Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * This file is part of UBIFS.
  4 *
  5 * Copyright (C) 2006-2008 Nokia Corporation.
  6 *
 
 
 
 
 
 
 
 
 
 
 
 
 
  7 * Authors: Artem Bityutskiy (Битюцкий Артём)
  8 *          Adrian Hunter
  9 */
 10
 11/*
 12 * This file implements UBIFS superblock. The superblock is stored at the first
 13 * LEB of the volume and is never changed by UBIFS. Only user-space tools may
 14 * change it. The superblock node mostly contains geometry information.
 15 */
 16
 17#include "ubifs.h"
 18#include <linux/slab.h>
 
 19#include <linux/math64.h>
 20#include <linux/uuid.h>
 21
 22/*
 23 * Default journal size in logical eraseblocks as a percent of total
 24 * flash size.
 25 */
 26#define DEFAULT_JNL_PERCENT 5
 27
 28/* Default maximum journal size in bytes */
 29#define DEFAULT_MAX_JNL (32*1024*1024)
 30
 31/* Default indexing tree fanout */
 32#define DEFAULT_FANOUT 8
 33
 34/* Default number of data journal heads */
 35#define DEFAULT_JHEADS_CNT 1
 36
 37/* Default positions of different LEBs in the main area */
 38#define DEFAULT_IDX_LEB  0
 39#define DEFAULT_DATA_LEB 1
 40#define DEFAULT_GC_LEB   2
 41
 42/* Default number of LEB numbers in LPT's save table */
 43#define DEFAULT_LSAVE_CNT 256
 44
 45/* Default reserved pool size as a percent of maximum free space */
 46#define DEFAULT_RP_PERCENT 5
 47
 48/* The default maximum size of reserved pool in bytes */
 49#define DEFAULT_MAX_RP_SIZE (5*1024*1024)
 50
 51/* Default time granularity in nanoseconds */
 52#define DEFAULT_TIME_GRAN 1000000000
 53
 54static int get_default_compressor(struct ubifs_info *c)
 55{
 56	if (ubifs_compr_present(c, UBIFS_COMPR_LZO))
 57		return UBIFS_COMPR_LZO;
 58
 59	if (ubifs_compr_present(c, UBIFS_COMPR_ZLIB))
 60		return UBIFS_COMPR_ZLIB;
 61
 62	return UBIFS_COMPR_NONE;
 63}
 64
 65/**
 66 * create_default_filesystem - format empty UBI volume.
 67 * @c: UBIFS file-system description object
 68 *
 69 * This function creates default empty file-system. Returns zero in case of
 70 * success and a negative error code in case of failure.
 71 */
 72static int create_default_filesystem(struct ubifs_info *c)
 73{
 74	struct ubifs_sb_node *sup;
 75	struct ubifs_mst_node *mst;
 76	struct ubifs_idx_node *idx;
 77	struct ubifs_branch *br;
 78	struct ubifs_ino_node *ino;
 79	struct ubifs_cs_node *cs;
 80	union ubifs_key key;
 81	int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first;
 82	int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0;
 83	int min_leb_cnt = UBIFS_MIN_LEB_CNT;
 84	int idx_node_size;
 85	long long tmp64, main_bytes;
 86	__le64 tmp_le64;
 87	__le32 tmp_le32;
 88	struct timespec64 ts;
 89	u8 hash[UBIFS_HASH_ARR_SZ];
 90	u8 hash_lpt[UBIFS_HASH_ARR_SZ];
 91
 92	/* Some functions called from here depend on the @c->key_len filed */
 93	c->key_len = UBIFS_SK_LEN;
 94
 95	/*
 96	 * First of all, we have to calculate default file-system geometry -
 97	 * log size, journal size, etc.
 98	 */
 99	if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT)
100		/* We can first multiply then divide and have no overflow */
101		jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100;
102	else
103		jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT;
104
105	if (jnl_lebs < UBIFS_MIN_JNL_LEBS)
106		jnl_lebs = UBIFS_MIN_JNL_LEBS;
107	if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL)
108		jnl_lebs = DEFAULT_MAX_JNL / c->leb_size;
109
110	/*
111	 * The log should be large enough to fit reference nodes for all bud
112	 * LEBs. Because buds do not have to start from the beginning of LEBs
113	 * (half of the LEB may contain committed data), the log should
114	 * generally be larger, make it twice as large.
115	 */
116	tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1;
117	log_lebs = tmp / c->leb_size;
118	/* Plus one LEB reserved for commit */
119	log_lebs += 1;
120	if (c->leb_cnt - min_leb_cnt > 8) {
121		/* And some extra space to allow writes while committing */
122		log_lebs += 1;
123		min_leb_cnt += 1;
124	}
125
126	max_buds = jnl_lebs - log_lebs;
127	if (max_buds < UBIFS_MIN_BUD_LEBS)
128		max_buds = UBIFS_MIN_BUD_LEBS;
129
130	/*
131	 * Orphan nodes are stored in a separate area. One node can store a lot
132	 * of orphan inode numbers, but when new orphan comes we just add a new
133	 * orphan node. At some point the nodes are consolidated into one
134	 * orphan node.
135	 */
136	orph_lebs = UBIFS_MIN_ORPH_LEBS;
137	if (c->leb_cnt - min_leb_cnt > 1)
138		/*
139		 * For debugging purposes it is better to have at least 2
140		 * orphan LEBs, because the orphan subsystem would need to do
141		 * consolidations and would be stressed more.
142		 */
143		orph_lebs += 1;
144
145	main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs;
146	main_lebs -= orph_lebs;
147
148	lpt_first = UBIFS_LOG_LNUM + log_lebs;
149	c->lsave_cnt = DEFAULT_LSAVE_CNT;
150	c->max_leb_cnt = c->leb_cnt;
151	err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs,
152				    &big_lpt, hash_lpt);
153	if (err)
154		return err;
155
156	dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first,
157		lpt_first + lpt_lebs - 1);
158
159	main_first = c->leb_cnt - main_lebs;
160
161	sup = kzalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_KERNEL);
162	mst = kzalloc(c->mst_node_alsz, GFP_KERNEL);
163	idx_node_size = ubifs_idx_node_sz(c, 1);
164	idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL);
165	ino = kzalloc(ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size), GFP_KERNEL);
166	cs = kzalloc(ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size), GFP_KERNEL);
167
168	if (!sup || !mst || !idx || !ino || !cs) {
169		err = -ENOMEM;
170		goto out;
171	}
172
173	/* Create default superblock */
 
 
 
 
174
175	tmp64 = (long long)max_buds * c->leb_size;
176	if (big_lpt)
177		sup_flags |= UBIFS_FLG_BIGLPT;
178	sup_flags |= UBIFS_FLG_DOUBLE_HASH;
179
180	if (ubifs_authenticated(c)) {
181		sup_flags |= UBIFS_FLG_AUTHENTICATION;
182		sup->hash_algo = cpu_to_le16(c->auth_hash_algo);
183		err = ubifs_hmac_wkm(c, sup->hmac_wkm);
184		if (err)
185			goto out;
186	} else {
187		sup->hash_algo = 0xffff;
188	}
189
190	sup->ch.node_type  = UBIFS_SB_NODE;
191	sup->key_hash      = UBIFS_KEY_HASH_R5;
192	sup->flags         = cpu_to_le32(sup_flags);
193	sup->min_io_size   = cpu_to_le32(c->min_io_size);
194	sup->leb_size      = cpu_to_le32(c->leb_size);
195	sup->leb_cnt       = cpu_to_le32(c->leb_cnt);
196	sup->max_leb_cnt   = cpu_to_le32(c->max_leb_cnt);
197	sup->max_bud_bytes = cpu_to_le64(tmp64);
198	sup->log_lebs      = cpu_to_le32(log_lebs);
199	sup->lpt_lebs      = cpu_to_le32(lpt_lebs);
200	sup->orph_lebs     = cpu_to_le32(orph_lebs);
201	sup->jhead_cnt     = cpu_to_le32(DEFAULT_JHEADS_CNT);
202	sup->fanout        = cpu_to_le32(DEFAULT_FANOUT);
203	sup->lsave_cnt     = cpu_to_le32(c->lsave_cnt);
204	sup->fmt_version   = cpu_to_le32(UBIFS_FORMAT_VERSION);
205	sup->time_gran     = cpu_to_le32(DEFAULT_TIME_GRAN);
206	if (c->mount_opts.override_compr)
207		sup->default_compr = cpu_to_le16(c->mount_opts.compr_type);
208	else
209		sup->default_compr = cpu_to_le16(get_default_compressor(c));
210
211	generate_random_uuid(sup->uuid);
212
213	main_bytes = (long long)main_lebs * c->leb_size;
214	tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100);
215	if (tmp64 > DEFAULT_MAX_RP_SIZE)
216		tmp64 = DEFAULT_MAX_RP_SIZE;
217	sup->rp_size = cpu_to_le64(tmp64);
218	sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION);
219
 
