Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The Internet Protocol (IP) output module.
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Donald Becker, <becker@super.org>
12 * Alan Cox, <Alan.Cox@linux.org>
13 * Richard Underwood
14 * Stefan Becker, <stefanb@yello.ping.de>
15 * Jorge Cwik, <jorge@laser.satlink.net>
16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 *
19 * See ip_input.c for original log
20 *
21 * Fixes:
22 * Alan Cox : Missing nonblock feature in ip_build_xmit.
23 * Mike Kilburn : htons() missing in ip_build_xmit.
24 * Bradford Johnson: Fix faulty handling of some frames when
25 * no route is found.
26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
27 * (in case if packet not accepted by
28 * output firewall rules)
29 * Mike McLagan : Routing by source
30 * Alexey Kuznetsov: use new route cache
31 * Andi Kleen: Fix broken PMTU recovery and remove
32 * some redundant tests.
33 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
34 * Andi Kleen : Replace ip_reply with ip_send_reply.
35 * Andi Kleen : Split fast and slow ip_build_xmit path
36 * for decreased register pressure on x86
37 * and more readibility.
38 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
39 * silently drop skb instead of failing with -EPERM.
40 * Detlev Wengorz : Copy protocol for fragments.
41 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * datagrams.
43 * Hirokazu Takahashi: sendfile() on UDP works now.
44 */
45
46#include <linux/uaccess.h>
47#include <linux/module.h>
48#include <linux/types.h>
49#include <linux/kernel.h>
50#include <linux/mm.h>
51#include <linux/string.h>
52#include <linux/errno.h>
53#include <linux/highmem.h>
54#include <linux/slab.h>
55
56#include <linux/socket.h>
57#include <linux/sockios.h>
58#include <linux/in.h>
59#include <linux/inet.h>
60#include <linux/netdevice.h>
61#include <linux/etherdevice.h>
62#include <linux/proc_fs.h>
63#include <linux/stat.h>
64#include <linux/init.h>
65
66#include <net/snmp.h>
67#include <net/ip.h>
68#include <net/protocol.h>
69#include <net/route.h>
70#include <net/xfrm.h>
71#include <linux/skbuff.h>
72#include <net/sock.h>
73#include <net/arp.h>
74#include <net/icmp.h>
75#include <net/checksum.h>
76#include <net/inetpeer.h>
77#include <net/lwtunnel.h>
78#include <linux/bpf-cgroup.h>
79#include <linux/igmp.h>
80#include <linux/netfilter_ipv4.h>
81#include <linux/netfilter_bridge.h>
82#include <linux/netlink.h>
83#include <linux/tcp.h>
84
85static int
86ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
87 unsigned int mtu,
88 int (*output)(struct net *, struct sock *, struct sk_buff *));
89
90/* Generate a checksum for an outgoing IP datagram. */
91void ip_send_check(struct iphdr *iph)
92{
93 iph->check = 0;
94 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
95}
96EXPORT_SYMBOL(ip_send_check);
97
98int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
99{
100 struct iphdr *iph = ip_hdr(skb);
101
102 iph->tot_len = htons(skb->len);
103 ip_send_check(iph);
104
105 /* if egress device is enslaved to an L3 master device pass the
106 * skb to its handler for processing
107 */
108 skb = l3mdev_ip_out(sk, skb);
109 if (unlikely(!skb))
110 return 0;
111
112 skb->protocol = htons(ETH_P_IP);
113
114 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
115 net, sk, skb, NULL, skb_dst(skb)->dev,
116 dst_output);
117}
118
119int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
120{
121 int err;
122
123 err = __ip_local_out(net, sk, skb);
124 if (likely(err == 1))
125 err = dst_output(net, sk, skb);
126
127 return err;
128}
129EXPORT_SYMBOL_GPL(ip_local_out);
130
131static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
132{
133 int ttl = inet->uc_ttl;
134
135 if (ttl < 0)
136 ttl = ip4_dst_hoplimit(dst);
137 return ttl;
138}
139
140/*
141 * Add an ip header to a skbuff and send it out.
142 *
143 */
144int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
145 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
146{
147 struct inet_sock *inet = inet_sk(sk);
148 struct rtable *rt = skb_rtable(skb);
149 struct net *net = sock_net(sk);
150 struct iphdr *iph;
151
152 /* Build the IP header. */
153 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
154 skb_reset_network_header(skb);
155 iph = ip_hdr(skb);
156 iph->version = 4;
157 iph->ihl = 5;
158 iph->tos = inet->tos;
159 iph->ttl = ip_select_ttl(inet, &rt->dst);
160 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
161 iph->saddr = saddr;
162 iph->protocol = sk->sk_protocol;
163 if (ip_dont_fragment(sk, &rt->dst)) {
164 iph->frag_off = htons(IP_DF);
165 iph->id = 0;
166 } else {
167 iph->frag_off = 0;
168 __ip_select_ident(net, iph, 1);
169 }
170
171 if (opt && opt->opt.optlen) {
172 iph->ihl += opt->opt.optlen>>2;
173 ip_options_build(skb, &opt->opt, daddr, rt, 0);
174 }
175
176 skb->priority = sk->sk_priority;
177 if (!skb->mark)
178 skb->mark = sk->sk_mark;
179
180 /* Send it out. */
181 return ip_local_out(net, skb->sk, skb);
182}
183EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
184
185static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
186{
187 struct dst_entry *dst = skb_dst(skb);
188 struct rtable *rt = (struct rtable *)dst;
189 struct net_device *dev = dst->dev;
190 unsigned int hh_len = LL_RESERVED_SPACE(dev);
191 struct neighbour *neigh;
192 bool is_v6gw = false;
193
194 if (rt->rt_type == RTN_MULTICAST) {
195 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
196 } else if (rt->rt_type == RTN_BROADCAST)
197 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
198
199 /* Be paranoid, rather than too clever. */
200 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
201 struct sk_buff *skb2;
202
203 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
204 if (!skb2) {
205 kfree_skb(skb);
206 return -ENOMEM;
207 }
208 if (skb->sk)
209 skb_set_owner_w(skb2, skb->sk);
210 consume_skb(skb);
211 skb = skb2;
212 }
213
214 if (lwtunnel_xmit_redirect(dst->lwtstate)) {
215 int res = lwtunnel_xmit(skb);
216
217 if (res < 0 || res == LWTUNNEL_XMIT_DONE)
218 return res;
219 }
220
221 rcu_read_lock_bh();
222 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
223 if (!IS_ERR(neigh)) {
224 int res;
225
226 sock_confirm_neigh(skb, neigh);
227 /* if crossing protocols, can not use the cached header */
228 res = neigh_output(neigh, skb, is_v6gw);
229 rcu_read_unlock_bh();
230 return res;
231 }
232 rcu_read_unlock_bh();
233
234 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
235 __func__);
236 kfree_skb(skb);
237 return -EINVAL;
238}
239
240static int ip_finish_output_gso(struct net *net, struct sock *sk,
241 struct sk_buff *skb, unsigned int mtu)
242{
243 netdev_features_t features;
244 struct sk_buff *segs;
245 int ret = 0;
246
247 /* common case: seglen is <= mtu
248 */
249 if (skb_gso_validate_network_len(skb, mtu))
250 return ip_finish_output2(net, sk, skb);
251
252 /* Slowpath - GSO segment length exceeds the egress MTU.
253 *
254 * This can happen in several cases:
255 * - Forwarding of a TCP GRO skb, when DF flag is not set.
256 * - Forwarding of an skb that arrived on a virtualization interface
257 * (virtio-net/vhost/tap) with TSO/GSO size set by other network
258 * stack.
259 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
260 * interface with a smaller MTU.
261 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is
262 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an
263 * insufficent MTU.
264 */
265 features = netif_skb_features(skb);
266 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
267 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
268 if (IS_ERR_OR_NULL(segs)) {
269 kfree_skb(skb);
270 return -ENOMEM;
271 }
272
273 consume_skb(skb);
274
275 do {
276 struct sk_buff *nskb = segs->next;
277 int err;
278
279 skb_mark_not_on_list(segs);
280 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
281
282 if (err && ret == 0)
283 ret = err;
284 segs = nskb;
285 } while (segs);
286
287 return ret;
288}
289
290static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
291{
292 unsigned int mtu;
293
294#if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
295 /* Policy lookup after SNAT yielded a new policy */
296 if (skb_dst(skb)->xfrm) {
297 IPCB(skb)->flags |= IPSKB_REROUTED;
298 return dst_output(net, sk, skb);
299 }
300#endif
301 mtu = ip_skb_dst_mtu(sk, skb);
302 if (skb_is_gso(skb))
303 return ip_finish_output_gso(net, sk, skb, mtu);
304
305 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
306 return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
307
308 return ip_finish_output2(net, sk, skb);
309}
310
311static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
312{
313 int ret;
314
315 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
316 switch (ret) {
317 case NET_XMIT_SUCCESS:
318 return __ip_finish_output(net, sk, skb);
319 case NET_XMIT_CN:
320 return __ip_finish_output(net, sk, skb) ? : ret;
321 default:
322 kfree_skb(skb);
323 return ret;
324 }
325}
326
327static int ip_mc_finish_output(struct net *net, struct sock *sk,
328 struct sk_buff *skb)
329{
330 struct rtable *new_rt;
331 bool do_cn = false;
332 int ret, err;
333
334 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
335 switch (ret) {
336 case NET_XMIT_CN:
337 do_cn = true;
338 /* fall through */
339 case NET_XMIT_SUCCESS:
340 break;
341 default:
342 kfree_skb(skb);
343 return ret;
344 }
345
346 /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
347 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
348 * see ipv4_pktinfo_prepare().
349 */
350 new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb));
351 if (new_rt) {
352 new_rt->rt_iif = 0;
353 skb_dst_drop(skb);
354 skb_dst_set(skb, &new_rt->dst);
355 }
356
357 err = dev_loopback_xmit(net, sk, skb);
358 return (do_cn && err) ? ret : err;
359}
360
361int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
362{
363 struct rtable *rt = skb_rtable(skb);
364 struct net_device *dev = rt->dst.dev;
365
366 /*
367 * If the indicated interface is up and running, send the packet.
368 */
369 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
370
371 skb->dev = dev;
372 skb->protocol = htons(ETH_P_IP);
373
374 /*
375 * Multicasts are looped back for other local users
376 */
377
378 if (rt->rt_flags&RTCF_MULTICAST) {
379 if (sk_mc_loop(sk)
380#ifdef CONFIG_IP_MROUTE
381 /* Small optimization: do not loopback not local frames,
382 which returned after forwarding; they will be dropped
383 by ip_mr_input in any case.
384 Note, that local frames are looped back to be delivered
385 to local recipients.
386
387 This check is duplicated in ip_mr_input at the moment.
388 */
389 &&
390 ((rt->rt_flags & RTCF_LOCAL) ||
391 !(IPCB(skb)->flags & IPSKB_FORWARDED))
392#endif
393 ) {
394 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
395 if (newskb)
396 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
397 net, sk, newskb, NULL, newskb->dev,
398 ip_mc_finish_output);
399 }
400
401 /* Multicasts with ttl 0 must not go beyond the host */
402
403 if (ip_hdr(skb)->ttl == 0) {
404 kfree_skb(skb);
405 return 0;
406 }
407 }
408
409 if (rt->rt_flags&RTCF_BROADCAST) {
410 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
411 if (newskb)
412 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
413 net, sk, newskb, NULL, newskb->dev,
414 ip_mc_finish_output);
415 }
416
417 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
418 net, sk, skb, NULL, skb->dev,
419 ip_finish_output,
420 !(IPCB(skb)->flags & IPSKB_REROUTED));
421}
422
423int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
424{
425 struct net_device *dev = skb_dst(skb)->dev;
426
427 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
428
429 skb->dev = dev;
430 skb->protocol = htons(ETH_P_IP);
431
432 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
433 net, sk, skb, NULL, dev,
434 ip_finish_output,
435 !(IPCB(skb)->flags & IPSKB_REROUTED));
436}
437
438/*
439 * copy saddr and daddr, possibly using 64bit load/stores
440 * Equivalent to :
441 * iph->saddr = fl4->saddr;
442 * iph->daddr = fl4->daddr;
443 */
444static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
445{
446 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
447 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
448 memcpy(&iph->saddr, &fl4->saddr,
449 sizeof(fl4->saddr) + sizeof(fl4->daddr));
450}
451
452/* Note: skb->sk can be different from sk, in case of tunnels */
453int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
454 __u8 tos)
455{
456 struct inet_sock *inet = inet_sk(sk);
457 struct net *net = sock_net(sk);
458 struct ip_options_rcu *inet_opt;
459 struct flowi4 *fl4;
460 struct rtable *rt;
461 struct iphdr *iph;
462 int res;
463
464 /* Skip all of this if the packet is already routed,
465 * f.e. by something like SCTP.
