Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2010 IBM Corporation
   4 *
   5 * Author:
   6 * David Safford <safford@us.ibm.com>
   7 *
   8 * See Documentation/security/keys/trusted-encrypted.rst
 
 
 
 
   9 */
  10
  11#include <crypto/hash_info.h>
  12#include <linux/uaccess.h>
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/slab.h>
  16#include <linux/parser.h>
  17#include <linux/string.h>
  18#include <linux/err.h>
  19#include <keys/user-type.h>
  20#include <keys/trusted-type.h>
  21#include <linux/key-type.h>
  22#include <linux/rcupdate.h>
  23#include <linux/crypto.h>
  24#include <crypto/hash.h>
  25#include <crypto/sha.h>
  26#include <linux/capability.h>
  27#include <linux/tpm.h>
  28#include <linux/tpm_command.h>
  29
  30#include <keys/trusted.h>
  31
  32static const char hmac_alg[] = "hmac(sha1)";
  33static const char hash_alg[] = "sha1";
  34static struct tpm_chip *chip;
  35static struct tpm_digest *digests;
  36
  37struct sdesc {
  38	struct shash_desc shash;
  39	char ctx[];
  40};
  41
  42static struct crypto_shash *hashalg;
  43static struct crypto_shash *hmacalg;
  44
  45static struct sdesc *init_sdesc(struct crypto_shash *alg)
  46{
  47	struct sdesc *sdesc;
  48	int size;
  49
  50	size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
  51	sdesc = kmalloc(size, GFP_KERNEL);
  52	if (!sdesc)
  53		return ERR_PTR(-ENOMEM);
  54	sdesc->shash.tfm = alg;
 
  55	return sdesc;
  56}
  57
  58static int TSS_sha1(const unsigned char *data, unsigned int datalen,
  59		    unsigned char *digest)
  60{
  61	struct sdesc *sdesc;
  62	int ret;
  63
  64	sdesc = init_sdesc(hashalg);
  65	if (IS_ERR(sdesc)) {
  66		pr_info("trusted_key: can't alloc %s\n", hash_alg);
  67		return PTR_ERR(sdesc);
  68	}
  69
  70	ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest);
  71	kzfree(sdesc);
  72	return ret;
  73}
  74
  75static int TSS_rawhmac(unsigned char *digest, const unsigned char *key,
  76		       unsigned int keylen, ...)
  77{
  78	struct sdesc *sdesc;
  79	va_list argp;
  80	unsigned int dlen;
  81	unsigned char *data;
  82	int ret;
  83
  84	sdesc = init_sdesc(hmacalg);
  85	if (IS_ERR(sdesc)) {
  86		pr_info("trusted_key: can't alloc %s\n", hmac_alg);
  87		return PTR_ERR(sdesc);
  88	}
  89
  90	ret = crypto_shash_setkey(hmacalg, key, keylen);
  91	if (ret < 0)
  92		goto out;
  93	ret = crypto_shash_init(&sdesc->shash);
  94	if (ret < 0)
  95		goto out;
  96
  97	va_start(argp, keylen);
  98	for (;;) {
  99		dlen = va_arg(argp, unsigned int);
 100		if (dlen == 0)
 101			break;
 102		data = va_arg(argp, unsigned char *);
 103		if (data == NULL) {
 104			ret = -EINVAL;
 105			break;
 106		}
 107		ret = crypto_shash_update(&sdesc->shash, data, dlen);
 108		if (ret < 0)
 109			break;
 110	}
 111	va_end(argp);
 112	if (!ret)
 113		ret = crypto_shash_final(&sdesc->shash, digest);
 114out:
 115	kzfree(sdesc);
 116	return ret;
 117}
 118
 119/*
 120 * calculate authorization info fields to send to TPM
 121 */
 122int TSS_authhmac(unsigned char *digest, const unsigned char *key,
 123			unsigned int keylen, unsigned char *h1,
 124			unsigned char *h2, unsigned int h3, ...)
 125{
 126	unsigned char paramdigest[SHA1_DIGEST_SIZE];
 127	struct sdesc *sdesc;
 128	unsigned int dlen;
 129	unsigned char *data;
 130	unsigned char c;
 131	int ret;
 132	va_list argp;
 133
 134	if (!chip)
 135		return -ENODEV;
 136
 137	sdesc = init_sdesc(hashalg);
 138	if (IS_ERR(sdesc)) {
 139		pr_info("trusted_key: can't alloc %s\n", hash_alg);
 140		return PTR_ERR(sdesc);
 141	}
 142
 143	c = !!h3;
 144	ret = crypto_shash_init(&sdesc->shash);
 145	if (ret < 0)
 146		goto out;
 147	va_start(argp, h3);
 148	for (;;) {
 149		dlen = va_arg(argp, unsigned int);
 150		if (dlen == 0)
 151			break;
 152		data = va_arg(argp, unsigned char *);
 153		if (!data) {
 154			ret = -EINVAL;
 155			break;
 156		}
 157		ret = crypto_shash_update(&sdesc->shash, data, dlen);
 158		if (ret < 0)
 159			break;
 160	}
 161	va_end(argp);
 162	if (!ret)
 163		ret = crypto_shash_final(&sdesc->shash, paramdigest);
 164	if (!ret)
 165		ret = TSS_rawhmac(digest, key, keylen, SHA1_DIGEST_SIZE,
 166				  paramdigest, TPM_NONCE_SIZE, h1,
 167				  TPM_NONCE_SIZE, h2, 1, &c, 0, 0);
 168out:
 169	kzfree(sdesc);
 170	return ret;
 171}
 172EXPORT_SYMBOL_GPL(TSS_authhmac);
 173
 174/*
 175 * verify the AUTH1_COMMAND (Seal) result from TPM
 176 */
 177int TSS_checkhmac1(unsigned char *buffer,
 178			  const uint32_t command,
 179			  const unsigned char *ononce,
 180			  const unsigned char *key,
 181			  unsigned int keylen, ...)
 182{
 183	uint32_t bufsize;
 184	uint16_t tag;
 185	uint32_t ordinal;
 186	uint32_t result;
 187	unsigned char *enonce;
 188	unsigned char *continueflag;
 189	unsigned char *authdata;
 190	unsigned char testhmac[SHA1_DIGEST_SIZE];
 191	unsigned char paramdigest[SHA1_DIGEST_SIZE];
 192	struct sdesc *sdesc;
 193	unsigned int dlen;
 194	unsigned int dpos;
 195	va_list argp;
 196	int ret;
 197
 198	if (!chip)
 199		return -ENODEV;
 200
 201	bufsize = LOAD32(buffer, TPM_SIZE_OFFSET);
 202	tag = LOAD16(buffer, 0);
 203	ordinal = command;
 204	result = LOAD32N(buffer, TPM_RETURN_OFFSET);
 205	if (tag == TPM_TAG_RSP_COMMAND)
 206		return 0;
 207	if (tag != TPM_TAG_RSP_AUTH1_COMMAND)
 208		return -EINVAL;
 209	authdata = buffer + bufsize - SHA1_DIGEST_SIZE;
 210	continueflag = authdata - 1;
 211	enonce = continueflag - TPM_NONCE_SIZE;
 212
 213	sdesc = init_sdesc(hashalg);
 214	if (IS_ERR(sdesc)) {
 215		pr_info("trusted_key: can't alloc %s\n", hash_alg);
 216		return PTR_ERR(sdesc);
 217	}
 218	ret = crypto_shash_init(&sdesc->shash);
 219	if (ret < 0)
 220		goto out;
 221	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result,
 222				  sizeof result);
 223	if (ret < 0)
 224		goto out;
 225	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal,
 226				  sizeof ordinal);
 227	if (ret < 0)
 228		goto out;
 229	va_start(argp, keylen);
 230	for (;;) {
 231		dlen = va_arg(argp, unsigned int);
 232		if (dlen == 0)
 233			break;
 234		dpos = va_arg(argp, unsigned int);
 235		ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen);
 236		if (ret < 0)
 237			break;
 238	}
 239	va_end(argp);
 240	if (!ret)
 241		ret = crypto_shash_final(&sdesc->shash, paramdigest);
 242	if (ret < 0)
 243		goto out;
 244
 245	ret = TSS_rawhmac(testhmac, key, keylen, SHA1_DIGEST_SIZE, paramdigest,
 246			  TPM_NONCE_SIZE, enonce, TPM_NONCE_SIZE, ononce,
 247			  1, continueflag, 0, 0);
 248	if (ret < 0)
 249		goto out;
 250
 251	if (memcmp(testhmac, authdata, SHA1_DIGEST_SIZE))
 252		ret = -EINVAL;
 253out:
 254	kzfree(sdesc);
 255	return ret;
 256}
 257EXPORT_SYMBOL_GPL(TSS_checkhmac1);
 258
 259/*
 260 * verify the AUTH2_COMMAND (unseal) result from TPM
 261 */
 262static int TSS_checkhmac2(unsigned char *buffer,
 263			  const uint32_t command,
 264			  const unsigned char *ononce,
 265			  const unsigned char *key1,
 266			  unsigned int keylen1,
 267			  const unsigned char *key2,
 268			  unsigned int keylen2, ...)
 269{
 270	uint32_t bufsize;
 271	uint16_t tag;
 272	uint32_t ordinal;
 273	uint32_t result;
 274	unsigned char *enonce1;
 275	unsigned char *continueflag1;
 276	unsigned char *authdata1;
 277	unsigned char *enonce2;
 278	unsigned char *continueflag2;
 279	unsigned char *authdata2;
 280	unsigned char testhmac1[SHA1_DIGEST_SIZE];
 281	unsigned char testhmac2[SHA1_DIGEST_SIZE];
 282	unsigned char paramdigest[SHA1_DIGEST_SIZE];
 283	struct sdesc *sdesc;
 284	unsigned int dlen;
 285	unsigned int dpos;
 286	va_list argp;
 287	int ret;
 288
 289	bufsize = LOAD32(buffer, TPM_SIZE_OFFSET);
 290	tag = LOAD16(buffer, 0);
 291	ordinal = command;
 292	result = LOAD32N(buffer, TPM_RETURN_OFFSET);
 293
 294	if (tag == TPM_TAG_RSP_COMMAND)
 295		return 0;
 296	if (tag != TPM_TAG_RSP_AUTH2_COMMAND)
 297		return -EINVAL;
 298	authdata1 = buffer + bufsize - (SHA1_DIGEST_SIZE + 1
 299			+ SHA1_DIGEST_SIZE + SHA1_DIGEST_SIZE);
 300	authdata2 = buffer + bufsize - (SHA1_DIGEST_SIZE);
 301	continueflag1 = authdata1 - 1;
 302	continueflag2 = authdata2 - 1;
 303	enonce1 = continueflag1 - TPM_NONCE_SIZE;
 304	enonce2 = continueflag2 - TPM_NONCE_SIZE;
 305
 306	sdesc = init_sdesc(hashalg);
 307	if (IS_ERR(sdesc)) {
 308		pr_info("trusted_key: can't alloc %s\n", hash_alg);
 309		return PTR_ERR(sdesc);
 310	}
 311	ret = crypto_shash_init(&sdesc->shash);
 312	if (ret < 0)
 313		goto out;
 314	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result,
 315				  sizeof result);
 316	if (ret < 0)
 317		goto out;
 318	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal,
 319				  sizeof ordinal);
 320	if (ret < 0)
 321		goto out;
 322
 323	va_start(argp, keylen2);
 324	for (;;) {
 325		dlen = va_arg(argp, unsigned int);
 326		if (dlen == 0)
 327			break;
 328		dpos = va_arg(argp, unsigned int);
 329		ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen);
 330		if (ret < 0)
 331			break;
 332	}
 333	va_end(argp);
 334	if (!ret)
 335		ret = crypto_shash_final(&sdesc->shash, paramdigest);
 336	if (ret < 0)
 337		goto out;
 338
 339	ret = TSS_rawhmac(testhmac1, key1, keylen1, SHA1_DIGEST_SIZE,
 340			  paramdigest, TPM_NONCE_SIZE, enonce1,
 341			  TPM_NONCE_SIZE, ononce, 1, continueflag1, 0, 0);
 342	if (ret < 0)
 343		goto out;
 344	if (memcmp(testhmac1, authdata1, SHA1_DIGEST_SIZE)) {
 345		ret = -EINVAL;
 346		goto out;
 347	}
 348	ret = TSS_rawhmac(testhmac2, key2, keylen2, SHA1_DIGEST_SIZE,
 349			  paramdigest, TPM_NONCE_SIZE, enonce2,
 350			  TPM_NONCE_SIZE, ononce, 1, continueflag2, 0, 0);
 351	if (ret < 0)
 352		goto out;
 353	if (memcmp(testhmac2, authdata2, SHA1_DIGEST_SIZE))
 354		ret = -EINVAL;
 355out:
 356	kzfree(sdesc);
 357	return ret;
 358}
 359
 360/*
 361 * For key specific tpm requests, we will generate and send our
 362 * own TPM command packets using the drivers send function.
 363 */
 364int trusted_tpm_send(unsigned char *cmd, size_t buflen)
 
