Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * pci.c - Low-Level PCI Access in IA-64
  4 *
  5 * Derived from bios32.c of i386 tree.
  6 *
  7 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
  8 *	David Mosberger-Tang <davidm@hpl.hp.com>
  9 *	Bjorn Helgaas <bjorn.helgaas@hp.com>
 10 * Copyright (C) 2004 Silicon Graphics, Inc.
 11 *
 12 * Note: Above list of copyright holders is incomplete...
 13 */
 14
 15#include <linux/acpi.h>
 16#include <linux/types.h>
 17#include <linux/kernel.h>
 18#include <linux/pci.h>
 19#include <linux/pci-acpi.h>
 20#include <linux/init.h>
 21#include <linux/ioport.h>
 22#include <linux/slab.h>
 23#include <linux/spinlock.h>
 24#include <linux/memblock.h>
 25#include <linux/export.h>
 26
 
 27#include <asm/page.h>
 28#include <asm/io.h>
 29#include <asm/sal.h>
 30#include <asm/smp.h>
 31#include <asm/irq.h>
 32#include <asm/hw_irq.h>
 33
 34/*
 35 * Low-level SAL-based PCI configuration access functions. Note that SAL
 36 * calls are already serialized (via sal_lock), so we don't need another
 37 * synchronization mechanism here.
 38 */
 39
 40#define PCI_SAL_ADDRESS(seg, bus, devfn, reg)		\
 41	(((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
 42
 43/* SAL 3.2 adds support for extended config space. */
 44
 45#define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg)	\
 46	(((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
 47
 48int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
 49	      int reg, int len, u32 *value)
 50{
 51	u64 addr, data = 0;
 52	int mode, result;
 53
 54	if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
 55		return -EINVAL;
 56
 57	if ((seg | reg) <= 255) {
 58		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
 59		mode = 0;
 60	} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
 61		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
 62		mode = 1;
 63	} else {
 64		return -EINVAL;
 65	}
 66
 67	result = ia64_sal_pci_config_read(addr, mode, len, &data);
 68	if (result != 0)
 69		return -EINVAL;
 70
 71	*value = (u32) data;
 72	return 0;
 73}
 74
 75int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
 76	       int reg, int len, u32 value)
 77{
 78	u64 addr;
 79	int mode, result;
 80
 81	if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
 82		return -EINVAL;
 83
 84	if ((seg | reg) <= 255) {
 85		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
 86		mode = 0;
 87	} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
 88		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
 89		mode = 1;
 90	} else {
 91		return -EINVAL;
 92	}
 93	result = ia64_sal_pci_config_write(addr, mode, len, value);
 94	if (result != 0)
 95		return -EINVAL;
 96	return 0;
 97}
 98
 99static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
100							int size, u32 *value)
101{
102	return raw_pci_read(pci_domain_nr(bus), bus->number,
103				 devfn, where, size, value);
104}
105
106static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
107							int size, u32 value)
108{
109	return raw_pci_write(pci_domain_nr(bus), bus->number,
110				  devfn, where, size, value);
111}
112
113struct pci_ops pci_root_ops = {
114	.read = pci_read,
115	.write = pci_write,
116};
117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118struct pci_root_info {
119	struct acpi_pci_root_info common;
120	struct pci_controller controller;
121	struct list_head io_resources;
 
122};
123
124static unsigned int new_space(u64 phys_base, int sparse)
 
125{
126	u64 mmio_base;
127	int i;
128
129	if (phys_base == 0)
130		return 0;	/* legacy I/O port space */
131
132	mmio_base = (u64) ioremap(phys_base, 0);
133	for (i = 0; i < num_io_spaces; i++)
134		if (io_space[i].mmio_base == mmio_base &&
135		    io_space[i].sparse == sparse)
136			return i;
137
138	if (num_io_spaces == MAX_IO_SPACES) {
139		pr_err("PCI: Too many IO port spaces "
140			"(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
141		return ~0;
142	}
143
144	i = num_io_spaces++;
145	io_space[i].mmio_base = mmio_base;
146	io_space[i].sparse = sparse;
147
148	return i;
149}
150
151static int add_io_space(struct device *dev, struct pci_root_info *info,
152			struct resource_entry *entry)
153{
154	struct resource_entry *iospace;
155	struct resource *resource, *res = entry->res;
156	char *name;
157	unsigned long base, min, max, base_port;
158	unsigned int sparse = 0, space_nr, len;
159
160	len = strlen(info->common.name) + 32;
161	iospace = resource_list_create_entry(NULL, len);
162	if (!iospace) {
163		dev_err(dev, "PCI: No memory for %s I/O port space\n",
164			info->common.name);
165		return -ENOMEM;
 
 
 
 
 
 
 