466 */
467 rcu_read_lock();
468 inet_opt = rcu_dereference(inet->inet_opt);
469 fl4 = &fl->u.ip4;
470 rt = skb_rtable(skb);
471 if (rt)
472 goto packet_routed;
473
474 /* Make sure we can route this packet. */
475 rt = (struct rtable *)__sk_dst_check(sk, 0);
476 if (!rt) {
477 __be32 daddr;
478
479 /* Use correct destination address if we have options. */
480 daddr = inet->inet_daddr;
481 if (inet_opt && inet_opt->opt.srr)
482 daddr = inet_opt->opt.faddr;
483
484 /* If this fails, retransmit mechanism of transport layer will
485 * keep trying until route appears or the connection times
486 * itself out.
487 */
488 rt = ip_route_output_ports(net, fl4, sk,
489 daddr, inet->inet_saddr,
490 inet->inet_dport,
491 inet->inet_sport,
492 sk->sk_protocol,
493 RT_CONN_FLAGS_TOS(sk, tos),
494 sk->sk_bound_dev_if);
495 if (IS_ERR(rt))
496 goto no_route;
497 sk_setup_caps(sk, &rt->dst);
498 }
499 skb_dst_set_noref(skb, &rt->dst);
500
501packet_routed:
502 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
503 goto no_route;
504
505 /* OK, we know where to send it, allocate and build IP header. */
506 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
507 skb_reset_network_header(skb);
508 iph = ip_hdr(skb);
509 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
510 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
511 iph->frag_off = htons(IP_DF);
512 else
513 iph->frag_off = 0;
514 iph->ttl = ip_select_ttl(inet, &rt->dst);
515 iph->protocol = sk->sk_protocol;
516 ip_copy_addrs(iph, fl4);
517
518 /* Transport layer set skb->h.foo itself. */
519
520 if (inet_opt && inet_opt->opt.optlen) {
521 iph->ihl += inet_opt->opt.optlen >> 2;
522 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
523 }
524
525 ip_select_ident_segs(net, skb, sk,
526 skb_shinfo(skb)->gso_segs ?: 1);
527
528 /* TODO : should we use skb->sk here instead of sk ? */
529 skb->priority = sk->sk_priority;
530 skb->mark = sk->sk_mark;
531
532 res = ip_local_out(net, sk, skb);
533 rcu_read_unlock();
534 return res;
535
536no_route:
537 rcu_read_unlock();
538 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
539 kfree_skb(skb);
540 return -EHOSTUNREACH;
541}
542EXPORT_SYMBOL(__ip_queue_xmit);
543
544static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
545{
546 to->pkt_type = from->pkt_type;
547 to->priority = from->priority;
548 to->protocol = from->protocol;
549 to->skb_iif = from->skb_iif;
550 skb_dst_drop(to);
551 skb_dst_copy(to, from);
552 to->dev = from->dev;
553 to->mark = from->mark;
554
555 skb_copy_hash(to, from);
556
557#ifdef CONFIG_NET_SCHED
558 to->tc_index = from->tc_index;
559#endif
560 nf_copy(to, from);
561 skb_ext_copy(to, from);
562#if IS_ENABLED(CONFIG_IP_VS)
563 to->ipvs_property = from->ipvs_property;
564#endif
565 skb_copy_secmark(to, from);
566}
567
568static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
569 unsigned int mtu,
570 int (*output)(struct net *, struct sock *, struct sk_buff *))
571{
572 struct iphdr *iph = ip_hdr(skb);
573
574 if ((iph->frag_off & htons(IP_DF)) == 0)
575 return ip_do_fragment(net, sk, skb, output);
576
577 if (unlikely(!skb->ignore_df ||
578 (IPCB(skb)->frag_max_size &&
579 IPCB(skb)->frag_max_size > mtu))) {
580 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
581 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
582 htonl(mtu));
583 kfree_skb(skb);
584 return -EMSGSIZE;
585 }
586
587 return ip_do_fragment(net, sk, skb, output);
588}
589
590void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph,
591 unsigned int hlen, struct ip_fraglist_iter *iter)
592{
593 unsigned int first_len = skb_pagelen(skb);
594
595 iter->frag = skb_shinfo(skb)->frag_list;
596 skb_frag_list_init(skb);
597
598 iter->offset = 0;
599 iter->iph = iph;
600 iter->hlen = hlen;
601
602 skb->data_len = first_len - skb_headlen(skb);
603 skb->len = first_len;
604 iph->tot_len = htons(first_len);
605 iph->frag_off = htons(IP_MF);
606 ip_send_check(iph);
607}
608EXPORT_SYMBOL(ip_fraglist_init);
609
610static void ip_fraglist_ipcb_prepare(struct sk_buff *skb,
611 struct ip_fraglist_iter *iter)
612{
613 struct sk_buff *to = iter->frag;
614
615 /* Copy the flags to each fragment. */
616 IPCB(to)->flags = IPCB(skb)->flags;
617
618 if (iter->offset == 0)
619 ip_options_fragment(to);
620}
621
622void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter)
623{
624 unsigned int hlen = iter->hlen;
625 struct iphdr *iph = iter->iph;
626 struct sk_buff *frag;
627
628 frag = iter->frag;
629 frag->ip_summed = CHECKSUM_NONE;
630 skb_reset_transport_header(frag);
631 __skb_push(frag, hlen);
632 skb_reset_network_header(frag);
633 memcpy(skb_network_header(frag), iph, hlen);
634 iter->iph = ip_hdr(frag);
635 iph = iter->iph;
636 iph->tot_len = htons(frag->len);
637 ip_copy_metadata(frag, skb);
638 iter->offset += skb->len - hlen;
639 iph->frag_off = htons(iter->offset >> 3);
640 if (frag->next)
641 iph->frag_off |= htons(IP_MF);
642 /* Ready, complete checksum */
643 ip_send_check(iph);
644}
645EXPORT_SYMBOL(ip_fraglist_prepare);
646
647void ip_frag_init(struct sk_buff *skb, unsigned int hlen,
648 unsigned int ll_rs, unsigned int mtu, bool DF,
649 struct ip_frag_state *state)
650{
651 struct iphdr *iph = ip_hdr(skb);
652
653 state->DF = DF;
654 state->hlen = hlen;
655 state->ll_rs = ll_rs;
656 state->mtu = mtu;
657
658 state->left = skb->len - hlen; /* Space per frame */
659 state->ptr = hlen; /* Where to start from */
660
661 state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
662 state->not_last_frag = iph->frag_off & htons(IP_MF);
663}
664EXPORT_SYMBOL(ip_frag_init);
665
666static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to,
667 bool first_frag, struct ip_frag_state *state)
668{
669 /* Copy the flags to each fragment. */
670 IPCB(to)->flags = IPCB(from)->flags;
671
672 /* ANK: dirty, but effective trick. Upgrade options only if
673 * the segment to be fragmented was THE FIRST (otherwise,
674 * options are already fixed) and make it ONCE
675 * on the initial skb, so that all the following fragments
676 * will inherit fixed options.
677 */
678 if (first_frag)
679 ip_options_fragment(from);
680}
681
682struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state)
683{
684 unsigned int len = state->left;
685 struct sk_buff *skb2;
686 struct iphdr *iph;
687
688 len = state->left;
689 /* IF: it doesn't fit, use 'mtu' - the data space left */
690 if (len > state->mtu)
691 len = state->mtu;
692 /* IF: we are not sending up to and including the packet end
693 then align the next start on an eight byte boundary */
694 if (len < state->left) {
695 len &= ~7;
696 }
697
698 /* Allocate buffer */
699 skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC);
700 if (!skb2)
701 return ERR_PTR(-ENOMEM);
702
703 /*
704 * Set up data on packet
705 */
706
707 ip_copy_metadata(skb2, skb);
708 skb_reserve(skb2, state->ll_rs);
709 skb_put(skb2, len + state->hlen);
710 skb_reset_network_header(skb2);
711 skb2->transport_header = skb2->network_header + state->hlen;
712
713 /*
714 * Charge the memory for the fragment to any owner
715 * it might possess
716 */
717
718 if (skb->sk)
719 skb_set_owner_w(skb2, skb->sk);
720
721 /*
722 * Copy the packet header into the new buffer.
723 */
724
725 skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen);
726
727 /*
728 * Copy a block of the IP datagram.
729 */
730 if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len))
731 BUG();
732 state->left -= len;
733
734 /*
735 * Fill in the new header fields.
736 */
737 iph = ip_hdr(skb2);
738 iph->frag_off = htons((state->offset >> 3));
739 if (state->DF)
740 iph->frag_off |= htons(IP_DF);
741
742 /*
743 * Added AC : If we are fragmenting a fragment that's not the
744 * last fragment then keep MF on each bit
745 */
746 if (state->left > 0 || state->not_last_frag)
747 iph->frag_off |= htons(IP_MF);
748 state->ptr += len;
749 state->offset += len;
750
751 iph->tot_len = htons(len + state->hlen);
752
753 ip_send_check(iph);
754
755 return skb2;
756}
757EXPORT_SYMBOL(ip_frag_next);
758
759/*
760 * This IP datagram is too large to be sent in one piece. Break it up into
761 * smaller pieces (each of size equal to IP header plus
762 * a block of the data of the original IP data part) that will yet fit in a
763 * single device frame, and queue such a frame for sending.
764 */
765
766int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
767 int (*output)(struct net *, struct sock *, struct sk_buff *))
768{
769 struct iphdr *iph;
770 struct sk_buff *skb2;
771 struct rtable *rt = skb_rtable(skb);
772 unsigned int mtu, hlen, ll_rs;
773 struct ip_fraglist_iter iter;
774 ktime_t tstamp = skb->tstamp;
775 struct ip_frag_state state;
776 int err = 0;
777
778 /* for offloaded checksums cleanup checksum before fragmentation */
779 if (skb->ip_summed == CHECKSUM_PARTIAL &&
780 (err = skb_checksum_help(skb)))
781 goto fail;
782
783 /*
784 * Point into the IP datagram header.
785 */
786
787 iph = ip_hdr(skb);
788
789 mtu = ip_skb_dst_mtu(sk, skb);
790 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
791 mtu = IPCB(skb)->frag_max_size;
792
793 /*
794 * Setup starting values.
795 */
796
797 hlen = iph->ihl * 4;
798 mtu = mtu - hlen; /* Size of data space */
799 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
800 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
801
802 /* When frag_list is given, use it. First, check its validity:
803 * some transformers could create wrong frag_list or break existing
804 * one, it is not prohibited. In this case fall back to copying.
805 *
806 * LATER: this step can be merged to real generation of fragments,
807 * we can switch to copy when see the first bad fragment.
