Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Thunderbolt driver - switch/port utility functions
   4 *
   5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
   6 * Copyright (C) 2018, Intel Corporation
   7 */
   8
   9#include <linux/delay.h>
  10#include <linux/idr.h>
  11#include <linux/nvmem-provider.h>
  12#include <linux/pm_runtime.h>
  13#include <linux/sched/signal.h>
  14#include <linux/sizes.h>
  15#include <linux/slab.h>
  16#include <linux/vmalloc.h>
  17
  18#include "tb.h"
  19
  20/* Switch NVM support */
  21
  22#define NVM_DEVID		0x05
  23#define NVM_VERSION		0x08
  24#define NVM_CSS			0x10
  25#define NVM_FLASH_SIZE		0x45
  26
  27#define NVM_MIN_SIZE		SZ_32K
  28#define NVM_MAX_SIZE		SZ_512K
  29
  30static DEFINE_IDA(nvm_ida);
  31
  32struct nvm_auth_status {
  33	struct list_head list;
  34	uuid_t uuid;
  35	u32 status;
  36};
  37
  38/*
  39 * Hold NVM authentication failure status per switch This information
  40 * needs to stay around even when the switch gets power cycled so we
  41 * keep it separately.
  42 */
  43static LIST_HEAD(nvm_auth_status_cache);
  44static DEFINE_MUTEX(nvm_auth_status_lock);
  45
  46static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
  47{
  48	struct nvm_auth_status *st;
  49
  50	list_for_each_entry(st, &nvm_auth_status_cache, list) {
  51		if (uuid_equal(&st->uuid, sw->uuid))
  52			return st;
  53	}
  54
  55	return NULL;
  56}
  57
  58static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
  59{
  60	struct nvm_auth_status *st;
  61
  62	mutex_lock(&nvm_auth_status_lock);
  63	st = __nvm_get_auth_status(sw);
  64	mutex_unlock(&nvm_auth_status_lock);
  65
  66	*status = st ? st->status : 0;
  67}
  68
  69static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
  70{
  71	struct nvm_auth_status *st;
  72
  73	if (WARN_ON(!sw->uuid))
  74		return;
  75
  76	mutex_lock(&nvm_auth_status_lock);
  77	st = __nvm_get_auth_status(sw);
  78
  79	if (!st) {
  80		st = kzalloc(sizeof(*st), GFP_KERNEL);
  81		if (!st)
  82			goto unlock;
  83
  84		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
  85		INIT_LIST_HEAD(&st->list);
  86		list_add_tail(&st->list, &nvm_auth_status_cache);
  87	}
  88
  89	st->status = status;
  90unlock:
  91	mutex_unlock(&nvm_auth_status_lock);
  92}
  93
  94static void nvm_clear_auth_status(const struct tb_switch *sw)
  95{
  96	struct nvm_auth_status *st;
  97
  98	mutex_lock(&nvm_auth_status_lock);
  99	st = __nvm_get_auth_status(sw);
 100	if (st) {
 101		list_del(&st->list);
 102		kfree(st);
 103	}
 104	mutex_unlock(&nvm_auth_status_lock);
 105}
 106
 107static int nvm_validate_and_write(struct tb_switch *sw)
 108{
 109	unsigned int image_size, hdr_size;
 110	const u8 *buf = sw->nvm->buf;
 111	u16 ds_size;
 112	int ret;
 113
 114	if (!buf)
 115		return -EINVAL;
 116
 117	image_size = sw->nvm->buf_data_size;
 118	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
 119		return -EINVAL;
 120
 121	/*
 122	 * FARB pointer must point inside the image and must at least
 123	 * contain parts of the digital section we will be reading here.
 124	 */
 125	hdr_size = (*(u32 *)buf) & 0xffffff;
 126	if (hdr_size + NVM_DEVID + 2 >= image_size)
 127		return -EINVAL;
 128
 129	/* Digital section start should be aligned to 4k page */
 130	if (!IS_ALIGNED(hdr_size, SZ_4K))
 131		return -EINVAL;
 132
 133	/*
 134	 * Read digital section size and check that it also fits inside
 135	 * the image.
 136	 */
 137	ds_size = *(u16 *)(buf + hdr_size);
 138	if (ds_size >= image_size)
 139		return -EINVAL;
 140
 141	if (!sw->safe_mode) {
 142		u16 device_id;
 143
 144		/*
 145		 * Make sure the device ID in the image matches the one
 146		 * we read from the switch config space.
 147		 */
 148		device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
 149		if (device_id != sw->config.device_id)
 150			return -EINVAL;
 151
 152		if (sw->generation < 3) {
 153			/* Write CSS headers first */
 154			ret = dma_port_flash_write(sw->dma_port,
 155				DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
 156				DMA_PORT_CSS_MAX_SIZE);
 157			if (ret)
 158				return ret;
 159		}
 160
 161		/* Skip headers in the image */
 162		buf += hdr_size;
 163		image_size -= hdr_size;
 164	}
 165
 166	return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
 167}
 168
 169static int nvm_authenticate_host(struct tb_switch *sw)
 170{
 171	int ret;
 172
 173	/*
 174	 * Root switch NVM upgrade requires that we disconnect the
 175	 * existing paths first (in case it is not in safe mode
 176	 * already).
 177	 */
 178	if (!sw->safe_mode) {
 179		ret = tb_domain_disconnect_all_paths(sw->tb);
 180		if (ret)
 181			return ret;
 182		/*
 183		 * The host controller goes away pretty soon after this if
 184		 * everything goes well so getting timeout is expected.
 185		 */
 186		ret = dma_port_flash_update_auth(sw->dma_port);
 187		return ret == -ETIMEDOUT ? 0 : ret;
 188	}
 189
 190	/*
 191	 * From safe mode we can get out by just power cycling the
 192	 * switch.
 193	 */
 194	dma_port_power_cycle(sw->dma_port);
 195	return 0;
 196}
 197
 198static int nvm_authenticate_device(struct tb_switch *sw)
 199{
 200	int ret, retries = 10;
 201
 202	ret = dma_port_flash_update_auth(sw->dma_port);
 203	if (ret && ret != -ETIMEDOUT)
 204		return ret;
 205
 206	/*
 207	 * Poll here for the authentication status. It takes some time
 208	 * for the device to respond (we get timeout for a while). Once
 209	 * we get response the device needs to be power cycled in order
 210	 * to the new NVM to be taken into use.
 211	 */
 212	do {
 213		u32 status;
 214
 215		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
 216		if (ret < 0 && ret != -ETIMEDOUT)
 217			return ret;
 218		if (ret > 0) {
 219			if (status) {
 220				tb_sw_warn(sw, "failed to authenticate NVM\n");
 221				nvm_set_auth_status(sw, status);
 222			}
 223
 224			tb_sw_info(sw, "power cycling the switch now\n");
 225			dma_port_power_cycle(sw->dma_port);
 226			return 0;
 227		}
 228
 229		msleep(500);
 230	} while (--retries);
 231
 232	return -ETIMEDOUT;
 233}
 234
 235static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
 236			      size_t bytes)
 237{
 238	struct tb_switch *sw = priv;
 239	int ret;
 240
 241	pm_runtime_get_sync(&sw->dev);
 242
 243	if (!mutex_trylock(&sw->tb->lock)) {
 244		ret = restart_syscall();
 245		goto out;
 246	}
 247
 248	ret = dma_port_flash_read(sw->dma_port, offset, val, bytes);
 249	mutex_unlock(&sw->tb->lock);
 250
 251out:
 252	pm_runtime_mark_last_busy(&sw->dev);
 253	pm_runtime_put_autosuspend(&sw->dev);
 254
 255	return ret;
 256}
 257
 258static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
 259			       size_t bytes)
 260{
 261	struct tb_switch *sw = priv;
 262	int ret = 0;
 263
 264	if (!mutex_trylock(&sw->tb->lock))
 265		return restart_syscall();
 266
 267	/*
 268	 * Since writing the NVM image might require some special steps,
 269	 * for example when CSS headers are written, we cache the image
 270	 * locally here and handle the special cases when the user asks
 271	 * us to authenticate the image.
