Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * kernel/stop_machine.c
4 *
5 * Copyright (C) 2008, 2005 IBM Corporation.
6 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au
7 * Copyright (C) 2010 SUSE Linux Products GmbH
8 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
9 */
10#include <linux/compiler.h>
11#include <linux/completion.h>
12#include <linux/cpu.h>
13#include <linux/init.h>
14#include <linux/kthread.h>
15#include <linux/export.h>
16#include <linux/percpu.h>
17#include <linux/sched.h>
18#include <linux/stop_machine.h>
19#include <linux/interrupt.h>
20#include <linux/kallsyms.h>
21#include <linux/smpboot.h>
22#include <linux/atomic.h>
23#include <linux/nmi.h>
24#include <linux/sched/wake_q.h>
25
26/*
27 * Structure to determine completion condition and record errors. May
28 * be shared by works on different cpus.
29 */
30struct cpu_stop_done {
31 atomic_t nr_todo; /* nr left to execute */
32 int ret; /* collected return value */
33 struct completion completion; /* fired if nr_todo reaches 0 */
34};
35
36/* the actual stopper, one per every possible cpu, enabled on online cpus */
37struct cpu_stopper {
38 struct task_struct *thread;
39
40 raw_spinlock_t lock;
41 bool enabled; /* is this stopper enabled? */
42 struct list_head works; /* list of pending works */
43
44 struct cpu_stop_work stop_work; /* for stop_cpus */
45};
46
47static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
48static bool stop_machine_initialized = false;
49
50/* static data for stop_cpus */
51static DEFINE_MUTEX(stop_cpus_mutex);
52static bool stop_cpus_in_progress;
53
54static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
55{
56 memset(done, 0, sizeof(*done));
57 atomic_set(&done->nr_todo, nr_todo);
58 init_completion(&done->completion);
59}
60
61/* signal completion unless @done is NULL */
62static void cpu_stop_signal_done(struct cpu_stop_done *done)
63{
64 if (atomic_dec_and_test(&done->nr_todo))
65 complete(&done->completion);
66}
67
68static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
69 struct cpu_stop_work *work,
70 struct wake_q_head *wakeq)
71{
72 list_add_tail(&work->list, &stopper->works);
73 wake_q_add(wakeq, stopper->thread);
74}
75
76/* queue @work to @stopper. if offline, @work is completed immediately */
77static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
78{
79 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
80 DEFINE_WAKE_Q(wakeq);
81 unsigned long flags;
82 bool enabled;
83
84 preempt_disable();
85 raw_spin_lock_irqsave(&stopper->lock, flags);
86 enabled = stopper->enabled;
87 if (enabled)
88 __cpu_stop_queue_work(stopper, work, &wakeq);
89 else if (work->done)
90 cpu_stop_signal_done(work->done);
91 raw_spin_unlock_irqrestore(&stopper->lock, flags);
92
93 wake_up_q(&wakeq);
94 preempt_enable();
95
96 return enabled;
97}
98
99/**
100 * stop_one_cpu - stop a cpu
101 * @cpu: cpu to stop
102 * @fn: function to execute
103 * @arg: argument to @fn
104 *
105 * Execute @fn(@arg) on @cpu. @fn is run in a process context with
106 * the highest priority preempting any task on the cpu and
107 * monopolizing it. This function returns after the execution is
108 * complete.
109 *
110 * This function doesn't guarantee @cpu stays online till @fn
111 * completes. If @cpu goes down in the middle, execution may happen
112 * partially or fully on different cpus. @fn should either be ready
113 * for that or the caller should ensure that @cpu stays online until
114 * this function completes.
115 *
116 * CONTEXT:
117 * Might sleep.
118 *
119 * RETURNS:
120 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
121 * otherwise, the return value of @fn.