 
 
 
 
220	dbg_gen("default superblock created at LEB 0:0");
221
222	/* Create default master node */
 
 
 
223
224	mst->ch.node_type = UBIFS_MST_NODE;
225	mst->log_lnum     = cpu_to_le32(UBIFS_LOG_LNUM);
226	mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO);
227	mst->cmt_no       = 0;
228	mst->root_lnum    = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
229	mst->root_offs    = 0;
230	tmp = ubifs_idx_node_sz(c, 1);
231	mst->root_len     = cpu_to_le32(tmp);
232	mst->gc_lnum      = cpu_to_le32(main_first + DEFAULT_GC_LEB);
233	mst->ihead_lnum   = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
234	mst->ihead_offs   = cpu_to_le32(ALIGN(tmp, c->min_io_size));
235	mst->index_size   = cpu_to_le64(ALIGN(tmp, 8));
236	mst->lpt_lnum     = cpu_to_le32(c->lpt_lnum);
237	mst->lpt_offs     = cpu_to_le32(c->lpt_offs);
238	mst->nhead_lnum   = cpu_to_le32(c->nhead_lnum);
239	mst->nhead_offs   = cpu_to_le32(c->nhead_offs);
240	mst->ltab_lnum    = cpu_to_le32(c->ltab_lnum);
241	mst->ltab_offs    = cpu_to_le32(c->ltab_offs);
242	mst->lsave_lnum   = cpu_to_le32(c->lsave_lnum);
243	mst->lsave_offs   = cpu_to_le32(c->lsave_offs);
244	mst->lscan_lnum   = cpu_to_le32(main_first);
245	mst->empty_lebs   = cpu_to_le32(main_lebs - 2);
246	mst->idx_lebs     = cpu_to_le32(1);
247	mst->leb_cnt      = cpu_to_le32(c->leb_cnt);
248	ubifs_copy_hash(c, hash_lpt, mst->hash_lpt);
249
250	/* Calculate lprops statistics */
251	tmp64 = main_bytes;
252	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
253	tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
254	mst->total_free = cpu_to_le64(tmp64);
255
256	tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
257	ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) -
258			  UBIFS_INO_NODE_SZ;
259	tmp64 += ino_waste;
260	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8);
261	mst->total_dirty = cpu_to_le64(tmp64);
262
263	/*  The indexing LEB does not contribute to dark space */
264	tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm);
265	mst->total_dark = cpu_to_le64(tmp64);
266
267	mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ);
268
 
 
 
 
 
 
 
 
 
 
 
269	dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM);
270
271	/* Create the root indexing node */
 
 
 
 
272
273	c->key_fmt = UBIFS_SIMPLE_KEY_FMT;
274	c->key_hash = key_r5_hash;
275
276	idx->ch.node_type = UBIFS_IDX_NODE;
277	idx->child_cnt = cpu_to_le16(1);
278	ino_key_init(c, &key, UBIFS_ROOT_INO);
279	br = ubifs_idx_branch(c, idx, 0);
280	key_write_idx(c, &key, &br->key);
281	br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB);
282	br->len  = cpu_to_le32(UBIFS_INO_NODE_SZ);
 
 
 
 
283
284	dbg_gen("default root indexing node created LEB %d:0",
285		main_first + DEFAULT_IDX_LEB);
286
287	/* Create default root inode */
 
 
 
 
288
289	ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO);
290	ino->ch.node_type = UBIFS_INO_NODE;
291	ino->creat_sqnum = cpu_to_le64(++c->max_sqnum);
292	ino->nlink = cpu_to_le32(2);
293
294	ktime_get_real_ts64(&ts);
295	ts = timespec64_trunc(ts, DEFAULT_TIME_GRAN);
296	tmp_le64 = cpu_to_le64(ts.tv_sec);
297	ino->atime_sec   = tmp_le64;
298	ino->ctime_sec   = tmp_le64;
299	ino->mtime_sec   = tmp_le64;
300	tmp_le32 = cpu_to_le32(ts.tv_nsec);
301	ino->atime_nsec  = tmp_le32;
302	ino->ctime_nsec  = tmp_le32;
303	ino->mtime_nsec  = tmp_le32;
304	ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO);
305	ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ);
306
307	/* Set compression enabled by default */
308	ino->flags = cpu_to_le32(UBIFS_COMPR_FL);
309
 
 
 
 
 
 
310	dbg_gen("root inode created at LEB %d:0",
311		main_first + DEFAULT_DATA_LEB);
312
313	/*
314	 * The first node in the log has to be the commit start node. This is
315	 * always the case during normal file-system operation. Write a fake
316	 * commit start node to the log.
317	 */
 
 
 
 
318
319	cs->ch.node_type = UBIFS_CS_NODE;
320
321	err = ubifs_write_node_hmac(c, sup, UBIFS_SB_NODE_SZ, 0, 0,
322				    offsetof(struct ubifs_sb_node, hmac));
323	if (err)
324		goto out;
325
326	err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ,
327			       main_first + DEFAULT_DATA_LEB, 0);
328	if (err)
329		goto out;
330
331	ubifs_node_calc_hash(c, ino, hash);
332	ubifs_copy_hash(c, hash, ubifs_branch_hash(c, br));
333
334	err = ubifs_write_node(c, idx, idx_node_size, main_first + DEFAULT_IDX_LEB, 0);
335	if (err)
336		goto out;
337
338	ubifs_node_calc_hash(c, idx, hash);
339	ubifs_copy_hash(c, hash, mst->hash_root_idx);
340
341	err = ubifs_write_node_hmac(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0,
342		offsetof(struct ubifs_mst_node, hmac));
343	if (err)
344		goto out;
345
346	err = ubifs_write_node_hmac(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1,
347			       0, offsetof(struct ubifs_mst_node, hmac));
348	if (err)
349		goto out;
350
351	err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, 0);
352	if (err)
353		goto out;
354
355	ubifs_msg(c, "default file-system created");
356
357	err = 0;
358out:
359	kfree(sup);
360	kfree(mst);
361	kfree(idx);
362	kfree(ino);
363	kfree(cs);
364
365	return err;
 