808 */
809 if (skb_has_frag_list(skb)) {
810 struct sk_buff *frag, *frag2;
811 unsigned int first_len = skb_pagelen(skb);
812
813 if (first_len - hlen > mtu ||
814 ((first_len - hlen) & 7) ||
815 ip_is_fragment(iph) ||
816 skb_cloned(skb) ||
817 skb_headroom(skb) < ll_rs)
818 goto slow_path;
819
820 skb_walk_frags(skb, frag) {
821 /* Correct geometry. */
822 if (frag->len > mtu ||
823 ((frag->len & 7) && frag->next) ||
824 skb_headroom(frag) < hlen + ll_rs)
825 goto slow_path_clean;
826
827 /* Partially cloned skb? */
828 if (skb_shared(frag))
829 goto slow_path_clean;
830
831 BUG_ON(frag->sk);
832 if (skb->sk) {
833 frag->sk = skb->sk;
834 frag->destructor = sock_wfree;
835 }
836 skb->truesize -= frag->truesize;
837 }
838
839 /* Everything is OK. Generate! */
840 ip_fraglist_init(skb, iph, hlen, &iter);
841
842 for (;;) {
843 /* Prepare header of the next frame,
844 * before previous one went down. */
845 if (iter.frag) {
846 ip_fraglist_ipcb_prepare(skb, &iter);
847 ip_fraglist_prepare(skb, &iter);
848 }
849
850 skb->tstamp = tstamp;
851 err = output(net, sk, skb);
852
853 if (!err)
854 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
855 if (err || !iter.frag)
856 break;
857
858 skb = ip_fraglist_next(&iter);
859 }
860
861 if (err == 0) {
862 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
863 return 0;
864 }
865
866 kfree_skb_list(iter.frag);
867
868 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
869 return err;
870
871slow_path_clean:
872 skb_walk_frags(skb, frag2) {
873 if (frag2 == frag)
874 break;
875 frag2->sk = NULL;
876 frag2->destructor = NULL;
877 skb->truesize += frag2->truesize;
878 }
879 }
880
881slow_path:
882 /*
883 * Fragment the datagram.
884 */
885
886 ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU,
887 &state);
888
889 /*
890 * Keep copying data until we run out.
891 */
892
893 while (state.left > 0) {
894 bool first_frag = (state.offset == 0);
895
896 skb2 = ip_frag_next(skb, &state);
897 if (IS_ERR(skb2)) {
898 err = PTR_ERR(skb2);
899 goto fail;
900 }
901 ip_frag_ipcb(skb, skb2, first_frag, &state);
902
903 /*
904 * Put this fragment into the sending queue.
905 */
906 skb2->tstamp = tstamp;
907 err = output(net, sk, skb2);
908 if (err)
909 goto fail;
910
911 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
912 }
913 consume_skb(skb);
914 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
915 return err;
916
917fail:
918 kfree_skb(skb);
919 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
920 return err;
921}
922EXPORT_SYMBOL(ip_do_fragment);
923
924int
925ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
926{
927 struct msghdr *msg = from;
928
929 if (skb->ip_summed == CHECKSUM_PARTIAL) {
930 if (!copy_from_iter_full(to, len, &msg->msg_iter))
931 return -EFAULT;
932 } else {
933 __wsum csum = 0;
934 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
935 return -EFAULT;
936 skb->csum = csum_block_add(skb->csum, csum, odd);
937 }
938 return 0;
939}
940EXPORT_SYMBOL(ip_generic_getfrag);
941
942static inline __wsum
943csum_page(struct page *page, int offset, int copy)
944{
945 char *kaddr;
946 __wsum csum;
947 kaddr = kmap(page);
948 csum = csum_partial(kaddr + offset, copy, 0);
949 kunmap(page);
950 return csum;
951}
952
953static int __ip_append_data(struct sock *sk,
954 struct flowi4 *fl4,
955 struct sk_buff_head *queue,
956 struct inet_cork *cork,
957 struct page_frag *pfrag,
958 int getfrag(void *from, char *to, int offset,
959 int len, int odd, struct sk_buff *skb),
960 void *from, int length, int transhdrlen,
961 unsigned int flags)
962{
963 struct inet_sock *inet = inet_sk(sk);
964 struct ubuf_info *uarg = NULL;
965 struct sk_buff *skb;
966
967 struct ip_options *opt = cork->opt;
968 int hh_len;
969 int exthdrlen;
970 int mtu;
971 int copy;
972 int err;
973 int offset = 0;
974 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
975 int csummode = CHECKSUM_NONE;
976 struct rtable *rt = (struct rtable *)cork->dst;
977 unsigned int wmem_alloc_delta = 0;
978 bool paged, extra_uref = false;
979 u32 tskey = 0;
980
981 skb = skb_peek_tail(queue);
982
983 exthdrlen = !skb ? rt->dst.header_len : 0;
984 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
985 paged = !!cork->gso_size;
986
987 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
988 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
989 tskey = sk->sk_tskey++;
990
991 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
992
993 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
994 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
995 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
996
997 if (cork->length + length > maxnonfragsize - fragheaderlen) {
998 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
999 mtu - (opt ? opt->optlen : 0));
1000 return -EMSGSIZE;
1001 }
1002
1003 /*
1004 * transhdrlen > 0 means that this is the first fragment and we wish
1005 * it won't be fragmented in the future.
1006 */
1007 if (transhdrlen &&
1008 length + fragheaderlen <= mtu &&
1009 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
1010 (!(flags & MSG_MORE) || cork->gso_size) &&
1011 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
1012 csummode = CHECKSUM_PARTIAL;
1013
1014 if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) {
1015 uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb));
1016 if (!uarg)
1017 return -ENOBUFS;
1018 extra_uref = !skb_zcopy(skb); /* only ref on new uarg */
1019 if (rt->dst.dev->features & NETIF_F_SG &&
1020 csummode == CHECKSUM_PARTIAL) {
1021 paged = true;
1022 } else {
1023 uarg->zerocopy = 0;
1024 skb_zcopy_set(skb, uarg, &extra_uref);
1025 }
1026 }
1027
1028 cork->length += length;
1029
1030 /* So, what's going on in the loop below?
1031 *
1032 * We use calculated fragment length to generate chained skb,
1033 * each of segments is IP fragment ready for sending to network after
1034 * adding appropriate IP header.
1035 */
1036
1037 if (!skb)
1038 goto alloc_new_skb;
1039
1040 while (length > 0) {
1041 /* Check if the remaining data fits into current packet. */
1042 copy = mtu - skb->len;
1043 if (copy < length)
1044 copy = maxfraglen - skb->len;
1045 if (copy <= 0) {
1046 char *data;
1047 unsigned int datalen;
1048 unsigned int fraglen;
1049 unsigned int fraggap;
1050 unsigned int alloclen;
1051 unsigned int pagedlen;
1052 struct sk_buff *skb_prev;
1053alloc_new_skb:
1054 skb_prev = skb;
1055 if (skb_prev)
1056 fraggap = skb_prev->len - maxfraglen;
1057 else
1058 fraggap = 0;
1059
1060 /*
1061 * If remaining data exceeds the mtu,
1062 * we know we need more fragment(s).
1063 */
1064 datalen = length + fraggap;
1065 if (datalen > mtu - fragheaderlen)
1066 datalen = maxfraglen - fragheaderlen;
1067 fraglen = datalen + fragheaderlen;
1068 pagedlen = 0;
1069
1070 if ((flags & MSG_MORE) &&
1071 !(rt->dst.dev->features&NETIF_F_SG))
1072 alloclen = mtu;
1073 else if (!paged)
1074 alloclen = fraglen;
1075 else {
1076 alloclen = min_t(int, fraglen, MAX_HEADER);
1077 pagedlen = fraglen - alloclen;
1078 }
1079
1080 alloclen += exthdrlen;
1081
1082 /* The last fragment gets additional space at tail.
1083 * Note, with MSG_MORE we overallocate on fragments,
1084 * because we have no idea what fragment will be
1085 * the last.
1086 */
1087 if (datalen == length + fraggap)
1088 alloclen += rt->dst.trailer_len;
1089
1090 if (transhdrlen) {
1091 skb = sock_alloc_send_skb(sk,
1092 alloclen + hh_len + 15,
1093 (flags & MSG_DONTWAIT), &err);
1094 } else {
1095 skb = NULL;
1096 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1097 2 * sk->sk_sndbuf)
1098 skb = alloc_skb(alloclen + hh_len + 15,
1099 sk->sk_allocation);
1100 if (unlikely(!skb))
1101 err = -ENOBUFS;
1102 }
1103 if (!skb)
1104 goto error;
1105
1106 /*
1107 * Fill in the control structures
1108 */
1109 skb->ip_summed = csummode;
1110 skb->csum = 0;
1111 skb_reserve(skb, hh_len);
1112
1113 /*
1114 * Find where to start putting bytes.
1115 */
1116 data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1117 skb_set_network_header(skb, exthdrlen);
1118 skb->transport_header = (skb->network_header +
1119 fragheaderlen);
1120 data += fragheaderlen + exthdrlen;
1121
1122 if (fraggap) {
1123 skb->csum = skb_copy_and_csum_bits(
1124 skb_prev, maxfraglen,
1125 data + transhdrlen, fraggap, 0);
1126 skb_prev->csum = csum_sub(skb_prev->csum,
1127 skb->csum);
1128 data += fraggap;
1129 pskb_trim_unique(skb_prev, maxfraglen);
1130 }
1131
1132 copy = datalen - transhdrlen - fraggap - pagedlen;
1133 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1134 err = -EFAULT;
1135 kfree_skb(skb);
1136 goto error;
1137 }
1138
1139 offset += copy;
1140 length -= copy + transhdrlen;
1141 transhdrlen = 0;
1142 exthdrlen = 0;
1143 csummode = CHECKSUM_NONE;
1144
1145 /* only the initial fragment is time stamped */
1146 skb_shinfo(skb)->tx_flags = cork->tx_flags;
1147 cork->tx_flags = 0;
1148 skb_shinfo(skb)->tskey = tskey;
1149 tskey = 0;
1150 skb_zcopy_set(skb, uarg, &extra_uref);
1151
1152 if ((flags & MSG_CONFIRM) && !skb_prev)
1153 skb_set_dst_pending_confirm(skb, 1);
1154
1155 /*
1156 * Put the packet on the pending queue.
1157 */
1158 if (!skb->destructor) {
1159 skb->destructor = sock_wfree;
1160 skb->sk = sk;
1161 wmem_alloc_delta += skb->truesize;
1162 }
1163 __skb_queue_tail(queue, skb);
1164 continue;
1165 }
1166
1167 if (copy > length)
1168 copy = length;
1169
1170 if (!(rt->dst.dev->features&NETIF_F_SG) &&
1171 skb_tailroom(skb) >= copy) {
1172 unsigned int off;
1173
1174 off = skb->len;
1175 if (getfrag(from, skb_put(skb, copy),
1176 offset, copy, off, skb) < 0) {
1177 __skb_trim(skb, off);
1178 err = -EFAULT;
1179 goto error;
1180 }
1181 } else if (!uarg || !uarg->zerocopy) {
1182 int i = skb_shinfo(skb)->nr_frags;
1183
1184 err = -ENOMEM;
1185 if (!sk_page_frag_refill(sk, pfrag))
1186 goto error;
1187
1188 if (!skb_can_coalesce(skb, i, pfrag->page,
1189 pfrag->offset)) {
1190 err = -EMSGSIZE;
1191 if (i == MAX_SKB_FRAGS)
1192 goto error;
1193
1194 __skb_fill_page_desc(skb, i, pfrag->page,
1195 pfrag->offset, 0);
1196 skb_shinfo(skb)->nr_frags = ++i;
1197 get_page(pfrag->page);
1198 }
1199 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1200 if (getfrag(from,
1201 page_address(pfrag->page) + pfrag->offset,
1202 offset, copy, skb->len, skb) < 0)
1203 goto error_efault;
1204
1205 pfrag->offset += copy;
1206 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1207 skb->len += copy;
1208 skb->data_len += copy;
1209 skb->truesize += copy;
1210 wmem_alloc_delta += copy;
1211 } else {
1212 err = skb_zerocopy_iter_dgram(skb, from, copy);
1213 if (err < 0)
1214 goto error;
1215 }
1216 offset += copy;
1217 length -= copy;
1218 }
1219
1220 if (wmem_alloc_delta)
1221 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1222 return 0;
1223
1224error_efault:
1225 err = -EFAULT;
1226error:
1227 if (uarg)
1228 sock_zerocopy_put_abort(uarg, extra_uref);
1229 cork->length -= length;
1230 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1231 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1232 return err;
1233}
1234
1235static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1236 struct ipcm_cookie *ipc, struct rtable **rtp)
1237{
1238 struct ip_options_rcu *opt;
1239 struct rtable *rt;
1240
1241 rt = *rtp;
1242 if (unlikely(!rt))
1243 return -EFAULT;
1244
1245 /*
1246 * setup for corking.
