Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * arch/parisc/kernel/firmware.c - safe PDC access routines
4 *
5 * PDC == Processor Dependent Code
6 *
7 * See http://www.parisc-linux.org/documentation/index.html
8 * for documentation describing the entry points and calling
9 * conventions defined below.
10 *
11 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
12 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
13 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
14 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
15 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
16 */
17
18/* I think it would be in everyone's best interest to follow this
19 * guidelines when writing PDC wrappers:
20 *
21 * - the name of the pdc wrapper should match one of the macros
22 * used for the first two arguments
23 * - don't use caps for random parts of the name
24 * - use the static PDC result buffers and "copyout" to structs
25 * supplied by the caller to encapsulate alignment restrictions
26 * - hold pdc_lock while in PDC or using static result buffers
27 * - use __pa() to convert virtual (kernel) pointers to physical
28 * ones.
29 * - the name of the struct used for pdc return values should equal
30 * one of the macros used for the first two arguments to the
31 * corresponding PDC call
32 * - keep the order of arguments
33 * - don't be smart (setting trailing NUL bytes for strings, return
34 * something useful even if the call failed) unless you are sure
35 * it's not going to affect functionality or performance
36 *
37 * Example:
38 * int pdc_cache_info(struct pdc_cache_info *cache_info )
39 * {
40 * int retval;
41 *
42 * spin_lock_irq(&pdc_lock);
43 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
44 * convert_to_wide(pdc_result);
45 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
46 * spin_unlock_irq(&pdc_lock);
47 *
48 * return retval;
49 * }
50 * prumpf 991016
51 */
52
53#include <stdarg.h>
54
55#include <linux/delay.h>
56#include <linux/init.h>
57#include <linux/kernel.h>
58#include <linux/module.h>
59#include <linux/string.h>
60#include <linux/spinlock.h>
61
62#include <asm/page.h>
63#include <asm/pdc.h>
64#include <asm/pdcpat.h>
65#include <asm/processor.h> /* for boot_cpu_data */
66
67#if defined(BOOTLOADER)
68# undef spin_lock_irqsave
69# define spin_lock_irqsave(a, b) { b = 1; }
70# undef spin_unlock_irqrestore
71# define spin_unlock_irqrestore(a, b)
72#else
73static DEFINE_SPINLOCK(pdc_lock);
74#endif
75
76extern unsigned long pdc_result[NUM_PDC_RESULT];
77extern unsigned long pdc_result2[NUM_PDC_RESULT];
78
79#ifdef CONFIG_64BIT
80#define WIDE_FIRMWARE 0x1
81#define NARROW_FIRMWARE 0x2
82
83/* Firmware needs to be initially set to narrow to determine the
84 * actual firmware width. */
85int parisc_narrow_firmware __ro_after_init = 1;
86#endif
87
88/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
89 * and MEM_PDC calls are always the same width as the OS.
90 * Some PAT boxes may have 64-bit IODC I/O.
91 *
92 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
93 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
94 * This allowed wide kernels to run on Cxxx boxes.
95 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
96 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
97 */
98
99#ifdef CONFIG_64BIT
100long real64_call(unsigned long function, ...);
101#endif
102long real32_call(unsigned long function, ...);
103
104#ifdef CONFIG_64BIT
105# define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
106# define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
107#else
108# define MEM_PDC (unsigned long)PAGE0->mem_pdc
109# define mem_pdc_call(args...) real32_call(MEM_PDC, args)
110#endif
111
112
113/**
114 * f_extend - Convert PDC addresses to kernel addresses.
115 * @address: Address returned from PDC.
116 *
117 * This function is used to convert PDC addresses into kernel addresses
118 * when the PDC address size and kernel address size are different.
119 */
120static unsigned long f_extend(unsigned long address)
121{
122#ifdef CONFIG_64BIT
123 if(unlikely(parisc_narrow_firmware)) {
124 if((address & 0xff000000) == 0xf0000000)
125 return 0xf0f0f0f000000000UL | (u32)address;
126
127 if((address & 0xf0000000) == 0xf0000000)
128 return 0xffffffff00000000UL | (u32)address;
129 }
130#endif
131 return address;
132}
133
134/**
135 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
136 * @address: The return buffer from PDC.
137 *
138 * This function is used to convert the return buffer addresses retrieved from PDC
139 * into kernel addresses when the PDC address size and kernel address size are
140 * different.
141 */
142static void convert_to_wide(unsigned long *addr)
143{
144#ifdef CONFIG_64BIT
145 int i;
146 unsigned int *p = (unsigned int *)addr;
147
148 if (unlikely(parisc_narrow_firmware)) {
149 for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
150 addr[i] = p[i];
151 }
152#endif
153}
154
155#ifdef CONFIG_64BIT
156void set_firmware_width_unlocked(void)
157{
158 int ret;
159
160 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
161 __pa(pdc_result), 0);
162 convert_to_wide(pdc_result);
163 if (pdc_result[0] != NARROW_FIRMWARE)
164 parisc_narrow_firmware = 0;
165}
166
167/**
168 * set_firmware_width - Determine if the firmware is wide or narrow.
169 *
170 * This function must be called before any pdc_* function that uses the
171 * convert_to_wide function.
172 */
173void set_firmware_width(void)
174{
175 unsigned long flags;
176 spin_lock_irqsave(&pdc_lock, flags);
177 set_firmware_width_unlocked();
178 spin_unlock_irqrestore(&pdc_lock, flags);
179}
180#else
181void set_firmware_width_unlocked(void)
182{
183 return;
184}
185
186void set_firmware_width(void)
187{
188 return;
189}
190#endif /*CONFIG_64BIT*/
191
192
193#if !defined(BOOTLOADER)
194/**
195 * pdc_emergency_unlock - Unlock the linux pdc lock
196 *
197 * This call unlocks the linux pdc lock in case we need some PDC functions
198 * (like pdc_add_valid) during kernel stack dump.
199 */
200void pdc_emergency_unlock(void)
201{
202 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
203 if (spin_is_locked(&pdc_lock))
204 spin_unlock(&pdc_lock);
205}
206
207
208/**
209 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
210 * @address: Address to be verified.
211 *
212 * This PDC call attempts to read from the specified address and verifies
213 * if the address is valid.
214 *
215 * The return value is PDC_OK (0) in case accessing this address is valid.
216 */
217int pdc_add_valid(unsigned long address)
218{
219 int retval;
220 unsigned long flags;
221
222 spin_lock_irqsave(&pdc_lock, flags);
223 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
224 spin_unlock_irqrestore(&pdc_lock, flags);
225
226 return retval;
227}
228EXPORT_SYMBOL(pdc_add_valid);
229
230/**
231 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
232 * @instr: Pointer to variable which will get instruction opcode.
233 *
234 * The return value is PDC_OK (0) in case call succeeded.
235 */
236int __init pdc_instr(unsigned int *instr)
237{
238 int retval;
239 unsigned long flags;
240
241 spin_lock_irqsave(&pdc_lock, flags);
242 retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
243 convert_to_wide(pdc_result);
244 *instr = pdc_result[0];
245 spin_unlock_irqrestore(&pdc_lock, flags);
246
247 return retval;
248}
249
250/**
251 * pdc_chassis_info - Return chassis information.
252 * @result: The return buffer.
253 * @chassis_info: The memory buffer address.
254 * @len: The size of the memory buffer address.
255 *
256 * An HVERSION dependent call for returning the chassis information.
257 */
258int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
259{
260 int retval;
261 unsigned long flags;
262
263 spin_lock_irqsave(&pdc_lock, flags);
264 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
265 memcpy(&pdc_result2, led_info, len);
266 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
267 __pa(pdc_result), __pa(pdc_result2), len);
268 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
269 memcpy(led_info, pdc_result2, len);
270 spin_unlock_irqrestore(&pdc_lock, flags);
271
272 return retval;
273}
274
275/**
276 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
277 * @retval: -1 on error, 0 on success. Other value are PDC errors
278 *
279 * Must be correctly formatted or expect system crash
280 */
281#ifdef CONFIG_64BIT
282int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
283{
284 int retval = 0;
285 unsigned long flags;
286
287 if (!is_pdc_pat())
288 return -1;
289
290 spin_lock_irqsave(&pdc_lock, flags);
291 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
292 spin_unlock_irqrestore(&pdc_lock, flags);
293
294 return retval;
295}
296#endif
297
298/**
299 * pdc_chassis_disp - Updates chassis code
300 * @retval: -1 on error, 0 on success
301 */
302int pdc_chassis_disp(unsigned long disp)
303{
304 int retval = 0;
305 unsigned long flags;
306
307 spin_lock_irqsave(&pdc_lock, flags);
308 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
309 spin_unlock_irqrestore(&pdc_lock, flags);
310
311 return retval;
312}
313
314/**
315 * pdc_cpu_rendenzvous - Stop currently executing CPU
316 * @retval: -1 on error, 0 on success
317 */
318int __pdc_cpu_rendezvous(void)
319{
320 if (is_pdc_pat())
321 return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
322 else
323 return mem_pdc_call(PDC_PROC, 1, 0);
324}
325
326
327/**
328 * pdc_chassis_warn - Fetches chassis warnings
329 * @retval: -1 on error, 0 on success
330 */
331int pdc_chassis_warn(unsigned long *warn)
332{
333 int retval = 0;
334 unsigned long flags;
335
336 spin_lock_irqsave(&pdc_lock, flags);
337 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
338 *warn = pdc_result[0];
339 spin_unlock_irqrestore(&pdc_lock, flags);
340
341 return retval;
342}
343
344int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
345{
346 int ret;
347
348 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
349 convert_to_wide(pdc_result);
350 pdc_coproc_info->ccr_functional = pdc_result[0];
351 pdc_coproc_info->ccr_present = pdc_result[1];
352 pdc_coproc_info->revision = pdc_result[17];
353 pdc_coproc_info->model = pdc_result[18];
354
355 return ret;
356}
357
358/**
359 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
360 * @pdc_coproc_info: Return buffer address.
361 *
362 * This PDC call returns the presence and status of all the coprocessors
363 * attached to the processor.
364 */
365int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
366{
367 int ret;
368 unsigned long flags;
369
370 spin_lock_irqsave(&pdc_lock, flags);
371 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
372 spin_unlock_irqrestore(&pdc_lock, flags);
373
374 return ret;
375}
376
377/**
378 * pdc_iodc_read - Read data from the modules IODC.
379 * @actcnt: The actual number of bytes.
380 * @hpa: The HPA of the module for the iodc read.
381 * @index: The iodc entry point.
382 * @iodc_data: A buffer memory for the iodc options.
383 * @iodc_data_size: Size of the memory buffer.
384 *
385 * This PDC call reads from the IODC of the module specified by the hpa
386 * argument.
387 */
388int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
389 void *iodc_data, unsigned int iodc_data_size)
390{
391 int retval;
392 unsigned long flags;
393
394 spin_lock_irqsave(&pdc_lock, flags);
395 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
396 index, __pa(pdc_result2), iodc_data_size);
397 convert_to_wide(pdc_result);
398 *actcnt = pdc_result[0];
399 memcpy(iodc_data, pdc_result2, iodc_data_size);
400 spin_unlock_irqrestore(&pdc_lock, flags);
401
402 return retval;
403}
404EXPORT_SYMBOL(pdc_iodc_read);
405
406/**
407 * pdc_system_map_find_mods - Locate unarchitected modules.
408 * @pdc_mod_info: Return buffer address.
409 * @mod_path: pointer to dev path structure.
410 * @mod_index: fixed address module index.
411 *
412 * To locate and identify modules which reside at fixed I/O addresses, which
413 * do not self-identify via architected bus walks.