 365{
 366	int rc;
 367
 368	if (!chip)
 369		return -ENODEV;
 370
 371	dump_tpm_buf(cmd);
 372	rc = tpm_send(chip, cmd, buflen);
 373	dump_tpm_buf(cmd);
 374	if (rc > 0)
 375		/* Can't return positive return codes values to keyctl */
 376		rc = -EPERM;
 377	return rc;
 378}
 379EXPORT_SYMBOL_GPL(trusted_tpm_send);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 380
 381/*
 382 * Lock a trusted key, by extending a selected PCR.
 383 *
 384 * Prevents a trusted key that is sealed to PCRs from being accessed.
 385 * This uses the tpm driver's extend function.
 386 */
 387static int pcrlock(const int pcrnum)
 388{
 
 
 
 389	if (!capable(CAP_SYS_ADMIN))
 390		return -EPERM;
 391
 392	return tpm_pcr_extend(chip, pcrnum, digests) ? -EINVAL : 0;
 
 
 393}
 394
 395/*
 396 * Create an object specific authorisation protocol (OSAP) session
 397 */
 398static int osap(struct tpm_buf *tb, struct osapsess *s,
 399		const unsigned char *key, uint16_t type, uint32_t handle)
 400{
 401	unsigned char enonce[TPM_NONCE_SIZE];
 402	unsigned char ononce[TPM_NONCE_SIZE];
 403	int ret;
 404
 405	ret = tpm_get_random(chip, ononce, TPM_NONCE_SIZE);
 406	if (ret != TPM_NONCE_SIZE)
 407		return ret;
 408
 409	INIT_BUF(tb);
 410	store16(tb, TPM_TAG_RQU_COMMAND);
 411	store32(tb, TPM_OSAP_SIZE);
 412	store32(tb, TPM_ORD_OSAP);
 413	store16(tb, type);
 414	store32(tb, handle);
 415	storebytes(tb, ononce, TPM_NONCE_SIZE);
 416
 417	ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
 418	if (ret < 0)
 419		return ret;
 420
 421	s->handle = LOAD32(tb->data, TPM_DATA_OFFSET);
 422	memcpy(s->enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)]),
 423	       TPM_NONCE_SIZE);
 424	memcpy(enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t) +
 425				  TPM_NONCE_SIZE]), TPM_NONCE_SIZE);
 426	return TSS_rawhmac(s->secret, key, SHA1_DIGEST_SIZE, TPM_NONCE_SIZE,
 427			   enonce, TPM_NONCE_SIZE, ononce, 0, 0);
 428}
 429
 430/*
 431 * Create an object independent authorisation protocol (oiap) session
 432 */
 433int oiap(struct tpm_buf *tb, uint32_t *handle, unsigned char *nonce)
 434{
 435	int ret;
 436
 437	if (!chip)
 438		return -ENODEV;
 439
 440	INIT_BUF(tb);
 441	store16(tb, TPM_TAG_RQU_COMMAND);
 442	store32(tb, TPM_OIAP_SIZE);
 443	store32(tb, TPM_ORD_OIAP);
 444	ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
 445	if (ret < 0)
 446		return ret;
 447
 448	*handle = LOAD32(tb->data, TPM_DATA_OFFSET);
 449	memcpy(nonce, &tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)],
 450	       TPM_NONCE_SIZE);
 451	return 0;
 452}
 453EXPORT_SYMBOL_GPL(oiap);
 454
 455struct tpm_digests {
 456	unsigned char encauth[SHA1_DIGEST_SIZE];
 457	unsigned char pubauth[SHA1_DIGEST_SIZE];
 458	unsigned char xorwork[SHA1_DIGEST_SIZE * 2];
 459	unsigned char xorhash[SHA1_DIGEST_SIZE];
 460	unsigned char nonceodd[TPM_NONCE_SIZE];
 461};
 462
 463/*
 464 * Have the TPM seal(encrypt) the trusted key, possibly based on
 465 * Platform Configuration Registers (PCRs). AUTH1 for sealing key.
 466 */
 467static int tpm_seal(struct tpm_buf *tb, uint16_t keytype,
 468		    uint32_t keyhandle, const unsigned char *keyauth,
 469		    const unsigned char *data, uint32_t datalen,
 470		    unsigned char *blob, uint32_t *bloblen,
 471		    const unsigned char *blobauth,
 472		    const unsigned char *pcrinfo, uint32_t pcrinfosize)
 473{
 474	struct osapsess sess;
 475	struct tpm_digests *td;
 476	unsigned char cont;
 477	uint32_t ordinal;
 478	uint32_t pcrsize;
 479	uint32_t datsize;
 480	int sealinfosize;
 481	int encdatasize;
 482	int storedsize;
 483	int ret;
 484	int i;
 485
 486	/* alloc some work space for all the hashes */
 487	td = kmalloc(sizeof *td, GFP_KERNEL);
 488	if (!td)
 489		return -ENOMEM;
 490
 491	/* get session for sealing key */
 492	ret = osap(tb, &sess, keyauth, keytype, keyhandle);
 493	if (ret < 0)
 494		goto out;
 495	dump_sess(&sess);
 496
 497	/* calculate encrypted authorization value */
 498	memcpy(td->xorwork, sess.secret, SHA1_DIGEST_SIZE);
 499	memcpy(td->xorwork + SHA1_DIGEST_SIZE, sess.enonce, SHA1_DIGEST_SIZE);
 500	ret = TSS_sha1(td->xorwork, SHA1_DIGEST_SIZE * 2, td->xorhash);
 501	if (ret < 0)
 502		goto out;
 503
 504	ret = tpm_get_random(chip, td->nonceodd, TPM_NONCE_SIZE);
 505	if (ret != TPM_NONCE_SIZE)
 506		goto out;
 507	ordinal = htonl(TPM_ORD_SEAL);
 508	datsize = htonl(datalen);
 509	pcrsize = htonl(pcrinfosize);
 510	cont = 0;
 511
 512	/* encrypt data authorization key */
 513	for (i = 0; i < SHA1_DIGEST_SIZE; ++i)
 514		td->encauth[i] = td->xorhash[i] ^ blobauth[i];
 515
 516	/* calculate authorization HMAC value */
 517	if (pcrinfosize == 0) {
 518		/* no pcr info specified */
 519		ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE,
 520				   sess.enonce, td->nonceodd, cont,
 521				   sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE,
 522				   td->encauth, sizeof(uint32_t), &pcrsize,
 523				   sizeof(uint32_t), &datsize, datalen, data, 0,
 524				   0);
 525	} else {
 526		/* pcr info specified */
 527		ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE,
 528				   sess.enonce, td->nonceodd, cont,
 529				   sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE,
 530				   td->encauth, sizeof(uint32_t), &pcrsize,
 531				   pcrinfosize, pcrinfo, sizeof(uint32_t),
 532				   &datsize, datalen, data, 0, 0);
 533	}
 534	if (ret < 0)
 535		goto out;
 536
 537	/* build and send the TPM request packet */
 538	INIT_BUF(tb);
 539	store16(tb, TPM_TAG_RQU_AUTH1_COMMAND);
 540	store32(tb, TPM_SEAL_SIZE + pcrinfosize + datalen);
 541	store32(tb, TPM_ORD_SEAL);
 542	store32(tb, keyhandle);
 543	storebytes(tb, td->encauth, SHA1_DIGEST_SIZE);
 544	store32(tb, pcrinfosize);
 545	storebytes(tb, pcrinfo, pcrinfosize);
 546	store32(tb, datalen);
 547	storebytes(tb, data, datalen);
 548	store32(tb, sess.handle);
 549	storebytes(tb, td->nonceodd, TPM_NONCE_SIZE);
 550	store8(tb, cont);
 551	storebytes(tb, td->pubauth, SHA1_DIGEST_SIZE);
 552
 553	ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
 554	if (ret < 0)
 555		goto out;
 556
 557	/* calculate the size of the returned Blob */
 558	sealinfosize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t));
 559	encdatasize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t) +
 560			     sizeof(uint32_t) + sealinfosize);
 561	storedsize = sizeof(uint32_t) + sizeof(uint32_t) + sealinfosize +
 562	    sizeof(uint32_t) + encdatasize;
 563
 564	/* check the HMAC in the response */
 565	ret = TSS_checkhmac1(tb->data, ordinal, td->nonceodd, sess.secret,
 566			     SHA1_DIGEST_SIZE, storedsize, TPM_DATA_OFFSET, 0,
 567			     0);
 568
 569	/* copy the returned blob to caller */
 570	if (!ret) {
 571		memcpy(blob, tb->data + TPM_DATA_OFFSET, storedsize);
 572		*bloblen = storedsize;
 573	}
 574out:
 575	kzfree(td);
 576	return ret;
 577}
 578
 579/*
 580 * use the AUTH2_COMMAND form of unseal, to authorize both key and blob
 581 */
 582static int tpm_unseal(struct tpm_buf *tb,
 583		      uint32_t keyhandle, const unsigned char *keyauth,
 584		      const unsigned char *blob, int bloblen,
 585		      const unsigned char *blobauth,
 586		      unsigned char *data, unsigned int *datalen)
 587{
 588	unsigned char nonceodd[TPM_NONCE_SIZE];
 589	unsigned char enonce1[TPM_NONCE_SIZE];
 590	unsigned char enonce2[TPM_NONCE_SIZE];
 591	unsigned char authdata1[SHA1_DIGEST_SIZE];
 592	unsigned char authdata2[SHA1_DIGEST_SIZE];
 593	uint32_t authhandle1 = 0;
 594	uint32_t authhandle2 = 0;
 595	unsigned char cont = 0;
 596	uint32_t ordinal;
 597	uint32_t keyhndl;
 598	int ret;
 599
 600	/* sessions for unsealing key and data */
 601	ret = oiap(tb, &authhandle1, enonce1);
 602	if (ret < 0) {
 603		pr_info("trusted_key: oiap failed (%d)\n", ret);
 604		return ret;
 605	}
 606	ret = oiap(tb, &authhandle2, enonce2);
 607	if (ret < 0) {
 608		pr_info("trusted_key: oiap failed (%d)\n", ret);
 609		return ret;
 610	}
 611
 612	ordinal = htonl(TPM_ORD_UNSEAL);
 613	keyhndl = htonl(SRKHANDLE);
 614	ret = tpm_get_random(chip, nonceodd, TPM_NONCE_SIZE);
 615	if (ret != TPM_NONCE_SIZE) {
 616		pr_info("trusted_key: tpm_get_random failed (%d)\n", ret);
 617		return ret;
 618	}
 619	ret = TSS_authhmac(authdata1, keyauth, TPM_NONCE_SIZE,
 620			   enonce1, nonceodd, cont, sizeof(uint32_t),
 621			   &ordinal, bloblen, blob, 0, 0);
 622	if (ret < 0)
 623		return ret;
 624	ret = TSS_authhmac(authdata2, blobauth, TPM_NONCE_SIZE,
 625			   enonce2, nonceodd, cont, sizeof(uint32_t),
 626			   &ordinal, bloblen, blob, 0, 0);
 627	if (ret < 0)
 628		return ret;
 629
 630	/* build and send TPM request packet */
 631	INIT_BUF(tb);
 632	store16(tb, TPM_TAG_RQU_AUTH2_COMMAND);
 633	store32(tb, TPM_UNSEAL_SIZE + bloblen);
 634	store32(tb, TPM_ORD_UNSEAL);
 635	store32(tb, keyhandle);
 636	storebytes(tb, blob, bloblen);
 637	store32(tb, authhandle1);
 638	storebytes(tb, nonceodd, TPM_NONCE_SIZE);
 639	store8(tb, cont);
 640	storebytes(tb, authdata1, SHA1_DIGEST_SIZE);
 641	store32(tb, authhandle2);
 642	storebytes(tb, nonceodd, TPM_NONCE_SIZE);
 643	store8(tb, cont);
 644	storebytes(tb, authdata2, SHA1_DIGEST_SIZE);
 645
 646	ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
 647	if (ret < 0) {
 648		pr_info("trusted_key: authhmac failed (%d)\n", ret);
 649		return ret;
 650	}
 651
 652	*datalen = LOAD32(tb->data, TPM_DATA_OFFSET);
 653	ret = TSS_checkhmac2(tb->data, ordinal, nonceodd,
 654			     keyauth, SHA1_DIGEST_SIZE,
 655			     blobauth, SHA1_DIGEST_SIZE,
 656			     sizeof(uint32_t), TPM_DATA_OFFSET,
 657			     *datalen, TPM_DATA_OFFSET + sizeof(uint32_t), 0,
 658			     0);
 659	if (ret < 0) {
 660		pr_info("trusted_key: TSS_checkhmac2 failed (%d)\n", ret);
 661		return ret;
 662	}
 663	memcpy(data, tb->data + TPM_DATA_OFFSET + sizeof(uint32_t), *datalen);
 664	return 0;
 665}
 666
 667/*
 668 * Have the TPM seal(encrypt) the symmetric key
 669 */
 670static int key_seal(struct trusted_key_payload *p,
 671		    struct trusted_key_options *o)
 672{
 673	struct tpm_buf *tb;
 674	int ret;
 675
 676	tb = kzalloc(sizeof *tb, GFP_KERNEL);
 677	if (!tb)
 678		return -ENOMEM;
 679
 680	/* include migratable flag at end of sealed key */
