Loading...
Note: File does not exist in v5.4.
1/*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/tty.h>
22#include <linux/tty_driver.h>
23#include <linux/console.h>
24#include <linux/init.h>
25#include <linux/jiffies.h>
26#include <linux/nmi.h>
27#include <linux/module.h>
28#include <linux/moduleparam.h>
29#include <linux/interrupt.h> /* For in_interrupt() */
30#include <linux/delay.h>
31#include <linux/smp.h>
32#include <linux/security.h>
33#include <linux/bootmem.h>
34#include <linux/memblock.h>
35#include <linux/syscalls.h>
36#include <linux/kexec.h>
37#include <linux/kdb.h>
38#include <linux/ratelimit.h>
39#include <linux/kmsg_dump.h>
40#include <linux/syslog.h>
41#include <linux/cpu.h>
42#include <linux/notifier.h>
43#include <linux/rculist.h>
44#include <linux/poll.h>
45
46#include <asm/uaccess.h>
47
48#define CREATE_TRACE_POINTS
49#include <trace/events/printk.h>
50
51/*
52 * Architectures can override it:
53 */
54void asmlinkage __attribute__((weak)) early_printk(const char *fmt, ...)
55{
56}
57
58/* printk's without a loglevel use this.. */
59#define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
60
61/* We show everything that is MORE important than this.. */
62#define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
63#define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
64
65DECLARE_WAIT_QUEUE_HEAD(log_wait);
66
67int console_printk[4] = {
68 DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */
69 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */
70 MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */
71 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */
72};
73
74/*
75 * Low level drivers may need that to know if they can schedule in
76 * their unblank() callback or not. So let's export it.
77 */
78int oops_in_progress;
79EXPORT_SYMBOL(oops_in_progress);
80
81/*
82 * console_sem protects the console_drivers list, and also
83 * provides serialisation for access to the entire console
84 * driver system.
85 */
86static DEFINE_SEMAPHORE(console_sem);
87struct console *console_drivers;
88EXPORT_SYMBOL_GPL(console_drivers);
89
90/*
91 * This is used for debugging the mess that is the VT code by
92 * keeping track if we have the console semaphore held. It's
93 * definitely not the perfect debug tool (we don't know if _WE_
94 * hold it are racing, but it helps tracking those weird code
95 * path in the console code where we end up in places I want
96 * locked without the console sempahore held
97 */
98static int console_locked, console_suspended;
99
100/*
101 * If exclusive_console is non-NULL then only this console is to be printed to.
102 */
103static struct console *exclusive_console;
104
105/*
106 * Array of consoles built from command line options (console=)
107 */
108struct console_cmdline
109{
110 char name[8]; /* Name of the driver */
111 int index; /* Minor dev. to use */
112 char *options; /* Options for the driver */
113#ifdef CONFIG_A11Y_BRAILLE_CONSOLE
114 char *brl_options; /* Options for braille driver */
115#endif
116};
117
118#define MAX_CMDLINECONSOLES 8
119
120static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
121static int selected_console = -1;
122static int preferred_console = -1;
123int console_set_on_cmdline;
124EXPORT_SYMBOL(console_set_on_cmdline);
125
126/* Flag: console code may call schedule() */
127static int console_may_schedule;
128
129/*
130 * The printk log buffer consists of a chain of concatenated variable
131 * length records. Every record starts with a record header, containing
132 * the overall length of the record.
133 *
134 * The heads to the first and last entry in the buffer, as well as the
135 * sequence numbers of these both entries are maintained when messages
136 * are stored..
137 *
138 * If the heads indicate available messages, the length in the header
139 * tells the start next message. A length == 0 for the next message
140 * indicates a wrap-around to the beginning of the buffer.
141 *
142 * Every record carries the monotonic timestamp in microseconds, as well as
143 * the standard userspace syslog level and syslog facility. The usual
144 * kernel messages use LOG_KERN; userspace-injected messages always carry
145 * a matching syslog facility, by default LOG_USER. The origin of every
146 * message can be reliably determined that way.
147 *
148 * The human readable log message directly follows the message header. The
149 * length of the message text is stored in the header, the stored message
150 * is not terminated.
151 *
152 * Optionally, a message can carry a dictionary of properties (key/value pairs),
153 * to provide userspace with a machine-readable message context.
154 *
155 * Examples for well-defined, commonly used property names are:
156 * DEVICE=b12:8 device identifier
157 * b12:8 block dev_t
158 * c127:3 char dev_t
159 * n8 netdev ifindex
160 * +sound:card0 subsystem:devname
161 * SUBSYSTEM=pci driver-core subsystem name
162 *
163 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
164 * follows directly after a '=' character. Every property is terminated by
165 * a '\0' character. The last property is not terminated.
166 *
167 * Example of a message structure:
168 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
169 * 0008 34 00 record is 52 bytes long
170 * 000a 0b 00 text is 11 bytes long
171 * 000c 1f 00 dictionary is 23 bytes long
172 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
173 * 0010 69 74 27 73 20 61 20 6c "it's a l"
174 * 69 6e 65 "ine"
175 * 001b 44 45 56 49 43 "DEVIC"
176 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
177 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
178 * 67 "g"
179 * 0032 00 00 00 padding to next message header
180 *
181 * The 'struct log' buffer header must never be directly exported to
182 * userspace, it is a kernel-private implementation detail that might
183 * need to be changed in the future, when the requirements change.
184 *
185 * /dev/kmsg exports the structured data in the following line format:
186 * "level,sequnum,timestamp;<message text>\n"
187 *
188 * The optional key/value pairs are attached as continuation lines starting
189 * with a space character and terminated by a newline. All possible
190 * non-prinatable characters are escaped in the "\xff" notation.
191 *
192 * Users of the export format should ignore possible additional values
193 * separated by ',', and find the message after the ';' character.
194 */
195
196enum log_flags {
197 LOG_NOCONS = 1, /* already flushed, do not print to console */
198 LOG_NEWLINE = 2, /* text ended with a newline */
199 LOG_PREFIX = 4, /* text started with a prefix */
200 LOG_CONT = 8, /* text is a fragment of a continuation line */
201};
202
203struct log {
204 u64 ts_nsec; /* timestamp in nanoseconds */
205 u16 len; /* length of entire record */
206 u16 text_len; /* length of text buffer */
207 u16 dict_len; /* length of dictionary buffer */
208 u8 facility; /* syslog facility */
209 u8 flags:5; /* internal record flags */
210 u8 level:3; /* syslog level */
211};
212
213/*
214 * The logbuf_lock protects kmsg buffer, indices, counters. It is also
215 * used in interesting ways to provide interlocking in console_unlock();
216 */
217static DEFINE_RAW_SPINLOCK(logbuf_lock);
218
219/* the next printk record to read by syslog(READ) or /proc/kmsg */
220static u64 syslog_seq;
221static u32 syslog_idx;
222static enum log_flags syslog_prev;
223static size_t syslog_partial;
224
225/* index and sequence number of the first record stored in the buffer */
226static u64 log_first_seq;
227static u32 log_first_idx;
228
229/* index and sequence number of the next record to store in the buffer */
230static u64 log_next_seq;
231#ifdef CONFIG_PRINTK
232static u32 log_next_idx;
233
234/* the next printk record to read after the last 'clear' command */
235static u64 clear_seq;
236static u32 clear_idx;
237
238#define PREFIX_MAX 32
239#define LOG_LINE_MAX 1024 - PREFIX_MAX
240
241/* record buffer */
242#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
243#define LOG_ALIGN 4
244#else
245#define LOG_ALIGN __alignof__(struct log)
246#endif
247#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
248static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
249static char *log_buf = __log_buf;
250static u32 log_buf_len = __LOG_BUF_LEN;
251
252/* cpu currently holding logbuf_lock */
253static volatile unsigned int logbuf_cpu = UINT_MAX;
254
255/* human readable text of the record */
256static char *log_text(const struct log *msg)
257{
258 return (char *)msg + sizeof(struct log);
259}
260
261/* optional key/value pair dictionary attached to the record */
262static char *log_dict(const struct log *msg)
263{
264 return (char *)msg + sizeof(struct log) + msg->text_len;
265}
266
267/* get record by index; idx must point to valid msg */
268static struct log *log_from_idx(u32 idx)
269{
270 struct log *msg = (struct log *)(log_buf + idx);
271
272 /*
273 * A length == 0 record is the end of buffer marker. Wrap around and
274 * read the message at the start of the buffer.
275 */
276 if (!msg->len)
277 return (struct log *)log_buf;
278 return msg;
279}
280
281/* get next record; idx must point to valid msg */
282static u32 log_next(u32 idx)
283{
284 struct log *msg = (struct log *)(log_buf + idx);
285
286 /* length == 0 indicates the end of the buffer; wrap */
287 /*
288 * A length == 0 record is the end of buffer marker. Wrap around and
289 * read the message at the start of the buffer as *this* one, and
290 * return the one after that.
291 */
292 if (!msg->len) {
293 msg = (struct log *)log_buf;
294 return msg->len;
295 }
296 return idx + msg->len;
297}
298
299/* insert record into the buffer, discard old ones, update heads */
300static void log_store(int facility, int level,
301 enum log_flags flags, u64 ts_nsec,
302 const char *dict, u16 dict_len,
303 const char *text, u16 text_len)
304{
305 struct log *msg;
306 u32 size, pad_len;
307
308 /* number of '\0' padding bytes to next message */
309 size = sizeof(struct log) + text_len + dict_len;
310 pad_len = (-size) & (LOG_ALIGN - 1);
311 size += pad_len;
312
313 while (log_first_seq < log_next_seq) {
314 u32 free;
315
316 if (log_next_idx > log_first_idx)
317 free = max(log_buf_len - log_next_idx, log_first_idx);
318 else
319 free = log_first_idx - log_next_idx;
320
321 if (free > size + sizeof(struct log))
322 break;
323
324 /* drop old messages until we have enough contiuous space */
325 log_first_idx = log_next(log_first_idx);
326 log_first_seq++;
327 }
328
329 if (log_next_idx + size + sizeof(struct log) >= log_buf_len) {
330 /*
331 * This message + an additional empty header does not fit
332 * at the end of the buffer. Add an empty header with len == 0
333 * to signify a wrap around.