 272	 */
 273	if (!sw->nvm->buf) {
 274		sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
 275		if (!sw->nvm->buf) {
 276			ret = -ENOMEM;
 277			goto unlock;
 278		}
 279	}
 280
 281	sw->nvm->buf_data_size = offset + bytes;
 282	memcpy(sw->nvm->buf + offset, val, bytes);
 283
 284unlock:
 285	mutex_unlock(&sw->tb->lock);
 286
 287	return ret;
 288}
 289
 290static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
 291					   size_t size, bool active)
 292{
 293	struct nvmem_config config;
 294
 295	memset(&config, 0, sizeof(config));
 296
 297	if (active) {
 298		config.name = "nvm_active";
 299		config.reg_read = tb_switch_nvm_read;
 300		config.read_only = true;
 301	} else {
 302		config.name = "nvm_non_active";
 303		config.reg_write = tb_switch_nvm_write;
 304		config.root_only = true;
 305	}
 306
 307	config.id = id;
 308	config.stride = 4;
 309	config.word_size = 4;
 310	config.size = size;
 311	config.dev = &sw->dev;
 312	config.owner = THIS_MODULE;
 313	config.priv = sw;
 314
 315	return nvmem_register(&config);
 316}
 317
 318static int tb_switch_nvm_add(struct tb_switch *sw)
 319{
 320	struct nvmem_device *nvm_dev;
 321	struct tb_switch_nvm *nvm;
 322	u32 val;
 323	int ret;
 324
 325	if (!sw->dma_port)
 326		return 0;
 327
 328	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
 329	if (!nvm)
 330		return -ENOMEM;
 331
 332	nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
 333
 334	/*
 335	 * If the switch is in safe-mode the only accessible portion of
 336	 * the NVM is the non-active one where userspace is expected to
 337	 * write new functional NVM.
 338	 */
 339	if (!sw->safe_mode) {
 340		u32 nvm_size, hdr_size;
 341
 342		ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val,
 343					  sizeof(val));
 344		if (ret)
 345			goto err_ida;
 346
 347		hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
 348		nvm_size = (SZ_1M << (val & 7)) / 8;
 349		nvm_size = (nvm_size - hdr_size) / 2;
 350
 351		ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val,
 352					  sizeof(val));
 353		if (ret)
 354			goto err_ida;
 355
 356		nvm->major = val >> 16;
 357		nvm->minor = val >> 8;
 358
 359		nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
 360		if (IS_ERR(nvm_dev)) {
 361			ret = PTR_ERR(nvm_dev);
 362			goto err_ida;
 363		}
 364		nvm->active = nvm_dev;
 365	}
 366
 367	if (!sw->no_nvm_upgrade) {
 368		nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
 369		if (IS_ERR(nvm_dev)) {
 370			ret = PTR_ERR(nvm_dev);
 371			goto err_nvm_active;
 372		}
 373		nvm->non_active = nvm_dev;
 374	}
 375
 376	sw->nvm = nvm;
 377	return 0;
 378
 379err_nvm_active:
 380	if (nvm->active)
 381		nvmem_unregister(nvm->active);
 382err_ida:
 383	ida_simple_remove(&nvm_ida, nvm->id);
 384	kfree(nvm);
 385
 386	return ret;
 387}
 388
 389static void tb_switch_nvm_remove(struct tb_switch *sw)
 390{
 391	struct tb_switch_nvm *nvm;
 392
 393	nvm = sw->nvm;
 394	sw->nvm = NULL;
 395
 396	if (!nvm)
 397		return;
 398
 399	/* Remove authentication status in case the switch is unplugged */
 400	if (!nvm->authenticating)
 401		nvm_clear_auth_status(sw);
 402
 403	if (nvm->non_active)
 404		nvmem_unregister(nvm->non_active);
 405	if (nvm->active)
 406		nvmem_unregister(nvm->active);
 407	ida_simple_remove(&nvm_ida, nvm->id);
 408	vfree(nvm->buf);
 409	kfree(nvm);
 410}
 411
 412/* port utility functions */
 413
 414static const char *tb_port_type(struct tb_regs_port_header *port)
 415{
 416	switch (port->type >> 16) {
 417	case 0:
 418		switch ((u8) port->type) {
 419		case 0:
 420			return "Inactive";
 421		case 1:
 422			return "Port";
 423		case 2:
 424			return "NHI";
 425		default:
 426			return "unknown";
 427		}
 428	case 0x2:
 429		return "Ethernet";
 430	case 0x8:
 431		return "SATA";
 432	case 0xe:
 433		return "DP/HDMI";
 434	case 0x10:
 435		return "PCIe";
 436	case 0x20:
 437		return "USB";
 438	default:
 439		return "unknown";
 440	}
 441}
 442
 443static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
 444{
 445	tb_dbg(tb,
 446	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
 447	       port->port_number, port->vendor_id, port->device_id,
 448	       port->revision, port->thunderbolt_version, tb_port_type(port),
 449	       port->type);
 450	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
 451	       port->max_in_hop_id, port->max_out_hop_id);
 452	tb_dbg(tb, "  Max counters: %d\n", port->max_counters);
 453	tb_dbg(tb, "  NFC Credits: %#x\n", port->nfc_credits);
 454}
 455
 456/**
 457 * tb_port_state() - get connectedness state of a port
 458 *
 459 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
 460 *
 461 * Return: Returns an enum tb_port_state on success or an error code on failure.
 462 */
 463static int tb_port_state(struct tb_port *port)
 464{
 465	struct tb_cap_phy phy;
 466	int res;
 467	if (port->cap_phy == 0) {
 468		tb_port_WARN(port, "does not have a PHY\n");
 469		return -EINVAL;
 470	}
 471	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
 472	if (res)
 473		return res;
 474	return phy.state;
 475}
 476
 477/**
 478 * tb_wait_for_port() - wait for a port to become ready
 479 *
 480 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
 481 * wait_if_unplugged is set then we also wait if the port is in state
 482 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
 483 * switch resume). Otherwise we only wait if a device is registered but the link
 484 * has not yet been established.
 485 *
 486 * Return: Returns an error code on failure. Returns 0 if the port is not
 487 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
 488 * if the port is connected and in state TB_PORT_UP.
 489 */
 490int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
 491{
 492	int retries = 10;
 493	int state;
 494	if (!port->cap_phy) {
 495		tb_port_WARN(port, "does not have PHY\n");
 496		return -EINVAL;
 497	}
 498	if (tb_is_upstream_port(port)) {
 499		tb_port_WARN(port, "is the upstream port\n");
 500		return -EINVAL;
 501	}
 502
 503	while (retries--) {
 504		state = tb_port_state(port);
 505		if (state < 0)
 506			return state;
 507		if (state == TB_PORT_DISABLED) {
 508			tb_port_dbg(port, "is disabled (state: 0)\n");
 509			return 0;
 510		}
 511		if (state == TB_PORT_UNPLUGGED) {
 512			if (wait_if_unplugged) {
 513				/* used during resume */
 514				tb_port_dbg(port,
 515					    "is unplugged (state: 7), retrying...\n");
 516				msleep(100);
 517				continue;
 518			}
 519			tb_port_dbg(port, "is unplugged (state: 7)\n");
 520			return 0;
 521		}
 522		if (state == TB_PORT_UP) {
 523			tb_port_dbg(port, "is connected, link is up (state: 2)\n");
 524			return 1;
 525		}
 526
 527		/*
 528		 * After plug-in the state is TB_PORT_CONNECTING. Give it some
 529		 * time.
 530		 */
 531		tb_port_dbg(port,
 532			    "is connected, link is not up (state: %d), retrying...\n",
 533			    state);
 534		msleep(100);
 535	}
 536	tb_port_warn(port,
 537		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
 538	return 0;
 539}
 540
 541/**
 542 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
 543 *
 544 * Change the number of NFC credits allocated to @port by @credits. To remove
 545 * NFC credits pass a negative amount of credits.