 681	p->key[p->key_len] = p->migratable;
 682
 683	ret = tpm_seal(tb, o->keytype, o->keyhandle, o->keyauth,
 684		       p->key, p->key_len + 1, p->blob, &p->blob_len,
 685		       o->blobauth, o->pcrinfo, o->pcrinfo_len);
 686	if (ret < 0)
 687		pr_info("trusted_key: srkseal failed (%d)\n", ret);
 688
 689	kzfree(tb);
 690	return ret;
 691}
 692
 693/*
 694 * Have the TPM unseal(decrypt) the symmetric key
 695 */
 696static int key_unseal(struct trusted_key_payload *p,
 697		      struct trusted_key_options *o)
 698{
 699	struct tpm_buf *tb;
 700	int ret;
 701
 702	tb = kzalloc(sizeof *tb, GFP_KERNEL);
 703	if (!tb)
 704		return -ENOMEM;
 705
 706	ret = tpm_unseal(tb, o->keyhandle, o->keyauth, p->blob, p->blob_len,
 707			 o->blobauth, p->key, &p->key_len);
 708	if (ret < 0)
 709		pr_info("trusted_key: srkunseal failed (%d)\n", ret);
 710	else
 711		/* pull migratable flag out of sealed key */
 712		p->migratable = p->key[--p->key_len];
 713
 714	kzfree(tb);
 715	return ret;
 716}
 717
 718enum {
 719	Opt_err,
 720	Opt_new, Opt_load, Opt_update,
 721	Opt_keyhandle, Opt_keyauth, Opt_blobauth,
 722	Opt_pcrinfo, Opt_pcrlock, Opt_migratable,
 723	Opt_hash,
 724	Opt_policydigest,
 725	Opt_policyhandle,
 726};
 727
 728static const match_table_t key_tokens = {
 729	{Opt_new, "new"},
 730	{Opt_load, "load"},
 731	{Opt_update, "update"},
 732	{Opt_keyhandle, "keyhandle=%s"},
 733	{Opt_keyauth, "keyauth=%s"},
 734	{Opt_blobauth, "blobauth=%s"},
 735	{Opt_pcrinfo, "pcrinfo=%s"},
 736	{Opt_pcrlock, "pcrlock=%s"},
 737	{Opt_migratable, "migratable=%s"},
 738	{Opt_hash, "hash=%s"},
 739	{Opt_policydigest, "policydigest=%s"},
 740	{Opt_policyhandle, "policyhandle=%s"},
 741	{Opt_err, NULL}
 742};
 743
 744/* can have zero or more token= options */
 745static int getoptions(char *c, struct trusted_key_payload *pay,
 746		      struct trusted_key_options *opt)
 747{
 748	substring_t args[MAX_OPT_ARGS];
 749	char *p = c;
 750	int token;
 751	int res;
 752	unsigned long handle;
 753	unsigned long lock;
 754	unsigned long token_mask = 0;
 755	unsigned int digest_len;
 756	int i;
 757	int tpm2;
 758
 759	tpm2 = tpm_is_tpm2(chip);
 760	if (tpm2 < 0)
 761		return tpm2;
 762
 763	opt->hash = tpm2 ? HASH_ALGO_SHA256 : HASH_ALGO_SHA1;
 764
 765	while ((p = strsep(&c, " \t"))) {
 766		if (*p == '\0' || *p == ' ' || *p == '\t')
 767			continue;
 768		token = match_token(p, key_tokens, args);
 769		if (test_and_set_bit(token, &token_mask))
 770			return -EINVAL;
 771
 772		switch (token) {
 773		case Opt_pcrinfo:
 774			opt->pcrinfo_len = strlen(args[0].from) / 2;
 775			if (opt->pcrinfo_len > MAX_PCRINFO_SIZE)
 776				return -EINVAL;
 777			res = hex2bin(opt->pcrinfo, args[0].from,
 778				      opt->pcrinfo_len);
 779			if (res < 0)
 780				return -EINVAL;
 781			break;
 782		case Opt_keyhandle:
 783			res = kstrtoul(args[0].from, 16, &handle);
 784			if (res < 0)
 785				return -EINVAL;
 786			opt->keytype = SEAL_keytype;
 787			opt->keyhandle = handle;
 788			break;
 789		case Opt_keyauth:
 790			if (strlen(args[0].from) != 2 * SHA1_DIGEST_SIZE)
 791				return -EINVAL;
 792			res = hex2bin(opt->keyauth, args[0].from,
 793				      SHA1_DIGEST_SIZE);
 794			if (res < 0)
 795				return -EINVAL;
 796			break;
 797		case Opt_blobauth:
 798			if (strlen(args[0].from) != 2 * SHA1_DIGEST_SIZE)
 799				return -EINVAL;
 800			res = hex2bin(opt->blobauth, args[0].from,
 801				      SHA1_DIGEST_SIZE);
 802			if (res < 0)
 803				return -EINVAL;
 804			break;
 805		case Opt_migratable:
 806			if (*args[0].from == '0')
 807				pay->migratable = 0;
 808			else
 809				return -EINVAL;
 810			break;
 811		case Opt_pcrlock:
 812			res = kstrtoul(args[0].from, 10, &lock);
 813			if (res < 0)
 814				return -EINVAL;
 815			opt->pcrlock = lock;
 816			break;
 817		case Opt_hash:
 818			if (test_bit(Opt_policydigest, &token_mask))
 819				return -EINVAL;
 820			for (i = 0; i < HASH_ALGO__LAST; i++) {
 821				if (!strcmp(args[0].from, hash_algo_name[i])) {
 822					opt->hash = i;
 823					break;
 824				}
 825			}
 826			if (i == HASH_ALGO__LAST)
 827				return -EINVAL;
 828			if  (!tpm2 && i != HASH_ALGO_SHA1) {
 829				pr_info("trusted_key: TPM 1.x only supports SHA-1.\n");
 830				return -EINVAL;
 831			}
 832			break;
 833		case Opt_policydigest:
 834			digest_len = hash_digest_size[opt->hash];
 835			if (!tpm2 || strlen(args[0].from) != (2 * digest_len))
 836				return -EINVAL;
 837			res = hex2bin(opt->policydigest, args[0].from,
 838				      digest_len);
 839			if (res < 0)
 840				return -EINVAL;
 841			opt->policydigest_len = digest_len;
 842			break;
 843		case Opt_policyhandle:
 844			if (!tpm2)
 845				return -EINVAL;
 846			res = kstrtoul(args[0].from, 16, &handle);
 847			if (res < 0)
 848				return -EINVAL;
 849			opt->policyhandle = handle;
 850			break;
 851		default:
 852			return -EINVAL;
 853		}
 854	}
 855	return 0;
 856}
 857
 858/*
 859 * datablob_parse - parse the keyctl data and fill in the
 860 * 		    payload and options structures
 861 *
 862 * On success returns 0, otherwise -EINVAL.
 863 */
 864static int datablob_parse(char *datablob, struct trusted_key_payload *p,
 865			  struct trusted_key_options *o)
 866{
 867	substring_t args[MAX_OPT_ARGS];
 868	long keylen;
 869	int ret = -EINVAL;
 870	int key_cmd;
 871	char *c;
 872
 873	/* main command */
 874	c = strsep(&datablob, " \t");
 875	if (!c)
 876		return -EINVAL;
 877	key_cmd = match_token(c, key_tokens, args);
 878	switch (key_cmd) {
 879	case Opt_new:
 880		/* first argument is key size */
 881		c = strsep(&datablob, " \t");
 882		if (!c)
 883			return -EINVAL;
 884		ret = kstrtol(c, 10, &keylen);
 885		if (ret < 0 || keylen < MIN_KEY_SIZE || keylen > MAX_KEY_SIZE)
 886			return -EINVAL;
 887		p->key_len = keylen;
 888		ret = getoptions(datablob, p, o);
 889		if (ret < 0)
 890			return ret;
 891		ret = Opt_new;
 892		break;
 893	case Opt_load:
 894		/* first argument is sealed blob */
 895		c = strsep(&datablob, " \t");
 896		if (!c)
 897			return -EINVAL;
 898		p->blob_len = strlen(c) / 2;
 899		if (p->blob_len > MAX_BLOB_SIZE)
 900			return -EINVAL;
 901		ret = hex2bin(p->blob, c, p->blob_len);
 902		if (ret < 0)
 903			return -EINVAL;
 904		ret = getoptions(datablob, p, o);
 905		if (ret < 0)
 906			return ret;
 907		ret = Opt_load;
 908		break;
 909	case Opt_update:
 910		/* all arguments are options */
 911		ret = getoptions(datablob, p, o);
 912		if (ret < 0)
 913			return ret;
 914		ret = Opt_update;
 915		break;
 916	case Opt_err:
 917		return -EINVAL;
 918		break;
 919	}
 920	return ret;
 921}
 922
 923static struct trusted_key_options *trusted_options_alloc(void)
 924{
 925	struct trusted_key_options *options;
 926	int tpm2;
 927
 928	tpm2 = tpm_is_tpm2(chip);
 929	if (tpm2 < 0)
 930		return NULL;
 931
 932	options = kzalloc(sizeof *options, GFP_KERNEL);
 933	if (options) {
 934		/* set any non-zero defaults */
 935		options->keytype = SRK_keytype;
 936
 937		if (!tpm2)
 938			options->keyhandle = SRKHANDLE;
 939	}
 940	return options;
 941}
 942
 943static struct trusted_key_payload *trusted_payload_alloc(struct key *key)
 944{
 945	struct trusted_key_payload *p = NULL;
 946	int ret;
 947
 948	ret = key_payload_reserve(key, sizeof *p);
 949	if (ret < 0)
 950		return p;
 951	p = kzalloc(sizeof *p, GFP_KERNEL);
 952	if (p)
 953		p->migratable = 1; /* migratable by default */
 954	return p;
 955}
 956
 957/*
 958 * trusted_instantiate - create a new trusted key
 959 *
 960 * Unseal an existing trusted blob or, for a new key, get a
 961 * random key, then seal and create a trusted key-type key,
 962 * adding it to the specified keyring.
 963 *
 964 * On success, return 0. Otherwise return errno.
 965 */
 966static int trusted_instantiate(struct key *key,
 967			       struct key_preparsed_payload *prep)
 968{
 969	struct trusted_key_payload *payload = NULL;
 970	struct trusted_key_options *options = NULL;
 971	size_t datalen = prep->datalen;
 972	char *datablob;
 973	int ret = 0;
 974	int key_cmd;
 975	size_t key_len;
 976	int tpm2;
 977
 978	tpm2 = tpm_is_tpm2(chip);
 979	if (tpm2 < 0)
 980		return tpm2;
 981
 982	if (datalen <= 0 || datalen > 32767 || !prep->data)
 983		return -EINVAL;
 984
 985	datablob = kmalloc(datalen + 1, GFP_KERNEL);
 986	if (!datablob)
 987		return -ENOMEM;
 988	memcpy(datablob, prep->data, datalen);
 989	datablob[datalen] = '\0';
 990
 991	options = trusted_options_alloc();
 992	if (!options) {
 993		ret = -ENOMEM;
 994		goto out;
 995	}
 996	payload = trusted_payload_alloc(key);
 997	if (!payload) {
 998		ret = -ENOMEM;
 999		goto out;
1000	}
1001
1002	key_cmd = datablob_parse(datablob, payload, options);
1003	if (key_cmd < 0) {
1004		ret = key_cmd;
1005		goto out;
1006	}
1007
1008	if (!options->keyhandle) {
1009		ret = -EINVAL;
1010		goto out;
1011	}
1012
1013	dump_payload(payload);
1014	dump_options(options);
1015
1016	switch (key_cmd) {
1017	case Opt_load:
1018		if (tpm2)
1019			ret = tpm_unseal_trusted(chip, payload, options);
1020		else
1021			ret = key_unseal(payload, options);
1022		dump_payload(payload);
1023		dump_options(options);
1024		if (ret < 0)
1025			pr_info("trusted_key: key_unseal failed (%d)\n", ret);
1026		break;
1027	case Opt_new:
1028		key_len = payload->key_len;
1029		ret = tpm_get_random(chip, payload->key, key_len);
1030		if (ret != key_len) {
1031			pr_info("trusted_key: key_create failed (%d)\n", ret);
1032			goto out;
1033		}
1034		if (tpm2)
1035			ret = tpm_seal_trusted(chip, payload, options);
1036		else
1037			ret = key_seal(payload, options);
1038		if (ret < 0)
1039			pr_info("trusted_key: key_seal failed (%d)\n", ret);
1040		break;
1041	default:
1042		ret = -EINVAL;
1043		goto out;
1044	}
1045	if (!ret && options->pcrlock)
1046		ret = pcrlock(options->pcrlock);
1047out:
1048	kzfree(datablob);
1049	kzfree(options);
1050	if (!ret)
1051		rcu_assign_keypointer(key, payload);
1052	else
1053		kzfree(payload);
1054	return ret;
1055}
1056
1057static void trusted_rcu_free(struct rcu_head *rcu)
1058{
1059	struct trusted_key_payload *p;
1060
1061	p = container_of(rcu, struct trusted_key_payload, rcu);
1062	kzfree(p);
 