334 */
335 memset(log_buf + log_next_idx, 0, sizeof(struct log));
336 log_next_idx = 0;
337 }
338
339 /* fill message */
340 msg = (struct log *)(log_buf + log_next_idx);
341 memcpy(log_text(msg), text, text_len);
342 msg->text_len = text_len;
343 memcpy(log_dict(msg), dict, dict_len);
344 msg->dict_len = dict_len;
345 msg->facility = facility;
346 msg->level = level & 7;
347 msg->flags = flags & 0x1f;
348 if (ts_nsec > 0)
349 msg->ts_nsec = ts_nsec;
350 else
351 msg->ts_nsec = local_clock();
352 memset(log_dict(msg) + dict_len, 0, pad_len);
353 msg->len = sizeof(struct log) + text_len + dict_len + pad_len;
354
355 /* insert message */
356 log_next_idx += msg->len;
357 log_next_seq++;
358}
359
360/* /dev/kmsg - userspace message inject/listen interface */
361struct devkmsg_user {
362 u64 seq;
363 u32 idx;
364 struct mutex lock;
365 char buf[8192];
366};
367
368static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
369 unsigned long count, loff_t pos)
370{
371 char *buf, *line;
372 int i;
373 int level = default_message_loglevel;
374 int facility = 1; /* LOG_USER */
375 size_t len = iov_length(iv, count);
376 ssize_t ret = len;
377
378 if (len > LOG_LINE_MAX)
379 return -EINVAL;
380 buf = kmalloc(len+1, GFP_KERNEL);
381 if (buf == NULL)
382 return -ENOMEM;
383
384 line = buf;
385 for (i = 0; i < count; i++) {
386 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len))
387 goto out;
388 line += iv[i].iov_len;
389 }
390
391 /*
392 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
393 * the decimal value represents 32bit, the lower 3 bit are the log
394 * level, the rest are the log facility.
395 *
396 * If no prefix or no userspace facility is specified, we
397 * enforce LOG_USER, to be able to reliably distinguish
398 * kernel-generated messages from userspace-injected ones.
399 */
400 line = buf;
401 if (line[0] == '<') {
402 char *endp = NULL;
403
404 i = simple_strtoul(line+1, &endp, 10);
405 if (endp && endp[0] == '>') {
406 level = i & 7;
407 if (i >> 3)
408 facility = i >> 3;
409 endp++;
410 len -= endp - line;
411 line = endp;
412 }
413 }
414 line[len] = '\0';
415
416 printk_emit(facility, level, NULL, 0, "%s", line);
417out:
418 kfree(buf);
419 return ret;
420}
421
422static ssize_t devkmsg_read(struct file *file, char __user *buf,
423 size_t count, loff_t *ppos)
424{
425 struct devkmsg_user *user = file->private_data;
426 struct log *msg;
427 u64 ts_usec;
428 size_t i;
429 size_t len;
430 ssize_t ret;
431
432 if (!user)
433 return -EBADF;
434
435 ret = mutex_lock_interruptible(&user->lock);
436 if (ret)
437 return ret;
438 raw_spin_lock_irq(&logbuf_lock);
439 while (user->seq == log_next_seq) {
440 if (file->f_flags & O_NONBLOCK) {
441 ret = -EAGAIN;
442 raw_spin_unlock_irq(&logbuf_lock);
443 goto out;
444 }
445
446 raw_spin_unlock_irq(&logbuf_lock);
447 ret = wait_event_interruptible(log_wait,
448 user->seq != log_next_seq);
449 if (ret)
450 goto out;
451 raw_spin_lock_irq(&logbuf_lock);
452 }
453
454 if (user->seq < log_first_seq) {
455 /* our last seen message is gone, return error and reset */
456 user->idx = log_first_idx;
457 user->seq = log_first_seq;
458 ret = -EPIPE;
459 raw_spin_unlock_irq(&logbuf_lock);
460 goto out;
461 }
462
463 msg = log_from_idx(user->idx);
464 ts_usec = msg->ts_nsec;
465 do_div(ts_usec, 1000);
466 len = sprintf(user->buf, "%u,%llu,%llu;",
467 (msg->facility << 3) | msg->level, user->seq, ts_usec);
468
469 /* escape non-printable characters */
470 for (i = 0; i < msg->text_len; i++) {
471 unsigned char c = log_text(msg)[i];
472
473 if (c < ' ' || c >= 127 || c == '\\')
474 len += sprintf(user->buf + len, "\\x%02x", c);
475 else
476 user->buf[len++] = c;
477 }
478 user->buf[len++] = '\n';
479
480 if (msg->dict_len) {
481 bool line = true;
482
483 for (i = 0; i < msg->dict_len; i++) {
484 unsigned char c = log_dict(msg)[i];
485
486 if (line) {
487 user->buf[len++] = ' ';
488 line = false;
489 }
490
491 if (c == '\0') {
492 user->buf[len++] = '\n';
493 line = true;
494 continue;
495 }
496
497 if (c < ' ' || c >= 127 || c == '\\') {
498 len += sprintf(user->buf + len, "\\x%02x", c);
499 continue;
500 }
501
502 user->buf[len++] = c;
503 }
504 user->buf[len++] = '\n';
505 }
506
507 user->idx = log_next(user->idx);
508 user->seq++;
509 raw_spin_unlock_irq(&logbuf_lock);
510
511 if (len > count) {
512 ret = -EINVAL;
513 goto out;
514 }
515
516 if (copy_to_user(buf, user->buf, len)) {
517 ret = -EFAULT;
518 goto out;
519 }
520 ret = len;
521out:
522 mutex_unlock(&user->lock);
523 return ret;
524}
525
526static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
527{
528 struct devkmsg_user *user = file->private_data;
529 loff_t ret = 0;
530
531 if (!user)
532 return -EBADF;
533 if (offset)
534 return -ESPIPE;
535
536 raw_spin_lock_irq(&logbuf_lock);
537 switch (whence) {
538 case SEEK_SET:
539 /* the first record */
540 user->idx = log_first_idx;
541 user->seq = log_first_seq;
542 break;
543 case SEEK_DATA:
544 /*
545 * The first record after the last SYSLOG_ACTION_CLEAR,
546 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
547 * changes no global state, and does not clear anything.
548 */
549 user->idx = clear_idx;
550 user->seq = clear_seq;
551 break;
552 case SEEK_END:
553 /* after the last record */
554 user->idx = log_next_idx;
555 user->seq = log_next_seq;
556 break;
557 default:
558 ret = -EINVAL;
559 }
560 raw_spin_unlock_irq(&logbuf_lock);
561 return ret;
562}
563
564static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
565{
566 struct devkmsg_user *user = file->private_data;
567 int ret = 0;
568
569 if (!user)
570 return POLLERR|POLLNVAL;
571
572 poll_wait(file, &log_wait, wait);
573
574 raw_spin_lock_irq(&logbuf_lock);
575 if (user->seq < log_next_seq) {
576 /* return error when data has vanished underneath us */
577 if (user->seq < log_first_seq)
578 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
579 ret = POLLIN|POLLRDNORM;
580 }
581 raw_spin_unlock_irq(&logbuf_lock);
582
583 return ret;
584}
585
586static int devkmsg_open(struct inode *inode, struct file *file)
587{
588 struct devkmsg_user *user;
589 int err;
590
591 /* write-only does not need any file context */
592 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
593 return 0;
594
595 err = security_syslog(SYSLOG_ACTION_READ_ALL);
596 if (err)
597 return err;
598
599 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
600 if (!user)
601 return -ENOMEM;
602
603 mutex_init(&user->lock);
604
605 raw_spin_lock_irq(&logbuf_lock);
606 user->idx = log_first_idx;
607 user->seq = log_first_seq;
608 raw_spin_unlock_irq(&logbuf_lock);
609
610 file->private_data = user;
611 return 0;
612}
613
614static int devkmsg_release(struct inode *inode, struct file *file)
615{
616 struct devkmsg_user *user = file->private_data;
617
618 if (!user)
619 return 0;
620
621 mutex_destroy(&user->lock);
622 kfree(user);
623 return 0;
624}
625
626const struct file_operations kmsg_fops = {
627 .open = devkmsg_open,
628 .read = devkmsg_read,
629 .aio_write = devkmsg_writev,
630 .llseek = devkmsg_llseek,
631 .poll = devkmsg_poll,
632 .release = devkmsg_release,
633};
634
635#ifdef CONFIG_KEXEC
636/*
637 * This appends the listed symbols to /proc/vmcoreinfo
638 *
639 * /proc/vmcoreinfo is used by various utiilties, like crash and makedumpfile to
640 * obtain access to symbols that are otherwise very difficult to locate. These
641 * symbols are specifically used so that utilities can access and extract the
642 * dmesg log from a vmcore file after a crash.
643 */
644void log_buf_kexec_setup(void)
645{
646 VMCOREINFO_SYMBOL(log_buf);
647 VMCOREINFO_SYMBOL(log_buf_len);
648 VMCOREINFO_SYMBOL(log_first_idx);
649 VMCOREINFO_SYMBOL(log_next_idx);
650}
651#endif
652
653/* requested log_buf_len from kernel cmdline */
654static unsigned long __initdata new_log_buf_len;
655
656/* save requested log_buf_len since it's too early to process it */
657static int __init log_buf_len_setup(char *str)
658{
659 unsigned size = memparse(str, &str);
660
661 if (size)
662 size = roundup_pow_of_two(size);
663 if (size > log_buf_len)
664 new_log_buf_len = size;
665
666 return 0;
667}
668early_param("log_buf_len", log_buf_len_setup);
669
670void __init setup_log_buf(int early)
671{
672 unsigned long flags;
673 char *new_log_buf;
674 int free;
675
676 if (!new_log_buf_len)
677 return;
678
679 if (early) {
680 unsigned long mem;
681
682 mem = memblock_alloc(new_log_buf_len, PAGE_SIZE);
683 if (!mem)
684 return;
685 new_log_buf = __va(mem);
686 } else {
687 new_log_buf = alloc_bootmem_nopanic(new_log_buf_len);
688 }
689
690 if (unlikely(!new_log_buf)) {
691 pr_err("log_buf_len: %ld bytes not available\n",
692 new_log_buf_len);
693 return;
694 }
695
696 raw_spin_lock_irqsave(&logbuf_lock, flags);
697 log_buf_len = new_log_buf_len;
698 log_buf = new_log_buf;
699 new_log_buf_len = 0;
700 free = __LOG_BUF_LEN - log_next_idx;
701 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
702 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
703
704 pr_info("log_buf_len: %d\n", log_buf_len);
705 pr_info("early log buf free: %d(%d%%)\n",
706 free, (free * 100) / __LOG_BUF_LEN);
707}
708
709#ifdef CONFIG_BOOT_PRINTK_DELAY
710
711static int boot_delay; /* msecs delay after each printk during bootup */
712static unsigned long long loops_per_msec; /* based on boot_delay */
713
714static int __init boot_delay_setup(char *str)
715{
716 unsigned long lpj;
717
718 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
719 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
720
721 get_option(&str, &boot_delay);
722 if (boot_delay > 10 * 1000)
723 boot_delay = 0;
724
725 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
726 "HZ: %d, loops_per_msec: %llu\n",
727 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
728 return 1;
729}
730__setup("boot_delay=", boot_delay_setup);
731
732static void boot_delay_msec(void)
733{
734 unsigned long long k;
735 unsigned long timeout;
736
737 if (boot_delay == 0 || system_state != SYSTEM_BOOTING)
738 return;
739
740 k = (unsigned long long)loops_per_msec * boot_delay;
741
742 timeout = jiffies + msecs_to_jiffies(boot_delay);
743 while (k) {
744 k--;
745 cpu_relax();
746 /*
747 * use (volatile) jiffies to prevent
748 * compiler reduction; loop termination via jiffies
749 * is secondary and may or may not happen.
