Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/drivers/char/mem.c
  4 *
  5 *  Copyright (C) 1991, 1992  Linus Torvalds
  6 *
  7 *  Added devfs support.
  8 *    Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
  9 *  Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
 10 */
 11
 12#include <linux/mm.h>
 13#include <linux/miscdevice.h>
 14#include <linux/slab.h>
 15#include <linux/vmalloc.h>
 16#include <linux/mman.h>
 17#include <linux/random.h>
 18#include <linux/init.h>
 19#include <linux/raw.h>
 20#include <linux/tty.h>
 21#include <linux/capability.h>
 22#include <linux/ptrace.h>
 23#include <linux/device.h>
 24#include <linux/highmem.h>
 
 25#include <linux/backing-dev.h>
 26#include <linux/shmem_fs.h>
 27#include <linux/splice.h>
 28#include <linux/pfn.h>
 29#include <linux/export.h>
 30#include <linux/io.h>
 31#include <linux/uio.h>
 32#include <linux/uaccess.h>
 33#include <linux/security.h>
 34
 35#ifdef CONFIG_IA64
 36# include <linux/efi.h>
 37#endif
 38
 39#define DEVPORT_MINOR	4
 40
 41static inline unsigned long size_inside_page(unsigned long start,
 42					     unsigned long size)
 43{
 44	unsigned long sz;
 45
 46	sz = PAGE_SIZE - (start & (PAGE_SIZE - 1));
 47
 48	return min(sz, size);
 49}
 50
 51#ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
 52static inline int valid_phys_addr_range(phys_addr_t addr, size_t count)
 53{
 54	return addr + count <= __pa(high_memory);
 55}
 56
 57static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size)
 58{
 59	return 1;
 60}
 61#endif
 62
 63#ifdef CONFIG_STRICT_DEVMEM
 64static inline int page_is_allowed(unsigned long pfn)
 65{
 66	return devmem_is_allowed(pfn);
 67}
 68static inline int range_is_allowed(unsigned long pfn, unsigned long size)
 69{
 70	u64 from = ((u64)pfn) << PAGE_SHIFT;
 71	u64 to = from + size;
 72	u64 cursor = from;
 73
 74	while (cursor < to) {
 75		if (!devmem_is_allowed(pfn))
 
 
 
 76			return 0;
 
 77		cursor += PAGE_SIZE;
 78		pfn++;
 79	}
 80	return 1;
 81}
 82#else
 83static inline int page_is_allowed(unsigned long pfn)
 84{
 85	return 1;
 86}
 87static inline int range_is_allowed(unsigned long pfn, unsigned long size)
 88{
 89	return 1;
 90}
 91#endif
 92
 93#ifndef unxlate_dev_mem_ptr
 94#define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
 95void __weak unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
 96{
 97}
 98#endif
 99
100static inline bool should_stop_iteration(void)
101{
102	if (need_resched())
103		cond_resched();
104	return fatal_signal_pending(current);
105}
106
107/*
108 * This funcion reads the *physical* memory. The f_pos points directly to the
109 * memory location.
110 */
111static ssize_t read_mem(struct file *file, char __user *buf,
112			size_t count, loff_t *ppos)
113{
114	phys_addr_t p = *ppos;
115	ssize_t read, sz;
116	void *ptr;
117	char *bounce;
118	int err;
119
120	if (p != *ppos)
121		return 0;
122
123	if (!valid_phys_addr_range(p, count))
124		return -EFAULT;
125	read = 0;
126#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
127	/* we don't have page 0 mapped on sparc and m68k.. */
128	if (p < PAGE_SIZE) {
129		sz = size_inside_page(p, count);
130		if (sz > 0) {
131			if (clear_user(buf, sz))
132				return -EFAULT;
133			buf += sz;
134			p += sz;
135			count -= sz;
136			read += sz;
137		}
138	}
139#endif
140
141	bounce = kmalloc(PAGE_SIZE, GFP_KERNEL);
142	if (!bounce)
143		return -ENOMEM;
144
145	while (count > 0) {
146		unsigned long remaining;
147		int allowed, probe;
148
149		sz = size_inside_page(p, count);
150
151		err = -EPERM;
152		allowed = page_is_allowed(p >> PAGE_SHIFT);
153		if (!allowed)
154			goto failed;
155
156		err = -EFAULT;
157		if (allowed == 2) {
158			/* Show zeros for restricted memory. */
159			remaining = clear_user(buf, sz);
160		} else {
161			/*
162			 * On ia64 if a page has been mapped somewhere as
163			 * uncached, then it must also be accessed uncached
164			 * by the kernel or data corruption may occur.
165			 */
166			ptr = xlate_dev_mem_ptr(p);
167			if (!ptr)
168				goto failed;
169
170			probe = probe_kernel_read(bounce, ptr, sz);
171			unxlate_dev_mem_ptr(p, ptr);
172			if (probe)
173				goto failed;
174
175			remaining = copy_to_user(buf, bounce, sz);
176		}
 
 
 
 
 