166	}
167
168	if (res->flags & IORESOURCE_IO_SPARSE)
 
 
169		sparse = 1;
170	space_nr = new_space(entry->offset, sparse);
 
171	if (space_nr == ~0)
172		goto free_resource;
173
174	name = (char *)(iospace + 1);
175	min = res->start - entry->offset;
176	max = res->end - entry->offset;
177	base = __pa(io_space[space_nr].mmio_base);
178	base_port = IO_SPACE_BASE(space_nr);
179	snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->common.name,
180		 base_port + min, base_port + max);
181
182	/*
183	 * The SDM guarantees the legacy 0-64K space is sparse, but if the
184	 * mapping is done by the processor (not the bridge), ACPI may not
185	 * mark it as sparse.
186	 */
187	if (space_nr == 0)
188		sparse = 1;
189
190	resource = iospace->res;
191	resource->name  = name;
192	resource->flags = IORESOURCE_MEM;
193	resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
194	resource->end   = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
195	if (insert_resource(&iomem_resource, resource)) {
196		dev_err(dev,
197			"can't allocate host bridge io space resource  %pR\n",
198			resource);
199		goto free_resource;
200	}
201
202	entry->offset = base_port;
203	res->start = min + base_port;
204	res->end = max + base_port;
205	resource_list_add_tail(iospace, &info->io_resources);
206
207	return 0;
208
 
 
209free_resource:
210	resource_list_free_entry(iospace);
211	return -ENOSPC;
 
212}
213
214/*
215 * An IO port or MMIO resource assigned to a PCI host bridge may be
216 * consumed by the host bridge itself or available to its child
217 * bus/devices. The ACPI specification defines a bit (Producer/Consumer)
218 * to tell whether the resource is consumed by the host bridge itself,
219 * but firmware hasn't used that bit consistently, so we can't rely on it.
220 *
221 * On x86 and IA64 platforms, all IO port and MMIO resources are assumed
222 * to be available to child bus/devices except one special case:
223 *     IO port [0xCF8-0xCFF] is consumed by the host bridge itself
224 *     to access PCI configuration space.
225 *
226 * So explicitly filter out PCI CFG IO ports[0xCF8-0xCFF].
227 */
228static bool resource_is_pcicfg_ioport(struct resource *res)
229{
230	return (res->flags & IORESOURCE_IO) &&
231		res->start == 0xCF8 && res->end == 0xCFF;
232}
233
234static int pci_acpi_root_prepare_resources(struct acpi_pci_root_info *ci)
235{
236	struct device *dev = &ci->bridge->dev;
237	struct pci_root_info *info;
238	struct resource *res;
239	struct resource_entry *entry, *tmp;
240	int status;
241
242	status = acpi_pci_probe_root_resources(ci);
243	if (status > 0) {
244		info = container_of(ci, struct pci_root_info, common);
245		resource_list_for_each_entry_safe(entry, tmp, &ci->resources) {
246			res = entry->res;
247			if (res->flags & IORESOURCE_MEM) {
248				/*
249				 * HP's firmware has a hack to work around a
250				 * Windows bug. Ignore these tiny memory ranges.
251				 */
252				if (resource_size(res) <= 16) {
253					resource_list_del(entry);
254					insert_resource(&iomem_resource,
255							entry->res);
256					resource_list_add_tail(entry,
257							&info->io_resources);
258				}
259			} else if (res->flags & IORESOURCE_IO) {
260				if (resource_is_pcicfg_ioport(entry->res))
261					resource_list_destroy_entry(entry);
262				else if (add_io_space(dev, info, entry))
263					resource_list_destroy_entry(entry);
264			}
265		}
266	}
267
268	return status;
269}
270
271static void pci_acpi_root_release_info(struct acpi_pci_root_info *ci)
272{
273	struct pci_root_info *info;
274	struct resource_entry *entry, *tmp;
275
276	info = container_of(ci, struct pci_root_info, common);
277	resource_list_for_each_entry_safe(entry, tmp, &info->io_resources) {
278		release_resource(entry->res);
279		resource_list_destroy_entry(entry);
280	}
281	kfree(info);
282}
283
284static struct acpi_pci_root_ops pci_acpi_root_ops = {
285	.pci_ops = &pci_root_ops,
286	.release_info = pci_acpi_root_release_info,
287	.prepare_resources = pci_acpi_root_prepare_resources,
288};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
289
290struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root)
 
 
 
 
291{
292	struct acpi_device *device = root->device;
293	struct pci_root_info *info;
 
 
 
 
 
 
 
