Linux Audio

Check our new training course

Loading...
v5.4
   1/*
   2 * JFFS2 -- Journalling Flash File System, Version 2.
   3 *
   4 * Copyright © 2001-2007 Red Hat, Inc.
   5 * Copyright © 2004 Thomas Gleixner <tglx@linutronix.de>
   6 *
   7 * Created by David Woodhouse <dwmw2@infradead.org>
   8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
   9 *
  10 * For licensing information, see the file 'LICENCE' in this directory.
  11 *
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/kernel.h>
  17#include <linux/slab.h>
  18#include <linux/mtd/mtd.h>
  19#include <linux/crc32.h>
  20#include <linux/mtd/rawnand.h>
  21#include <linux/jiffies.h>
  22#include <linux/sched.h>
  23#include <linux/writeback.h>
  24
  25#include "nodelist.h"
  26
  27/* For testing write failures */
  28#undef BREAKME
  29#undef BREAKMEHEADER
  30
  31#ifdef BREAKME
  32static unsigned char *brokenbuf;
  33#endif
  34
  35#define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
  36#define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
  37
  38/* max. erase failures before we mark a block bad */
  39#define MAX_ERASE_FAILURES 	2
  40
  41struct jffs2_inodirty {
  42	uint32_t ino;
  43	struct jffs2_inodirty *next;
  44};
  45
  46static struct jffs2_inodirty inodirty_nomem;
  47
  48static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
  49{
  50	struct jffs2_inodirty *this = c->wbuf_inodes;
  51
  52	/* If a malloc failed, consider _everything_ dirty */
  53	if (this == &inodirty_nomem)
  54		return 1;
  55
  56	/* If ino == 0, _any_ non-GC writes mean 'yes' */
  57	if (this && !ino)
  58		return 1;
  59
  60	/* Look to see if the inode in question is pending in the wbuf */
  61	while (this) {
  62		if (this->ino == ino)
  63			return 1;
  64		this = this->next;
  65	}
  66	return 0;
  67}
  68
  69static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
  70{
  71	struct jffs2_inodirty *this;
  72
  73	this = c->wbuf_inodes;
  74
  75	if (this != &inodirty_nomem) {
  76		while (this) {
  77			struct jffs2_inodirty *next = this->next;
  78			kfree(this);
  79			this = next;
  80		}
  81	}
  82	c->wbuf_inodes = NULL;
  83}
  84
  85static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
  86{
  87	struct jffs2_inodirty *new;
  88
  89	/* Schedule delayed write-buffer write-out */
  90	jffs2_dirty_trigger(c);
  91
  92	if (jffs2_wbuf_pending_for_ino(c, ino))
  93		return;
  94
  95	new = kmalloc(sizeof(*new), GFP_KERNEL);
  96	if (!new) {
  97		jffs2_dbg(1, "No memory to allocate inodirty. Fallback to all considered dirty\n");
  98		jffs2_clear_wbuf_ino_list(c);
  99		c->wbuf_inodes = &inodirty_nomem;
 100		return;
 101	}
 102	new->ino = ino;
 103	new->next = c->wbuf_inodes;
 104	c->wbuf_inodes = new;
 105	return;
 106}
 107
 108static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
 109{
 110	struct list_head *this, *next;
 111	static int n;
 112
 113	if (list_empty(&c->erasable_pending_wbuf_list))
 114		return;
 115
 116	list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
 117		struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
 118
 119		jffs2_dbg(1, "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n",
 120			  jeb->offset);
 121		list_del(this);
 122		if ((jiffies + (n++)) & 127) {
 123			/* Most of the time, we just erase it immediately. Otherwise we
 124			   spend ages scanning it on mount, etc. */
 125			jffs2_dbg(1, "...and adding to erase_pending_list\n");
 126			list_add_tail(&jeb->list, &c->erase_pending_list);
 127			c->nr_erasing_blocks++;
 128			jffs2_garbage_collect_trigger(c);
 129		} else {
 130			/* Sometimes, however, we leave it elsewhere so it doesn't get
 131			   immediately reused, and we spread the load a bit. */
 132			jffs2_dbg(1, "...and adding to erasable_list\n");
 133			list_add_tail(&jeb->list, &c->erasable_list);
 134		}
 135	}
 136}
 137
 138#define REFILE_NOTEMPTY 0
 139#define REFILE_ANYWAY   1
 140
 141static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
 142{
 143	jffs2_dbg(1, "About to refile bad block at %08x\n", jeb->offset);
 144
 145	/* File the existing block on the bad_used_list.... */
 146	if (c->nextblock == jeb)
 147		c->nextblock = NULL;
 148	else /* Not sure this should ever happen... need more coffee */
 149		list_del(&jeb->list);
 150	if (jeb->first_node) {
 151		jffs2_dbg(1, "Refiling block at %08x to bad_used_list\n",
 152			  jeb->offset);
 153		list_add(&jeb->list, &c->bad_used_list);
 154	} else {
 155		BUG_ON(allow_empty == REFILE_NOTEMPTY);
 156		/* It has to have had some nodes or we couldn't be here */
 157		jffs2_dbg(1, "Refiling block at %08x to erase_pending_list\n",
 158			  jeb->offset);
 159		list_add(&jeb->list, &c->erase_pending_list);
 160		c->nr_erasing_blocks++;
 161		jffs2_garbage_collect_trigger(c);
 162	}
 163
 164	if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) {
 165		uint32_t oldfree = jeb->free_size;
 166
 167		jffs2_link_node_ref(c, jeb, 
 168				    (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE,
 169				    oldfree, NULL);
 170		/* convert to wasted */
 171		c->wasted_size += oldfree;
 172		jeb->wasted_size += oldfree;
 173		c->dirty_size -= oldfree;
 174		jeb->dirty_size -= oldfree;
 175	}
 176
 177	jffs2_dbg_dump_block_lists_nolock(c);
 178	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
 179	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
 180}
 181
 182static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c,
 183							    struct jffs2_inode_info *f,
 184							    struct jffs2_raw_node_ref *raw,
 185							    union jffs2_node_union *node)
 186{
 187	struct jffs2_node_frag *frag;
 188	struct jffs2_full_dirent *fd;
 189
 190	dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n",
 191		    node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype));
 192
 193	BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 &&
 194	       je16_to_cpu(node->u.magic) != 0);
 195
 196	switch (je16_to_cpu(node->u.nodetype)) {
 197	case JFFS2_NODETYPE_INODE:
 198		if (f->metadata && f->metadata->raw == raw) {
 199			dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata);
 200			return &f->metadata->raw;
 201		}
 202		frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset));
 203		BUG_ON(!frag);
 204		/* Find a frag which refers to the full_dnode we want to modify */
 205		while (!frag->node || frag->node->raw != raw) {
 206			frag = frag_next(frag);
 207			BUG_ON(!frag);
 208		}
 209		dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node);
 210		return &frag->node->raw;
 211
 212	case JFFS2_NODETYPE_DIRENT:
 213		for (fd = f->dents; fd; fd = fd->next) {
 214			if (fd->raw == raw) {
 215				dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd);
 216				return &fd->raw;
 217			}
 218		}
 219		BUG();
 220
 221	default:
 222		dbg_noderef("Don't care about replacing raw for nodetype %x\n",
 223			    je16_to_cpu(node->u.nodetype));
 224		break;
 225	}
 226	return NULL;
 227}
 228
 229#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
 230static int jffs2_verify_write(struct jffs2_sb_info *c, unsigned char *buf,
 231			      uint32_t ofs)
 232{
 233	int ret;
 234	size_t retlen;
 235	char *eccstr;
 236
 237	ret = mtd_read(c->mtd, ofs, c->wbuf_pagesize, &retlen, c->wbuf_verify);
 238	if (ret && ret != -EUCLEAN && ret != -EBADMSG) {
 239		pr_warn("%s(): Read back of page at %08x failed: %d\n",
 240			__func__, c->wbuf_ofs, ret);
 241		return ret;
 242	} else if (retlen != c->wbuf_pagesize) {
 243		pr_warn("%s(): Read back of page at %08x gave short read: %zd not %d\n",
 244			__func__, ofs, retlen, c->wbuf_pagesize);
 245		return -EIO;
 246	}
 247	if (!memcmp(buf, c->wbuf_verify, c->wbuf_pagesize))
 248		return 0;
 249
 250	if (ret == -EUCLEAN)
 251		eccstr = "corrected";
 252	else if (ret == -EBADMSG)
 253		eccstr = "correction failed";
 254	else
 255		eccstr = "OK or unused";
 256
 257	pr_warn("Write verify error (ECC %s) at %08x. Wrote:\n",
 258		eccstr, c->wbuf_ofs);
 259	print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
 260		       c->wbuf, c->wbuf_pagesize, 0);
 261
 262	pr_warn("Read back:\n");
 263	print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
 264		       c->wbuf_verify, c->wbuf_pagesize, 0);
 265
 266	return -EIO;
 267}
 268#else
 269#define jffs2_verify_write(c,b,o) (0)
 270#endif
 271
 272/* Recover from failure to write wbuf. Recover the nodes up to the
 273 * wbuf, not the one which we were starting to try to write. */
 274
 275static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
 276{
 277	struct jffs2_eraseblock *jeb, *new_jeb;
 278	struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL;
 279	size_t retlen;
 280	int ret;
 281	int nr_refile = 0;
 282	unsigned char *buf;
 283	uint32_t start, end, ofs, len;
 284
 285	jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
 286
 287	spin_lock(&c->erase_completion_lock);
 288	if (c->wbuf_ofs % c->mtd->erasesize)
 289		jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
 290	else
 291		jffs2_block_refile(c, jeb, REFILE_ANYWAY);
 292	spin_unlock(&c->erase_completion_lock);
 293
 294	BUG_ON(!ref_obsolete(jeb->last_node));
 295
 296	/* Find the first node to be recovered, by skipping over every
 297	   node which ends before the wbuf starts, or which is obsolete. */
 298	for (next = raw = jeb->first_node; next; raw = next) {
 299		next = ref_next(raw);
 300
 301		if (ref_obsolete(raw) || 
 302		    (next && ref_offset(next) <= c->wbuf_ofs)) {
 303			dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
 304				    ref_offset(raw), ref_flags(raw),
 305				    (ref_offset(raw) + ref_totlen(c, jeb, raw)),
 306				    c->wbuf_ofs);
 307			continue;
 308		}
 309		dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n",
 310			    ref_offset(raw), ref_flags(raw),
 311			    (ref_offset(raw) + ref_totlen(c, jeb, raw)));
 312
 313		first_raw = raw;
 314		break;
 315	}
 316
 317	if (!first_raw) {
 318		/* All nodes were obsolete. Nothing to recover. */
 319		jffs2_dbg(1, "No non-obsolete nodes to be recovered. Just filing block bad\n");
 320		c->wbuf_len = 0;
 321		return;
 322	}
 323
 324	start = ref_offset(first_raw);
 325	end = ref_offset(jeb->last_node);
 326	nr_refile = 1;
 327
 328	/* Count the number of refs which need to be copied */
 329	while ((raw = ref_next(raw)) != jeb->last_node)
 330		nr_refile++;
 331
 332	dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n",
 333		    start, end, end - start, nr_refile);
 334
 335	buf = NULL;
 336	if (start < c->wbuf_ofs) {
 337		/* First affected node was already partially written.