750 */
751 if (time_after(jiffies, timeout))
752 break;
753 touch_nmi_watchdog();
754 }
755}
756#else
757static inline void boot_delay_msec(void)
758{
759}
760#endif
761
762#ifdef CONFIG_SECURITY_DMESG_RESTRICT
763int dmesg_restrict = 1;
764#else
765int dmesg_restrict;
766#endif
767
768static int syslog_action_restricted(int type)
769{
770 if (dmesg_restrict)
771 return 1;
772 /* Unless restricted, we allow "read all" and "get buffer size" for everybody */
773 return type != SYSLOG_ACTION_READ_ALL && type != SYSLOG_ACTION_SIZE_BUFFER;
774}
775
776static int check_syslog_permissions(int type, bool from_file)
777{
778 /*
779 * If this is from /proc/kmsg and we've already opened it, then we've
780 * already done the capabilities checks at open time.
781 */
782 if (from_file && type != SYSLOG_ACTION_OPEN)
783 return 0;
784
785 if (syslog_action_restricted(type)) {
786 if (capable(CAP_SYSLOG))
787 return 0;
788 /* For historical reasons, accept CAP_SYS_ADMIN too, with a warning */
789 if (capable(CAP_SYS_ADMIN)) {
790 printk_once(KERN_WARNING "%s (%d): "
791 "Attempt to access syslog with CAP_SYS_ADMIN "
792 "but no CAP_SYSLOG (deprecated).\n",
793 current->comm, task_pid_nr(current));
794 return 0;
795 }
796 return -EPERM;
797 }
798 return 0;
799}
800
801#if defined(CONFIG_PRINTK_TIME)
802static bool printk_time = 1;
803#else
804static bool printk_time;
805#endif
806module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
807
808static size_t print_time(u64 ts, char *buf)
809{
810 unsigned long rem_nsec;
811
812 if (!printk_time)
813 return 0;
814
815 if (!buf)
816 return 15;
817
818 rem_nsec = do_div(ts, 1000000000);
819 return sprintf(buf, "[%5lu.%06lu] ",
820 (unsigned long)ts, rem_nsec / 1000);
821}
822
823static size_t print_prefix(const struct log *msg, bool syslog, char *buf)
824{
825 size_t len = 0;
826 unsigned int prefix = (msg->facility << 3) | msg->level;
827
828 if (syslog) {
829 if (buf) {
830 len += sprintf(buf, "<%u>", prefix);
831 } else {
832 len += 3;
833 if (prefix > 999)
834 len += 3;
835 else if (prefix > 99)
836 len += 2;
837 else if (prefix > 9)
838 len++;
839 }
840 }
841
842 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
843 return len;
844}
845
846static size_t msg_print_text(const struct log *msg, enum log_flags prev,
847 bool syslog, char *buf, size_t size)
848{
849 const char *text = log_text(msg);
850 size_t text_size = msg->text_len;
851 bool prefix = true;
852 bool newline = true;
853 size_t len = 0;
854
855 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
856 prefix = false;
857
858 if (msg->flags & LOG_CONT) {
859 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
860 prefix = false;
861
862 if (!(msg->flags & LOG_NEWLINE))
863 newline = false;
864 }
865
866 do {
867 const char *next = memchr(text, '\n', text_size);
868 size_t text_len;
869
870 if (next) {
871 text_len = next - text;
872 next++;
873 text_size -= next - text;
874 } else {
875 text_len = text_size;
876 }
877
878 if (buf) {
879 if (print_prefix(msg, syslog, NULL) +
880 text_len + 1 >= size - len)
881 break;
882
883 if (prefix)
884 len += print_prefix(msg, syslog, buf + len);
885 memcpy(buf + len, text, text_len);
886 len += text_len;
887 if (next || newline)
888 buf[len++] = '\n';
889 } else {
890 /* SYSLOG_ACTION_* buffer size only calculation */
891 if (prefix)
892 len += print_prefix(msg, syslog, NULL);
893 len += text_len;
894 if (next || newline)
895 len++;
896 }
897
898 prefix = true;
899 text = next;
900 } while (text);
901
902 return len;
903}
904
905static int syslog_print(char __user *buf, int size)
906{
907 char *text;
908 struct log *msg;
909 int len = 0;
910
911 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
912 if (!text)
913 return -ENOMEM;
914
915 while (size > 0) {
916 size_t n;
917 size_t skip;
918
919 raw_spin_lock_irq(&logbuf_lock);
920 if (syslog_seq < log_first_seq) {
921 /* messages are gone, move to first one */
922 syslog_seq = log_first_seq;
923 syslog_idx = log_first_idx;
924 syslog_prev = 0;
925 syslog_partial = 0;
926 }
927 if (syslog_seq == log_next_seq) {
928 raw_spin_unlock_irq(&logbuf_lock);
929 break;
930 }
931
932 skip = syslog_partial;
933 msg = log_from_idx(syslog_idx);
934 n = msg_print_text(msg, syslog_prev, true, text,
935 LOG_LINE_MAX + PREFIX_MAX);
936 if (n - syslog_partial <= size) {
937 /* message fits into buffer, move forward */
938 syslog_idx = log_next(syslog_idx);
939 syslog_seq++;
940 syslog_prev = msg->flags;
941 n -= syslog_partial;
942 syslog_partial = 0;
943 } else if (!len){
944 /* partial read(), remember position */
945 n = size;
946 syslog_partial += n;
947 } else
948 n = 0;
949 raw_spin_unlock_irq(&logbuf_lock);
950
951 if (!n)
952 break;
953
954 if (copy_to_user(buf, text + skip, n)) {
955 if (!len)
956 len = -EFAULT;
957 break;
958 }
959
960 len += n;
961 size -= n;
962 buf += n;
963 }
964
965 kfree(text);
966 return len;
967}
968
969static int syslog_print_all(char __user *buf, int size, bool clear)
970{
971 char *text;
972 int len = 0;
973
974 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
975 if (!text)
976 return -ENOMEM;
977
978 raw_spin_lock_irq(&logbuf_lock);
979 if (buf) {
980 u64 next_seq;
981 u64 seq;
982 u32 idx;
983 enum log_flags prev;
984
985 if (clear_seq < log_first_seq) {
986 /* messages are gone, move to first available one */
987 clear_seq = log_first_seq;
988 clear_idx = log_first_idx;
989 }
990
991 /*
992 * Find first record that fits, including all following records,
993 * into the user-provided buffer for this dump.