366}
367
368/**
369 * validate_sb - validate superblock node.
370 * @c: UBIFS file-system description object
371 * @sup: superblock node
372 *
373 * This function validates superblock node @sup. Since most of data was read
374 * from the superblock and stored in @c, the function validates fields in @c
375 * instead. Returns zero in case of success and %-EINVAL in case of validation
376 * failure.
377 */
378static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
379{
380	long long max_bytes;
381	int err = 1, min_leb_cnt;
382
383	if (!c->key_hash) {
384		err = 2;
385		goto failed;
386	}
387
388	if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) {
389		err = 3;
390		goto failed;
391	}
392
393	if (le32_to_cpu(sup->min_io_size) != c->min_io_size) {
394		ubifs_err(c, "min. I/O unit mismatch: %d in superblock, %d real",
395			  le32_to_cpu(sup->min_io_size), c->min_io_size);
396		goto failed;
397	}
398
399	if (le32_to_cpu(sup->leb_size) != c->leb_size) {
400		ubifs_err(c, "LEB size mismatch: %d in superblock, %d real",
401			  le32_to_cpu(sup->leb_size), c->leb_size);
402		goto failed;
403	}
404
405	if (c->log_lebs < UBIFS_MIN_LOG_LEBS ||
406	    c->lpt_lebs < UBIFS_MIN_LPT_LEBS ||
407	    c->orph_lebs < UBIFS_MIN_ORPH_LEBS ||
408	    c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
409		err = 4;
410		goto failed;
411	}
412
413	/*
414	 * Calculate minimum allowed amount of main area LEBs. This is very
415	 * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we
416	 * have just read from the superblock.
417	 */
418	min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs;
419	min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6;
420
421	if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) {
422		ubifs_err(c, "bad LEB count: %d in superblock, %d on UBI volume, %d minimum required",
423			  c->leb_cnt, c->vi.size, min_leb_cnt);
 
424		goto failed;
425	}
426
427	if (c->max_leb_cnt < c->leb_cnt) {
428		ubifs_err(c, "max. LEB count %d less than LEB count %d",
429			  c->max_leb_cnt, c->leb_cnt);
430		goto failed;
431	}
432
433	if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
434		ubifs_err(c, "too few main LEBs count %d, must be at least %d",
435			  c->main_lebs, UBIFS_MIN_MAIN_LEBS);
436		goto failed;
437	}
438
439	max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS;
440	if (c->max_bud_bytes < max_bytes) {
441		ubifs_err(c, "too small journal (%lld bytes), must be at least %lld bytes",
442			  c->max_bud_bytes, max_bytes);
443		goto failed;
444	}
445
446	max_bytes = (long long)c->leb_size * c->main_lebs;
447	if (c->max_bud_bytes > max_bytes) {
448		ubifs_err(c, "too large journal size (%lld bytes), only %lld bytes available in the main area",
 
449			  c->max_bud_bytes, max_bytes);
450		goto failed;
451	}
452
453	if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 ||
454	    c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) {
455		err = 9;
456		goto failed;
457	}
458
459	if (c->fanout < UBIFS_MIN_FANOUT ||
460	    ubifs_idx_node_sz(c, c->fanout) > c->leb_size) {
461		err = 10;
462		goto failed;
463	}
464
465	if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT &&
466	    c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS -
467	    c->log_lebs - c->lpt_lebs - c->orph_lebs)) {
468		err = 11;
469		goto failed;
470	}
471
472	if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs +
473	    c->orph_lebs + c->main_lebs != c->leb_cnt) {
474		err = 12;
475		goto failed;
476	}
477
478	if (c->default_compr >= UBIFS_COMPR_TYPES_CNT) {
479		err = 13;
480		goto failed;
481	}
482
483	if (c->rp_size < 0 || max_bytes < c->rp_size) {
484		err = 14;
485		goto failed;
486	}
487
488	if (le32_to_cpu(sup->time_gran) > 1000000000 ||
489	    le32_to_cpu(sup->time_gran) < 1) {
490		err = 15;
491		goto failed;
492	}
493
494	if (!c->double_hash && c->fmt_version >= 5) {
495		err = 16;
496		goto failed;
497	}
498
499	if (c->encrypted && c->fmt_version < 5) {
500		err = 17;
501		goto failed;
502	}
503
504	return 0;
505
506failed:
507	ubifs_err(c, "bad superblock, error %d", err);
508	ubifs_dump_node(c, sup);
509	return -EINVAL;
510}
511
512/**
513 * ubifs_read_sb_node - read superblock node.
514 * @c: UBIFS file-system description object
515 *
516 * This function returns a pointer to the superblock node or a negative error
517 * code. Note, the user of this function is responsible of kfree()'ing the
518 * returned superblock buffer.
519 */
520static struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c)
521{
522	struct ubifs_sb_node *sup;
523	int err;
524
525	sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS);
526	if (!sup)
527		return ERR_PTR(-ENOMEM);
528
529	err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ,
530			      UBIFS_SB_LNUM, 0);
531	if (err) {
532		kfree(sup);
533		return ERR_PTR(err);
534	}
535
536	return sup;
537}
538
539static int authenticate_sb_node(struct ubifs_info *c,
540				const struct ubifs_sb_node *sup)
541{
542	unsigned int sup_flags = le32_to_cpu(sup->flags);
543	u8 hmac_wkm[UBIFS_HMAC_ARR_SZ];
544	int authenticated = !!(sup_flags & UBIFS_FLG_AUTHENTICATION);
545	int hash_algo;
546	int err;
547
548	if (c->authenticated && !authenticated) {
549		ubifs_err(c, "authenticated FS forced, but found FS without authentication");
550		return -EINVAL;
551	}
552
553	if (!c->authenticated && authenticated) {
554		ubifs_err(c, "authenticated FS found, but no key given");
555		return -EINVAL;
556	}
557
558	ubifs_msg(c, "Mounting in %sauthenticated mode",
559		  c->authenticated ? "" : "un");
560
561	if (!c->authenticated)
562		return 0;
563
564	if (!IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION))
565		return -EOPNOTSUPP;
566
567	hash_algo = le16_to_cpu(sup->hash_algo);
568	if (hash_algo >= HASH_ALGO__LAST) {
569		ubifs_err(c, "superblock uses unknown hash algo %d",
570			  hash_algo);
571		return -EINVAL;
572	}
573
574	if (strcmp(hash_algo_name[hash_algo], c->auth_hash_name)) {
575		ubifs_err(c, "This filesystem uses %s for hashing,"
576			     " but %s is specified", hash_algo_name[hash_algo],
577			     c->auth_hash_name);
578		return -EINVAL;
579	}
580
581	/*
582	 * The super block node can either be authenticated by a HMAC or
583	 * by a signature in a ubifs_sig_node directly following the
584	 * super block node to support offline image creation.
585	 */
586	if (ubifs_hmac_zero(c, sup->hmac)) {
587		err = ubifs_sb_verify_signature(c, sup);
588	} else {
589		err = ubifs_hmac_wkm(c, hmac_wkm);
590		if (err)
591			return err;
592		if (ubifs_check_hmac(c, hmac_wkm, sup->hmac_wkm)) {
593			ubifs_err(c, "provided key does not fit");
594			return -ENOKEY;
595		}
596		err = ubifs_node_verify_hmac(c, sup, sizeof(*sup),
597					     offsetof(struct ubifs_sb_node,
598						      hmac));
599	}
600
601	if (err)
602		ubifs_err(c, "Failed to authenticate superblock: %d", err);
603
604	return err;
605}
606
607/**
608 * ubifs_write_sb_node - write superblock node.
609 * @c: UBIFS file-system description object
610 * @sup: superblock node read with 'ubifs_read_sb_node()'
611 *
612 * This function returns %0 on success and a negative error code on failure.
613 */
614int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup)
615{
616	int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
617	int err;
618
619	err = ubifs_prepare_node_hmac(c, sup, UBIFS_SB_NODE_SZ,
620				      offsetof(struct ubifs_sb_node, hmac), 1);
621	if (err)
622		return err;
623
 