294
295	info = kzalloc(sizeof(*info), GFP_KERNEL);
296	if (!info) {
297		dev_err(&device->dev,
298			"pci_bus %04x:%02x: ignored (out of memory)\n",
299			root->segment, (int)root->secondary.start);
300		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
301	}
302
303	info->controller.segment = root->segment;
304	info->controller.companion = device;
305	info->controller.node = acpi_get_node(device->handle);
306	INIT_LIST_HEAD(&info->io_resources);
307	return acpi_pci_root_create(root, &pci_acpi_root_ops,
308				    &info->common, &info->controller);
309}
310
311int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
312{
313	/*
314	 * We pass NULL as parent to pci_create_root_bus(), so if it is not NULL
315	 * here, pci_create_root_bus() has been called by someone else and
316	 * sysdata is likely to be different from what we expect.  Let it go in
317	 * that case.
318	 */
319	if (!bridge->dev.parent) {
320		struct pci_controller *controller = bridge->bus->sysdata;
321		ACPI_COMPANION_SET(&bridge->dev, controller->companion);
 
 
322	}
323	return 0;
 
 
 
 
 
 
 
 
 
324}
325
326void pcibios_fixup_device_resources(struct pci_dev *dev)
327{
328	int idx;
 
329
330	if (!dev->bus)
331		return;
332
333	for (idx = 0; idx < PCI_BRIDGE_RESOURCES; idx++) {
334		struct resource *r = &dev->resource[idx];
335
336		if (!r->flags || r->parent || !r->start)
337			continue;
338
339		pci_claim_resource(dev, idx);
 
340	}
 
341}
342EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
343
344static void pcibios_fixup_bridge_resources(struct pci_dev *dev)
 
345{
346	int idx;
347
348	if (!dev->bus)
349		return;
350
351	for (idx = PCI_BRIDGE_RESOURCES; idx < PCI_NUM_RESOURCES; idx++) {
352		struct resource *r = &dev->resource[idx];
353
354		if (!r->flags || r->parent || !r->start)
 
355			continue;
356
357		pci_claim_bridge_resource(dev, idx);
358	}
359}
360
 
 
 
 
 
 
 
 
 
 
 
361/*
362 *  Called after each bus is probed, but before its children are examined.
363 */
364void pcibios_fixup_bus(struct pci_bus *b)
 
365{
366	struct pci_dev *dev;
367
368	if (b->self) {
369		pci_read_bridge_bases(b);
370		pcibios_fixup_bridge_resources(b->self);
371	}
372	list_for_each_entry(dev, &b->devices, bus_list)
373		pcibios_fixup_device_resources(dev);
 
374}
375
376void pcibios_add_bus(struct pci_bus *bus)
377{
378	acpi_pci_add_bus(bus);
379}
380
381void pcibios_remove_bus(struct pci_bus *bus)
 