1247 */
1248 opt = ipc->opt;
1249 if (opt) {
1250 if (!cork->opt) {
1251 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1252 sk->sk_allocation);
1253 if (unlikely(!cork->opt))
1254 return -ENOBUFS;
1255 }
1256 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1257 cork->flags |= IPCORK_OPT;
1258 cork->addr = ipc->addr;
1259 }
1260
1261 /*
1262 * We steal reference to this route, caller should not release it
1263 */
1264 *rtp = NULL;
1265 cork->fragsize = ip_sk_use_pmtu(sk) ?
1266 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1267
1268 cork->gso_size = ipc->gso_size;
1269 cork->dst = &rt->dst;
1270 cork->length = 0;
1271 cork->ttl = ipc->ttl;
1272 cork->tos = ipc->tos;
1273 cork->mark = ipc->sockc.mark;
1274 cork->priority = ipc->priority;
1275 cork->transmit_time = ipc->sockc.transmit_time;
1276 cork->tx_flags = 0;
1277 sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags);
1278
1279 return 0;
1280}
1281
1282/*
1283 * ip_append_data() and ip_append_page() can make one large IP datagram
1284 * from many pieces of data. Each pieces will be holded on the socket
1285 * until ip_push_pending_frames() is called. Each piece can be a page
1286 * or non-page data.
1287 *
1288 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1289 * this interface potentially.
1290 *
1291 * LATER: length must be adjusted by pad at tail, when it is required.
1292 */
1293int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1294 int getfrag(void *from, char *to, int offset, int len,
1295 int odd, struct sk_buff *skb),
1296 void *from, int length, int transhdrlen,
1297 struct ipcm_cookie *ipc, struct rtable **rtp,
1298 unsigned int flags)
1299{
1300 struct inet_sock *inet = inet_sk(sk);
1301 int err;
1302
1303 if (flags&MSG_PROBE)
1304 return 0;
1305
1306 if (skb_queue_empty(&sk->sk_write_queue)) {
1307 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1308 if (err)
1309 return err;
1310 } else {
1311 transhdrlen = 0;
1312 }
1313
1314 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1315 sk_page_frag(sk), getfrag,
1316 from, length, transhdrlen, flags);
1317}
1318
1319ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1320 int offset, size_t size, int flags)
1321{
1322 struct inet_sock *inet = inet_sk(sk);
1323 struct sk_buff *skb;
1324 struct rtable *rt;
1325 struct ip_options *opt = NULL;
1326 struct inet_cork *cork;
1327 int hh_len;
1328 int mtu;
1329 int len;
1330 int err;
1331 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1332
1333 if (inet->hdrincl)
1334 return -EPERM;
1335
1336 if (flags&MSG_PROBE)
1337 return 0;
1338
1339 if (skb_queue_empty(&sk->sk_write_queue))
1340 return -EINVAL;
1341
1342 cork = &inet->cork.base;
1343 rt = (struct rtable *)cork->dst;
1344 if (cork->flags & IPCORK_OPT)
1345 opt = cork->opt;
1346
1347 if (!(rt->dst.dev->features&NETIF_F_SG))
1348 return -EOPNOTSUPP;
1349
1350 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1351 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
1352
1353 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1354 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1355 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1356
1357 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1358 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1359 mtu - (opt ? opt->optlen : 0));
1360 return -EMSGSIZE;
1361 }
1362
1363 skb = skb_peek_tail(&sk->sk_write_queue);
1364 if (!skb)
1365 return -EINVAL;
1366
1367 cork->length += size;
1368
1369 while (size > 0) {
1370 /* Check if the remaining data fits into current packet. */
1371 len = mtu - skb->len;
1372 if (len < size)
1373 len = maxfraglen - skb->len;
1374
1375 if (len <= 0) {
1376 struct sk_buff *skb_prev;
1377 int alloclen;
1378
1379 skb_prev = skb;
1380 fraggap = skb_prev->len - maxfraglen;
1381
1382 alloclen = fragheaderlen + hh_len + fraggap + 15;
1383 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1384 if (unlikely(!skb)) {
1385 err = -ENOBUFS;
1386 goto error;
1387 }
1388
1389 /*
1390 * Fill in the control structures
1391 */
1392 skb->ip_summed = CHECKSUM_NONE;
1393 skb->csum = 0;
1394 skb_reserve(skb, hh_len);
1395
1396 /*
1397 * Find where to start putting bytes.
1398 */
1399 skb_put(skb, fragheaderlen + fraggap);
1400 skb_reset_network_header(skb);
1401 skb->transport_header = (skb->network_header +
1402 fragheaderlen);
1403 if (fraggap) {
1404 skb->csum = skb_copy_and_csum_bits(skb_prev,
1405 maxfraglen,
1406 skb_transport_header(skb),
1407 fraggap, 0);
1408 skb_prev->csum = csum_sub(skb_prev->csum,
1409 skb->csum);
1410 pskb_trim_unique(skb_prev, maxfraglen);
1411 }
1412
1413 /*
1414 * Put the packet on the pending queue.
1415 */
1416 __skb_queue_tail(&sk->sk_write_queue, skb);
1417 continue;
1418 }
1419
1420 if (len > size)
1421 len = size;
1422
1423 if (skb_append_pagefrags(skb, page, offset, len)) {
1424 err = -EMSGSIZE;
1425 goto error;
1426 }
1427
1428 if (skb->ip_summed == CHECKSUM_NONE) {
1429 __wsum csum;
1430 csum = csum_page(page, offset, len);
1431 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1432 }
1433
1434 skb->len += len;
1435 skb->data_len += len;
1436 skb->truesize += len;
1437 refcount_add(len, &sk->sk_wmem_alloc);
1438 offset += len;
1439 size -= len;
1440 }
1441 return 0;
1442
1443error:
1444 cork->length -= size;
1445 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1446 return err;
1447}
1448
1449static void ip_cork_release(struct inet_cork *cork)
1450{
1451 cork->flags &= ~IPCORK_OPT;
1452 kfree(cork->opt);
1453 cork->opt = NULL;
1454 dst_release(cork->dst);
1455 cork->dst = NULL;
1456}
1457
1458/*
1459 * Combined all pending IP fragments on the socket as one IP datagram
1460 * and push them out.
1461 */
1462struct sk_buff *__ip_make_skb(struct sock *sk,
1463 struct flowi4 *fl4,
1464 struct sk_buff_head *queue,
1465 struct inet_cork *cork)
1466{
1467 struct sk_buff *skb, *tmp_skb;
1468 struct sk_buff **tail_skb;
1469 struct inet_sock *inet = inet_sk(sk);
1470 struct net *net = sock_net(sk);
1471 struct ip_options *opt = NULL;
1472 struct rtable *rt = (struct rtable *)cork->dst;
1473 struct iphdr *iph;
1474 __be16 df = 0;
1475 __u8 ttl;
1476
1477 skb = __skb_dequeue(queue);
1478 if (!skb)
1479 goto out;
1480 tail_skb = &(skb_shinfo(skb)->frag_list);
1481
1482 /* move skb->data to ip header from ext header */
1483 if (skb->data < skb_network_header(skb))
1484 __skb_pull(skb, skb_network_offset(skb));
1485 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1486 __skb_pull(tmp_skb, skb_network_header_len(skb));
1487 *tail_skb = tmp_skb;
1488 tail_skb = &(tmp_skb->next);
1489 skb->len += tmp_skb->len;
1490 skb->data_len += tmp_skb->len;
1491 skb->truesize += tmp_skb->truesize;
1492 tmp_skb->destructor = NULL;
1493 tmp_skb->sk = NULL;
1494 }
1495
1496 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1497 * to fragment the frame generated here. No matter, what transforms
1498 * how transforms change size of the packet, it will come out.
1499 */
1500 skb->ignore_df = ip_sk_ignore_df(sk);
1501
1502 /* DF bit is set when we want to see DF on outgoing frames.
1503 * If ignore_df is set too, we still allow to fragment this frame
1504 * locally. */
1505 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1506 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1507 (skb->len <= dst_mtu(&rt->dst) &&
1508 ip_dont_fragment(sk, &rt->dst)))
1509 df = htons(IP_DF);
1510
1511 if (cork->flags & IPCORK_OPT)
1512 opt = cork->opt;
1513
1514 if (cork->ttl != 0)
1515 ttl = cork->ttl;
1516 else if (rt->rt_type == RTN_MULTICAST)
1517 ttl = inet->mc_ttl;
1518 else
1519 ttl = ip_select_ttl(inet, &rt->dst);
1520
1521 iph = ip_hdr(skb);
1522 iph->version = 4;
1523 iph->ihl = 5;
1524 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1525 iph->frag_off = df;
1526 iph->ttl = ttl;
1527 iph->protocol = sk->sk_protocol;
1528 ip_copy_addrs(iph, fl4);
1529 ip_select_ident(net, skb, sk);
1530
1531 if (opt) {
1532 iph->ihl += opt->optlen>>2;
1533 ip_options_build(skb, opt, cork->addr, rt, 0);
1534 }
1535
1536 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1537 skb->mark = cork->mark;
1538 skb->tstamp = cork->transmit_time;
1539 /*
1540 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1541 * on dst refcount
1542 */
1543 cork->dst = NULL;
1544 skb_dst_set(skb, &rt->dst);
1545
1546 if (iph->protocol == IPPROTO_ICMP)
1547 icmp_out_count(net, ((struct icmphdr *)
1548 skb_transport_header(skb))->type);
1549
1550 ip_cork_release(cork);
1551out:
1552 return skb;
1553}
1554
1555int ip_send_skb(struct net *net, struct sk_buff *skb)
1556{
1557 int err;
1558
1559 err = ip_local_out(net, skb->sk, skb);
1560 if (err) {
1561 if (err > 0)
1562 err = net_xmit_errno(err);
1563 if (err)
1564 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1565 }
1566
1567 return err;
1568}
1569
1570int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1571{
1572 struct sk_buff *skb;
1573
1574 skb = ip_finish_skb(sk, fl4);
1575 if (!skb)
1576 return 0;
1577
1578 /* Netfilter gets whole the not fragmented skb. */
1579 return ip_send_skb(sock_net(sk), skb);
1580}
1581
1582/*
1583 * Throw away all pending data on the socket.
1584 */
1585static void __ip_flush_pending_frames(struct sock *sk,
1586 struct sk_buff_head *queue,
1587 struct inet_cork *cork)
1588{
1589 struct sk_buff *skb;
1590
1591 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1592 kfree_skb(skb);
1593
1594 ip_cork_release(cork);
1595}
1596
1597void ip_flush_pending_frames(struct sock *sk)
1598{
1599 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1600}
1601
1602struct sk_buff *ip_make_skb(struct sock *sk,
1603 struct flowi4 *fl4,
1604 int getfrag(void *from, char *to, int offset,
1605 int len, int odd, struct sk_buff *skb),
1606 void *from, int length, int transhdrlen,
1607 struct ipcm_cookie *ipc, struct rtable **rtp,
1608 struct inet_cork *cork, unsigned int flags)
1609{
1610 struct sk_buff_head queue;
1611 int err;
1612
1613 if (flags & MSG_PROBE)
1614 return NULL;
1615
1616 __skb_queue_head_init(&queue);
1617
1618 cork->flags = 0;
1619 cork->addr = 0;
1620 cork->opt = NULL;
1621 err = ip_setup_cork(sk, cork, ipc, rtp);
1622 if (err)
1623 return ERR_PTR(err);
1624
1625 err = __ip_append_data(sk, fl4, &queue, cork,
1626 ¤t->task_frag, getfrag,
1627 from, length, transhdrlen, flags);
1628 if (err) {
1629 __ip_flush_pending_frames(sk, &queue, cork);
1630 return ERR_PTR(err);
1631 }
1632
1633 return __ip_make_skb(sk, fl4, &queue, cork);
1634}
1635
1636/*
1637 * Fetch data from kernel space and fill in checksum if needed.