 338		 * Attempt to reread the old data into our buffer. */
 339
 340		buf = kmalloc(end - start, GFP_KERNEL);
 341		if (!buf) {
 342			pr_crit("Malloc failure in wbuf recovery. Data loss ensues.\n");
 343
 344			goto read_failed;
 345		}
 346
 347		/* Do the read... */
 348		ret = mtd_read(c->mtd, start, c->wbuf_ofs - start, &retlen,
 349			       buf);
 350
 351		/* ECC recovered ? */
 352		if ((ret == -EUCLEAN || ret == -EBADMSG) &&
 353		    (retlen == c->wbuf_ofs - start))
 354			ret = 0;
 355
 356		if (ret || retlen != c->wbuf_ofs - start) {
 357			pr_crit("Old data are already lost in wbuf recovery. Data loss ensues.\n");
 358
 359			kfree(buf);
 360			buf = NULL;
 361		read_failed:
 362			first_raw = ref_next(first_raw);
 363			nr_refile--;
 364			while (first_raw && ref_obsolete(first_raw)) {
 365				first_raw = ref_next(first_raw);
 366				nr_refile--;
 367			}
 368
 369			/* If this was the only node to be recovered, give up */
 370			if (!first_raw) {
 371				c->wbuf_len = 0;
 372				return;
 373			}
 374
 375			/* It wasn't. Go on and try to recover nodes complete in the wbuf */
 376			start = ref_offset(first_raw);
 377			dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n",
 378				    start, end, end - start, nr_refile);
 379
 380		} else {
 381			/* Read succeeded. Copy the remaining data from the wbuf */
 382			memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
 383		}
 384	}
 385	/* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
 386	   Either 'buf' contains the data, or we find it in the wbuf */
 387
 388	/* ... and get an allocation of space from a shiny new block instead */
 389	ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
 390	if (ret) {
 391		pr_warn("Failed to allocate space for wbuf recovery. Data loss ensues.\n");
 392		kfree(buf);
 393		return;
 394	}
 395
 396	/* The summary is not recovered, so it must be disabled for this erase block */
 397	jffs2_sum_disable_collecting(c->summary);
 398
 399	ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
 400	if (ret) {
 401		pr_warn("Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
 402		kfree(buf);
 403		return;
 404	}
 405
 406	ofs = write_ofs(c);
 407
 408	if (end-start >= c->wbuf_pagesize) {
 409		/* Need to do another write immediately, but it's possible
 410		   that this is just because the wbuf itself is completely
 411		   full, and there's nothing earlier read back from the
 412		   flash. Hence 'buf' isn't necessarily what we're writing
 413		   from. */
 414		unsigned char *rewrite_buf = buf?:c->wbuf;
 415		uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
 416
 417		jffs2_dbg(1, "Write 0x%x bytes at 0x%08x in wbuf recover\n",
 418			  towrite, ofs);
 419
 420#ifdef BREAKMEHEADER
 421		static int breakme;
 422		if (breakme++ == 20) {
 423			pr_notice("Faking write error at 0x%08x\n", ofs);
 424			breakme = 0;
 425			mtd_write(c->mtd, ofs, towrite, &retlen, brokenbuf);
 426			ret = -EIO;
 427		} else
 428#endif
 429			ret = mtd_write(c->mtd, ofs, towrite, &retlen,
 430					rewrite_buf);
 431
 432		if (ret || retlen != towrite || jffs2_verify_write(c, rewrite_buf, ofs)) {
 433			/* Argh. We tried. Really we did. */
 434			pr_crit("Recovery of wbuf failed due to a second write error\n");
 435			kfree(buf);
 436
 437			if (retlen)
 438				jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL);
 439
 440			return;
 441		}
 442		pr_notice("Recovery of wbuf succeeded to %08x\n", ofs);
 443
 444		c->wbuf_len = (end - start) - towrite;
 445		c->wbuf_ofs = ofs + towrite;
 446		memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
 447		/* Don't muck about with c->wbuf_inodes. False positives are harmless. */
 448	} else {
 449		/* OK, now we're left with the dregs in whichever buffer we're using */
 450		if (buf) {
 451			memcpy(c->wbuf, buf, end-start);
 452		} else {
 453			memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
 454		}
 455		c->wbuf_ofs = ofs;
 456		c->wbuf_len = end - start;
 457	}
 458
 459	/* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
 460	new_jeb = &c->blocks[ofs / c->sector_size];
 461
 462	spin_lock(&c->erase_completion_lock);
 463	for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) {
 464		uint32_t rawlen = ref_totlen(c, jeb, raw);
 465		struct jffs2_inode_cache *ic;
 466		struct jffs2_raw_node_ref *new_ref;
 467		struct jffs2_raw_node_ref **adjust_ref = NULL;
 468		struct jffs2_inode_info *f = NULL;
 469
 470		jffs2_dbg(1, "Refiling block of %08x at %08x(%d) to %08x\n",
 471			  rawlen, ref_offset(raw), ref_flags(raw), ofs);
 472
 473		ic = jffs2_raw_ref_to_ic(raw);
 474
 475		/* Ick. This XATTR mess should be fixed shortly... */
 476		if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) {
 477			struct jffs2_xattr_datum *xd = (void *)ic;
 478			BUG_ON(xd->node != raw);
 479			adjust_ref = &xd->node;
 480			raw->next_in_ino = NULL;
 481			ic = NULL;
 482		} else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) {
 483			struct jffs2_xattr_datum *xr = (void *)ic;
 484			BUG_ON(xr->node != raw);
 485			adjust_ref = &xr->node;
 486			raw->next_in_ino = NULL;
 487			ic = NULL;
 488		} else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) {
 489			struct jffs2_raw_node_ref **p = &ic->nodes;
 490
 491			/* Remove the old node from the per-inode list */
 492			while (*p && *p != (void *)ic) {
 493				if (*p == raw) {
 494					(*p) = (raw->next_in_ino);
 495					raw->next_in_ino = NULL;
 496					break;
 497				}
 498				p = &((*p)->next_in_ino);
 499			}
 500
 501			if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) {
 502				/* If it's an in-core inode, then we have to adjust any
 503				   full_dirent or full_dnode structure to point to the
 504				   new version instead of the old */
 505				f = jffs2_gc_fetch_inode(c, ic->ino, !ic->pino_nlink);
 506				if (IS_ERR(f)) {
 507					/* Should never happen; it _must_ be present */
 508					JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n",
 509						    ic->ino, PTR_ERR(f));
 510					BUG();
 511				}
 512				/* We don't lock f->sem. There's a number of ways we could
 513				   end up in here with it already being locked, and nobody's
 514				   going to modify it on us anyway because we hold the
 515				   alloc_sem. We're only changing one ->raw pointer too,
 516				   which we can get away with without upsetting readers. */
 517				adjust_ref = jffs2_incore_replace_raw(c, f, raw,
 518								      (void *)(buf?:c->wbuf) + (ref_offset(raw) - start));
 519			} else if (unlikely(ic->state != INO_STATE_PRESENT &&
 520					    ic->state != INO_STATE_CHECKEDABSENT &&
 521					    ic->state != INO_STATE_GC)) {
 522				JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state);
 523				BUG();
 524			}
 525		}
 526
 527		new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic);
 528
 529		if (adjust_ref) {
 530			BUG_ON(*adjust_ref != raw);
 531			*adjust_ref = new_ref;
 532		}
 533		if (f)
 534			jffs2_gc_release_inode(c, f);
 535
 536		if (!ref_obsolete(raw)) {
 537			jeb->dirty_size += rawlen;
 538			jeb->used_size  -= rawlen;
 539			c->dirty_size += rawlen;
 540			c->used_size -= rawlen;
 541			raw->flash_offset = ref_offset(raw) | REF_OBSOLETE;
 542			BUG_ON(raw->next_in_ino);
 543		}
 544		ofs += rawlen;
 545	}
 546
 547	kfree(buf);
 548
 549	/* Fix up the original jeb now it's on the bad_list */
 550	if (first_raw == jeb->first_node) {
 551		jffs2_dbg(1, "Failing block at %08x is now empty. Moving to erase_pending_list\n",
 552			  jeb->offset);
 553		list_move(&jeb->list, &c->erase_pending_list);
 554		c->nr_erasing_blocks++;
 555		jffs2_garbage_collect_trigger(c);
 556	}
 557
 558	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
 559	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
 560
 561	jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
 562	jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
 563
 564	spin_unlock(&c->erase_completion_lock);
 565
 566	jffs2_dbg(1, "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n",
 567		  c->wbuf_ofs, c->wbuf_len);
 568
 569}
 570
 571/* Meaning of pad argument:
 572   0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
 573   1: Pad, do not adjust nextblock free_size
 574   2: Pad, adjust nextblock free_size
 575*/
 576#define NOPAD		0
 577#define PAD_NOACCOUNT	1
 578#define PAD_ACCOUNTING	2
 579
 580static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
 581{
 582	struct jffs2_eraseblock *wbuf_jeb;
 583	int ret;
 584	size_t retlen;
 585
 586	/* Nothing to do if not write-buffering the flash. In particular, we shouldn't
 587	   del_timer() the timer we never initialised. */
 588	if (!jffs2_is_writebuffered(c))
 589		return 0;
 590
 591	if (!mutex_is_locked(&c->alloc_sem)) {
 592		pr_crit("jffs2_flush_wbuf() called with alloc_sem not locked!\n");
 593		BUG();
 594	}
 595
 596	if (!c->wbuf_len)	/* already checked c->wbuf above */
 597		return 0;
 598
 599	wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
 600	if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1))
 601		return -ENOMEM;
 602
 603	/* claim remaining space on the page
 604	   this happens, if we have a change to a new block,
 605	   or if fsync forces us to flush the writebuffer.
 606	   if we have a switch to next page, we will not have
 607	   enough remaining space for this.
 608	*/
 609	if (pad ) {
 610		c->wbuf_len = PAD(c->wbuf_len);
 611
 612		/* Pad with JFFS2_DIRTY_BITMASK initially.  this helps out ECC'd NOR
 613		   with 8 byte page size */
 614		memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
 615
 616		if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
 617			struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
 618			padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
 619			padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
 620			padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
 621			padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
 622		}
 623	}
 624	/* else jffs2_flash_writev has actually filled in the rest of the
 625	   buffer for us, and will deal with the node refs etc. later. */
 626
 627#ifdef BREAKME
 628	static int breakme;
 629	if (breakme++ == 20) {
 630		pr_notice("Faking write error at 0x%08x\n", c->wbuf_ofs);
 631		breakme = 0;
 632		mtd_write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
 633			  brokenbuf);
 634		ret = -EIO;
 635	} else
 636#endif
 637
 638		ret = mtd_write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize,
 639				&retlen, c->wbuf);
 640
 641	if (ret) {
 642		pr_warn("jffs2_flush_wbuf(): Write failed with %d\n", ret);
 643		goto wfail;
 644	} else if (retlen != c->wbuf_pagesize) {
 645		pr_warn("jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
 646			retlen, c->wbuf_pagesize);
 647		ret = -EIO;
 648		goto wfail;
 649	} else if ((ret = jffs2_verify_write(c, c->wbuf, c->wbuf_ofs))) {
 650	wfail:
 651		jffs2_wbuf_recover(c);
 652
 653		return ret;
 654	}
 655
 656	/* Adjust free size of the block if we padded. */
 657	if (pad) {
 658		uint32_t waste = c->wbuf_pagesize - c->wbuf_len;
 659
 660		jffs2_dbg(1, "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
 661			  (wbuf_jeb == c->nextblock) ? "next" : "",
 662			  wbuf_jeb->offset);
 663
 664		/* wbuf_pagesize - wbuf_len is the amount of space that's to be
 665		   padded. If there is less free space in the block than that,
 666		   something screwed up */
 667		if (wbuf_jeb->free_size < waste) {
 668			pr_crit("jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
 669				c->wbuf_ofs, c->wbuf_len, waste);
 670			pr_crit("jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
 671				wbuf_jeb->offset, wbuf_jeb->free_size);
 672			BUG();
 673		}
 674
 675		spin_lock(&c->erase_completion_lock);
 676
 677		jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL);
 678		/* FIXME: that made it count as dirty. Convert to wasted */
 679		wbuf_jeb->dirty_size -= waste;
 680		c->dirty_size -= waste;
 681		wbuf_jeb->wasted_size += waste;
 682		c->wasted_size += waste;
 683	} else
 684		spin_lock(&c->erase_completion_lock);
 685
 686	/* Stick any now-obsoleted blocks on the erase_pending_list */
 687	jffs2_refile_wbuf_blocks(c);
 688	jffs2_clear_wbuf_ino_list(c);
 689	spin_unlock(&c->erase_completion_lock);
 690
 691	memset(c->wbuf,0xff,c->wbuf_pagesize);
 692	/* adjust write buffer offset, else we get a non contiguous write bug */
 693	c->wbuf_ofs += c->wbuf_pagesize;
 694	c->wbuf_len = 0;
 695	return 0;
 696}
 697
 698/* Trigger garbage collection to flush the write-buffer.