122 */
123int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
124{
125 struct cpu_stop_done done;
126 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
127
128 cpu_stop_init_done(&done, 1);
129 if (!cpu_stop_queue_work(cpu, &work))
130 return -ENOENT;
131 /*
132 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
133 * cycle by doing a preemption:
134 */
135 cond_resched();
136 wait_for_completion(&done.completion);
137 return done.ret;
138}
139
140/* This controls the threads on each CPU. */
141enum multi_stop_state {
142 /* Dummy starting state for thread. */
143 MULTI_STOP_NONE,
144 /* Awaiting everyone to be scheduled. */
145 MULTI_STOP_PREPARE,
146 /* Disable interrupts. */
147 MULTI_STOP_DISABLE_IRQ,
148 /* Run the function */
149 MULTI_STOP_RUN,
150 /* Exit */
151 MULTI_STOP_EXIT,
152};
153
154struct multi_stop_data {
155 cpu_stop_fn_t fn;
156 void *data;
157 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
158 unsigned int num_threads;
159 const struct cpumask *active_cpus;
160
161 enum multi_stop_state state;
162 atomic_t thread_ack;
163};
164
165static void set_state(struct multi_stop_data *msdata,
166 enum multi_stop_state newstate)
167{
168 /* Reset ack counter. */
169 atomic_set(&msdata->thread_ack, msdata->num_threads);
170 smp_wmb();
171 WRITE_ONCE(msdata->state, newstate);
172}
173
174/* Last one to ack a state moves to the next state. */
175static void ack_state(struct multi_stop_data *msdata)
176{
177 if (atomic_dec_and_test(&msdata->thread_ack))
178 set_state(msdata, msdata->state + 1);
179}
180
181void __weak stop_machine_yield(const struct cpumask *cpumask)
182{
183 cpu_relax();
184}
185
186/* This is the cpu_stop function which stops the CPU. */
187static int multi_cpu_stop(void *data)
188{
189 struct multi_stop_data *msdata = data;
190 enum multi_stop_state newstate, curstate = MULTI_STOP_NONE;
191 int cpu = smp_processor_id(), err = 0;
192 const struct cpumask *cpumask;
193 unsigned long flags;
194 bool is_active;
195
196 /*
197 * When called from stop_machine_from_inactive_cpu(), irq might
198 * already be disabled. Save the state and restore it on exit.
199 */
200 local_save_flags(flags);
201
202 if (!msdata->active_cpus) {
203 cpumask = cpu_online_mask;
204 is_active = cpu == cpumask_first(cpumask);
205 } else {
206 cpumask = msdata->active_cpus;
207 is_active = cpumask_test_cpu(cpu, cpumask);
208 }
209
210 /* Simple state machine */
211 do {
212 /* Chill out and ensure we re-read multi_stop_state. */
213 stop_machine_yield(cpumask);
214 newstate = READ_ONCE(msdata->state);
215 if (newstate != curstate) {
216 curstate = newstate;
217 switch (curstate) {
218 case MULTI_STOP_DISABLE_IRQ:
219 local_irq_disable();
220 hard_irq_disable();
221 break;
222 case MULTI_STOP_RUN:
223 if (is_active)
224 err = msdata->fn(msdata->data);
225 break;
226 default:
227 break;
228 }
229 ack_state(msdata);
230 } else if (curstate > MULTI_STOP_PREPARE) {
231 /*
232 * At this stage all other CPUs we depend on must spin
233 * in the same loop. Any reason for hard-lockup should
234 * be detected and reported on their side.
235 */
236 touch_nmi_watchdog();
237 }
238 } while (curstate != MULTI_STOP_EXIT);
239
240 local_irq_restore(flags);
241 return err;
242}
243
244static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
245 int cpu2, struct cpu_stop_work *work2)
246{
247 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
248 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
249 DEFINE_WAKE_Q(wakeq);
250 int err;
251
252retry:
253 /*
254 * The waking up of stopper threads has to happen in the same
255 * scheduling context as the queueing. Otherwise, there is a
256 * possibility of one of the above stoppers being woken up by another
257 * CPU, and preempting us. This will cause us to not wake up the other
258 * stopper forever.
259 */
260 preempt_disable();
261 raw_spin_lock_irq(&stopper1->lock);
262 raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
263
264 if (!stopper1->enabled || !stopper2->enabled) {
265 err = -ENOENT;
266 goto unlock;
267 }
268
269 /*
270 * Ensure that if we race with __stop_cpus() the stoppers won't get
271 * queued up in reverse order leading to system deadlock.
272 *
273 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
274 * queued a work on cpu1 but not on cpu2, we hold both locks.
275 *
276 * It can be falsely true but it is safe to spin until it is cleared,
277 * queue_stop_cpus_work() does everything under preempt_disable().
278 */
279 if (unlikely(stop_cpus_in_progress)) {
280 err = -EDEADLK;
281 goto unlock;
282 }
283
284 err = 0;
285 __cpu_stop_queue_work(stopper1, work1, &wakeq);
286 __cpu_stop_queue_work(stopper2, work2, &wakeq);
287
288unlock:
289 raw_spin_unlock(&stopper2->lock);
290 raw_spin_unlock_irq(&stopper1->lock);
291
292 if (unlikely(err == -EDEADLK)) {
293 preempt_enable();
294
295 while (stop_cpus_in_progress)
296 cpu_relax();
297
298 goto retry;
299 }
300
301 wake_up_q(&wakeq);
302 preempt_enable();
303
304 return err;
305}
306/**
307 * stop_two_cpus - stops two cpus
308 * @cpu1: the cpu to stop
309 * @cpu2: the other cpu to stop
310 * @fn: function to execute
311 * @arg: argument to @fn
312 *
313 * Stops both the current and specified CPU and runs @fn on one of them.
314 *
315 * returns when both are completed.