 
177
 
 
178		if (remaining)
179			goto failed;
180
181		buf += sz;
182		p += sz;
183		count -= sz;
184		read += sz;
185		if (should_stop_iteration())
186			break;
187	}
188	kfree(bounce);
189
190	*ppos += read;
191	return read;
192
193failed:
194	kfree(bounce);
195	return err;
196}
197
198static ssize_t write_mem(struct file *file, const char __user *buf,
199			 size_t count, loff_t *ppos)
200{
201	phys_addr_t p = *ppos;
202	ssize_t written, sz;
203	unsigned long copied;
204	void *ptr;
205
206	if (p != *ppos)
207		return -EFBIG;
208
209	if (!valid_phys_addr_range(p, count))
210		return -EFAULT;
211
212	written = 0;
213
214#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
215	/* we don't have page 0 mapped on sparc and m68k.. */
216	if (p < PAGE_SIZE) {
217		sz = size_inside_page(p, count);
218		/* Hmm. Do something? */
219		buf += sz;
220		p += sz;
221		count -= sz;
222		written += sz;
223	}
224#endif
225
226	while (count > 0) {
227		int allowed;
228
229		sz = size_inside_page(p, count);
230
231		allowed = page_is_allowed(p >> PAGE_SHIFT);
232		if (!allowed)
233			return -EPERM;
234
235		/* Skip actual writing when a page is marked as restricted. */
236		if (allowed == 1) {
237			/*
238			 * On ia64 if a page has been mapped somewhere as
239			 * uncached, then it must also be accessed uncached
240			 * by the kernel or data corruption may occur.
241			 */
242			ptr = xlate_dev_mem_ptr(p);
243			if (!ptr) {
244				if (written)
245					break;
246				return -EFAULT;
247			}
248
249			copied = copy_from_user(ptr, buf, sz);
250			unxlate_dev_mem_ptr(p, ptr);
251			if (copied) {
252				written += sz - copied;
253				if (written)
254					break;
255				return -EFAULT;
256			}
257		}
258
259		buf += sz;
260		p += sz;
261		count -= sz;
262		written += sz;
263		if (should_stop_iteration())
264			break;
265	}
266
267	*ppos += written;
268	return written;
269}
270
271int __weak phys_mem_access_prot_allowed(struct file *file,
272	unsigned long pfn, unsigned long size, pgprot_t *vma_prot)
273{
274	return 1;
275}
276
277#ifndef __HAVE_PHYS_MEM_ACCESS_PROT
278
279/*
280 * Architectures vary in how they handle caching for addresses
281 * outside of main memory.
282 *
283 */
284#ifdef pgprot_noncached
285static int uncached_access(struct file *file, phys_addr_t addr)
286{
287#if defined(CONFIG_IA64)
288	/*
289	 * On ia64, we ignore O_DSYNC because we cannot tolerate memory
290	 * attribute aliases.
291	 */
292	return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
293#elif defined(CONFIG_MIPS)
294	{
295		extern int __uncached_access(struct file *file,
296					     unsigned long addr);
297
298		return __uncached_access(file, addr);
299	}
300#else
301	/*
302	 * Accessing memory above the top the kernel knows about or through a
303	 * file pointer
304	 * that was marked O_DSYNC will be done non-cached.
305	 */
306	if (file->f_flags & O_DSYNC)
307		return 1;
308	return addr >= __pa(high_memory);
309#endif
310}
311#endif
312
313static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
314				     unsigned long size, pgprot_t vma_prot)
315{
316#ifdef pgprot_noncached
317	phys_addr_t offset = pfn << PAGE_SHIFT;
318
319	if (uncached_access(file, offset))
320		return pgprot_noncached(vma_prot);
321#endif
322	return vma_prot;
323}
324#endif
325
326#ifndef CONFIG_MMU
327static unsigned long get_unmapped_area_mem(struct file *file,
328					   unsigned long addr,
329					   unsigned long len,
330					   unsigned long pgoff,
331					   unsigned long flags)
332{
333	if (!valid_mmap_phys_addr_range(pgoff, len))
334		return (unsigned long) -EINVAL;
335	return pgoff << PAGE_SHIFT;
336}
337
338/* permit direct mmap, for read, write or exec */
339static unsigned memory_mmap_capabilities(struct file *file)
340{
341	return NOMMU_MAP_DIRECT |
342		NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC;
343}
344
345static unsigned zero_mmap_capabilities(struct file *file)
346{
347	return NOMMU_MAP_COPY;
348}
349
350/* can't do an in-place private mapping if there's no MMU */
351static inline int private_mapping_ok(struct vm_area_struct *vma)
352{
353	return vma->vm_flags & VM_MAYSHARE;
354}
355#else
 
356
357static inline int private_mapping_ok(struct vm_area_struct *vma)
358{
359	return 1;
360}
361#endif
362
363static const struct vm_operations_struct mmap_mem_ops = {
364#ifdef CONFIG_HAVE_IOREMAP_PROT
365	.access = generic_access_phys
366#endif
367};
368
369static int mmap_mem(struct file *file, struct vm_area_struct *vma)
370{
371	size_t size = vma->vm_end - vma->vm_start;
372	phys_addr_t offset = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
373
374	/* Does it even fit in phys_addr_t? */
375	if (offset >> PAGE_SHIFT != vma->vm_pgoff)
376		return -EINVAL;
377
378	/* It's illegal to wrap around the end of the physical address space. */
379	if (offset + (phys_addr_t)size - 1 < offset)
380		return -EINVAL;
381
382	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
383		return -EINVAL;
384
385	if (!private_mapping_ok(vma))
386		return -ENOSYS;
387
388	if (!range_is_allowed(vma->vm_pgoff, size))
389		return -EPERM;
390
391	if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size,
392						&vma->vm_page_prot))
393		return -EINVAL;
394
395	vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
396						 size,
397						 vma->vm_page_prot);
398
399	vma->vm_ops = &mmap_mem_ops;
400
401	/* Remap-pfn-range will mark the range VM_IO */
402	if (remap_pfn_range(vma,
403			    vma->vm_start,
404			    vma->vm_pgoff,
405			    size,
406			    vma->vm_page_prot)) {
407		return -EAGAIN;
408	}
409	return 0;
410}
411
 
412static int mmap_kmem(struct file *file, struct vm_area_struct *vma)
413{
414	unsigned long pfn;
415
416	/* Turn a kernel-virtual address into a physical page frame */
417	pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT;
418
419	/*
420	 * RED-PEN: on some architectures there is more mapped memory than
421	 * available in mem_map which pfn_valid checks for. Perhaps should add a
422	 * new macro here.
423	 *
424	 * RED-PEN: vmalloc is not supported right now.
425	 */
426	if (!pfn_valid(pfn))
427		return -EIO;
428
429	vma->vm_pgoff = pfn;
430	return mmap_mem(file, vma);
431}
 