382{
383	acpi_pci_remove_bus(bus);
384}
385
386void pcibios_set_master (struct pci_dev *dev)
387{
388	/* No special bus mastering setup handling */
389}
390
391int
392pcibios_enable_device (struct pci_dev *dev, int mask)
393{
394	int ret;
395
396	ret = pci_enable_resources(dev, mask);
397	if (ret < 0)
398		return ret;
399
400	if (!pci_dev_msi_enabled(dev))
401		return acpi_pci_irq_enable(dev);
402	return 0;
403}
404
405void
406pcibios_disable_device (struct pci_dev *dev)
407{
408	BUG_ON(atomic_read(&dev->enable_cnt));
409	if (!pci_dev_msi_enabled(dev))
410		acpi_pci_irq_disable(dev);
411}
412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
413/**
414 * pci_get_legacy_mem - generic legacy mem routine
415 * @bus: bus to get legacy memory base address for
416 *
417 * Find the base of legacy memory for @bus.  This is typically the first
418 * megabyte of bus address space for @bus or is simply 0 on platforms whose
419 * chipsets support legacy I/O and memory routing.  Returns the base address
420 * or an error pointer if an error occurred.
421 *
422 * This is the ia64 generic version of this routine.  Other platforms
423 * are free to override it with a machine vector.
424 */
425char *pci_get_legacy_mem(struct pci_bus *bus)
426{
427	return (char *)__IA64_UNCACHED_OFFSET;
428}
429
430/**
431 * pci_mmap_legacy_page_range - map legacy memory space to userland
432 * @bus: bus whose legacy space we're mapping
433 * @vma: vma passed in by mmap
434 *
435 * Map legacy memory space for this device back to userspace using a machine
436 * vector to get the base address.
437 */
438int
439pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
440			   enum pci_mmap_state mmap_state)
441{
442	unsigned long size = vma->vm_end - vma->vm_start;
443	pgprot_t prot;
444	char *addr;
445
446	/* We only support mmap'ing of legacy memory space */
447	if (mmap_state != pci_mmap_mem)
448		return -ENOSYS;
449
450	/*
451	 * Avoid attribute aliasing.  See Documentation/ia64/aliasing.rst
452	 * for more details.
453	 */
454	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
455		return -EINVAL;
456	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
457				    vma->vm_page_prot);
458
459	addr = pci_get_legacy_mem(bus);
460	if (IS_ERR(addr))
461		return PTR_ERR(addr);
462
463	vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
464	vma->vm_page_prot = prot;
465
466	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
467			    size, vma->vm_page_prot))
468		return -EAGAIN;
469
470	return 0;
471}
472
473/**
474 * pci_legacy_read - read from legacy I/O space
475 * @bus: bus to read
476 * @port: legacy port value
477 * @val: caller allocated storage for returned value
478 * @size: number of bytes to read
479 *
480 * Simply reads @size bytes from @port and puts the result in @val.
481 *
482 * Again, this (and the write routine) are generic versions that can be
483 * overridden by the platform.  This is necessary on platforms that don't
484 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
485 */
486int pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
487{
488	int ret = size;
489
490	switch (size) {
491	case 1:
492		*val = inb(port);
493		break;
494	case 2:
495		*val = inw(port);
496		break;
497	case 4:
498		*val = inl(port);
499		break;
500	default:
501		ret = -EINVAL;
502		break;
503	}
504
505	return ret;
506}
507
508/**
509 * pci_legacy_write - perform a legacy I/O write
510 * @bus: bus pointer
511 * @port: port to write
512 * @val: value to write
513 * @size: number of bytes to write from @val
514 *
515 * Simply writes @size bytes of @val to @port.
516 */
517int pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
518{
519	int ret = size;
520
521	switch (size) {
522	case 1:
523		outb(val, port);
524		break;
525	case 2:
526		outw(val, port);
527		break;
528	case 4:
529		outl(val, port);
530		break;
531	default:
532		ret = -EINVAL;
533		break;
534	}
535
536	return ret;
537}
538
539/**
540 * set_pci_cacheline_size - determine cacheline size for PCI devices
541 *
542 * We want to use the line-size of the outer-most cache.  We assume
543 * that this line-size is the same for all CPUs.
544 *
545 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
546 */
547static void __init set_pci_dfl_cacheline_size(void)
548{
549	unsigned long levels, unique_caches;
550	long status;
551	pal_cache_config_info_t cci;
552
553	status = ia64_pal_cache_summary(&levels, &unique_caches);
554	if (status != 0) {
555		pr_err("%s: ia64_pal_cache_summary() failed "
556			"(status=%ld)\n", __func__, status);
557		return;
558	}
559
560	status = ia64_pal_cache_config_info(levels - 1,
561				/* cache_type (data_or_unified)= */ 2, &cci);
562	if (status != 0) {
563		pr_err("%s: ia64_pal_cache_config_info() failed "
564			"(status=%ld)\n", __func__, status);
565		return;
566	}
567	pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
568}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
569
570static int __init pcibios_init(void)
571{
572	set_pci_dfl_cacheline_size();
573	return 0;
574}
575
576subsys_initcall(pcibios_init);
v3.5.6
 
  1/*
  2 * pci.c - Low-Level PCI Access in IA-64
  3 *
  4 * Derived from bios32.c of i386 tree.
  5 *
  6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
  7 *	David Mosberger-Tang <davidm@hpl.hp.com>
  8 *	Bjorn Helgaas <bjorn.helgaas@hp.com>
  9 * Copyright (C) 2004 Silicon Graphics, Inc.
 10 *
 11 * Note: Above list of copyright holders is incomplete...
 12 */
 13
 14#include <linux/acpi.h>
 15#include <linux/types.h>
 16#include <linux/kernel.h>
 17#include <linux/pci.h>
 