 546 *
 547 * Return: Returns 0 on success or an error code on failure.
 548 */
 549int tb_port_add_nfc_credits(struct tb_port *port, int credits)
 550{
 551	u32 nfc_credits;
 552
 553	if (credits == 0 || port->sw->is_unplugged)
 554		return 0;
 555
 556	nfc_credits = port->config.nfc_credits & TB_PORT_NFC_CREDITS_MASK;
 557	nfc_credits += credits;
 558
 559	tb_port_dbg(port, "adding %d NFC credits to %lu",
 560		    credits, port->config.nfc_credits & TB_PORT_NFC_CREDITS_MASK);
 561
 562	port->config.nfc_credits &= ~TB_PORT_NFC_CREDITS_MASK;
 563	port->config.nfc_credits |= nfc_credits;
 564
 565	return tb_port_write(port, &port->config.nfc_credits,
 566			     TB_CFG_PORT, 4, 1);
 567}
 568
 569/**
 570 * tb_port_set_initial_credits() - Set initial port link credits allocated
 571 * @port: Port to set the initial credits
 572 * @credits: Number of credits to to allocate
 573 *
 574 * Set initial credits value to be used for ingress shared buffering.
 575 */
 576int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
 577{
 578	u32 data;
 579	int ret;
 580
 581	ret = tb_port_read(port, &data, TB_CFG_PORT, 5, 1);
 582	if (ret)
 583		return ret;
 584
 585	data &= ~TB_PORT_LCA_MASK;
 586	data |= (credits << TB_PORT_LCA_SHIFT) & TB_PORT_LCA_MASK;
 587
 588	return tb_port_write(port, &data, TB_CFG_PORT, 5, 1);
 589}
 590
 591/**
 592 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
 593 *
 594 * Return: Returns 0 on success or an error code on failure.
 595 */
 596int tb_port_clear_counter(struct tb_port *port, int counter)
 597{
 598	u32 zero[3] = { 0, 0, 0 };
 599	tb_port_dbg(port, "clearing counter %d\n", counter);
 600	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
 601}
 602
 603/**
 604 * tb_init_port() - initialize a port
 605 *
 606 * This is a helper method for tb_switch_alloc. Does not check or initialize
 607 * any downstream switches.
 608 *
 609 * Return: Returns 0 on success or an error code on failure.
 610 */
 611static int tb_init_port(struct tb_port *port)
 612{
 613	int res;
 614	int cap;
 615
 616	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
 617	if (res) {
 618		if (res == -ENODEV) {
 619			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
 620			       port->port);
 621			return 0;
 622		}
 623		return res;
 624	}
 625
 626	/* Port 0 is the switch itself and has no PHY. */
 627	if (port->config.type == TB_TYPE_PORT && port->port != 0) {
 628		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
 629
 630		if (cap > 0)
 631			port->cap_phy = cap;
 632		else
 633			tb_port_WARN(port, "non switch port without a PHY\n");
 634	} else if (port->port != 0) {
 635		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
 636		if (cap > 0)
 637			port->cap_adap = cap;
 638	}
 639
 640	tb_dump_port(port->sw->tb, &port->config);
 641
 642	/* Control port does not need HopID allocation */
 643	if (port->port) {
 644		ida_init(&port->in_hopids);
 645		ida_init(&port->out_hopids);
 646	}
 647
 648	return 0;
 649
 650}
 651
 652static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
 653			       int max_hopid)
 654{
 655	int port_max_hopid;
 656	struct ida *ida;
 657
 658	if (in) {
 659		port_max_hopid = port->config.max_in_hop_id;
 660		ida = &port->in_hopids;
 661	} else {
 662		port_max_hopid = port->config.max_out_hop_id;
 663		ida = &port->out_hopids;
 664	}
 665
 666	/* HopIDs 0-7 are reserved */
 667	if (min_hopid < TB_PATH_MIN_HOPID)
 668		min_hopid = TB_PATH_MIN_HOPID;
 669
 670	if (max_hopid < 0 || max_hopid > port_max_hopid)
 671		max_hopid = port_max_hopid;
 672
 673	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
 674}
 675
 676/**
 677 * tb_port_alloc_in_hopid() - Allocate input HopID from port
 678 * @port: Port to allocate HopID for
 679 * @min_hopid: Minimum acceptable input HopID
 680 * @max_hopid: Maximum acceptable input HopID
 681 *
 682 * Return: HopID between @min_hopid and @max_hopid or negative errno in
 683 * case of error.
 684 */
 685int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
 686{
 687	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
 688}
 689
 690/**
 691 * tb_port_alloc_out_hopid() - Allocate output HopID from port
 692 * @port: Port to allocate HopID for
 693 * @min_hopid: Minimum acceptable output HopID
 694 * @max_hopid: Maximum acceptable output HopID
 695 *
 696 * Return: HopID between @min_hopid and @max_hopid or negative errno in
 697 * case of error.
 698 */
 699int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
 700{
 701	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
 702}
 703
 704/**
 705 * tb_port_release_in_hopid() - Release allocated input HopID from port
 706 * @port: Port whose HopID to release
 707 * @hopid: HopID to release
 708 */
 709void tb_port_release_in_hopid(struct tb_port *port, int hopid)
 710{
 711	ida_simple_remove(&port->in_hopids, hopid);
 712}
 713
 714/**
 715 * tb_port_release_out_hopid() - Release allocated output HopID from port
 716 * @port: Port whose HopID to release
 717 * @hopid: HopID to release
 718 */
 719void tb_port_release_out_hopid(struct tb_port *port, int hopid)
 720{
 721	ida_simple_remove(&port->out_hopids, hopid);
 722}
 723
 724/**
 725 * tb_next_port_on_path() - Return next port for given port on a path
 726 * @start: Start port of the walk
 727 * @end: End port of the walk
 728 * @prev: Previous port (%NULL if this is the first)
 729 *
 730 * This function can be used to walk from one port to another if they
 731 * are connected through zero or more switches. If the @prev is dual
 732 * link port, the function follows that link and returns another end on
 733 * that same link.
 734 *
 735 * If the @end port has been reached, return %NULL.
 736 *
 737 * Domain tb->lock must be held when this function is called.
 738 */
 739struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
 740				     struct tb_port *prev)
 741{
 742	struct tb_port *next;
 743
 744	if (!prev)
 745		return start;
 746
 747	if (prev->sw == end->sw) {
 748		if (prev == end)
 749			return NULL;
 750		return end;
 751	}
 752
 753	if (start->sw->config.depth < end->sw->config.depth) {
 754		if (prev->remote &&
 755		    prev->remote->sw->config.depth > prev->sw->config.depth)
 756			next = prev->remote;
 757		else
 758			next = tb_port_at(tb_route(end->sw), prev->sw);
 759	} else {
 760		if (tb_is_upstream_port(prev)) {
 761			next = prev->remote;
 762		} else {
 763			next = tb_upstream_port(prev->sw);
 764			/*
 765			 * Keep the same link if prev and next are both
 766			 * dual link ports.