 699   If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
 700   outstanding. If ino arg non-zero, do it only if a write for the
 701   given inode is outstanding. */
 702int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
 703{
 704	uint32_t old_wbuf_ofs;
 705	uint32_t old_wbuf_len;
 706	int ret = 0;
 707
 708	jffs2_dbg(1, "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino);
 709
 710	if (!c->wbuf)
 711		return 0;
 712
 713	mutex_lock(&c->alloc_sem);
 714	if (!jffs2_wbuf_pending_for_ino(c, ino)) {
 715		jffs2_dbg(1, "Ino #%d not pending in wbuf. Returning\n", ino);
 716		mutex_unlock(&c->alloc_sem);
 717		return 0;
 718	}
 719
 720	old_wbuf_ofs = c->wbuf_ofs;
 721	old_wbuf_len = c->wbuf_len;
 722
 723	if (c->unchecked_size) {
 724		/* GC won't make any progress for a while */
 725		jffs2_dbg(1, "%s(): padding. Not finished checking\n",
 726			  __func__);
 727		down_write(&c->wbuf_sem);
 728		ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
 729		/* retry flushing wbuf in case jffs2_wbuf_recover
 730		   left some data in the wbuf */
 731		if (ret)
 732			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
 733		up_write(&c->wbuf_sem);
 734	} else while (old_wbuf_len &&
 735		      old_wbuf_ofs == c->wbuf_ofs) {
 736
 737		mutex_unlock(&c->alloc_sem);
 738
 739		jffs2_dbg(1, "%s(): calls gc pass\n", __func__);
 740
 741		ret = jffs2_garbage_collect_pass(c);
 742		if (ret) {
 743			/* GC failed. Flush it with padding instead */
 744			mutex_lock(&c->alloc_sem);
 745			down_write(&c->wbuf_sem);
 746			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
 747			/* retry flushing wbuf in case jffs2_wbuf_recover
 748			   left some data in the wbuf */
 749			if (ret)
 750				ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
 751			up_write(&c->wbuf_sem);
 752			break;
 753		}
 754		mutex_lock(&c->alloc_sem);
 755	}
 756
 757	jffs2_dbg(1, "%s(): ends...\n", __func__);
 758
 759	mutex_unlock(&c->alloc_sem);
 760	return ret;
 761}
 762
 763/* Pad write-buffer to end and write it, wasting space. */
 764int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
 765{
 766	int ret;
 767
 768	if (!c->wbuf)
 769		return 0;
 770
 771	down_write(&c->wbuf_sem);
 772	ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
 773	/* retry - maybe wbuf recover left some data in wbuf. */
 774	if (ret)
 775		ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
 776	up_write(&c->wbuf_sem);
 777
 778	return ret;
 779}
 780
 781static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
 782			      size_t len)
 783{
 784	if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
 785		return 0;
 786
 787	if (len > (c->wbuf_pagesize - c->wbuf_len))
 788		len = c->wbuf_pagesize - c->wbuf_len;
 789	memcpy(c->wbuf + c->wbuf_len, buf, len);
 790	c->wbuf_len += (uint32_t) len;
 791	return len;
 792}
 793
 794int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
 795		       unsigned long count, loff_t to, size_t *retlen,
 796		       uint32_t ino)
 797{
 798	struct jffs2_eraseblock *jeb;
 799	size_t wbuf_retlen, donelen = 0;
 800	uint32_t outvec_to = to;
 801	int ret, invec;
 802
 803	/* If not writebuffered flash, don't bother */
 804	if (!jffs2_is_writebuffered(c))
 805		return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
 806
 807	down_write(&c->wbuf_sem);
 808
 809	/* If wbuf_ofs is not initialized, set it to target address */
 810	if (c->wbuf_ofs == 0xFFFFFFFF) {
 811		c->wbuf_ofs = PAGE_DIV(to);
 812		c->wbuf_len = PAGE_MOD(to);
 813		memset(c->wbuf,0xff,c->wbuf_pagesize);
 814	}
 815
 816	/*
 817	 * Sanity checks on target address.  It's permitted to write
 818	 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
 819	 * write at the beginning of a new erase block. Anything else,
 820	 * and you die.  New block starts at xxx000c (0-b = block
 821	 * header)
 822	 */
 823	if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
 824		/* It's a write to a new block */
 825		if (c->wbuf_len) {
 826			jffs2_dbg(1, "%s(): to 0x%lx causes flush of wbuf at 0x%08x\n",
 827				  __func__, (unsigned long)to, c->wbuf_ofs);
 828			ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
 829			if (ret)
 830				goto outerr;
 831		}
 832		/* set pointer to new block */
 833		c->wbuf_ofs = PAGE_DIV(to);
 834		c->wbuf_len = PAGE_MOD(to);
 835	}
 836
 837	if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
 838		/* We're not writing immediately after the writebuffer. Bad. */
 839		pr_crit("%s(): Non-contiguous write to %08lx\n",
 840			__func__, (unsigned long)to);
 841		if (c->wbuf_len)
 842			pr_crit("wbuf was previously %08x-%08x\n",
 843				c->wbuf_ofs, c->wbuf_ofs + c->wbuf_len);
 844		BUG();
 845	}
 846
 847	/* adjust alignment offset */
 848	if (c->wbuf_len != PAGE_MOD(to)) {
 849		c->wbuf_len = PAGE_MOD(to);
 850		/* take care of alignment to next page */
 851		if (!c->wbuf_len) {
 852			c->wbuf_len = c->wbuf_pagesize;
 853			ret = __jffs2_flush_wbuf(c, NOPAD);
 854			if (ret)
 855				goto outerr;
 856		}
 857	}
 858
 859	for (invec = 0; invec < count; invec++) {
 860		int vlen = invecs[invec].iov_len;
 861		uint8_t *v = invecs[invec].iov_base;
 862
 863		wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
 864
 865		if (c->wbuf_len == c->wbuf_pagesize) {
 866			ret = __jffs2_flush_wbuf(c, NOPAD);
 867			if (ret)
 868				goto outerr;
 869		}
 870		vlen -= wbuf_retlen;
 871		outvec_to += wbuf_retlen;
 872		donelen += wbuf_retlen;
 873		v += wbuf_retlen;
 874
 875		if (vlen >= c->wbuf_pagesize) {
 876			ret = mtd_write(c->mtd, outvec_to, PAGE_DIV(vlen),
 877					&wbuf_retlen, v);
 878			if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
 879				goto outfile;
 880
 881			vlen -= wbuf_retlen;
 882			outvec_to += wbuf_retlen;
 883			c->wbuf_ofs = outvec_to;
 884			donelen += wbuf_retlen;
 885			v += wbuf_retlen;
 886		}
 887
 888		wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
 889		if (c->wbuf_len == c->wbuf_pagesize) {
 890			ret = __jffs2_flush_wbuf(c, NOPAD);
 891			if (ret)
 892				goto outerr;
 893		}
 894
 895		outvec_to += wbuf_retlen;
 896		donelen += wbuf_retlen;
 897	}
 898
 899	/*
 900	 * If there's a remainder in the wbuf and it's a non-GC write,
 901	 * remember that the wbuf affects this ino
 902	 */
 903	*retlen = donelen;
 904
 905	if (jffs2_sum_active()) {
 906		int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
 907		if (res)
 908			return res;
 909	}
 910
 911	if (c->wbuf_len && ino)
 912		jffs2_wbuf_dirties_inode(c, ino);
 913
 914	ret = 0;
 915	up_write(&c->wbuf_sem);
 916	return ret;
 917
 918outfile:
 919	/*
 920	 * At this point we have no problem, c->wbuf is empty. However
 921	 * refile nextblock to avoid writing again to same address.
 922	 */
 923
 924	spin_lock(&c->erase_completion_lock);
 925
 926	jeb = &c->blocks[outvec_to / c->sector_size];
 927	jffs2_block_refile(c, jeb, REFILE_ANYWAY);
 928
 929	spin_unlock(&c->erase_completion_lock);
 930
 931outerr:
 932	*retlen = 0;
 933	up_write(&c->wbuf_sem);
 934	return ret;
 935}
 936
 937/*
 938 *	This is the entry for flash write.
 939 *	Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
 940*/
 941int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len,
 942		      size_t *retlen, const u_char *buf)
 943{
 944	struct kvec vecs[1];
 945
 946	if (!jffs2_is_writebuffered(c))
 947		return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
 948
 949	vecs[0].iov_base = (unsigned char *) buf;
 950	vecs[0].iov_len = len;
 951	return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
 952}
 953
 954/*
 955	Handle readback from writebuffer and ECC failure return
 956*/
 957int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
 958{
 959	loff_t	orbf = 0, owbf = 0, lwbf = 0;
 960	int	ret;
 961
 962	if (!jffs2_is_writebuffered(c))
 963		return mtd_read(c->mtd, ofs, len, retlen, buf);
 964
 965	/* Read flash */
 966	down_read(&c->wbuf_sem);
 967	ret = mtd_read(c->mtd, ofs, len, retlen, buf);
 968
 969	if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) {
 970		if (ret == -EBADMSG)
 971			pr_warn("mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n",
 972				len, ofs);
 973		/*
 974		 * We have the raw data without ECC correction in the buffer,
 975		 * maybe we are lucky and all data or parts are correct. We
 976		 * check the node.  If data are corrupted node check will sort
 977		 * it out.  We keep this block, it will fail on write or erase
 978		 * and the we mark it bad. Or should we do that now? But we
 979		 * should give him a chance.  Maybe we had a system crash or
 980		 * power loss before the ecc write or a erase was completed.
 981		 * So we return success. :)
 982		 */
 983		ret = 0;
 984	}
 985
 986	/* if no writebuffer available or write buffer empty, return */
 987	if (!c->wbuf_pagesize || !c->wbuf_len)
 988		goto exit;
 989
 990	/* if we read in a different block, return */
 991	if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
 992		goto exit;
 993
 994	if (ofs >= c->wbuf_ofs) {
 995		owbf = (ofs - c->wbuf_ofs);	/* offset in write buffer */
 996		if (owbf > c->wbuf_len)		/* is read beyond write buffer ? */
 997			goto exit;
 998		lwbf = c->wbuf_len - owbf;	/* number of bytes to copy */
 999		if (lwbf > len)
1000			lwbf = len;
1001	} else {
1002		orbf = (c->wbuf_ofs - ofs);	/* offset in read buffer */
1003		if (orbf > len)			/* is write beyond write buffer ? */
1004			goto exit;
1005		lwbf = len - orbf;		/* number of bytes to copy */
1006		if (lwbf > c->wbuf_len)
1007			lwbf = c->wbuf_len;
1008	}
1009	if (lwbf > 0)
1010		memcpy(buf+orbf,c->wbuf+owbf,lwbf);
1011
1012exit:
1013	up_read(&c->wbuf_sem);
1014	return ret;
1015}
1016
1017#define NR_OOB_SCAN_PAGES 4
1018
1019/* For historical reasons we use only 8 bytes for OOB clean marker */
1020#define OOB_CM_SIZE 8
1021
1022static const struct jffs2_unknown_node oob_cleanmarker =
1023{
1024	.magic = constant_cpu_to_je16(JFFS2_MAGIC_BITMASK),
1025	.nodetype = constant_cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER),
1026	.totlen = constant_cpu_to_je32(8)
1027};
1028
1029/*
1030 * Check, if the out of band area is empty. This function knows about the clean
1031 * marker and if it is present in OOB, treats the OOB as empty anyway.