 18#include <linux/init.h>
 19#include <linux/ioport.h>
 20#include <linux/slab.h>
 21#include <linux/spinlock.h>
 22#include <linux/bootmem.h>
 23#include <linux/export.h>
 24
 25#include <asm/machvec.h>
 26#include <asm/page.h>
 27#include <asm/io.h>
 28#include <asm/sal.h>
 29#include <asm/smp.h>
 30#include <asm/irq.h>
 31#include <asm/hw_irq.h>
 32
 33/*
 34 * Low-level SAL-based PCI configuration access functions. Note that SAL
 35 * calls are already serialized (via sal_lock), so we don't need another
 36 * synchronization mechanism here.
 37 */
 38
 39#define PCI_SAL_ADDRESS(seg, bus, devfn, reg)		\
 40	(((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
 41
 42/* SAL 3.2 adds support for extended config space. */
 43
 44#define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg)	\
 45	(((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
 46
 47int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
 48	      int reg, int len, u32 *value)
 49{
 50	u64 addr, data = 0;
 51	int mode, result;
 52
 53	if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
 54		return -EINVAL;
 55
 56	if ((seg | reg) <= 255) {
 57		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
 58		mode = 0;
 59	} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
 60		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
 61		mode = 1;
 62	} else {
 63		return -EINVAL;
 64	}
 65
 66	result = ia64_sal_pci_config_read(addr, mode, len, &data);
 67	if (result != 0)
 68		return -EINVAL;
 69
 70	*value = (u32) data;
 71	return 0;
 72}
 73
 74int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
 75	       int reg, int len, u32 value)
 76{
 77	u64 addr;
 78	int mode, result;
 79
 80	if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
 81		return -EINVAL;
 82
 83	if ((seg | reg) <= 255) {
 84		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
 85		mode = 0;
 86	} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
 87		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
 88		mode = 1;
 89	} else {
 90		return -EINVAL;
 91	}
 92	result = ia64_sal_pci_config_write(addr, mode, len, value);
 93	if (result != 0)
 94		return -EINVAL;
 95	return 0;
 96}
 97
 98static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
 99							int size, u32 *value)
100{
101	return raw_pci_read(pci_domain_nr(bus), bus->number,
102				 devfn, where, size, value);
103}
104
105static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
106							int size, u32 value)
107{
108	return raw_pci_write(pci_domain_nr(bus), bus->number,
109				  devfn, where, size, value);
110}
111
112struct pci_ops pci_root_ops = {
113	.read = pci_read,
114	.write = pci_write,
115};
116
117/* Called by ACPI when it finds a new root bus.  */
118
119static struct pci_controller * __devinit
120alloc_pci_controller (int seg)
121{
122	struct pci_controller *controller;
123
124	controller = kzalloc(sizeof(*controller), GFP_KERNEL);
125	if (!controller)
126		return NULL;
127
128	controller->segment = seg;
129	controller->node = -1;
130	return controller;
131}
132
133struct pci_root_info {
134	struct acpi_device *bridge;
135	struct pci_controller *controller;
136	struct list_head resources;
137	char *name;
138};
139
140static unsigned int
141new_space (u64 phys_base, int sparse)
142{
143	u64 mmio_base;
144	int i;
145
146	if (phys_base == 0)
147		return 0;	/* legacy I/O port space */
148
149	mmio_base = (u64) ioremap(phys_base, 0);
150	for (i = 0; i < num_io_spaces; i++)
151		if (io_space[i].mmio_base == mmio_base &&
152		    io_space[i].sparse == sparse)
153			return i;
154
155	if (num_io_spaces == MAX_IO_SPACES) {
156		printk(KERN_ERR "PCI: Too many IO port spaces "
157			"(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
158		return ~0;
159	}
160
161	i = num_io_spaces++;
162	io_space[i].mmio_base = mmio_base;
163	io_space[i].sparse = sparse;
164
165	return i;
166}
167
168static u64 __devinit
169add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr)
170{
171	struct resource *resource;
 
172	char *name;
173	unsigned long base, min, max, base_port;
174	unsigned int sparse = 0, space_nr, len;
175
176	resource = kzalloc(sizeof(*resource), GFP_KERNEL);
177	if (!resource) {
178		printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
179			info->name);
180		goto out;
181	}
182
183	len = strlen(info->name) + 32;
184	name = kzalloc(len, GFP_KERNEL);
185	if (!name) {
186		printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
187			info->name);
188		goto free_resource;
189	}
190
191	min = addr->minimum;
192	max = min + addr->address_length - 1;
193	if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
194		sparse = 1;
195
196	space_nr = new_space(addr->translation_offset, sparse);
197	if (space_nr == ~0)
198		goto free_name;
199
 
 
 
200	base = __pa(io_space[space_nr].mmio_base);
201	base_port = IO_SPACE_BASE(space_nr);
202	snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
203		base_port + min, base_port + max);
204
205	/*
206	 * The SDM guarantees the legacy 0-64K space is sparse, but if the
207	 * mapping is done by the processor (not the bridge), ACPI may not
208	 * mark it as sparse.
209	 */
210	if (space_nr == 0)
211		sparse = 1;
212
 
213	resource->name  = name;
214	resource->flags = IORESOURCE_MEM;
215	resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
216	resource->end   = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
217	insert_resource(&iomem_resource, resource);
 
 
 
 
 
218
219	return base_port;
 
 
 
 
 
220
221free_name:
222	kfree(name);
223free_resource:
224	kfree(resource);
225out:
226	return ~0;
227}
228
229static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
230	struct acpi_resource_address64 *addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
231{
232	acpi_status status;
 