316 */
317int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
318{
319 struct cpu_stop_done done;
320 struct cpu_stop_work work1, work2;
321 struct multi_stop_data msdata;
322
323 msdata = (struct multi_stop_data){
324 .fn = fn,
325 .data = arg,
326 .num_threads = 2,
327 .active_cpus = cpumask_of(cpu1),
328 };
329
330 work1 = work2 = (struct cpu_stop_work){
331 .fn = multi_cpu_stop,
332 .arg = &msdata,
333 .done = &done
334 };
335
336 cpu_stop_init_done(&done, 2);
337 set_state(&msdata, MULTI_STOP_PREPARE);
338
339 if (cpu1 > cpu2)
340 swap(cpu1, cpu2);
341 if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
342 return -ENOENT;
343
344 wait_for_completion(&done.completion);
345 return done.ret;
346}
347
348/**
349 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
350 * @cpu: cpu to stop
351 * @fn: function to execute
352 * @arg: argument to @fn
353 * @work_buf: pointer to cpu_stop_work structure
354 *
355 * Similar to stop_one_cpu() but doesn't wait for completion. The
356 * caller is responsible for ensuring @work_buf is currently unused
357 * and will remain untouched until stopper starts executing @fn.
358 *
359 * CONTEXT:
360 * Don't care.
361 *
362 * RETURNS:
363 * true if cpu_stop_work was queued successfully and @fn will be called,
364 * false otherwise.
365 */
366bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
367 struct cpu_stop_work *work_buf)
368{
369 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
370 return cpu_stop_queue_work(cpu, work_buf);
371}
372
373static bool queue_stop_cpus_work(const struct cpumask *cpumask,
374 cpu_stop_fn_t fn, void *arg,
375 struct cpu_stop_done *done)
376{
377 struct cpu_stop_work *work;
378 unsigned int cpu;
379 bool queued = false;
380
381 /*
382 * Disable preemption while queueing to avoid getting
383 * preempted by a stopper which might wait for other stoppers
384 * to enter @fn which can lead to deadlock.
385 */
386 preempt_disable();
387 stop_cpus_in_progress = true;
388 barrier();
389 for_each_cpu(cpu, cpumask) {
390 work = &per_cpu(cpu_stopper.stop_work, cpu);
391 work->fn = fn;
392 work->arg = arg;
393 work->done = done;
394 if (cpu_stop_queue_work(cpu, work))
395 queued = true;
396 }
397 barrier();
398 stop_cpus_in_progress = false;
399 preempt_enable();
400
401 return queued;
402}
403
404static int __stop_cpus(const struct cpumask *cpumask,
405 cpu_stop_fn_t fn, void *arg)
406{
407 struct cpu_stop_done done;
408
409 cpu_stop_init_done(&done, cpumask_weight(cpumask));
410 if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
411 return -ENOENT;
412 wait_for_completion(&done.completion);
413 return done.ret;
414}
415
416/**
417 * stop_cpus - stop multiple cpus
418 * @cpumask: cpus to stop
419 * @fn: function to execute
420 * @arg: argument to @fn
421 *
422 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu,
423 * @fn is run in a process context with the highest priority
424 * preempting any task on the cpu and monopolizing it. This function
425 * returns after all executions are complete.
426 *
427 * This function doesn't guarantee the cpus in @cpumask stay online
428 * till @fn completes. If some cpus go down in the middle, execution
429 * on the cpu may happen partially or fully on different cpus. @fn
430 * should either be ready for that or the caller should ensure that
431 * the cpus stay online until this function completes.
432 *
433 * All stop_cpus() calls are serialized making it safe for @fn to wait
434 * for all cpus to start executing it.
435 *
436 * CONTEXT:
437 * Might sleep.
438 *
439 * RETURNS:
440 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
441 * @cpumask were offline; otherwise, 0 if all executions of @fn
442 * returned 0, any non zero return value if any returned non zero.
443 */
444int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
445{
446 int ret;
447
448 /* static works are used, process one request at a time */
449 mutex_lock(&stop_cpus_mutex);
450 ret = __stop_cpus(cpumask, fn, arg);
451 mutex_unlock(&stop_cpus_mutex);
452 return ret;
453}
454
455/**
456 * try_stop_cpus - try to stop multiple cpus
457 * @cpumask: cpus to stop
458 * @fn: function to execute
459 * @arg: argument to @fn
460 *
461 * Identical to stop_cpus() except that it fails with -EAGAIN if
462 * someone else is already using the facility.
463 *
464 * CONTEXT:
465 * Might sleep.
466 *
467 * RETURNS:
468 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
469 * @fn(@arg) was not executed at all because all cpus in @cpumask were
470 * offline; otherwise, 0 if all executions of @fn returned 0, any non
471 * zero return value if any returned non zero.