1063}
1064
1065/*
1066 * trusted_update - reseal an existing key with new PCR values
1067 */
1068static int trusted_update(struct key *key, struct key_preparsed_payload *prep)
1069{
1070	struct trusted_key_payload *p;
1071	struct trusted_key_payload *new_p;
1072	struct trusted_key_options *new_o;
1073	size_t datalen = prep->datalen;
1074	char *datablob;
1075	int ret = 0;
1076
1077	if (key_is_negative(key))
1078		return -ENOKEY;
1079	p = key->payload.data[0];
1080	if (!p->migratable)
1081		return -EPERM;
1082	if (datalen <= 0 || datalen > 32767 || !prep->data)
1083		return -EINVAL;
1084
1085	datablob = kmalloc(datalen + 1, GFP_KERNEL);
1086	if (!datablob)
1087		return -ENOMEM;
1088	new_o = trusted_options_alloc();
1089	if (!new_o) {
1090		ret = -ENOMEM;
1091		goto out;
1092	}
1093	new_p = trusted_payload_alloc(key);
1094	if (!new_p) {
1095		ret = -ENOMEM;
1096		goto out;
1097	}
1098
1099	memcpy(datablob, prep->data, datalen);
1100	datablob[datalen] = '\0';
1101	ret = datablob_parse(datablob, new_p, new_o);
1102	if (ret != Opt_update) {
1103		ret = -EINVAL;
1104		kzfree(new_p);
1105		goto out;
1106	}
1107
1108	if (!new_o->keyhandle) {
1109		ret = -EINVAL;
1110		kzfree(new_p);
1111		goto out;
1112	}
1113
1114	/* copy old key values, and reseal with new pcrs */
1115	new_p->migratable = p->migratable;
1116	new_p->key_len = p->key_len;
1117	memcpy(new_p->key, p->key, p->key_len);
1118	dump_payload(p);
1119	dump_payload(new_p);
1120
1121	ret = key_seal(new_p, new_o);
1122	if (ret < 0) {
1123		pr_info("trusted_key: key_seal failed (%d)\n", ret);
1124		kzfree(new_p);
1125		goto out;
1126	}
1127	if (new_o->pcrlock) {
1128		ret = pcrlock(new_o->pcrlock);
1129		if (ret < 0) {
1130			pr_info("trusted_key: pcrlock failed (%d)\n", ret);
1131			kzfree(new_p);
1132			goto out;
1133		}
1134	}
1135	rcu_assign_keypointer(key, new_p);
1136	call_rcu(&p->rcu, trusted_rcu_free);
1137out:
1138	kzfree(datablob);
1139	kzfree(new_o);
1140	return ret;
1141}
1142
1143/*
1144 * trusted_read - copy the sealed blob data to userspace in hex.
1145 * On success, return to userspace the trusted key datablob size.
1146 */
1147static long trusted_read(const struct key *key, char __user *buffer,
1148			 size_t buflen)
1149{
1150	const struct trusted_key_payload *p;
1151	char *ascii_buf;
1152	char *bufp;
1153	int i;
1154
1155	p = dereference_key_locked(key);
1156	if (!p)
1157		return -EINVAL;
 
 
 
 
 
1158
1159	if (buffer && buflen >= 2 * p->blob_len) {
1160		ascii_buf = kmalloc_array(2, p->blob_len, GFP_KERNEL);
1161		if (!ascii_buf)
1162			return -ENOMEM;
1163
1164		bufp = ascii_buf;
1165		for (i = 0; i < p->blob_len; i++)
1166			bufp = hex_byte_pack(bufp, p->blob[i]);
1167		if (copy_to_user(buffer, ascii_buf, 2 * p->blob_len) != 0) {
1168			kzfree(ascii_buf);
1169			return -EFAULT;
1170		}
1171		kzfree(ascii_buf);
1172	}
 
1173	return 2 * p->blob_len;
1174}
1175
1176/*
1177 * trusted_destroy - clear and free the key's payload
1178 */
1179static void trusted_destroy(struct key *key)
1180{
1181	kzfree(key->payload.data[0]);
 
 
 
 
 
1182}
1183
1184struct key_type key_type_trusted = {
1185	.name = "trusted",
1186	.instantiate = trusted_instantiate,
1187	.update = trusted_update,
 
1188	.destroy = trusted_destroy,
1189	.describe = user_describe,
1190	.read = trusted_read,
1191};
1192
1193EXPORT_SYMBOL_GPL(key_type_trusted);
1194
1195static void trusted_shash_release(void)
1196{
1197	if (hashalg)
1198		crypto_free_shash(hashalg);
1199	if (hmacalg)
1200		crypto_free_shash(hmacalg);
1201}
1202
1203static int __init trusted_shash_alloc(void)
1204{
1205	int ret;
1206
1207	hmacalg = crypto_alloc_shash(hmac_alg, 0, 0);
1208	if (IS_ERR(hmacalg)) {
1209		pr_info("trusted_key: could not allocate crypto %s\n",
1210			hmac_alg);
1211		return PTR_ERR(hmacalg);
1212	}
1213
1214	hashalg = crypto_alloc_shash(hash_alg, 0, 0);
1215	if (IS_ERR(hashalg)) {
1216		pr_info("trusted_key: could not allocate crypto %s\n",
1217			hash_alg);
1218		ret = PTR_ERR(hashalg);
1219		goto hashalg_fail;
1220	}
1221
1222	return 0;
1223
1224hashalg_fail:
1225	crypto_free_shash(hmacalg);
1226	return ret;
1227}
1228
1229static int __init init_digests(void)
1230{
1231	int i;
1232
1233	digests = kcalloc(chip->nr_allocated_banks, sizeof(*digests),
1234			  GFP_KERNEL);
1235	if (!digests)
1236		return -ENOMEM;
1237
1238	for (i = 0; i < chip->nr_allocated_banks; i++)
1239		digests[i].alg_id = chip->allocated_banks[i].alg_id;
1240
1241	return 0;
1242}
1243
1244static int __init init_trusted(void)
1245{
1246	int ret;
1247
1248	/* encrypted_keys.ko depends on successful load of this module even if
1249	 * TPM is not used.
1250	 */
1251	chip = tpm_default_chip();
1252	if (!chip)
1253		return 0;
1254
1255	ret = init_digests();
1256	if (ret < 0)
1257		goto err_put;
1258	ret = trusted_shash_alloc();
1259	if (ret < 0)
1260		goto err_free;
1261	ret = register_key_type(&key_type_trusted);
1262	if (ret < 0)
1263		goto err_release;
1264	return 0;
1265err_release:
1266	trusted_shash_release();
1267err_free:
1268	kfree(digests);
1269err_put:
1270	put_device(&chip->dev);
1271	return ret;
1272}
1273
1274static void __exit cleanup_trusted(void)
1275{
1276	if (chip) {
1277		put_device(&chip->dev);
1278		kfree(digests);
1279		trusted_shash_release();
1280		unregister_key_type(&key_type_trusted);
1281	}
1282}
1283
1284late_initcall(init_trusted);
1285module_exit(cleanup_trusted);
1286
1287MODULE_LICENSE("GPL");
v3.5.6
 