1032 */
1033int jffs2_check_oob_empty(struct jffs2_sb_info *c,
1034			  struct jffs2_eraseblock *jeb, int mode)
1035{
1036	int i, ret;
1037	int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1038	struct mtd_oob_ops ops;
1039
1040	ops.mode = MTD_OPS_AUTO_OOB;
1041	ops.ooblen = NR_OOB_SCAN_PAGES * c->oobavail;
1042	ops.oobbuf = c->oobbuf;
1043	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1044	ops.datbuf = NULL;
1045
1046	ret = mtd_read_oob(c->mtd, jeb->offset, &ops);
1047	if ((ret && !mtd_is_bitflip(ret)) || ops.oobretlen != ops.ooblen) {
1048		pr_err("cannot read OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n",
1049		       jeb->offset, ops.ooblen, ops.oobretlen, ret);
1050		if (!ret || mtd_is_bitflip(ret))
1051			ret = -EIO;
1052		return ret;
1053	}
1054
1055	for(i = 0; i < ops.ooblen; i++) {
1056		if (mode && i < cmlen)
1057			/* Yeah, we know about the cleanmarker */
1058			continue;
1059
1060		if (ops.oobbuf[i] != 0xFF) {
1061			jffs2_dbg(2, "Found %02x at %x in OOB for "
1062				  "%08x\n", ops.oobbuf[i], i, jeb->offset);
1063			return 1;
1064		}
1065	}
1066
1067	return 0;
1068}
1069
1070/*
1071 * Check for a valid cleanmarker.
1072 * Returns: 0 if a valid cleanmarker was found
1073 *	    1 if no cleanmarker was found
1074 *	    negative error code if an error occurred
1075 */
1076int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c,
1077				 struct jffs2_eraseblock *jeb)
1078{
1079	struct mtd_oob_ops ops;
1080	int ret, cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1081
1082	ops.mode = MTD_OPS_AUTO_OOB;
1083	ops.ooblen = cmlen;
1084	ops.oobbuf = c->oobbuf;
1085	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1086	ops.datbuf = NULL;
1087
1088	ret = mtd_read_oob(c->mtd, jeb->offset, &ops);
1089	if ((ret && !mtd_is_bitflip(ret)) || ops.oobretlen != ops.ooblen) {
1090		pr_err("cannot read OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n",
1091		       jeb->offset, ops.ooblen, ops.oobretlen, ret);
1092		if (!ret || mtd_is_bitflip(ret))
1093			ret = -EIO;
1094		return ret;
1095	}
1096
1097	return !!memcmp(&oob_cleanmarker, c->oobbuf, cmlen);
1098}
1099
1100int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c,
1101				 struct jffs2_eraseblock *jeb)
1102{
1103	int ret;
1104	struct mtd_oob_ops ops;
1105	int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1106
1107	ops.mode = MTD_OPS_AUTO_OOB;
1108	ops.ooblen = cmlen;
1109	ops.oobbuf = (uint8_t *)&oob_cleanmarker;
1110	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1111	ops.datbuf = NULL;
1112
1113	ret = mtd_write_oob(c->mtd, jeb->offset, &ops);
1114	if (ret || ops.oobretlen != ops.ooblen) {
1115		pr_err("cannot write OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n",
1116		       jeb->offset, ops.ooblen, ops.oobretlen, ret);
1117		if (!ret)
1118			ret = -EIO;
1119		return ret;
1120	}
1121
1122	return 0;
1123}
1124
1125/*
1126 * On NAND we try to mark this block bad. If the block was erased more
1127 * than MAX_ERASE_FAILURES we mark it finally bad.
1128 * Don't care about failures. This block remains on the erase-pending
1129 * or badblock list as long as nobody manipulates the flash with
1130 * a bootloader or something like that.
1131 */
1132
1133int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1134{
1135	int 	ret;
1136
1137	/* if the count is < max, we try to write the counter to the 2nd page oob area */
1138	if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1139		return 0;
1140
1141	pr_warn("marking eraseblock at %08x as bad\n", bad_offset);
1142	ret = mtd_block_markbad(c->mtd, bad_offset);
1143
1144	if (ret) {
1145		jffs2_dbg(1, "%s(): Write failed for block at %08x: error %d\n",
1146			  __func__, jeb->offset, ret);
1147		return ret;
1148	}
1149	return 1;
1150}
1151
1152static struct jffs2_sb_info *work_to_sb(struct work_struct *work)
1153{
1154	struct delayed_work *dwork;
1155
1156	dwork = to_delayed_work(work);
1157	return container_of(dwork, struct jffs2_sb_info, wbuf_dwork);
1158}
1159
1160static void delayed_wbuf_sync(struct work_struct *work)
1161{
1162	struct jffs2_sb_info *c = work_to_sb(work);
1163	struct super_block *sb = OFNI_BS_2SFFJ(c);
1164
1165	if (!sb_rdonly(sb)) {
 
 
 
 
1166		jffs2_dbg(1, "%s()\n", __func__);
1167		jffs2_flush_wbuf_gc(c, 0);
1168	}
1169}
1170
1171void jffs2_dirty_trigger(struct jffs2_sb_info *c)
1172{
1173	struct super_block *sb = OFNI_BS_2SFFJ(c);
1174	unsigned long delay;
1175
1176	if (sb_rdonly(sb))
1177		return;
1178
1179	delay = msecs_to_jiffies(dirty_writeback_interval * 10);
1180	if (queue_delayed_work(system_long_wq, &c->wbuf_dwork, delay))
1181		jffs2_dbg(1, "%s()\n", __func__);
 
 
 
 
 
1182}
1183
1184int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1185{
 
 
1186	if (!c->mtd->oobsize)
1187		return 0;
1188
1189	/* Cleanmarker is out-of-band, so inline size zero */
1190	c->cleanmarker_size = 0;
1191
1192	if (c->mtd->oobavail == 0) {
1193		pr_err("inconsistent device description\n");
1194		return -EINVAL;
1195	}
1196
1197	jffs2_dbg(1, "using OOB on NAND\n");
1198
1199	c->oobavail = c->mtd->oobavail;
1200
1201	/* Initialise write buffer */
1202	init_rwsem(&c->wbuf_sem);
 
1203	INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync);
1204	c->wbuf_pagesize = c->mtd->writesize;
1205	c->wbuf_ofs = 0xFFFFFFFF;
1206
1207	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1208	if (!c->wbuf)
1209		return -ENOMEM;
1210
1211	c->oobbuf = kmalloc_array(NR_OOB_SCAN_PAGES, c->oobavail, GFP_KERNEL);
1212	if (!c->oobbuf) {
1213		kfree(c->wbuf);
1214		return -ENOMEM;
1215	}
1216
1217#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1218	c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1219	if (!c->wbuf_verify) {
1220		kfree(c->oobbuf);
1221		kfree(c->wbuf);
1222		return -ENOMEM;
1223	}
1224#endif
1225	return 0;
1226}
1227
1228void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1229{
1230#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1231	kfree(c->wbuf_verify);
1232#endif
1233	kfree(c->wbuf);
1234	kfree(c->oobbuf);
1235}
1236
1237int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1238	c->cleanmarker_size = 0;		/* No cleanmarkers needed */
1239
1240	/* Initialize write buffer */
1241	init_rwsem(&c->wbuf_sem);
 
1242	INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync);
1243	c->wbuf_pagesize =  c->mtd->erasesize;
1244
1245	/* Find a suitable c->sector_size
1246	 * - Not too much sectors
1247	 * - Sectors have to be at least 4 K + some bytes
1248	 * - All known dataflashes have erase sizes of 528 or 1056
1249	 * - we take at least 8 eraseblocks and want to have at least 8K size
1250	 * - The concatenation should be a power of 2
1251	*/
1252
1253	c->sector_size = 8 * c->mtd->erasesize;
1254
1255	while (c->sector_size < 8192) {
1256		c->sector_size *= 2;
1257	}
1258
1259	/* It may be necessary to adjust the flash size */
1260	c->flash_size = c->mtd->size;
1261
1262	if ((c->flash_size % c->sector_size) != 0) {
1263		c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
1264		pr_warn("flash size adjusted to %dKiB\n", c->flash_size);
1265	}
1266
1267	c->wbuf_ofs = 0xFFFFFFFF;
1268	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1269	if (!c->wbuf)
1270		return -ENOMEM;
1271
1272#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1273	c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1274	if (!c->wbuf_verify) {
 
1275		kfree(c->wbuf);
1276		return -ENOMEM;
1277	}
1278#endif
1279
1280	pr_info("write-buffering enabled buffer (%d) erasesize (%d)\n",
1281		c->wbuf_pagesize, c->sector_size);
1282
1283	return 0;
1284}
1285
1286void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
1287#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1288	kfree(c->wbuf_verify);
1289#endif
1290	kfree(c->wbuf);
1291}
1292
1293int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
1294	/* Cleanmarker currently occupies whole programming regions,
1295	 * either one or 2 for 8Byte STMicro flashes. */
1296	c->cleanmarker_size = max(16u, c->mtd->writesize);
1297
1298	/* Initialize write buffer */
1299	init_rwsem(&c->wbuf_sem);
 
1300	INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync);
1301
1302	c->wbuf_pagesize = c->mtd->writesize;
1303	c->wbuf_ofs = 0xFFFFFFFF;
1304
1305	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1306	if (!c->wbuf)
1307		return -ENOMEM;
1308
1309#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1310	c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1311	if (!c->wbuf_verify) {
1312		kfree(c->wbuf);
1313		return -ENOMEM;
1314	}
1315#endif
1316	return 0;
1317}
1318
1319void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
1320#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1321	kfree(c->wbuf_verify);
1322#endif
1323	kfree(c->wbuf);
1324}
1325
1326int jffs2_ubivol_setup(struct jffs2_sb_info *c) {
1327	c->cleanmarker_size = 0;
1328
1329	if (c->mtd->writesize == 1)
1330		/* We do not need write-buffer */
1331		return 0;
1332
1333	init_rwsem(&c->wbuf_sem);
 
1334	INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync);
1335
1336	c->wbuf_pagesize =  c->mtd->writesize;
1337	c->wbuf_ofs = 0xFFFFFFFF;
1338	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1339	if (!c->wbuf)
1340		return -ENOMEM;
1341
1342	pr_info("write-buffering enabled buffer (%d) erasesize (%d)\n",
1343		c->wbuf_pagesize, c->sector_size);
1344
1345	return 0;
1346}
1347
1348void jffs2_ubivol_cleanup(struct jffs2_sb_info *c) {
1349	kfree(c->wbuf);
1350}
v3.5.6
   1/*
   2 * JFFS2 -- Journalling Flash File System, Version 2.
   3 *
   4 * Copyright © 2001-2007 Red Hat, Inc.