624	return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len);
625}
626
627/**
628 * ubifs_read_superblock - read superblock.
629 * @c: UBIFS file-system description object
630 *
631 * This function finds, reads and checks the superblock. If an empty UBI volume
632 * is being mounted, this function creates default superblock. Returns zero in
633 * case of success, and a negative error code in case of failure.
634 */
635int ubifs_read_superblock(struct ubifs_info *c)
636{
637	int err, sup_flags;
638	struct ubifs_sb_node *sup;
639
640	if (c->empty) {
641		err = create_default_filesystem(c);
642		if (err)
643			return err;
644	}
645
646	sup = ubifs_read_sb_node(c);
647	if (IS_ERR(sup))
648		return PTR_ERR(sup);
649
650	c->sup_node = sup;
651
652	c->fmt_version = le32_to_cpu(sup->fmt_version);
653	c->ro_compat_version = le32_to_cpu(sup->ro_compat_version);
654
655	/*
656	 * The software supports all previous versions but not future versions,
657	 * due to the unavailability of time-travelling equipment.
658	 */
659	if (c->fmt_version > UBIFS_FORMAT_VERSION) {
660		ubifs_assert(c, !c->ro_media || c->ro_mount);
661		if (!c->ro_mount ||
662		    c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) {
663			ubifs_err(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
664				  c->fmt_version, c->ro_compat_version,
665				  UBIFS_FORMAT_VERSION,
 
666				  UBIFS_RO_COMPAT_VERSION);
667			if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) {
668				ubifs_msg(c, "only R/O mounting is possible");
669				err = -EROFS;
670			} else
671				err = -EINVAL;
672			goto out;
673		}
674
675		/*
676		 * The FS is mounted R/O, and the media format is
677		 * R/O-compatible with the UBIFS implementation, so we can
678		 * mount.
679		 */
680		c->rw_incompat = 1;
681	}
682
683	if (c->fmt_version < 3) {
684		ubifs_err(c, "on-flash format version %d is not supported",
685			  c->fmt_version);
686		err = -EINVAL;
687		goto out;
688	}
689
690	switch (sup->key_hash) {
691	case UBIFS_KEY_HASH_R5:
692		c->key_hash = key_r5_hash;
693		c->key_hash_type = UBIFS_KEY_HASH_R5;
694		break;
695
696	case UBIFS_KEY_HASH_TEST:
697		c->key_hash = key_test_hash;
698		c->key_hash_type = UBIFS_KEY_HASH_TEST;
699		break;
700	}
701
702	c->key_fmt = sup->key_fmt;
703
704	switch (c->key_fmt) {
705	case UBIFS_SIMPLE_KEY_FMT:
706		c->key_len = UBIFS_SK_LEN;
707		break;
708	default:
709		ubifs_err(c, "unsupported key format");
710		err = -EINVAL;
711		goto out;
712	}
713
714	c->leb_cnt       = le32_to_cpu(sup->leb_cnt);
715	c->max_leb_cnt   = le32_to_cpu(sup->max_leb_cnt);
716	c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes);
717	c->log_lebs      = le32_to_cpu(sup->log_lebs);
718	c->lpt_lebs      = le32_to_cpu(sup->lpt_lebs);
719	c->orph_lebs     = le32_to_cpu(sup->orph_lebs);
720	c->jhead_cnt     = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT;
721	c->fanout        = le32_to_cpu(sup->fanout);
722	c->lsave_cnt     = le32_to_cpu(sup->lsave_cnt);
723	c->rp_size       = le64_to_cpu(sup->rp_size);
724	c->rp_uid        = make_kuid(&init_user_ns, le32_to_cpu(sup->rp_uid));
725	c->rp_gid        = make_kgid(&init_user_ns, le32_to_cpu(sup->rp_gid));
726	sup_flags        = le32_to_cpu(sup->flags);
727	if (!c->mount_opts.override_compr)
728		c->default_compr = le16_to_cpu(sup->default_compr);
729
730	c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran);
731	memcpy(&c->uuid, &sup->uuid, 16);
732	c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT);
733	c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP);
734	c->double_hash = !!(sup_flags & UBIFS_FLG_DOUBLE_HASH);
735	c->encrypted = !!(sup_flags & UBIFS_FLG_ENCRYPTION);
736
737	err = authenticate_sb_node(c, sup);
738	if (err)
739		goto out;
740
741	if ((sup_flags & ~UBIFS_FLG_MASK) != 0) {
742		ubifs_err(c, "Unknown feature flags found: %#x",
743			  sup_flags & ~UBIFS_FLG_MASK);
744		err = -EINVAL;
745		goto out;
746	}
747
748	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION) && c->encrypted) {
749		ubifs_err(c, "file system contains encrypted files but UBIFS"
750			     " was built without crypto support.");
751		err = -EINVAL;
752		goto out;
753	}
754
755	/* Automatically increase file system size to the maximum size */
 
756	if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) {
757		int old_leb_cnt = c->leb_cnt;
758
759		c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size);
760		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
761
762		c->superblock_need_write = 1;
763
764		dbg_mnt("Auto resizing from %d LEBs to %d LEBs",
765			old_leb_cnt, c->leb_cnt);
 
 
 
 
 
 
766	}
767
768	c->log_bytes = (long long)c->log_lebs * c->leb_size;
769	c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1;
770	c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs;
771	c->lpt_last = c->lpt_first + c->lpt_lebs - 1;
772	c->orph_first = c->lpt_last + 1;
773	c->orph_last = c->orph_first + c->orph_lebs - 1;
774	c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS;
775	c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs;
776	c->main_first = c->leb_cnt - c->main_lebs;
777
778	err = validate_sb(c, sup);
779out:
 
780	return err;
781}
782
783/**
784 * fixup_leb - fixup/unmap an LEB containing free space.
785 * @c: UBIFS file-system description object
786 * @lnum: the LEB number to fix up
787 * @len: number of used bytes in LEB (starting at offset 0)
788 *
789 * This function reads the contents of the given LEB number @lnum, then fixes
790 * it up, so that empty min. I/O units in the end of LEB are actually erased on
791 * flash (rather than being just all-0xff real data). If the LEB is completely
792 * empty, it is simply unmapped.
793 */
794static int fixup_leb(struct ubifs_info *c, int lnum, int len)
795{
796	int err;
797
798	ubifs_assert(c, len >= 0);
799	ubifs_assert(c, len % c->min_io_size == 0);
800	ubifs_assert(c, len < c->leb_size);
801
802	if (len == 0) {
803		dbg_mnt("unmap empty LEB %d", lnum);
804		return ubifs_leb_unmap(c, lnum);
805	}
806
807	dbg_mnt("fixup LEB %d, data len %d", lnum, len);
808	err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1);
809	if (err)
810		return err;
811
812	return ubifs_leb_change(c, lnum, c->sbuf, len);
813}
814
815/**
816 * fixup_free_space - find & remap all LEBs containing free space.
817 * @c: UBIFS file-system description object
818 *
819 * This function walks through all LEBs in the filesystem and fiexes up those
820 * containing free/empty space.
821 */
822static int fixup_free_space(struct ubifs_info *c)
823{
824	int lnum, err = 0;
825	struct ubifs_lprops *lprops;
826
827	ubifs_get_lprops(c);
828
829	/* Fixup LEBs in the master area */
830	for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) {
831		err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz);
832		if (err)
833			goto out;
834	}
835
836	/* Unmap unused log LEBs */
837	lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
838	while (lnum != c->ltail_lnum) {
839		err = fixup_leb(c, lnum, 0);
840		if (err)
841			goto out;
842		lnum = ubifs_next_log_lnum(c, lnum);
843	}
844
845	/*
846	 * Fixup the log head which contains the only a CS node at the
847	 * beginning.
848	 */
849	err = fixup_leb(c, c->lhead_lnum,
850			ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size));
851	if (err)
852		goto out;
853
854	/* Fixup LEBs in the LPT area */
855	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
856		int free = c->ltab[lnum - c->lpt_first].free;
857
858		if (free > 0) {
859			err = fixup_leb(c, lnum, c->leb_size - free);
860			if (err)
861				goto out;
862		}
863	}
864
865	/* Unmap LEBs in the orphans area */
866	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
867		err = fixup_leb(c, lnum, 0);
868		if (err)
869			goto out;
870	}
871
872	/* Fixup LEBs in the main area */
873	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
874		lprops = ubifs_lpt_lookup(c, lnum);
875		if (IS_ERR(lprops)) {
876			err = PTR_ERR(lprops);
877			goto out;
878		}
879
880		if (lprops->free > 0) {
881			err = fixup_leb(c, lnum, c->leb_size - lprops->free);
882			if (err)
883				goto out;
884		}
885	}
886
887out:
888	ubifs_release_lprops(c);
889	return err;
890}
891
892/**
893 * ubifs_fixup_free_space - find & fix all LEBs with free space.
894 * @c: UBIFS file-system description object
895 *
896 * This function fixes up LEBs containing free space on first mount, if the
897 * appropriate flag was set when the FS was created. Each LEB with one or more
898 * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure
899 * the free space is actually erased. E.g., this is necessary for some NAND
900 * chips, since the free space may have been programmed like real "0xff" data
901 * (generating a non-0xff ECC), causing future writes to the not-really-erased
902 * NAND pages to behave badly. After the space is fixed up, the superblock flag
903 * is cleared, so that this is skipped for all future mounts.
904 */
905int ubifs_fixup_free_space(struct ubifs_info *c)
906{
907	int err;
908	struct ubifs_sb_node *sup = c->sup_node;
909
910	ubifs_assert(c, c->space_fixup);
911	ubifs_assert(c, !c->ro_mount);
912
913	ubifs_msg(c, "start fixing up free space");
914
915	err = fixup_free_space(c);
916	if (err)
917		return err;
918
 