1638 */
1639static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1640 int len, int odd, struct sk_buff *skb)
1641{
1642 __wsum csum;
1643
1644 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1645 skb->csum = csum_block_add(skb->csum, csum, odd);
1646 return 0;
1647}
1648
1649/*
1650 * Generic function to send a packet as reply to another packet.
1651 * Used to send some TCP resets/acks so far.
1652 */
1653void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1654 const struct ip_options *sopt,
1655 __be32 daddr, __be32 saddr,
1656 const struct ip_reply_arg *arg,
1657 unsigned int len, u64 transmit_time)
1658{
1659 struct ip_options_data replyopts;
1660 struct ipcm_cookie ipc;
1661 struct flowi4 fl4;
1662 struct rtable *rt = skb_rtable(skb);
1663 struct net *net = sock_net(sk);
1664 struct sk_buff *nskb;
1665 int err;
1666 int oif;
1667
1668 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1669 return;
1670
1671 ipcm_init(&ipc);
1672 ipc.addr = daddr;
1673 ipc.sockc.transmit_time = transmit_time;
1674
1675 if (replyopts.opt.opt.optlen) {
1676 ipc.opt = &replyopts.opt;
1677
1678 if (replyopts.opt.opt.srr)
1679 daddr = replyopts.opt.opt.faddr;
1680 }
1681
1682 oif = arg->bound_dev_if;
1683 if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1684 oif = skb->skb_iif;
1685
1686 flowi4_init_output(&fl4, oif,
1687 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1688 RT_TOS(arg->tos),
1689 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1690 ip_reply_arg_flowi_flags(arg),
1691 daddr, saddr,
1692 tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1693 arg->uid);
1694 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1695 rt = ip_route_output_key(net, &fl4);
1696 if (IS_ERR(rt))
1697 return;
1698
1699 inet_sk(sk)->tos = arg->tos;
1700
1701 sk->sk_protocol = ip_hdr(skb)->protocol;
1702 sk->sk_bound_dev_if = arg->bound_dev_if;
1703 sk->sk_sndbuf = sysctl_wmem_default;
1704 sk->sk_mark = fl4.flowi4_mark;
1705 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1706 len, 0, &ipc, &rt, MSG_DONTWAIT);
1707 if (unlikely(err)) {
1708 ip_flush_pending_frames(sk);
1709 goto out;
1710 }
1711
1712 nskb = skb_peek(&sk->sk_write_queue);
1713 if (nskb) {
1714 if (arg->csumoffset >= 0)
1715 *((__sum16 *)skb_transport_header(nskb) +
1716 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1717 arg->csum));
1718 nskb->ip_summed = CHECKSUM_NONE;
1719 ip_push_pending_frames(sk, &fl4);
1720 }
1721out:
1722 ip_rt_put(rt);
1723}
1724
1725void __init ip_init(void)
1726{
1727 ip_rt_init();
1728 inet_initpeers();
1729
1730#if defined(CONFIG_IP_MULTICAST)
1731 igmp_mc_init();
1732#endif
1733}
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The Internet Protocol (IP) output module.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
17 *
18 * See ip_input.c for original log
19 *
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
43 */
44
45#include <asm/uaccess.h>
46#include <linux/module.h>
47#include <linux/types.h>
48#include <linux/kernel.h>
49#include <linux/mm.h>
50#include <linux/string.h>
51#include <linux/errno.h>
52#include <linux/highmem.h>
53#include <linux/slab.h>
54
55#include <linux/socket.h>
56#include <linux/sockios.h>
57#include <linux/in.h>
58#include <linux/inet.h>
59#include <linux/netdevice.h>
60#include <linux/etherdevice.h>
61#include <linux/proc_fs.h>
62#include <linux/stat.h>
63#include <linux/init.h>
64
65#include <net/snmp.h>
66#include <net/ip.h>
67#include <net/protocol.h>
68#include <net/route.h>
69#include <net/xfrm.h>
70#include <linux/skbuff.h>
71#include <net/sock.h>
72#include <net/arp.h>
73#include <net/icmp.h>
74#include <net/checksum.h>
75#include <net/inetpeer.h>
76#include <linux/igmp.h>
77#include <linux/netfilter_ipv4.h>
78#include <linux/netfilter_bridge.h>
79#include <linux/mroute.h>
80#include <linux/netlink.h>
81#include <linux/tcp.h>
82
83int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84EXPORT_SYMBOL(sysctl_ip_default_ttl);
85
86/* Generate a checksum for an outgoing IP datagram. */
87__inline__ void ip_send_check(struct iphdr *iph)
88{
89 iph->check = 0;
90 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
91}
92EXPORT_SYMBOL(ip_send_check);
93
94int __ip_local_out(struct sk_buff *skb)
95{
96 struct iphdr *iph = ip_hdr(skb);
97
98 iph->tot_len = htons(skb->len);
99 ip_send_check(iph);
100 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
101 skb_dst(skb)->dev, dst_output);
102}
103
104int ip_local_out(struct sk_buff *skb)
105{
106 int err;
107
108 err = __ip_local_out(skb);
109 if (likely(err == 1))
110 err = dst_output(skb);
111
112 return err;
113}
114EXPORT_SYMBOL_GPL(ip_local_out);
115
116/* dev_loopback_xmit for use with netfilter. */
117static int ip_dev_loopback_xmit(struct sk_buff *newskb)
118{
119 skb_reset_mac_header(newskb);
120 __skb_pull(newskb, skb_network_offset(newskb));
121 newskb->pkt_type = PACKET_LOOPBACK;
122 newskb->ip_summed = CHECKSUM_UNNECESSARY;
123 WARN_ON(!skb_dst(newskb));
124 skb_dst_force(newskb);
125 netif_rx_ni(newskb);
126 return 0;
127}
128
129static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
130{
131 int ttl = inet->uc_ttl;
132
133 if (ttl < 0)
134 ttl = ip4_dst_hoplimit(dst);
135 return ttl;
136}
137
138/*
139 * Add an ip header to a skbuff and send it out.
140 *
141 */
142int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
143 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
144{
145 struct inet_sock *inet = inet_sk(sk);
146 struct rtable *rt = skb_rtable(skb);
147 struct iphdr *iph;
148
149 /* Build the IP header. */
150 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
151 skb_reset_network_header(skb);
152 iph = ip_hdr(skb);
153 iph->version = 4;
154 iph->ihl = 5;
155 iph->tos = inet->tos;
156 if (ip_dont_fragment(sk, &rt->dst))
157 iph->frag_off = htons(IP_DF);
158 else
159 iph->frag_off = 0;
160 iph->ttl = ip_select_ttl(inet, &rt->dst);
161 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
162 iph->saddr = saddr;
163 iph->protocol = sk->sk_protocol;
164 ip_select_ident(iph, &rt->dst, sk);
165
166 if (opt && opt->opt.optlen) {
167 iph->ihl += opt->opt.optlen>>2;
168 ip_options_build(skb, &opt->opt, daddr, rt, 0);
169 }
170
171 skb->priority = sk->sk_priority;
172 skb->mark = sk->sk_mark;
173
174 /* Send it out. */
175 return ip_local_out(skb);
176}
177EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
178
179static inline int ip_finish_output2(struct sk_buff *skb)
180{
181 struct dst_entry *dst = skb_dst(skb);
182 struct rtable *rt = (struct rtable *)dst;
183 struct net_device *dev = dst->dev;
184 unsigned int hh_len = LL_RESERVED_SPACE(dev);
185 struct neighbour *neigh;
186
187 if (rt->rt_type == RTN_MULTICAST) {
188 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
189 } else if (rt->rt_type == RTN_BROADCAST)
190 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
191
192 /* Be paranoid, rather than too clever. */
193 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
194 struct sk_buff *skb2;
195
196 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
197 if (skb2 == NULL) {
198 kfree_skb(skb);
199 return -ENOMEM;
200 }
201 if (skb->sk)
202 skb_set_owner_w(skb2, skb->sk);
203 kfree_skb(skb);
204 skb = skb2;
205 }
206
207 rcu_read_lock();
208 neigh = dst_get_neighbour_noref(dst);
209 if (neigh) {
210 int res = neigh_output(neigh, skb);
211
212 rcu_read_unlock();
213 return res;
214 }
215 rcu_read_unlock();
216
217 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
218 __func__);
219 kfree_skb(skb);
220 return -EINVAL;
221}
222
223static inline int ip_skb_dst_mtu(struct sk_buff *skb)
224{
225 struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
226
227 return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
228 skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
229}
230
231static int ip_finish_output(struct sk_buff *skb)
232{
233#if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
234 /* Policy lookup after SNAT yielded a new policy */
235 if (skb_dst(skb)->xfrm != NULL) {
236 IPCB(skb)->flags |= IPSKB_REROUTED;
237 return dst_output(skb);
238 }
239#endif
240 if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
241 return ip_fragment(skb, ip_finish_output2);
242 else
243 return ip_finish_output2(skb);
244}
245
246int ip_mc_output(struct sk_buff *skb)
247{
248 struct sock *sk = skb->sk;
249 struct rtable *rt = skb_rtable(skb);
250 struct net_device *dev = rt->dst.dev;
251
252 /*
253 * If the indicated interface is up and running, send the packet.
254 */
255 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
256
257 skb->dev = dev;
258 skb->protocol = htons(ETH_P_IP);
259
260 /*
261 * Multicasts are looped back for other local users
262 */
263
264 if (rt->rt_flags&RTCF_MULTICAST) {
265 if (sk_mc_loop(sk)
266#ifdef CONFIG_IP_MROUTE
267 /* Small optimization: do not loopback not local frames,
268 which returned after forwarding; they will be dropped
269 by ip_mr_input in any case.
270 Note, that local frames are looped back to be delivered
271 to local recipients.
272
273 This check is duplicated in ip_mr_input at the moment.
274 */
275 &&
276 ((rt->rt_flags & RTCF_LOCAL) ||
277 !(IPCB(skb)->flags & IPSKB_FORWARDED))
278#endif
279 ) {
280 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
281 if (newskb)
282 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
283 newskb, NULL, newskb->dev,
284 ip_dev_loopback_xmit);
285 }
286
287 /* Multicasts with ttl 0 must not go beyond the host */
288
289 if (ip_hdr(skb)->ttl == 0) {
290 kfree_skb(skb);
291 return 0;
292 }
293 }
294
295 if (rt->rt_flags&RTCF_BROADCAST) {
296 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
297 if (newskb)
298 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
299 NULL, newskb->dev, ip_dev_loopback_xmit);
300 }
301
302 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
303 skb->dev, ip_finish_output,
304 !(IPCB(skb)->flags & IPSKB_REROUTED));
305}
306
307int ip_output(struct sk_buff *skb)
308{
309 struct net_device *dev = skb_dst(skb)->dev;
310
311 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
312
313 skb->dev = dev;
314 skb->protocol = htons(ETH_P_IP);
315
316 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
317 ip_finish_output,
318 !(IPCB(skb)->flags & IPSKB_REROUTED));
319}
320
321/*
322 * copy saddr and daddr, possibly using 64bit load/stores
323 * Equivalent to :
324 * iph->saddr = fl4->saddr;
325 * iph->daddr = fl4->daddr;
326 */
327static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
328{
329 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
330 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
331 memcpy(&iph->saddr, &fl4->saddr,
332 sizeof(fl4->saddr) + sizeof(fl4->daddr));
333}
334
335int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl)
336{
337 struct sock *sk = skb->sk;
338 struct inet_sock *inet = inet_sk(sk);
339 struct ip_options_rcu *inet_opt;
340 struct flowi4 *fl4;
341 struct rtable *rt;
342 struct iphdr *iph;
343 int res;
344
345 /* Skip all of this if the packet is already routed,
346 * f.e. by something like SCTP.