472 */
473int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
474{
475 int ret;
476
477 /* static works are used, process one request at a time */
478 if (!mutex_trylock(&stop_cpus_mutex))
479 return -EAGAIN;
480 ret = __stop_cpus(cpumask, fn, arg);
481 mutex_unlock(&stop_cpus_mutex);
482 return ret;
483}
484
485static int cpu_stop_should_run(unsigned int cpu)
486{
487 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
488 unsigned long flags;
489 int run;
490
491 raw_spin_lock_irqsave(&stopper->lock, flags);
492 run = !list_empty(&stopper->works);
493 raw_spin_unlock_irqrestore(&stopper->lock, flags);
494 return run;
495}
496
497static void cpu_stopper_thread(unsigned int cpu)
498{
499 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
500 struct cpu_stop_work *work;
501
502repeat:
503 work = NULL;
504 raw_spin_lock_irq(&stopper->lock);
505 if (!list_empty(&stopper->works)) {
506 work = list_first_entry(&stopper->works,
507 struct cpu_stop_work, list);
508 list_del_init(&work->list);
509 }
510 raw_spin_unlock_irq(&stopper->lock);
511
512 if (work) {
513 cpu_stop_fn_t fn = work->fn;
514 void *arg = work->arg;
515 struct cpu_stop_done *done = work->done;
516 int ret;
517
518 /* cpu stop callbacks must not sleep, make in_atomic() == T */
519 preempt_count_inc();
520 ret = fn(arg);
521 if (done) {
522 if (ret)
523 done->ret = ret;
524 cpu_stop_signal_done(done);
525 }
526 preempt_count_dec();
527 WARN_ONCE(preempt_count(),
528 "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg);
529 goto repeat;
530 }
531}
532
533void stop_machine_park(int cpu)
534{
535 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
536 /*
537 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
538 * the pending works before it parks, until then it is fine to queue
539 * the new works.
540 */
541 stopper->enabled = false;
542 kthread_park(stopper->thread);
543}
544
545extern void sched_set_stop_task(int cpu, struct task_struct *stop);
546
547static void cpu_stop_create(unsigned int cpu)
548{
549 sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
550}
551
552static void cpu_stop_park(unsigned int cpu)
553{
554 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
555
556 WARN_ON(!list_empty(&stopper->works));
557}
558
559void stop_machine_unpark(int cpu)
560{
561 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
562
563 stopper->enabled = true;
564 kthread_unpark(stopper->thread);
565}
566
567static struct smp_hotplug_thread cpu_stop_threads = {
568 .store = &cpu_stopper.thread,
569 .thread_should_run = cpu_stop_should_run,
570 .thread_fn = cpu_stopper_thread,
571 .thread_comm = "migration/%u",
572 .create = cpu_stop_create,
573 .park = cpu_stop_park,
574 .selfparking = true,
575};
576
577static int __init cpu_stop_init(void)
578{
579 unsigned int cpu;
580
581 for_each_possible_cpu(cpu) {
582 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
583
584 raw_spin_lock_init(&stopper->lock);
585 INIT_LIST_HEAD(&stopper->works);
586 }
587
588 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
589 stop_machine_unpark(raw_smp_processor_id());
590 stop_machine_initialized = true;
591 return 0;
592}
593early_initcall(cpu_stop_init);
594
595int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
596 const struct cpumask *cpus)
597{
598 struct multi_stop_data msdata = {
599 .fn = fn,
600 .data = data,
601 .num_threads = num_online_cpus(),
602 .active_cpus = cpus,
603 };
604
605 lockdep_assert_cpus_held();
606
607 if (!stop_machine_initialized) {
608 /*
609 * Handle the case where stop_machine() is called
610 * early in boot before stop_machine() has been
611 * initialized.
612 */
613 unsigned long flags;
614 int ret;
615
616 WARN_ON_ONCE(msdata.num_threads != 1);
617
618 local_irq_save(flags);
619 hard_irq_disable();
620 ret = (*fn)(data);
621 local_irq_restore(flags);
622
623 return ret;
624 }
625
626 /* Set the initial state and stop all online cpus. */
627 set_state(&msdata, MULTI_STOP_PREPARE);
628 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
629}
630
631int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
632{
633 int ret;
634
635 /* No CPUs can come up or down during this. */
636 cpus_read_lock();
637 ret = stop_machine_cpuslocked(fn, data, cpus);
638 cpus_read_unlock();
639 return ret;
640}
641EXPORT_SYMBOL_GPL(stop_machine);
642
643/**
644 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
645 * @fn: the function to run
646 * @data: the data ptr for the @fn()
647 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
648 *
649 * This is identical to stop_machine() but can be called from a CPU which
650 * is not active. The local CPU is in the process of hotplug (so no other
651 * CPU hotplug can start) and not marked active and doesn't have enough
652 * context to sleep.
653 *
654 * This function provides stop_machine() functionality for such state by
655 * using busy-wait for synchronization and executing @fn directly for local
656 * CPU.
657 *
658 * CONTEXT:
659 * Local CPU is inactive. Temporarily stops all active CPUs.