 
 
 
919	/* Free-space fixup is no longer required */
920	c->space_fixup = 0;
921	sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP);
922
923	c->superblock_need_write = 1;
924
925	ubifs_msg(c, "free space fixup complete");
926	return err;
927}
928
929int ubifs_enable_encryption(struct ubifs_info *c)
930{
931	int err;
932	struct ubifs_sb_node *sup = c->sup_node;
933
934	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION))
935		return -EOPNOTSUPP;
936
937	if (c->encrypted)
938		return 0;
939
940	if (c->ro_mount || c->ro_media)
941		return -EROFS;
942
943	if (c->fmt_version < 5) {
944		ubifs_err(c, "on-flash format version 5 is needed for encryption");
945		return -EINVAL;
946	}
947
948	sup->flags |= cpu_to_le32(UBIFS_FLG_ENCRYPTION);
949
950	err = ubifs_write_sb_node(c, sup);
951	if (!err)
952		c->encrypted = 1;
 
953
 
954	return err;
955}
v3.5.6
 
  1/*
  2 * This file is part of UBIFS.
  3 *
  4 * Copyright (C) 2006-2008 Nokia Corporation.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License version 2 as published by
  8 * the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope that it will be useful, but WITHOUT
 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13 * more details.
 14 *
 15 * You should have received a copy of the GNU General Public License along with
 16 * this program; if not, write to the Free Software Foundation, Inc., 51
 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 18 *
 19 * Authors: Artem Bityutskiy (Битюцкий Артём)
 20 *          Adrian Hunter
 21 */
 22
 23/*
 24 * This file implements UBIFS superblock. The superblock is stored at the first
 25 * LEB of the volume and is never changed by UBIFS. Only user-space tools may
 26 * change it. The superblock node mostly contains geometry information.
 27 */
 28
 29#include "ubifs.h"
 30#include <linux/slab.h>
 31#include <linux/random.h>
 32#include <linux/math64.h>
 
 33
 34/*
 35 * Default journal size in logical eraseblocks as a percent of total
 36 * flash size.
 37 */
 38#define DEFAULT_JNL_PERCENT 5
 39
 40/* Default maximum journal size in bytes */
 41#define DEFAULT_MAX_JNL (32*1024*1024)
 42
 43/* Default indexing tree fanout */
 44#define DEFAULT_FANOUT 8
 45
 46/* Default number of data journal heads */
 47#define DEFAULT_JHEADS_CNT 1
 48
 49/* Default positions of different LEBs in the main area */
 50#define DEFAULT_IDX_LEB  0
 51#define DEFAULT_DATA_LEB 1
 52#define DEFAULT_GC_LEB   2
 53
 54/* Default number of LEB numbers in LPT's save table */
 55#define DEFAULT_LSAVE_CNT 256
 56
 57/* Default reserved pool size as a percent of maximum free space */
 58#define DEFAULT_RP_PERCENT 5
 59
 60/* The default maximum size of reserved pool in bytes */
 61#define DEFAULT_MAX_RP_SIZE (5*1024*1024)
 62
 63/* Default time granularity in nanoseconds */
 64#define DEFAULT_TIME_GRAN 1000000000
 65
 
 
 
 
 
 
 
 
 
 
 
 66/**
 67 * create_default_filesystem - format empty UBI volume.
 68 * @c: UBIFS file-system description object
 69 *
 70 * This function creates default empty file-system. Returns zero in case of
 71 * success and a negative error code in case of failure.
 72 */
 73static int create_default_filesystem(struct ubifs_info *c)
 74{
 75	struct ubifs_sb_node *sup;
 76	struct ubifs_mst_node *mst;
 77	struct ubifs_idx_node *idx;
 78	struct ubifs_branch *br;
 79	struct ubifs_ino_node *ino;
 80	struct ubifs_cs_node *cs;
 81	union ubifs_key key;
 82	int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first;
 83	int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0;
 84	int min_leb_cnt = UBIFS_MIN_LEB_CNT;
 
 85	long long tmp64, main_bytes;
 86	__le64 tmp_le64;
 
 
 
 
 87
 88	/* Some functions called from here depend on the @c->key_len filed */
 89	c->key_len = UBIFS_SK_LEN;
 90
 91	/*
 92	 * First of all, we have to calculate default file-system geometry -
 93	 * log size, journal size, etc.
 94	 */
 95	if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT)
 96		/* We can first multiply then divide and have no overflow */
 97		jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100;
 98	else
 99		jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT;
100
101	if (jnl_lebs < UBIFS_MIN_JNL_LEBS)
102		jnl_lebs = UBIFS_MIN_JNL_LEBS;
103	if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL)
104		jnl_lebs = DEFAULT_MAX_JNL / c->leb_size;
105
106	/*
107	 * The log should be large enough to fit reference nodes for all bud
108	 * LEBs. Because buds do not have to start from the beginning of LEBs
109	 * (half of the LEB may contain committed data), the log should
110	 * generally be larger, make it twice as large.
111	 */
112	tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1;
113	log_lebs = tmp / c->leb_size;
114	/* Plus one LEB reserved for commit */
115	log_lebs += 1;
116	if (c->leb_cnt - min_leb_cnt > 8) {
117		/* And some extra space to allow writes while committing */
118		log_lebs += 1;
119		min_leb_cnt += 1;
120	}
121
122	max_buds = jnl_lebs - log_lebs;
123	if (max_buds < UBIFS_MIN_BUD_LEBS)
124		max_buds = UBIFS_MIN_BUD_LEBS;
125
126	/*
127	 * Orphan nodes are stored in a separate area. One node can store a lot
128	 * of orphan inode numbers, but when new orphan comes we just add a new
129	 * orphan node. At some point the nodes are consolidated into one
130	 * orphan node.
131	 */
132	orph_lebs = UBIFS_MIN_ORPH_LEBS;
133	if (c->leb_cnt - min_leb_cnt > 1)
134		/*
135		 * For debugging purposes it is better to have at least 2
136		 * orphan LEBs, because the orphan subsystem would need to do
137		 * consolidations and would be stressed more.
138		 */
139		orph_lebs += 1;
140
141	main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs;
142	main_lebs -= orph_lebs;
143
144	lpt_first = UBIFS_LOG_LNUM + log_lebs;
145	c->lsave_cnt = DEFAULT_LSAVE_CNT;
146	c->max_leb_cnt = c->leb_cnt;
147	err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs,
148				    &big_lpt);
149	if (err)
150		return err;
151
152	dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first,
153		lpt_first + lpt_lebs - 1);
154
155	main_first = c->leb_cnt - main_lebs;
156
 