414 */
415int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
416 struct pdc_module_path *mod_path, long mod_index)
417{
418 int retval;
419 unsigned long flags;
420
421 spin_lock_irqsave(&pdc_lock, flags);
422 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
423 __pa(pdc_result2), mod_index);
424 convert_to_wide(pdc_result);
425 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
426 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
427 spin_unlock_irqrestore(&pdc_lock, flags);
428
429 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
430 return retval;
431}
432
433/**
434 * pdc_system_map_find_addrs - Retrieve additional address ranges.
435 * @pdc_addr_info: Return buffer address.
436 * @mod_index: Fixed address module index.
437 * @addr_index: Address range index.
438 *
439 * Retrieve additional information about subsequent address ranges for modules
440 * with multiple address ranges.
441 */
442int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
443 long mod_index, long addr_index)
444{
445 int retval;
446 unsigned long flags;
447
448 spin_lock_irqsave(&pdc_lock, flags);
449 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
450 mod_index, addr_index);
451 convert_to_wide(pdc_result);
452 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
453 spin_unlock_irqrestore(&pdc_lock, flags);
454
455 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
456 return retval;
457}
458
459/**
460 * pdc_model_info - Return model information about the processor.
461 * @model: The return buffer.
462 *
463 * Returns the version numbers, identifiers, and capabilities from the processor module.
464 */
465int pdc_model_info(struct pdc_model *model)
466{
467 int retval;
468 unsigned long flags;
469
470 spin_lock_irqsave(&pdc_lock, flags);
471 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
472 convert_to_wide(pdc_result);
473 memcpy(model, pdc_result, sizeof(*model));
474 spin_unlock_irqrestore(&pdc_lock, flags);
475
476 return retval;
477}
478
479/**
480 * pdc_model_sysmodel - Get the system model name.
481 * @name: A char array of at least 81 characters.
482 *
483 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
484 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
485 * on HP/UX.
486 */
487int pdc_model_sysmodel(char *name)
488{
489 int retval;
490 unsigned long flags;
491
492 spin_lock_irqsave(&pdc_lock, flags);
493 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
494 OS_ID_HPUX, __pa(name));
495 convert_to_wide(pdc_result);
496
497 if (retval == PDC_OK) {
498 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
499 } else {
500 name[0] = 0;
501 }
502 spin_unlock_irqrestore(&pdc_lock, flags);
503
504 return retval;
505}
506
507/**
508 * pdc_model_versions - Identify the version number of each processor.
509 * @cpu_id: The return buffer.
510 * @id: The id of the processor to check.
511 *
512 * Returns the version number for each processor component.
513 *
514 * This comment was here before, but I do not know what it means :( -RB
515 * id: 0 = cpu revision, 1 = boot-rom-version
516 */
517int pdc_model_versions(unsigned long *versions, int id)
518{
519 int retval;
520 unsigned long flags;
521
522 spin_lock_irqsave(&pdc_lock, flags);
523 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
524 convert_to_wide(pdc_result);
525 *versions = pdc_result[0];
526 spin_unlock_irqrestore(&pdc_lock, flags);
527
528 return retval;
529}
530
531/**
532 * pdc_model_cpuid - Returns the CPU_ID.
533 * @cpu_id: The return buffer.
534 *
535 * Returns the CPU_ID value which uniquely identifies the cpu portion of
536 * the processor module.
537 */
538int pdc_model_cpuid(unsigned long *cpu_id)
539{
540 int retval;
541 unsigned long flags;
542
543 spin_lock_irqsave(&pdc_lock, flags);
544 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
545 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
546 convert_to_wide(pdc_result);
547 *cpu_id = pdc_result[0];
548 spin_unlock_irqrestore(&pdc_lock, flags);
549
550 return retval;
551}
552
553/**
554 * pdc_model_capabilities - Returns the platform capabilities.
555 * @capabilities: The return buffer.
556 *
557 * Returns information about platform support for 32- and/or 64-bit
558 * OSes, IO-PDIR coherency, and virtual aliasing.
559 */
560int pdc_model_capabilities(unsigned long *capabilities)
561{
562 int retval;
563 unsigned long flags;
564
565 spin_lock_irqsave(&pdc_lock, flags);
566 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
567 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
568 convert_to_wide(pdc_result);
569 if (retval == PDC_OK) {
570 *capabilities = pdc_result[0];
571 } else {
572 *capabilities = PDC_MODEL_OS32;
573 }
574 spin_unlock_irqrestore(&pdc_lock, flags);
575
576 return retval;
577}
578
579/**
580 * pdc_model_platform_info - Returns machine product and serial number.
581 * @orig_prod_num: Return buffer for original product number.
582 * @current_prod_num: Return buffer for current product number.
583 * @serial_no: Return buffer for serial number.
584 *
585 * Returns strings containing the original and current product numbers and the
586 * serial number of the system.
587 */
588int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
589 char *serial_no)
590{
591 int retval;
592 unsigned long flags;
593
594 spin_lock_irqsave(&pdc_lock, flags);
595 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
596 __pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
597 convert_to_wide(pdc_result);
598 spin_unlock_irqrestore(&pdc_lock, flags);
599
600 return retval;
601}
602
603/**
604 * pdc_cache_info - Return cache and TLB information.
605 * @cache_info: The return buffer.
606 *
607 * Returns information about the processor's cache and TLB.
608 */
609int pdc_cache_info(struct pdc_cache_info *cache_info)
610{
611 int retval;
612 unsigned long flags;
613
614 spin_lock_irqsave(&pdc_lock, flags);
615 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
616 convert_to_wide(pdc_result);
617 memcpy(cache_info, pdc_result, sizeof(*cache_info));
618 spin_unlock_irqrestore(&pdc_lock, flags);
619
620 return retval;
621}
622
623/**
624 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
625 * @space_bits: Should be 0, if not, bad mojo!
626 *
627 * Returns information about Space ID hashing.
628 */
629int pdc_spaceid_bits(unsigned long *space_bits)
630{
631 int retval;
632 unsigned long flags;
633
634 spin_lock_irqsave(&pdc_lock, flags);
635 pdc_result[0] = 0;
636 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
637 convert_to_wide(pdc_result);
638 *space_bits = pdc_result[0];
639 spin_unlock_irqrestore(&pdc_lock, flags);
640
641 return retval;
642}
643
644#ifndef CONFIG_PA20
645/**
646 * pdc_btlb_info - Return block TLB information.
647 * @btlb: The return buffer.
648 *
649 * Returns information about the hardware Block TLB.
650 */
651int pdc_btlb_info(struct pdc_btlb_info *btlb)
652{
653 int retval;
654 unsigned long flags;
655
656 spin_lock_irqsave(&pdc_lock, flags);
657 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
658 memcpy(btlb, pdc_result, sizeof(*btlb));
659 spin_unlock_irqrestore(&pdc_lock, flags);
660
661 if(retval < 0) {
662 btlb->max_size = 0;
663 }
664 return retval;
665}
666
667/**
668 * pdc_mem_map_hpa - Find fixed module information.
669 * @address: The return buffer
670 * @mod_path: pointer to dev path structure.
671 *
672 * This call was developed for S700 workstations to allow the kernel to find
673 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
674 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
675 * call.
676 *
677 * This call is supported by all existing S700 workstations (up to Gecko).
678 */
679int pdc_mem_map_hpa(struct pdc_memory_map *address,
680 struct pdc_module_path *mod_path)
681{
682 int retval;
683 unsigned long flags;
684
685 spin_lock_irqsave(&pdc_lock, flags);
686 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
687 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
688 __pa(pdc_result2));
689 memcpy(address, pdc_result, sizeof(*address));
690 spin_unlock_irqrestore(&pdc_lock, flags);
691
692 return retval;
693}
694#endif /* !CONFIG_PA20 */
695
696/**
697 * pdc_lan_station_id - Get the LAN address.
698 * @lan_addr: The return buffer.
699 * @hpa: The network device HPA.
700 *
701 * Get the LAN station address when it is not directly available from the LAN hardware.
702 */
703int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
704{
705 int retval;
706 unsigned long flags;
707
708 spin_lock_irqsave(&pdc_lock, flags);
709 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
710 __pa(pdc_result), hpa);
711 if (retval < 0) {
712 /* FIXME: else read MAC from NVRAM */
713 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
714 } else {
715 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
716 }
717 spin_unlock_irqrestore(&pdc_lock, flags);
718
719 return retval;
720}
721EXPORT_SYMBOL(pdc_lan_station_id);
722
723/**
724 * pdc_stable_read - Read data from Stable Storage.
725 * @staddr: Stable Storage address to access.
726 * @memaddr: The memory address where Stable Storage data shall be copied.
727 * @count: number of bytes to transfer. count is multiple of 4.
728 *
729 * This PDC call reads from the Stable Storage address supplied in staddr
730 * and copies count bytes to the memory address memaddr.
731 * The call will fail if staddr+count > PDC_STABLE size.
732 */
733int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
734{
735 int retval;
736 unsigned long flags;
737
738 spin_lock_irqsave(&pdc_lock, flags);
739 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
740 __pa(pdc_result), count);
741 convert_to_wide(pdc_result);
742 memcpy(memaddr, pdc_result, count);
743 spin_unlock_irqrestore(&pdc_lock, flags);
744
745 return retval;
746}
747EXPORT_SYMBOL(pdc_stable_read);
748
749/**
750 * pdc_stable_write - Write data to Stable Storage.
751 * @staddr: Stable Storage address to access.
752 * @memaddr: The memory address where Stable Storage data shall be read from.
753 * @count: number of bytes to transfer. count is multiple of 4.
754 *
755 * This PDC call reads count bytes from the supplied memaddr address,
756 * and copies count bytes to the Stable Storage address staddr.
757 * The call will fail if staddr+count > PDC_STABLE size.
758 */
759int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
760{
761 int retval;
762 unsigned long flags;
763
764 spin_lock_irqsave(&pdc_lock, flags);
765 memcpy(pdc_result, memaddr, count);
766 convert_to_wide(pdc_result);
767 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
768 __pa(pdc_result), count);
769 spin_unlock_irqrestore(&pdc_lock, flags);
770
771 return retval;
772}
773EXPORT_SYMBOL(pdc_stable_write);
774
775/**
776 * pdc_stable_get_size - Get Stable Storage size in bytes.
777 * @size: pointer where the size will be stored.
778 *
779 * This PDC call returns the number of bytes in the processor's Stable
780 * Storage, which is the number of contiguous bytes implemented in Stable
781 * Storage starting from staddr=0. size in an unsigned 64-bit integer
782 * which is a multiple of four.
783 */
784int pdc_stable_get_size(unsigned long *size)
785{
786 int retval;
787 unsigned long flags;
788
789 spin_lock_irqsave(&pdc_lock, flags);
790 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
791 *size = pdc_result[0];
792 spin_unlock_irqrestore(&pdc_lock, flags);
793
794 return retval;
795}
796EXPORT_SYMBOL(pdc_stable_get_size);
797
798/**
799 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
800 *
801 * This PDC call is meant to be used to check the integrity of the current
802 * contents of Stable Storage.
803 */
804int pdc_stable_verify_contents(void)
805{
806 int retval;
807 unsigned long flags;
808
809 spin_lock_irqsave(&pdc_lock, flags);
810 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
811 spin_unlock_irqrestore(&pdc_lock, flags);
812
813 return retval;
814}
815EXPORT_SYMBOL(pdc_stable_verify_contents);
816
817/**
818 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
819 * the validity indicator.
820 *
821 * This PDC call will erase all contents of Stable Storage. Use with care!
822 */
823int pdc_stable_initialize(void)
824{
825 int retval;
826 unsigned long flags;
827
828 spin_lock_irqsave(&pdc_lock, flags);
829 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
830 spin_unlock_irqrestore(&pdc_lock, flags);
831
832 return retval;
833}
834EXPORT_SYMBOL(pdc_stable_initialize);
835
836/**
837 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
838 * @hwpath: fully bc.mod style path to the device.
839 * @initiator: the array to return the result into
840 *
841 * Get the SCSI operational parameters from PDC.
842 * Needed since HPUX never used BIOS or symbios card NVRAM.