432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
433/*
434 * This function reads the *virtual* memory as seen by the kernel.
435 */
436static ssize_t read_kmem(struct file *file, char __user *buf,
437			 size_t count, loff_t *ppos)
438{
439	unsigned long p = *ppos;
440	ssize_t low_count, read, sz;
441	char *kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
442	int err = 0;
443
444	read = 0;
445	if (p < (unsigned long) high_memory) {
446		low_count = count;
447		if (count > (unsigned long)high_memory - p)
448			low_count = (unsigned long)high_memory - p;
449
450#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
451		/* we don't have page 0 mapped on sparc and m68k.. */
452		if (p < PAGE_SIZE && low_count > 0) {
453			sz = size_inside_page(p, low_count);
454			if (clear_user(buf, sz))
455				return -EFAULT;
456			buf += sz;
457			p += sz;
458			read += sz;
459			low_count -= sz;
460			count -= sz;
461		}
462#endif
463		while (low_count > 0) {
464			sz = size_inside_page(p, low_count);
465
466			/*
467			 * On ia64 if a page has been mapped somewhere as
468			 * uncached, then it must also be accessed uncached
469			 * by the kernel or data corruption may occur
470			 */
471			kbuf = xlate_dev_kmem_ptr((void *)p);
472			if (!virt_addr_valid(kbuf))
473				return -ENXIO;
474
475			if (copy_to_user(buf, kbuf, sz))
476				return -EFAULT;
477			buf += sz;
478			p += sz;
479			read += sz;
480			low_count -= sz;
481			count -= sz;
482			if (should_stop_iteration()) {
483				count = 0;
484				break;
485			}
486		}
487	}
488
489	if (count > 0) {
490		kbuf = (char *)__get_free_page(GFP_KERNEL);
491		if (!kbuf)
492			return -ENOMEM;
493		while (count > 0) {
494			sz = size_inside_page(p, count);
495			if (!is_vmalloc_or_module_addr((void *)p)) {
496				err = -ENXIO;
497				break;
498			}
499			sz = vread(kbuf, (char *)p, sz);
500			if (!sz)
501				break;
502			if (copy_to_user(buf, kbuf, sz)) {
503				err = -EFAULT;
504				break;
505			}
506			count -= sz;
507			buf += sz;
508			read += sz;
509			p += sz;
510			if (should_stop_iteration())
511				break;
512		}
513		free_page((unsigned long)kbuf);
514	}
515	*ppos = p;
516	return read ? read : err;
517}
518
519
520static ssize_t do_write_kmem(unsigned long p, const char __user *buf,
521				size_t count, loff_t *ppos)
522{
523	ssize_t written, sz;
524	unsigned long copied;
525
526	written = 0;
527#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
528	/* we don't have page 0 mapped on sparc and m68k.. */
529	if (p < PAGE_SIZE) {
530		sz = size_inside_page(p, count);
531		/* Hmm. Do something? */
532		buf += sz;
533		p += sz;
534		count -= sz;
535		written += sz;
536	}
537#endif
538
539	while (count > 0) {
540		void *ptr;
541
542		sz = size_inside_page(p, count);
543
544		/*
545		 * On ia64 if a page has been mapped somewhere as uncached, then
546		 * it must also be accessed uncached by the kernel or data
547		 * corruption may occur.
548		 */
549		ptr = xlate_dev_kmem_ptr((void *)p);
550		if (!virt_addr_valid(ptr))
551			return -ENXIO;
552
553		copied = copy_from_user(ptr, buf, sz);
554		if (copied) {
555			written += sz - copied;
556			if (written)
557				break;
558			return -EFAULT;
559		}
560		buf += sz;
561		p += sz;
562		count -= sz;
563		written += sz;
564		if (should_stop_iteration())
565			break;
566	}
567
568	*ppos += written;
569	return written;
570}
571
572/*
573 * This function writes to the *virtual* memory as seen by the kernel.
574 */
575static ssize_t write_kmem(struct file *file, const char __user *buf,
576			  size_t count, loff_t *ppos)
577{
578	unsigned long p = *ppos;
579	ssize_t wrote = 0;
580	ssize_t virtr = 0;
581	char *kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */
582	int err = 0;
583
584	if (p < (unsigned long) high_memory) {
585		unsigned long to_write = min_t(unsigned long, count,
586					       (unsigned long)high_memory - p);
587		wrote = do_write_kmem(p, buf, to_write, ppos);
588		if (wrote != to_write)
589			return wrote;
590		p += wrote;
591		buf += wrote;
592		count -= wrote;
593	}
594
595	if (count > 0) {
596		kbuf = (char *)__get_free_page(GFP_KERNEL);
597		if (!kbuf)
598			return wrote ? wrote : -ENOMEM;
599		while (count > 0) {
600			unsigned long sz = size_inside_page(p, count);
601			unsigned long n;
602
603			if (!is_vmalloc_or_module_addr((void *)p)) {
604				err = -ENXIO;
605				break;
606			}
607			n = copy_from_user(kbuf, buf, sz);
608			if (n) {
609				err = -EFAULT;
610				break;
611			}
612			vwrite(kbuf, (char *)p, sz);
613			count -= sz;
614			buf += sz;
615			virtr += sz;
616			p += sz;
617			if (should_stop_iteration())
618				break;
619		}
620		free_page((unsigned long)kbuf);
621	}
622
623	*ppos = p;
624	return virtr + wrote ? : err;
625}
 
626
 
627static ssize_t read_port(struct file *file, char __user *buf,
628			 size_t count, loff_t *ppos)
629{
630	unsigned long i = *ppos;
631	char __user *tmp = buf;
632
633	if (!access_ok(buf, count))
634		return -EFAULT;
635	while (count-- > 0 && i < 65536) {
636		if (__put_user(inb(i), tmp) < 0)
637			return -EFAULT;
638		i++;
639		tmp++;
640	}
641	*ppos = i;
642	return tmp-buf;
643}
644
645static ssize_t write_port(struct file *file, const char __user *buf,
646			  size_t count, loff_t *ppos)
647{
648	unsigned long i = *ppos;
649	const char __user *tmp = buf;
650
651	if (!access_ok(buf, count))
652		return -EFAULT;
653	while (count-- > 0 && i < 65536) {
654		char c;
655
656		if (__get_user(c, tmp)) {
657			if (tmp > buf)
658				break;
659			return -EFAULT;
660		}
661		outb(c, i);
662		i++;
663		tmp++;
664	}
665	*ppos = i;
666	return tmp-buf;
667}
 
668
669static ssize_t read_null(struct file *file, char __user *buf,
670			 size_t count, loff_t *ppos)
671{
672	return 0;
673}
674
675static ssize_t write_null(struct file *file, const char __user *buf,
676			  size_t count, loff_t *ppos)
677{
678	return count;
679}
680
681static ssize_t read_iter_null(struct kiocb *iocb, struct iov_iter *to)
682{
683	return 0;
684}
685
686static ssize_t write_iter_null(struct kiocb *iocb, struct iov_iter *from)
687{
688	size_t count = iov_iter_count(from);
689	iov_iter_advance(from, count);
690	return count;
691}
692
693static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf,
694			struct splice_desc *sd)
695{
696	return sd->len;
697}
698
699static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out,
700				 loff_t *ppos, size_t len, unsigned int flags)
701{
702	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null);
703}
704
705static ssize_t read_iter_zero(struct kiocb *iocb, struct iov_iter *iter)
 
706{
707	size_t written = 0;
 
 
 
708
709	while (iov_iter_count(iter)) {
710		size_t chunk = iov_iter_count(iter), n;
 
 
 
 
 
711
712		if (chunk > PAGE_SIZE)
713			chunk = PAGE_SIZE;	/* Just for latency reasons */
714		n = iov_iter_zero(chunk, iter);
715		if (!n && iov_iter_count(iter))
716			return written ? written : -EFAULT;
717		written += n;
718		if (signal_pending(current))
719			return written ? written : -ERESTARTSYS;
 