 
 
 
 
 
 
 
 
 
 
 
157	/* Create default superblock */
158	tmp = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
159	sup = kzalloc(tmp, GFP_KERNEL);
160	if (!sup)
161		return -ENOMEM;
162
163	tmp64 = (long long)max_buds * c->leb_size;
164	if (big_lpt)
165		sup_flags |= UBIFS_FLG_BIGLPT;
 
 
 
 
 
 
 
 
 
 
 
166
167	sup->ch.node_type  = UBIFS_SB_NODE;
168	sup->key_hash      = UBIFS_KEY_HASH_R5;
169	sup->flags         = cpu_to_le32(sup_flags);
170	sup->min_io_size   = cpu_to_le32(c->min_io_size);
171	sup->leb_size      = cpu_to_le32(c->leb_size);
172	sup->leb_cnt       = cpu_to_le32(c->leb_cnt);
173	sup->max_leb_cnt   = cpu_to_le32(c->max_leb_cnt);
174	sup->max_bud_bytes = cpu_to_le64(tmp64);
175	sup->log_lebs      = cpu_to_le32(log_lebs);
176	sup->lpt_lebs      = cpu_to_le32(lpt_lebs);
177	sup->orph_lebs     = cpu_to_le32(orph_lebs);
178	sup->jhead_cnt     = cpu_to_le32(DEFAULT_JHEADS_CNT);
179	sup->fanout        = cpu_to_le32(DEFAULT_FANOUT);
180	sup->lsave_cnt     = cpu_to_le32(c->lsave_cnt);
181	sup->fmt_version   = cpu_to_le32(UBIFS_FORMAT_VERSION);
182	sup->time_gran     = cpu_to_le32(DEFAULT_TIME_GRAN);
183	if (c->mount_opts.override_compr)
184		sup->default_compr = cpu_to_le16(c->mount_opts.compr_type);
185	else
186		sup->default_compr = cpu_to_le16(UBIFS_COMPR_LZO);
187
188	generate_random_uuid(sup->uuid);
189
190	main_bytes = (long long)main_lebs * c->leb_size;
191	tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100);
192	if (tmp64 > DEFAULT_MAX_RP_SIZE)
193		tmp64 = DEFAULT_MAX_RP_SIZE;
194	sup->rp_size = cpu_to_le64(tmp64);
195	sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION);
196
197	err = ubifs_write_node(c, sup, UBIFS_SB_NODE_SZ, 0, 0);
198	kfree(sup);
199	if (err)
200		return err;
201
202	dbg_gen("default superblock created at LEB 0:0");
203
204	/* Create default master node */
205	mst = kzalloc(c->mst_node_alsz, GFP_KERNEL);
206	if (!mst)
207		return -ENOMEM;
208
209	mst->ch.node_type = UBIFS_MST_NODE;
210	mst->log_lnum     = cpu_to_le32(UBIFS_LOG_LNUM);
211	mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO);
212	mst->cmt_no       = 0;
213	mst->root_lnum    = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
214	mst->root_offs    = 0;
215	tmp = ubifs_idx_node_sz(c, 1);
216	mst->root_len     = cpu_to_le32(tmp);
217	mst->gc_lnum      = cpu_to_le32(main_first + DEFAULT_GC_LEB);
218	mst->ihead_lnum   = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
219	mst->ihead_offs   = cpu_to_le32(ALIGN(tmp, c->min_io_size));
220	mst->index_size   = cpu_to_le64(ALIGN(tmp, 8));
221	mst->lpt_lnum     = cpu_to_le32(c->lpt_lnum);
222	mst->lpt_offs     = cpu_to_le32(c->lpt_offs);
223	mst->nhead_lnum   = cpu_to_le32(c->nhead_lnum);
224	mst->nhead_offs   = cpu_to_le32(c->nhead_offs);
225	mst->ltab_lnum    = cpu_to_le32(c->ltab_lnum);
226	mst->ltab_offs    = cpu_to_le32(c->ltab_offs);
227	mst->lsave_lnum   = cpu_to_le32(c->lsave_lnum);
228	mst->lsave_offs   = cpu_to_le32(c->lsave_offs);
229	mst->lscan_lnum   = cpu_to_le32(main_first);
230	mst->empty_lebs   = cpu_to_le32(main_lebs - 2);
231	mst->idx_lebs     = cpu_to_le32(1);
232	mst->leb_cnt      = cpu_to_le32(c->leb_cnt);
 
233
234	/* Calculate lprops statistics */
235	tmp64 = main_bytes;
236	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
237	tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
238	mst->total_free = cpu_to_le64(tmp64);
239
240	tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
241	ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) -
242			  UBIFS_INO_NODE_SZ;
243	tmp64 += ino_waste;
244	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8);
245	mst->total_dirty = cpu_to_le64(tmp64);
246
247	/*  The indexing LEB does not contribute to dark space */
248	tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm);
249	mst->total_dark = cpu_to_le64(tmp64);
250
251	mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ);
252
253	err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0);
254	if (err) {
255		kfree(mst);
256		return err;
257	}
258	err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1,
259			       0);
260	kfree(mst);
261	if (err)
262		return err;
263
264	dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM);
265
266	/* Create the root indexing node */
267	tmp = ubifs_idx_node_sz(c, 1);
268	idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL);
269	if (!idx)
270		return -ENOMEM;
271
272	c->key_fmt = UBIFS_SIMPLE_KEY_FMT;
273	c->key_hash = key_r5_hash;
274
275	idx->ch.node_type = UBIFS_IDX_NODE;
276	idx->child_cnt = cpu_to_le16(1);
277	ino_key_init(c, &key, UBIFS_ROOT_INO);
278	br = ubifs_idx_branch(c, idx, 0);
279	key_write_idx(c, &key, &br->key);
280	br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB);
281	br->len  = cpu_to_le32(UBIFS_INO_NODE_SZ);
282	err = ubifs_write_node(c, idx, tmp, main_first + DEFAULT_IDX_LEB, 0);
283	kfree(idx);
284	if (err)
285		return err;
286
287	dbg_gen("default root indexing node created LEB %d:0",
288		main_first + DEFAULT_IDX_LEB);
289
290	/* Create default root inode */
291	tmp = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
292	ino = kzalloc(tmp, GFP_KERNEL);
293	if (!ino)
294		return -ENOMEM;
295
296	ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO);
297	ino->ch.node_type = UBIFS_INO_NODE;
298	ino->creat_sqnum = cpu_to_le64(++c->max_sqnum);
299	ino->nlink = cpu_to_le32(2);
300	tmp_le64 = cpu_to_le64(CURRENT_TIME_SEC.tv_sec);
 
 
 
301	ino->atime_sec   = tmp_le64;
302	ino->ctime_sec   = tmp_le64;
303	ino->mtime_sec   = tmp_le64;
304	ino->atime_nsec  = 0;
305	ino->ctime_nsec  = 0;
306	ino->mtime_nsec  = 0;
 