   1/*
   2 * Copyright (C) 2010 IBM Corporation
   3 *
   4 * Author:
   5 * David Safford <safford@us.ibm.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation, version 2 of the License.
  10 *
  11 * See Documentation/security/keys-trusted-encrypted.txt
  12 */
  13
 
  14#include <linux/uaccess.h>
  15#include <linux/module.h>
  16#include <linux/init.h>
  17#include <linux/slab.h>
  18#include <linux/parser.h>
  19#include <linux/string.h>
  20#include <linux/err.h>
  21#include <keys/user-type.h>
  22#include <keys/trusted-type.h>
  23#include <linux/key-type.h>
  24#include <linux/rcupdate.h>
  25#include <linux/crypto.h>
  26#include <crypto/hash.h>
  27#include <crypto/sha.h>
  28#include <linux/capability.h>
  29#include <linux/tpm.h>
  30#include <linux/tpm_command.h>
  31
  32#include "trusted.h"
  33
  34static const char hmac_alg[] = "hmac(sha1)";
  35static const char hash_alg[] = "sha1";
 
 
  36
  37struct sdesc {
  38	struct shash_desc shash;
  39	char ctx[];
  40};
  41
  42static struct crypto_shash *hashalg;
  43static struct crypto_shash *hmacalg;
  44
  45static struct sdesc *init_sdesc(struct crypto_shash *alg)
  46{
  47	struct sdesc *sdesc;
  48	int size;
  49
  50	size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
  51	sdesc = kmalloc(size, GFP_KERNEL);
  52	if (!sdesc)
  53		return ERR_PTR(-ENOMEM);
  54	sdesc->shash.tfm = alg;
  55	sdesc->shash.flags = 0x0;
  56	return sdesc;
  57}
  58
  59static int TSS_sha1(const unsigned char *data, unsigned int datalen,
  60		    unsigned char *digest)
  61{
  62	struct sdesc *sdesc;
  63	int ret;
  64
  65	sdesc = init_sdesc(hashalg);
  66	if (IS_ERR(sdesc)) {
  67		pr_info("trusted_key: can't alloc %s\n", hash_alg);
  68		return PTR_ERR(sdesc);
  69	}
  70
  71	ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest);
  72	kfree(sdesc);
  73	return ret;
  74}
  75
  76static int TSS_rawhmac(unsigned char *digest, const unsigned char *key,
  77		       unsigned int keylen, ...)
  78{
  79	struct sdesc *sdesc;
  80	va_list argp;
  81	unsigned int dlen;
  82	unsigned char *data;
  83	int ret;
  84
  85	sdesc = init_sdesc(hmacalg);
  86	if (IS_ERR(sdesc)) {
  87		pr_info("trusted_key: can't alloc %s\n", hmac_alg);
  88		return PTR_ERR(sdesc);
  89	}
  90
  91	ret = crypto_shash_setkey(hmacalg, key, keylen);
  92	if (ret < 0)
  93		goto out;
  94	ret = crypto_shash_init(&sdesc->shash);
  95	if (ret < 0)
  96		goto out;
  97
  98	va_start(argp, keylen);
  99	for (;;) {
 100		dlen = va_arg(argp, unsigned int);
 101		if (dlen == 0)
 102			break;
 103		data = va_arg(argp, unsigned char *);
 104		if (data == NULL) {
 105			ret = -EINVAL;
 106			break;
 107		}
 108		ret = crypto_shash_update(&sdesc->shash, data, dlen);
 109		if (ret < 0)
 110			break;
 111	}
 112	va_end(argp);
 113	if (!ret)
 114		ret = crypto_shash_final(&sdesc->shash, digest);
 115out:
 116	kfree(sdesc);
 117	return ret;
 118}
 119
 120/*
 121 * calculate authorization info fields to send to TPM
 122 */
 123static int TSS_authhmac(unsigned char *digest, const unsigned char *key,
 124			unsigned int keylen, unsigned char *h1,
 125			unsigned char *h2, unsigned char h3, ...)
 126{
 127	unsigned char paramdigest[SHA1_DIGEST_SIZE];
 128	struct sdesc *sdesc;
 129	unsigned int dlen;
 130	unsigned char *data;
 131	unsigned char c;
 132	int ret;
 133	va_list argp;
 134
 
 
 
 135	sdesc = init_sdesc(hashalg);
 136	if (IS_ERR(sdesc)) {
 137		pr_info("trusted_key: can't alloc %s\n", hash_alg);
 138		return PTR_ERR(sdesc);
 139	}
 140
 141	c = h3;
 142	ret = crypto_shash_init(&sdesc->shash);
 143	if (ret < 0)
 144		goto out;
 145	va_start(argp, h3);
 146	for (;;) {
 147		dlen = va_arg(argp, unsigned int);
 148		if (dlen == 0)
 149			break;
 150		data = va_arg(argp, unsigned char *);
 151		if (!data) {
 152			ret = -EINVAL;
 153			break;
 154		}
 155		ret = crypto_shash_update(&sdesc->shash, data, dlen);
 156		if (ret < 0)
 157			break;
 158	}
 159	va_end(argp);
 160	if (!ret)
 161		ret = crypto_shash_final(&sdesc->shash, paramdigest);
 162	if (!ret)
 163		ret = TSS_rawhmac(digest, key, keylen, SHA1_DIGEST_SIZE,
 164				  paramdigest, TPM_NONCE_SIZE, h1,
 165				  TPM_NONCE_SIZE, h2, 1, &c, 0, 0);
 166out:
 167	kfree(sdesc);
 168	return ret;
 169}
 
 170
 171/*
 172 * verify the AUTH1_COMMAND (Seal) result from TPM
 173 */
 174static int TSS_checkhmac1(unsigned char *buffer,
 175			  const uint32_t command,
 176			  const unsigned char *ononce,
 177			  const unsigned char *key,
 178			  unsigned int keylen, ...)
 179{
 180	uint32_t bufsize;
 181	uint16_t tag;
 182	uint32_t ordinal;
 183	uint32_t result;
 184	unsigned char *enonce;
 185	unsigned char *continueflag;
 186	unsigned char *authdata;
 187	unsigned char testhmac[SHA1_DIGEST_SIZE];
 188	unsigned char paramdigest[SHA1_DIGEST_SIZE];
 189	struct sdesc *sdesc;
 190	unsigned int dlen;
 191	unsigned int dpos;
 192	va_list argp;
 193	int ret;
 194
 
 
 
 195	bufsize = LOAD32(buffer, TPM_SIZE_OFFSET);
 196	tag = LOAD16(buffer, 0);
 197	ordinal = command;
 198	result = LOAD32N(buffer, TPM_RETURN_OFFSET);
 199	if (tag == TPM_TAG_RSP_COMMAND)
 200		return 0;
 201	if (tag != TPM_TAG_RSP_AUTH1_COMMAND)
 202		return -EINVAL;
 203	authdata = buffer + bufsize - SHA1_DIGEST_SIZE;
 204	continueflag = authdata - 1;
 205	enonce = continueflag - TPM_NONCE_SIZE;
 206
 207	sdesc = init_sdesc(hashalg);
 208	if (IS_ERR(sdesc)) {
 209		pr_info("trusted_key: can't alloc %s\n", hash_alg);
 210		return PTR_ERR(sdesc);
 211	}
 212	ret = crypto_shash_init(&sdesc->shash);
 213	if (ret < 0)
 214		goto out;
 215	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result,
 216				  sizeof result);
 217	if (ret < 0)
 218		goto out;
 219	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal,
 220				  sizeof ordinal);
 221	if (ret < 0)
 222		goto out;
 223	va_start(argp, keylen);
 224	for (;;) {
 225		dlen = va_arg(argp, unsigned int);
 226		if (dlen == 0)
 227			break;
 228		dpos = va_arg(argp, unsigned int);
 229		ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen);
 230		if (ret < 0)
 231			break;
 232	}
 233	va_end(argp);
 234	if (!ret)
 235		ret = crypto_shash_final(&sdesc->shash, paramdigest);
 236	if (ret < 0)
 237		goto out;
 238
 239	ret = TSS_rawhmac(testhmac, key, keylen, SHA1_DIGEST_SIZE, paramdigest,
 240			  TPM_NONCE_SIZE, enonce, TPM_NONCE_SIZE, ononce,
 241			  1, continueflag, 0, 0);
 242	if (ret < 0)
 243		goto out;
 244
 245	if (memcmp(testhmac, authdata, SHA1_DIGEST_SIZE))
 246		ret = -EINVAL;
 247out:
 248	kfree(sdesc);
 249	return ret;
 250}
 