 
233
234	/*
235	 * We're only interested in _CRS descriptors that are
236	 *	- address space descriptors for memory or I/O space
237	 *	- non-zero size
238	 *	- producers, i.e., the address space is routed downstream,
239	 *	  not consumed by the bridge itself
240	 */
241	status = acpi_resource_to_address64(resource, addr);
242	if (ACPI_SUCCESS(status) &&
243	    (addr->resource_type == ACPI_MEMORY_RANGE ||
244	     addr->resource_type == ACPI_IO_RANGE) &&
245	    addr->address_length &&
246	    addr->producer_consumer == ACPI_PRODUCER)
247		return AE_OK;
248
249	return AE_ERROR;
250}
251
252static acpi_status __devinit
253count_window (struct acpi_resource *resource, void *data)
254{
255	unsigned int *windows = (unsigned int *) data;
256	struct acpi_resource_address64 addr;
257	acpi_status status;
258
259	status = resource_to_window(resource, &addr);
260	if (ACPI_SUCCESS(status))
261		(*windows)++;
262
263	return AE_OK;
264}
265
266static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
267{
268	struct pci_root_info *info = data;
269	struct pci_window *window;
270	struct acpi_resource_address64 addr;
271	acpi_status status;
272	unsigned long flags, offset = 0;
273	struct resource *root;
274
275	/* Return AE_OK for non-window resources to keep scanning for more */
276	status = resource_to_window(res, &addr);
277	if (!ACPI_SUCCESS(status))
278		return AE_OK;
279
280	if (addr.resource_type == ACPI_MEMORY_RANGE) {
281		flags = IORESOURCE_MEM;
282		root = &iomem_resource;
283		offset = addr.translation_offset;
284	} else if (addr.resource_type == ACPI_IO_RANGE) {
285		flags = IORESOURCE_IO;
286		root = &ioport_resource;
287		offset = add_io_space(info, &addr);
288		if (offset == ~0)
289			return AE_OK;
290	} else
291		return AE_OK;
292
293	window = &info->controller->window[info->controller->windows++];
294	window->resource.name = info->name;
295	window->resource.flags = flags;
296	window->resource.start = addr.minimum + offset;
297	window->resource.end = window->resource.start + addr.address_length - 1;
298	window->resource.child = NULL;
299	window->offset = offset;
300
301	if (insert_resource(root, &window->resource)) {
302		dev_err(&info->bridge->dev,
303			"can't allocate host bridge window %pR\n",
304			&window->resource);
305	} else {
306		if (offset)
307			dev_info(&info->bridge->dev, "host bridge window %pR "
308				 "(PCI address [%#llx-%#llx])\n",
309				 &window->resource,
310				 window->resource.start - offset,
311				 window->resource.end - offset);
312		else
313			dev_info(&info->bridge->dev,
314				 "host bridge window %pR\n",
315				 &window->resource);
316	}
317
318	/* HP's firmware has a hack to work around a Windows bug.
319	 * Ignore these tiny memory ranges */
320	if (!((window->resource.flags & IORESOURCE_MEM) &&
321	      (window->resource.end - window->resource.start < 16)))
322		pci_add_resource_offset(&info->resources, &window->resource,
323					window->offset);
324
325	return AE_OK;
326}
327
328struct pci_bus * __devinit
329pci_acpi_scan_root(struct acpi_pci_root *root)
330{
331	struct acpi_device *device = root->device;
332	int domain = root->segment;
333	int bus = root->secondary.start;
334	struct pci_controller *controller;
335	unsigned int windows = 0;
336	struct pci_root_info info;
337	struct pci_bus *pbus;
338	char *name;
339	int pxm;
340
341	controller = alloc_pci_controller(domain);
342	if (!controller)
343		goto out1;
344
345	controller->acpi_handle = device->handle;
346
347	pxm = acpi_get_pxm(controller->acpi_handle);
348#ifdef CONFIG_NUMA
349	if (pxm >= 0)
350		controller->node = pxm_to_node(pxm);
351#endif
352
353	INIT_LIST_HEAD(&info.resources);
354	acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
355			&windows);
356	if (windows) {
357		controller->window =
358			kmalloc_node(sizeof(*controller->window) * windows,
359				     GFP_KERNEL, controller->node);
360		if (!controller->window)
361			goto out2;
362
363		name = kmalloc(16, GFP_KERNEL);
364		if (!name)
365			goto out3;
366
367		sprintf(name, "PCI Bus %04x:%02x", domain, bus);
368		info.bridge = device;
369		info.controller = controller;
370		info.name = name;
371		acpi_walk_resources(device->handle, METHOD_NAME__CRS,
372			add_window, &info);
373	}
 
 
 
 
 
 
 
 
 
 
 