994 */
995 seq = clear_seq;
996 idx = clear_idx;
997 prev = 0;
998 while (seq < log_next_seq) {
999 struct log *msg = log_from_idx(idx);
1000
1001 len += msg_print_text(msg, prev, true, NULL, 0);
1002 prev = msg->flags;
1003 idx = log_next(idx);
1004 seq++;
1005 }
1006
1007 /* move first record forward until length fits into the buffer */
1008 seq = clear_seq;
1009 idx = clear_idx;
1010 prev = 0;
1011 while (len > size && seq < log_next_seq) {
1012 struct log *msg = log_from_idx(idx);
1013
1014 len -= msg_print_text(msg, prev, true, NULL, 0);
1015 prev = msg->flags;
1016 idx = log_next(idx);
1017 seq++;
1018 }
1019
1020 /* last message fitting into this dump */
1021 next_seq = log_next_seq;
1022
1023 len = 0;
1024 prev = 0;
1025 while (len >= 0 && seq < next_seq) {
1026 struct log *msg = log_from_idx(idx);
1027 int textlen;
1028
1029 textlen = msg_print_text(msg, prev, true, text,
1030 LOG_LINE_MAX + PREFIX_MAX);
1031 if (textlen < 0) {
1032 len = textlen;
1033 break;
1034 }
1035 idx = log_next(idx);
1036 seq++;
1037 prev = msg->flags;
1038
1039 raw_spin_unlock_irq(&logbuf_lock);
1040 if (copy_to_user(buf + len, text, textlen))
1041 len = -EFAULT;
1042 else
1043 len += textlen;
1044 raw_spin_lock_irq(&logbuf_lock);
1045
1046 if (seq < log_first_seq) {
1047 /* messages are gone, move to next one */
1048 seq = log_first_seq;
1049 idx = log_first_idx;
1050 prev = 0;
1051 }
1052 }
1053 }
1054
1055 if (clear) {
1056 clear_seq = log_next_seq;
1057 clear_idx = log_next_idx;
1058 }
1059 raw_spin_unlock_irq(&logbuf_lock);
1060
1061 kfree(text);
1062 return len;
1063}
1064
1065int do_syslog(int type, char __user *buf, int len, bool from_file)
1066{
1067 bool clear = false;
1068 static int saved_console_loglevel = -1;
1069 int error;
1070
1071 error = check_syslog_permissions(type, from_file);
1072 if (error)
1073 goto out;
1074
1075 error = security_syslog(type);
1076 if (error)
1077 return error;
1078
1079 switch (type) {
1080 case SYSLOG_ACTION_CLOSE: /* Close log */
1081 break;
1082 case SYSLOG_ACTION_OPEN: /* Open log */
1083 break;
1084 case SYSLOG_ACTION_READ: /* Read from log */
1085 error = -EINVAL;
1086 if (!buf || len < 0)
1087 goto out;
1088 error = 0;
1089 if (!len)
1090 goto out;
1091 if (!access_ok(VERIFY_WRITE, buf, len)) {
1092 error = -EFAULT;
1093 goto out;
1094 }
1095 error = wait_event_interruptible(log_wait,
1096 syslog_seq != log_next_seq);
1097 if (error)
1098 goto out;
1099 error = syslog_print(buf, len);
1100 break;
1101 /* Read/clear last kernel messages */
1102 case SYSLOG_ACTION_READ_CLEAR:
1103 clear = true;
1104 /* FALL THRU */
1105 /* Read last kernel messages */
1106 case SYSLOG_ACTION_READ_ALL:
1107 error = -EINVAL;
1108 if (!buf || len < 0)
1109 goto out;
1110 error = 0;
1111 if (!len)
1112 goto out;
1113 if (!access_ok(VERIFY_WRITE, buf, len)) {
1114 error = -EFAULT;
1115 goto out;
1116 }
1117 error = syslog_print_all(buf, len, clear);
1118 break;
1119 /* Clear ring buffer */
1120 case SYSLOG_ACTION_CLEAR:
1121 syslog_print_all(NULL, 0, true);
1122 break;
1123 /* Disable logging to console */
1124 case SYSLOG_ACTION_CONSOLE_OFF:
1125 if (saved_console_loglevel == -1)
1126 saved_console_loglevel = console_loglevel;
1127 console_loglevel = minimum_console_loglevel;
1128 break;
1129 /* Enable logging to console */
1130 case SYSLOG_ACTION_CONSOLE_ON:
1131 if (saved_console_loglevel != -1) {
1132 console_loglevel = saved_console_loglevel;
1133 saved_console_loglevel = -1;
1134 }
1135 break;
1136 /* Set level of messages printed to console */
1137 case SYSLOG_ACTION_CONSOLE_LEVEL:
1138 error = -EINVAL;
1139 if (len < 1 || len > 8)
1140 goto out;
1141 if (len < minimum_console_loglevel)
1142 len = minimum_console_loglevel;
1143 console_loglevel = len;
1144 /* Implicitly re-enable logging to console */
1145 saved_console_loglevel = -1;
1146 error = 0;
1147 break;
1148 /* Number of chars in the log buffer */
1149 case SYSLOG_ACTION_SIZE_UNREAD:
1150 raw_spin_lock_irq(&logbuf_lock);
1151 if (syslog_seq < log_first_seq) {
1152 /* messages are gone, move to first one */
1153 syslog_seq = log_first_seq;
1154 syslog_idx = log_first_idx;
1155 syslog_prev = 0;
1156 syslog_partial = 0;
1157 }
1158 if (from_file) {
1159 /*
1160 * Short-cut for poll(/"proc/kmsg") which simply checks
1161 * for pending data, not the size; return the count of
1162 * records, not the length.
1163 */
1164 error = log_next_idx - syslog_idx;
1165 } else {
1166 u64 seq = syslog_seq;
1167 u32 idx = syslog_idx;
1168 enum log_flags prev = syslog_prev;
1169
1170 error = 0;
1171 while (seq < log_next_seq) {
1172 struct log *msg = log_from_idx(idx);
1173
1174 error += msg_print_text(msg, prev, true, NULL, 0);
1175 idx = log_next(idx);
1176 seq++;
1177 prev = msg->flags;
1178 }
1179 error -= syslog_partial;
1180 }
1181 raw_spin_unlock_irq(&logbuf_lock);
1182 break;
1183 /* Size of the log buffer */
1184 case SYSLOG_ACTION_SIZE_BUFFER:
1185 error = log_buf_len;
1186 break;
1187 default:
1188 error = -EINVAL;
1189 break;
1190 }
1191out:
1192 return error;
1193}
1194
1195SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1196{
1197 return do_syslog(type, buf, len, SYSLOG_FROM_CALL);
1198}
1199
1200static bool __read_mostly ignore_loglevel;
1201
1202static int __init ignore_loglevel_setup(char *str)
1203{
1204 ignore_loglevel = 1;
1205 printk(KERN_INFO "debug: ignoring loglevel setting.\n");
1206
1207 return 0;
1208}
1209
1210early_param("ignore_loglevel", ignore_loglevel_setup);
1211module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1212MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
1213 "print all kernel messages to the console.");
1214
1215/*
1216 * Call the console drivers, asking them to write out
1217 * log_buf[start] to log_buf[end - 1].
1218 * The console_lock must be held.
1219 */
1220static void call_console_drivers(int level, const char *text, size_t len)
1221{
1222 struct console *con;
1223
1224 trace_console(text, 0, len, len);
1225
1226 if (level >= console_loglevel && !ignore_loglevel)
1227 return;
1228 if (!console_drivers)
1229 return;
1230
1231 for_each_console(con) {
1232 if (exclusive_console && con != exclusive_console)
1233 continue;
1234 if (!(con->flags & CON_ENABLED))
1235 continue;
1236 if (!con->write)
1237 continue;
1238 if (!cpu_online(smp_processor_id()) &&
1239 !(con->flags & CON_ANYTIME))
1240 continue;
1241 con->write(con, text, len);
1242 }
1243}
1244
1245/*
1246 * Zap console related locks when oopsing. Only zap at most once
1247 * every 10 seconds, to leave time for slow consoles to print a
1248 * full oops.
1249 */
1250static void zap_locks(void)
1251{
1252 static unsigned long oops_timestamp;
1253
1254 if (time_after_eq(jiffies, oops_timestamp) &&
1255 !time_after(jiffies, oops_timestamp + 30 * HZ))
1256 return;
1257
1258 oops_timestamp = jiffies;
1259
1260 debug_locks_off();
1261 /* If a crash is occurring, make sure we can't deadlock */
1262 raw_spin_lock_init(&logbuf_lock);
1263 /* And make sure that we print immediately */
1264 sema_init(&console_sem, 1);
1265}
1266
1267/* Check if we have any console registered that can be called early in boot. */
1268static int have_callable_console(void)
1269{
1270 struct console *con;
1271
1272 for_each_console(con)
1273 if (con->flags & CON_ANYTIME)
1274 return 1;
1275
1276 return 0;
1277}
1278
1279/*
1280 * Can we actually use the console at this time on this cpu?
1281 *
1282 * Console drivers may assume that per-cpu resources have
1283 * been allocated. So unless they're explicitly marked as
1284 * being able to cope (CON_ANYTIME) don't call them until
1285 * this CPU is officially up.
1286 */
1287static inline int can_use_console(unsigned int cpu)
1288{
1289 return cpu_online(cpu) || have_callable_console();
1290}
1291
1292/*
1293 * Try to get console ownership to actually show the kernel
1294 * messages from a 'printk'. Return true (and with the
1295 * console_lock held, and 'console_locked' set) if it
1296 * is successful, false otherwise.
1297 *
1298 * This gets called with the 'logbuf_lock' spinlock held and
1299 * interrupts disabled. It should return with 'lockbuf_lock'
1300 * released but interrupts still disabled.
1301 */
1302static int console_trylock_for_printk(unsigned int cpu)
1303 __releases(&logbuf_lock)
1304{
1305 int retval = 0, wake = 0;
1306
1307 if (console_trylock()) {
1308 retval = 1;
1309
1310 /*
1311 * If we can't use the console, we need to release
1312 * the console semaphore by hand to avoid flushing
1313 * the buffer. We need to hold the console semaphore
1314 * in order to do this test safely.
1315 */
1316 if (!can_use_console(cpu)) {
1317 console_locked = 0;
1318 wake = 1;
1319 retval = 0;
1320 }
1321 }
1322 logbuf_cpu = UINT_MAX;
1323 if (wake)
1324 up(&console_sem);
1325 raw_spin_unlock(&logbuf_lock);
1326 return retval;
1327}
1328
1329int printk_delay_msec __read_mostly;
1330
1331static inline void printk_delay(void)
1332{
1333 if (unlikely(printk_delay_msec)) {
1334 int m = printk_delay_msec;
1335
1336 while (m--) {
1337 mdelay(1);
1338 touch_nmi_watchdog();
1339 }
1340 }
1341}
1342
1343/*
1344 * Continuation lines are buffered, and not committed to the record buffer
1345 * until the line is complete, or a race forces it. The line fragments
1346 * though, are printed immediately to the consoles to ensure everything has
1347 * reached the console in case of a kernel crash.
1348 */
1349static struct cont {
1350 char buf[LOG_LINE_MAX];
1351 size_t len; /* length == 0 means unused buffer */
1352 size_t cons; /* bytes written to console */
1353 struct task_struct *owner; /* task of first print*/
1354 u64 ts_nsec; /* time of first print */
1355 u8 level; /* log level of first message */
1356 u8 facility; /* log level of first message */
1357 bool flushed:1; /* buffer sealed and committed */
1358} cont;
1359
1360static void cont_flush(enum log_flags flags)
1361{
1362 if (cont.flushed)
1363 return;
1364 if (cont.len == 0)
1365 return;
1366
1367 log_store(cont.facility, cont.level, LOG_NOCONS | flags,
1368 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1369
1370 cont.flushed = true;
1371}
1372
1373static bool cont_add(int facility, int level, const char *text, size_t len)
1374{
1375 if (cont.len && cont.flushed)
1376 return false;
1377
1378 if (cont.len + len > sizeof(cont.buf)) {
1379 /* the line gets too long, split it up in separate records */
1380 cont_flush(LOG_CONT);
1381 return false;
1382 }
1383
1384 if (!cont.len) {
1385 cont.facility = facility;
1386 cont.level = level;
1387 cont.owner = current;
1388 cont.ts_nsec = local_clock();
1389 cont.cons = 0;
1390 cont.flushed = false;
1391 }
1392
1393 memcpy(cont.buf + cont.len, text, len);
1394 cont.len += len;
1395 return true;
1396}
1397
1398static size_t cont_print_text(char *text, size_t size)
1399{
1400 size_t textlen = 0;
1401 size_t len;
1402
1403 if (cont.cons == 0) {
1404 textlen += print_time(cont.ts_nsec, text);
1405 size -= textlen;
1406 }
1407
1408 len = cont.len - cont.cons;
1409 if (len > 0) {
1410 if (len+1 > size)
1411 len = size-1;
1412 memcpy(text + textlen, cont.buf + cont.cons, len);
1413 textlen += len;
1414 cont.cons = cont.len;
1415 }
1416
1417 if (cont.flushed) {
1418 text[textlen++] = '\n';
1419 /* got everything, release buffer */
1420 cont.len = 0;
1421 }
1422 return textlen;
1423}
1424
1425asmlinkage int vprintk_emit(int facility, int level,
1426 const char *dict, size_t dictlen,
1427 const char *fmt, va_list args)
1428{
1429 static int recursion_bug;
1430 static char textbuf[LOG_LINE_MAX];
1431 char *text = textbuf;
1432 size_t text_len;
1433 enum log_flags lflags = 0;
1434 unsigned long flags;
1435 int this_cpu;
1436 int printed_len = 0;
1437
1438 boot_delay_msec();
1439 printk_delay();
1440
1441 /* This stops the holder of console_sem just where we want him */
1442 local_irq_save(flags);
1443 this_cpu = smp_processor_id();
1444
1445 /*
1446 * Ouch, printk recursed into itself!