307	ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO);
308	ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ);
309
310	/* Set compression enabled by default */
311	ino->flags = cpu_to_le32(UBIFS_COMPR_FL);
312
313	err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ,
314			       main_first + DEFAULT_DATA_LEB, 0);
315	kfree(ino);
316	if (err)
317		return err;
318
319	dbg_gen("root inode created at LEB %d:0",
320		main_first + DEFAULT_DATA_LEB);
321
322	/*
323	 * The first node in the log has to be the commit start node. This is
324	 * always the case during normal file-system operation. Write a fake
325	 * commit start node to the log.
326	 */
327	tmp = ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size);
328	cs = kzalloc(tmp, GFP_KERNEL);
329	if (!cs)
330		return -ENOMEM;
331
332	cs->ch.node_type = UBIFS_CS_NODE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333	err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, 0);
 
 
 
 
 
 
 
 
 
 
 
334	kfree(cs);
335
336	ubifs_msg("default file-system created");
337	return 0;
338}
339
340/**
341 * validate_sb - validate superblock node.
342 * @c: UBIFS file-system description object
343 * @sup: superblock node
344 *
345 * This function validates superblock node @sup. Since most of data was read
346 * from the superblock and stored in @c, the function validates fields in @c
347 * instead. Returns zero in case of success and %-EINVAL in case of validation
348 * failure.
349 */
350static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
351{
352	long long max_bytes;
353	int err = 1, min_leb_cnt;
354
355	if (!c->key_hash) {
356		err = 2;
357		goto failed;
358	}
359
360	if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) {
361		err = 3;
362		goto failed;
363	}
364
365	if (le32_to_cpu(sup->min_io_size) != c->min_io_size) {
366		ubifs_err("min. I/O unit mismatch: %d in superblock, %d real",
367			  le32_to_cpu(sup->min_io_size), c->min_io_size);
368		goto failed;
369	}
370
371	if (le32_to_cpu(sup->leb_size) != c->leb_size) {
372		ubifs_err("LEB size mismatch: %d in superblock, %d real",
373			  le32_to_cpu(sup->leb_size), c->leb_size);
374		goto failed;
375	}
376
377	if (c->log_lebs < UBIFS_MIN_LOG_LEBS ||
378	    c->lpt_lebs < UBIFS_MIN_LPT_LEBS ||
379	    c->orph_lebs < UBIFS_MIN_ORPH_LEBS ||
380	    c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
381		err = 4;
382		goto failed;
383	}
384
385	/*
386	 * Calculate minimum allowed amount of main area LEBs. This is very
387	 * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we
388	 * have just read from the superblock.
389	 */
390	min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs;
391	min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6;
392
393	if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) {
394		ubifs_err("bad LEB count: %d in superblock, %d on UBI volume, "
395			  "%d minimum required", c->leb_cnt, c->vi.size,
396			  min_leb_cnt);
397		goto failed;
398	}
399
400	if (c->max_leb_cnt < c->leb_cnt) {
401		ubifs_err("max. LEB count %d less than LEB count %d",
402			  c->max_leb_cnt, c->leb_cnt);
403		goto failed;
404	}
405
406	if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
407		ubifs_err("too few main LEBs count %d, must be at least %d",
408			  c->main_lebs, UBIFS_MIN_MAIN_LEBS);
409		goto failed;
410	}
411
412	max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS;
413	if (c->max_bud_bytes < max_bytes) {
414		ubifs_err("too small journal (%lld bytes), must be at least "
415			  "%lld bytes",  c->max_bud_bytes, max_bytes);
416		goto failed;
417	}
418
419	max_bytes = (long long)c->leb_size * c->main_lebs;
420	if (c->max_bud_bytes > max_bytes) {
421		ubifs_err("too large journal size (%lld bytes), only %lld bytes"
422			  "available in the main area",
423			  c->max_bud_bytes, max_bytes);
424		goto failed;
425	}
426
427	if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 ||
428	    c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) {
429		err = 9;
430		goto failed;
431	}
432
433	if (c->fanout < UBIFS_MIN_FANOUT ||
434	    ubifs_idx_node_sz(c, c->fanout) > c->leb_size) {
435		err = 10;
436		goto failed;
437	}
438
439	if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT &&
440	    c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS -
441	    c->log_lebs - c->lpt_lebs - c->orph_lebs)) {
442		err = 11;
443		goto failed;
444	}
445
446	if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs +
447	    c->orph_lebs + c->main_lebs != c->leb_cnt) {
448		err = 12;
449		goto failed;
450	}
451
452	if (c->default_compr < 0 || c->default_compr >= UBIFS_COMPR_TYPES_CNT) {
453		err = 13;
454		goto failed;
455	}
456
457	if (c->rp_size < 0 || max_bytes < c->rp_size) {
458		err = 14;
459		goto failed;
460	}
461
462	if (le32_to_cpu(sup->time_gran) > 1000000000 ||
463	    le32_to_cpu(sup->time_gran) < 1) {
464		err = 15;
465		goto failed;
466	}
467
 
 
 
 
 
 
 
 
 
 
468	return 0;
469
470failed:
471	ubifs_err("bad superblock, error %d", err);
472	ubifs_dump_node(c, sup);
473	return -EINVAL;
474}
475
476/**
477 * ubifs_read_sb_node - read superblock node.
478 * @c: UBIFS file-system description object
479 *
480 * This function returns a pointer to the superblock node or a negative error
481 * code. Note, the user of this function is responsible of kfree()'ing the
482 * returned superblock buffer.
483 */
484struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c)
485{
486	struct ubifs_sb_node *sup;
487	int err;
488
489	sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS);
490	if (!sup)
491		return ERR_PTR(-ENOMEM);
492
493	err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ,
494			      UBIFS_SB_LNUM, 0);
495	if (err) {
496		kfree(sup);
497		return ERR_PTR(err);
498	}
499
500	return sup;
501}
502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
503/**
504 * ubifs_write_sb_node - write superblock node.
505 * @c: UBIFS file-system description object
506 * @sup: superblock node read with 'ubifs_read_sb_node()'
507 *
508 * This function returns %0 on success and a negative error code on failure.
509 */
510int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup)
511{
512	int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
 
 
 
 
 
 
513
514	ubifs_prepare_node(c, sup, UBIFS_SB_NODE_SZ, 1);
515	return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len);
516}
517
518/**
519 * ubifs_read_superblock - read superblock.
520 * @c: UBIFS file-system description object
521 *
522 * This function finds, reads and checks the superblock. If an empty UBI volume
523 * is being mounted, this function creates default superblock. Returns zero in
524 * case of success, and a negative error code in case of failure.
525 */
526int ubifs_read_superblock(struct ubifs_info *c)
527{
528	int err, sup_flags;
529	struct ubifs_sb_node *sup;
530
531	if (c->empty) {
532		err = create_default_filesystem(c);
533		if (err)
534			return err;
535	}
536
537	sup = ubifs_read_sb_node(c);
538	if (IS_ERR(sup))
539		return PTR_ERR(sup);
540
 