 767			 */
 768			if (next->dual_link_port &&
 769			    next->link_nr != prev->link_nr) {
 770				next = next->dual_link_port;
 771			}
 772		}
 773	}
 774
 775	return next;
 776}
 777
 778/**
 779 * tb_port_is_enabled() - Is the adapter port enabled
 780 * @port: Port to check
 781 */
 782bool tb_port_is_enabled(struct tb_port *port)
 783{
 784	switch (port->config.type) {
 785	case TB_TYPE_PCIE_UP:
 786	case TB_TYPE_PCIE_DOWN:
 787		return tb_pci_port_is_enabled(port);
 788
 789	case TB_TYPE_DP_HDMI_IN:
 790	case TB_TYPE_DP_HDMI_OUT:
 791		return tb_dp_port_is_enabled(port);
 792
 793	default:
 794		return false;
 795	}
 796}
 797
 798/**
 799 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
 800 * @port: PCIe port to check
 801 */
 802bool tb_pci_port_is_enabled(struct tb_port *port)
 803{
 804	u32 data;
 805
 806	if (tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1))
 807		return false;
 808
 809	return !!(data & TB_PCI_EN);
 810}
 811
 812/**
 813 * tb_pci_port_enable() - Enable PCIe adapter port
 814 * @port: PCIe port to enable
 815 * @enable: Enable/disable the PCIe adapter
 816 */
 817int tb_pci_port_enable(struct tb_port *port, bool enable)
 818{
 819	u32 word = enable ? TB_PCI_EN : 0x0;
 820	if (!port->cap_adap)
 821		return -ENXIO;
 822	return tb_port_write(port, &word, TB_CFG_PORT, port->cap_adap, 1);
 823}
 824
 825/**
 826 * tb_dp_port_hpd_is_active() - Is HPD already active
 827 * @port: DP out port to check
 828 *
 829 * Checks if the DP OUT adapter port has HDP bit already set.
 830 */
 831int tb_dp_port_hpd_is_active(struct tb_port *port)
 832{
 833	u32 data;
 834	int ret;
 835
 836	ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + 2, 1);
 837	if (ret)
 838		return ret;
 839
 840	return !!(data & TB_DP_HDP);
 841}
 842
 843/**
 844 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
 845 * @port: Port to clear HPD
 846 *
 847 * If the DP IN port has HDP set, this function can be used to clear it.
 848 */
 849int tb_dp_port_hpd_clear(struct tb_port *port)
 850{
 851	u32 data;
 852	int ret;
 853
 854	ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + 3, 1);
 855	if (ret)
 856		return ret;
 857
 858	data |= TB_DP_HPDC;
 859	return tb_port_write(port, &data, TB_CFG_PORT, port->cap_adap + 3, 1);
 860}
 861
 862/**
 863 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
 864 * @port: DP IN/OUT port to set hops
 865 * @video: Video Hop ID
 866 * @aux_tx: AUX TX Hop ID
 867 * @aux_rx: AUX RX Hop ID
 868 *
 869 * Programs specified Hop IDs for DP IN/OUT port.
 870 */
 871int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
 872			unsigned int aux_tx, unsigned int aux_rx)
 873{
 874	u32 data[2];
 875	int ret;
 876
 877	ret = tb_port_read(port, data, TB_CFG_PORT, port->cap_adap,
 878			   ARRAY_SIZE(data));
 879	if (ret)
 880		return ret;
 881
 882	data[0] &= ~TB_DP_VIDEO_HOPID_MASK;
 883	data[1] &= ~(TB_DP_AUX_RX_HOPID_MASK | TB_DP_AUX_TX_HOPID_MASK);
 884
 885	data[0] |= (video << TB_DP_VIDEO_HOPID_SHIFT) & TB_DP_VIDEO_HOPID_MASK;
 886	data[1] |= aux_tx & TB_DP_AUX_TX_HOPID_MASK;
 887	data[1] |= (aux_rx << TB_DP_AUX_RX_HOPID_SHIFT) & TB_DP_AUX_RX_HOPID_MASK;
 888
 889	return tb_port_write(port, data, TB_CFG_PORT, port->cap_adap,
 890			     ARRAY_SIZE(data));
 891}
 892
 893/**
 894 * tb_dp_port_is_enabled() - Is DP adapter port enabled
 895 * @port: DP adapter port to check
 896 */
 897bool tb_dp_port_is_enabled(struct tb_port *port)
 898{
 899	u32 data[2];
 900
 901	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap,
 902			 ARRAY_SIZE(data)))
 903		return false;
 904
 905	return !!(data[0] & (TB_DP_VIDEO_EN | TB_DP_AUX_EN));
 906}
 907
 908/**
 909 * tb_dp_port_enable() - Enables/disables DP paths of a port
 910 * @port: DP IN/OUT port
 911 * @enable: Enable/disable DP path
 912 *
 913 * Once Hop IDs are programmed DP paths can be enabled or disabled by
 914 * calling this function.
 915 */
 916int tb_dp_port_enable(struct tb_port *port, bool enable)
 917{
 918	u32 data[2];
 919	int ret;
 920
 921	ret = tb_port_read(port, data, TB_CFG_PORT, port->cap_adap,
 922			   ARRAY_SIZE(data));
 923	if (ret)
 924		return ret;
 925
 926	if (enable)
 927		data[0] |= TB_DP_VIDEO_EN | TB_DP_AUX_EN;
 928	else
 929		data[0] &= ~(TB_DP_VIDEO_EN | TB_DP_AUX_EN);
 930
 931	return tb_port_write(port, data, TB_CFG_PORT, port->cap_adap,
 932			     ARRAY_SIZE(data));
 933}
 934
 935/* switch utility functions */
 936
 937static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw)
 938{
 939	tb_dbg(tb, " Switch: %x:%x (Revision: %d, TB Version: %d)\n",
 940	       sw->vendor_id, sw->device_id, sw->revision,
 941	       sw->thunderbolt_version);
 942	tb_dbg(tb, "  Max Port Number: %d\n", sw->max_port_number);
 943	tb_dbg(tb, "  Config:\n");
 944	tb_dbg(tb,
 945		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
 946	       sw->upstream_port_number, sw->depth,
 947	       (((u64) sw->route_hi) << 32) | sw->route_lo,
 948	       sw->enabled, sw->plug_events_delay);
 949	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
 950	       sw->__unknown1, sw->__unknown4);
 951}
 952
 953/**
 954 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
 955 *
 956 * Return: Returns 0 on success or an error code on failure.
 957 */
 958int tb_switch_reset(struct tb *tb, u64 route)
 959{
 960	struct tb_cfg_result res;
 961	struct tb_regs_switch_header header = {
 962		header.route_hi = route >> 32,
 963		header.route_lo = route,
 964		header.enabled = true,
 965	};
 966	tb_dbg(tb, "resetting switch at %llx\n", route);
 967	res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
 968			0, 2, 2, 2);
 969	if (res.err)
 970		return res.err;
 971	res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
 972	if (res.err > 0)
 973		return -EIO;
 974	return res.err;
 975}
 976
 977/**
 978 * tb_plug_events_active() - enable/disable plug events on a switch
 979 *
 980 * Also configures a sane plug_events_delay of 255ms.
 981 *
 982 * Return: Returns 0 on success or an error code on failure.
