Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1/* SPDX-License-Identifier: GPL-2.0 */
  2
  3/*
  4 * This file provides wrappers with sanitizer instrumentation for bit
  5 * operations.
  6 *
  7 * To use this functionality, an arch's bitops.h file needs to define each of
  8 * the below bit operations with an arch_ prefix (e.g. arch_set_bit(),
  9 * arch___set_bit(), etc.).
 10 */
 11#ifndef _ASM_GENERIC_BITOPS_INSTRUMENTED_H
 12#define _ASM_GENERIC_BITOPS_INSTRUMENTED_H
 13
 14#include <linux/kasan-checks.h>
 15
 16/**
 17 * set_bit - Atomically set a bit in memory
 18 * @nr: the bit to set
 19 * @addr: the address to start counting from
 20 *
 21 * This is a relaxed atomic operation (no implied memory barriers).
 22 *
 23 * Note that @nr may be almost arbitrarily large; this function is not
 24 * restricted to acting on a single-word quantity.
 25 */
 26static inline void set_bit(long nr, volatile unsigned long *addr)
 27{
 28	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
 29	arch_set_bit(nr, addr);
 30}
 31
 32/**
 33 * __set_bit - Set a bit in memory
 34 * @nr: the bit to set
 35 * @addr: the address to start counting from
 36 *
 37 * Unlike set_bit(), this function is non-atomic. If it is called on the same
 38 * region of memory concurrently, the effect may be that only one operation
 39 * succeeds.
 40 */
 41static inline void __set_bit(long nr, volatile unsigned long *addr)
 42{
 43	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
 44	arch___set_bit(nr, addr);
 45}
 46
 47/**
 48 * clear_bit - Clears a bit in memory
 49 * @nr: Bit to clear
 50 * @addr: Address to start counting from
 51 *
 52 * This is a relaxed atomic operation (no implied memory barriers).
 53 */
 54static inline void clear_bit(long nr, volatile unsigned long *addr)
 55{
 56	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
 57	arch_clear_bit(nr, addr);
 58}
 59
 60/**
 61 * __clear_bit - Clears a bit in memory
 62 * @nr: the bit to clear
 63 * @addr: the address to start counting from
 64 *
 65 * Unlike clear_bit(), this function is non-atomic. If it is called on the same
 66 * region of memory concurrently, the effect may be that only one operation
 67 * succeeds.
 68 */
 69static inline void __clear_bit(long nr, volatile unsigned long *addr)
 70{
 71	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
 72	arch___clear_bit(nr, addr);
 73}
 74
 75/**
 76 * clear_bit_unlock - Clear a bit in memory, for unlock
 77 * @nr: the bit to set
 78 * @addr: the address to start counting from
 79 *
 80 * This operation is atomic and provides release barrier semantics.
 81 */
 82static inline void clear_bit_unlock(long nr, volatile unsigned long *addr)
 83{
 84	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
 85	arch_clear_bit_unlock(nr, addr);
 86}
 87
 88/**
 89 * __clear_bit_unlock - Clears a bit in memory
 90 * @nr: Bit to clear
 91 * @addr: Address to start counting from
 92 *
 93 * This is a non-atomic operation but implies a release barrier before the
 94 * memory operation. It can be used for an unlock if no other CPUs can
 95 * concurrently modify other bits in the word.
 96 */
 97static inline void __clear_bit_unlock(long nr, volatile unsigned long *addr)
 98{
 99	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
100	arch___clear_bit_unlock(nr, addr);
101}
102
103/**
104 * change_bit - Toggle a bit in memory
105 * @nr: Bit to change
106 * @addr: Address to start counting from
107 *
108 * This is a relaxed atomic operation (no implied memory barriers).
109 *
110 * Note that @nr may be almost arbitrarily large; this function is not
111 * restricted to acting on a single-word quantity.
112 */
113static inline void change_bit(long nr, volatile unsigned long *addr)
114{
115	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
116	arch_change_bit(nr, addr);
117}
118
119/**
120 * __change_bit - Toggle a bit in memory
121 * @nr: the bit to change
122 * @addr: the address to start counting from
123 *
124 * Unlike change_bit(), this function is non-atomic. If it is called on the same
125 * region of memory concurrently, the effect may be that only one operation
126 * succeeds.