1447 */
1448 if (unlikely(logbuf_cpu == this_cpu)) {
1449 /*
1450 * If a crash is occurring during printk() on this CPU,
1451 * then try to get the crash message out but make sure
1452 * we can't deadlock. Otherwise just return to avoid the
1453 * recursion and return - but flag the recursion so that
1454 * it can be printed at the next appropriate moment:
1455 */
1456 if (!oops_in_progress && !lockdep_recursing(current)) {
1457 recursion_bug = 1;
1458 goto out_restore_irqs;
1459 }
1460 zap_locks();
1461 }
1462
1463 lockdep_off();
1464 raw_spin_lock(&logbuf_lock);
1465 logbuf_cpu = this_cpu;
1466
1467 if (recursion_bug) {
1468 static const char recursion_msg[] =
1469 "BUG: recent printk recursion!";
1470
1471 recursion_bug = 0;
1472 printed_len += strlen(recursion_msg);
1473 /* emit KERN_CRIT message */
1474 log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1475 NULL, 0, recursion_msg, printed_len);
1476 }
1477
1478 /*
1479 * The printf needs to come first; we need the syslog
1480 * prefix which might be passed-in as a parameter.
1481 */
1482 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1483
1484 /* mark and strip a trailing newline */
1485 if (text_len && text[text_len-1] == '\n') {
1486 text_len--;
1487 lflags |= LOG_NEWLINE;
1488 }
1489
1490 /* strip syslog prefix and extract log level or control flags */
1491 if (text[0] == '<' && text[1] && text[2] == '>') {
1492 switch (text[1]) {
1493 case '0' ... '7':
1494 if (level == -1)
1495 level = text[1] - '0';
1496 case 'd': /* KERN_DEFAULT */
1497 lflags |= LOG_PREFIX;
1498 case 'c': /* KERN_CONT */
1499 text += 3;
1500 text_len -= 3;
1501 }
1502 }
1503
1504 if (level == -1)
1505 level = default_message_loglevel;
1506
1507 if (dict)
1508 lflags |= LOG_PREFIX|LOG_NEWLINE;
1509
1510 if (!(lflags & LOG_NEWLINE)) {
1511 /*
1512 * Flush the conflicting buffer. An earlier newline was missing,
1513 * or another task also prints continuation lines.
1514 */
1515 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1516 cont_flush(0);
1517
1518 /* buffer line if possible, otherwise store it right away */
1519 if (!cont_add(facility, level, text, text_len))
1520 log_store(facility, level, lflags | LOG_CONT, 0,
1521 dict, dictlen, text, text_len);
1522 } else {
1523 bool stored = false;
1524
1525 /*
1526 * If an earlier newline was missing and it was the same task,
1527 * either merge it with the current buffer and flush, or if
1528 * there was a race with interrupts (prefix == true) then just
1529 * flush it out and store this line separately.
1530 */
1531 if (cont.len && cont.owner == current) {
1532 if (!(lflags & LOG_PREFIX))
1533 stored = cont_add(facility, level, text, text_len);
1534 cont_flush(0);
1535 }
1536
1537 if (!stored)
1538 log_store(facility, level, lflags, 0,
1539 dict, dictlen, text, text_len);
1540 }
1541 printed_len += text_len;
1542
1543 /*
1544 * Try to acquire and then immediately release the console semaphore.
1545 * The release will print out buffers and wake up /dev/kmsg and syslog()
1546 * users.
1547 *
1548 * The console_trylock_for_printk() function will release 'logbuf_lock'
1549 * regardless of whether it actually gets the console semaphore or not.
1550 */
1551 if (console_trylock_for_printk(this_cpu))
1552 console_unlock();
1553
1554 lockdep_on();
1555out_restore_irqs:
1556 local_irq_restore(flags);
1557
1558 return printed_len;
1559}
1560EXPORT_SYMBOL(vprintk_emit);
1561
1562asmlinkage int vprintk(const char *fmt, va_list args)
1563{
1564 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1565}
1566EXPORT_SYMBOL(vprintk);
1567
1568asmlinkage int printk_emit(int facility, int level,
1569 const char *dict, size_t dictlen,
1570 const char *fmt, ...)
1571{
1572 va_list args;
1573 int r;
1574
1575 va_start(args, fmt);
1576 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1577 va_end(args);
1578
1579 return r;
1580}
1581EXPORT_SYMBOL(printk_emit);
1582
1583/**
1584 * printk - print a kernel message
1585 * @fmt: format string
1586 *
1587 * This is printk(). It can be called from any context. We want it to work.
1588 *
1589 * We try to grab the console_lock. If we succeed, it's easy - we log the
1590 * output and call the console drivers. If we fail to get the semaphore, we
1591 * place the output into the log buffer and return. The current holder of
1592 * the console_sem will notice the new output in console_unlock(); and will
1593 * send it to the consoles before releasing the lock.
1594 *
1595 * One effect of this deferred printing is that code which calls printk() and
1596 * then changes console_loglevel may break. This is because console_loglevel
1597 * is inspected when the actual printing occurs.
1598 *
1599 * See also:
1600 * printf(3)
1601 *
1602 * See the vsnprintf() documentation for format string extensions over C99.
1603 */
1604asmlinkage int printk(const char *fmt, ...)
1605{
1606 va_list args;
1607 int r;
1608
1609#ifdef CONFIG_KGDB_KDB
1610 if (unlikely(kdb_trap_printk)) {
1611 va_start(args, fmt);
1612 r = vkdb_printf(fmt, args);
1613 va_end(args);
1614 return r;
1615 }
1616#endif
1617 va_start(args, fmt);
1618 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1619 va_end(args);
1620
1621 return r;
1622}
1623EXPORT_SYMBOL(printk);
1624
1625#else
1626
1627#define LOG_LINE_MAX 0
1628#define PREFIX_MAX 0
1629static struct cont {
1630 size_t len;
1631 size_t cons;
1632 u8 level;
1633 bool flushed:1;
1634} cont;
1635static struct log *log_from_idx(u32 idx) { return NULL; }
1636static u32 log_next(u32 idx) { return 0; }
1637static void call_console_drivers(int level, const char *text, size_t len) {}
1638static size_t msg_print_text(const struct log *msg, enum log_flags prev,
1639 bool syslog, char *buf, size_t size) { return 0; }
1640static size_t cont_print_text(char *text, size_t size) { return 0; }
1641
1642#endif /* CONFIG_PRINTK */
1643
1644static int __add_preferred_console(char *name, int idx, char *options,
1645 char *brl_options)
1646{
1647 struct console_cmdline *c;
1648 int i;
1649
1650 /*
1651 * See if this tty is not yet registered, and
1652 * if we have a slot free.
1653 */
1654 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1655 if (strcmp(console_cmdline[i].name, name) == 0 &&
1656 console_cmdline[i].index == idx) {
1657 if (!brl_options)
1658 selected_console = i;
1659 return 0;
1660 }
1661 if (i == MAX_CMDLINECONSOLES)
1662 return -E2BIG;
1663 if (!brl_options)
1664 selected_console = i;
1665 c = &console_cmdline[i];
1666 strlcpy(c->name, name, sizeof(c->name));
1667 c->options = options;
1668#ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1669 c->brl_options = brl_options;
1670#endif
1671 c->index = idx;
1672 return 0;
1673}
1674/*
1675 * Set up a list of consoles. Called from init/main.c
1676 */
1677static int __init console_setup(char *str)
1678{
1679 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1680 char *s, *options, *brl_options = NULL;
1681 int idx;
1682
1683#ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1684 if (!memcmp(str, "brl,", 4)) {
1685 brl_options = "";
1686 str += 4;
1687 } else if (!memcmp(str, "brl=", 4)) {
1688 brl_options = str + 4;
1689 str = strchr(brl_options, ',');
1690 if (!str) {
1691 printk(KERN_ERR "need port name after brl=\n");
1692 return 1;
1693 }
1694 *(str++) = 0;
1695 }
1696#endif
1697
1698 /*
1699 * Decode str into name, index, options.
1700 */
1701 if (str[0] >= '0' && str[0] <= '9') {
1702 strcpy(buf, "ttyS");
1703 strncpy(buf + 4, str, sizeof(buf) - 5);
1704 } else {
1705 strncpy(buf, str, sizeof(buf) - 1);
1706 }
1707 buf[sizeof(buf) - 1] = 0;
1708 if ((options = strchr(str, ',')) != NULL)
1709 *(options++) = 0;
1710#ifdef __sparc__
1711 if (!strcmp(str, "ttya"))
1712 strcpy(buf, "ttyS0");
1713 if (!strcmp(str, "ttyb"))
1714 strcpy(buf, "ttyS1");
1715#endif
1716 for (s = buf; *s; s++)
1717 if ((*s >= '0' && *s <= '9') || *s == ',')
1718 break;
1719 idx = simple_strtoul(s, NULL, 10);
1720 *s = 0;
1721
1722 __add_preferred_console(buf, idx, options, brl_options);
1723 console_set_on_cmdline = 1;
1724 return 1;
1725}
1726__setup("console=", console_setup);
1727
1728/**
1729 * add_preferred_console - add a device to the list of preferred consoles.