347 */
348 rcu_read_lock();
349 inet_opt = rcu_dereference(inet->inet_opt);
350 fl4 = &fl->u.ip4;
351 rt = skb_rtable(skb);
352 if (rt != NULL)
353 goto packet_routed;
354
355 /* Make sure we can route this packet. */
356 rt = (struct rtable *)__sk_dst_check(sk, 0);
357 if (rt == NULL) {
358 __be32 daddr;
359
360 /* Use correct destination address if we have options. */
361 daddr = inet->inet_daddr;
362 if (inet_opt && inet_opt->opt.srr)
363 daddr = inet_opt->opt.faddr;
364
365 /* If this fails, retransmit mechanism of transport layer will
366 * keep trying until route appears or the connection times
367 * itself out.
368 */
369 rt = ip_route_output_ports(sock_net(sk), fl4, sk,
370 daddr, inet->inet_saddr,
371 inet->inet_dport,
372 inet->inet_sport,
373 sk->sk_protocol,
374 RT_CONN_FLAGS(sk),
375 sk->sk_bound_dev_if);
376 if (IS_ERR(rt))
377 goto no_route;
378 sk_setup_caps(sk, &rt->dst);
379 }
380 skb_dst_set_noref(skb, &rt->dst);
381
382packet_routed:
383 if (inet_opt && inet_opt->opt.is_strictroute && fl4->daddr != rt->rt_gateway)
384 goto no_route;
385
386 /* OK, we know where to send it, allocate and build IP header. */
387 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
388 skb_reset_network_header(skb);
389 iph = ip_hdr(skb);
390 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
391 if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
392 iph->frag_off = htons(IP_DF);
393 else
394 iph->frag_off = 0;
395 iph->ttl = ip_select_ttl(inet, &rt->dst);
396 iph->protocol = sk->sk_protocol;
397 ip_copy_addrs(iph, fl4);
398
399 /* Transport layer set skb->h.foo itself. */
400
401 if (inet_opt && inet_opt->opt.optlen) {
402 iph->ihl += inet_opt->opt.optlen >> 2;
403 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
404 }
405
406 ip_select_ident_more(iph, &rt->dst, sk,
407 (skb_shinfo(skb)->gso_segs ?: 1) - 1);
408
409 skb->priority = sk->sk_priority;
410 skb->mark = sk->sk_mark;
411
412 res = ip_local_out(skb);
413 rcu_read_unlock();
414 return res;
415
416no_route:
417 rcu_read_unlock();
418 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
419 kfree_skb(skb);
420 return -EHOSTUNREACH;
421}
422EXPORT_SYMBOL(ip_queue_xmit);
423
424
425static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
426{
427 to->pkt_type = from->pkt_type;
428 to->priority = from->priority;
429 to->protocol = from->protocol;
430 skb_dst_drop(to);
431 skb_dst_copy(to, from);
432 to->dev = from->dev;
433 to->mark = from->mark;
434
435 /* Copy the flags to each fragment. */
436 IPCB(to)->flags = IPCB(from)->flags;
437
438#ifdef CONFIG_NET_SCHED
439 to->tc_index = from->tc_index;
440#endif
441 nf_copy(to, from);
442#if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
443 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
444 to->nf_trace = from->nf_trace;
445#endif
446#if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
447 to->ipvs_property = from->ipvs_property;
448#endif
449 skb_copy_secmark(to, from);
450}
451
452/*
453 * This IP datagram is too large to be sent in one piece. Break it up into
454 * smaller pieces (each of size equal to IP header plus
455 * a block of the data of the original IP data part) that will yet fit in a
456 * single device frame, and queue such a frame for sending.
457 */
458
459int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
460{
461 struct iphdr *iph;
462 int ptr;
463 struct net_device *dev;
464 struct sk_buff *skb2;
465 unsigned int mtu, hlen, left, len, ll_rs;
466 int offset;
467 __be16 not_last_frag;
468 struct rtable *rt = skb_rtable(skb);
469 int err = 0;
470
471 dev = rt->dst.dev;
472
473 /*
474 * Point into the IP datagram header.
475 */
476
477 iph = ip_hdr(skb);
478
479 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
480 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
481 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
482 htonl(ip_skb_dst_mtu(skb)));
483 kfree_skb(skb);
484 return -EMSGSIZE;
485 }
486
487 /*
488 * Setup starting values.
489 */
490
491 hlen = iph->ihl * 4;
492 mtu = dst_mtu(&rt->dst) - hlen; /* Size of data space */
493#ifdef CONFIG_BRIDGE_NETFILTER
494 if (skb->nf_bridge)
495 mtu -= nf_bridge_mtu_reduction(skb);
496#endif
497 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
498
499 /* When frag_list is given, use it. First, check its validity:
500 * some transformers could create wrong frag_list or break existing
501 * one, it is not prohibited. In this case fall back to copying.
502 *
503 * LATER: this step can be merged to real generation of fragments,
504 * we can switch to copy when see the first bad fragment.
505 */
506 if (skb_has_frag_list(skb)) {
507 struct sk_buff *frag, *frag2;
508 int first_len = skb_pagelen(skb);
509
510 if (first_len - hlen > mtu ||
511 ((first_len - hlen) & 7) ||
512 ip_is_fragment(iph) ||
513 skb_cloned(skb))
514 goto slow_path;
515
516 skb_walk_frags(skb, frag) {
517 /* Correct geometry. */
518 if (frag->len > mtu ||
519 ((frag->len & 7) && frag->next) ||
520 skb_headroom(frag) < hlen)
521 goto slow_path_clean;
522
523 /* Partially cloned skb? */
524 if (skb_shared(frag))
525 goto slow_path_clean;
526
527 BUG_ON(frag->sk);
528 if (skb->sk) {
529 frag->sk = skb->sk;
530 frag->destructor = sock_wfree;
531 }
532 skb->truesize -= frag->truesize;
533 }
534
535 /* Everything is OK. Generate! */
536
537 err = 0;
538 offset = 0;
539 frag = skb_shinfo(skb)->frag_list;
540 skb_frag_list_init(skb);
541 skb->data_len = first_len - skb_headlen(skb);
542 skb->len = first_len;
543 iph->tot_len = htons(first_len);
544 iph->frag_off = htons(IP_MF);
545 ip_send_check(iph);
546
547 for (;;) {
548 /* Prepare header of the next frame,
549 * before previous one went down. */
550 if (frag) {
551 frag->ip_summed = CHECKSUM_NONE;
552 skb_reset_transport_header(frag);
553 __skb_push(frag, hlen);
554 skb_reset_network_header(frag);
555 memcpy(skb_network_header(frag), iph, hlen);
556 iph = ip_hdr(frag);
557 iph->tot_len = htons(frag->len);
558 ip_copy_metadata(frag, skb);
559 if (offset == 0)
560 ip_options_fragment(frag);
561 offset += skb->len - hlen;
562 iph->frag_off = htons(offset>>3);
563 if (frag->next != NULL)
564 iph->frag_off |= htons(IP_MF);
565 /* Ready, complete checksum */
566 ip_send_check(iph);
567 }
568
569 err = output(skb);
570
571 if (!err)
572 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
573 if (err || !frag)
574 break;
575
576 skb = frag;
577 frag = skb->next;
578 skb->next = NULL;
579 }
580
581 if (err == 0) {
582 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
583 return 0;
584 }
585
586 while (frag) {
587 skb = frag->next;
588 kfree_skb(frag);
589 frag = skb;
590 }
591 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
592 return err;
593
594slow_path_clean:
595 skb_walk_frags(skb, frag2) {
596 if (frag2 == frag)
597 break;
598 frag2->sk = NULL;
599 frag2->destructor = NULL;
600 skb->truesize += frag2->truesize;
601 }
602 }
603
604slow_path:
605 left = skb->len - hlen; /* Space per frame */
606 ptr = hlen; /* Where to start from */
607
608 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
609 * we need to make room for the encapsulating header
610 */
611 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
612
613 /*
614 * Fragment the datagram.
615 */
616
617 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
618 not_last_frag = iph->frag_off & htons(IP_MF);
619
620 /*
621 * Keep copying data until we run out.
622 */
623
624 while (left > 0) {
625 len = left;
626 /* IF: it doesn't fit, use 'mtu' - the data space left */
627 if (len > mtu)
628 len = mtu;
629 /* IF: we are not sending up to and including the packet end
630 then align the next start on an eight byte boundary */
631 if (len < left) {
632 len &= ~7;
633 }
634 /*
635 * Allocate buffer.
636 */
637
638 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
639 NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
640 err = -ENOMEM;
641 goto fail;
642 }
643
644 /*
645 * Set up data on packet
646 */
647
648 ip_copy_metadata(skb2, skb);
649 skb_reserve(skb2, ll_rs);
650 skb_put(skb2, len + hlen);
651 skb_reset_network_header(skb2);
652 skb2->transport_header = skb2->network_header + hlen;
653
654 /*
655 * Charge the memory for the fragment to any owner
656 * it might possess
657 */
658
659 if (skb->sk)
660 skb_set_owner_w(skb2, skb->sk);
661
662 /*
663 * Copy the packet header into the new buffer.
664 */
665
666 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
667
668 /*
669 * Copy a block of the IP datagram.
670 */
671 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
672 BUG();
673 left -= len;
674
675 /*
676 * Fill in the new header fields.
677 */
678 iph = ip_hdr(skb2);
679 iph->frag_off = htons((offset >> 3));
680
681 /* ANK: dirty, but effective trick. Upgrade options only if
682 * the segment to be fragmented was THE FIRST (otherwise,
683 * options are already fixed) and make it ONCE
684 * on the initial skb, so that all the following fragments
685 * will inherit fixed options.
686 */
687 if (offset == 0)
688 ip_options_fragment(skb);
689
690 /*
691 * Added AC : If we are fragmenting a fragment that's not the
692 * last fragment then keep MF on each bit
693 */
694 if (left > 0 || not_last_frag)
695 iph->frag_off |= htons(IP_MF);
696 ptr += len;
697 offset += len;
698
699 /*
700 * Put this fragment into the sending queue.
701 */
702 iph->tot_len = htons(len + hlen);
703
704 ip_send_check(iph);
705
706 err = output(skb2);
707 if (err)
708 goto fail;
709
710 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
711 }
712 kfree_skb(skb);
713 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
714 return err;
715
716fail:
717 kfree_skb(skb);
718 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
719 return err;
720}
721EXPORT_SYMBOL(ip_fragment);
722
723int
724ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
725{
726 struct iovec *iov = from;
727
728 if (skb->ip_summed == CHECKSUM_PARTIAL) {
729 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
730 return -EFAULT;
731 } else {
732 __wsum csum = 0;
733 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
734 return -EFAULT;
735 skb->csum = csum_block_add(skb->csum, csum, odd);
736 }
737 return 0;
738}
739EXPORT_SYMBOL(ip_generic_getfrag);
740
741static inline __wsum
742csum_page(struct page *page, int offset, int copy)
743{
744 char *kaddr;
745 __wsum csum;
746 kaddr = kmap(page);
747 csum = csum_partial(kaddr + offset, copy, 0);
748 kunmap(page);
749 return csum;
750}
751
752static inline int ip_ufo_append_data(struct sock *sk,
753 struct sk_buff_head *queue,
754 int getfrag(void *from, char *to, int offset, int len,
755 int odd, struct sk_buff *skb),
756 void *from, int length, int hh_len, int fragheaderlen,
757 int transhdrlen, int maxfraglen, unsigned int flags)
758{
759 struct sk_buff *skb;
760 int err;
761
762 /* There is support for UDP fragmentation offload by network
763 * device, so create one single skb packet containing complete
764 * udp datagram
765 */
766 if ((skb = skb_peek_tail(queue)) == NULL) {
767 skb = sock_alloc_send_skb(sk,
768 hh_len + fragheaderlen + transhdrlen + 20,
769 (flags & MSG_DONTWAIT), &err);
770
771 if (skb == NULL)
772 return err;
773
774 /* reserve space for Hardware header */
775 skb_reserve(skb, hh_len);
776
777 /* create space for UDP/IP header */
778 skb_put(skb, fragheaderlen + transhdrlen);
779
780 /* initialize network header pointer */
781 skb_reset_network_header(skb);
782
783 /* initialize protocol header pointer */
784 skb->transport_header = skb->network_header + fragheaderlen;
785
786 skb->ip_summed = CHECKSUM_PARTIAL;
787 skb->csum = 0;
788
789 /* specify the length of each IP datagram fragment */
790 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
791 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
792 __skb_queue_tail(queue, skb);
793 }
794
795 return skb_append_datato_frags(sk, skb, getfrag, from,
796 (length - transhdrlen));
797}
798
799static int __ip_append_data(struct sock *sk,
800 struct flowi4 *fl4,
801 struct sk_buff_head *queue,
802 struct inet_cork *cork,
803 int getfrag(void *from, char *to, int offset,
804 int len, int odd, struct sk_buff *skb),
805 void *from, int length, int transhdrlen,
806 unsigned int flags)
807{
808 struct inet_sock *inet = inet_sk(sk);
809 struct sk_buff *skb;
810
811 struct ip_options *opt = cork->opt;
812 int hh_len;
813 int exthdrlen;
814 int mtu;
815 int copy;
816 int err;
817 int offset = 0;
818 unsigned int maxfraglen, fragheaderlen;
819 int csummode = CHECKSUM_NONE;
820 struct rtable *rt = (struct rtable *)cork->dst;
821
822 skb = skb_peek_tail(queue);
823
824 exthdrlen = !skb ? rt->dst.header_len : 0;
825 mtu = cork->fragsize;
826
827 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
828
829 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
830 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
831
832 if (cork->length + length > 0xFFFF - fragheaderlen) {
833 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
834 mtu-exthdrlen);
835 return -EMSGSIZE;
836 }
837
838 /*
839 * transhdrlen > 0 means that this is the first fragment and we wish
840 * it won't be fragmented in the future.