 
720		cond_resched();
721	}
722	return written;
723}
724
725static int mmap_zero(struct file *file, struct vm_area_struct *vma)
726{
727#ifndef CONFIG_MMU
728	return -ENOSYS;
729#endif
730	if (vma->vm_flags & VM_SHARED)
731		return shmem_zero_setup(vma);
732	vma_set_anonymous(vma);
733	return 0;
734}
735
736static unsigned long get_unmapped_area_zero(struct file *file,
737				unsigned long addr, unsigned long len,
738				unsigned long pgoff, unsigned long flags)
739{
740#ifdef CONFIG_MMU
741	if (flags & MAP_SHARED) {
742		/*
743		 * mmap_zero() will call shmem_zero_setup() to create a file,
744		 * so use shmem's get_unmapped_area in case it can be huge;
745		 * and pass NULL for file as in mmap.c's get_unmapped_area(),
746		 * so as not to confuse shmem with our handle on "/dev/zero".
747		 */
748		return shmem_get_unmapped_area(NULL, addr, len, pgoff, flags);
749	}
750
751	/* Otherwise flags & MAP_PRIVATE: with no shmem object beneath it */
752	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
753#else
754	return -ENOSYS;
755#endif
756}
757
758static ssize_t write_full(struct file *file, const char __user *buf,
759			  size_t count, loff_t *ppos)
760{
761	return -ENOSPC;
762}
763
764/*
765 * Special lseek() function for /dev/null and /dev/zero.  Most notably, you
766 * can fopen() both devices with "a" now.  This was previously impossible.
767 * -- SRB.
768 */
769static loff_t null_lseek(struct file *file, loff_t offset, int orig)
770{
771	return file->f_pos = 0;
772}
773
774/*
775 * The memory devices use the full 32/64 bits of the offset, and so we cannot
776 * check against negative addresses: they are ok. The return value is weird,
777 * though, in that case (0).
778 *
779 * also note that seeking relative to the "end of file" isn't supported:
780 * it has no meaning, so it returns -EINVAL.
781 */
782static loff_t memory_lseek(struct file *file, loff_t offset, int orig)
783{
784	loff_t ret;
785
786	inode_lock(file_inode(file));
787	switch (orig) {
788	case SEEK_CUR:
789		offset += file->f_pos;
790		/* fall through */
791	case SEEK_SET:
792		/* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
793		if ((unsigned long long)offset >= -MAX_ERRNO) {
794			ret = -EOVERFLOW;
795			break;
796		}
797		file->f_pos = offset;
798		ret = file->f_pos;
799		force_successful_syscall_return();
800		break;
801	default:
802		ret = -EINVAL;
803	}
804	inode_unlock(file_inode(file));
805	return ret;
806}
807
808static int open_port(struct inode *inode, struct file *filp)
809{
810	if (!capable(CAP_SYS_RAWIO))
811		return -EPERM;
812
813	return security_locked_down(LOCKDOWN_DEV_MEM);
814}
815
816#define zero_lseek	null_lseek
817#define full_lseek      null_lseek
818#define write_zero	write_null
819#define write_iter_zero	write_iter_null
820#define open_mem	open_port
821#define open_kmem	open_mem
 
822
823static const struct file_operations __maybe_unused mem_fops = {
824	.llseek		= memory_lseek,
825	.read		= read_mem,
826	.write		= write_mem,
827	.mmap		= mmap_mem,
828	.open		= open_mem,
829#ifndef CONFIG_MMU
830	.get_unmapped_area = get_unmapped_area_mem,
831	.mmap_capabilities = memory_mmap_capabilities,
832#endif
833};
834
835static const struct file_operations __maybe_unused kmem_fops = {
 
836	.llseek		= memory_lseek,
837	.read		= read_kmem,
838	.write		= write_kmem,
839	.mmap		= mmap_kmem,
840	.open		= open_kmem,
841#ifndef CONFIG_MMU
842	.get_unmapped_area = get_unmapped_area_mem,
843	.mmap_capabilities = memory_mmap_capabilities,
844#endif
845};
 
846
847static const struct file_operations null_fops = {
848	.llseek		= null_lseek,
849	.read		= read_null,
850	.write		= write_null,
851	.read_iter	= read_iter_null,
852	.write_iter	= write_iter_null,
853	.splice_write	= splice_write_null,
854};
855
856static const struct file_operations __maybe_unused port_fops = {
 
857	.llseek		= memory_lseek,
858	.read		= read_port,
859	.write		= write_port,
860	.open		= open_port,
861};
 
862
863static const struct file_operations zero_fops = {
864	.llseek		= zero_lseek,
 
865	.write		= write_zero,
866	.read_iter	= read_iter_zero,
867	.write_iter	= write_iter_zero,
868	.mmap		= mmap_zero,
869	.get_unmapped_area = get_unmapped_area_zero,
870#ifndef CONFIG_MMU
871	.mmap_capabilities = zero_mmap_capabilities,
872#endif
 
 
 
 
 
 
873};
874
875static const struct file_operations full_fops = {
876	.llseek		= full_lseek,
877	.read_iter	= read_iter_zero,
878	.write		= write_full,
879};
880
 
 
 
 
 
 
 
 
881static const struct memdev {
882	const char *name;
883	umode_t mode;
884	const struct file_operations *fops;
885	fmode_t fmode;
886} devlist[] = {
887#ifdef CONFIG_DEVMEM
888	 [1] = { "mem", 0, &mem_fops, FMODE_UNSIGNED_OFFSET },
889#endif
890#ifdef CONFIG_DEVKMEM
891	 [2] = { "kmem", 0, &kmem_fops, FMODE_UNSIGNED_OFFSET },
892#endif
893	 [3] = { "null", 0666, &null_fops, 0 },
894#ifdef CONFIG_DEVPORT
895	 [4] = { "port", 0, &port_fops, 0 },
896#endif
897	 [5] = { "zero", 0666, &zero_fops, 0 },
898	 [7] = { "full", 0666, &full_fops, 0 },
899	 [8] = { "random", 0666, &random_fops, 0 },
900	 [9] = { "urandom", 0666, &urandom_fops, 0 },
901#ifdef CONFIG_PRINTK
902	[11] = { "kmsg", 0644, &kmsg_fops, 0 },
 
 
 
903#endif
904};
905
906static int memory_open(struct inode *inode, struct file *filp)
907{
908	int minor;
909	const struct memdev *dev;
910
911	minor = iminor(inode);
912	if (minor >= ARRAY_SIZE(devlist))
913		return -ENXIO;
914
915	dev = &devlist[minor];
916	if (!dev->fops)
917		return -ENXIO;
918
919	filp->f_op = dev->fops;
920	filp->f_mode |= dev->fmode;
 
 
 
 
 
921
922	if (dev->fops->open)
923		return dev->fops->open(inode, filp);
924
925	return 0;
926}
927
928static const struct file_operations memory_fops = {
929	.open = memory_open,
930	.llseek = noop_llseek,
931};
932
933static char *mem_devnode(struct device *dev, umode_t *mode)
934{
935	if (mode && devlist[MINOR(dev->devt)].mode)
936		*mode = devlist[MINOR(dev->devt)].mode;
937	return NULL;
938}
939
940static struct class *mem_class;
941
942static int __init chr_dev_init(void)
943{
944	int minor;
 
 
 
 
 