   5 * Copyright © 2004 Thomas Gleixner <tglx@linutronix.de>
   6 *
   7 * Created by David Woodhouse <dwmw2@infradead.org>
   8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
   9 *
  10 * For licensing information, see the file 'LICENCE' in this directory.
  11 *
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/kernel.h>
  17#include <linux/slab.h>
  18#include <linux/mtd/mtd.h>
  19#include <linux/crc32.h>
  20#include <linux/mtd/nand.h>
  21#include <linux/jiffies.h>
  22#include <linux/sched.h>
  23#include <linux/writeback.h>
  24
  25#include "nodelist.h"
  26
  27/* For testing write failures */
  28#undef BREAKME
  29#undef BREAKMEHEADER
  30
  31#ifdef BREAKME
  32static unsigned char *brokenbuf;
  33#endif
  34
  35#define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
  36#define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
  37
  38/* max. erase failures before we mark a block bad */
  39#define MAX_ERASE_FAILURES 	2
  40
  41struct jffs2_inodirty {
  42	uint32_t ino;
  43	struct jffs2_inodirty *next;
  44};
  45
  46static struct jffs2_inodirty inodirty_nomem;
  47
  48static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
  49{
  50	struct jffs2_inodirty *this = c->wbuf_inodes;
  51
  52	/* If a malloc failed, consider _everything_ dirty */
  53	if (this == &inodirty_nomem)
  54		return 1;
  55
  56	/* If ino == 0, _any_ non-GC writes mean 'yes' */
  57	if (this && !ino)
  58		return 1;
  59
  60	/* Look to see if the inode in question is pending in the wbuf */
  61	while (this) {
  62		if (this->ino == ino)
  63			return 1;
  64		this = this->next;
  65	}
  66	return 0;
  67}
  68
  69static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
  70{
  71	struct jffs2_inodirty *this;
  72
  73	this = c->wbuf_inodes;
  74
  75	if (this != &inodirty_nomem) {
  76		while (this) {
  77			struct jffs2_inodirty *next = this->next;
  78			kfree(this);
  79			this = next;
  80		}
  81	}
  82	c->wbuf_inodes = NULL;
  83}
  84
  85static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
  86{
  87	struct jffs2_inodirty *new;
  88
  89	/* Schedule delayed write-buffer write-out */
  90	jffs2_dirty_trigger(c);
  91
  92	if (jffs2_wbuf_pending_for_ino(c, ino))
  93		return;
  94
  95	new = kmalloc(sizeof(*new), GFP_KERNEL);
  96	if (!new) {
  97		jffs2_dbg(1, "No memory to allocate inodirty. Fallback to all considered dirty\n");
  98		jffs2_clear_wbuf_ino_list(c);
  99		c->wbuf_inodes = &inodirty_nomem;
 100		return;
 101	}
 102	new->ino = ino;
 103	new->next = c->wbuf_inodes;
 104	c->wbuf_inodes = new;
 105	return;
 106}
 107
 108static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
 109{
 110	struct list_head *this, *next;
 111	static int n;
 112
 113	if (list_empty(&c->erasable_pending_wbuf_list))
 114		return;
 115
 116	list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
 117		struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
 118
 119		jffs2_dbg(1, "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n",
 120			  jeb->offset);
 121		list_del(this);
 122		if ((jiffies + (n++)) & 127) {
 123			/* Most of the time, we just erase it immediately. Otherwise we
 124			   spend ages scanning it on mount, etc. */
 125			jffs2_dbg(1, "...and adding to erase_pending_list\n");
 126			list_add_tail(&jeb->list, &c->erase_pending_list);
 127			c->nr_erasing_blocks++;
 128			jffs2_garbage_collect_trigger(c);
 129		} else {
 130			/* Sometimes, however, we leave it elsewhere so it doesn't get
 131			   immediately reused, and we spread the load a bit. */
 132			jffs2_dbg(1, "...and adding to erasable_list\n");
 133			list_add_tail(&jeb->list, &c->erasable_list);
 134		}
 135	}
 136}
 137
 138#define REFILE_NOTEMPTY 0
 139#define REFILE_ANYWAY   1
 140
 141static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
 142{
 143	jffs2_dbg(1, "About to refile bad block at %08x\n", jeb->offset);
 144
 145	/* File the existing block on the bad_used_list.... */
 146	if (c->nextblock == jeb)
 147		c->nextblock = NULL;
 148	else /* Not sure this should ever happen... need more coffee */
 149		list_del(&jeb->list);
 150	if (jeb->first_node) {
 151		jffs2_dbg(1, "Refiling block at %08x to bad_used_list\n",
 152			  jeb->offset);
 153		list_add(&jeb->list, &c->bad_used_list);
 154	} else {
 155		BUG_ON(allow_empty == REFILE_NOTEMPTY);
 156		/* It has to have had some nodes or we couldn't be here */
 157		jffs2_dbg(1, "Refiling block at %08x to erase_pending_list\n",
 158			  jeb->offset);
 159		list_add(&jeb->list, &c->erase_pending_list);
 160		c->nr_erasing_blocks++;
 161		jffs2_garbage_collect_trigger(c);
 162	}
 163
 164	if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) {
 165		uint32_t oldfree = jeb->free_size;
 166
 167		jffs2_link_node_ref(c, jeb, 
 168				    (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE,
 169				    oldfree, NULL);
 170		/* convert to wasted */
 171		c->wasted_size += oldfree;
 172		jeb->wasted_size += oldfree;
 173		c->dirty_size -= oldfree;
 174		jeb->dirty_size -= oldfree;
 175	}
 176
 177	jffs2_dbg_dump_block_lists_nolock(c);
 178	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
 179	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
 180}
 181
 182static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c,
 183							    struct jffs2_inode_info *f,
 184							    struct jffs2_raw_node_ref *raw,
 185							    union jffs2_node_union *node)
 186{
 187	struct jffs2_node_frag *frag;
 188	struct jffs2_full_dirent *fd;
 189
 190	dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n",
 191		    node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype));
 192
 193	BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 &&
 194	       je16_to_cpu(node->u.magic) != 0);
 195
 196	switch (je16_to_cpu(node->u.nodetype)) {
 197	case JFFS2_NODETYPE_INODE:
 198		if (f->metadata && f->metadata->raw == raw) {
 199			dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata);
 200			return &f->metadata->raw;
 201		}
 202		frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset));
 203		BUG_ON(!frag);
 204		/* Find a frag which refers to the full_dnode we want to modify */
 205		while (!frag->node || frag->node->raw != raw) {
 206			frag = frag_next(frag);
 207			BUG_ON(!frag);
 208		}
 209		dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node);
 210		return &frag->node->raw;
 211
 212	case JFFS2_NODETYPE_DIRENT:
 213		for (fd = f->dents; fd; fd = fd->next) {
 214			if (fd->raw == raw) {
 215				dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd);
 216				return &fd->raw;
 217			}
 218		}
 219		BUG();
 220
 221	default:
 222		dbg_noderef("Don't care about replacing raw for nodetype %x\n",
 223			    je16_to_cpu(node->u.nodetype));
 224		break;
 225	}
 226	return NULL;
 227}
 228
 229#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
 230static int jffs2_verify_write(struct jffs2_sb_info *c, unsigned char *buf,
 231			      uint32_t ofs)
 232{
 233	int ret;
 234	size_t retlen;
 235	char *eccstr;
 236
 237	ret = mtd_read(c->mtd, ofs, c->wbuf_pagesize, &retlen, c->wbuf_verify);
 238	if (ret && ret != -EUCLEAN && ret != -EBADMSG) {
 239		pr_warn("%s(): Read back of page at %08x failed: %d\n",
 240			__func__, c->wbuf_ofs, ret);
 241		return ret;
 242	} else if (retlen != c->wbuf_pagesize) {
 243		pr_warn("%s(): Read back of page at %08x gave short read: %zd not %d\n",
 244			__func__, ofs, retlen, c->wbuf_pagesize);
 245		return -EIO;
 246	}
 247	if (!memcmp(buf, c->wbuf_verify, c->wbuf_pagesize))
 248		return 0;
 249
 250	if (ret == -EUCLEAN)
 251		eccstr = "corrected";
 252	else if (ret == -EBADMSG)
 253		eccstr = "correction failed";
 254	else
 255		eccstr = "OK or unused";
 256
 257	pr_warn("Write verify error (ECC %s) at %08x. Wrote:\n",
 258		eccstr, c->wbuf_ofs);
 259	print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
 260		       c->wbuf, c->wbuf_pagesize, 0);
 261
 262	pr_warn("Read back:\n");
 263	print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
 264		       c->wbuf_verify, c->wbuf_pagesize, 0);
 265
 266	return -EIO;
 267}
 268#else
 269#define jffs2_verify_write(c,b,o) (0)
 270#endif
 271
 272/* Recover from failure to write wbuf. Recover the nodes up to the
 273 * wbuf, not the one which we were starting to try to write. */
 274
 275static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
 276{
 277	struct jffs2_eraseblock *jeb, *new_jeb;
 278	struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL;
 279	size_t retlen;
 280	int ret;
 281	int nr_refile = 0;
 282	unsigned char *buf;
 283	uint32_t start, end, ofs, len;
 284
 285	jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
 286
 287	spin_lock(&c->erase_completion_lock);
 288	if (c->wbuf_ofs % c->mtd->erasesize)
 289		jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
 290	else
 291		jffs2_block_refile(c, jeb, REFILE_ANYWAY);
 292	spin_unlock(&c->erase_completion_lock);
 293
 294	BUG_ON(!ref_obsolete(jeb->last_node));
 295
 296	/* Find the first node to be recovered, by skipping over every
 297	   node which ends before the wbuf starts, or which is obsolete. */
 298	for (next = raw = jeb->first_node; next; raw = next) {
 299		next = ref_next(raw);
 300
 301		if (ref_obsolete(raw) || 
 302		    (next && ref_offset(next) <= c->wbuf_ofs)) {
 303			dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
 304				    ref_offset(raw), ref_flags(raw),
 305				    (ref_offset(raw) + ref_totlen(c, jeb, raw)),
 306				    c->wbuf_ofs);
 307			continue;
 308		}
 309		dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n",
 310			    ref_offset(raw), ref_flags(raw),
 311			    (ref_offset(raw) + ref_totlen(c, jeb, raw)));
 312
 313		first_raw = raw;
 314		break;
 315	}
 316
 317	if (!first_raw) {
 318		/* All nodes were obsolete. Nothing to recover. */
 319		jffs2_dbg(1, "No non-obsolete nodes to be recovered. Just filing block bad\n");
 320		c->wbuf_len = 0;
 321		return;
 322	}
 323
 324	start = ref_offset(first_raw);
 325	end = ref_offset(jeb->last_node);
 326	nr_refile = 1;
 327
 328	/* Count the number of refs which need to be copied */
 329	while ((raw = ref_next(raw)) != jeb->last_node)
 330		nr_refile++;
 331
 332	dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n",
 333		    start, end, end - start, nr_refile);
 334
 335	buf = NULL;
 336	if (start < c->wbuf_ofs) {
 337		/* First affected node was already partially written.