843 * Most ncr/sym cards won't have an entry and just use whatever
844 * capabilities of the card are (eg Ultra, LVD). But there are
845 * several cases where it's useful:
846 * o set SCSI id for Multi-initiator clusters,
847 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
848 * o bus width exported is less than what the interface chip supports.
849 */
850int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
851{
852 int retval;
853 unsigned long flags;
854
855 spin_lock_irqsave(&pdc_lock, flags);
856
857/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
858#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
859 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
860
861 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
862 __pa(pdc_result), __pa(hwpath));
863 if (retval < PDC_OK)
864 goto out;
865
866 if (pdc_result[0] < 16) {
867 initiator->host_id = pdc_result[0];
868 } else {
869 initiator->host_id = -1;
870 }
871
872 /*
873 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
874 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
875 */
876 switch (pdc_result[1]) {
877 case 1: initiator->factor = 50; break;
878 case 2: initiator->factor = 25; break;
879 case 5: initiator->factor = 12; break;
880 case 25: initiator->factor = 10; break;
881 case 20: initiator->factor = 12; break;
882 case 40: initiator->factor = 10; break;
883 default: initiator->factor = -1; break;
884 }
885
886 if (IS_SPROCKETS()) {
887 initiator->width = pdc_result[4];
888 initiator->mode = pdc_result[5];
889 } else {
890 initiator->width = -1;
891 initiator->mode = -1;
892 }
893
894 out:
895 spin_unlock_irqrestore(&pdc_lock, flags);
896
897 return (retval >= PDC_OK);
898}
899EXPORT_SYMBOL(pdc_get_initiator);
900
901
902/**
903 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
904 * @num_entries: The return value.
905 * @hpa: The HPA for the device.
906 *
907 * This PDC function returns the number of entries in the specified cell's
908 * interrupt table.
909 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
910 */
911int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
912{
913 int retval;
914 unsigned long flags;
915
916 spin_lock_irqsave(&pdc_lock, flags);
917 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
918 __pa(pdc_result), hpa);
919 convert_to_wide(pdc_result);
920 *num_entries = pdc_result[0];
921 spin_unlock_irqrestore(&pdc_lock, flags);
922
923 return retval;
924}
925
926/**
927 * pdc_pci_irt - Get the PCI interrupt routing table.
928 * @num_entries: The number of entries in the table.
929 * @hpa: The Hard Physical Address of the device.
930 * @tbl:
931 *
932 * Get the PCI interrupt routing table for the device at the given HPA.
933 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
934 */
935int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
936{
937 int retval;
938 unsigned long flags;
939
940 BUG_ON((unsigned long)tbl & 0x7);
941
942 spin_lock_irqsave(&pdc_lock, flags);
943 pdc_result[0] = num_entries;
944 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
945 __pa(pdc_result), hpa, __pa(tbl));
946 spin_unlock_irqrestore(&pdc_lock, flags);
947
948 return retval;
949}
950
951
952#if 0 /* UNTEST CODE - left here in case someone needs it */
953
954/**
955 * pdc_pci_config_read - read PCI config space.
956 * @hpa token from PDC to indicate which PCI device
957 * @pci_addr configuration space address to read from
958 *
959 * Read PCI Configuration space *before* linux PCI subsystem is running.
960 */
961unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
962{
963 int retval;
964 unsigned long flags;
965
966 spin_lock_irqsave(&pdc_lock, flags);
967 pdc_result[0] = 0;
968 pdc_result[1] = 0;
969 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
970 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
971 spin_unlock_irqrestore(&pdc_lock, flags);
972
973 return retval ? ~0 : (unsigned int) pdc_result[0];
974}
975
976
977/**
978 * pdc_pci_config_write - read PCI config space.
979 * @hpa token from PDC to indicate which PCI device
980 * @pci_addr configuration space address to write
981 * @val value we want in the 32-bit register
982 *
983 * Write PCI Configuration space *before* linux PCI subsystem is running.
984 */
985void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
986{
987 int retval;
988 unsigned long flags;
989
990 spin_lock_irqsave(&pdc_lock, flags);
991 pdc_result[0] = 0;
992 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
993 __pa(pdc_result), hpa,
994 cfg_addr&~3UL, 4UL, (unsigned long) val);
995 spin_unlock_irqrestore(&pdc_lock, flags);
996
997 return retval;
998}
999#endif /* UNTESTED CODE */
1000
1001/**
1002 * pdc_tod_read - Read the Time-Of-Day clock.
1003 * @tod: The return buffer:
1004 *
1005 * Read the Time-Of-Day clock
1006 */
1007int pdc_tod_read(struct pdc_tod *tod)
1008{
1009 int retval;
1010 unsigned long flags;
1011
1012 spin_lock_irqsave(&pdc_lock, flags);
1013 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1014 convert_to_wide(pdc_result);
1015 memcpy(tod, pdc_result, sizeof(*tod));
1016 spin_unlock_irqrestore(&pdc_lock, flags);
1017
1018 return retval;
1019}
1020EXPORT_SYMBOL(pdc_tod_read);
1021
1022int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1023{
1024 int retval;
1025 unsigned long flags;
1026
1027 spin_lock_irqsave(&pdc_lock, flags);
1028 retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1029 convert_to_wide(pdc_result);
1030 memcpy(rinfo, pdc_result, sizeof(*rinfo));
1031 spin_unlock_irqrestore(&pdc_lock, flags);
1032
1033 return retval;
1034}
1035
1036int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1037 unsigned long *pdt_entries_ptr)
1038{
1039 int retval;
1040 unsigned long flags;
1041
1042 spin_lock_irqsave(&pdc_lock, flags);
1043 retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1044 __pa(pdt_entries_ptr));
1045 if (retval == PDC_OK) {
1046 convert_to_wide(pdc_result);
1047 memcpy(pret, pdc_result, sizeof(*pret));
1048 }
1049 spin_unlock_irqrestore(&pdc_lock, flags);
1050
1051#ifdef CONFIG_64BIT
1052 /*
1053 * 64-bit kernels should not call this PDT function in narrow mode.
1054 * The pdt_entries_ptr array above will now contain 32-bit values
1055 */
1056 if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1057 return PDC_ERROR;
1058#endif
1059
1060 return retval;
1061}
1062
1063/**
1064 * pdc_tod_set - Set the Time-Of-Day clock.
1065 * @sec: The number of seconds since epoch.
1066 * @usec: The number of micro seconds.
1067 *
1068 * Set the Time-Of-Day clock.
1069 */
1070int pdc_tod_set(unsigned long sec, unsigned long usec)
1071{
1072 int retval;
1073 unsigned long flags;
1074
1075 spin_lock_irqsave(&pdc_lock, flags);
1076 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1077 spin_unlock_irqrestore(&pdc_lock, flags);
1078
1079 return retval;
1080}
1081EXPORT_SYMBOL(pdc_tod_set);
1082
1083#ifdef CONFIG_64BIT
1084int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1085 struct pdc_memory_table *tbl, unsigned long entries)
1086{
1087 int retval;
1088 unsigned long flags;
1089
1090 spin_lock_irqsave(&pdc_lock, flags);
1091 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1092 convert_to_wide(pdc_result);
1093 memcpy(r_addr, pdc_result, sizeof(*r_addr));
1094 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1095 spin_unlock_irqrestore(&pdc_lock, flags);
1096
1097 return retval;
1098}
1099#endif /* CONFIG_64BIT */
1100
1101/* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
1102 * so I guessed at unsigned long. Someone who knows what this does, can fix
1103 * it later. :)
1104 */
1105int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1106{
1107 int retval;
1108 unsigned long flags;
1109
1110 spin_lock_irqsave(&pdc_lock, flags);
1111 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1112 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1113 spin_unlock_irqrestore(&pdc_lock, flags);
1114
1115 return retval;
1116}
1117
1118/*
1119 * pdc_do_reset - Reset the system.
1120 *
1121 * Reset the system.
1122 */
1123int pdc_do_reset(void)
1124{
1125 int retval;
1126 unsigned long flags;
1127
1128 spin_lock_irqsave(&pdc_lock, flags);
1129 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1130 spin_unlock_irqrestore(&pdc_lock, flags);
1131
1132 return retval;
1133}
1134
1135/*
1136 * pdc_soft_power_info - Enable soft power switch.
1137 * @power_reg: address of soft power register
1138 *
1139 * Return the absolute address of the soft power switch register
1140 */
1141int __init pdc_soft_power_info(unsigned long *power_reg)
1142{
1143 int retval;
1144 unsigned long flags;
1145
1146 *power_reg = (unsigned long) (-1);
1147
1148 spin_lock_irqsave(&pdc_lock, flags);
1149 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1150 if (retval == PDC_OK) {
1151 convert_to_wide(pdc_result);
1152 *power_reg = f_extend(pdc_result[0]);
1153 }
1154 spin_unlock_irqrestore(&pdc_lock, flags);
1155
1156 return retval;
1157}
1158
1159/*
1160 * pdc_soft_power_button - Control the soft power button behaviour
1161 * @sw_control: 0 for hardware control, 1 for software control
1162 *
1163 *
1164 * This PDC function places the soft power button under software or
1165 * hardware control.
1166 * Under software control the OS may control to when to allow to shut
1167 * down the system. Under hardware control pressing the power button
1168 * powers off the system immediately.
1169 */
1170int pdc_soft_power_button(int sw_control)
1171{
1172 int retval;
1173 unsigned long flags;
1174
1175 spin_lock_irqsave(&pdc_lock, flags);
1176 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1177 spin_unlock_irqrestore(&pdc_lock, flags);
1178
1179 return retval;
1180}
1181
1182/*
1183 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1184 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1185 * who knows what other platform firmware might do with this OS "hook".
1186 */
1187void pdc_io_reset(void)
1188{
1189 unsigned long flags;
1190
1191 spin_lock_irqsave(&pdc_lock, flags);
1192 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1193 spin_unlock_irqrestore(&pdc_lock, flags);
1194}
1195
1196/*
1197 * pdc_io_reset_devices - Hack to Stop USB controller
1198 *
1199 * If PDC used the usb controller, the usb controller
1200 * is still running and will crash the machines during iommu
1201 * setup, because of still running DMA. This PDC call
1202 * stops the USB controller.
1203 * Normally called after calling pdc_io_reset().
1204 */
1205void pdc_io_reset_devices(void)
1206{
1207 unsigned long flags;
1208
1209 spin_lock_irqsave(&pdc_lock, flags);
1210 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1211 spin_unlock_irqrestore(&pdc_lock, flags);
1212}
1213
1214#endif /* defined(BOOTLOADER) */
1215
1216/* locked by pdc_console_lock */
1217static int __attribute__((aligned(8))) iodc_retbuf[32];
1218static char __attribute__((aligned(64))) iodc_dbuf[4096];
1219
1220/**
1221 * pdc_iodc_print - Console print using IODC.
1222 * @str: the string to output.
1223 * @count: length of str
1224 *
1225 * Note that only these special chars are architected for console IODC io:
1226 * BEL, BS, CR, and LF. Others are passed through.
1227 * Since the HP console requires CR+LF to perform a 'newline', we translate
1228 * "\n" to "\r\n".
1229 */
1230int pdc_iodc_print(const unsigned char *str, unsigned count)
1231{
1232 unsigned int i;
1233 unsigned long flags;
1234
1235 for (i = 0; i < count;) {
1236 switch(str[i]) {
1237 case '\n':
1238 iodc_dbuf[i+0] = '\r';
1239 iodc_dbuf[i+1] = '\n';
1240 i += 2;
1241 goto print;
1242 default:
1243 iodc_dbuf[i] = str[i];
1244 i++;
1245 break;
1246 }
1247 }
1248
1249print:
1250 spin_lock_irqsave(&pdc_lock, flags);
1251 real32_call(PAGE0->mem_cons.iodc_io,
1252 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1253 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1254 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1255 spin_unlock_irqrestore(&pdc_lock, flags);
1256
1257 return i;
1258}
1259
1260#if !defined(BOOTLOADER)
1261/**
1262 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1263 *
1264 * Read a character (non-blocking) from the PDC console, returns -1 if
1265 * key is not present.