841 */
842 if (transhdrlen &&
843 length + fragheaderlen <= mtu &&
844 rt->dst.dev->features & NETIF_F_V4_CSUM &&
845 !exthdrlen)
846 csummode = CHECKSUM_PARTIAL;
847
848 cork->length += length;
849 if (((length > mtu) || (skb && skb_is_gso(skb))) &&
850 (sk->sk_protocol == IPPROTO_UDP) &&
851 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len) {
852 err = ip_ufo_append_data(sk, queue, getfrag, from, length,
853 hh_len, fragheaderlen, transhdrlen,
854 maxfraglen, flags);
855 if (err)
856 goto error;
857 return 0;
858 }
859
860 /* So, what's going on in the loop below?
861 *
862 * We use calculated fragment length to generate chained skb,
863 * each of segments is IP fragment ready for sending to network after
864 * adding appropriate IP header.
865 */
866
867 if (!skb)
868 goto alloc_new_skb;
869
870 while (length > 0) {
871 /* Check if the remaining data fits into current packet. */
872 copy = mtu - skb->len;
873 if (copy < length)
874 copy = maxfraglen - skb->len;
875 if (copy <= 0) {
876 char *data;
877 unsigned int datalen;
878 unsigned int fraglen;
879 unsigned int fraggap;
880 unsigned int alloclen;
881 struct sk_buff *skb_prev;
882alloc_new_skb:
883 skb_prev = skb;
884 if (skb_prev)
885 fraggap = skb_prev->len - maxfraglen;
886 else
887 fraggap = 0;
888
889 /*
890 * If remaining data exceeds the mtu,
891 * we know we need more fragment(s).
892 */
893 datalen = length + fraggap;
894 if (datalen > mtu - fragheaderlen)
895 datalen = maxfraglen - fragheaderlen;
896 fraglen = datalen + fragheaderlen;
897
898 if ((flags & MSG_MORE) &&
899 !(rt->dst.dev->features&NETIF_F_SG))
900 alloclen = mtu;
901 else
902 alloclen = fraglen;
903
904 alloclen += exthdrlen;
905
906 /* The last fragment gets additional space at tail.
907 * Note, with MSG_MORE we overallocate on fragments,
908 * because we have no idea what fragment will be
909 * the last.
910 */
911 if (datalen == length + fraggap)
912 alloclen += rt->dst.trailer_len;
913
914 if (transhdrlen) {
915 skb = sock_alloc_send_skb(sk,
916 alloclen + hh_len + 15,
917 (flags & MSG_DONTWAIT), &err);
918 } else {
919 skb = NULL;
920 if (atomic_read(&sk->sk_wmem_alloc) <=
921 2 * sk->sk_sndbuf)
922 skb = sock_wmalloc(sk,
923 alloclen + hh_len + 15, 1,
924 sk->sk_allocation);
925 if (unlikely(skb == NULL))
926 err = -ENOBUFS;
927 else
928 /* only the initial fragment is
929 time stamped */
930 cork->tx_flags = 0;
931 }
932 if (skb == NULL)
933 goto error;
934
935 /*
936 * Fill in the control structures
937 */
938 skb->ip_summed = csummode;
939 skb->csum = 0;
940 skb_reserve(skb, hh_len);
941 skb_shinfo(skb)->tx_flags = cork->tx_flags;
942
943 /*
944 * Find where to start putting bytes.
945 */
946 data = skb_put(skb, fraglen + exthdrlen);
947 skb_set_network_header(skb, exthdrlen);
948 skb->transport_header = (skb->network_header +
949 fragheaderlen);
950 data += fragheaderlen + exthdrlen;
951
952 if (fraggap) {
953 skb->csum = skb_copy_and_csum_bits(
954 skb_prev, maxfraglen,
955 data + transhdrlen, fraggap, 0);
956 skb_prev->csum = csum_sub(skb_prev->csum,
957 skb->csum);
958 data += fraggap;
959 pskb_trim_unique(skb_prev, maxfraglen);
960 }
961
962 copy = datalen - transhdrlen - fraggap;
963 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
964 err = -EFAULT;
965 kfree_skb(skb);
966 goto error;
967 }
968
969 offset += copy;
970 length -= datalen - fraggap;
971 transhdrlen = 0;
972 exthdrlen = 0;
973 csummode = CHECKSUM_NONE;
974
975 /*
976 * Put the packet on the pending queue.
977 */
978 __skb_queue_tail(queue, skb);
979 continue;
980 }
981
982 if (copy > length)
983 copy = length;
984
985 if (!(rt->dst.dev->features&NETIF_F_SG)) {
986 unsigned int off;
987
988 off = skb->len;
989 if (getfrag(from, skb_put(skb, copy),
990 offset, copy, off, skb) < 0) {
991 __skb_trim(skb, off);
992 err = -EFAULT;
993 goto error;
994 }
995 } else {
996 int i = skb_shinfo(skb)->nr_frags;
997 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
998 struct page *page = cork->page;
999 int off = cork->off;
1000 unsigned int left;
1001
1002 if (page && (left = PAGE_SIZE - off) > 0) {
1003 if (copy >= left)
1004 copy = left;
1005 if (page != skb_frag_page(frag)) {
1006 if (i == MAX_SKB_FRAGS) {
1007 err = -EMSGSIZE;
1008 goto error;
1009 }
1010 skb_fill_page_desc(skb, i, page, off, 0);
1011 skb_frag_ref(skb, i);
1012 frag = &skb_shinfo(skb)->frags[i];
1013 }
1014 } else if (i < MAX_SKB_FRAGS) {
1015 if (copy > PAGE_SIZE)
1016 copy = PAGE_SIZE;
1017 page = alloc_pages(sk->sk_allocation, 0);
1018 if (page == NULL) {
1019 err = -ENOMEM;
1020 goto error;
1021 }
1022 cork->page = page;
1023 cork->off = 0;
1024
1025 skb_fill_page_desc(skb, i, page, 0, 0);
1026 frag = &skb_shinfo(skb)->frags[i];
1027 } else {
1028 err = -EMSGSIZE;
1029 goto error;
1030 }
1031 if (getfrag(from, skb_frag_address(frag)+skb_frag_size(frag),
1032 offset, copy, skb->len, skb) < 0) {
1033 err = -EFAULT;
1034 goto error;
1035 }
1036 cork->off += copy;
1037 skb_frag_size_add(frag, copy);
1038 skb->len += copy;
1039 skb->data_len += copy;
1040 skb->truesize += copy;
1041 atomic_add(copy, &sk->sk_wmem_alloc);
1042 }
1043 offset += copy;
1044 length -= copy;
1045 }
1046
1047 return 0;
1048
1049error:
1050 cork->length -= length;
1051 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1052 return err;
1053}
1054
1055static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1056 struct ipcm_cookie *ipc, struct rtable **rtp)
1057{
1058 struct inet_sock *inet = inet_sk(sk);
1059 struct ip_options_rcu *opt;
1060 struct rtable *rt;
1061
1062 /*
1063 * setup for corking.
1064 */
1065 opt = ipc->opt;
1066 if (opt) {
1067 if (cork->opt == NULL) {
1068 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1069 sk->sk_allocation);
1070 if (unlikely(cork->opt == NULL))
1071 return -ENOBUFS;
1072 }
1073 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1074 cork->flags |= IPCORK_OPT;
1075 cork->addr = ipc->addr;
1076 }
1077 rt = *rtp;
1078 if (unlikely(!rt))
1079 return -EFAULT;
1080 /*
1081 * We steal reference to this route, caller should not release it
1082 */
1083 *rtp = NULL;
1084 cork->fragsize = inet->pmtudisc == IP_PMTUDISC_PROBE ?
1085 rt->dst.dev->mtu : dst_mtu(&rt->dst);
1086 cork->dst = &rt->dst;
1087 cork->length = 0;
1088 cork->tx_flags = ipc->tx_flags;
1089 cork->page = NULL;
1090 cork->off = 0;
1091
1092 return 0;
1093}
1094
1095/*
1096 * ip_append_data() and ip_append_page() can make one large IP datagram
1097 * from many pieces of data. Each pieces will be holded on the socket
1098 * until ip_push_pending_frames() is called. Each piece can be a page
1099 * or non-page data.
1100 *
1101 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1102 * this interface potentially.
1103 *
1104 * LATER: length must be adjusted by pad at tail, when it is required.
1105 */
1106int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1107 int getfrag(void *from, char *to, int offset, int len,
1108 int odd, struct sk_buff *skb),
1109 void *from, int length, int transhdrlen,
1110 struct ipcm_cookie *ipc, struct rtable **rtp,
1111 unsigned int flags)
1112{
1113 struct inet_sock *inet = inet_sk(sk);
1114 int err;
1115
1116 if (flags&MSG_PROBE)
1117 return 0;
1118
1119 if (skb_queue_empty(&sk->sk_write_queue)) {
1120 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1121 if (err)
1122 return err;
1123 } else {
1124 transhdrlen = 0;
1125 }
1126
1127 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, getfrag,
1128 from, length, transhdrlen, flags);
1129}
1130
1131ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1132 int offset, size_t size, int flags)
1133{
1134 struct inet_sock *inet = inet_sk(sk);
1135 struct sk_buff *skb;
1136 struct rtable *rt;
1137 struct ip_options *opt = NULL;
1138 struct inet_cork *cork;
1139 int hh_len;
1140 int mtu;
1141 int len;
1142 int err;
1143 unsigned int maxfraglen, fragheaderlen, fraggap;
1144
1145 if (inet->hdrincl)
1146 return -EPERM;
1147
1148 if (flags&MSG_PROBE)
1149 return 0;
1150
1151 if (skb_queue_empty(&sk->sk_write_queue))
1152 return -EINVAL;
1153
1154 cork = &inet->cork.base;
1155 rt = (struct rtable *)cork->dst;
1156 if (cork->flags & IPCORK_OPT)
1157 opt = cork->opt;
1158
1159 if (!(rt->dst.dev->features&NETIF_F_SG))
1160 return -EOPNOTSUPP;
1161
1162 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1163 mtu = cork->fragsize;
1164
1165 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1166 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1167
1168 if (cork->length + size > 0xFFFF - fragheaderlen) {
1169 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, mtu);
1170 return -EMSGSIZE;
1171 }
1172
1173 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1174 return -EINVAL;
1175
1176 cork->length += size;
1177 if ((size + skb->len > mtu) &&
1178 (sk->sk_protocol == IPPROTO_UDP) &&
1179 (rt->dst.dev->features & NETIF_F_UFO)) {
1180 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1181 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1182 }
1183
1184
1185 while (size > 0) {
1186 int i;
1187
1188 if (skb_is_gso(skb))
1189 len = size;
1190 else {
1191
1192 /* Check if the remaining data fits into current packet. */
1193 len = mtu - skb->len;
1194 if (len < size)
1195 len = maxfraglen - skb->len;
1196 }
1197 if (len <= 0) {
1198 struct sk_buff *skb_prev;
1199 int alloclen;
1200
1201 skb_prev = skb;
1202 fraggap = skb_prev->len - maxfraglen;
1203
1204 alloclen = fragheaderlen + hh_len + fraggap + 15;
1205 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1206 if (unlikely(!skb)) {
1207 err = -ENOBUFS;
1208 goto error;
1209 }
1210
1211 /*
1212 * Fill in the control structures
1213 */
1214 skb->ip_summed = CHECKSUM_NONE;
1215 skb->csum = 0;
1216 skb_reserve(skb, hh_len);
1217
1218 /*
1219 * Find where to start putting bytes.