945
946	if (register_chrdev(MEM_MAJOR, "mem", &memory_fops))
947		printk("unable to get major %d for memory devs\n", MEM_MAJOR);
948
949	mem_class = class_create(THIS_MODULE, "mem");
950	if (IS_ERR(mem_class))
951		return PTR_ERR(mem_class);
952
953	mem_class->devnode = mem_devnode;
954	for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) {
955		if (!devlist[minor].name)
956			continue;
957
958		/*
959		 * Create /dev/port?
960		 */
961		if ((minor == DEVPORT_MINOR) && !arch_has_dev_port())
962			continue;
963
964		device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor),
965			      NULL, devlist[minor].name);
966	}
967
968	return tty_init();
969}
970
971fs_initcall(chr_dev_init);
v3.5.6
 
  1/*
  2 *  linux/drivers/char/mem.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 *
  6 *  Added devfs support.
  7 *    Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
  8 *  Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
  9 */
 10
 11#include <linux/mm.h>
 12#include <linux/miscdevice.h>
 13#include <linux/slab.h>
 14#include <linux/vmalloc.h>
 15#include <linux/mman.h>
 16#include <linux/random.h>
 17#include <linux/init.h>
 18#include <linux/raw.h>
 19#include <linux/tty.h>
 20#include <linux/capability.h>
 21#include <linux/ptrace.h>
 22#include <linux/device.h>
 23#include <linux/highmem.h>
 24#include <linux/crash_dump.h>
 25#include <linux/backing-dev.h>
 26#include <linux/bootmem.h>
 27#include <linux/splice.h>
 28#include <linux/pfn.h>
 29#include <linux/export.h>
 30
 31#include <asm/uaccess.h>
 32#include <asm/io.h>
 
 33
 34#ifdef CONFIG_IA64
 35# include <linux/efi.h>
 36#endif
 37
 
 
 38static inline unsigned long size_inside_page(unsigned long start,
 39					     unsigned long size)
 40{
 41	unsigned long sz;
 42
 43	sz = PAGE_SIZE - (start & (PAGE_SIZE - 1));
 44
 45	return min(sz, size);
 46}
 47
 48#ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
 49static inline int valid_phys_addr_range(unsigned long addr, size_t count)
 50{
 51	return addr + count <= __pa(high_memory);
 52}
 53
 54static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size)
 55{
 56	return 1;
 57}
 58#endif
 59
 60#ifdef CONFIG_STRICT_DEVMEM
 
 
 
 
 61static inline int range_is_allowed(unsigned long pfn, unsigned long size)
 62{
 63	u64 from = ((u64)pfn) << PAGE_SHIFT;
 64	u64 to = from + size;
 65	u64 cursor = from;
 66
 67	while (cursor < to) {
 68		if (!devmem_is_allowed(pfn)) {
 69			printk(KERN_INFO
 70		"Program %s tried to access /dev/mem between %Lx->%Lx.\n",
 71				current->comm, from, to);
 72			return 0;
 73		}
 74		cursor += PAGE_SIZE;
 75		pfn++;
 76	}
 77	return 1;
 78}
 79#else
 
 
 
 
 80static inline int range_is_allowed(unsigned long pfn, unsigned long size)
 81{
 82	return 1;
 83}
 84#endif
 85
 86void __weak unxlate_dev_mem_ptr(unsigned long phys, void *addr)
 
 
 87{
 88}
 
 
 
 
 
 
 
 
 89
 90/*
 91 * This funcion reads the *physical* memory. The f_pos points directly to the
 92 * memory location.
 93 */
 94static ssize_t read_mem(struct file *file, char __user *buf,
 95			size_t count, loff_t *ppos)
 96{
 97	unsigned long p = *ppos;
 98	ssize_t read, sz;
 99	char *ptr;
 
 
 
 
 
100
101	if (!valid_phys_addr_range(p, count))
102		return -EFAULT;
103	read = 0;
104#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
105	/* we don't have page 0 mapped on sparc and m68k.. */
106	if (p < PAGE_SIZE) {
107		sz = size_inside_page(p, count);
108		if (sz > 0) {
109			if (clear_user(buf, sz))
110				return -EFAULT;
111			buf += sz;
112			p += sz;
113			count -= sz;
114			read += sz;
115		}
116	}
117#endif
118
 
 
 
 
119	while (count > 0) {
120		unsigned long remaining;
 
121
122		sz = size_inside_page(p, count);
123
124		if (!range_is_allowed(p >> PAGE_SHIFT, count))
125			return -EPERM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126
127		/*
128		 * On ia64 if a page has been mapped somewhere as uncached, then
129		 * it must also be accessed uncached by the kernel or data
130		 * corruption may occur.
131		 */
132		ptr = xlate_dev_mem_ptr(p);
133		if (!ptr)
134			return -EFAULT;
135
136		remaining = copy_to_user(buf, ptr, sz);
137		unxlate_dev_mem_ptr(p, ptr);
138		if (remaining)
139			return -EFAULT;
140
141		buf += sz;
142		p += sz;
143		count -= sz;
144		read += sz;
 
 
145	}
 
146
147	*ppos += read;
148	return read;
 
 
 
 
149}
150
151static ssize_t write_mem(struct file *file, const char __user *buf,
152			 size_t count, loff_t *ppos)
153{
154	unsigned long p = *ppos;
155	ssize_t written, sz;
156	unsigned long copied;
157	void *ptr;
158
 
 
 
159	if (!valid_phys_addr_range(p, count))
160		return -EFAULT;
161
162	written = 0;
163
164#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
165	/* we don't have page 0 mapped on sparc and m68k.. */
166	if (p < PAGE_SIZE) {
167		sz = size_inside_page(p, count);
168		/* Hmm. Do something? */
169		buf += sz;
170		p += sz;
171		count -= sz;
172		written += sz;
173	}
174#endif
175
176	while (count > 0) {
 
 
177		sz = size_inside_page(p, count);
178
179		if (!range_is_allowed(p >> PAGE_SHIFT, sz))
 
180			return -EPERM;
181
182		/*
183		 * On ia64 if a page has been mapped somewhere as uncached, then
184		 * it must also be accessed uncached by the kernel or data
185		 * corruption may occur.
186		 */
187		ptr = xlate_dev_mem_ptr(p);
188		if (!ptr) {
189			if (written)
190				break;
191			return -EFAULT;
192		}
 
 
193
194		copied = copy_from_user(ptr, buf, sz);
195		unxlate_dev_mem_ptr(p, ptr);
196		if (copied) {
197			written += sz - copied;
198			if (written)
199				break;
200			return -EFAULT;
 
201		}
202
203		buf += sz;
204		p += sz;
205		count -= sz;
206		written += sz;
 