 338		 * Attempt to reread the old data into our buffer. */
 339
 340		buf = kmalloc(end - start, GFP_KERNEL);
 341		if (!buf) {
 342			pr_crit("Malloc failure in wbuf recovery. Data loss ensues.\n");
 343
 344			goto read_failed;
 345		}
 346
 347		/* Do the read... */
 348		ret = mtd_read(c->mtd, start, c->wbuf_ofs - start, &retlen,
 349			       buf);
 350
 351		/* ECC recovered ? */
 352		if ((ret == -EUCLEAN || ret == -EBADMSG) &&
 353		    (retlen == c->wbuf_ofs - start))
 354			ret = 0;
 355
 356		if (ret || retlen != c->wbuf_ofs - start) {
 357			pr_crit("Old data are already lost in wbuf recovery. Data loss ensues.\n");
 358
 359			kfree(buf);
 360			buf = NULL;
 361		read_failed:
 362			first_raw = ref_next(first_raw);
 363			nr_refile--;
 364			while (first_raw && ref_obsolete(first_raw)) {
 365				first_raw = ref_next(first_raw);
 366				nr_refile--;
 367			}
 368
 369			/* If this was the only node to be recovered, give up */
 370			if (!first_raw) {
 371				c->wbuf_len = 0;
 372				return;
 373			}
 374
 375			/* It wasn't. Go on and try to recover nodes complete in the wbuf */
 376			start = ref_offset(first_raw);
 377			dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n",
 378				    start, end, end - start, nr_refile);
 379
 380		} else {
 381			/* Read succeeded. Copy the remaining data from the wbuf */
 382			memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
 383		}
 384	}
 385	/* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
 386	   Either 'buf' contains the data, or we find it in the wbuf */
 387
 388	/* ... and get an allocation of space from a shiny new block instead */
 389	ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
 390	if (ret) {
 391		pr_warn("Failed to allocate space for wbuf recovery. Data loss ensues.\n");
 392		kfree(buf);
 393		return;
 394	}
 395
 396	/* The summary is not recovered, so it must be disabled for this erase block */
 397	jffs2_sum_disable_collecting(c->summary);
 398
 399	ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
 400	if (ret) {
 401		pr_warn("Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
 402		kfree(buf);
 403		return;
 404	}
 405
 406	ofs = write_ofs(c);
 407
 408	if (end-start >= c->wbuf_pagesize) {
 409		/* Need to do another write immediately, but it's possible
 410		   that this is just because the wbuf itself is completely
 411		   full, and there's nothing earlier read back from the
 412		   flash. Hence 'buf' isn't necessarily what we're writing
 413		   from. */
 414		unsigned char *rewrite_buf = buf?:c->wbuf;
 415		uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
 416
 417		jffs2_dbg(1, "Write 0x%x bytes at 0x%08x in wbuf recover\n",
 418			  towrite, ofs);
 419
 420#ifdef BREAKMEHEADER
 421		static int breakme;
 422		if (breakme++ == 20) {
 423			pr_notice("Faking write error at 0x%08x\n", ofs);
 424			breakme = 0;
 425			mtd_write(c->mtd, ofs, towrite, &retlen, brokenbuf);
 426			ret = -EIO;
 427		} else
 428#endif
 429			ret = mtd_write(c->mtd, ofs, towrite, &retlen,
 430					rewrite_buf);
 431
 432		if (ret || retlen != towrite || jffs2_verify_write(c, rewrite_buf, ofs)) {
 433			/* Argh. We tried. Really we did. */
 434			pr_crit("Recovery of wbuf failed due to a second write error\n");
 435			kfree(buf);
 436
 437			if (retlen)
 438				jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL);
 439
 440			return;
 441		}
 442		pr_notice("Recovery of wbuf succeeded to %08x\n", ofs);
 443
 444		c->wbuf_len = (end - start) - towrite;
 445		c->wbuf_ofs = ofs + towrite;
 446		memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
 447		/* Don't muck about with c->wbuf_inodes. False positives are harmless. */
 448	} else {
 449		/* OK, now we're left with the dregs in whichever buffer we're using */
 450		if (buf) {
 451			memcpy(c->wbuf, buf, end-start);
 452		} else {
 453			memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
 454		}
 455		c->wbuf_ofs = ofs;
 456		c->wbuf_len = end - start;
 457	}
 458
 459	/* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
 460	new_jeb = &c->blocks[ofs / c->sector_size];
 461
 462	spin_lock(&c->erase_completion_lock);
 463	for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) {
 464		uint32_t rawlen = ref_totlen(c, jeb, raw);
 465		struct jffs2_inode_cache *ic;
 466		struct jffs2_raw_node_ref *new_ref;
 467		struct jffs2_raw_node_ref **adjust_ref = NULL;
 468		struct jffs2_inode_info *f = NULL;
 469
 470		jffs2_dbg(1, "Refiling block of %08x at %08x(%d) to %08x\n",
 471			  rawlen, ref_offset(raw), ref_flags(raw), ofs);
 472
 473		ic = jffs2_raw_ref_to_ic(raw);
 474
 475		/* Ick. This XATTR mess should be fixed shortly... */
 476		if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) {
 477			struct jffs2_xattr_datum *xd = (void *)ic;
 478			BUG_ON(xd->node != raw);
 479			adjust_ref = &xd->node;
 480			raw->next_in_ino = NULL;
 481			ic = NULL;
 482		} else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) {
 483			struct jffs2_xattr_datum *xr = (void *)ic;
 484			BUG_ON(xr->node != raw);
 485			adjust_ref = &xr->node;
 486			raw->next_in_ino = NULL;
 487			ic = NULL;
 488		} else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) {
 489			struct jffs2_raw_node_ref **p = &ic->nodes;
 490
 491			/* Remove the old node from the per-inode list */
 492			while (*p && *p != (void *)ic) {
 493				if (*p == raw) {
 494					(*p) = (raw->next_in_ino);
 495					raw->next_in_ino = NULL;
 496					break;
 497				}
 498				p = &((*p)->next_in_ino);
 499			}
 500
 501			if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) {
 502				/* If it's an in-core inode, then we have to adjust any
 503				   full_dirent or full_dnode structure to point to the
 504				   new version instead of the old */
 505				f = jffs2_gc_fetch_inode(c, ic->ino, !ic->pino_nlink);
 506				if (IS_ERR(f)) {
 507					/* Should never happen; it _must_ be present */
 508					JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n",
 509						    ic->ino, PTR_ERR(f));
 510					BUG();
 511				}
 512				/* We don't lock f->sem. There's a number of ways we could
 513				   end up in here with it already being locked, and nobody's
 514				   going to modify it on us anyway because we hold the
 515				   alloc_sem. We're only changing one ->raw pointer too,
 516				   which we can get away with without upsetting readers. */
 517				adjust_ref = jffs2_incore_replace_raw(c, f, raw,
 518								      (void *)(buf?:c->wbuf) + (ref_offset(raw) - start));
 519			} else if (unlikely(ic->state != INO_STATE_PRESENT &&
 520					    ic->state != INO_STATE_CHECKEDABSENT &&
 521					    ic->state != INO_STATE_GC)) {
 522				JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state);
 523				BUG();
 524			}
 525		}
 526
 527		new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic);
 528
 529		if (adjust_ref) {
 530			BUG_ON(*adjust_ref != raw);
 531			*adjust_ref = new_ref;
 532		}
 533		if (f)
 534			jffs2_gc_release_inode(c, f);
 535
 536		if (!ref_obsolete(raw)) {
 537			jeb->dirty_size += rawlen;
 538			jeb->used_size  -= rawlen;
 539			c->dirty_size += rawlen;
 540			c->used_size -= rawlen;
 541			raw->flash_offset = ref_offset(raw) | REF_OBSOLETE;
 542			BUG_ON(raw->next_in_ino);
 543		}
 544		ofs += rawlen;
 545	}
 546
 547	kfree(buf);
 548
 549	/* Fix up the original jeb now it's on the bad_list */
 550	if (first_raw == jeb->first_node) {
 551		jffs2_dbg(1, "Failing block at %08x is now empty. Moving to erase_pending_list\n",
 552			  jeb->offset);
 553		list_move(&jeb->list, &c->erase_pending_list);
 554		c->nr_erasing_blocks++;
 555		jffs2_garbage_collect_trigger(c);
 556	}
 557
 558	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
 559	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
 560
 561	jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
 562	jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
 563
 564	spin_unlock(&c->erase_completion_lock);
 565
 566	jffs2_dbg(1, "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n",
 567		  c->wbuf_ofs, c->wbuf_len);
 568
 569}
 570
 571/* Meaning of pad argument:
 572   0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
 573   1: Pad, do not adjust nextblock free_size
 574   2: Pad, adjust nextblock free_size
 575*/
 576#define NOPAD		0
 577#define PAD_NOACCOUNT	1
 578#define PAD_ACCOUNTING	2
 579
 580static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
 581{
 582	struct jffs2_eraseblock *wbuf_jeb;
 583	int ret;
 584	size_t retlen;
 585
 586	/* Nothing to do if not write-buffering the flash. In particular, we shouldn't
 587	   del_timer() the timer we never initialised. */
 588	if (!jffs2_is_writebuffered(c))
 589		return 0;
 590
 591	if (!mutex_is_locked(&c->alloc_sem)) {
 592		pr_crit("jffs2_flush_wbuf() called with alloc_sem not locked!\n");
 593		BUG();
 594	}
 595
 596	if (!c->wbuf_len)	/* already checked c->wbuf above */
 597		return 0;
 598
 599	wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
 600	if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1))
 601		return -ENOMEM;
 602
 603	/* claim remaining space on the page
 604	   this happens, if we have a change to a new block,
 605	   or if fsync forces us to flush the writebuffer.
 606	   if we have a switch to next page, we will not have
 607	   enough remaining space for this.
 608	*/
 609	if (pad ) {
 610		c->wbuf_len = PAD(c->wbuf_len);
 611
 612		/* Pad with JFFS2_DIRTY_BITMASK initially.  this helps out ECC'd NOR
 613		   with 8 byte page size */
 614		memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
 615
 616		if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
 617			struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
 618			padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
 619			padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
 620			padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
 621			padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
 622		}
 623	}
 624	/* else jffs2_flash_writev has actually filled in the rest of the
 625	   buffer for us, and will deal with the node refs etc. later. */
 626
 627#ifdef BREAKME
 628	static int breakme;
 629	if (breakme++ == 20) {
 630		pr_notice("Faking write error at 0x%08x\n", c->wbuf_ofs);
 631		breakme = 0;
 632		mtd_write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
 633			  brokenbuf);
 634		ret = -EIO;
 635	} else
 636#endif
 637
 638		ret = mtd_write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize,
 639				&retlen, c->wbuf);
 640
 641	if (ret) {
 642		pr_warn("jffs2_flush_wbuf(): Write failed with %d\n", ret);
 643		goto wfail;
 644	} else if (retlen != c->wbuf_pagesize) {
 645		pr_warn("jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
 646			retlen, c->wbuf_pagesize);
 647		ret = -EIO;
 648		goto wfail;
 649	} else if ((ret = jffs2_verify_write(c, c->wbuf, c->wbuf_ofs))) {
 650	wfail:
 651		jffs2_wbuf_recover(c);
 652
 653		return ret;
 654	}
 655
 656	/* Adjust free size of the block if we padded. */
 657	if (pad) {
 658		uint32_t waste = c->wbuf_pagesize - c->wbuf_len;
 659
 660		jffs2_dbg(1, "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
 661			  (wbuf_jeb == c->nextblock) ? "next" : "",
 662			  wbuf_jeb->offset);
 663
 664		/* wbuf_pagesize - wbuf_len is the amount of space that's to be
 665		   padded. If there is less free space in the block than that,
 666		   something screwed up */
 667		if (wbuf_jeb->free_size < waste) {
 668			pr_crit("jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
 669				c->wbuf_ofs, c->wbuf_len, waste);
 670			pr_crit("jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
 671				wbuf_jeb->offset, wbuf_jeb->free_size);
 672			BUG();
 673		}
 674
 675		spin_lock(&c->erase_completion_lock);
 676
 677		jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL);
 678		/* FIXME: that made it count as dirty. Convert to wasted */
 679		wbuf_jeb->dirty_size -= waste;
 680		c->dirty_size -= waste;
 681		wbuf_jeb->wasted_size += waste;
 682		c->wasted_size += waste;
 683	} else
 684		spin_lock(&c->erase_completion_lock);
 685
 686	/* Stick any now-obsoleted blocks on the erase_pending_list */
 687	jffs2_refile_wbuf_blocks(c);
 688	jffs2_clear_wbuf_ino_list(c);
 689	spin_unlock(&c->erase_completion_lock);
 690
 691	memset(c->wbuf,0xff,c->wbuf_pagesize);
 692	/* adjust write buffer offset, else we get a non contiguous write bug */
 693	c->wbuf_ofs += c->wbuf_pagesize;
 694	c->wbuf_len = 0;
 695	return 0;
 696}
 697
 698/* Trigger garbage collection to flush the write-buffer.