 983 */
 984static int tb_plug_events_active(struct tb_switch *sw, bool active)
 985{
 986	u32 data;
 987	int res;
 988
 989	if (!sw->config.enabled)
 990		return 0;
 991
 992	sw->config.plug_events_delay = 0xff;
 993	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
 994	if (res)
 995		return res;
 996
 997	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
 998	if (res)
 999		return res;
1000
1001	if (active) {
1002		data = data & 0xFFFFFF83;
1003		switch (sw->config.device_id) {
1004		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1005		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1006		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1007			break;
1008		default:
1009			data |= 4;
1010		}
1011	} else {
1012		data = data | 0x7c;
1013	}
1014	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1015			   sw->cap_plug_events + 1, 1);
1016}
1017
1018static ssize_t authorized_show(struct device *dev,
1019			       struct device_attribute *attr,
1020			       char *buf)
1021{
1022	struct tb_switch *sw = tb_to_switch(dev);
1023
1024	return sprintf(buf, "%u\n", sw->authorized);
1025}
1026
1027static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1028{
1029	int ret = -EINVAL;
1030
1031	if (!mutex_trylock(&sw->tb->lock))
1032		return restart_syscall();
1033
1034	if (sw->authorized)
1035		goto unlock;
1036
1037	switch (val) {
1038	/* Approve switch */
1039	case 1:
1040		if (sw->key)
1041			ret = tb_domain_approve_switch_key(sw->tb, sw);
1042		else
1043			ret = tb_domain_approve_switch(sw->tb, sw);
1044		break;
1045
1046	/* Challenge switch */
1047	case 2:
1048		if (sw->key)
1049			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1050		break;
1051
1052	default:
1053		break;
1054	}
1055
1056	if (!ret) {
1057		sw->authorized = val;
1058		/* Notify status change to the userspace */
1059		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1060	}
1061
1062unlock:
1063	mutex_unlock(&sw->tb->lock);
1064	return ret;
1065}
1066
1067static ssize_t authorized_store(struct device *dev,
1068				struct device_attribute *attr,
1069				const char *buf, size_t count)
1070{
1071	struct tb_switch *sw = tb_to_switch(dev);
1072	unsigned int val;
1073	ssize_t ret;
1074
1075	ret = kstrtouint(buf, 0, &val);
1076	if (ret)
1077		return ret;
1078	if (val > 2)
1079		return -EINVAL;
1080
1081	pm_runtime_get_sync(&sw->dev);
1082	ret = tb_switch_set_authorized(sw, val);
1083	pm_runtime_mark_last_busy(&sw->dev);
1084	pm_runtime_put_autosuspend(&sw->dev);
1085
1086	return ret ? ret : count;
1087}
1088static DEVICE_ATTR_RW(authorized);
1089
1090static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1091			 char *buf)
1092{
1093	struct tb_switch *sw = tb_to_switch(dev);
1094
1095	return sprintf(buf, "%u\n", sw->boot);
1096}
1097static DEVICE_ATTR_RO(boot);
1098
1099static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1100			   char *buf)
1101{
1102	struct tb_switch *sw = tb_to_switch(dev);
1103
1104	return sprintf(buf, "%#x\n", sw->device);
1105}
1106static DEVICE_ATTR_RO(device);
1107
1108static ssize_t
1109device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1110{
1111	struct tb_switch *sw = tb_to_switch(dev);
1112
1113	return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1114}
1115static DEVICE_ATTR_RO(device_name);
1116
1117static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1118			char *buf)
1119{
1120	struct tb_switch *sw = tb_to_switch(dev);
1121	ssize_t ret;
1122
1123	if (!mutex_trylock(&sw->tb->lock))
1124		return restart_syscall();
1125
1126	if (sw->key)
1127		ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1128	else
1129		ret = sprintf(buf, "\n");
1130
1131	mutex_unlock(&sw->tb->lock);
1132	return ret;
1133}
1134
1135static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1136			 const char *buf, size_t count)
1137{
1138	struct tb_switch *sw = tb_to_switch(dev);
1139	u8 key[TB_SWITCH_KEY_SIZE];
1140	ssize_t ret = count;
1141	bool clear = false;
1142
1143	if (!strcmp(buf, "\n"))
1144		clear = true;
1145	else if (hex2bin(key, buf, sizeof(key)))
1146		return -EINVAL;
1147
1148	if (!mutex_trylock(&sw->tb->lock))
1149		return restart_syscall();
1150
1151	if (sw->authorized) {
1152		ret = -EBUSY;
1153	} else {
1154		kfree(sw->key);
1155		if (clear) {
1156			sw->key = NULL;
1157		} else {
1158			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1159			if (!sw->key)
1160				ret = -ENOMEM;
1161		}
1162	}
1163
1164	mutex_unlock(&sw->tb->lock);
1165	return ret;
1166}
1167static DEVICE_ATTR(key, 0600, key_show, key_store);
1168
1169static void nvm_authenticate_start(struct tb_switch *sw)
1170{
1171	struct pci_dev *root_port;
1172
1173	/*
1174	 * During host router NVM upgrade we should not allow root port to
1175	 * go into D3cold because some root ports cannot trigger PME
1176	 * itself. To be on the safe side keep the root port in D0 during
1177	 * the whole upgrade process.
1178	 */
1179	root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
1180	if (root_port)
1181		pm_runtime_get_noresume(&root_port->dev);
1182}
1183
1184static void nvm_authenticate_complete(struct tb_switch *sw)
1185{
1186	struct pci_dev *root_port;
1187
1188	root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
1189	if (root_port)
1190		pm_runtime_put(&root_port->dev);
1191}
1192
1193static ssize_t nvm_authenticate_show(struct device *dev,
1194	struct device_attribute *attr, char *buf)
1195{
1196	struct tb_switch *sw = tb_to_switch(dev);
1197	u32 status;
1198
1199	nvm_get_auth_status(sw, &status);
1200	return sprintf(buf, "%#x\n", status);
1201}
1202
1203static ssize_t nvm_authenticate_store(struct device *dev,
1204	struct device_attribute *attr, const char *buf, size_t count)
1205{
1206	struct tb_switch *sw = tb_to_switch(dev);
1207	bool val;
1208	int ret;
1209
1210	pm_runtime_get_sync(&sw->dev);
1211
1212	if (!mutex_trylock(&sw->tb->lock)) {
1213		ret = restart_syscall();
1214		goto exit_rpm;
1215	}
1216
1217	/* If NVMem devices are not yet added */
1218	if (!sw->nvm) {
1219		ret = -EAGAIN;
1220		goto exit_unlock;
1221	}
1222
1223	ret = kstrtobool(buf, &val);
1224	if (ret)
1225		goto exit_unlock;
1226
1227	/* Always clear the authentication status */
1228	nvm_clear_auth_status(sw);
1229
1230	if (val) {
1231		if (!sw->nvm->buf) {
1232			ret = -EINVAL;
1233			goto exit_unlock;
1234		}
1235
1236		ret = nvm_validate_and_write(sw);
1237		if (ret)
1238			goto exit_unlock;
1239
1240		sw->nvm->authenticating = true;
1241
1242		if (!tb_route(sw)) {
1243			/*
1244			 * Keep root port from suspending as long as the
1245			 * NVM upgrade process is running.