 
207	}
208
209	*ppos += written;
210	return written;
211}
212
213int __weak phys_mem_access_prot_allowed(struct file *file,
214	unsigned long pfn, unsigned long size, pgprot_t *vma_prot)
215{
216	return 1;
217}
218
219#ifndef __HAVE_PHYS_MEM_ACCESS_PROT
220
221/*
222 * Architectures vary in how they handle caching for addresses
223 * outside of main memory.
224 *
225 */
226#ifdef pgprot_noncached
227static int uncached_access(struct file *file, unsigned long addr)
228{
229#if defined(CONFIG_IA64)
230	/*
231	 * On ia64, we ignore O_DSYNC because we cannot tolerate memory
232	 * attribute aliases.
233	 */
234	return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
235#elif defined(CONFIG_MIPS)
236	{
237		extern int __uncached_access(struct file *file,
238					     unsigned long addr);
239
240		return __uncached_access(file, addr);
241	}
242#else
243	/*
244	 * Accessing memory above the top the kernel knows about or through a
245	 * file pointer
246	 * that was marked O_DSYNC will be done non-cached.
247	 */
248	if (file->f_flags & O_DSYNC)
249		return 1;
250	return addr >= __pa(high_memory);
251#endif
252}
253#endif
254
255static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
256				     unsigned long size, pgprot_t vma_prot)
257{
258#ifdef pgprot_noncached
259	unsigned long offset = pfn << PAGE_SHIFT;
260
261	if (uncached_access(file, offset))
262		return pgprot_noncached(vma_prot);
263#endif
264	return vma_prot;
265}
266#endif
267
268#ifndef CONFIG_MMU
269static unsigned long get_unmapped_area_mem(struct file *file,
270					   unsigned long addr,
271					   unsigned long len,
272					   unsigned long pgoff,
273					   unsigned long flags)
274{
275	if (!valid_mmap_phys_addr_range(pgoff, len))
276		return (unsigned long) -EINVAL;
277	return pgoff << PAGE_SHIFT;
278}
279
 
 
 
 
 
 
 
 
 
 
 
 
280/* can't do an in-place private mapping if there's no MMU */
281static inline int private_mapping_ok(struct vm_area_struct *vma)
282{
283	return vma->vm_flags & VM_MAYSHARE;
284}
285#else
286#define get_unmapped_area_mem	NULL
287
288static inline int private_mapping_ok(struct vm_area_struct *vma)
289{
290	return 1;
291}
292#endif
293
294static const struct vm_operations_struct mmap_mem_ops = {
295#ifdef CONFIG_HAVE_IOREMAP_PROT
296	.access = generic_access_phys
297#endif
298};
299
300static int mmap_mem(struct file *file, struct vm_area_struct *vma)
301{
302	size_t size = vma->vm_end - vma->vm_start;
 
 
 
 
 
 
 
 
 
303
304	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
305		return -EINVAL;
306
307	if (!private_mapping_ok(vma))
308		return -ENOSYS;
309
310	if (!range_is_allowed(vma->vm_pgoff, size))
311		return -EPERM;
312
313	if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size,
314						&vma->vm_page_prot))
315		return -EINVAL;
316
317	vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
318						 size,
319						 vma->vm_page_prot);
320
321	vma->vm_ops = &mmap_mem_ops;
322
323	/* Remap-pfn-range will mark the range VM_IO and VM_RESERVED */
324	if (remap_pfn_range(vma,
325			    vma->vm_start,
326			    vma->vm_pgoff,
327			    size,
328			    vma->vm_page_prot)) {
329		return -EAGAIN;
330	}
331	return 0;
332}
333
334#ifdef CONFIG_DEVKMEM
335static int mmap_kmem(struct file *file, struct vm_area_struct *vma)
336{
337	unsigned long pfn;
338
339	/* Turn a kernel-virtual address into a physical page frame */
340	pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT;
341
342	/*
343	 * RED-PEN: on some architectures there is more mapped memory than
344	 * available in mem_map which pfn_valid checks for. Perhaps should add a
345	 * new macro here.
346	 *
347	 * RED-PEN: vmalloc is not supported right now.
348	 */
349	if (!pfn_valid(pfn))
350		return -EIO;
351
352	vma->vm_pgoff = pfn;
353	return mmap_mem(file, vma);
354}
355#endif
356
357#ifdef CONFIG_CRASH_DUMP
358/*
359 * Read memory corresponding to the old kernel.
360 */
361static ssize_t read_oldmem(struct file *file, char __user *buf,
362				size_t count, loff_t *ppos)
363{
364	unsigned long pfn, offset;
365	size_t read = 0, csize;
366	int rc = 0;
367
368	while (count) {
369		pfn = *ppos / PAGE_SIZE;
370		if (pfn > saved_max_pfn)
371			return read;
372
373		offset = (unsigned long)(*ppos % PAGE_SIZE);
374		if (count > PAGE_SIZE - offset)
375			csize = PAGE_SIZE - offset;
376		else
377			csize = count;
378
379		rc = copy_oldmem_page(pfn, buf, csize, offset, 1);
380		if (rc < 0)
381			return rc;
382		buf += csize;
383		*ppos += csize;
384		read += csize;
385		count -= csize;
386	}
387	return read;
388}
389#endif
390
391#ifdef CONFIG_DEVKMEM
392/*
393 * This function reads the *virtual* memory as seen by the kernel.
394 */
395static ssize_t read_kmem(struct file *file, char __user *buf,
396			 size_t count, loff_t *ppos)
397{
398	unsigned long p = *ppos;
399	ssize_t low_count, read, sz;
400	char * kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
401	int err = 0;
402
403	read = 0;
404	if (p < (unsigned long) high_memory) {
405		low_count = count;
406		if (count > (unsigned long)high_memory - p)
407			low_count = (unsigned long)high_memory - p;
408
409#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
410		/* we don't have page 0 mapped on sparc and m68k.. */
411		if (p < PAGE_SIZE && low_count > 0) {
412			sz = size_inside_page(p, low_count);
413			if (clear_user(buf, sz))
414				return -EFAULT;
415			buf += sz;
416			p += sz;
417			read += sz;
418			low_count -= sz;
419			count -= sz;
420		}
421#endif
422		while (low_count > 0) {
423			sz = size_inside_page(p, low_count);
424
425			/*
426			 * On ia64 if a page has been mapped somewhere as
427			 * uncached, then it must also be accessed uncached
428			 * by the kernel or data corruption may occur
429			 */
430			kbuf = xlate_dev_kmem_ptr((char *)p);
 
 
431
432			if (copy_to_user(buf, kbuf, sz))
433				return -EFAULT;
434			buf += sz;
435			p += sz;
436			read += sz;
437			low_count -= sz;
438			count -= sz;
 
 
 