660 *
661 * RETURNS:
662 * 0 if all executions of @fn returned 0, any non zero return value if any
663 * returned non zero.
664 */
665int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
666 const struct cpumask *cpus)
667{
668 struct multi_stop_data msdata = { .fn = fn, .data = data,
669 .active_cpus = cpus };
670 struct cpu_stop_done done;
671 int ret;
672
673 /* Local CPU must be inactive and CPU hotplug in progress. */
674 BUG_ON(cpu_active(raw_smp_processor_id()));
675 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */
676
677 /* No proper task established and can't sleep - busy wait for lock. */
678 while (!mutex_trylock(&stop_cpus_mutex))
679 cpu_relax();
680
681 /* Schedule work on other CPUs and execute directly for local CPU */
682 set_state(&msdata, MULTI_STOP_PREPARE);
683 cpu_stop_init_done(&done, num_active_cpus());
684 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
685 &done);
686 ret = multi_cpu_stop(&msdata);
687
688 /* Busy wait for completion. */
689 while (!completion_done(&done.completion))
690 cpu_relax();
691
692 mutex_unlock(&stop_cpus_mutex);
693 return ret ?: done.ret;
694}
1/*
2 * kernel/stop_machine.c
3 *
4 * Copyright (C) 2008, 2005 IBM Corporation.
5 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au
6 * Copyright (C) 2010 SUSE Linux Products GmbH
7 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
8 *
9 * This file is released under the GPLv2 and any later version.
10 */
11#include <linux/completion.h>
12#include <linux/cpu.h>
13#include <linux/init.h>
14#include <linux/kthread.h>
15#include <linux/export.h>
16#include <linux/percpu.h>
17#include <linux/sched.h>
18#include <linux/stop_machine.h>
19#include <linux/interrupt.h>
20#include <linux/kallsyms.h>
21
22#include <linux/atomic.h>
23
24/*
25 * Structure to determine completion condition and record errors. May
26 * be shared by works on different cpus.
27 */
28struct cpu_stop_done {
29 atomic_t nr_todo; /* nr left to execute */
30 bool executed; /* actually executed? */
31 int ret; /* collected return value */
32 struct completion completion; /* fired if nr_todo reaches 0 */
33};
34
35/* the actual stopper, one per every possible cpu, enabled on online cpus */
36struct cpu_stopper {
37 spinlock_t lock;
38 bool enabled; /* is this stopper enabled? */
39 struct list_head works; /* list of pending works */
40 struct task_struct *thread; /* stopper thread */
41};
42
43static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
44static bool stop_machine_initialized = false;
45
46static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
47{
48 memset(done, 0, sizeof(*done));
49 atomic_set(&done->nr_todo, nr_todo);
50 init_completion(&done->completion);
51}
52
53/* signal completion unless @done is NULL */
54static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed)
55{
56 if (done) {
57 if (executed)
58 done->executed = true;
59 if (atomic_dec_and_test(&done->nr_todo))
60 complete(&done->completion);
61 }
62}
63
64/* queue @work to @stopper. if offline, @work is completed immediately */
65static void cpu_stop_queue_work(struct cpu_stopper *stopper,
66 struct cpu_stop_work *work)
67{
68 unsigned long flags;
69
70 spin_lock_irqsave(&stopper->lock, flags);
71
72 if (stopper->enabled) {
73 list_add_tail(&work->list, &stopper->works);
74 wake_up_process(stopper->thread);
75 } else
76 cpu_stop_signal_done(work->done, false);
77
78 spin_unlock_irqrestore(&stopper->lock, flags);
79}
80
81/**
82 * stop_one_cpu - stop a cpu
83 * @cpu: cpu to stop
84 * @fn: function to execute
85 * @arg: argument to @fn
86 *
87 * Execute @fn(@arg) on @cpu. @fn is run in a process context with
88 * the highest priority preempting any task on the cpu and
89 * monopolizing it. This function returns after the execution is
90 * complete.
91 *
92 * This function doesn't guarantee @cpu stays online till @fn
93 * completes. If @cpu goes down in the middle, execution may happen
94 * partially or fully on different cpus. @fn should either be ready
95 * for that or the caller should ensure that @cpu stays online until
96 * this function completes.
97 *
98 * CONTEXT:
99 * Might sleep.
100 *
101 * RETURNS:
102 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
103 * otherwise, the return value of @fn.
104 */
105int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
106{
107 struct cpu_stop_done done;
108 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
109
110 cpu_stop_init_done(&done, 1);
111 cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), &work);
112 wait_for_completion(&done.completion);
113 return done.executed ? done.ret : -ENOENT;
114}
115
116/**
117 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
118 * @cpu: cpu to stop
119 * @fn: function to execute
120 * @arg: argument to @fn
121 *
122 * Similar to stop_one_cpu() but doesn't wait for completion. The
123 * caller is responsible for ensuring @work_buf is currently unused
124 * and will remain untouched until stopper starts executing @fn.