 699   If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
 700   outstanding. If ino arg non-zero, do it only if a write for the
 701   given inode is outstanding. */
 702int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
 703{
 704	uint32_t old_wbuf_ofs;
 705	uint32_t old_wbuf_len;
 706	int ret = 0;
 707
 708	jffs2_dbg(1, "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino);
 709
 710	if (!c->wbuf)
 711		return 0;
 712
 713	mutex_lock(&c->alloc_sem);
 714	if (!jffs2_wbuf_pending_for_ino(c, ino)) {
 715		jffs2_dbg(1, "Ino #%d not pending in wbuf. Returning\n", ino);
 716		mutex_unlock(&c->alloc_sem);
 717		return 0;
 718	}
 719
 720	old_wbuf_ofs = c->wbuf_ofs;
 721	old_wbuf_len = c->wbuf_len;
 722
 723	if (c->unchecked_size) {
 724		/* GC won't make any progress for a while */
 725		jffs2_dbg(1, "%s(): padding. Not finished checking\n",
 726			  __func__);
 727		down_write(&c->wbuf_sem);
 728		ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
 729		/* retry flushing wbuf in case jffs2_wbuf_recover
 730		   left some data in the wbuf */
 731		if (ret)
 732			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
 733		up_write(&c->wbuf_sem);
 734	} else while (old_wbuf_len &&
 735		      old_wbuf_ofs == c->wbuf_ofs) {
 736
 737		mutex_unlock(&c->alloc_sem);
 738
 739		jffs2_dbg(1, "%s(): calls gc pass\n", __func__);
 740
 741		ret = jffs2_garbage_collect_pass(c);
 742		if (ret) {
 743			/* GC failed. Flush it with padding instead */
 744			mutex_lock(&c->alloc_sem);
 745			down_write(&c->wbuf_sem);
 746			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
 747			/* retry flushing wbuf in case jffs2_wbuf_recover
 748			   left some data in the wbuf */
 749			if (ret)
 750				ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
 751			up_write(&c->wbuf_sem);
 752			break;
 753		}
 754		mutex_lock(&c->alloc_sem);
 755	}
 756
 757	jffs2_dbg(1, "%s(): ends...\n", __func__);
 758
 759	mutex_unlock(&c->alloc_sem);
 760	return ret;
 761}
 762
 763/* Pad write-buffer to end and write it, wasting space. */
 764int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
 765{
 766	int ret;
 767
 768	if (!c->wbuf)
 769		return 0;
 770
 771	down_write(&c->wbuf_sem);
 772	ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
 773	/* retry - maybe wbuf recover left some data in wbuf. */
 774	if (ret)
 775		ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
 776	up_write(&c->wbuf_sem);
 777
 778	return ret;
 779}
 780
 781static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
 782			      size_t len)
 783{
 784	if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
 785		return 0;
 786
 787	if (len > (c->wbuf_pagesize - c->wbuf_len))
 788		len = c->wbuf_pagesize - c->wbuf_len;
 789	memcpy(c->wbuf + c->wbuf_len, buf, len);
 790	c->wbuf_len += (uint32_t) len;
 791	return len;
 792}
 793
 794int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
 795		       unsigned long count, loff_t to, size_t *retlen,
 796		       uint32_t ino)
 797{
 798	struct jffs2_eraseblock *jeb;
 799	size_t wbuf_retlen, donelen = 0;
 800	uint32_t outvec_to = to;
 801	int ret, invec;
 802
 803	/* If not writebuffered flash, don't bother */
 804	if (!jffs2_is_writebuffered(c))
 805		return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
 806
 807	down_write(&c->wbuf_sem);
 808
 809	/* If wbuf_ofs is not initialized, set it to target address */
 810	if (c->wbuf_ofs == 0xFFFFFFFF) {
 811		c->wbuf_ofs = PAGE_DIV(to);
 812		c->wbuf_len = PAGE_MOD(to);
 813		memset(c->wbuf,0xff,c->wbuf_pagesize);
 814	}
 815
 816	/*
 817	 * Sanity checks on target address.  It's permitted to write
 818	 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
 819	 * write at the beginning of a new erase block. Anything else,
 820	 * and you die.  New block starts at xxx000c (0-b = block
 821	 * header)
 822	 */
 823	if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
 824		/* It's a write to a new block */
 825		if (c->wbuf_len) {
 826			jffs2_dbg(1, "%s(): to 0x%lx causes flush of wbuf at 0x%08x\n",
 827				  __func__, (unsigned long)to, c->wbuf_ofs);
 828			ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
 829			if (ret)
 830				goto outerr;
 831		}
 832		/* set pointer to new block */
 833		c->wbuf_ofs = PAGE_DIV(to);
 834		c->wbuf_len = PAGE_MOD(to);
 835	}
 836
 837	if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
 838		/* We're not writing immediately after the writebuffer. Bad. */
 839		pr_crit("%s(): Non-contiguous write to %08lx\n",
 840			__func__, (unsigned long)to);
 841		if (c->wbuf_len)
 842			pr_crit("wbuf was previously %08x-%08x\n",
 843				c->wbuf_ofs, c->wbuf_ofs + c->wbuf_len);
 844		BUG();
 845	}
 846
 847	/* adjust alignment offset */
 848	if (c->wbuf_len != PAGE_MOD(to)) {
 849		c->wbuf_len = PAGE_MOD(to);
 850		/* take care of alignment to next page */
 851		if (!c->wbuf_len) {
 852			c->wbuf_len = c->wbuf_pagesize;
 853			ret = __jffs2_flush_wbuf(c, NOPAD);
 854			if (ret)
 855				goto outerr;
 856		}
 857	}
 858
 859	for (invec = 0; invec < count; invec++) {
 860		int vlen = invecs[invec].iov_len;
 861		uint8_t *v = invecs[invec].iov_base;
 862
 863		wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
 864
 865		if (c->wbuf_len == c->wbuf_pagesize) {
 866			ret = __jffs2_flush_wbuf(c, NOPAD);
 867			if (ret)
 868				goto outerr;
 869		}
 870		vlen -= wbuf_retlen;
 871		outvec_to += wbuf_retlen;
 872		donelen += wbuf_retlen;
 873		v += wbuf_retlen;
 874
 875		if (vlen >= c->wbuf_pagesize) {
 876			ret = mtd_write(c->mtd, outvec_to, PAGE_DIV(vlen),
 877					&wbuf_retlen, v);
 878			if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
 879				goto outfile;
 880
 881			vlen -= wbuf_retlen;
 882			outvec_to += wbuf_retlen;
 883			c->wbuf_ofs = outvec_to;
 884			donelen += wbuf_retlen;
 885			v += wbuf_retlen;
 886		}
 887
 888		wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
 889		if (c->wbuf_len == c->wbuf_pagesize) {
 890			ret = __jffs2_flush_wbuf(c, NOPAD);
 891			if (ret)
 892				goto outerr;
 893		}
 894
 895		outvec_to += wbuf_retlen;
 896		donelen += wbuf_retlen;
 897	}
 898
 899	/*
 900	 * If there's a remainder in the wbuf and it's a non-GC write,
 901	 * remember that the wbuf affects this ino
 902	 */
 903	*retlen = donelen;
 904
 905	if (jffs2_sum_active()) {
 906		int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
 907		if (res)
 908			return res;
 909	}
 910
 911	if (c->wbuf_len && ino)
 912		jffs2_wbuf_dirties_inode(c, ino);
 913
 914	ret = 0;
 915	up_write(&c->wbuf_sem);
 916	return ret;
 917
 918outfile:
 919	/*
 920	 * At this point we have no problem, c->wbuf is empty. However
 921	 * refile nextblock to avoid writing again to same address.
 922	 */
 923
 924	spin_lock(&c->erase_completion_lock);
 925
 926	jeb = &c->blocks[outvec_to / c->sector_size];
 927	jffs2_block_refile(c, jeb, REFILE_ANYWAY);
 928
 929	spin_unlock(&c->erase_completion_lock);
 930
 931outerr:
 932	*retlen = 0;
 933	up_write(&c->wbuf_sem);
 934	return ret;
 935}
 936
 937/*
 938 *	This is the entry for flash write.
 939 *	Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
 940*/
 941int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len,
 942		      size_t *retlen, const u_char *buf)
 943{
 944	struct kvec vecs[1];
 945
 946	if (!jffs2_is_writebuffered(c))
 947		return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
 948
 949	vecs[0].iov_base = (unsigned char *) buf;
 950	vecs[0].iov_len = len;
 951	return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
 952}
 953
 954/*
 955	Handle readback from writebuffer and ECC failure return
 956*/
 957int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
 958{
 959	loff_t	orbf = 0, owbf = 0, lwbf = 0;
 960	int	ret;
 961
 962	if (!jffs2_is_writebuffered(c))
 963		return mtd_read(c->mtd, ofs, len, retlen, buf);
 964
 965	/* Read flash */
 966	down_read(&c->wbuf_sem);
 967	ret = mtd_read(c->mtd, ofs, len, retlen, buf);
 968
 969	if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) {
 970		if (ret == -EBADMSG)
 971			pr_warn("mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n",
 972				len, ofs);
 973		/*
 974		 * We have the raw data without ECC correction in the buffer,
 975		 * maybe we are lucky and all data or parts are correct. We
 976		 * check the node.  If data are corrupted node check will sort
 977		 * it out.  We keep this block, it will fail on write or erase
 978		 * and the we mark it bad. Or should we do that now? But we
 979		 * should give him a chance.  Maybe we had a system crash or
 980		 * power loss before the ecc write or a erase was completed.
 981		 * So we return success. :)
 982		 */
 983		ret = 0;
 984	}
 985
 986	/* if no writebuffer available or write buffer empty, return */
 987	if (!c->wbuf_pagesize || !c->wbuf_len)
 988		goto exit;
 989
 990	/* if we read in a different block, return */
 991	if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
 992		goto exit;
 993
 994	if (ofs >= c->wbuf_ofs) {
 995		owbf = (ofs - c->wbuf_ofs);	/* offset in write buffer */
 996		if (owbf > c->wbuf_len)		/* is read beyond write buffer ? */
 997			goto exit;
 998		lwbf = c->wbuf_len - owbf;	/* number of bytes to copy */
 999		if (lwbf > len)
1000			lwbf = len;
1001	} else {
1002		orbf = (c->wbuf_ofs - ofs);	/* offset in read buffer */
1003		if (orbf > len)			/* is write beyond write buffer ? */
1004			goto exit;
1005		lwbf = len - orbf;		/* number of bytes to copy */
1006		if (lwbf > c->wbuf_len)
1007			lwbf = c->wbuf_len;
1008	}
1009	if (lwbf > 0)
1010		memcpy(buf+orbf,c->wbuf+owbf,lwbf);
1011
1012exit:
1013	up_read(&c->wbuf_sem);
1014	return ret;
1015}
1016
1017#define NR_OOB_SCAN_PAGES 4
1018
1019/* For historical reasons we use only 8 bytes for OOB clean marker */
1020#define OOB_CM_SIZE 8
1021
1022static const struct jffs2_unknown_node oob_cleanmarker =
1023{
1024	.magic = constant_cpu_to_je16(JFFS2_MAGIC_BITMASK),
1025	.nodetype = constant_cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER),
1026	.totlen = constant_cpu_to_je32(8)
1027};
1028
1029/*
1030 * Check, if the out of band area is empty. This function knows about the clean
1031 * marker and if it is present in OOB, treats the OOB as empty anyway.