 251
 252/*
 253 * verify the AUTH2_COMMAND (unseal) result from TPM
 254 */
 255static int TSS_checkhmac2(unsigned char *buffer,
 256			  const uint32_t command,
 257			  const unsigned char *ononce,
 258			  const unsigned char *key1,
 259			  unsigned int keylen1,
 260			  const unsigned char *key2,
 261			  unsigned int keylen2, ...)
 262{
 263	uint32_t bufsize;
 264	uint16_t tag;
 265	uint32_t ordinal;
 266	uint32_t result;
 267	unsigned char *enonce1;
 268	unsigned char *continueflag1;
 269	unsigned char *authdata1;
 270	unsigned char *enonce2;
 271	unsigned char *continueflag2;
 272	unsigned char *authdata2;
 273	unsigned char testhmac1[SHA1_DIGEST_SIZE];
 274	unsigned char testhmac2[SHA1_DIGEST_SIZE];
 275	unsigned char paramdigest[SHA1_DIGEST_SIZE];
 276	struct sdesc *sdesc;
 277	unsigned int dlen;
 278	unsigned int dpos;
 279	va_list argp;
 280	int ret;
 281
 282	bufsize = LOAD32(buffer, TPM_SIZE_OFFSET);
 283	tag = LOAD16(buffer, 0);
 284	ordinal = command;
 285	result = LOAD32N(buffer, TPM_RETURN_OFFSET);
 286
 287	if (tag == TPM_TAG_RSP_COMMAND)
 288		return 0;
 289	if (tag != TPM_TAG_RSP_AUTH2_COMMAND)
 290		return -EINVAL;
 291	authdata1 = buffer + bufsize - (SHA1_DIGEST_SIZE + 1
 292			+ SHA1_DIGEST_SIZE + SHA1_DIGEST_SIZE);
 293	authdata2 = buffer + bufsize - (SHA1_DIGEST_SIZE);
 294	continueflag1 = authdata1 - 1;
 295	continueflag2 = authdata2 - 1;
 296	enonce1 = continueflag1 - TPM_NONCE_SIZE;
 297	enonce2 = continueflag2 - TPM_NONCE_SIZE;
 298
 299	sdesc = init_sdesc(hashalg);
 300	if (IS_ERR(sdesc)) {
 301		pr_info("trusted_key: can't alloc %s\n", hash_alg);
 302		return PTR_ERR(sdesc);
 303	}
 304	ret = crypto_shash_init(&sdesc->shash);
 305	if (ret < 0)
 306		goto out;
 307	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result,
 308				  sizeof result);
 309	if (ret < 0)
 310		goto out;
 311	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal,
 312				  sizeof ordinal);
 313	if (ret < 0)
 314		goto out;
 315
 316	va_start(argp, keylen2);
 317	for (;;) {
 318		dlen = va_arg(argp, unsigned int);
 319		if (dlen == 0)
 320			break;
 321		dpos = va_arg(argp, unsigned int);
 322		ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen);
 323		if (ret < 0)
 324			break;
 325	}
 326	va_end(argp);
 327	if (!ret)
 328		ret = crypto_shash_final(&sdesc->shash, paramdigest);
 329	if (ret < 0)
 330		goto out;
 331
 332	ret = TSS_rawhmac(testhmac1, key1, keylen1, SHA1_DIGEST_SIZE,
 333			  paramdigest, TPM_NONCE_SIZE, enonce1,
 334			  TPM_NONCE_SIZE, ononce, 1, continueflag1, 0, 0);
 335	if (ret < 0)
 336		goto out;
 337	if (memcmp(testhmac1, authdata1, SHA1_DIGEST_SIZE)) {
 338		ret = -EINVAL;
 339		goto out;
 340	}
 341	ret = TSS_rawhmac(testhmac2, key2, keylen2, SHA1_DIGEST_SIZE,
 342			  paramdigest, TPM_NONCE_SIZE, enonce2,
 343			  TPM_NONCE_SIZE, ononce, 1, continueflag2, 0, 0);
 344	if (ret < 0)
 345		goto out;
 346	if (memcmp(testhmac2, authdata2, SHA1_DIGEST_SIZE))
 347		ret = -EINVAL;
 348out:
 349	kfree(sdesc);
 350	return ret;
 351}
 352
 353/*
 354 * For key specific tpm requests, we will generate and send our
 355 * own TPM command packets using the drivers send function.
 356 */
 357static int trusted_tpm_send(const u32 chip_num, unsigned char *cmd,
 358			    size_t buflen)
 359{
 360	int rc;
 361
 
 
 
 362	dump_tpm_buf(cmd);
 363	rc = tpm_send(chip_num, cmd, buflen);
 364	dump_tpm_buf(cmd);
 365	if (rc > 0)
 366		/* Can't return positive return codes values to keyctl */
 367		rc = -EPERM;
 368	return rc;
 369}
 370
 371/*
 372 * get a random value from TPM
 373 */
 374static int tpm_get_random(struct tpm_buf *tb, unsigned char *buf, uint32_t len)
 375{
 376	int ret;
 377
 378	INIT_BUF(tb);
 379	store16(tb, TPM_TAG_RQU_COMMAND);
 380	store32(tb, TPM_GETRANDOM_SIZE);
 381	store32(tb, TPM_ORD_GETRANDOM);
 382	store32(tb, len);
 383	ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, sizeof tb->data);
 384	if (!ret)
 385		memcpy(buf, tb->data + TPM_GETRANDOM_SIZE, len);
 386	return ret;
 387}
 388
 389static int my_get_random(unsigned char *buf, int len)
 390{
 391	struct tpm_buf *tb;
 392	int ret;
 393
 394	tb = kmalloc(sizeof *tb, GFP_KERNEL);
 395	if (!tb)
 396		return -ENOMEM;
 397	ret = tpm_get_random(tb, buf, len);
 398
 399	kfree(tb);
 400	return ret;
 401}
 402
 403/*
 404 * Lock a trusted key, by extending a selected PCR.
 405 *
 406 * Prevents a trusted key that is sealed to PCRs from being accessed.
 407 * This uses the tpm driver's extend function.
 408 */
 409static int pcrlock(const int pcrnum)
 410{
 411	unsigned char hash[SHA1_DIGEST_SIZE];
 412	int ret;
 413
 414	if (!capable(CAP_SYS_ADMIN))
 415		return -EPERM;
 416	ret = my_get_random(hash, SHA1_DIGEST_SIZE);
 417	if (ret < 0)
 418		return ret;
 419	return tpm_pcr_extend(TPM_ANY_NUM, pcrnum, hash) ? -EINVAL : 0;
 420}
 421
 422/*
 423 * Create an object specific authorisation protocol (OSAP) session
 424 */
 425static int osap(struct tpm_buf *tb, struct osapsess *s,
 426		const unsigned char *key, uint16_t type, uint32_t handle)
 427{
 428	unsigned char enonce[TPM_NONCE_SIZE];
 429	unsigned char ononce[TPM_NONCE_SIZE];
 430	int ret;
 431
 432	ret = tpm_get_random(tb, ononce, TPM_NONCE_SIZE);
 433	if (ret < 0)
 434		return ret;
 435
 436	INIT_BUF(tb);
 437	store16(tb, TPM_TAG_RQU_COMMAND);
 438	store32(tb, TPM_OSAP_SIZE);
 439	store32(tb, TPM_ORD_OSAP);
 440	store16(tb, type);
 441	store32(tb, handle);
 442	storebytes(tb, ononce, TPM_NONCE_SIZE);
 443
 444	ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, MAX_BUF_SIZE);
 445	if (ret < 0)
 446		return ret;
 447
 448	s->handle = LOAD32(tb->data, TPM_DATA_OFFSET);
 449	memcpy(s->enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)]),
 450	       TPM_NONCE_SIZE);
 451	memcpy(enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t) +
 452				  TPM_NONCE_SIZE]), TPM_NONCE_SIZE);
 453	return TSS_rawhmac(s->secret, key, SHA1_DIGEST_SIZE, TPM_NONCE_SIZE,
 454			   enonce, TPM_NONCE_SIZE, ononce, 0, 0);
 455}
 456
 457/*
 458 * Create an object independent authorisation protocol (oiap) session
 459 */
 460static int oiap(struct tpm_buf *tb, uint32_t *handle, unsigned char *nonce)
 461{
 462	int ret;
 463
 
 
 
 464	INIT_BUF(tb);
 465	store16(tb, TPM_TAG_RQU_COMMAND);
 466	store32(tb, TPM_OIAP_SIZE);
 467	store32(tb, TPM_ORD_OIAP);
 468	ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, MAX_BUF_SIZE);
 469	if (ret < 0)
 470		return ret;
 471
 472	*handle = LOAD32(tb->data, TPM_DATA_OFFSET);
 473	memcpy(nonce, &tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)],
 474	       TPM_NONCE_SIZE);
 475	return 0;
 476}
 