374	/*
375	 * See arch/x86/pci/acpi.c.
376	 * The desired pci bus might already be scanned in a quirk. We
377	 * should handle the case here, but it appears that IA64 hasn't
378	 * such quirk. So we just ignore the case now.
379	 */
380	pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller,
381				   &info.resources);
382	if (!pbus) {
383		pci_free_resource_list(&info.resources);
384		return NULL;
385	}
386
387	pbus->subordinate = pci_scan_child_bus(pbus);
388	return pbus;
389
390out3:
391	kfree(controller->window);
392out2:
393	kfree(controller);
394out1:
395	return NULL;
396}
397
398static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
399{
400	unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
401	struct resource *devr = &dev->resource[idx], *busr;
402
403	if (!dev->bus)
404		return 0;
405
406	pci_bus_for_each_resource(dev->bus, busr, i) {
407		if (!busr || ((busr->flags ^ devr->flags) & type_mask))
 
 
408			continue;
409		if ((devr->start) && (devr->start >= busr->start) &&
410				(devr->end <= busr->end))
411			return 1;
412	}
413	return 0;
414}
 
415
416static void __devinit
417pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
418{
419	int i;
 
 
 
 
 
 
420
421	for (i = start; i < limit; i++) {
422		if (!dev->resource[i].flags)
423			continue;
424		if ((is_valid_resource(dev, i)))
425			pci_claim_resource(dev, i);
426	}
427}
428
429void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
430{
431	pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
432}
433EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
434
435static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev)
436{
437	pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
438}
439
440/*
441 *  Called after each bus is probed, but before its children are examined.
442 */
443void __devinit
444pcibios_fixup_bus (struct pci_bus *b)
445{
446	struct pci_dev *dev;
447
448	if (b->self) {
449		pci_read_bridge_bases(b);
450		pcibios_fixup_bridge_resources(b->self);
451	}
452	list_for_each_entry(dev, &b->devices, bus_list)
453		pcibios_fixup_device_resources(dev);
454	platform_pci_fixup_bus(b);
455}
456
457void pcibios_set_master (struct pci_dev *dev)
458{
459	/* No special bus mastering setup handling */
460}
461
462void __devinit
463pcibios_update_irq (struct pci_dev *dev, int irq)
464{
465	pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
 