125 *
126 * CONTEXT:
127 * Don't care.
128 */
129void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
130 struct cpu_stop_work *work_buf)
131{
132 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
133 cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), work_buf);
134}
135
136/* static data for stop_cpus */
137static DEFINE_MUTEX(stop_cpus_mutex);
138static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work);
139
140static void queue_stop_cpus_work(const struct cpumask *cpumask,
141 cpu_stop_fn_t fn, void *arg,
142 struct cpu_stop_done *done)
143{
144 struct cpu_stop_work *work;
145 unsigned int cpu;
146
147 /* initialize works and done */
148 for_each_cpu(cpu, cpumask) {
149 work = &per_cpu(stop_cpus_work, cpu);
150 work->fn = fn;
151 work->arg = arg;
152 work->done = done;
153 }
154
155 /*
156 * Disable preemption while queueing to avoid getting
157 * preempted by a stopper which might wait for other stoppers
158 * to enter @fn which can lead to deadlock.
159 */
160 preempt_disable();
161 for_each_cpu(cpu, cpumask)
162 cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu),
163 &per_cpu(stop_cpus_work, cpu));
164 preempt_enable();
165}
166
167static int __stop_cpus(const struct cpumask *cpumask,
168 cpu_stop_fn_t fn, void *arg)
169{
170 struct cpu_stop_done done;
171
172 cpu_stop_init_done(&done, cpumask_weight(cpumask));
173 queue_stop_cpus_work(cpumask, fn, arg, &done);
174 wait_for_completion(&done.completion);
175 return done.executed ? done.ret : -ENOENT;
176}
177
178/**
179 * stop_cpus - stop multiple cpus
180 * @cpumask: cpus to stop
181 * @fn: function to execute
182 * @arg: argument to @fn
183 *
184 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu,
185 * @fn is run in a process context with the highest priority
186 * preempting any task on the cpu and monopolizing it. This function
187 * returns after all executions are complete.
188 *
189 * This function doesn't guarantee the cpus in @cpumask stay online
190 * till @fn completes. If some cpus go down in the middle, execution
191 * on the cpu may happen partially or fully on different cpus. @fn
192 * should either be ready for that or the caller should ensure that
193 * the cpus stay online until this function completes.
194 *
195 * All stop_cpus() calls are serialized making it safe for @fn to wait
196 * for all cpus to start executing it.
197 *
198 * CONTEXT:
199 * Might sleep.
200 *
201 * RETURNS:
202 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
203 * @cpumask were offline; otherwise, 0 if all executions of @fn
204 * returned 0, any non zero return value if any returned non zero.
205 */
206int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
207{
208 int ret;
209
210 /* static works are used, process one request at a time */
211 mutex_lock(&stop_cpus_mutex);
212 ret = __stop_cpus(cpumask, fn, arg);
213 mutex_unlock(&stop_cpus_mutex);
214 return ret;
215}
216
217/**
218 * try_stop_cpus - try to stop multiple cpus
219 * @cpumask: cpus to stop
220 * @fn: function to execute
221 * @arg: argument to @fn
222 *
223 * Identical to stop_cpus() except that it fails with -EAGAIN if
224 * someone else is already using the facility.
225 *
226 * CONTEXT:
227 * Might sleep.
228 *
229 * RETURNS:
230 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
231 * @fn(@arg) was not executed at all because all cpus in @cpumask were
232 * offline; otherwise, 0 if all executions of @fn returned 0, any non
233 * zero return value if any returned non zero.