 477
 478struct tpm_digests {
 479	unsigned char encauth[SHA1_DIGEST_SIZE];
 480	unsigned char pubauth[SHA1_DIGEST_SIZE];
 481	unsigned char xorwork[SHA1_DIGEST_SIZE * 2];
 482	unsigned char xorhash[SHA1_DIGEST_SIZE];
 483	unsigned char nonceodd[TPM_NONCE_SIZE];
 484};
 485
 486/*
 487 * Have the TPM seal(encrypt) the trusted key, possibly based on
 488 * Platform Configuration Registers (PCRs). AUTH1 for sealing key.
 489 */
 490static int tpm_seal(struct tpm_buf *tb, uint16_t keytype,
 491		    uint32_t keyhandle, const unsigned char *keyauth,
 492		    const unsigned char *data, uint32_t datalen,
 493		    unsigned char *blob, uint32_t *bloblen,
 494		    const unsigned char *blobauth,
 495		    const unsigned char *pcrinfo, uint32_t pcrinfosize)
 496{
 497	struct osapsess sess;
 498	struct tpm_digests *td;
 499	unsigned char cont;
 500	uint32_t ordinal;
 501	uint32_t pcrsize;
 502	uint32_t datsize;
 503	int sealinfosize;
 504	int encdatasize;
 505	int storedsize;
 506	int ret;
 507	int i;
 508
 509	/* alloc some work space for all the hashes */
 510	td = kmalloc(sizeof *td, GFP_KERNEL);
 511	if (!td)
 512		return -ENOMEM;
 513
 514	/* get session for sealing key */
 515	ret = osap(tb, &sess, keyauth, keytype, keyhandle);
 516	if (ret < 0)
 517		goto out;
 518	dump_sess(&sess);
 519
 520	/* calculate encrypted authorization value */
 521	memcpy(td->xorwork, sess.secret, SHA1_DIGEST_SIZE);
 522	memcpy(td->xorwork + SHA1_DIGEST_SIZE, sess.enonce, SHA1_DIGEST_SIZE);
 523	ret = TSS_sha1(td->xorwork, SHA1_DIGEST_SIZE * 2, td->xorhash);
 524	if (ret < 0)
 525		goto out;
 526
 527	ret = tpm_get_random(tb, td->nonceodd, TPM_NONCE_SIZE);
 528	if (ret < 0)
 529		goto out;
 530	ordinal = htonl(TPM_ORD_SEAL);
 531	datsize = htonl(datalen);
 532	pcrsize = htonl(pcrinfosize);
 533	cont = 0;
 534
 535	/* encrypt data authorization key */
 536	for (i = 0; i < SHA1_DIGEST_SIZE; ++i)
 537		td->encauth[i] = td->xorhash[i] ^ blobauth[i];
 538
 539	/* calculate authorization HMAC value */
 540	if (pcrinfosize == 0) {
 541		/* no pcr info specified */
 542		ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE,
 543				   sess.enonce, td->nonceodd, cont,
 544				   sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE,
 545				   td->encauth, sizeof(uint32_t), &pcrsize,
 546				   sizeof(uint32_t), &datsize, datalen, data, 0,
 547				   0);
 548	} else {
 549		/* pcr info specified */
 550		ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE,
 551				   sess.enonce, td->nonceodd, cont,
 552				   sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE,
 553				   td->encauth, sizeof(uint32_t), &pcrsize,
 554				   pcrinfosize, pcrinfo, sizeof(uint32_t),
 555				   &datsize, datalen, data, 0, 0);
 556	}
 557	if (ret < 0)
 558		goto out;
 559
 560	/* build and send the TPM request packet */
 561	INIT_BUF(tb);
 562	store16(tb, TPM_TAG_RQU_AUTH1_COMMAND);
 563	store32(tb, TPM_SEAL_SIZE + pcrinfosize + datalen);
 564	store32(tb, TPM_ORD_SEAL);
 565	store32(tb, keyhandle);
 566	storebytes(tb, td->encauth, SHA1_DIGEST_SIZE);
 567	store32(tb, pcrinfosize);
 568	storebytes(tb, pcrinfo, pcrinfosize);
 569	store32(tb, datalen);
 570	storebytes(tb, data, datalen);
 571	store32(tb, sess.handle);
 572	storebytes(tb, td->nonceodd, TPM_NONCE_SIZE);
 573	store8(tb, cont);
 574	storebytes(tb, td->pubauth, SHA1_DIGEST_SIZE);
 575
 576	ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, MAX_BUF_SIZE);
 577	if (ret < 0)
 578		goto out;
 579
 580	/* calculate the size of the returned Blob */
 581	sealinfosize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t));
 582	encdatasize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t) +
 583			     sizeof(uint32_t) + sealinfosize);
 584	storedsize = sizeof(uint32_t) + sizeof(uint32_t) + sealinfosize +
 585	    sizeof(uint32_t) + encdatasize;
 586
 587	/* check the HMAC in the response */
 588	ret = TSS_checkhmac1(tb->data, ordinal, td->nonceodd, sess.secret,
 589			     SHA1_DIGEST_SIZE, storedsize, TPM_DATA_OFFSET, 0,
 590			     0);
 591
 592	/* copy the returned blob to caller */
 593	if (!ret) {
 594		memcpy(blob, tb->data + TPM_DATA_OFFSET, storedsize);
 595		*bloblen = storedsize;
 596	}
 597out:
 598	kfree(td);
 599	return ret;
 600}
 601
 602/*
 603 * use the AUTH2_COMMAND form of unseal, to authorize both key and blob
 604 */
 605static int tpm_unseal(struct tpm_buf *tb,
 606		      uint32_t keyhandle, const unsigned char *keyauth,
 607		      const unsigned char *blob, int bloblen,
 608		      const unsigned char *blobauth,
 609		      unsigned char *data, unsigned int *datalen)
 610{
 611	unsigned char nonceodd[TPM_NONCE_SIZE];
 612	unsigned char enonce1[TPM_NONCE_SIZE];
 613	unsigned char enonce2[TPM_NONCE_SIZE];
 614	unsigned char authdata1[SHA1_DIGEST_SIZE];
 615	unsigned char authdata2[SHA1_DIGEST_SIZE];
 616	uint32_t authhandle1 = 0;
 617	uint32_t authhandle2 = 0;
 618	unsigned char cont = 0;
 619	uint32_t ordinal;
 620	uint32_t keyhndl;
 621	int ret;
 622
 623	/* sessions for unsealing key and data */
 624	ret = oiap(tb, &authhandle1, enonce1);
 625	if (ret < 0) {
 626		pr_info("trusted_key: oiap failed (%d)\n", ret);
 627		return ret;
 628	}
 629	ret = oiap(tb, &authhandle2, enonce2);
 630	if (ret < 0) {
 631		pr_info("trusted_key: oiap failed (%d)\n", ret);
 632		return ret;
 633	}
 634
 635	ordinal = htonl(TPM_ORD_UNSEAL);
 636	keyhndl = htonl(SRKHANDLE);
 637	ret = tpm_get_random(tb, nonceodd, TPM_NONCE_SIZE);
 638	if (ret < 0) {
 639		pr_info("trusted_key: tpm_get_random failed (%d)\n", ret);
 640		return ret;
 641	}
 642	ret = TSS_authhmac(authdata1, keyauth, TPM_NONCE_SIZE,
 643			   enonce1, nonceodd, cont, sizeof(uint32_t),
 644			   &ordinal, bloblen, blob, 0, 0);
 645	if (ret < 0)
 646		return ret;
 647	ret = TSS_authhmac(authdata2, blobauth, TPM_NONCE_SIZE,
 648			   enonce2, nonceodd, cont, sizeof(uint32_t),
 649			   &ordinal, bloblen, blob, 0, 0);
 650	if (ret < 0)
 651		return ret;
 652
 653	/* build and send TPM request packet */
 654	INIT_BUF(tb);
 655	store16(tb, TPM_TAG_RQU_AUTH2_COMMAND);
 656	store32(tb, TPM_UNSEAL_SIZE + bloblen);
 657	store32(tb, TPM_ORD_UNSEAL);
 658	store32(tb, keyhandle);
 659	storebytes(tb, blob, bloblen);
 660	store32(tb, authhandle1);
 661	storebytes(tb, nonceodd, TPM_NONCE_SIZE);
 662	store8(tb, cont);
 663	storebytes(tb, authdata1, SHA1_DIGEST_SIZE);
 664	store32(tb, authhandle2);
 665	storebytes(tb, nonceodd, TPM_NONCE_SIZE);
 666	store8(tb, cont);
 667	storebytes(tb, authdata2, SHA1_DIGEST_SIZE);
 668
 669	ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, MAX_BUF_SIZE);
 670	if (ret < 0) {
 671		pr_info("trusted_key: authhmac failed (%d)\n", ret);
 672		return ret;
 673	}
 674
 675	*datalen = LOAD32(tb->data, TPM_DATA_OFFSET);
 676	ret = TSS_checkhmac2(tb->data, ordinal, nonceodd,
 677			     keyauth, SHA1_DIGEST_SIZE,
 678			     blobauth, SHA1_DIGEST_SIZE,
 679			     sizeof(uint32_t), TPM_DATA_OFFSET,
 680			     *datalen, TPM_DATA_OFFSET + sizeof(uint32_t), 0,
 681			     0);
 682	if (ret < 0) {
 683		pr_info("trusted_key: TSS_checkhmac2 failed (%d)\n", ret);
 684		return ret;
 685	}
 686	memcpy(data, tb->data + TPM_DATA_OFFSET + sizeof(uint32_t), *datalen);
 687	return 0;
 688}
 689
 690/*
 691 * Have the TPM seal(encrypt) the symmetric key
 692 */
 693static int key_seal(struct trusted_key_payload *p,
 694		    struct trusted_key_options *o)
 695{
 696	struct tpm_buf *tb;
 697	int ret;
 698
 699	tb = kzalloc(sizeof *tb, GFP_KERNEL);
 700	if (!tb)
 701		return -ENOMEM;
 702
 703	/* include migratable flag at end of sealed key */
 704	p->key[p->key_len] = p->migratable;
 705
 706	ret = tpm_seal(tb, o->keytype, o->keyhandle, o->keyauth,
 707		       p->key, p->key_len + 1, p->blob, &p->blob_len,
 708		       o->blobauth, o->pcrinfo, o->pcrinfo_len);
 709	if (ret < 0)
 710		pr_info("trusted_key: srkseal failed (%d)\n", ret);
 711
 712	kfree(tb);
 713	return ret;
 714}
 715
 716/*
 717 * Have the TPM unseal(decrypt) the symmetric key
 718 */
 719static int key_unseal(struct trusted_key_payload *p,
 720		      struct trusted_key_options *o)
 721{
 722	struct tpm_buf *tb;
 723	int ret;
 724
 725	tb = kzalloc(sizeof *tb, GFP_KERNEL);
 726	if (!tb)
 727		return -ENOMEM;
 728
 729	ret = tpm_unseal(tb, o->keyhandle, o->keyauth, p->blob, p->blob_len,
 730			 o->blobauth, p->key, &p->key_len);
 731	if (ret < 0)
 732		pr_info("trusted_key: srkunseal failed (%d)\n", ret);
 733	else
 734		/* pull migratable flag out of sealed key */
 735		p->migratable = p->key[--p->key_len];
 736
 737	kfree(tb);
 738	return ret;
 739}
 740
 741enum {
 742	Opt_err = -1,
 743	Opt_new, Opt_load, Opt_update,
 744	Opt_keyhandle, Opt_keyauth, Opt_blobauth,
 745	Opt_pcrinfo, Opt_pcrlock, Opt_migratable
 
 
 
 746};
 747
 748static const match_table_t key_tokens = {
 749	{Opt_new, "new"},
 750	{Opt_load, "load"},
 751	{Opt_update, "update"},
 752	{Opt_keyhandle, "keyhandle=%s"},
 753	{Opt_keyauth, "keyauth=%s"},
 754	{Opt_blobauth, "blobauth=%s"},
 755	{Opt_pcrinfo, "pcrinfo=%s"},
 756	{Opt_pcrlock, "pcrlock=%s"},
 757	{Opt_migratable, "migratable=%s"},
 
 
 
 758	{Opt_err, NULL}
 759};
 760
 761/* can have zero or more token= options */
 762static int getoptions(char *c, struct trusted_key_payload *pay,
 763		      struct trusted_key_options *opt)
 764{
 765	substring_t args[MAX_OPT_ARGS];
 766	char *p = c;
 767	int token;
 768	int res;
 769	unsigned long handle;
 770	unsigned long lock;
 
 
 
 
 
 
 
 
 
 
 771
 772	while ((p = strsep(&c, " \t"))) {
 773		if (*p == '\0' || *p == ' ' || *p == '\t')
 774			continue;
 775		token = match_token(p, key_tokens, args);
 
 
 776
 777		switch (token) {
 778		case Opt_pcrinfo:
 779			opt->pcrinfo_len = strlen(args[0].from) / 2;
 780			if (opt->pcrinfo_len > MAX_PCRINFO_SIZE)
 781				return -EINVAL;
 782			res = hex2bin(opt->pcrinfo, args[0].from,
 783				      opt->pcrinfo_len);
 784			if (res < 0)
 785				return -EINVAL;
 786			break;
 787		case Opt_keyhandle:
 788			res = strict_strtoul(args[0].from, 16, &handle);
 789			if (res < 0)
 790				return -EINVAL;
 791			opt->keytype = SEAL_keytype;
 792			opt->keyhandle = handle;
 793			break;
 794		case Opt_keyauth:
 795			if (strlen(args[0].from) != 2 * SHA1_DIGEST_SIZE)
 796				return -EINVAL;
 797			res = hex2bin(opt->keyauth, args[0].from,
 798				      SHA1_DIGEST_SIZE);
 799			if (res < 0)
 800				return -EINVAL;
 801			break;
 802		case Opt_blobauth:
 803			if (strlen(args[0].from) != 2 * SHA1_DIGEST_SIZE)
 804				return -EINVAL;
 805			res = hex2bin(opt->blobauth, args[0].from,
 806				      SHA1_DIGEST_SIZE);
 807			if (res < 0)
 808				return -EINVAL;
 809			break;
 810		case Opt_migratable:
 811			if (*args[0].from == '0')
 812				pay->migratable = 0;
 813			else
 814				return -EINVAL;
 815			break;
 816		case Opt_pcrlock:
 817			res = strict_strtoul(args[0].from, 10, &lock);
 818			if (res < 0)
 819				return -EINVAL;
 820			opt->pcrlock = lock;
 821			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 822		default:
 823			return -EINVAL;
 824		}
 825	}
 826	return 0;
 827}
 828
 829/*
 830 * datablob_parse - parse the keyctl data and fill in the
 831 * 		    payload and options structures
 832 *
 833 * On success returns 0, otherwise -EINVAL.
 834 */
 835static int datablob_parse(char *datablob, struct trusted_key_payload *p,
 836			  struct trusted_key_options *o)
 837{
 838	substring_t args[MAX_OPT_ARGS];
 839	long keylen;
 840	int ret = -EINVAL;
 841	int key_cmd;
 842	char *c;
 843
 844	/* main command */
 845	c = strsep(&datablob, " \t");
 846	if (!c)
 847		return -EINVAL;
 848	key_cmd = match_token(c, key_tokens, args);
 849	switch (key_cmd) {
 850	case Opt_new:
 851		/* first argument is key size */
 852		c = strsep(&datablob, " \t");
 853		if (!c)
 854			return -EINVAL;
 855		ret = strict_strtol(c, 10, &keylen);
 856		if (ret < 0 || keylen < MIN_KEY_SIZE || keylen > MAX_KEY_SIZE)
 857			return -EINVAL;
 858		p->key_len = keylen;
 859		ret = getoptions(datablob, p, o);
 860		if (ret < 0)
 861			return ret;
 862		ret = Opt_new;
 863		break;
 864	case Opt_load:
 865		/* first argument is sealed blob */
 866		c = strsep(&datablob, " \t");
 867		if (!c)
 868			return -EINVAL;
 869		p->blob_len = strlen(c) / 2;
 870		if (p->blob_len > MAX_BLOB_SIZE)
 871			return -EINVAL;
 872		ret = hex2bin(p->blob, c, p->blob_len);
 873		if (ret < 0)
 874			return -EINVAL;
 875		ret = getoptions(datablob, p, o);
 876		if (ret < 0)
 877			return ret;
 878		ret = Opt_load;
 879		break;
 880	case Opt_update:
 881		/* all arguments are options */
 882		ret = getoptions(datablob, p, o);
 883		if (ret < 0)
 884			return ret;
 885		ret = Opt_update;
 886		break;
 887	case Opt_err:
 888		return -EINVAL;
 889		break;
 890	}
 891	return ret;
 892}
 893
 894static struct trusted_key_options *trusted_options_alloc(void)
 895{
 896	struct trusted_key_options *options;
 