1246			 */
1247			nvm_authenticate_start(sw);
1248			ret = nvm_authenticate_host(sw);
1249			if (ret)
1250				nvm_authenticate_complete(sw);
1251		} else {
1252			ret = nvm_authenticate_device(sw);
1253		}
1254	}
1255
1256exit_unlock:
1257	mutex_unlock(&sw->tb->lock);
1258exit_rpm:
1259	pm_runtime_mark_last_busy(&sw->dev);
1260	pm_runtime_put_autosuspend(&sw->dev);
1261
1262	if (ret)
1263		return ret;
1264	return count;
1265}
1266static DEVICE_ATTR_RW(nvm_authenticate);
1267
1268static ssize_t nvm_version_show(struct device *dev,
1269				struct device_attribute *attr, char *buf)
1270{
1271	struct tb_switch *sw = tb_to_switch(dev);
1272	int ret;
1273
1274	if (!mutex_trylock(&sw->tb->lock))
1275		return restart_syscall();
1276
1277	if (sw->safe_mode)
1278		ret = -ENODATA;
1279	else if (!sw->nvm)
1280		ret = -EAGAIN;
1281	else
1282		ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1283
1284	mutex_unlock(&sw->tb->lock);
1285
1286	return ret;
1287}
1288static DEVICE_ATTR_RO(nvm_version);
1289
1290static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1291			   char *buf)
1292{
1293	struct tb_switch *sw = tb_to_switch(dev);
1294
1295	return sprintf(buf, "%#x\n", sw->vendor);
1296}
1297static DEVICE_ATTR_RO(vendor);
1298
1299static ssize_t
1300vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1301{
1302	struct tb_switch *sw = tb_to_switch(dev);
1303
1304	return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1305}
1306static DEVICE_ATTR_RO(vendor_name);
1307
1308static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1309			      char *buf)
1310{
1311	struct tb_switch *sw = tb_to_switch(dev);
1312
1313	return sprintf(buf, "%pUb\n", sw->uuid);
1314}
1315static DEVICE_ATTR_RO(unique_id);
1316
1317static struct attribute *switch_attrs[] = {
1318	&dev_attr_authorized.attr,
1319	&dev_attr_boot.attr,
1320	&dev_attr_device.attr,
1321	&dev_attr_device_name.attr,
1322	&dev_attr_key.attr,
1323	&dev_attr_nvm_authenticate.attr,
1324	&dev_attr_nvm_version.attr,
1325	&dev_attr_vendor.attr,
1326	&dev_attr_vendor_name.attr,
1327	&dev_attr_unique_id.attr,
1328	NULL,
1329};
1330
1331static umode_t switch_attr_is_visible(struct kobject *kobj,
1332				      struct attribute *attr, int n)
1333{
1334	struct device *dev = container_of(kobj, struct device, kobj);
1335	struct tb_switch *sw = tb_to_switch(dev);
1336
1337	if (attr == &dev_attr_device.attr) {
1338		if (!sw->device)
1339			return 0;
1340	} else if (attr == &dev_attr_device_name.attr) {
1341		if (!sw->device_name)
1342			return 0;
1343	} else if (attr == &dev_attr_vendor.attr)  {
1344		if (!sw->vendor)
1345			return 0;
1346	} else if (attr == &dev_attr_vendor_name.attr)  {
1347		if (!sw->vendor_name)
1348			return 0;
1349	} else if (attr == &dev_attr_key.attr) {
1350		if (tb_route(sw) &&
1351		    sw->tb->security_level == TB_SECURITY_SECURE &&
1352		    sw->security_level == TB_SECURITY_SECURE)
1353			return attr->mode;
1354		return 0;
1355	} else if (attr == &dev_attr_nvm_authenticate.attr) {
1356		if (sw->dma_port && !sw->no_nvm_upgrade)
1357			return attr->mode;
1358		return 0;
1359	} else if (attr == &dev_attr_nvm_version.attr) {
1360		if (sw->dma_port)
1361			return attr->mode;
1362		return 0;
1363	} else if (attr == &dev_attr_boot.attr) {
1364		if (tb_route(sw))
1365			return attr->mode;
1366		return 0;
1367	}
1368
1369	return sw->safe_mode ? 0 : attr->mode;
1370}
1371
1372static struct attribute_group switch_group = {
1373	.is_visible = switch_attr_is_visible,
1374	.attrs = switch_attrs,
1375};
1376
1377static const struct attribute_group *switch_groups[] = {
1378	&switch_group,
1379	NULL,
1380};
1381
1382static void tb_switch_release(struct device *dev)
1383{
1384	struct tb_switch *sw = tb_to_switch(dev);
1385	int i;
1386
1387	dma_port_free(sw->dma_port);
1388
1389	for (i = 1; i <= sw->config.max_port_number; i++) {
1390		if (!sw->ports[i].disabled) {
1391			ida_destroy(&sw->ports[i].in_hopids);
1392			ida_destroy(&sw->ports[i].out_hopids);
1393		}
1394	}
1395
1396	kfree(sw->uuid);
1397	kfree(sw->device_name);
1398	kfree(sw->vendor_name);
1399	kfree(sw->ports);
1400	kfree(sw->drom);
1401	kfree(sw->key);
1402	kfree(sw);
1403}
1404
1405/*
1406 * Currently only need to provide the callbacks. Everything else is handled
1407 * in the connection manager.
1408 */
1409static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1410{
1411	struct tb_switch *sw = tb_to_switch(dev);
1412	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1413
1414	if (cm_ops->runtime_suspend_switch)
1415		return cm_ops->runtime_suspend_switch(sw);
1416
1417	return 0;
1418}
1419
1420static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1421{
1422	struct tb_switch *sw = tb_to_switch(dev);
1423	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1424
1425	if (cm_ops->runtime_resume_switch)
1426		return cm_ops->runtime_resume_switch(sw);
1427	return 0;
1428}
1429
1430static const struct dev_pm_ops tb_switch_pm_ops = {
1431	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1432			   NULL)
1433};
1434
1435struct device_type tb_switch_type = {
1436	.name = "thunderbolt_device",
1437	.release = tb_switch_release,
1438	.pm = &tb_switch_pm_ops,
1439};
1440
1441static int tb_switch_get_generation(struct tb_switch *sw)
1442{
1443	switch (sw->config.device_id) {
1444	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1445	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1446	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1447	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1448	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1449	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1450	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1451	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1452		return 1;
1453
1454	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1455	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1456	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1457		return 2;
1458
1459	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1460	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1461	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1462	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1463	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1464	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1465	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1466	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1467	case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1468	case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1469		return 3;
1470
1471	default:
1472		/*
1473		 * For unknown switches assume generation to be 1 to be
1474		 * on the safe side.
1475		 */
1476		tb_sw_warn(sw, "unsupported switch device id %#x\n",
1477			   sw->config.device_id);
1478		return 1;
1479	}
1480}
1481
1482/**
1483 * tb_switch_alloc() - allocate a switch
1484 * @tb: Pointer to the owning domain
1485 * @parent: Parent device for this switch
1486 * @route: Route string for this switch
1487 *
1488 * Allocates and initializes a switch. Will not upload configuration to
1489 * the switch. For that you need to call tb_switch_configure()
1490 * separately. The returned switch should be released by calling
1491 * tb_switch_put().
1492 *
1493 * Return: Pointer to the allocated switch or ERR_PTR() in case of
1494 * failure.
1495 */
1496struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1497				  u64 route)
1498{
1499	struct tb_switch *sw;
1500	int upstream_port;
1501	int i, ret, depth;
1502
1503	/* Make sure we do not exceed maximum topology limit */
1504	depth = tb_route_length(route);
1505	if (depth > TB_SWITCH_MAX_DEPTH)
1506		return ERR_PTR(-EADDRNOTAVAIL);
1507
1508	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1509	if (upstream_port < 0)
1510		return ERR_PTR(upstream_port);
1511
1512	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1513	if (!sw)
1514		return ERR_PTR(-ENOMEM);
1515
1516	sw->tb = tb;
1517	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1518	if (ret)
1519		goto err_free_sw_ports;
1520
1521	tb_dbg(tb, "current switch config:\n");
1522	tb_dump_switch(tb, &sw->config);
1523
1524	/* configure switch */
1525	sw->config.upstream_port_number = upstream_port;
1526	sw->config.depth = depth;
1527	sw->config.route_hi = upper_32_bits(route);
1528	sw->config.route_lo = lower_32_bits(route);
1529	sw->config.enabled = 0;
1530
1531	/* initialize ports */
1532	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1533				GFP_KERNEL);
1534	if (!sw->ports) {
1535		ret = -ENOMEM;
1536		goto err_free_sw_ports;
1537	}
1538
1539	for (i = 0; i <= sw->config.max_port_number; i++) {
1540		/* minimum setup for tb_find_cap and tb_drom_read to work */
1541		sw->ports[i].sw = sw;
1542		sw->ports[i].port = i;
1543	}
1544
1545	sw->generation = tb_switch_get_generation(sw);
1546
1547	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1548	if (ret < 0) {
1549		tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
1550		goto err_free_sw_ports;
1551	}
1552	sw->cap_plug_events = ret;
1553
1554	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1555	if (ret > 0)
1556		sw->cap_lc = ret;
1557
1558	/* Root switch is always authorized */
1559	if (!route)
1560		sw->authorized = true;
1561
1562	device_initialize(&sw->dev);
1563	sw->dev.parent = parent;
1564	sw->dev.bus = &tb_bus_type;
1565	sw->dev.type = &tb_switch_type;
1566	sw->dev.groups = switch_groups;
1567	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1568
1569	return sw;
1570
1571err_free_sw_ports:
1572	kfree(sw->ports);
1573	kfree(sw);
1574
1575	return ERR_PTR(ret);
1576}
1577
1578/**
1579 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1580 * @tb: Pointer to the owning domain
1581 * @parent: Parent device for this switch
1582 * @route: Route string for this switch
1583 *
1584 * This creates a switch in safe mode. This means the switch pretty much
1585 * lacks all capabilities except DMA configuration port before it is
1586 * flashed with a valid NVM firmware.