 
439		}
440	}
441
442	if (count > 0) {
443		kbuf = (char *)__get_free_page(GFP_KERNEL);
444		if (!kbuf)
445			return -ENOMEM;
446		while (count > 0) {
447			sz = size_inside_page(p, count);
448			if (!is_vmalloc_or_module_addr((void *)p)) {
449				err = -ENXIO;
450				break;
451			}
452			sz = vread(kbuf, (char *)p, sz);
453			if (!sz)
454				break;
455			if (copy_to_user(buf, kbuf, sz)) {
456				err = -EFAULT;
457				break;
458			}
459			count -= sz;
460			buf += sz;
461			read += sz;
462			p += sz;
 
 
463		}
464		free_page((unsigned long)kbuf);
465	}
466	*ppos = p;
467	return read ? read : err;
468}
469
470
471static ssize_t do_write_kmem(unsigned long p, const char __user *buf,
472				size_t count, loff_t *ppos)
473{
474	ssize_t written, sz;
475	unsigned long copied;
476
477	written = 0;
478#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
479	/* we don't have page 0 mapped on sparc and m68k.. */
480	if (p < PAGE_SIZE) {
481		sz = size_inside_page(p, count);
482		/* Hmm. Do something? */
483		buf += sz;
484		p += sz;
485		count -= sz;
486		written += sz;
487	}
488#endif
489
490	while (count > 0) {
491		char *ptr;
492
493		sz = size_inside_page(p, count);
494
495		/*
496		 * On ia64 if a page has been mapped somewhere as uncached, then
497		 * it must also be accessed uncached by the kernel or data
498		 * corruption may occur.
499		 */
500		ptr = xlate_dev_kmem_ptr((char *)p);
 
 
501
502		copied = copy_from_user(ptr, buf, sz);
503		if (copied) {
504			written += sz - copied;
505			if (written)
506				break;
507			return -EFAULT;
508		}
509		buf += sz;
510		p += sz;
511		count -= sz;
512		written += sz;
 
 
513	}
514
515	*ppos += written;
516	return written;
517}
518
519/*
520 * This function writes to the *virtual* memory as seen by the kernel.
521 */
522static ssize_t write_kmem(struct file *file, const char __user *buf,
523			  size_t count, loff_t *ppos)
524{
525	unsigned long p = *ppos;
526	ssize_t wrote = 0;
527	ssize_t virtr = 0;
528	char * kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */
529	int err = 0;
530
531	if (p < (unsigned long) high_memory) {
532		unsigned long to_write = min_t(unsigned long, count,
533					       (unsigned long)high_memory - p);
534		wrote = do_write_kmem(p, buf, to_write, ppos);
535		if (wrote != to_write)
536			return wrote;
537		p += wrote;
538		buf += wrote;
539		count -= wrote;
540	}
541
542	if (count > 0) {
543		kbuf = (char *)__get_free_page(GFP_KERNEL);
544		if (!kbuf)
545			return wrote ? wrote : -ENOMEM;
546		while (count > 0) {
547			unsigned long sz = size_inside_page(p, count);
548			unsigned long n;
549
550			if (!is_vmalloc_or_module_addr((void *)p)) {
551				err = -ENXIO;
552				break;
553			}
554			n = copy_from_user(kbuf, buf, sz);
555			if (n) {
556				err = -EFAULT;
557				break;
558			}
559			vwrite(kbuf, (char *)p, sz);
560			count -= sz;
561			buf += sz;
562			virtr += sz;
563			p += sz;
 
 
564		}
565		free_page((unsigned long)kbuf);
566	}
567
568	*ppos = p;
569	return virtr + wrote ? : err;
570}
571#endif
572
573#ifdef CONFIG_DEVPORT
574static ssize_t read_port(struct file *file, char __user *buf,
575			 size_t count, loff_t *ppos)
576{
577	unsigned long i = *ppos;
578	char __user *tmp = buf;
579
580	if (!access_ok(VERIFY_WRITE, buf, count))
581		return -EFAULT;
582	while (count-- > 0 && i < 65536) {
583		if (__put_user(inb(i), tmp) < 0)
584			return -EFAULT;
585		i++;
586		tmp++;
587	}
588	*ppos = i;
589	return tmp-buf;
590}
591
592static ssize_t write_port(struct file *file, const char __user *buf,
593			  size_t count, loff_t *ppos)
594{
595	unsigned long i = *ppos;
596	const char __user * tmp = buf;
597
598	if (!access_ok(VERIFY_READ, buf, count))
599		return -EFAULT;
600	while (count-- > 0 && i < 65536) {
601		char c;
 
602		if (__get_user(c, tmp)) {
603			if (tmp > buf)
604				break;
605			return -EFAULT;
606		}
607		outb(c, i);
608		i++;
609		tmp++;
610	}
611	*ppos = i;
612	return tmp-buf;
613}
614#endif
615
616static ssize_t read_null(struct file *file, char __user *buf,
617			 size_t count, loff_t *ppos)
618{
619	return 0;
620}
621
622static ssize_t write_null(struct file *file, const char __user *buf,
623			  size_t count, loff_t *ppos)
624{
625	return count;
626}
627
 
 
 
 
 
 
 
 
 
 
 
 
628static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf,
629			struct splice_desc *sd)
630{
631	return sd->len;
632}
633
634static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out,
635				 loff_t *ppos, size_t len, unsigned int flags)
636{
637	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null);
638}
639
640static ssize_t read_zero(struct file *file, char __user *buf,
641			 size_t count, loff_t *ppos)
642{
643	size_t written;
644
645	if (!count)
646		return 0;
647
648	if (!access_ok(VERIFY_WRITE, buf, count))
649		return -EFAULT;
650
651	written = 0;
652	while (count) {
653		unsigned long unwritten;
654		size_t chunk = count;
655
656		if (chunk > PAGE_SIZE)
657			chunk = PAGE_SIZE;	/* Just for latency reasons */
658		unwritten = __clear_user(buf, chunk);
659		written += chunk - unwritten;
660		if (unwritten)
661			break;
662		if (signal_pending(current))
663			return written ? written : -ERESTARTSYS;
664		buf += chunk;
665		count -= chunk;
666		cond_resched();
667	}
668	return written ? written : -EFAULT;
669}
670
671static int mmap_zero(struct file *file, struct vm_area_struct *vma)
672{
673#ifndef CONFIG_MMU
674	return -ENOSYS;
675#endif
676	if (vma->vm_flags & VM_SHARED)
677		return shmem_zero_setup(vma);
 