 
 
 
 
 897
 898	options = kzalloc(sizeof *options, GFP_KERNEL);
 899	if (options) {
 900		/* set any non-zero defaults */
 901		options->keytype = SRK_keytype;
 902		options->keyhandle = SRKHANDLE;
 
 
 903	}
 904	return options;
 905}
 906
 907static struct trusted_key_payload *trusted_payload_alloc(struct key *key)
 908{
 909	struct trusted_key_payload *p = NULL;
 910	int ret;
 911
 912	ret = key_payload_reserve(key, sizeof *p);
 913	if (ret < 0)
 914		return p;
 915	p = kzalloc(sizeof *p, GFP_KERNEL);
 916	if (p)
 917		p->migratable = 1; /* migratable by default */
 918	return p;
 919}
 920
 921/*
 922 * trusted_instantiate - create a new trusted key
 923 *
 924 * Unseal an existing trusted blob or, for a new key, get a
 925 * random key, then seal and create a trusted key-type key,
 926 * adding it to the specified keyring.
 927 *
 928 * On success, return 0. Otherwise return errno.
 929 */
 930static int trusted_instantiate(struct key *key, const void *data,
 931			       size_t datalen)
 932{
 933	struct trusted_key_payload *payload = NULL;
 934	struct trusted_key_options *options = NULL;
 
 935	char *datablob;
 936	int ret = 0;
 937	int key_cmd;
 
 
 
 
 
 
 938
 939	if (datalen <= 0 || datalen > 32767 || !data)
 940		return -EINVAL;
 941
 942	datablob = kmalloc(datalen + 1, GFP_KERNEL);
 943	if (!datablob)
 944		return -ENOMEM;
 945	memcpy(datablob, data, datalen);
 946	datablob[datalen] = '\0';
 947
 948	options = trusted_options_alloc();
 949	if (!options) {
 950		ret = -ENOMEM;
 951		goto out;
 952	}
 953	payload = trusted_payload_alloc(key);
 954	if (!payload) {
 955		ret = -ENOMEM;
 956		goto out;
 957	}
 958
 959	key_cmd = datablob_parse(datablob, payload, options);
 960	if (key_cmd < 0) {
 961		ret = key_cmd;
 962		goto out;
 963	}
 964
 
 
 
 
 
 965	dump_payload(payload);
 966	dump_options(options);
 967
 968	switch (key_cmd) {
 969	case Opt_load:
 970		ret = key_unseal(payload, options);
 
 
 
 971		dump_payload(payload);
 972		dump_options(options);
 973		if (ret < 0)
 974			pr_info("trusted_key: key_unseal failed (%d)\n", ret);
 975		break;
 976	case Opt_new:
 977		ret = my_get_random(payload->key, payload->key_len);
 978		if (ret < 0) {
 
 979			pr_info("trusted_key: key_create failed (%d)\n", ret);
 980			goto out;
 981		}
 982		ret = key_seal(payload, options);
 
 
 
 983		if (ret < 0)
 984			pr_info("trusted_key: key_seal failed (%d)\n", ret);
 985		break;
 986	default:
 987		ret = -EINVAL;
 988		goto out;
 989	}
 990	if (!ret && options->pcrlock)
 991		ret = pcrlock(options->pcrlock);
 992out:
 993	kfree(datablob);
 994	kfree(options);
 995	if (!ret)
 996		rcu_assign_keypointer(key, payload);
 997	else
 998		kfree(payload);
 999	return ret;
1000}
1001
1002static void trusted_rcu_free(struct rcu_head *rcu)
1003{
1004	struct trusted_key_payload *p;
1005
1006	p = container_of(rcu, struct trusted_key_payload, rcu);
1007	memset(p->key, 0, p->key_len);
1008	kfree(p);
1009}
1010
1011/*
1012 * trusted_update - reseal an existing key with new PCR values
1013 */
1014static int trusted_update(struct key *key, const void *data, size_t datalen)
1015{
1016	struct trusted_key_payload *p = key->payload.data;
1017	struct trusted_key_payload *new_p;
1018	struct trusted_key_options *new_o;
 
1019	char *datablob;
1020	int ret = 0;
1021
 
 
 
1022	if (!p->migratable)
1023		return -EPERM;
1024	if (datalen <= 0 || datalen > 32767 || !data)
1025		return -EINVAL;
1026
1027	datablob = kmalloc(datalen + 1, GFP_KERNEL);
1028	if (!datablob)
1029		return -ENOMEM;
1030	new_o = trusted_options_alloc();
1031	if (!new_o) {
1032		ret = -ENOMEM;
1033		goto out;
1034	}
1035	new_p = trusted_payload_alloc(key);
1036	if (!new_p) {
1037		ret = -ENOMEM;
1038		goto out;
1039	}
1040
1041	memcpy(datablob, data, datalen);
1042	datablob[datalen] = '\0';
1043	ret = datablob_parse(datablob, new_p, new_o);
1044	if (ret != Opt_update) {
1045		ret = -EINVAL;
1046		kfree(new_p);
1047		goto out;
1048	}
 
 
 
 
 
 
 
1049	/* copy old key values, and reseal with new pcrs */
1050	new_p->migratable = p->migratable;
1051	new_p->key_len = p->key_len;
1052	memcpy(new_p->key, p->key, p->key_len);
1053	dump_payload(p);
1054	dump_payload(new_p);
1055
1056	ret = key_seal(new_p, new_o);
1057	if (ret < 0) {
1058		pr_info("trusted_key: key_seal failed (%d)\n", ret);
1059		kfree(new_p);
1060		goto out;
1061	}
1062	if (new_o->pcrlock) {
1063		ret = pcrlock(new_o->pcrlock);
1064		if (ret < 0) {
1065			pr_info("trusted_key: pcrlock failed (%d)\n", ret);
1066			kfree(new_p);
1067			goto out;
1068		}
1069	}
1070	rcu_assign_keypointer(key, new_p);
1071	call_rcu(&p->rcu, trusted_rcu_free);
1072out:
1073	kfree(datablob);
1074	kfree(new_o);
1075	return ret;
1076}
1077
1078/*
1079 * trusted_read - copy the sealed blob data to userspace in hex.
1080 * On success, return to userspace the trusted key datablob size.
1081 */
1082static long trusted_read(const struct key *key, char __user *buffer,
1083			 size_t buflen)
1084{
1085	struct trusted_key_payload *p;
1086	char *ascii_buf;
1087	char *bufp;
1088	int i;
1089
1090	p = rcu_dereference_key(key);
1091	if (!p)
1092		return -EINVAL;
1093	if (!buffer || buflen <= 0)
1094		return 2 * p->blob_len;
1095	ascii_buf = kmalloc(2 * p->blob_len, GFP_KERNEL);
1096	if (!ascii_buf)
1097		return -ENOMEM;
1098
1099	bufp = ascii_buf;
1100	for (i = 0; i < p->blob_len; i++)
1101		bufp = hex_byte_pack(bufp, p->blob[i]);
1102	if ((copy_to_user(buffer, ascii_buf, 2 * p->blob_len)) != 0) {
1103		kfree(ascii_buf);
1104		return -EFAULT;
 
 
 
 
 
 
 
1105	}
1106	kfree(ascii_buf);
1107	return 2 * p->blob_len;
1108}
1109
1110/*
1111 * trusted_destroy - before freeing the key, clear the decrypted data
1112 */
1113static void trusted_destroy(struct key *key)
1114{
1115	struct trusted_key_payload *p = key->payload.data;
1116
1117	if (!p)
1118		return;
1119	memset(p->key, 0, p->key_len);
1120	kfree(key->payload.data);
1121}
1122
1123struct key_type key_type_trusted = {
1124	.name = "trusted",
1125	.instantiate = trusted_instantiate,
1126	.update = trusted_update,
1127	.match = user_match,
1128	.destroy = trusted_destroy,
1129	.describe = user_describe,
1130	.read = trusted_read,
1131};
1132
1133EXPORT_SYMBOL_GPL(key_type_trusted);
1134
1135static void trusted_shash_release(void)
1136{
1137	if (hashalg)
1138		crypto_free_shash(hashalg);
1139	if (hmacalg)
1140		crypto_free_shash(hmacalg);
1141}
1142
1143static int __init trusted_shash_alloc(void)
1144{
1145	int ret;
1146
1147	hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
1148	if (IS_ERR(hmacalg)) {
1149		pr_info("trusted_key: could not allocate crypto %s\n",
1150			hmac_alg);
1151		return PTR_ERR(hmacalg);
1152	}
1153
1154	hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
1155	if (IS_ERR(hashalg)) {
1156		pr_info("trusted_key: could not allocate crypto %s\n",
1157			hash_alg);
1158		ret = PTR_ERR(hashalg);
1159		goto hashalg_fail;
1160	}
1161
1162	return 0;
1163
1164hashalg_fail:
1165	crypto_free_shash(hmacalg);
1166	return ret;
1167}
1168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1169static int __init init_trusted(void)
1170{
1171	int ret;
1172
 
 
 
 
 
 
 
 
 
 
1173	ret = trusted_shash_alloc();
1174	if (ret < 0)
1175		return ret;
1176	ret = register_key_type(&key_type_trusted);
1177	if (ret < 0)
1178		trusted_shash_release();
 
 
 
 
 
 
 
1179	return ret;
1180}
1181
1182static void __exit cleanup_trusted(void)
1183{
1184	trusted_shash_release();
1185	unregister_key_type(&key_type_trusted);
 
 
 
 
1186}
1187
1188late_initcall(init_trusted);
1189module_exit(cleanup_trusted);
1190
1191MODULE_LICENSE("GPL");