234 */
235int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
236{
237 int ret;
238
239 /* static works are used, process one request at a time */
240 if (!mutex_trylock(&stop_cpus_mutex))
241 return -EAGAIN;
242 ret = __stop_cpus(cpumask, fn, arg);
243 mutex_unlock(&stop_cpus_mutex);
244 return ret;
245}
246
247static int cpu_stopper_thread(void *data)
248{
249 struct cpu_stopper *stopper = data;
250 struct cpu_stop_work *work;
251 int ret;
252
253repeat:
254 set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */
255
256 if (kthread_should_stop()) {
257 __set_current_state(TASK_RUNNING);
258 return 0;
259 }
260
261 work = NULL;
262 spin_lock_irq(&stopper->lock);
263 if (!list_empty(&stopper->works)) {
264 work = list_first_entry(&stopper->works,
265 struct cpu_stop_work, list);
266 list_del_init(&work->list);
267 }
268 spin_unlock_irq(&stopper->lock);
269
270 if (work) {
271 cpu_stop_fn_t fn = work->fn;
272 void *arg = work->arg;
273 struct cpu_stop_done *done = work->done;
274 char ksym_buf[KSYM_NAME_LEN] __maybe_unused;
275
276 __set_current_state(TASK_RUNNING);
277
278 /* cpu stop callbacks are not allowed to sleep */
279 preempt_disable();
280
281 ret = fn(arg);
282 if (ret)
283 done->ret = ret;
284
285 /* restore preemption and check it's still balanced */
286 preempt_enable();
287 WARN_ONCE(preempt_count(),
288 "cpu_stop: %s(%p) leaked preempt count\n",
289 kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL,
290 ksym_buf), arg);
291
292 cpu_stop_signal_done(done, true);
293 } else
294 schedule();
295
296 goto repeat;
297}
298
299extern void sched_set_stop_task(int cpu, struct task_struct *stop);
300
301/* manage stopper for a cpu, mostly lifted from sched migration thread mgmt */
302static int __cpuinit cpu_stop_cpu_callback(struct notifier_block *nfb,
303 unsigned long action, void *hcpu)
304{
305 unsigned int cpu = (unsigned long)hcpu;
306 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
307 struct task_struct *p;
308
309 switch (action & ~CPU_TASKS_FROZEN) {
310 case CPU_UP_PREPARE:
311 BUG_ON(stopper->thread || stopper->enabled ||
312 !list_empty(&stopper->works));
313 p = kthread_create_on_node(cpu_stopper_thread,
314 stopper,
315 cpu_to_node(cpu),
316 "migration/%d", cpu);
317 if (IS_ERR(p))
318 return notifier_from_errno(PTR_ERR(p));
319 get_task_struct(p);
320 kthread_bind(p, cpu);
321 sched_set_stop_task(cpu, p);
322 stopper->thread = p;
323 break;
324
325 case CPU_ONLINE:
326 /* strictly unnecessary, as first user will wake it */
327 wake_up_process(stopper->thread);
328 /* mark enabled */
329 spin_lock_irq(&stopper->lock);
330 stopper->enabled = true;
331 spin_unlock_irq(&stopper->lock);
332 break;
333
334#ifdef CONFIG_HOTPLUG_CPU
335 case CPU_UP_CANCELED:
336 case CPU_POST_DEAD:
337 {
338 struct cpu_stop_work *work;
339
340 sched_set_stop_task(cpu, NULL);
341 /* kill the stopper */
342 kthread_stop(stopper->thread);
343 /* drain remaining works */
344 spin_lock_irq(&stopper->lock);
345 list_for_each_entry(work, &stopper->works, list)
346 cpu_stop_signal_done(work->done, false);
347 stopper->enabled = false;
348 spin_unlock_irq(&stopper->lock);
349 /* release the stopper */
350 put_task_struct(stopper->thread);
351 stopper->thread = NULL;
352 break;
353 }
354#endif
355 }
356
357 return NOTIFY_OK;
358}
359
360/*
361 * Give it a higher priority so that cpu stopper is available to other
362 * cpu notifiers. It currently shares the same priority as sched
363 * migration_notifier.
364 */
365static struct notifier_block __cpuinitdata cpu_stop_cpu_notifier = {
366 .notifier_call = cpu_stop_cpu_callback,
367 .priority = 10,
368};
369
370static int __init cpu_stop_init(void)
371{
372 void *bcpu = (void *)(long)smp_processor_id();
373 unsigned int cpu;
374 int err;
375
376 for_each_possible_cpu(cpu) {
377 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
378
379 spin_lock_init(&stopper->lock);
380 INIT_LIST_HEAD(&stopper->works);
381 }
382
383 /* start one for the boot cpu */
384 err = cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_UP_PREPARE,
385 bcpu);
386 BUG_ON(err != NOTIFY_OK);
387 cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_ONLINE, bcpu);
388 register_cpu_notifier(&cpu_stop_cpu_notifier);
389
390 stop_machine_initialized = true;
391
392 return 0;
393}
394early_initcall(cpu_stop_init);
395
396#ifdef CONFIG_STOP_MACHINE
397
398/* This controls the threads on each CPU. */
399enum stopmachine_state {
400 /* Dummy starting state for thread. */
401 STOPMACHINE_NONE,
402 /* Awaiting everyone to be scheduled. */
403 STOPMACHINE_PREPARE,
404 /* Disable interrupts. */
405 STOPMACHINE_DISABLE_IRQ,
406 /* Run the function */
407 STOPMACHINE_RUN,
408 /* Exit */
409 STOPMACHINE_EXIT,
410};
411
412struct stop_machine_data {
413 int (*fn)(void *);
414 void *data;
415 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
416 unsigned int num_threads;
417 const struct cpumask *active_cpus;
418
419 enum stopmachine_state state;
420 atomic_t thread_ack;
421};
422
423static void set_state(struct stop_machine_data *smdata,
424 enum stopmachine_state newstate)
425{
426 /* Reset ack counter. */
427 atomic_set(&smdata->thread_ack, smdata->num_threads);
428 smp_wmb();
429 smdata->state = newstate;
430}
431
432/* Last one to ack a state moves to the next state. */
433static void ack_state(struct stop_machine_data *smdata)
434{
435 if (atomic_dec_and_test(&smdata->thread_ack))
436 set_state(smdata, smdata->state + 1);
437}
438
439/* This is the cpu_stop function which stops the CPU. */
440static int stop_machine_cpu_stop(void *data)
441{
442 struct stop_machine_data *smdata = data;
443 enum stopmachine_state curstate = STOPMACHINE_NONE;
444 int cpu = smp_processor_id(), err = 0;
445 unsigned long flags;
446 bool is_active;
447
448 /*
449 * When called from stop_machine_from_inactive_cpu(), irq might
450 * already be disabled. Save the state and restore it on exit.