1587 *
1588 * The returned switch must be released by calling tb_switch_put().
1589 *
1590 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1591 */
1592struct tb_switch *
1593tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1594{
1595	struct tb_switch *sw;
1596
1597	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1598	if (!sw)
1599		return ERR_PTR(-ENOMEM);
1600
1601	sw->tb = tb;
1602	sw->config.depth = tb_route_length(route);
1603	sw->config.route_hi = upper_32_bits(route);
1604	sw->config.route_lo = lower_32_bits(route);
1605	sw->safe_mode = true;
1606
1607	device_initialize(&sw->dev);
1608	sw->dev.parent = parent;
1609	sw->dev.bus = &tb_bus_type;
1610	sw->dev.type = &tb_switch_type;
1611	sw->dev.groups = switch_groups;
1612	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1613
1614	return sw;
1615}
1616
1617/**
1618 * tb_switch_configure() - Uploads configuration to the switch
1619 * @sw: Switch to configure
1620 *
1621 * Call this function before the switch is added to the system. It will
1622 * upload configuration to the switch and makes it available for the
1623 * connection manager to use.
1624 *
1625 * Return: %0 in case of success and negative errno in case of failure
1626 */
1627int tb_switch_configure(struct tb_switch *sw)
1628{
1629	struct tb *tb = sw->tb;
1630	u64 route;
1631	int ret;
1632
1633	route = tb_route(sw);
1634	tb_dbg(tb, "initializing Switch at %#llx (depth: %d, up port: %d)\n",
1635	       route, tb_route_length(route), sw->config.upstream_port_number);
1636
1637	if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
1638		tb_sw_warn(sw, "unknown switch vendor id %#x\n",
1639			   sw->config.vendor_id);
1640
1641	sw->config.enabled = 1;
1642
1643	/* upload configuration */
1644	ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3);
1645	if (ret)
1646		return ret;
1647
1648	ret = tb_lc_configure_link(sw);
1649	if (ret)
1650		return ret;
1651
1652	return tb_plug_events_active(sw, true);
1653}
1654
1655static int tb_switch_set_uuid(struct tb_switch *sw)
1656{
1657	u32 uuid[4];
1658	int ret;
1659
1660	if (sw->uuid)
1661		return 0;
1662
1663	/*
1664	 * The newer controllers include fused UUID as part of link
1665	 * controller specific registers
1666	 */
1667	ret = tb_lc_read_uuid(sw, uuid);
1668	if (ret) {
1669		/*
1670		 * ICM generates UUID based on UID and fills the upper
1671		 * two words with ones. This is not strictly following
1672		 * UUID format but we want to be compatible with it so
1673		 * we do the same here.
1674		 */
1675		uuid[0] = sw->uid & 0xffffffff;
1676		uuid[1] = (sw->uid >> 32) & 0xffffffff;
1677		uuid[2] = 0xffffffff;
1678		uuid[3] = 0xffffffff;
1679	}
1680
1681	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
1682	if (!sw->uuid)
1683		return -ENOMEM;
1684	return 0;
1685}
1686
1687static int tb_switch_add_dma_port(struct tb_switch *sw)
1688{
1689	u32 status;
1690	int ret;
1691
1692	switch (sw->generation) {
1693	case 3:
1694		break;
1695
1696	case 2:
1697		/* Only root switch can be upgraded */
1698		if (tb_route(sw))
1699			return 0;
1700		break;
1701
1702	default:
1703		/*
1704		 * DMA port is the only thing available when the switch
1705		 * is in safe mode.
1706		 */
1707		if (!sw->safe_mode)
1708			return 0;
1709		break;
1710	}
1711
1712	/* Root switch DMA port requires running firmware */
1713	if (!tb_route(sw) && sw->config.enabled)
1714		return 0;
1715
1716	sw->dma_port = dma_port_alloc(sw);
1717	if (!sw->dma_port)
1718		return 0;
1719
1720	if (sw->no_nvm_upgrade)
1721		return 0;
1722
1723	/*
1724	 * Check status of the previous flash authentication. If there
1725	 * is one we need to power cycle the switch in any case to make
1726	 * it functional again.
1727	 */
1728	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
1729	if (ret <= 0)
1730		return ret;
1731
1732	/* Now we can allow root port to suspend again */
1733	if (!tb_route(sw))
1734		nvm_authenticate_complete(sw);
1735
1736	if (status) {
1737		tb_sw_info(sw, "switch flash authentication failed\n");
1738		ret = tb_switch_set_uuid(sw);
1739		if (ret)
1740			return ret;
1741		nvm_set_auth_status(sw, status);
1742	}
1743
1744	tb_sw_info(sw, "power cycling the switch now\n");
1745	dma_port_power_cycle(sw->dma_port);
1746
1747	/*
1748	 * We return error here which causes the switch adding failure.
1749	 * It should appear back after power cycle is complete.
1750	 */
1751	return -ESHUTDOWN;
1752}
1753
1754/**
1755 * tb_switch_add() - Add a switch to the domain
1756 * @sw: Switch to add
1757 *
1758 * This is the last step in adding switch to the domain. It will read
1759 * identification information from DROM and initializes ports so that
1760 * they can be used to connect other switches. The switch will be
1761 * exposed to the userspace when this function successfully returns. To
1762 * remove and release the switch, call tb_switch_remove().
1763 *
1764 * Return: %0 in case of success and negative errno in case of failure
1765 */
1766int tb_switch_add(struct tb_switch *sw)
1767{
1768	int i, ret;
1769
1770	/*
1771	 * Initialize DMA control port now before we read DROM. Recent
1772	 * host controllers have more complete DROM on NVM that includes
1773	 * vendor and model identification strings which we then expose
1774	 * to the userspace. NVM can be accessed through DMA
1775	 * configuration based mailbox.
1776	 */
1777	ret = tb_switch_add_dma_port(sw);
1778	if (ret)
1779		return ret;
1780
1781	if (!sw->safe_mode) {
1782		/* read drom */
1783		ret = tb_drom_read(sw);
1784		if (ret) {
1785			tb_sw_warn(sw, "tb_eeprom_read_rom failed\n");
1786			return ret;
1787		}
1788		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
1789
1790		ret = tb_switch_set_uuid(sw);
1791		if (ret)
1792			return ret;
1793
1794		for (i = 0; i <= sw->config.max_port_number; i++) {
1795			if (sw->ports[i].disabled) {
1796				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
1797				continue;
1798			}
1799			ret = tb_init_port(&sw->ports[i]);
1800			if (ret)
1801				return ret;
1802		}
1803	}
1804
1805	ret = device_add(&sw->dev);
1806	if (ret)
1807		return ret;
1808
1809	if (tb_route(sw)) {
1810		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
1811			 sw->vendor, sw->device);
1812		if (sw->vendor_name && sw->device_name)
1813			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
1814				 sw->device_name);
1815	}
1816
1817	ret = tb_switch_nvm_add(sw);
1818	if (ret) {
1819		device_del(&sw->dev);
1820		return ret;
1821	}
1822
1823	pm_runtime_set_active(&sw->dev);
1824	if (sw->rpm) {
1825		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
1826		pm_runtime_use_autosuspend(&sw->dev);
1827		pm_runtime_mark_last_busy(&sw->dev);
1828		pm_runtime_enable(&sw->dev);
1829		pm_request_autosuspend(&sw->dev);
1830	}
1831
1832	return 0;
1833}
1834
1835/**
1836 * tb_switch_remove() - Remove and release a switch
1837 * @sw: Switch to remove
1838 *
1839 * This will remove the switch from the domain and release it after last
1840 * reference count drops to zero. If there are switches connected below
1841 * this switch, they will be removed as well.