1730 * @name: device name
1731 * @idx: device index
1732 * @options: options for this console
1733 *
1734 * The last preferred console added will be used for kernel messages
1735 * and stdin/out/err for init. Normally this is used by console_setup
1736 * above to handle user-supplied console arguments; however it can also
1737 * be used by arch-specific code either to override the user or more
1738 * commonly to provide a default console (ie from PROM variables) when
1739 * the user has not supplied one.
1740 */
1741int add_preferred_console(char *name, int idx, char *options)
1742{
1743 return __add_preferred_console(name, idx, options, NULL);
1744}
1745
1746int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1747{
1748 struct console_cmdline *c;
1749 int i;
1750
1751 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1752 if (strcmp(console_cmdline[i].name, name) == 0 &&
1753 console_cmdline[i].index == idx) {
1754 c = &console_cmdline[i];
1755 strlcpy(c->name, name_new, sizeof(c->name));
1756 c->name[sizeof(c->name) - 1] = 0;
1757 c->options = options;
1758 c->index = idx_new;
1759 return i;
1760 }
1761 /* not found */
1762 return -1;
1763}
1764
1765bool console_suspend_enabled = 1;
1766EXPORT_SYMBOL(console_suspend_enabled);
1767
1768static int __init console_suspend_disable(char *str)
1769{
1770 console_suspend_enabled = 0;
1771 return 1;
1772}
1773__setup("no_console_suspend", console_suspend_disable);
1774module_param_named(console_suspend, console_suspend_enabled,
1775 bool, S_IRUGO | S_IWUSR);
1776MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1777 " and hibernate operations");
1778
1779/**
1780 * suspend_console - suspend the console subsystem
1781 *
1782 * This disables printk() while we go into suspend states
1783 */
1784void suspend_console(void)
1785{
1786 if (!console_suspend_enabled)
1787 return;
1788 printk("Suspending console(s) (use no_console_suspend to debug)\n");
1789 console_lock();
1790 console_suspended = 1;
1791 up(&console_sem);
1792}
1793
1794void resume_console(void)
1795{
1796 if (!console_suspend_enabled)
1797 return;
1798 down(&console_sem);
1799 console_suspended = 0;
1800 console_unlock();
1801}
1802
1803/**
1804 * console_cpu_notify - print deferred console messages after CPU hotplug
1805 * @self: notifier struct
1806 * @action: CPU hotplug event
1807 * @hcpu: unused
1808 *
1809 * If printk() is called from a CPU that is not online yet, the messages
1810 * will be spooled but will not show up on the console. This function is
1811 * called when a new CPU comes online (or fails to come up), and ensures
1812 * that any such output gets printed.
1813 */
1814static int __cpuinit console_cpu_notify(struct notifier_block *self,
1815 unsigned long action, void *hcpu)
1816{
1817 switch (action) {
1818 case CPU_ONLINE:
1819 case CPU_DEAD:
1820 case CPU_DYING:
1821 case CPU_DOWN_FAILED:
1822 case CPU_UP_CANCELED:
1823 console_lock();
1824 console_unlock();
1825 }
1826 return NOTIFY_OK;
1827}
1828
1829/**
1830 * console_lock - lock the console system for exclusive use.
1831 *
1832 * Acquires a lock which guarantees that the caller has
1833 * exclusive access to the console system and the console_drivers list.
1834 *
1835 * Can sleep, returns nothing.
1836 */
1837void console_lock(void)
1838{
1839 BUG_ON(in_interrupt());
1840 down(&console_sem);
1841 if (console_suspended)
1842 return;
1843 console_locked = 1;
1844 console_may_schedule = 1;
1845}
1846EXPORT_SYMBOL(console_lock);
1847
1848/**
1849 * console_trylock - try to lock the console system for exclusive use.
1850 *
1851 * Tried to acquire a lock which guarantees that the caller has
1852 * exclusive access to the console system and the console_drivers list.
1853 *
1854 * returns 1 on success, and 0 on failure to acquire the lock.
1855 */
1856int console_trylock(void)
1857{
1858 if (down_trylock(&console_sem))
1859 return 0;
1860 if (console_suspended) {
1861 up(&console_sem);
1862 return 0;
1863 }
1864 console_locked = 1;
1865 console_may_schedule = 0;
1866 return 1;
1867}
1868EXPORT_SYMBOL(console_trylock);
1869
1870int is_console_locked(void)
1871{
1872 return console_locked;
1873}
1874
1875/*
1876 * Delayed printk version, for scheduler-internal messages:
1877 */
1878#define PRINTK_BUF_SIZE 512
1879
1880#define PRINTK_PENDING_WAKEUP 0x01
1881#define PRINTK_PENDING_SCHED 0x02
1882
1883static DEFINE_PER_CPU(int, printk_pending);
1884static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
1885
1886void printk_tick(void)
1887{
1888 if (__this_cpu_read(printk_pending)) {
1889 int pending = __this_cpu_xchg(printk_pending, 0);
1890 if (pending & PRINTK_PENDING_SCHED) {
1891 char *buf = __get_cpu_var(printk_sched_buf);
1892 printk(KERN_WARNING "[sched_delayed] %s", buf);
1893 }
1894 if (pending & PRINTK_PENDING_WAKEUP)
1895 wake_up_interruptible(&log_wait);
1896 }
1897}
1898
1899int printk_needs_cpu(int cpu)
1900{
1901 if (cpu_is_offline(cpu))
1902 printk_tick();
1903 return __this_cpu_read(printk_pending);
1904}
1905
1906void wake_up_klogd(void)
1907{
1908 if (waitqueue_active(&log_wait))
1909 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
1910}
1911
1912/* the next printk record to write to the console */
1913static u64 console_seq;
1914static u32 console_idx;
1915static enum log_flags console_prev;
1916
1917/**
1918 * console_unlock - unlock the console system
1919 *
1920 * Releases the console_lock which the caller holds on the console system
1921 * and the console driver list.
1922 *
1923 * While the console_lock was held, console output may have been buffered
1924 * by printk(). If this is the case, console_unlock(); emits
1925 * the output prior to releasing the lock.
1926 *
1927 * If there is output waiting, we wake /dev/kmsg and syslog() users.
1928 *
1929 * console_unlock(); may be called from any context.
1930 */
1931void console_unlock(void)
1932{
1933 static char text[LOG_LINE_MAX + PREFIX_MAX];
1934 static u64 seen_seq;
1935 unsigned long flags;
1936 bool wake_klogd = false;
1937 bool retry;
1938
1939 if (console_suspended) {
1940 up(&console_sem);
1941 return;
1942 }
1943
1944 console_may_schedule = 0;
1945
1946 /* flush buffered message fragment immediately to console */
1947 raw_spin_lock_irqsave(&logbuf_lock, flags);
1948 if (cont.len && (cont.cons < cont.len || cont.flushed)) {
1949 size_t len;
1950
1951 len = cont_print_text(text, sizeof(text));
1952 raw_spin_unlock(&logbuf_lock);
1953 stop_critical_timings();
1954 call_console_drivers(cont.level, text, len);
1955 start_critical_timings();
1956 local_irq_restore(flags);
1957 } else
1958 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1959
1960again:
1961 for (;;) {
1962 struct log *msg;
1963 size_t len;
1964 int level;
1965
1966 raw_spin_lock_irqsave(&logbuf_lock, flags);
1967 if (seen_seq != log_next_seq) {
1968 wake_klogd = true;
1969 seen_seq = log_next_seq;
1970 }
1971
1972 if (console_seq < log_first_seq) {
1973 /* messages are gone, move to first one */
1974 console_seq = log_first_seq;
1975 console_idx = log_first_idx;
1976 console_prev = 0;
1977 }
1978skip:
1979 if (console_seq == log_next_seq)
1980 break;
1981
1982 msg = log_from_idx(console_idx);
1983 if (msg->flags & LOG_NOCONS) {
1984 /*
1985 * Skip record we have buffered and already printed
1986 * directly to the console when we received it.
1987 */
1988 console_idx = log_next(console_idx);
1989 console_seq++;
1990 /*
1991 * We will get here again when we register a new
1992 * CON_PRINTBUFFER console. Clear the flag so we
1993 * will properly dump everything later.
1994 */
1995 msg->flags &= ~LOG_NOCONS;
1996 goto skip;
1997 }
1998
1999 level = msg->level;
2000 len = msg_print_text(msg, console_prev, false,
2001 text, sizeof(text));
2002 console_idx = log_next(console_idx);
2003 console_seq++;
2004 console_prev = msg->flags;
2005 raw_spin_unlock(&logbuf_lock);
2006
2007 stop_critical_timings(); /* don't trace print latency */
2008 call_console_drivers(level, text, len);
2009 start_critical_timings();
2010 local_irq_restore(flags);
2011 }
2012 console_locked = 0;
2013
2014 /* Release the exclusive_console once it is used */
2015 if (unlikely(exclusive_console))
2016 exclusive_console = NULL;
2017
2018 raw_spin_unlock(&logbuf_lock);
2019
2020 up(&console_sem);
2021
2022 /*
2023 * Someone could have filled up the buffer again, so re-check if there's
2024 * something to flush. In case we cannot trylock the console_sem again,
2025 * there's a new owner and the console_unlock() from them will do the
2026 * flush, no worries.
2027 */
2028 raw_spin_lock(&logbuf_lock);
2029 retry = console_seq != log_next_seq;
2030 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2031
2032 if (retry && console_trylock())
2033 goto again;
2034
2035 if (wake_klogd)
2036 wake_up_klogd();
2037}
2038EXPORT_SYMBOL(console_unlock);
2039
2040/**
2041 * console_conditional_schedule - yield the CPU if required
2042 *
2043 * If the console code is currently allowed to sleep, and
2044 * if this CPU should yield the CPU to another task, do
2045 * so here.
2046 *
2047 * Must be called within console_lock();.
2048 */
2049void __sched console_conditional_schedule(void)
2050{
2051 if (console_may_schedule)
2052 cond_resched();
2053}
2054EXPORT_SYMBOL(console_conditional_schedule);
2055
2056void console_unblank(void)
2057{
2058 struct console *c;
2059
2060 /*
2061 * console_unblank can no longer be called in interrupt context unless
2062 * oops_in_progress is set to 1..