1266 */
1267int pdc_iodc_getc(void)
1268{
1269 int ch;
1270 int status;
1271 unsigned long flags;
1272
1273 /* Bail if no console input device. */
1274 if (!PAGE0->mem_kbd.iodc_io)
1275 return 0;
1276
1277 /* wait for a keyboard (rs232)-input */
1278 spin_lock_irqsave(&pdc_lock, flags);
1279 real32_call(PAGE0->mem_kbd.iodc_io,
1280 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1281 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1282 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1283
1284 ch = *iodc_dbuf;
1285 status = *iodc_retbuf;
1286 spin_unlock_irqrestore(&pdc_lock, flags);
1287
1288 if (status == 0)
1289 return -1;
1290
1291 return ch;
1292}
1293
1294int pdc_sti_call(unsigned long func, unsigned long flags,
1295 unsigned long inptr, unsigned long outputr,
1296 unsigned long glob_cfg)
1297{
1298 int retval;
1299 unsigned long irqflags;
1300
1301 spin_lock_irqsave(&pdc_lock, irqflags);
1302 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1303 spin_unlock_irqrestore(&pdc_lock, irqflags);
1304
1305 return retval;
1306}
1307EXPORT_SYMBOL(pdc_sti_call);
1308
1309#ifdef CONFIG_64BIT
1310/**
1311 * pdc_pat_cell_get_number - Returns the cell number.
1312 * @cell_info: The return buffer.
1313 *
1314 * This PDC call returns the cell number of the cell from which the call
1315 * is made.
1316 */
1317int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1318{
1319 int retval;
1320 unsigned long flags;
1321
1322 spin_lock_irqsave(&pdc_lock, flags);
1323 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1324 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1325 spin_unlock_irqrestore(&pdc_lock, flags);
1326
1327 return retval;
1328}
1329
1330/**
1331 * pdc_pat_cell_module - Retrieve the cell's module information.
1332 * @actcnt: The number of bytes written to mem_addr.
1333 * @ploc: The physical location.
1334 * @mod: The module index.
1335 * @view_type: The view of the address type.
1336 * @mem_addr: The return buffer.
1337 *
1338 * This PDC call returns information about each module attached to the cell
1339 * at the specified location.
1340 */
1341int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1342 unsigned long view_type, void *mem_addr)
1343{
1344 int retval;
1345 unsigned long flags;
1346 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1347
1348 spin_lock_irqsave(&pdc_lock, flags);
1349 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1350 ploc, mod, view_type, __pa(&result));
1351 if(!retval) {
1352 *actcnt = pdc_result[0];
1353 memcpy(mem_addr, &result, *actcnt);
1354 }
1355 spin_unlock_irqrestore(&pdc_lock, flags);
1356
1357 return retval;
1358}
1359
1360/**
1361 * pdc_pat_cell_info - Retrieve the cell's information.
1362 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1363 * @actcnt: The number of bytes which should be written to info.
1364 * @offset: offset of the structure.
1365 * @cell_number: The cell number which should be asked, or -1 for current cell.
1366 *
1367 * This PDC call returns information about the given cell (or all cells).
1368 */
1369int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1370 unsigned long *actcnt, unsigned long offset,
1371 unsigned long cell_number)
1372{
1373 int retval;
1374 unsigned long flags;
1375 struct pdc_pat_cell_info_rtn_block result;
1376
1377 spin_lock_irqsave(&pdc_lock, flags);
1378 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1379 __pa(pdc_result), __pa(&result), *actcnt,
1380 offset, cell_number);
1381 if (!retval) {
1382 *actcnt = pdc_result[0];
1383 memcpy(info, &result, *actcnt);
1384 }
1385 spin_unlock_irqrestore(&pdc_lock, flags);
1386
1387 return retval;
1388}
1389
1390/**
1391 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1392 * @cpu_info: The return buffer.
1393 * @hpa: The Hard Physical Address of the CPU.
1394 *
1395 * Retrieve the cpu number for the cpu at the specified HPA.
1396 */
1397int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1398{
1399 int retval;
1400 unsigned long flags;
1401
1402 spin_lock_irqsave(&pdc_lock, flags);
1403 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1404 __pa(&pdc_result), hpa);
1405 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1406 spin_unlock_irqrestore(&pdc_lock, flags);
1407
1408 return retval;
1409}
1410
1411/**
1412 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1413 * @num_entries: The return value.
1414 * @cell_num: The target cell.
1415 *
1416 * This PDC function returns the number of entries in the specified cell's
1417 * interrupt table.
1418 */
1419int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1420{
1421 int retval;
1422 unsigned long flags;
1423
1424 spin_lock_irqsave(&pdc_lock, flags);
1425 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1426 __pa(pdc_result), cell_num);
1427 *num_entries = pdc_result[0];
1428 spin_unlock_irqrestore(&pdc_lock, flags);
1429
1430 return retval;
1431}
1432
1433/**
1434 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1435 * @r_addr: The return buffer.
1436 * @cell_num: The target cell.
1437 *
1438 * This PDC function returns the actual interrupt table for the specified cell.
1439 */
1440int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1441{
1442 int retval;
1443 unsigned long flags;
1444
1445 spin_lock_irqsave(&pdc_lock, flags);
1446 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1447 __pa(r_addr), cell_num);
1448 spin_unlock_irqrestore(&pdc_lock, flags);
1449
1450 return retval;
1451}
1452
1453/**
1454 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1455 * @actlen: The return buffer.
1456 * @mem_addr: Pointer to the memory buffer.
1457 * @count: The number of bytes to read from the buffer.
1458 * @offset: The offset with respect to the beginning of the buffer.
1459 *
1460 */
1461int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1462 unsigned long count, unsigned long offset)
1463{
1464 int retval;
1465 unsigned long flags;
1466
1467 spin_lock_irqsave(&pdc_lock, flags);
1468 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1469 __pa(pdc_result2), count, offset);
1470 *actual_len = pdc_result[0];
1471 memcpy(mem_addr, pdc_result2, *actual_len);
1472 spin_unlock_irqrestore(&pdc_lock, flags);
1473
1474 return retval;
1475}
1476
1477/**
1478 * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions.
1479 * @legacy_rev: The legacy revision.
1480 * @pat_rev: The PAT revision.
1481 * @pdc_cap: The PDC capabilities.
1482 *
1483 */
1484int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1485 unsigned long *pat_rev, unsigned long *pdc_cap)
1486{
1487 int retval;
1488 unsigned long flags;
1489
1490 spin_lock_irqsave(&pdc_lock, flags);
1491 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1492 __pa(pdc_result));
1493 if (retval == PDC_OK) {
1494 *legacy_rev = pdc_result[0];
1495 *pat_rev = pdc_result[1];
1496 *pdc_cap = pdc_result[2];
1497 }
1498 spin_unlock_irqrestore(&pdc_lock, flags);
1499
1500 return retval;
1501}
1502
1503
1504/**
1505 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1506 * @pci_addr: PCI configuration space address for which the read request is being made.
1507 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1508 * @mem_addr: Pointer to return memory buffer.
1509 *
1510 */
1511int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1512{
1513 int retval;
1514 unsigned long flags;
1515
1516 spin_lock_irqsave(&pdc_lock, flags);
1517 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1518 __pa(pdc_result), pci_addr, pci_size);
1519 switch(pci_size) {
1520 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; break;
1521 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; break;
1522 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; break;
1523 }
1524 spin_unlock_irqrestore(&pdc_lock, flags);
1525
1526 return retval;
1527}
1528
1529/**
1530 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1531 * @pci_addr: PCI configuration space address for which the write request is being made.
1532 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1533 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1534 * written to PCI Config space.
1535 *
1536 */
1537int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1538{
1539 int retval;
1540 unsigned long flags;
1541
1542 spin_lock_irqsave(&pdc_lock, flags);
1543 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1544 pci_addr, pci_size, val);
1545 spin_unlock_irqrestore(&pdc_lock, flags);
1546
1547 return retval;
1548}
1549
1550/**
1551 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1552 * @rinfo: memory pdt information
1553 *
1554 */
1555int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1556{
1557 int retval;
1558 unsigned long flags;
1559
1560 spin_lock_irqsave(&pdc_lock, flags);
1561 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1562 __pa(&pdc_result));
1563 if (retval == PDC_OK)
1564 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1565 spin_unlock_irqrestore(&pdc_lock, flags);
1566
1567 return retval;
1568}
1569
1570/**
1571 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1572 * table of a cell
1573 * @rinfo: memory pdt information
1574 * @cell: cell number
1575 *
1576 */
1577int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1578 unsigned long cell)
1579{
1580 int retval;
1581 unsigned long flags;
1582
1583 spin_lock_irqsave(&pdc_lock, flags);
1584 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1585 __pa(&pdc_result), cell);
1586 if (retval == PDC_OK)
1587 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1588 spin_unlock_irqrestore(&pdc_lock, flags);
1589
1590 return retval;
1591}
1592
1593/**
1594 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1595 * @pret: array of PDT entries
1596 * @pdt_entries_ptr: ptr to hold number of PDT entries
1597 * @max_entries: maximum number of entries to be read
1598 *
1599 */
1600int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1601 unsigned long *pdt_entries_ptr, unsigned long max_entries)
1602{
1603 int retval;
1604 unsigned long flags, entries;
1605
1606 spin_lock_irqsave(&pdc_lock, flags);
1607 /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1608 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1609 __pa(&pdc_result), parisc_cell_num,
1610 __pa(pdt_entries_ptr));
1611
1612 if (retval == PDC_OK) {
1613 /* build up return value as for PDC_PAT_MEM_PD_READ */
1614 entries = min(pdc_result[0], max_entries);
1615 pret->pdt_entries = entries;
1616 pret->actual_count_bytes = entries * sizeof(unsigned long);
1617 }
1618
1619 spin_unlock_irqrestore(&pdc_lock, flags);
1620 WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1621
1622 return retval;
1623}
1624/**
1625 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1626 * @pret: array of PDT entries
1627 * @pdt_entries_ptr: ptr to hold number of PDT entries
1628 * @count: number of bytes to read
1629 * @offset: offset to start (in bytes)
1630 *
1631 */
1632int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1633 unsigned long *pdt_entries_ptr, unsigned long count,
1634 unsigned long offset)
1635{
1636 int retval;
1637 unsigned long flags, entries;
1638
1639 spin_lock_irqsave(&pdc_lock, flags);
1640 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1641 __pa(&pdc_result), __pa(pdt_entries_ptr),
1642 count, offset);
1643
1644 if (retval == PDC_OK) {
1645 entries = min(pdc_result[0], count);
1646 pret->actual_count_bytes = entries;
1647 pret->pdt_entries = entries / sizeof(unsigned long);
1648 }
1649
1650 spin_unlock_irqrestore(&pdc_lock, flags);
1651
1652 return retval;
1653}
1654
1655/**
1656 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1657 * @pret: ptr to hold returned information
1658 * @phys_addr: physical address to examine
1659 *
1660 */
1661int pdc_pat_mem_get_dimm_phys_location(
1662 struct pdc_pat_mem_phys_mem_location *pret,
1663 unsigned long phys_addr)
1664{
1665 int retval;
1666 unsigned long flags;
1667
1668 spin_lock_irqsave(&pdc_lock, flags);
1669 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1670 __pa(&pdc_result), phys_addr);
1671
1672 if (retval == PDC_OK)
1673 memcpy(pret, &pdc_result, sizeof(*pret));
1674
1675 spin_unlock_irqrestore(&pdc_lock, flags);
1676
1677 return retval;
1678}
1679#endif /* CONFIG_64BIT */
1680#endif /* defined(BOOTLOADER) */
1681
1682
1683/***************** 32-bit real-mode calls ***********/
1684/* The struct below is used
1685 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1686 * real32_call_asm() then uses this stack in narrow real mode
1687 */
1688
1689struct narrow_stack {
1690 /* use int, not long which is 64 bits */
1691 unsigned int arg13;
1692 unsigned int arg12;
1693 unsigned int arg11;
1694 unsigned int arg10;
1695 unsigned int arg9;
1696 unsigned int arg8;
1697 unsigned int arg7;
1698 unsigned int arg6;
1699 unsigned int arg5;
1700 unsigned int arg4;
1701 unsigned int arg3;
1702 unsigned int arg2;
1703 unsigned int arg1;
1704 unsigned int arg0;
1705 unsigned int frame_marker[8];
1706 unsigned int sp;
1707 /* in reality, there's nearly 8k of stack after this */
1708};
1709
1710long real32_call(unsigned long fn, ...)