1842 */
1843void tb_switch_remove(struct tb_switch *sw)
1844{
1845	int i;
1846
1847	if (sw->rpm) {
1848		pm_runtime_get_sync(&sw->dev);
1849		pm_runtime_disable(&sw->dev);
1850	}
1851
1852	/* port 0 is the switch itself and never has a remote */
1853	for (i = 1; i <= sw->config.max_port_number; i++) {
1854		if (tb_port_has_remote(&sw->ports[i])) {
1855			tb_switch_remove(sw->ports[i].remote->sw);
1856			sw->ports[i].remote = NULL;
1857		} else if (sw->ports[i].xdomain) {
1858			tb_xdomain_remove(sw->ports[i].xdomain);
1859			sw->ports[i].xdomain = NULL;
1860		}
1861	}
1862
1863	if (!sw->is_unplugged)
1864		tb_plug_events_active(sw, false);
1865	tb_lc_unconfigure_link(sw);
1866
1867	tb_switch_nvm_remove(sw);
1868
1869	if (tb_route(sw))
1870		dev_info(&sw->dev, "device disconnected\n");
1871	device_unregister(&sw->dev);
1872}
1873
1874/**
1875 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
1876 */
1877void tb_sw_set_unplugged(struct tb_switch *sw)
1878{
1879	int i;
1880	if (sw == sw->tb->root_switch) {
1881		tb_sw_WARN(sw, "cannot unplug root switch\n");
1882		return;
1883	}
1884	if (sw->is_unplugged) {
1885		tb_sw_WARN(sw, "is_unplugged already set\n");
1886		return;
1887	}
1888	sw->is_unplugged = true;
1889	for (i = 0; i <= sw->config.max_port_number; i++) {
1890		if (tb_port_has_remote(&sw->ports[i]))
1891			tb_sw_set_unplugged(sw->ports[i].remote->sw);
1892		else if (sw->ports[i].xdomain)
1893			sw->ports[i].xdomain->is_unplugged = true;
1894	}
1895}
1896
1897int tb_switch_resume(struct tb_switch *sw)
1898{
1899	int i, err;
1900	tb_sw_dbg(sw, "resuming switch\n");
1901
1902	/*
1903	 * Check for UID of the connected switches except for root
1904	 * switch which we assume cannot be removed.
1905	 */
1906	if (tb_route(sw)) {
1907		u64 uid;
1908
1909		/*
1910		 * Check first that we can still read the switch config
1911		 * space. It may be that there is now another domain
1912		 * connected.
1913		 */
1914		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
1915		if (err < 0) {
1916			tb_sw_info(sw, "switch not present anymore\n");
1917			return err;
1918		}
1919
1920		err = tb_drom_read_uid_only(sw, &uid);
1921		if (err) {
1922			tb_sw_warn(sw, "uid read failed\n");
1923			return err;
1924		}
1925		if (sw->uid != uid) {
1926			tb_sw_info(sw,
1927				"changed while suspended (uid %#llx -> %#llx)\n",
1928				sw->uid, uid);
1929			return -ENODEV;
1930		}
1931	}
1932
1933	/* upload configuration */
1934	err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3);
1935	if (err)
1936		return err;
1937
1938	err = tb_lc_configure_link(sw);
1939	if (err)
1940		return err;
1941
1942	err = tb_plug_events_active(sw, true);
1943	if (err)
1944		return err;
1945
1946	/* check for surviving downstream switches */
1947	for (i = 1; i <= sw->config.max_port_number; i++) {
1948		struct tb_port *port = &sw->ports[i];
1949
1950		if (!tb_port_has_remote(port) && !port->xdomain)
1951			continue;
1952
1953		if (tb_wait_for_port(port, true) <= 0) {
1954			tb_port_warn(port,
1955				     "lost during suspend, disconnecting\n");
1956			if (tb_port_has_remote(port))
1957				tb_sw_set_unplugged(port->remote->sw);
1958			else if (port->xdomain)
1959				port->xdomain->is_unplugged = true;
1960		} else if (tb_port_has_remote(port)) {
1961			if (tb_switch_resume(port->remote->sw)) {
1962				tb_port_warn(port,
1963					     "lost during suspend, disconnecting\n");
1964				tb_sw_set_unplugged(port->remote->sw);
1965			}
1966		}
1967	}
1968	return 0;
1969}
1970
1971void tb_switch_suspend(struct tb_switch *sw)
1972{
1973	int i, err;
1974	err = tb_plug_events_active(sw, false);
1975	if (err)
1976		return;
1977
1978	for (i = 1; i <= sw->config.max_port_number; i++) {
1979		if (tb_port_has_remote(&sw->ports[i]))
1980			tb_switch_suspend(sw->ports[i].remote->sw);
1981	}
1982
1983	tb_lc_set_sleep(sw);
1984}
1985
1986struct tb_sw_lookup {
1987	struct tb *tb;
1988	u8 link;
1989	u8 depth;
1990	const uuid_t *uuid;
1991	u64 route;
1992};
1993
1994static int tb_switch_match(struct device *dev, const void *data)
1995{
1996	struct tb_switch *sw = tb_to_switch(dev);
1997	const struct tb_sw_lookup *lookup = data;
1998
1999	if (!sw)
2000		return 0;
2001	if (sw->tb != lookup->tb)
2002		return 0;
2003
2004	if (lookup->uuid)
2005		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2006
2007	if (lookup->route) {
2008		return sw->config.route_lo == lower_32_bits(lookup->route) &&
2009		       sw->config.route_hi == upper_32_bits(lookup->route);
2010	}
2011
2012	/* Root switch is matched only by depth */
2013	if (!lookup->depth)
2014		return !sw->depth;
2015
2016	return sw->link == lookup->link && sw->depth == lookup->depth;
2017}
2018
2019/**
2020 * tb_switch_find_by_link_depth() - Find switch by link and depth
2021 * @tb: Domain the switch belongs
2022 * @link: Link number the switch is connected
2023 * @depth: Depth of the switch in link
2024 *
2025 * Returned switch has reference count increased so the caller needs to
2026 * call tb_switch_put() when done with the switch.
2027 */
2028struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2029{
2030	struct tb_sw_lookup lookup;
2031	struct device *dev;
2032
2033	memset(&lookup, 0, sizeof(lookup));
2034	lookup.tb = tb;
2035	lookup.link = link;
2036	lookup.depth = depth;
2037
2038	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2039	if (dev)
2040		return tb_to_switch(dev);
2041
2042	return NULL;
2043}
2044
2045/**
2046 * tb_switch_find_by_uuid() - Find switch by UUID
2047 * @tb: Domain the switch belongs
2048 * @uuid: UUID to look for
2049 *
2050 * Returned switch has reference count increased so the caller needs to
2051 * call tb_switch_put() when done with the switch.
2052 */
2053struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2054{
2055	struct tb_sw_lookup lookup;
2056	struct device *dev;
2057
2058	memset(&lookup, 0, sizeof(lookup));
2059	lookup.tb = tb;
2060	lookup.uuid = uuid;
2061
2062	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2063	if (dev)
2064		return tb_to_switch(dev);
2065
2066	return NULL;
2067}
2068
2069/**
2070 * tb_switch_find_by_route() - Find switch by route string
2071 * @tb: Domain the switch belongs
2072 * @route: Route string to look for
2073 *
2074 * Returned switch has reference count increased so the caller needs to
2075 * call tb_switch_put() when done with the switch.
2076 */
2077struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2078{
2079	struct tb_sw_lookup lookup;
2080	struct device *dev;
2081
2082	if (!route)
2083		return tb_switch_get(tb->root_switch);
2084
2085	memset(&lookup, 0, sizeof(lookup));
2086	lookup.tb = tb;
2087	lookup.route = route;
2088
2089	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2090	if (dev)
2091		return tb_to_switch(dev);
2092
2093	return NULL;
2094}
2095
2096void tb_switch_exit(void)
2097{
2098	ida_destroy(&nvm_ida);
2099}