2063 */
2064 if (oops_in_progress) {
2065 if (down_trylock(&console_sem) != 0)
2066 return;
2067 } else
2068 console_lock();
2069
2070 console_locked = 1;
2071 console_may_schedule = 0;
2072 for_each_console(c)
2073 if ((c->flags & CON_ENABLED) && c->unblank)
2074 c->unblank();
2075 console_unlock();
2076}
2077
2078/*
2079 * Return the console tty driver structure and its associated index
2080 */
2081struct tty_driver *console_device(int *index)
2082{
2083 struct console *c;
2084 struct tty_driver *driver = NULL;
2085
2086 console_lock();
2087 for_each_console(c) {
2088 if (!c->device)
2089 continue;
2090 driver = c->device(c, index);
2091 if (driver)
2092 break;
2093 }
2094 console_unlock();
2095 return driver;
2096}
2097
2098/*
2099 * Prevent further output on the passed console device so that (for example)
2100 * serial drivers can disable console output before suspending a port, and can
2101 * re-enable output afterwards.
2102 */
2103void console_stop(struct console *console)
2104{
2105 console_lock();
2106 console->flags &= ~CON_ENABLED;
2107 console_unlock();
2108}
2109EXPORT_SYMBOL(console_stop);
2110
2111void console_start(struct console *console)
2112{
2113 console_lock();
2114 console->flags |= CON_ENABLED;
2115 console_unlock();
2116}
2117EXPORT_SYMBOL(console_start);
2118
2119static int __read_mostly keep_bootcon;
2120
2121static int __init keep_bootcon_setup(char *str)
2122{
2123 keep_bootcon = 1;
2124 printk(KERN_INFO "debug: skip boot console de-registration.\n");
2125
2126 return 0;
2127}
2128
2129early_param("keep_bootcon", keep_bootcon_setup);
2130
2131/*
2132 * The console driver calls this routine during kernel initialization
2133 * to register the console printing procedure with printk() and to
2134 * print any messages that were printed by the kernel before the
2135 * console driver was initialized.
2136 *
2137 * This can happen pretty early during the boot process (because of
2138 * early_printk) - sometimes before setup_arch() completes - be careful
2139 * of what kernel features are used - they may not be initialised yet.
2140 *
2141 * There are two types of consoles - bootconsoles (early_printk) and
2142 * "real" consoles (everything which is not a bootconsole) which are
2143 * handled differently.
2144 * - Any number of bootconsoles can be registered at any time.
2145 * - As soon as a "real" console is registered, all bootconsoles
2146 * will be unregistered automatically.
2147 * - Once a "real" console is registered, any attempt to register a
2148 * bootconsoles will be rejected
2149 */
2150void register_console(struct console *newcon)
2151{
2152 int i;
2153 unsigned long flags;
2154 struct console *bcon = NULL;
2155
2156 /*
2157 * before we register a new CON_BOOT console, make sure we don't
2158 * already have a valid console
2159 */
2160 if (console_drivers && newcon->flags & CON_BOOT) {
2161 /* find the last or real console */
2162 for_each_console(bcon) {
2163 if (!(bcon->flags & CON_BOOT)) {
2164 printk(KERN_INFO "Too late to register bootconsole %s%d\n",
2165 newcon->name, newcon->index);
2166 return;
2167 }
2168 }
2169 }
2170
2171 if (console_drivers && console_drivers->flags & CON_BOOT)
2172 bcon = console_drivers;
2173
2174 if (preferred_console < 0 || bcon || !console_drivers)
2175 preferred_console = selected_console;
2176
2177 if (newcon->early_setup)
2178 newcon->early_setup();
2179
2180 /*
2181 * See if we want to use this console driver. If we
2182 * didn't select a console we take the first one
2183 * that registers here.
2184 */
2185 if (preferred_console < 0) {
2186 if (newcon->index < 0)
2187 newcon->index = 0;
2188 if (newcon->setup == NULL ||
2189 newcon->setup(newcon, NULL) == 0) {
2190 newcon->flags |= CON_ENABLED;
2191 if (newcon->device) {
2192 newcon->flags |= CON_CONSDEV;
2193 preferred_console = 0;
2194 }
2195 }
2196 }
2197
2198 /*
2199 * See if this console matches one we selected on
2200 * the command line.
2201 */
2202 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0];
2203 i++) {
2204 if (strcmp(console_cmdline[i].name, newcon->name) != 0)
2205 continue;
2206 if (newcon->index >= 0 &&
2207 newcon->index != console_cmdline[i].index)
2208 continue;
2209 if (newcon->index < 0)
2210 newcon->index = console_cmdline[i].index;
2211#ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2212 if (console_cmdline[i].brl_options) {
2213 newcon->flags |= CON_BRL;
2214 braille_register_console(newcon,
2215 console_cmdline[i].index,
2216 console_cmdline[i].options,
2217 console_cmdline[i].brl_options);
2218 return;
2219 }
2220#endif
2221 if (newcon->setup &&
2222 newcon->setup(newcon, console_cmdline[i].options) != 0)
2223 break;
2224 newcon->flags |= CON_ENABLED;
2225 newcon->index = console_cmdline[i].index;
2226 if (i == selected_console) {
2227 newcon->flags |= CON_CONSDEV;
2228 preferred_console = selected_console;
2229 }
2230 break;
2231 }
2232
2233 if (!(newcon->flags & CON_ENABLED))
2234 return;
2235
2236 /*
2237 * If we have a bootconsole, and are switching to a real console,
2238 * don't print everything out again, since when the boot console, and
2239 * the real console are the same physical device, it's annoying to
2240 * see the beginning boot messages twice
2241 */
2242 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2243 newcon->flags &= ~CON_PRINTBUFFER;
2244
2245 /*
2246 * Put this console in the list - keep the
2247 * preferred driver at the head of the list.
2248 */
2249 console_lock();
2250 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2251 newcon->next = console_drivers;
2252 console_drivers = newcon;
2253 if (newcon->next)
2254 newcon->next->flags &= ~CON_CONSDEV;
2255 } else {
2256 newcon->next = console_drivers->next;
2257 console_drivers->next = newcon;
2258 }
2259 if (newcon->flags & CON_PRINTBUFFER) {
2260 /*
2261 * console_unlock(); will print out the buffered messages
2262 * for us.
2263 */
2264 raw_spin_lock_irqsave(&logbuf_lock, flags);
2265 console_seq = syslog_seq;
2266 console_idx = syslog_idx;
2267 console_prev = syslog_prev;
2268 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2269 /*
2270 * We're about to replay the log buffer. Only do this to the
2271 * just-registered console to avoid excessive message spam to
2272 * the already-registered consoles.
2273 */
2274 exclusive_console = newcon;
2275 }
2276 console_unlock();
2277 console_sysfs_notify();
2278
2279 /*
2280 * By unregistering the bootconsoles after we enable the real console
2281 * we get the "console xxx enabled" message on all the consoles -
2282 * boot consoles, real consoles, etc - this is to ensure that end
2283 * users know there might be something in the kernel's log buffer that
2284 * went to the bootconsole (that they do not see on the real console)
2285 */
2286 if (bcon &&
2287 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2288 !keep_bootcon) {
2289 /* we need to iterate through twice, to make sure we print
2290 * everything out, before we unregister the console(s)
2291 */
2292 printk(KERN_INFO "console [%s%d] enabled, bootconsole disabled\n",
2293 newcon->name, newcon->index);
2294 for_each_console(bcon)
2295 if (bcon->flags & CON_BOOT)
2296 unregister_console(bcon);
2297 } else {
2298 printk(KERN_INFO "%sconsole [%s%d] enabled\n",
2299 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2300 newcon->name, newcon->index);
2301 }
2302}
2303EXPORT_SYMBOL(register_console);
2304
2305int unregister_console(struct console *console)
2306{
2307 struct console *a, *b;
2308 int res = 1;
2309
2310#ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2311 if (console->flags & CON_BRL)
2312 return braille_unregister_console(console);
2313#endif
2314
2315 console_lock();
2316 if (console_drivers == console) {
2317 console_drivers=console->next;
2318 res = 0;
2319 } else if (console_drivers) {
2320 for (a=console_drivers->next, b=console_drivers ;
2321 a; b=a, a=b->next) {
2322 if (a == console) {
2323 b->next = a->next;
2324 res = 0;
2325 break;
2326 }
2327 }
2328 }
2329
2330 /*
2331 * If this isn't the last console and it has CON_CONSDEV set, we
2332 * need to set it on the next preferred console.
2333 */
2334 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2335 console_drivers->flags |= CON_CONSDEV;
2336
2337 console_unlock();
2338 console_sysfs_notify();
2339 return res;
2340}
2341EXPORT_SYMBOL(unregister_console);
2342
2343static int __init printk_late_init(void)
2344{
2345 struct console *con;
2346
2347 for_each_console(con) {
2348 if (!keep_bootcon && con->flags & CON_BOOT) {
2349 printk(KERN_INFO "turn off boot console %s%d\n",
2350 con->name, con->index);
2351 unregister_console(con);
2352 }
2353 }
2354 hotcpu_notifier(console_cpu_notify, 0);
2355 return 0;
2356}
2357late_initcall(printk_late_init);
2358
2359#if defined CONFIG_PRINTK
2360
2361int printk_sched(const char *fmt, ...)
2362{
2363 unsigned long flags;
2364 va_list args;
2365 char *buf;
2366 int r;
2367
2368 local_irq_save(flags);
2369 buf = __get_cpu_var(printk_sched_buf);
2370
2371 va_start(args, fmt);
2372 r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2373 va_end(args);
2374
2375 __this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2376 local_irq_restore(flags);
2377
2378 return r;
2379}
2380
2381/*
2382 * printk rate limiting, lifted from the networking subsystem.
2383 *
2384 * This enforces a rate limit: not more than 10 kernel messages
2385 * every 5s to make a denial-of-service attack impossible.
2386 */
2387DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2388
2389int __printk_ratelimit(const char *func)
2390{
2391 return ___ratelimit(&printk_ratelimit_state, func);
2392}
2393EXPORT_SYMBOL(__printk_ratelimit);
2394
2395/**
2396 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2397 * @caller_jiffies: pointer to caller's state
2398 * @interval_msecs: minimum interval between prints
2399 *
2400 * printk_timed_ratelimit() returns true if more than @interval_msecs
2401 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2402 * returned true.
