1422{
1423	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1424}
1425
1426struct sk_buff *ip_make_skb(struct sock *sk,
1427			    struct flowi4 *fl4,
1428			    int getfrag(void *from, char *to, int offset,
1429					int len, int odd, struct sk_buff *skb),
1430			    void *from, int length, int transhdrlen,
1431			    struct ipcm_cookie *ipc, struct rtable **rtp,
1432			    unsigned int flags)
1433{
1434	struct inet_cork cork;
1435	struct sk_buff_head queue;
1436	int err;
1437
1438	if (flags & MSG_PROBE)
1439		return NULL;
1440
1441	__skb_queue_head_init(&queue);
1442
1443	cork.flags = 0;
1444	cork.addr = 0;
1445	cork.opt = NULL;
1446	err = ip_setup_cork(sk, &cork, ipc, rtp);
1447	if (err)
1448		return ERR_PTR(err);
1449
1450	err = __ip_append_data(sk, fl4, &queue, &cork, getfrag,
 
1451			       from, length, transhdrlen, flags);
1452	if (err) {
1453		__ip_flush_pending_frames(sk, &queue, &cork);
1454		return ERR_PTR(err);
1455	}
1456
1457	return __ip_make_skb(sk, fl4, &queue, &cork);
1458}
1459
1460/*
1461 *	Fetch data from kernel space and fill in checksum if needed.
1462 */
1463static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1464			      int len, int odd, struct sk_buff *skb)
1465{
1466	__wsum csum;
1467
1468	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1469	skb->csum = csum_block_add(skb->csum, csum, odd);
1470	return 0;
1471}
1472
1473/*
1474 *	Generic function to send a packet as reply to another packet.
1475 *	Used to send TCP resets so far. ICMP should use this function too.
1476 *
1477 *	Should run single threaded per socket because it uses the sock
1478 *     	structure to pass arguments.
1479 */
1480void ip_send_reply(struct sock *sk, struct sk_buff *skb, __be32 daddr,
1481		   const struct ip_reply_arg *arg, unsigned int len)
 
 
 
1482{
1483	struct inet_sock *inet = inet_sk(sk);
1484	struct ip_options_data replyopts;
1485	struct ipcm_cookie ipc;
1486	struct flowi4 fl4;
1487	struct rtable *rt = skb_rtable(skb);
 
 
 
 
1488
1489	if (ip_options_echo(&replyopts.opt.opt, skb))
1490		return;
1491
 
1492	ipc.addr = daddr;
1493	ipc.opt = NULL;
1494	ipc.tx_flags = 0;
1495
1496	if (replyopts.opt.opt.optlen) {
1497		ipc.opt = &replyopts.opt;
1498
1499		if (replyopts.opt.opt.srr)
1500			daddr = replyopts.opt.opt.faddr;
1501	}
1502
1503	flowi4_init_output(&fl4, arg->bound_dev_if, 0,
 
 
 
 
 
1504			   RT_TOS(arg->tos),
1505			   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1506			   ip_reply_arg_flowi_flags(arg),
1507			   daddr, rt->rt_spec_dst,
1508			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
 
1509	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1510	rt = ip_route_output_key(sock_net(sk), &fl4);
1511	if (IS_ERR(rt))
1512		return;
1513
1514	/* And let IP do all the hard work.
1515
1516	   This chunk is not reenterable, hence spinlock.
1517	   Note that it uses the fact, that this function is called
1518	   with locally disabled BH and that sk cannot be already spinlocked.
1519	 */
1520	bh_lock_sock(sk);
1521	inet->tos = arg->tos;
1522	sk->sk_priority = skb->priority;
1523	sk->sk_protocol = ip_hdr(skb)->protocol;
1524	sk->sk_bound_dev_if = arg->bound_dev_if;
1525	ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1526		       &ipc, &rt, MSG_DONTWAIT);
1527	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
 
 
 
 
 
 
 
 
1528		if (arg->csumoffset >= 0)
1529			*((__sum16 *)skb_transport_header(skb) +
1530			  arg->csumoffset) = csum_fold(csum_add(skb->csum,
1531								arg->csum));
1532		skb->ip_summed = CHECKSUM_NONE;
1533		ip_push_pending_frames(sk, &fl4);
1534	}
1535
1536	bh_unlock_sock(sk);
1537
1538	ip_rt_put(rt);
1539}
1540
1541void __init ip_init(void)
1542{
1543	ip_rt_init();
1544	inet_initpeers();
1545
1546#if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1547	igmp_mc_proc_init();
1548#endif
1549}