1711{
1712 va_list args;
1713 extern struct narrow_stack real_stack;
1714 extern unsigned long real32_call_asm(unsigned int *,
1715 unsigned int *,
1716 unsigned int);
1717
1718 va_start(args, fn);
1719 real_stack.arg0 = va_arg(args, unsigned int);
1720 real_stack.arg1 = va_arg(args, unsigned int);
1721 real_stack.arg2 = va_arg(args, unsigned int);
1722 real_stack.arg3 = va_arg(args, unsigned int);
1723 real_stack.arg4 = va_arg(args, unsigned int);
1724 real_stack.arg5 = va_arg(args, unsigned int);
1725 real_stack.arg6 = va_arg(args, unsigned int);
1726 real_stack.arg7 = va_arg(args, unsigned int);
1727 real_stack.arg8 = va_arg(args, unsigned int);
1728 real_stack.arg9 = va_arg(args, unsigned int);
1729 real_stack.arg10 = va_arg(args, unsigned int);
1730 real_stack.arg11 = va_arg(args, unsigned int);
1731 real_stack.arg12 = va_arg(args, unsigned int);
1732 real_stack.arg13 = va_arg(args, unsigned int);
1733 va_end(args);
1734
1735 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1736}
1737
1738#ifdef CONFIG_64BIT
1739/***************** 64-bit real-mode calls ***********/
1740
1741struct wide_stack {
1742 unsigned long arg0;
1743 unsigned long arg1;
1744 unsigned long arg2;
1745 unsigned long arg3;
1746 unsigned long arg4;
1747 unsigned long arg5;
1748 unsigned long arg6;
1749 unsigned long arg7;
1750 unsigned long arg8;
1751 unsigned long arg9;
1752 unsigned long arg10;
1753 unsigned long arg11;
1754 unsigned long arg12;
1755 unsigned long arg13;
1756 unsigned long frame_marker[2]; /* rp, previous sp */
1757 unsigned long sp;
1758 /* in reality, there's nearly 8k of stack after this */
1759};
1760
1761long real64_call(unsigned long fn, ...)
1762{
1763 va_list args;
1764 extern struct wide_stack real64_stack;
1765 extern unsigned long real64_call_asm(unsigned long *,
1766 unsigned long *,
1767 unsigned long);
1768
1769 va_start(args, fn);
1770 real64_stack.arg0 = va_arg(args, unsigned long);
1771 real64_stack.arg1 = va_arg(args, unsigned long);
1772 real64_stack.arg2 = va_arg(args, unsigned long);
1773 real64_stack.arg3 = va_arg(args, unsigned long);
1774 real64_stack.arg4 = va_arg(args, unsigned long);
1775 real64_stack.arg5 = va_arg(args, unsigned long);
1776 real64_stack.arg6 = va_arg(args, unsigned long);
1777 real64_stack.arg7 = va_arg(args, unsigned long);
1778 real64_stack.arg8 = va_arg(args, unsigned long);
1779 real64_stack.arg9 = va_arg(args, unsigned long);
1780 real64_stack.arg10 = va_arg(args, unsigned long);
1781 real64_stack.arg11 = va_arg(args, unsigned long);
1782 real64_stack.arg12 = va_arg(args, unsigned long);
1783 real64_stack.arg13 = va_arg(args, unsigned long);
1784 va_end(args);
1785
1786 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1787}
1788
1789#endif /* CONFIG_64BIT */
1/*
2 * arch/parisc/kernel/firmware.c - safe PDC access routines
3 *
4 * PDC == Processor Dependent Code
5 *
6 * See http://www.parisc-linux.org/documentation/index.html
7 * for documentation describing the entry points and calling
8 * conventions defined below.
9 *
10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 *
21 */
22
23/* I think it would be in everyone's best interest to follow this
24 * guidelines when writing PDC wrappers:
25 *
26 * - the name of the pdc wrapper should match one of the macros
27 * used for the first two arguments
28 * - don't use caps for random parts of the name
29 * - use the static PDC result buffers and "copyout" to structs
30 * supplied by the caller to encapsulate alignment restrictions
31 * - hold pdc_lock while in PDC or using static result buffers
32 * - use __pa() to convert virtual (kernel) pointers to physical
33 * ones.
34 * - the name of the struct used for pdc return values should equal
35 * one of the macros used for the first two arguments to the
36 * corresponding PDC call
37 * - keep the order of arguments
38 * - don't be smart (setting trailing NUL bytes for strings, return
39 * something useful even if the call failed) unless you are sure
40 * it's not going to affect functionality or performance
41 *
42 * Example:
43 * int pdc_cache_info(struct pdc_cache_info *cache_info )
44 * {
45 * int retval;
46 *
47 * spin_lock_irq(&pdc_lock);
48 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49 * convert_to_wide(pdc_result);
50 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
51 * spin_unlock_irq(&pdc_lock);
52 *
53 * return retval;
54 * }
55 * prumpf 991016
56 */
57
58#include <stdarg.h>
59
60#include <linux/delay.h>
61#include <linux/init.h>
62#include <linux/kernel.h>
63#include <linux/module.h>
64#include <linux/string.h>
65#include <linux/spinlock.h>
66
67#include <asm/page.h>
68#include <asm/pdc.h>
69#include <asm/pdcpat.h>
70#include <asm/processor.h> /* for boot_cpu_data */
71
72static DEFINE_SPINLOCK(pdc_lock);
73extern unsigned long pdc_result[NUM_PDC_RESULT];
74extern unsigned long pdc_result2[NUM_PDC_RESULT];
75
76#ifdef CONFIG_64BIT
77#define WIDE_FIRMWARE 0x1
78#define NARROW_FIRMWARE 0x2
79
80/* Firmware needs to be initially set to narrow to determine the
81 * actual firmware width. */
82int parisc_narrow_firmware __read_mostly = 1;
83#endif
84
85/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
86 * and MEM_PDC calls are always the same width as the OS.
87 * Some PAT boxes may have 64-bit IODC I/O.
88 *
89 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
90 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
91 * This allowed wide kernels to run on Cxxx boxes.
92 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
93 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
94 */
95
96#ifdef CONFIG_64BIT
97long real64_call(unsigned long function, ...);
98#endif
99long real32_call(unsigned long function, ...);
100
101#ifdef CONFIG_64BIT
102# define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
103# define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
104#else
105# define MEM_PDC (unsigned long)PAGE0->mem_pdc
106# define mem_pdc_call(args...) real32_call(MEM_PDC, args)
107#endif
108
109
110/**
111 * f_extend - Convert PDC addresses to kernel addresses.
112 * @address: Address returned from PDC.
113 *
114 * This function is used to convert PDC addresses into kernel addresses
115 * when the PDC address size and kernel address size are different.
116 */
117static unsigned long f_extend(unsigned long address)
118{
119#ifdef CONFIG_64BIT
120 if(unlikely(parisc_narrow_firmware)) {
121 if((address & 0xff000000) == 0xf0000000)
122 return 0xf0f0f0f000000000UL | (u32)address;
123
124 if((address & 0xf0000000) == 0xf0000000)
125 return 0xffffffff00000000UL | (u32)address;
126 }
127#endif
128 return address;
129}
130
131/**
132 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
133 * @address: The return buffer from PDC.
134 *
135 * This function is used to convert the return buffer addresses retrieved from PDC
136 * into kernel addresses when the PDC address size and kernel address size are
137 * different.
138 */
139static void convert_to_wide(unsigned long *addr)
140{
141#ifdef CONFIG_64BIT
142 int i;
143 unsigned int *p = (unsigned int *)addr;
144
145 if(unlikely(parisc_narrow_firmware)) {
146 for(i = 31; i >= 0; --i)
147 addr[i] = p[i];
148 }
149#endif
150}
151
152#ifdef CONFIG_64BIT
153void __cpuinit set_firmware_width_unlocked(void)
154{
155 int ret;
156
157 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
158 __pa(pdc_result), 0);
159 convert_to_wide(pdc_result);
160 if (pdc_result[0] != NARROW_FIRMWARE)
161 parisc_narrow_firmware = 0;
162}
163
164/**
165 * set_firmware_width - Determine if the firmware is wide or narrow.
166 *
167 * This function must be called before any pdc_* function that uses the
168 * convert_to_wide function.
169 */
170void __cpuinit set_firmware_width(void)
171{
172 unsigned long flags;
173 spin_lock_irqsave(&pdc_lock, flags);
174 set_firmware_width_unlocked();
175 spin_unlock_irqrestore(&pdc_lock, flags);
176}
177#else
178void __cpuinit set_firmware_width_unlocked(void) {
179 return;
180}
181
182void __cpuinit set_firmware_width(void) {
183 return;
184}
185#endif /*CONFIG_64BIT*/
186
187/**
188 * pdc_emergency_unlock - Unlock the linux pdc lock
189 *
190 * This call unlocks the linux pdc lock in case we need some PDC functions
191 * (like pdc_add_valid) during kernel stack dump.
192 */
193void pdc_emergency_unlock(void)
194{
195 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
196 if (spin_is_locked(&pdc_lock))
197 spin_unlock(&pdc_lock);
198}
199
200
201/**
202 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
203 * @address: Address to be verified.
204 *
205 * This PDC call attempts to read from the specified address and verifies
206 * if the address is valid.
207 *
208 * The return value is PDC_OK (0) in case accessing this address is valid.
209 */
210int pdc_add_valid(unsigned long address)
211{
212 int retval;
213 unsigned long flags;
214
215 spin_lock_irqsave(&pdc_lock, flags);
216 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
217 spin_unlock_irqrestore(&pdc_lock, flags);
218
219 return retval;
220}
221EXPORT_SYMBOL(pdc_add_valid);
222
223/**
224 * pdc_chassis_info - Return chassis information.
225 * @result: The return buffer.
226 * @chassis_info: The memory buffer address.
227 * @len: The size of the memory buffer address.
228 *
229 * An HVERSION dependent call for returning the chassis information.