2403 */
2404bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2405 unsigned int interval_msecs)
2406{
2407 if (*caller_jiffies == 0
2408 || !time_in_range(jiffies, *caller_jiffies,
2409 *caller_jiffies
2410 + msecs_to_jiffies(interval_msecs))) {
2411 *caller_jiffies = jiffies;
2412 return true;
2413 }
2414 return false;
2415}
2416EXPORT_SYMBOL(printk_timed_ratelimit);
2417
2418static DEFINE_SPINLOCK(dump_list_lock);
2419static LIST_HEAD(dump_list);
2420
2421/**
2422 * kmsg_dump_register - register a kernel log dumper.
2423 * @dumper: pointer to the kmsg_dumper structure
2424 *
2425 * Adds a kernel log dumper to the system. The dump callback in the
2426 * structure will be called when the kernel oopses or panics and must be
2427 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2428 */
2429int kmsg_dump_register(struct kmsg_dumper *dumper)
2430{
2431 unsigned long flags;
2432 int err = -EBUSY;
2433
2434 /* The dump callback needs to be set */
2435 if (!dumper->dump)
2436 return -EINVAL;
2437
2438 spin_lock_irqsave(&dump_list_lock, flags);
2439 /* Don't allow registering multiple times */
2440 if (!dumper->registered) {
2441 dumper->registered = 1;
2442 list_add_tail_rcu(&dumper->list, &dump_list);
2443 err = 0;
2444 }
2445 spin_unlock_irqrestore(&dump_list_lock, flags);
2446
2447 return err;
2448}
2449EXPORT_SYMBOL_GPL(kmsg_dump_register);
2450
2451/**
2452 * kmsg_dump_unregister - unregister a kmsg dumper.
2453 * @dumper: pointer to the kmsg_dumper structure
2454 *
2455 * Removes a dump device from the system. Returns zero on success and
2456 * %-EINVAL otherwise.
2457 */
2458int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2459{
2460 unsigned long flags;
2461 int err = -EINVAL;
2462
2463 spin_lock_irqsave(&dump_list_lock, flags);
2464 if (dumper->registered) {
2465 dumper->registered = 0;
2466 list_del_rcu(&dumper->list);
2467 err = 0;
2468 }
2469 spin_unlock_irqrestore(&dump_list_lock, flags);
2470 synchronize_rcu();
2471
2472 return err;
2473}
2474EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2475
2476static bool always_kmsg_dump;
2477module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2478
2479/**
2480 * kmsg_dump - dump kernel log to kernel message dumpers.
2481 * @reason: the reason (oops, panic etc) for dumping
2482 *
2483 * Call each of the registered dumper's dump() callback, which can
2484 * retrieve the kmsg records with kmsg_dump_get_line() or
2485 * kmsg_dump_get_buffer().
2486 */
2487void kmsg_dump(enum kmsg_dump_reason reason)
2488{
2489 struct kmsg_dumper *dumper;
2490 unsigned long flags;
2491
2492 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2493 return;
2494
2495 rcu_read_lock();
2496 list_for_each_entry_rcu(dumper, &dump_list, list) {
2497 if (dumper->max_reason && reason > dumper->max_reason)
2498 continue;
2499
2500 /* initialize iterator with data about the stored records */
2501 dumper->active = true;
2502
2503 raw_spin_lock_irqsave(&logbuf_lock, flags);
2504 dumper->cur_seq = clear_seq;
2505 dumper->cur_idx = clear_idx;
2506 dumper->next_seq = log_next_seq;
2507 dumper->next_idx = log_next_idx;
2508 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2509
2510 /* invoke dumper which will iterate over records */
2511 dumper->dump(dumper, reason);
2512
2513 /* reset iterator */
2514 dumper->active = false;
2515 }
2516 rcu_read_unlock();
2517}
2518
2519/**
2520 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2521 * @dumper: registered kmsg dumper
2522 * @syslog: include the "<4>" prefixes
2523 * @line: buffer to copy the line to
2524 * @size: maximum size of the buffer
2525 * @len: length of line placed into buffer
2526 *
2527 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2528 * record, and copy one record into the provided buffer.
2529 *
2530 * Consecutive calls will return the next available record moving
2531 * towards the end of the buffer with the youngest messages.
2532 *
2533 * A return value of FALSE indicates that there are no more records to
2534 * read.
2535 *
2536 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2537 */
2538bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2539 char *line, size_t size, size_t *len)
2540{
2541 struct log *msg;
2542 size_t l = 0;
2543 bool ret = false;
2544
2545 if (!dumper->active)
2546 goto out;
2547
2548 if (dumper->cur_seq < log_first_seq) {
2549 /* messages are gone, move to first available one */
2550 dumper->cur_seq = log_first_seq;
2551 dumper->cur_idx = log_first_idx;
2552 }
2553
2554 /* last entry */
2555 if (dumper->cur_seq >= log_next_seq)
2556 goto out;
2557
2558 msg = log_from_idx(dumper->cur_idx);
2559 l = msg_print_text(msg, 0, syslog, line, size);
2560
2561 dumper->cur_idx = log_next(dumper->cur_idx);
2562 dumper->cur_seq++;
2563 ret = true;
2564out:
2565 if (len)
2566 *len = l;
2567 return ret;
2568}
2569
2570/**
2571 * kmsg_dump_get_line - retrieve one kmsg log line
2572 * @dumper: registered kmsg dumper
2573 * @syslog: include the "<4>" prefixes
2574 * @line: buffer to copy the line to
2575 * @size: maximum size of the buffer
2576 * @len: length of line placed into buffer
2577 *
2578 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2579 * record, and copy one record into the provided buffer.
2580 *
2581 * Consecutive calls will return the next available record moving
2582 * towards the end of the buffer with the youngest messages.
2583 *
2584 * A return value of FALSE indicates that there are no more records to
2585 * read.
2586 */
2587bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2588 char *line, size_t size, size_t *len)
2589{
2590 unsigned long flags;
2591 bool ret;
2592
2593 raw_spin_lock_irqsave(&logbuf_lock, flags);
2594 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2595 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2596
2597 return ret;
2598}
2599EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2600
2601/**
2602 * kmsg_dump_get_buffer - copy kmsg log lines
2603 * @dumper: registered kmsg dumper
2604 * @syslog: include the "<4>" prefixes
2605 * @buf: buffer to copy the line to
2606 * @size: maximum size of the buffer
2607 * @len: length of line placed into buffer
2608 *
2609 * Start at the end of the kmsg buffer and fill the provided buffer
2610 * with as many of the the *youngest* kmsg records that fit into it.
2611 * If the buffer is large enough, all available kmsg records will be
2612 * copied with a single call.
2613 *
2614 * Consecutive calls will fill the buffer with the next block of
2615 * available older records, not including the earlier retrieved ones.
2616 *
2617 * A return value of FALSE indicates that there are no more records to
2618 * read.
2619 */
2620bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2621 char *buf, size_t size, size_t *len)
2622{
2623 unsigned long flags;
2624 u64 seq;
2625 u32 idx;
2626 u64 next_seq;
2627 u32 next_idx;
2628 enum log_flags prev;
2629 size_t l = 0;
2630 bool ret = false;
2631
2632 if (!dumper->active)
2633 goto out;
2634
2635 raw_spin_lock_irqsave(&logbuf_lock, flags);
2636 if (dumper->cur_seq < log_first_seq) {
2637 /* messages are gone, move to first available one */
2638 dumper->cur_seq = log_first_seq;
2639 dumper->cur_idx = log_first_idx;
2640 }
2641
2642 /* last entry */
2643 if (dumper->cur_seq >= dumper->next_seq) {
2644 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2645 goto out;
2646 }
2647
2648 /* calculate length of entire buffer */
2649 seq = dumper->cur_seq;
2650 idx = dumper->cur_idx;
2651 prev = 0;
2652 while (seq < dumper->next_seq) {
2653 struct log *msg = log_from_idx(idx);
2654
2655 l += msg_print_text(msg, prev, true, NULL, 0);
2656 idx = log_next(idx);
2657 seq++;
2658 prev = msg->flags;
2659 }
2660
2661 /* move first record forward until length fits into the buffer */
2662 seq = dumper->cur_seq;
2663 idx = dumper->cur_idx;
2664 prev = 0;
2665 while (l > size && seq < dumper->next_seq) {
2666 struct log *msg = log_from_idx(idx);
2667
2668 l -= msg_print_text(msg, prev, true, NULL, 0);
2669 idx = log_next(idx);
2670 seq++;
2671 prev = msg->flags;
2672 }
2673
2674 /* last message in next interation */
2675 next_seq = seq;
2676 next_idx = idx;
2677
2678 l = 0;
2679 prev = 0;
2680 while (seq < dumper->next_seq) {
2681 struct log *msg = log_from_idx(idx);
2682
2683 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2684 idx = log_next(idx);
2685 seq++;
2686 prev = msg->flags;
2687 }
2688
2689 dumper->next_seq = next_seq;
2690 dumper->next_idx = next_idx;
2691 ret = true;
2692 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2693out:
2694 if (len)
2695 *len = l;
2696 return ret;
2697}
2698EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2699
2700/**
2701 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2702 * @dumper: registered kmsg dumper
2703 *
2704 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2705 * kmsg_dump_get_buffer() can be called again and used multiple
2706 * times within the same dumper.dump() callback.
2707 *
2708 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2709 */
2710void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2711{
2712 dumper->cur_seq = clear_seq;
2713 dumper->cur_idx = clear_idx;
2714 dumper->next_seq = log_next_seq;
2715 dumper->next_idx = log_next_idx;
2716}
2717
2718/**
2719 * kmsg_dump_rewind - reset the interator
2720 * @dumper: registered kmsg dumper
2721 *
2722 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2723 * kmsg_dump_get_buffer() can be called again and used multiple
2724 * times within the same dumper.dump() callback.
2725 */
2726void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2727{
2728 unsigned long flags;
2729
2730 raw_spin_lock_irqsave(&logbuf_lock, flags);
2731 kmsg_dump_rewind_nolock(dumper);
2732 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2733}
2734EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2735#endif