127 */
128static inline void __change_bit(long nr, volatile unsigned long *addr)
129{
130	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
131	arch___change_bit(nr, addr);
132}
133
134/**
135 * test_and_set_bit - Set a bit and return its old value
136 * @nr: Bit to set
137 * @addr: Address to count from
138 *
139 * This is an atomic fully-ordered operation (implied full memory barrier).
140 */
141static inline bool test_and_set_bit(long nr, volatile unsigned long *addr)
142{
143	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
144	return arch_test_and_set_bit(nr, addr);
145}
146
147/**
148 * __test_and_set_bit - Set a bit and return its old value
149 * @nr: Bit to set
150 * @addr: Address to count from
151 *
152 * This operation is non-atomic. If two instances of this operation race, one
153 * can appear to succeed but actually fail.
154 */
155static inline bool __test_and_set_bit(long nr, volatile unsigned long *addr)
156{
157	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
158	return arch___test_and_set_bit(nr, addr);
159}
160
161/**
162 * test_and_set_bit_lock - Set a bit and return its old value, for lock
163 * @nr: Bit to set
164 * @addr: Address to count from
165 *
166 * This operation is atomic and provides acquire barrier semantics if
167 * the returned value is 0.
168 * It can be used to implement bit locks.
169 */
170static inline bool test_and_set_bit_lock(long nr, volatile unsigned long *addr)
171{
172	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
173	return arch_test_and_set_bit_lock(nr, addr);
174}
175
176/**
177 * test_and_clear_bit - Clear a bit and return its old value
178 * @nr: Bit to clear
179 * @addr: Address to count from
180 *
181 * This is an atomic fully-ordered operation (implied full memory barrier).
182 */
183static inline bool test_and_clear_bit(long nr, volatile unsigned long *addr)
184{
185	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
186	return arch_test_and_clear_bit(nr, addr);
187}
188
189/**
190 * __test_and_clear_bit - Clear a bit and return its old value
191 * @nr: Bit to clear
192 * @addr: Address to count from
193 *
194 * This operation is non-atomic. If two instances of this operation race, one
195 * can appear to succeed but actually fail.
196 */
197static inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr)
198{
199	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
200	return arch___test_and_clear_bit(nr, addr);
201}
202
203/**
204 * test_and_change_bit - Change a bit and return its old value
205 * @nr: Bit to change
206 * @addr: Address to count from
207 *
208 * This is an atomic fully-ordered operation (implied full memory barrier).
209 */
210static inline bool test_and_change_bit(long nr, volatile unsigned long *addr)
211{
212	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
213	return arch_test_and_change_bit(nr, addr);
214}
215
216/**
217 * __test_and_change_bit - Change a bit and return its old value
218 * @nr: Bit to change
219 * @addr: Address to count from
220 *
221 * This operation is non-atomic. If two instances of this operation race, one
222 * can appear to succeed but actually fail.
223 */
224static inline bool __test_and_change_bit(long nr, volatile unsigned long *addr)
225{
226	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
227	return arch___test_and_change_bit(nr, addr);
228}
229
230/**
231 * test_bit - Determine whether a bit is set
232 * @nr: bit number to test
233 * @addr: Address to start counting from
234 */
235static inline bool test_bit(long nr, const volatile unsigned long *addr)
236{
237	kasan_check_read(addr + BIT_WORD(nr), sizeof(long));
238	return arch_test_bit(nr, addr);
239}
240
241#if defined(arch_clear_bit_unlock_is_negative_byte)
242/**
243 * clear_bit_unlock_is_negative_byte - Clear a bit in memory and test if bottom
244 *                                     byte is negative, for unlock.
245 * @nr: the bit to clear
246 * @addr: the address to start counting from
247 *
248 * This operation is atomic and provides release barrier semantics.
249 *
250 * This is a bit of a one-trick-pony for the filemap code, which clears
251 * PG_locked and tests PG_waiters,
252 */
253static inline bool
254clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr)
255{
256	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
257	return arch_clear_bit_unlock_is_negative_byte(nr, addr);
258}
259/* Let everybody know we have it. */
260#define clear_bit_unlock_is_negative_byte clear_bit_unlock_is_negative_byte
261#endif
262
263#endif /* _ASM_GENERIC_BITOPS_INSTRUMENTED_H */