1220 */
1221 skb_put(skb, fragheaderlen + fraggap);
1222 skb_reset_network_header(skb);
1223 skb->transport_header = (skb->network_header +
1224 fragheaderlen);
1225 if (fraggap) {
1226 skb->csum = skb_copy_and_csum_bits(skb_prev,
1227 maxfraglen,
1228 skb_transport_header(skb),
1229 fraggap, 0);
1230 skb_prev->csum = csum_sub(skb_prev->csum,
1231 skb->csum);
1232 pskb_trim_unique(skb_prev, maxfraglen);
1233 }
1234
1235 /*
1236 * Put the packet on the pending queue.
1237 */
1238 __skb_queue_tail(&sk->sk_write_queue, skb);
1239 continue;
1240 }
1241
1242 i = skb_shinfo(skb)->nr_frags;
1243 if (len > size)
1244 len = size;
1245 if (skb_can_coalesce(skb, i, page, offset)) {
1246 skb_frag_size_add(&skb_shinfo(skb)->frags[i-1], len);
1247 } else if (i < MAX_SKB_FRAGS) {
1248 get_page(page);
1249 skb_fill_page_desc(skb, i, page, offset, len);
1250 } else {
1251 err = -EMSGSIZE;
1252 goto error;
1253 }
1254
1255 if (skb->ip_summed == CHECKSUM_NONE) {
1256 __wsum csum;
1257 csum = csum_page(page, offset, len);
1258 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1259 }
1260
1261 skb->len += len;
1262 skb->data_len += len;
1263 skb->truesize += len;
1264 atomic_add(len, &sk->sk_wmem_alloc);
1265 offset += len;
1266 size -= len;
1267 }
1268 return 0;
1269
1270error:
1271 cork->length -= size;
1272 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1273 return err;
1274}
1275
1276static void ip_cork_release(struct inet_cork *cork)
1277{
1278 cork->flags &= ~IPCORK_OPT;
1279 kfree(cork->opt);
1280 cork->opt = NULL;
1281 dst_release(cork->dst);
1282 cork->dst = NULL;
1283}
1284
1285/*
1286 * Combined all pending IP fragments on the socket as one IP datagram
1287 * and push them out.
1288 */
1289struct sk_buff *__ip_make_skb(struct sock *sk,
1290 struct flowi4 *fl4,
1291 struct sk_buff_head *queue,
1292 struct inet_cork *cork)
1293{
1294 struct sk_buff *skb, *tmp_skb;
1295 struct sk_buff **tail_skb;
1296 struct inet_sock *inet = inet_sk(sk);
1297 struct net *net = sock_net(sk);
1298 struct ip_options *opt = NULL;
1299 struct rtable *rt = (struct rtable *)cork->dst;
1300 struct iphdr *iph;
1301 __be16 df = 0;
1302 __u8 ttl;
1303
1304 if ((skb = __skb_dequeue(queue)) == NULL)
1305 goto out;
1306 tail_skb = &(skb_shinfo(skb)->frag_list);
1307
1308 /* move skb->data to ip header from ext header */
1309 if (skb->data < skb_network_header(skb))
1310 __skb_pull(skb, skb_network_offset(skb));
1311 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1312 __skb_pull(tmp_skb, skb_network_header_len(skb));
1313 *tail_skb = tmp_skb;
1314 tail_skb = &(tmp_skb->next);
1315 skb->len += tmp_skb->len;
1316 skb->data_len += tmp_skb->len;
1317 skb->truesize += tmp_skb->truesize;
1318 tmp_skb->destructor = NULL;
1319 tmp_skb->sk = NULL;
1320 }
1321
1322 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1323 * to fragment the frame generated here. No matter, what transforms
1324 * how transforms change size of the packet, it will come out.
1325 */
1326 if (inet->pmtudisc < IP_PMTUDISC_DO)
1327 skb->local_df = 1;
1328
1329 /* DF bit is set when we want to see DF on outgoing frames.
1330 * If local_df is set too, we still allow to fragment this frame
1331 * locally. */
1332 if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1333 (skb->len <= dst_mtu(&rt->dst) &&
1334 ip_dont_fragment(sk, &rt->dst)))
1335 df = htons(IP_DF);
1336
1337 if (cork->flags & IPCORK_OPT)
1338 opt = cork->opt;
1339
1340 if (rt->rt_type == RTN_MULTICAST)
1341 ttl = inet->mc_ttl;
1342 else
1343 ttl = ip_select_ttl(inet, &rt->dst);
1344
1345 iph = (struct iphdr *)skb->data;
1346 iph->version = 4;
1347 iph->ihl = 5;
1348 iph->tos = inet->tos;
1349 iph->frag_off = df;
1350 ip_select_ident(iph, &rt->dst, sk);
1351 iph->ttl = ttl;
1352 iph->protocol = sk->sk_protocol;
1353 ip_copy_addrs(iph, fl4);
1354
1355 if (opt) {
1356 iph->ihl += opt->optlen>>2;
1357 ip_options_build(skb, opt, cork->addr, rt, 0);
1358 }
1359
1360 skb->priority = sk->sk_priority;
1361 skb->mark = sk->sk_mark;
1362 /*
1363 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1364 * on dst refcount
1365 */
1366 cork->dst = NULL;
1367 skb_dst_set(skb, &rt->dst);
1368
1369 if (iph->protocol == IPPROTO_ICMP)
1370 icmp_out_count(net, ((struct icmphdr *)
1371 skb_transport_header(skb))->type);
1372
1373 ip_cork_release(cork);
1374out:
1375 return skb;
1376}
1377
1378int ip_send_skb(struct sk_buff *skb)
1379{
1380 struct net *net = sock_net(skb->sk);
1381 int err;
1382
1383 err = ip_local_out(skb);
1384 if (err) {
1385 if (err > 0)
1386 err = net_xmit_errno(err);
1387 if (err)
1388 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1389 }
1390
1391 return err;
1392}
1393
1394int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1395{
1396 struct sk_buff *skb;
1397
1398 skb = ip_finish_skb(sk, fl4);
1399 if (!skb)
1400 return 0;
1401
1402 /* Netfilter gets whole the not fragmented skb. */
1403 return ip_send_skb(skb);
1404}
1405
1406/*
1407 * Throw away all pending data on the socket.
1408 */
1409static void __ip_flush_pending_frames(struct sock *sk,
1410 struct sk_buff_head *queue,
1411 struct inet_cork *cork)
1412{
1413 struct sk_buff *skb;
1414
1415 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1416 kfree_skb(skb);
1417
1418 ip_cork_release(cork);
1419}
1420
1421void ip_flush_pending_frames(struct sock *sk)
1422{
1423 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1424}
1425
1426struct sk_buff *ip_make_skb(struct sock *sk,
1427 struct flowi4 *fl4,
1428 int getfrag(void *from, char *to, int offset,
1429 int len, int odd, struct sk_buff *skb),
1430 void *from, int length, int transhdrlen,
1431 struct ipcm_cookie *ipc, struct rtable **rtp,
1432 unsigned int flags)
1433{
1434 struct inet_cork cork;
1435 struct sk_buff_head queue;
1436 int err;
1437
1438 if (flags & MSG_PROBE)
1439 return NULL;
1440
1441 __skb_queue_head_init(&queue);
1442
1443 cork.flags = 0;
1444 cork.addr = 0;
1445 cork.opt = NULL;
1446 err = ip_setup_cork(sk, &cork, ipc, rtp);
1447 if (err)
1448 return ERR_PTR(err);
1449
1450 err = __ip_append_data(sk, fl4, &queue, &cork, getfrag,
1451 from, length, transhdrlen, flags);
1452 if (err) {
1453 __ip_flush_pending_frames(sk, &queue, &cork);
1454 return ERR_PTR(err);
1455 }
1456
1457 return __ip_make_skb(sk, fl4, &queue, &cork);
1458}
1459
1460/*
1461 * Fetch data from kernel space and fill in checksum if needed.
1462 */
1463static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1464 int len, int odd, struct sk_buff *skb)
1465{
1466 __wsum csum;
1467
1468 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1469 skb->csum = csum_block_add(skb->csum, csum, odd);
1470 return 0;
1471}
1472
1473/*
1474 * Generic function to send a packet as reply to another packet.
1475 * Used to send TCP resets so far. ICMP should use this function too.
1476 *
1477 * Should run single threaded per socket because it uses the sock
1478 * structure to pass arguments.
1479 */
1480void ip_send_reply(struct sock *sk, struct sk_buff *skb, __be32 daddr,
1481 const struct ip_reply_arg *arg, unsigned int len)
1482{
1483 struct inet_sock *inet = inet_sk(sk);
1484 struct ip_options_data replyopts;
1485 struct ipcm_cookie ipc;
1486 struct flowi4 fl4;
1487 struct rtable *rt = skb_rtable(skb);
1488
1489 if (ip_options_echo(&replyopts.opt.opt, skb))
1490 return;
1491
1492 ipc.addr = daddr;
1493 ipc.opt = NULL;
1494 ipc.tx_flags = 0;
1495
1496 if (replyopts.opt.opt.optlen) {
1497 ipc.opt = &replyopts.opt;
1498
1499 if (replyopts.opt.opt.srr)
1500 daddr = replyopts.opt.opt.faddr;
1501 }
1502
1503 flowi4_init_output(&fl4, arg->bound_dev_if, 0,
1504 RT_TOS(arg->tos),
1505 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1506 ip_reply_arg_flowi_flags(arg),
1507 daddr, rt->rt_spec_dst,
1508 tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1509 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1510 rt = ip_route_output_key(sock_net(sk), &fl4);
1511 if (IS_ERR(rt))
1512 return;
1513
1514 /* And let IP do all the hard work.
1515
1516 This chunk is not reenterable, hence spinlock.
1517 Note that it uses the fact, that this function is called
1518 with locally disabled BH and that sk cannot be already spinlocked.
1519 */
1520 bh_lock_sock(sk);
1521 inet->tos = arg->tos;
1522 sk->sk_priority = skb->priority;
1523 sk->sk_protocol = ip_hdr(skb)->protocol;
1524 sk->sk_bound_dev_if = arg->bound_dev_if;
1525 ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1526 &ipc, &rt, MSG_DONTWAIT);
1527 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1528 if (arg->csumoffset >= 0)
1529 *((__sum16 *)skb_transport_header(skb) +
1530 arg->csumoffset) = csum_fold(csum_add(skb->csum,
1531 arg->csum));
1532 skb->ip_summed = CHECKSUM_NONE;
1533 ip_push_pending_frames(sk, &fl4);
1534 }
1535
1536 bh_unlock_sock(sk);
1537
1538 ip_rt_put(rt);
1539}
1540
1541void __init ip_init(void)
1542{
1543 ip_rt_init();
1544 inet_initpeers();
1545
1546#if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1547 igmp_mc_proc_init();
1548#endif
1549}