466
467	/* ??? FIXME -- record old value for shutdown.  */
 
 
468}
469
470int
471pcibios_enable_device (struct pci_dev *dev, int mask)
472{
473	int ret;
474
475	ret = pci_enable_resources(dev, mask);
476	if (ret < 0)
477		return ret;
478
479	if (!dev->msi_enabled)
480		return acpi_pci_irq_enable(dev);
481	return 0;
482}
483
484void
485pcibios_disable_device (struct pci_dev *dev)
486{
487	BUG_ON(atomic_read(&dev->enable_cnt));
488	if (!dev->msi_enabled)
489		acpi_pci_irq_disable(dev);
490}
491
492resource_size_t
493pcibios_align_resource (void *data, const struct resource *res,
494		        resource_size_t size, resource_size_t align)
495{
496	return res->start;
497}
498
499/*
500 * PCI BIOS setup, always defaults to SAL interface
501 */
502char * __init
503pcibios_setup (char *str)
504{
505	return str;
506}
507
508int
509pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
510		     enum pci_mmap_state mmap_state, int write_combine)
511{
512	unsigned long size = vma->vm_end - vma->vm_start;
513	pgprot_t prot;
514
515	/*
516	 * I/O space cannot be accessed via normal processor loads and
517	 * stores on this platform.
518	 */
519	if (mmap_state == pci_mmap_io)
520		/*
521		 * XXX we could relax this for I/O spaces for which ACPI
522		 * indicates that the space is 1-to-1 mapped.  But at the
523		 * moment, we don't support multiple PCI address spaces and
524		 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
525		 */
526		return -EINVAL;
527
528	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
529		return -EINVAL;
530
531	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
532				    vma->vm_page_prot);
533
534	/*
535	 * If the user requested WC, the kernel uses UC or WC for this region,
536	 * and the chipset supports WC, we can use WC. Otherwise, we have to
537	 * use the same attribute the kernel uses.
538	 */
539	if (write_combine &&
540	    ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
541	     (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
542	    efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
543		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
544	else
545		vma->vm_page_prot = prot;
546
547	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
548			     vma->vm_end - vma->vm_start, vma->vm_page_prot))
549		return -EAGAIN;
550
551	return 0;
552}
553
554/**
555 * ia64_pci_get_legacy_mem - generic legacy mem routine
556 * @bus: bus to get legacy memory base address for
557 *
558 * Find the base of legacy memory for @bus.  This is typically the first
559 * megabyte of bus address space for @bus or is simply 0 on platforms whose
560 * chipsets support legacy I/O and memory routing.  Returns the base address
561 * or an error pointer if an error occurred.
562 *
563 * This is the ia64 generic version of this routine.  Other platforms
564 * are free to override it with a machine vector.
565 */
566char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
567{
568	return (char *)__IA64_UNCACHED_OFFSET;
569}
570
571/**
572 * pci_mmap_legacy_page_range - map legacy memory space to userland
573 * @bus: bus whose legacy space we're mapping
574 * @vma: vma passed in by mmap
575 *
576 * Map legacy memory space for this device back to userspace using a machine
577 * vector to get the base address.
578 */
579int
580pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
581			   enum pci_mmap_state mmap_state)
582{
583	unsigned long size = vma->vm_end - vma->vm_start;
584	pgprot_t prot;
585	char *addr;
586
587	/* We only support mmap'ing of legacy memory space */
588	if (mmap_state != pci_mmap_mem)
589		return -ENOSYS;
590
591	/*
592	 * Avoid attribute aliasing.  See Documentation/ia64/aliasing.txt
593	 * for more details.
594	 */
595	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
596		return -EINVAL;
597	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
598				    vma->vm_page_prot);
599
600	addr = pci_get_legacy_mem(bus);
601	if (IS_ERR(addr))
602		return PTR_ERR(addr);
603
604	vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
605	vma->vm_page_prot = prot;
606
607	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
608			    size, vma->vm_page_prot))
609		return -EAGAIN;
610
611	return 0;
612}
613
614/**
615 * ia64_pci_legacy_read - read from legacy I/O space
616 * @bus: bus to read
617 * @port: legacy port value
618 * @val: caller allocated storage for returned value
619 * @size: number of bytes to read
620 *
621 * Simply reads @size bytes from @port and puts the result in @val.
622 *
623 * Again, this (and the write routine) are generic versions that can be
624 * overridden by the platform.  This is necessary on platforms that don't
625 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
626 */
627int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
628{
629	int ret = size;
630
631	switch (size) {
632	case 1:
633		*val = inb(port);
634		break;
635	case 2:
636		*val = inw(port);
637		break;
638	case 4:
639		*val = inl(port);
640		break;
641	default:
642		ret = -EINVAL;
643		break;
644	}
645
646	return ret;
647}
648
649/**
650 * ia64_pci_legacy_write - perform a legacy I/O write
651 * @bus: bus pointer
652 * @port: port to write
653 * @val: value to write
654 * @size: number of bytes to write from @val
655 *
656 * Simply writes @size bytes of @val to @port.
657 */
658int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
659{
660	int ret = size;
661
662	switch (size) {
663	case 1:
664		outb(val, port);
665		break;
666	case 2:
667		outw(val, port);
668		break;
669	case 4:
670		outl(val, port);
671		break;
672	default:
673		ret = -EINVAL;
674		break;
675	}
676
677	return ret;
678}
679
680/**
681 * set_pci_cacheline_size - determine cacheline size for PCI devices
682 *
683 * We want to use the line-size of the outer-most cache.  We assume
684 * that this line-size is the same for all CPUs.
685 *
686 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
687 */
688static void __init set_pci_dfl_cacheline_size(void)
689{
690	unsigned long levels, unique_caches;
691	long status;
692	pal_cache_config_info_t cci;
693
694	status = ia64_pal_cache_summary(&levels, &unique_caches);
695	if (status != 0) {
696		printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
697			"(status=%ld)\n", __func__, status);
698		return;
699	}
700
701	status = ia64_pal_cache_config_info(levels - 1,
702				/* cache_type (data_or_unified)= */ 2, &cci);
703	if (status != 0) {
704		printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
705			"(status=%ld)\n", __func__, status);
706		return;
707	}
708	pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
709}
710
711u64 ia64_dma_get_required_mask(struct device *dev)
712{
713	u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
714	u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
715	u64 mask;
716
717	if (!high_totalram) {
718		/* convert to mask just covering totalram */
719		low_totalram = (1 << (fls(low_totalram) - 1));
720		low_totalram += low_totalram - 1;
721		mask = low_totalram;
722	} else {
723		high_totalram = (1 << (fls(high_totalram) - 1));
724		high_totalram += high_totalram - 1;
725		mask = (((u64)high_totalram) << 32) + 0xffffffff;
726	}
727	return mask;
728}
729EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
730
731u64 dma_get_required_mask(struct device *dev)
732{
733	return platform_dma_get_required_mask(dev);
734}
735EXPORT_SYMBOL_GPL(dma_get_required_mask);
736
737static int __init pcibios_init(void)
738{
739	set_pci_dfl_cacheline_size();
740	return 0;
741}
742
743subsys_initcall(pcibios_init);