 
541	c->fmt_version = le32_to_cpu(sup->fmt_version);
542	c->ro_compat_version = le32_to_cpu(sup->ro_compat_version);
543
544	/*
545	 * The software supports all previous versions but not future versions,
546	 * due to the unavailability of time-travelling equipment.
547	 */
548	if (c->fmt_version > UBIFS_FORMAT_VERSION) {
549		ubifs_assert(!c->ro_media || c->ro_mount);
550		if (!c->ro_mount ||
551		    c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) {
552			ubifs_err("on-flash format version is w%d/r%d, but "
553				  "software only supports up to version "
554				  "w%d/r%d", c->fmt_version,
555				  c->ro_compat_version, UBIFS_FORMAT_VERSION,
556				  UBIFS_RO_COMPAT_VERSION);
557			if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) {
558				ubifs_msg("only R/O mounting is possible");
559				err = -EROFS;
560			} else
561				err = -EINVAL;
562			goto out;
563		}
564
565		/*
566		 * The FS is mounted R/O, and the media format is
567		 * R/O-compatible with the UBIFS implementation, so we can
568		 * mount.
569		 */
570		c->rw_incompat = 1;
571	}
572
573	if (c->fmt_version < 3) {
574		ubifs_err("on-flash format version %d is not supported",
575			  c->fmt_version);
576		err = -EINVAL;
577		goto out;
578	}
579
580	switch (sup->key_hash) {
581	case UBIFS_KEY_HASH_R5:
582		c->key_hash = key_r5_hash;
583		c->key_hash_type = UBIFS_KEY_HASH_R5;
584		break;
585
586	case UBIFS_KEY_HASH_TEST:
587		c->key_hash = key_test_hash;
588		c->key_hash_type = UBIFS_KEY_HASH_TEST;
589		break;
590	};
591
592	c->key_fmt = sup->key_fmt;
593
594	switch (c->key_fmt) {
595	case UBIFS_SIMPLE_KEY_FMT:
596		c->key_len = UBIFS_SK_LEN;
597		break;
598	default:
599		ubifs_err("unsupported key format");
600		err = -EINVAL;
601		goto out;
602	}
603
604	c->leb_cnt       = le32_to_cpu(sup->leb_cnt);
605	c->max_leb_cnt   = le32_to_cpu(sup->max_leb_cnt);
606	c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes);
607	c->log_lebs      = le32_to_cpu(sup->log_lebs);
608	c->lpt_lebs      = le32_to_cpu(sup->lpt_lebs);
609	c->orph_lebs     = le32_to_cpu(sup->orph_lebs);
610	c->jhead_cnt     = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT;
611	c->fanout        = le32_to_cpu(sup->fanout);
612	c->lsave_cnt     = le32_to_cpu(sup->lsave_cnt);
613	c->rp_size       = le64_to_cpu(sup->rp_size);
614	c->rp_uid        = le32_to_cpu(sup->rp_uid);
615	c->rp_gid        = le32_to_cpu(sup->rp_gid);
616	sup_flags        = le32_to_cpu(sup->flags);
617	if (!c->mount_opts.override_compr)
618		c->default_compr = le16_to_cpu(sup->default_compr);
619
620	c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran);
621	memcpy(&c->uuid, &sup->uuid, 16);
622	c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT);
623	c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
624
625	/* Automatically increase file system size to the maximum size */
626	c->old_leb_cnt = c->leb_cnt;
627	if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) {
 
 
628		c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size);
629		if (c->ro_mount)
630			dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs",
631				c->old_leb_cnt,	c->leb_cnt);
632		else {
633			dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs",
634				c->old_leb_cnt, c->leb_cnt);
635			sup->leb_cnt = cpu_to_le32(c->leb_cnt);
636			err = ubifs_write_sb_node(c, sup);
637			if (err)
638				goto out;
639			c->old_leb_cnt = c->leb_cnt;
640		}
641	}
642
643	c->log_bytes = (long long)c->log_lebs * c->leb_size;
644	c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1;
645	c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs;
646	c->lpt_last = c->lpt_first + c->lpt_lebs - 1;
647	c->orph_first = c->lpt_last + 1;
648	c->orph_last = c->orph_first + c->orph_lebs - 1;
649	c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS;
650	c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs;
651	c->main_first = c->leb_cnt - c->main_lebs;
652
653	err = validate_sb(c, sup);
654out:
655	kfree(sup);
656	return err;
657}
658
659/**
660 * fixup_leb - fixup/unmap an LEB containing free space.
661 * @c: UBIFS file-system description object
662 * @lnum: the LEB number to fix up
663 * @len: number of used bytes in LEB (starting at offset 0)
664 *
665 * This function reads the contents of the given LEB number @lnum, then fixes
666 * it up, so that empty min. I/O units in the end of LEB are actually erased on
667 * flash (rather than being just all-0xff real data). If the LEB is completely
668 * empty, it is simply unmapped.
669 */
670static int fixup_leb(struct ubifs_info *c, int lnum, int len)
671{
672	int err;
673
674	ubifs_assert(len >= 0);
675	ubifs_assert(len % c->min_io_size == 0);
676	ubifs_assert(len < c->leb_size);
677
678	if (len == 0) {
679		dbg_mnt("unmap empty LEB %d", lnum);
680		return ubifs_leb_unmap(c, lnum);
681	}
682
683	dbg_mnt("fixup LEB %d, data len %d", lnum, len);
684	err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1);
685	if (err)
686		return err;
687
688	return ubifs_leb_change(c, lnum, c->sbuf, len);
689}
690
691/**
692 * fixup_free_space - find & remap all LEBs containing free space.
693 * @c: UBIFS file-system description object
694 *
695 * This function walks through all LEBs in the filesystem and fiexes up those
696 * containing free/empty space.
697 */
698static int fixup_free_space(struct ubifs_info *c)
699{
700	int lnum, err = 0;
701	struct ubifs_lprops *lprops;
702
703	ubifs_get_lprops(c);
704
705	/* Fixup LEBs in the master area */
706	for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) {
707		err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz);
708		if (err)
709			goto out;
710	}
711
712	/* Unmap unused log LEBs */
713	lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
714	while (lnum != c->ltail_lnum) {
715		err = fixup_leb(c, lnum, 0);
716		if (err)
717			goto out;
718		lnum = ubifs_next_log_lnum(c, lnum);
719	}
720
721	/*
722	 * Fixup the log head which contains the only a CS node at the
723	 * beginning.
724	 */
725	err = fixup_leb(c, c->lhead_lnum,
726			ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size));
727	if (err)
728		goto out;
729
730	/* Fixup LEBs in the LPT area */
731	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
732		int free = c->ltab[lnum - c->lpt_first].free;
733
734		if (free > 0) {
735			err = fixup_leb(c, lnum, c->leb_size - free);
736			if (err)
737				goto out;
738		}
739	}
740
741	/* Unmap LEBs in the orphans area */
742	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
743		err = fixup_leb(c, lnum, 0);
744		if (err)
745			goto out;
746	}
747
748	/* Fixup LEBs in the main area */
749	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
750		lprops = ubifs_lpt_lookup(c, lnum);
751		if (IS_ERR(lprops)) {
752			err = PTR_ERR(lprops);
753			goto out;
754		}
755
756		if (lprops->free > 0) {
757			err = fixup_leb(c, lnum, c->leb_size - lprops->free);
758			if (err)
759				goto out;
760		}
761	}
762
763out:
764	ubifs_release_lprops(c);
765	return err;
766}
767
768/**
769 * ubifs_fixup_free_space - find & fix all LEBs with free space.
770 * @c: UBIFS file-system description object
771 *
772 * This function fixes up LEBs containing free space on first mount, if the
773 * appropriate flag was set when the FS was created. Each LEB with one or more
774 * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure
775 * the free space is actually erased. E.g., this is necessary for some NAND
776 * chips, since the free space may have been programmed like real "0xff" data
777 * (generating a non-0xff ECC), causing future writes to the not-really-erased
778 * NAND pages to behave badly. After the space is fixed up, the superblock flag
779 * is cleared, so that this is skipped for all future mounts.
780 */
781int ubifs_fixup_free_space(struct ubifs_info *c)
782{
783	int err;
784	struct ubifs_sb_node *sup;
785
786	ubifs_assert(c->space_fixup);
787	ubifs_assert(!c->ro_mount);
788
789	ubifs_msg("start fixing up free space");
790
791	err = fixup_free_space(c);
792	if (err)
793		return err;
794
795	sup = ubifs_read_sb_node(c);
796	if (IS_ERR(sup))
797		return PTR_ERR(sup);
798
799	/* Free-space fixup is no longer required */
800	c->space_fixup = 0;
801	sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP);
802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
803	err = ubifs_write_sb_node(c, sup);
804	kfree(sup);
805	if (err)
806		return err;
807
808	ubifs_msg("free space fixup complete");
809	return err;
810}