230 */
231int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
232{
233 int retval;
234 unsigned long flags;
235
236 spin_lock_irqsave(&pdc_lock, flags);
237 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
238 memcpy(&pdc_result2, led_info, len);
239 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
240 __pa(pdc_result), __pa(pdc_result2), len);
241 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
242 memcpy(led_info, pdc_result2, len);
243 spin_unlock_irqrestore(&pdc_lock, flags);
244
245 return retval;
246}
247
248/**
249 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
250 * @retval: -1 on error, 0 on success. Other value are PDC errors
251 *
252 * Must be correctly formatted or expect system crash
253 */
254#ifdef CONFIG_64BIT
255int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
256{
257 int retval = 0;
258 unsigned long flags;
259
260 if (!is_pdc_pat())
261 return -1;
262
263 spin_lock_irqsave(&pdc_lock, flags);
264 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
265 spin_unlock_irqrestore(&pdc_lock, flags);
266
267 return retval;
268}
269#endif
270
271/**
272 * pdc_chassis_disp - Updates chassis code
273 * @retval: -1 on error, 0 on success
274 */
275int pdc_chassis_disp(unsigned long disp)
276{
277 int retval = 0;
278 unsigned long flags;
279
280 spin_lock_irqsave(&pdc_lock, flags);
281 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
282 spin_unlock_irqrestore(&pdc_lock, flags);
283
284 return retval;
285}
286
287/**
288 * pdc_chassis_warn - Fetches chassis warnings
289 * @retval: -1 on error, 0 on success
290 */
291int pdc_chassis_warn(unsigned long *warn)
292{
293 int retval = 0;
294 unsigned long flags;
295
296 spin_lock_irqsave(&pdc_lock, flags);
297 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
298 *warn = pdc_result[0];
299 spin_unlock_irqrestore(&pdc_lock, flags);
300
301 return retval;
302}
303
304int __cpuinit pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
305{
306 int ret;
307
308 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
309 convert_to_wide(pdc_result);
310 pdc_coproc_info->ccr_functional = pdc_result[0];
311 pdc_coproc_info->ccr_present = pdc_result[1];
312 pdc_coproc_info->revision = pdc_result[17];
313 pdc_coproc_info->model = pdc_result[18];
314
315 return ret;
316}
317
318/**
319 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
320 * @pdc_coproc_info: Return buffer address.
321 *
322 * This PDC call returns the presence and status of all the coprocessors
323 * attached to the processor.
324 */
325int __cpuinit pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
326{
327 int ret;
328 unsigned long flags;
329
330 spin_lock_irqsave(&pdc_lock, flags);
331 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
332 spin_unlock_irqrestore(&pdc_lock, flags);
333
334 return ret;
335}
336
337/**
338 * pdc_iodc_read - Read data from the modules IODC.
339 * @actcnt: The actual number of bytes.
340 * @hpa: The HPA of the module for the iodc read.
341 * @index: The iodc entry point.
342 * @iodc_data: A buffer memory for the iodc options.
343 * @iodc_data_size: Size of the memory buffer.
344 *
345 * This PDC call reads from the IODC of the module specified by the hpa
346 * argument.
347 */
348int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
349 void *iodc_data, unsigned int iodc_data_size)
350{
351 int retval;
352 unsigned long flags;
353
354 spin_lock_irqsave(&pdc_lock, flags);
355 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
356 index, __pa(pdc_result2), iodc_data_size);
357 convert_to_wide(pdc_result);
358 *actcnt = pdc_result[0];
359 memcpy(iodc_data, pdc_result2, iodc_data_size);
360 spin_unlock_irqrestore(&pdc_lock, flags);
361
362 return retval;
363}
364EXPORT_SYMBOL(pdc_iodc_read);
365
366/**
367 * pdc_system_map_find_mods - Locate unarchitected modules.
368 * @pdc_mod_info: Return buffer address.
369 * @mod_path: pointer to dev path structure.
370 * @mod_index: fixed address module index.
371 *
372 * To locate and identify modules which reside at fixed I/O addresses, which
373 * do not self-identify via architected bus walks.
374 */
375int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
376 struct pdc_module_path *mod_path, long mod_index)
377{
378 int retval;
379 unsigned long flags;
380
381 spin_lock_irqsave(&pdc_lock, flags);
382 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
383 __pa(pdc_result2), mod_index);
384 convert_to_wide(pdc_result);
385 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
386 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
387 spin_unlock_irqrestore(&pdc_lock, flags);
388
389 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
390 return retval;
391}
392
393/**
394 * pdc_system_map_find_addrs - Retrieve additional address ranges.
395 * @pdc_addr_info: Return buffer address.
396 * @mod_index: Fixed address module index.
397 * @addr_index: Address range index.
398 *
399 * Retrieve additional information about subsequent address ranges for modules
400 * with multiple address ranges.
401 */
402int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
403 long mod_index, long addr_index)
404{
405 int retval;
406 unsigned long flags;
407
408 spin_lock_irqsave(&pdc_lock, flags);
409 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
410 mod_index, addr_index);
411 convert_to_wide(pdc_result);
412 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
413 spin_unlock_irqrestore(&pdc_lock, flags);
414
415 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
416 return retval;
417}
418
419/**
420 * pdc_model_info - Return model information about the processor.
421 * @model: The return buffer.
422 *
423 * Returns the version numbers, identifiers, and capabilities from the processor module.
424 */
425int pdc_model_info(struct pdc_model *model)
426{
427 int retval;
428 unsigned long flags;
429
430 spin_lock_irqsave(&pdc_lock, flags);
431 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
432 convert_to_wide(pdc_result);
433 memcpy(model, pdc_result, sizeof(*model));
434 spin_unlock_irqrestore(&pdc_lock, flags);
435
436 return retval;
437}
438
439/**
440 * pdc_model_sysmodel - Get the system model name.
441 * @name: A char array of at least 81 characters.
442 *
443 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
444 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
445 * on HP/UX.
446 */
447int pdc_model_sysmodel(char *name)
448{
449 int retval;
450 unsigned long flags;
451
452 spin_lock_irqsave(&pdc_lock, flags);
453 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
454 OS_ID_HPUX, __pa(name));
455 convert_to_wide(pdc_result);
456
457 if (retval == PDC_OK) {
458 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
459 } else {
460 name[0] = 0;
461 }
462 spin_unlock_irqrestore(&pdc_lock, flags);
463
464 return retval;
465}
466
467/**
468 * pdc_model_versions - Identify the version number of each processor.
469 * @cpu_id: The return buffer.
470 * @id: The id of the processor to check.
471 *
472 * Returns the version number for each processor component.
473 *
474 * This comment was here before, but I do not know what it means :( -RB
475 * id: 0 = cpu revision, 1 = boot-rom-version
476 */
477int pdc_model_versions(unsigned long *versions, int id)
478{
479 int retval;
480 unsigned long flags;
481
482 spin_lock_irqsave(&pdc_lock, flags);
483 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
484 convert_to_wide(pdc_result);
485 *versions = pdc_result[0];
486 spin_unlock_irqrestore(&pdc_lock, flags);
487
488 return retval;
489}
490
491/**
492 * pdc_model_cpuid - Returns the CPU_ID.
493 * @cpu_id: The return buffer.
494 *
495 * Returns the CPU_ID value which uniquely identifies the cpu portion of
496 * the processor module.
497 */
498int pdc_model_cpuid(unsigned long *cpu_id)
499{
500 int retval;
501 unsigned long flags;
502
503 spin_lock_irqsave(&pdc_lock, flags);
504 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
505 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
506 convert_to_wide(pdc_result);
507 *cpu_id = pdc_result[0];
508 spin_unlock_irqrestore(&pdc_lock, flags);
509
510 return retval;
511}
512
513/**
514 * pdc_model_capabilities - Returns the platform capabilities.
515 * @capabilities: The return buffer.
516 *
517 * Returns information about platform support for 32- and/or 64-bit
518 * OSes, IO-PDIR coherency, and virtual aliasing.
519 */
520int pdc_model_capabilities(unsigned long *capabilities)
521{
522 int retval;
523 unsigned long flags;
524
525 spin_lock_irqsave(&pdc_lock, flags);
526 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
527 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
528 convert_to_wide(pdc_result);
529 if (retval == PDC_OK) {
530 *capabilities = pdc_result[0];
531 } else {
532 *capabilities = PDC_MODEL_OS32;
533 }
534 spin_unlock_irqrestore(&pdc_lock, flags);
535
536 return retval;
537}
538
539/**
540 * pdc_cache_info - Return cache and TLB information.
541 * @cache_info: The return buffer.
542 *
543 * Returns information about the processor's cache and TLB.
544 */
545int pdc_cache_info(struct pdc_cache_info *cache_info)
546{
547 int retval;
548 unsigned long flags;
549
550 spin_lock_irqsave(&pdc_lock, flags);
551 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
552 convert_to_wide(pdc_result);
553 memcpy(cache_info, pdc_result, sizeof(*cache_info));
554 spin_unlock_irqrestore(&pdc_lock, flags);
555
556 return retval;
557}
558
559/**
560 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
561 * @space_bits: Should be 0, if not, bad mojo!
562 *
563 * Returns information about Space ID hashing.
564 */
565int pdc_spaceid_bits(unsigned long *space_bits)
566{
567 int retval;
568 unsigned long flags;
569
570 spin_lock_irqsave(&pdc_lock, flags);
571 pdc_result[0] = 0;
572 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
573 convert_to_wide(pdc_result);
574 *space_bits = pdc_result[0];
575 spin_unlock_irqrestore(&pdc_lock, flags);
576
577 return retval;
578}
579
580#ifndef CONFIG_PA20
581/**
582 * pdc_btlb_info - Return block TLB information.
583 * @btlb: The return buffer.
584 *
585 * Returns information about the hardware Block TLB.
586 */
587int pdc_btlb_info(struct pdc_btlb_info *btlb)
588{
589 int retval;
590 unsigned long flags;
591
592 spin_lock_irqsave(&pdc_lock, flags);
593 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
594 memcpy(btlb, pdc_result, sizeof(*btlb));
595 spin_unlock_irqrestore(&pdc_lock, flags);
596
597 if(retval < 0) {
598 btlb->max_size = 0;
599 }
600 return retval;
601}
602
603/**
604 * pdc_mem_map_hpa - Find fixed module information.
605 * @address: The return buffer
606 * @mod_path: pointer to dev path structure.
607 *
608 * This call was developed for S700 workstations to allow the kernel to find
609 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
610 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
611 * call.
612 *
613 * This call is supported by all existing S700 workstations (up to Gecko).
614 */
615int pdc_mem_map_hpa(struct pdc_memory_map *address,
616 struct pdc_module_path *mod_path)
617{
618 int retval;
619 unsigned long flags;
620
621 spin_lock_irqsave(&pdc_lock, flags);
622 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
623 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
624 __pa(pdc_result2));
625 memcpy(address, pdc_result, sizeof(*address));
626 spin_unlock_irqrestore(&pdc_lock, flags);
627
628 return retval;
629}
630#endif /* !CONFIG_PA20 */
631
632/**
633 * pdc_lan_station_id - Get the LAN address.
634 * @lan_addr: The return buffer.
635 * @hpa: The network device HPA.
636 *
637 * Get the LAN station address when it is not directly available from the LAN hardware.
638 */
639int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
640{
641 int retval;
642 unsigned long flags;
643
644 spin_lock_irqsave(&pdc_lock, flags);
645 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
646 __pa(pdc_result), hpa);
647 if (retval < 0) {
648 /* FIXME: else read MAC from NVRAM */
649 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
650 } else {
651 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
652 }
653 spin_unlock_irqrestore(&pdc_lock, flags);
654
655 return retval;
656}
657EXPORT_SYMBOL(pdc_lan_station_id);
658
659/**
660 * pdc_stable_read - Read data from Stable Storage.
661 * @staddr: Stable Storage address to access.
662 * @memaddr: The memory address where Stable Storage data shall be copied.
663 * @count: number of bytes to transfer. count is multiple of 4.
664 *
665 * This PDC call reads from the Stable Storage address supplied in staddr
666 * and copies count bytes to the memory address memaddr.
667 * The call will fail if staddr+count > PDC_STABLE size.
668 */
669int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
670{
671 int retval;
672 unsigned long flags;
673
674 spin_lock_irqsave(&pdc_lock, flags);
675 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
676 __pa(pdc_result), count);
677 convert_to_wide(pdc_result);
678 memcpy(memaddr, pdc_result, count);
679 spin_unlock_irqrestore(&pdc_lock, flags);
680
681 return retval;
682}
683EXPORT_SYMBOL(pdc_stable_read);
684
685/**
686 * pdc_stable_write - Write data to Stable Storage.
687 * @staddr: Stable Storage address to access.
688 * @memaddr: The memory address where Stable Storage data shall be read from.
689 * @count: number of bytes to transfer. count is multiple of 4.
690 *
691 * This PDC call reads count bytes from the supplied memaddr address,
692 * and copies count bytes to the Stable Storage address staddr.