1032 */
1033int jffs2_check_oob_empty(struct jffs2_sb_info *c,
1034			  struct jffs2_eraseblock *jeb, int mode)
1035{
1036	int i, ret;
1037	int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1038	struct mtd_oob_ops ops;
1039
1040	ops.mode = MTD_OPS_AUTO_OOB;
1041	ops.ooblen = NR_OOB_SCAN_PAGES * c->oobavail;
1042	ops.oobbuf = c->oobbuf;
1043	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1044	ops.datbuf = NULL;
1045
1046	ret = mtd_read_oob(c->mtd, jeb->offset, &ops);
1047	if (ret || ops.oobretlen != ops.ooblen) {
1048		pr_err("cannot read OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n",
1049		       jeb->offset, ops.ooblen, ops.oobretlen, ret);
1050		if (!ret)
1051			ret = -EIO;
1052		return ret;
1053	}
1054
1055	for(i = 0; i < ops.ooblen; i++) {
1056		if (mode && i < cmlen)
1057			/* Yeah, we know about the cleanmarker */
1058			continue;
1059
1060		if (ops.oobbuf[i] != 0xFF) {
1061			jffs2_dbg(2, "Found %02x at %x in OOB for "
1062				  "%08x\n", ops.oobbuf[i], i, jeb->offset);
1063			return 1;
1064		}
1065	}
1066
1067	return 0;
1068}
1069
1070/*
1071 * Check for a valid cleanmarker.
1072 * Returns: 0 if a valid cleanmarker was found
1073 *	    1 if no cleanmarker was found
1074 *	    negative error code if an error occurred
1075 */
1076int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c,
1077				 struct jffs2_eraseblock *jeb)
1078{
1079	struct mtd_oob_ops ops;
1080	int ret, cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1081
1082	ops.mode = MTD_OPS_AUTO_OOB;
1083	ops.ooblen = cmlen;
1084	ops.oobbuf = c->oobbuf;
1085	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1086	ops.datbuf = NULL;
1087
1088	ret = mtd_read_oob(c->mtd, jeb->offset, &ops);
1089	if (ret || ops.oobretlen != ops.ooblen) {
1090		pr_err("cannot read OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n",
1091		       jeb->offset, ops.ooblen, ops.oobretlen, ret);
1092		if (!ret)
1093			ret = -EIO;
1094		return ret;
1095	}
1096
1097	return !!memcmp(&oob_cleanmarker, c->oobbuf, cmlen);
1098}
1099
1100int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c,
1101				 struct jffs2_eraseblock *jeb)
1102{
1103	int ret;
1104	struct mtd_oob_ops ops;
1105	int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1106
1107	ops.mode = MTD_OPS_AUTO_OOB;
1108	ops.ooblen = cmlen;
1109	ops.oobbuf = (uint8_t *)&oob_cleanmarker;
1110	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1111	ops.datbuf = NULL;
1112
1113	ret = mtd_write_oob(c->mtd, jeb->offset, &ops);
1114	if (ret || ops.oobretlen != ops.ooblen) {
1115		pr_err("cannot write OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n",
1116		       jeb->offset, ops.ooblen, ops.oobretlen, ret);
1117		if (!ret)
1118			ret = -EIO;
1119		return ret;
1120	}
1121
1122	return 0;
1123}
1124
1125/*
1126 * On NAND we try to mark this block bad. If the block was erased more
1127 * than MAX_ERASE_FAILURES we mark it finally bad.
1128 * Don't care about failures. This block remains on the erase-pending
1129 * or badblock list as long as nobody manipulates the flash with
1130 * a bootloader or something like that.
1131 */
1132
1133int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1134{
1135	int 	ret;
1136
1137	/* if the count is < max, we try to write the counter to the 2nd page oob area */
1138	if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1139		return 0;
1140
1141	pr_warn("marking eraseblock at %08x as bad\n", bad_offset);
1142	ret = mtd_block_markbad(c->mtd, bad_offset);
1143
1144	if (ret) {
1145		jffs2_dbg(1, "%s(): Write failed for block at %08x: error %d\n",
1146			  __func__, jeb->offset, ret);
1147		return ret;
1148	}
1149	return 1;
1150}
1151
1152static struct jffs2_sb_info *work_to_sb(struct work_struct *work)
1153{
1154	struct delayed_work *dwork;
1155
1156	dwork = container_of(work, struct delayed_work, work);
1157	return container_of(dwork, struct jffs2_sb_info, wbuf_dwork);
1158}
1159
1160static void delayed_wbuf_sync(struct work_struct *work)
1161{
1162	struct jffs2_sb_info *c = work_to_sb(work);
1163	struct super_block *sb = OFNI_BS_2SFFJ(c);
1164
1165	spin_lock(&c->wbuf_dwork_lock);
1166	c->wbuf_queued = 0;
1167	spin_unlock(&c->wbuf_dwork_lock);
1168
1169	if (!(sb->s_flags & MS_RDONLY)) {
1170		jffs2_dbg(1, "%s()\n", __func__);
1171		jffs2_flush_wbuf_gc(c, 0);
1172	}
1173}
1174
1175void jffs2_dirty_trigger(struct jffs2_sb_info *c)
1176{
1177	struct super_block *sb = OFNI_BS_2SFFJ(c);
1178	unsigned long delay;
1179
1180	if (sb->s_flags & MS_RDONLY)
1181		return;
1182
1183	spin_lock(&c->wbuf_dwork_lock);
1184	if (!c->wbuf_queued) {
1185		jffs2_dbg(1, "%s()\n", __func__);
1186		delay = msecs_to_jiffies(dirty_writeback_interval * 10);
1187		queue_delayed_work(system_long_wq, &c->wbuf_dwork, delay);
1188		c->wbuf_queued = 1;
1189	}
1190	spin_unlock(&c->wbuf_dwork_lock);
1191}
1192
1193int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1194{
1195	struct nand_ecclayout *oinfo = c->mtd->ecclayout;
1196
1197	if (!c->mtd->oobsize)
1198		return 0;
1199
1200	/* Cleanmarker is out-of-band, so inline size zero */
1201	c->cleanmarker_size = 0;
1202
1203	if (!oinfo || oinfo->oobavail == 0) {
1204		pr_err("inconsistent device description\n");
1205		return -EINVAL;
1206	}
1207
1208	jffs2_dbg(1, "using OOB on NAND\n");
1209
1210	c->oobavail = oinfo->oobavail;
1211
1212	/* Initialise write buffer */
1213	init_rwsem(&c->wbuf_sem);
1214	spin_lock_init(&c->wbuf_dwork_lock);
1215	INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync);
1216	c->wbuf_pagesize = c->mtd->writesize;
1217	c->wbuf_ofs = 0xFFFFFFFF;
1218
1219	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1220	if (!c->wbuf)
1221		return -ENOMEM;
1222
1223	c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->oobavail, GFP_KERNEL);
1224	if (!c->oobbuf) {
1225		kfree(c->wbuf);
1226		return -ENOMEM;
1227	}
1228
1229#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1230	c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1231	if (!c->wbuf_verify) {
1232		kfree(c->oobbuf);
1233		kfree(c->wbuf);
1234		return -ENOMEM;
1235	}
1236#endif
1237	return 0;
1238}
1239
1240void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1241{
1242#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1243	kfree(c->wbuf_verify);
1244#endif
1245	kfree(c->wbuf);
1246	kfree(c->oobbuf);
1247}
1248
1249int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1250	c->cleanmarker_size = 0;		/* No cleanmarkers needed */
1251
1252	/* Initialize write buffer */
1253	init_rwsem(&c->wbuf_sem);
1254	spin_lock_init(&c->wbuf_dwork_lock);
1255	INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync);
1256	c->wbuf_pagesize =  c->mtd->erasesize;
1257
1258	/* Find a suitable c->sector_size
1259	 * - Not too much sectors
1260	 * - Sectors have to be at least 4 K + some bytes
1261	 * - All known dataflashes have erase sizes of 528 or 1056
1262	 * - we take at least 8 eraseblocks and want to have at least 8K size
1263	 * - The concatenation should be a power of 2
1264	*/
1265
1266	c->sector_size = 8 * c->mtd->erasesize;
1267
1268	while (c->sector_size < 8192) {
1269		c->sector_size *= 2;
1270	}
1271
1272	/* It may be necessary to adjust the flash size */
1273	c->flash_size = c->mtd->size;
1274
1275	if ((c->flash_size % c->sector_size) != 0) {
1276		c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
1277		pr_warn("flash size adjusted to %dKiB\n", c->flash_size);
1278	};
1279
1280	c->wbuf_ofs = 0xFFFFFFFF;
1281	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1282	if (!c->wbuf)
1283		return -ENOMEM;
1284
1285#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1286	c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1287	if (!c->wbuf_verify) {
1288		kfree(c->oobbuf);
1289		kfree(c->wbuf);
1290		return -ENOMEM;
1291	}
1292#endif
1293
1294	pr_info("write-buffering enabled buffer (%d) erasesize (%d)\n",
1295		c->wbuf_pagesize, c->sector_size);
1296
1297	return 0;
1298}
1299
1300void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
1301#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1302	kfree(c->wbuf_verify);
1303#endif
1304	kfree(c->wbuf);
1305}
1306
1307int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
1308	/* Cleanmarker currently occupies whole programming regions,
1309	 * either one or 2 for 8Byte STMicro flashes. */
1310	c->cleanmarker_size = max(16u, c->mtd->writesize);
1311
1312	/* Initialize write buffer */
1313	init_rwsem(&c->wbuf_sem);
1314	spin_lock_init(&c->wbuf_dwork_lock);
1315	INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync);
1316
1317	c->wbuf_pagesize = c->mtd->writesize;
1318	c->wbuf_ofs = 0xFFFFFFFF;
1319
1320	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1321	if (!c->wbuf)
1322		return -ENOMEM;
1323
1324#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1325	c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1326	if (!c->wbuf_verify) {
1327		kfree(c->wbuf);
1328		return -ENOMEM;
1329	}
1330#endif
1331	return 0;
1332}
1333
1334void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
1335#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1336	kfree(c->wbuf_verify);
1337#endif
1338	kfree(c->wbuf);
1339}
1340
1341int jffs2_ubivol_setup(struct jffs2_sb_info *c) {
1342	c->cleanmarker_size = 0;
1343
1344	if (c->mtd->writesize == 1)
1345		/* We do not need write-buffer */
1346		return 0;
1347
1348	init_rwsem(&c->wbuf_sem);
1349	spin_lock_init(&c->wbuf_dwork_lock);
1350	INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync);
1351
1352	c->wbuf_pagesize =  c->mtd->writesize;
1353	c->wbuf_ofs = 0xFFFFFFFF;
1354	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1355	if (!c->wbuf)
1356		return -ENOMEM;
1357
1358	pr_info("write-buffering enabled buffer (%d) erasesize (%d)\n",
1359		c->wbuf_pagesize, c->sector_size);
1360
1361	return 0;
1362}
1363
1364void jffs2_ubivol_cleanup(struct jffs2_sb_info *c) {
1365	kfree(c->wbuf);
1366}