451 */
452 local_save_flags(flags);
453
454 if (!smdata->active_cpus)
455 is_active = cpu == cpumask_first(cpu_online_mask);
456 else
457 is_active = cpumask_test_cpu(cpu, smdata->active_cpus);
458
459 /* Simple state machine */
460 do {
461 /* Chill out and ensure we re-read stopmachine_state. */
462 cpu_relax();
463 if (smdata->state != curstate) {
464 curstate = smdata->state;
465 switch (curstate) {
466 case STOPMACHINE_DISABLE_IRQ:
467 local_irq_disable();
468 hard_irq_disable();
469 break;
470 case STOPMACHINE_RUN:
471 if (is_active)
472 err = smdata->fn(smdata->data);
473 break;
474 default:
475 break;
476 }
477 ack_state(smdata);
478 }
479 } while (curstate != STOPMACHINE_EXIT);
480
481 local_irq_restore(flags);
482 return err;
483}
484
485int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
486{
487 struct stop_machine_data smdata = { .fn = fn, .data = data,
488 .num_threads = num_online_cpus(),
489 .active_cpus = cpus };
490
491 if (!stop_machine_initialized) {
492 /*
493 * Handle the case where stop_machine() is called
494 * early in boot before stop_machine() has been
495 * initialized.
496 */
497 unsigned long flags;
498 int ret;
499
500 WARN_ON_ONCE(smdata.num_threads != 1);
501
502 local_irq_save(flags);
503 hard_irq_disable();
504 ret = (*fn)(data);
505 local_irq_restore(flags);
506
507 return ret;
508 }
509
510 /* Set the initial state and stop all online cpus. */
511 set_state(&smdata, STOPMACHINE_PREPARE);
512 return stop_cpus(cpu_online_mask, stop_machine_cpu_stop, &smdata);
513}
514
515int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
516{
517 int ret;
518
519 /* No CPUs can come up or down during this. */
520 get_online_cpus();
521 ret = __stop_machine(fn, data, cpus);
522 put_online_cpus();
523 return ret;
524}
525EXPORT_SYMBOL_GPL(stop_machine);
526
527/**
528 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
529 * @fn: the function to run
530 * @data: the data ptr for the @fn()
531 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
532 *
533 * This is identical to stop_machine() but can be called from a CPU which
534 * is not active. The local CPU is in the process of hotplug (so no other
535 * CPU hotplug can start) and not marked active and doesn't have enough
536 * context to sleep.
537 *
538 * This function provides stop_machine() functionality for such state by
539 * using busy-wait for synchronization and executing @fn directly for local
540 * CPU.
541 *
542 * CONTEXT:
543 * Local CPU is inactive. Temporarily stops all active CPUs.
544 *
545 * RETURNS:
546 * 0 if all executions of @fn returned 0, any non zero return value if any
547 * returned non zero.
548 */
549int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data,
550 const struct cpumask *cpus)
551{
552 struct stop_machine_data smdata = { .fn = fn, .data = data,
553 .active_cpus = cpus };
554 struct cpu_stop_done done;
555 int ret;
556
557 /* Local CPU must be inactive and CPU hotplug in progress. */
558 BUG_ON(cpu_active(raw_smp_processor_id()));
559 smdata.num_threads = num_active_cpus() + 1; /* +1 for local */
560
561 /* No proper task established and can't sleep - busy wait for lock. */
562 while (!mutex_trylock(&stop_cpus_mutex))
563 cpu_relax();
564
565 /* Schedule work on other CPUs and execute directly for local CPU */
566 set_state(&smdata, STOPMACHINE_PREPARE);
567 cpu_stop_init_done(&done, num_active_cpus());
568 queue_stop_cpus_work(cpu_active_mask, stop_machine_cpu_stop, &smdata,
569 &done);
570 ret = stop_machine_cpu_stop(&smdata);
571
572 /* Busy wait for completion. */
573 while (!completion_done(&done.completion))
574 cpu_relax();
575
576 mutex_unlock(&stop_cpus_mutex);
577 return ret ?: done.ret;
578}
579
580#endif /* CONFIG_STOP_MACHINE */