693 * The call will fail if staddr+count > PDC_STABLE size.
694 */
695int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
696{
697 int retval;
698 unsigned long flags;
699
700 spin_lock_irqsave(&pdc_lock, flags);
701 memcpy(pdc_result, memaddr, count);
702 convert_to_wide(pdc_result);
703 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
704 __pa(pdc_result), count);
705 spin_unlock_irqrestore(&pdc_lock, flags);
706
707 return retval;
708}
709EXPORT_SYMBOL(pdc_stable_write);
710
711/**
712 * pdc_stable_get_size - Get Stable Storage size in bytes.
713 * @size: pointer where the size will be stored.
714 *
715 * This PDC call returns the number of bytes in the processor's Stable
716 * Storage, which is the number of contiguous bytes implemented in Stable
717 * Storage starting from staddr=0. size in an unsigned 64-bit integer
718 * which is a multiple of four.
719 */
720int pdc_stable_get_size(unsigned long *size)
721{
722 int retval;
723 unsigned long flags;
724
725 spin_lock_irqsave(&pdc_lock, flags);
726 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
727 *size = pdc_result[0];
728 spin_unlock_irqrestore(&pdc_lock, flags);
729
730 return retval;
731}
732EXPORT_SYMBOL(pdc_stable_get_size);
733
734/**
735 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
736 *
737 * This PDC call is meant to be used to check the integrity of the current
738 * contents of Stable Storage.
739 */
740int pdc_stable_verify_contents(void)
741{
742 int retval;
743 unsigned long flags;
744
745 spin_lock_irqsave(&pdc_lock, flags);
746 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
747 spin_unlock_irqrestore(&pdc_lock, flags);
748
749 return retval;
750}
751EXPORT_SYMBOL(pdc_stable_verify_contents);
752
753/**
754 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
755 * the validity indicator.
756 *
757 * This PDC call will erase all contents of Stable Storage. Use with care!
758 */
759int pdc_stable_initialize(void)
760{
761 int retval;
762 unsigned long flags;
763
764 spin_lock_irqsave(&pdc_lock, flags);
765 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
766 spin_unlock_irqrestore(&pdc_lock, flags);
767
768 return retval;
769}
770EXPORT_SYMBOL(pdc_stable_initialize);
771
772/**
773 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
774 * @hwpath: fully bc.mod style path to the device.
775 * @initiator: the array to return the result into
776 *
777 * Get the SCSI operational parameters from PDC.
778 * Needed since HPUX never used BIOS or symbios card NVRAM.
779 * Most ncr/sym cards won't have an entry and just use whatever
780 * capabilities of the card are (eg Ultra, LVD). But there are
781 * several cases where it's useful:
782 * o set SCSI id for Multi-initiator clusters,
783 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
784 * o bus width exported is less than what the interface chip supports.
785 */
786int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
787{
788 int retval;
789 unsigned long flags;
790
791 spin_lock_irqsave(&pdc_lock, flags);
792
793/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
794#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
795 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
796
797 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
798 __pa(pdc_result), __pa(hwpath));
799 if (retval < PDC_OK)
800 goto out;
801
802 if (pdc_result[0] < 16) {
803 initiator->host_id = pdc_result[0];
804 } else {
805 initiator->host_id = -1;
806 }
807
808 /*
809 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
810 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
811 */
812 switch (pdc_result[1]) {
813 case 1: initiator->factor = 50; break;
814 case 2: initiator->factor = 25; break;
815 case 5: initiator->factor = 12; break;
816 case 25: initiator->factor = 10; break;
817 case 20: initiator->factor = 12; break;
818 case 40: initiator->factor = 10; break;
819 default: initiator->factor = -1; break;
820 }
821
822 if (IS_SPROCKETS()) {
823 initiator->width = pdc_result[4];
824 initiator->mode = pdc_result[5];
825 } else {
826 initiator->width = -1;
827 initiator->mode = -1;
828 }
829
830 out:
831 spin_unlock_irqrestore(&pdc_lock, flags);
832
833 return (retval >= PDC_OK);
834}
835EXPORT_SYMBOL(pdc_get_initiator);
836
837
838/**
839 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
840 * @num_entries: The return value.
841 * @hpa: The HPA for the device.
842 *
843 * This PDC function returns the number of entries in the specified cell's
844 * interrupt table.
845 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
846 */
847int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
848{
849 int retval;
850 unsigned long flags;
851
852 spin_lock_irqsave(&pdc_lock, flags);
853 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
854 __pa(pdc_result), hpa);
855 convert_to_wide(pdc_result);
856 *num_entries = pdc_result[0];
857 spin_unlock_irqrestore(&pdc_lock, flags);
858
859 return retval;
860}
861
862/**
863 * pdc_pci_irt - Get the PCI interrupt routing table.
864 * @num_entries: The number of entries in the table.
865 * @hpa: The Hard Physical Address of the device.
866 * @tbl:
867 *
868 * Get the PCI interrupt routing table for the device at the given HPA.
869 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
870 */
871int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
872{
873 int retval;
874 unsigned long flags;
875
876 BUG_ON((unsigned long)tbl & 0x7);
877
878 spin_lock_irqsave(&pdc_lock, flags);
879 pdc_result[0] = num_entries;
880 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
881 __pa(pdc_result), hpa, __pa(tbl));
882 spin_unlock_irqrestore(&pdc_lock, flags);
883
884 return retval;
885}
886
887
888#if 0 /* UNTEST CODE - left here in case someone needs it */
889
890/**
891 * pdc_pci_config_read - read PCI config space.
892 * @hpa token from PDC to indicate which PCI device
893 * @pci_addr configuration space address to read from
894 *
895 * Read PCI Configuration space *before* linux PCI subsystem is running.
896 */
897unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
898{
899 int retval;
900 unsigned long flags;
901
902 spin_lock_irqsave(&pdc_lock, flags);
903 pdc_result[0] = 0;
904 pdc_result[1] = 0;
905 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
906 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
907 spin_unlock_irqrestore(&pdc_lock, flags);
908
909 return retval ? ~0 : (unsigned int) pdc_result[0];
910}
911
912
913/**
914 * pdc_pci_config_write - read PCI config space.
915 * @hpa token from PDC to indicate which PCI device
916 * @pci_addr configuration space address to write
917 * @val value we want in the 32-bit register
918 *
919 * Write PCI Configuration space *before* linux PCI subsystem is running.
920 */
921void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
922{
923 int retval;
924 unsigned long flags;
925
926 spin_lock_irqsave(&pdc_lock, flags);
927 pdc_result[0] = 0;
928 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
929 __pa(pdc_result), hpa,
930 cfg_addr&~3UL, 4UL, (unsigned long) val);
931 spin_unlock_irqrestore(&pdc_lock, flags);
932
933 return retval;
934}
935#endif /* UNTESTED CODE */
936
937/**
938 * pdc_tod_read - Read the Time-Of-Day clock.
939 * @tod: The return buffer:
940 *
941 * Read the Time-Of-Day clock
942 */
943int pdc_tod_read(struct pdc_tod *tod)
944{
945 int retval;
946 unsigned long flags;
947
948 spin_lock_irqsave(&pdc_lock, flags);
949 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
950 convert_to_wide(pdc_result);
951 memcpy(tod, pdc_result, sizeof(*tod));
952 spin_unlock_irqrestore(&pdc_lock, flags);
953
954 return retval;
955}
956EXPORT_SYMBOL(pdc_tod_read);
957
958/**
959 * pdc_tod_set - Set the Time-Of-Day clock.
960 * @sec: The number of seconds since epoch.
961 * @usec: The number of micro seconds.
962 *
963 * Set the Time-Of-Day clock.
964 */
965int pdc_tod_set(unsigned long sec, unsigned long usec)
966{
967 int retval;
968 unsigned long flags;
969
970 spin_lock_irqsave(&pdc_lock, flags);
971 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
972 spin_unlock_irqrestore(&pdc_lock, flags);
973
974 return retval;
975}
976EXPORT_SYMBOL(pdc_tod_set);
977
978#ifdef CONFIG_64BIT
979int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
980 struct pdc_memory_table *tbl, unsigned long entries)
981{
982 int retval;
983 unsigned long flags;
984
985 spin_lock_irqsave(&pdc_lock, flags);
986 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
987 convert_to_wide(pdc_result);
988 memcpy(r_addr, pdc_result, sizeof(*r_addr));
989 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
990 spin_unlock_irqrestore(&pdc_lock, flags);
991
992 return retval;
993}
994#endif /* CONFIG_64BIT */
995
996/* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
997 * so I guessed at unsigned long. Someone who knows what this does, can fix
998 * it later. :)
999 */
1000int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1001{
1002 int retval;
1003 unsigned long flags;
1004
1005 spin_lock_irqsave(&pdc_lock, flags);
1006 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1007 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1008 spin_unlock_irqrestore(&pdc_lock, flags);
1009
1010 return retval;
1011}
1012
1013/*
1014 * pdc_do_reset - Reset the system.
1015 *
1016 * Reset the system.
1017 */
1018int pdc_do_reset(void)
1019{
1020 int retval;
1021 unsigned long flags;
1022
1023 spin_lock_irqsave(&pdc_lock, flags);
1024 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1025 spin_unlock_irqrestore(&pdc_lock, flags);
1026
1027 return retval;
1028}
1029
1030/*
1031 * pdc_soft_power_info - Enable soft power switch.
1032 * @power_reg: address of soft power register
1033 *
1034 * Return the absolute address of the soft power switch register
1035 */
1036int __init pdc_soft_power_info(unsigned long *power_reg)
1037{
1038 int retval;
1039 unsigned long flags;
1040
1041 *power_reg = (unsigned long) (-1);
1042
1043 spin_lock_irqsave(&pdc_lock, flags);
1044 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1045 if (retval == PDC_OK) {
1046 convert_to_wide(pdc_result);
1047 *power_reg = f_extend(pdc_result[0]);
1048 }
1049 spin_unlock_irqrestore(&pdc_lock, flags);
1050
1051 return retval;
1052}
1053
1054/*
1055 * pdc_soft_power_button - Control the soft power button behaviour
1056 * @sw_control: 0 for hardware control, 1 for software control
1057 *
1058 *
1059 * This PDC function places the soft power button under software or
1060 * hardware control.
1061 * Under software control the OS may control to when to allow to shut
1062 * down the system. Under hardware control pressing the power button
1063 * powers off the system immediately.
1064 */
1065int pdc_soft_power_button(int sw_control)
1066{
1067 int retval;
1068 unsigned long flags;
1069
1070 spin_lock_irqsave(&pdc_lock, flags);
1071 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1072 spin_unlock_irqrestore(&pdc_lock, flags);
1073
1074 return retval;
1075}
1076
1077/*
1078 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1079 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1080 * who knows what other platform firmware might do with this OS "hook".
1081 */
1082void pdc_io_reset(void)
1083{
1084 unsigned long flags;
1085
1086 spin_lock_irqsave(&pdc_lock, flags);
1087 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1088 spin_unlock_irqrestore(&pdc_lock, flags);
1089}
1090
1091/*
1092 * pdc_io_reset_devices - Hack to Stop USB controller
1093 *
1094 * If PDC used the usb controller, the usb controller
1095 * is still running and will crash the machines during iommu
1096 * setup, because of still running DMA. This PDC call
1097 * stops the USB controller.
1098 * Normally called after calling pdc_io_reset().
1099 */
1100void pdc_io_reset_devices(void)
1101{
1102 unsigned long flags;
1103
1104 spin_lock_irqsave(&pdc_lock, flags);
1105 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1106 spin_unlock_irqrestore(&pdc_lock, flags);
1107}
1108
1109/* locked by pdc_console_lock */
1110static int __attribute__((aligned(8))) iodc_retbuf[32];
1111static char __attribute__((aligned(64))) iodc_dbuf[4096];
1112
1113/**
1114 * pdc_iodc_print - Console print using IODC.