678	return 0;
679}
680
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
681static ssize_t write_full(struct file *file, const char __user *buf,
682			  size_t count, loff_t *ppos)
683{
684	return -ENOSPC;
685}
686
687/*
688 * Special lseek() function for /dev/null and /dev/zero.  Most notably, you
689 * can fopen() both devices with "a" now.  This was previously impossible.
690 * -- SRB.
691 */
692static loff_t null_lseek(struct file *file, loff_t offset, int orig)
693{
694	return file->f_pos = 0;
695}
696
697/*
698 * The memory devices use the full 32/64 bits of the offset, and so we cannot
699 * check against negative addresses: they are ok. The return value is weird,
700 * though, in that case (0).
701 *
702 * also note that seeking relative to the "end of file" isn't supported:
703 * it has no meaning, so it returns -EINVAL.
704 */
705static loff_t memory_lseek(struct file *file, loff_t offset, int orig)
706{
707	loff_t ret;
708
709	mutex_lock(&file->f_path.dentry->d_inode->i_mutex);
710	switch (orig) {
711	case SEEK_CUR:
712		offset += file->f_pos;
 
713	case SEEK_SET:
714		/* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
715		if ((unsigned long long)offset >= ~0xFFFULL) {
716			ret = -EOVERFLOW;
717			break;
718		}
719		file->f_pos = offset;
720		ret = file->f_pos;
721		force_successful_syscall_return();
722		break;
723	default:
724		ret = -EINVAL;
725	}
726	mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
727	return ret;
728}
729
730static int open_port(struct inode * inode, struct file * filp)
731{
732	return capable(CAP_SYS_RAWIO) ? 0 : -EPERM;
 
 
 
733}
734
735#define zero_lseek	null_lseek
736#define full_lseek      null_lseek
737#define write_zero	write_null
738#define read_full       read_zero
739#define open_mem	open_port
740#define open_kmem	open_mem
741#define open_oldmem	open_mem
742
743static const struct file_operations mem_fops = {
744	.llseek		= memory_lseek,
745	.read		= read_mem,
746	.write		= write_mem,
747	.mmap		= mmap_mem,
748	.open		= open_mem,
 
749	.get_unmapped_area = get_unmapped_area_mem,
 
 
750};
751
752#ifdef CONFIG_DEVKMEM
753static const struct file_operations kmem_fops = {
754	.llseek		= memory_lseek,
755	.read		= read_kmem,
756	.write		= write_kmem,
757	.mmap		= mmap_kmem,
758	.open		= open_kmem,
 
759	.get_unmapped_area = get_unmapped_area_mem,
 
 
760};
761#endif
762
763static const struct file_operations null_fops = {
764	.llseek		= null_lseek,
765	.read		= read_null,
766	.write		= write_null,
 
 
767	.splice_write	= splice_write_null,
768};
769
770#ifdef CONFIG_DEVPORT
771static const struct file_operations port_fops = {
772	.llseek		= memory_lseek,
773	.read		= read_port,
774	.write		= write_port,
775	.open		= open_port,
776};
777#endif
778
779static const struct file_operations zero_fops = {
780	.llseek		= zero_lseek,
781	.read		= read_zero,
782	.write		= write_zero,
 
 
783	.mmap		= mmap_zero,
784};
785
786/*
787 * capabilities for /dev/zero
788 * - permits private mappings, "copies" are taken of the source of zeros
789 * - no writeback happens
790 */
791static struct backing_dev_info zero_bdi = {
792	.name		= "char/mem",
793	.capabilities	= BDI_CAP_MAP_COPY | BDI_CAP_NO_ACCT_AND_WRITEBACK,
794};
795
796static const struct file_operations full_fops = {
797	.llseek		= full_lseek,
798	.read		= read_full,
799	.write		= write_full,
800};
801
802#ifdef CONFIG_CRASH_DUMP
803static const struct file_operations oldmem_fops = {
804	.read	= read_oldmem,
805	.open	= open_oldmem,
806	.llseek = default_llseek,
807};
808#endif
809
810static const struct memdev {
811	const char *name;
812	umode_t mode;
813	const struct file_operations *fops;
814	struct backing_dev_info *dev_info;
815} devlist[] = {
816	 [1] = { "mem", 0, &mem_fops, &directly_mappable_cdev_bdi },
 
 
817#ifdef CONFIG_DEVKMEM
818	 [2] = { "kmem", 0, &kmem_fops, &directly_mappable_cdev_bdi },
819#endif
820	 [3] = { "null", 0666, &null_fops, NULL },
821#ifdef CONFIG_DEVPORT
822	 [4] = { "port", 0, &port_fops, NULL },
823#endif
824	 [5] = { "zero", 0666, &zero_fops, &zero_bdi },
825	 [7] = { "full", 0666, &full_fops, NULL },
826	 [8] = { "random", 0666, &random_fops, NULL },
827	 [9] = { "urandom", 0666, &urandom_fops, NULL },
828#ifdef CONFIG_PRINTK
829	[11] = { "kmsg", 0644, &kmsg_fops, NULL },
830#endif
831#ifdef CONFIG_CRASH_DUMP
832	[12] = { "oldmem", 0, &oldmem_fops, NULL },
833#endif
834};
835
836static int memory_open(struct inode *inode, struct file *filp)
837{
838	int minor;
839	const struct memdev *dev;
840
841	minor = iminor(inode);
842	if (minor >= ARRAY_SIZE(devlist))
843		return -ENXIO;
844
845	dev = &devlist[minor];
846	if (!dev->fops)
847		return -ENXIO;
848
849	filp->f_op = dev->fops;
850	if (dev->dev_info)
851		filp->f_mapping->backing_dev_info = dev->dev_info;
852
853	/* Is /dev/mem or /dev/kmem ? */
854	if (dev->dev_info == &directly_mappable_cdev_bdi)
855		filp->f_mode |= FMODE_UNSIGNED_OFFSET;
856
857	if (dev->fops->open)
858		return dev->fops->open(inode, filp);
859
860	return 0;
861}
862
863static const struct file_operations memory_fops = {
864	.open = memory_open,
865	.llseek = noop_llseek,
866};
867
868static char *mem_devnode(struct device *dev, umode_t *mode)
869{
870	if (mode && devlist[MINOR(dev->devt)].mode)
871		*mode = devlist[MINOR(dev->devt)].mode;
872	return NULL;
873}
874
875static struct class *mem_class;
876
877static int __init chr_dev_init(void)
878{
879	int minor;
880	int err;
881
882	err = bdi_init(&zero_bdi);
883	if (err)
884		return err;
885
886	if (register_chrdev(MEM_MAJOR, "mem", &memory_fops))
887		printk("unable to get major %d for memory devs\n", MEM_MAJOR);
888
889	mem_class = class_create(THIS_MODULE, "mem");
890	if (IS_ERR(mem_class))
891		return PTR_ERR(mem_class);
892
893	mem_class->devnode = mem_devnode;
894	for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) {
895		if (!devlist[minor].name)
896			continue;
 
 
 
 
 
 
 
897		device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor),
898			      NULL, devlist[minor].name);
899	}
900
901	return tty_init();
902}
903
904fs_initcall(chr_dev_init);