1115 * @str: the string to output.
1116 * @count: length of str
1117 *
1118 * Note that only these special chars are architected for console IODC io:
1119 * BEL, BS, CR, and LF. Others are passed through.
1120 * Since the HP console requires CR+LF to perform a 'newline', we translate
1121 * "\n" to "\r\n".
1122 */
1123int pdc_iodc_print(const unsigned char *str, unsigned count)
1124{
1125 unsigned int i;
1126 unsigned long flags;
1127
1128 for (i = 0; i < count;) {
1129 switch(str[i]) {
1130 case '\n':
1131 iodc_dbuf[i+0] = '\r';
1132 iodc_dbuf[i+1] = '\n';
1133 i += 2;
1134 goto print;
1135 default:
1136 iodc_dbuf[i] = str[i];
1137 i++;
1138 break;
1139 }
1140 }
1141
1142print:
1143 spin_lock_irqsave(&pdc_lock, flags);
1144 real32_call(PAGE0->mem_cons.iodc_io,
1145 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1146 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1147 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1148 spin_unlock_irqrestore(&pdc_lock, flags);
1149
1150 return i;
1151}
1152
1153/**
1154 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1155 *
1156 * Read a character (non-blocking) from the PDC console, returns -1 if
1157 * key is not present.
1158 */
1159int pdc_iodc_getc(void)
1160{
1161 int ch;
1162 int status;
1163 unsigned long flags;
1164
1165 /* Bail if no console input device. */
1166 if (!PAGE0->mem_kbd.iodc_io)
1167 return 0;
1168
1169 /* wait for a keyboard (rs232)-input */
1170 spin_lock_irqsave(&pdc_lock, flags);
1171 real32_call(PAGE0->mem_kbd.iodc_io,
1172 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1173 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1174 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1175
1176 ch = *iodc_dbuf;
1177 status = *iodc_retbuf;
1178 spin_unlock_irqrestore(&pdc_lock, flags);
1179
1180 if (status == 0)
1181 return -1;
1182
1183 return ch;
1184}
1185
1186int pdc_sti_call(unsigned long func, unsigned long flags,
1187 unsigned long inptr, unsigned long outputr,
1188 unsigned long glob_cfg)
1189{
1190 int retval;
1191 unsigned long irqflags;
1192
1193 spin_lock_irqsave(&pdc_lock, irqflags);
1194 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1195 spin_unlock_irqrestore(&pdc_lock, irqflags);
1196
1197 return retval;
1198}
1199EXPORT_SYMBOL(pdc_sti_call);
1200
1201#ifdef CONFIG_64BIT
1202/**
1203 * pdc_pat_cell_get_number - Returns the cell number.
1204 * @cell_info: The return buffer.
1205 *
1206 * This PDC call returns the cell number of the cell from which the call
1207 * is made.
1208 */
1209int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1210{
1211 int retval;
1212 unsigned long flags;
1213
1214 spin_lock_irqsave(&pdc_lock, flags);
1215 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1216 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1217 spin_unlock_irqrestore(&pdc_lock, flags);
1218
1219 return retval;
1220}
1221
1222/**
1223 * pdc_pat_cell_module - Retrieve the cell's module information.
1224 * @actcnt: The number of bytes written to mem_addr.
1225 * @ploc: The physical location.
1226 * @mod: The module index.
1227 * @view_type: The view of the address type.
1228 * @mem_addr: The return buffer.
1229 *
1230 * This PDC call returns information about each module attached to the cell
1231 * at the specified location.
1232 */
1233int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1234 unsigned long view_type, void *mem_addr)
1235{
1236 int retval;
1237 unsigned long flags;
1238 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1239
1240 spin_lock_irqsave(&pdc_lock, flags);
1241 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1242 ploc, mod, view_type, __pa(&result));
1243 if(!retval) {
1244 *actcnt = pdc_result[0];
1245 memcpy(mem_addr, &result, *actcnt);
1246 }
1247 spin_unlock_irqrestore(&pdc_lock, flags);
1248
1249 return retval;
1250}
1251
1252/**
1253 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1254 * @cpu_info: The return buffer.
1255 * @hpa: The Hard Physical Address of the CPU.
1256 *
1257 * Retrieve the cpu number for the cpu at the specified HPA.
1258 */
1259int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1260{
1261 int retval;
1262 unsigned long flags;
1263
1264 spin_lock_irqsave(&pdc_lock, flags);
1265 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1266 __pa(&pdc_result), hpa);
1267 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1268 spin_unlock_irqrestore(&pdc_lock, flags);
1269
1270 return retval;
1271}
1272
1273/**
1274 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1275 * @num_entries: The return value.
1276 * @cell_num: The target cell.
1277 *
1278 * This PDC function returns the number of entries in the specified cell's
1279 * interrupt table.
1280 */
1281int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1282{
1283 int retval;
1284 unsigned long flags;
1285
1286 spin_lock_irqsave(&pdc_lock, flags);
1287 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1288 __pa(pdc_result), cell_num);
1289 *num_entries = pdc_result[0];
1290 spin_unlock_irqrestore(&pdc_lock, flags);
1291
1292 return retval;
1293}
1294
1295/**
1296 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1297 * @r_addr: The return buffer.
1298 * @cell_num: The target cell.
1299 *
1300 * This PDC function returns the actual interrupt table for the specified cell.
1301 */
1302int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1303{
1304 int retval;
1305 unsigned long flags;
1306
1307 spin_lock_irqsave(&pdc_lock, flags);
1308 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1309 __pa(r_addr), cell_num);
1310 spin_unlock_irqrestore(&pdc_lock, flags);
1311
1312 return retval;
1313}
1314
1315/**
1316 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1317 * @actlen: The return buffer.
1318 * @mem_addr: Pointer to the memory buffer.
1319 * @count: The number of bytes to read from the buffer.
1320 * @offset: The offset with respect to the beginning of the buffer.
1321 *
1322 */
1323int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1324 unsigned long count, unsigned long offset)
1325{
1326 int retval;
1327 unsigned long flags;
1328
1329 spin_lock_irqsave(&pdc_lock, flags);
1330 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1331 __pa(pdc_result2), count, offset);
1332 *actual_len = pdc_result[0];
1333 memcpy(mem_addr, pdc_result2, *actual_len);
1334 spin_unlock_irqrestore(&pdc_lock, flags);
1335
1336 return retval;
1337}
1338
1339/**
1340 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1341 * @pci_addr: PCI configuration space address for which the read request is being made.
1342 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1343 * @mem_addr: Pointer to return memory buffer.
1344 *
1345 */
1346int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1347{
1348 int retval;
1349 unsigned long flags;
1350
1351 spin_lock_irqsave(&pdc_lock, flags);
1352 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1353 __pa(pdc_result), pci_addr, pci_size);
1354 switch(pci_size) {
1355 case 1: *(u8 *) mem_addr = (u8) pdc_result[0];
1356 case 2: *(u16 *)mem_addr = (u16) pdc_result[0];
1357 case 4: *(u32 *)mem_addr = (u32) pdc_result[0];
1358 }
1359 spin_unlock_irqrestore(&pdc_lock, flags);
1360
1361 return retval;
1362}
1363
1364/**
1365 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1366 * @pci_addr: PCI configuration space address for which the write request is being made.
1367 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1368 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1369 * written to PCI Config space.
1370 *
1371 */
1372int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1373{
1374 int retval;
1375 unsigned long flags;
1376
1377 spin_lock_irqsave(&pdc_lock, flags);
1378 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1379 pci_addr, pci_size, val);
1380 spin_unlock_irqrestore(&pdc_lock, flags);
1381
1382 return retval;
1383}
1384#endif /* CONFIG_64BIT */
1385
1386
1387/***************** 32-bit real-mode calls ***********/
1388/* The struct below is used
1389 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1390 * real32_call_asm() then uses this stack in narrow real mode
1391 */
1392
1393struct narrow_stack {
1394 /* use int, not long which is 64 bits */
1395 unsigned int arg13;
1396 unsigned int arg12;
1397 unsigned int arg11;
1398 unsigned int arg10;
1399 unsigned int arg9;
1400 unsigned int arg8;
1401 unsigned int arg7;
1402 unsigned int arg6;
1403 unsigned int arg5;
1404 unsigned int arg4;
1405 unsigned int arg3;
1406 unsigned int arg2;
1407 unsigned int arg1;
1408 unsigned int arg0;
1409 unsigned int frame_marker[8];
1410 unsigned int sp;
1411 /* in reality, there's nearly 8k of stack after this */
1412};
1413
1414long real32_call(unsigned long fn, ...)
1415{
1416 va_list args;
1417 extern struct narrow_stack real_stack;
1418 extern unsigned long real32_call_asm(unsigned int *,
1419 unsigned int *,
1420 unsigned int);
1421
1422 va_start(args, fn);
1423 real_stack.arg0 = va_arg(args, unsigned int);
1424 real_stack.arg1 = va_arg(args, unsigned int);
1425 real_stack.arg2 = va_arg(args, unsigned int);
1426 real_stack.arg3 = va_arg(args, unsigned int);
1427 real_stack.arg4 = va_arg(args, unsigned int);
1428 real_stack.arg5 = va_arg(args, unsigned int);
1429 real_stack.arg6 = va_arg(args, unsigned int);
1430 real_stack.arg7 = va_arg(args, unsigned int);
1431 real_stack.arg8 = va_arg(args, unsigned int);
1432 real_stack.arg9 = va_arg(args, unsigned int);
1433 real_stack.arg10 = va_arg(args, unsigned int);
1434 real_stack.arg11 = va_arg(args, unsigned int);
1435 real_stack.arg12 = va_arg(args, unsigned int);
1436 real_stack.arg13 = va_arg(args, unsigned int);
1437 va_end(args);
1438
1439 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1440}
1441
1442#ifdef CONFIG_64BIT
1443/***************** 64-bit real-mode calls ***********/
1444
1445struct wide_stack {
1446 unsigned long arg0;
1447 unsigned long arg1;
1448 unsigned long arg2;
1449 unsigned long arg3;
1450 unsigned long arg4;
1451 unsigned long arg5;
1452 unsigned long arg6;
1453 unsigned long arg7;
1454 unsigned long arg8;
1455 unsigned long arg9;
1456 unsigned long arg10;
1457 unsigned long arg11;
1458 unsigned long arg12;
1459 unsigned long arg13;
1460 unsigned long frame_marker[2]; /* rp, previous sp */
1461 unsigned long sp;
1462 /* in reality, there's nearly 8k of stack after this */
1463};
1464
1465long real64_call(unsigned long fn, ...)
1466{
1467 va_list args;
1468 extern struct wide_stack real64_stack;
1469 extern unsigned long real64_call_asm(unsigned long *,
1470 unsigned long *,
1471 unsigned long);
1472
1473 va_start(args, fn);
1474 real64_stack.arg0 = va_arg(args, unsigned long);
1475 real64_stack.arg1 = va_arg(args, unsigned long);
1476 real64_stack.arg2 = va_arg(args, unsigned long);
1477 real64_stack.arg3 = va_arg(args, unsigned long);
1478 real64_stack.arg4 = va_arg(args, unsigned long);
1479 real64_stack.arg5 = va_arg(args, unsigned long);
1480 real64_stack.arg6 = va_arg(args, unsigned long);
1481 real64_stack.arg7 = va_arg(args, unsigned long);
1482 real64_stack.arg8 = va_arg(args, unsigned long);
1483 real64_stack.arg9 = va_arg(args, unsigned long);
1484 real64_stack.arg10 = va_arg(args, unsigned long);
1485 real64_stack.arg11 = va_arg(args, unsigned long);
1486 real64_stack.arg12 = va_arg(args, unsigned long);
1487 real64_stack.arg13 = va_arg(args, unsigned long);
1488 va_end(args);
1489
1490 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1491}
1492
1493#endif /* CONFIG_64BIT */
1494