Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/page-writeback.c
   4 *
   5 * Copyright (C) 2002, Linus Torvalds.
   6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
   7 *
   8 * Contains functions related to writing back dirty pages at the
   9 * address_space level.
  10 *
  11 * 10Apr2002	Andrew Morton
  12 *		Initial version
  13 */
  14
  15#include <linux/kernel.h>
  16#include <linux/export.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/mm.h>
  20#include <linux/swap.h>
  21#include <linux/slab.h>
  22#include <linux/pagemap.h>
  23#include <linux/writeback.h>
  24#include <linux/init.h>
  25#include <linux/backing-dev.h>
  26#include <linux/task_io_accounting_ops.h>
  27#include <linux/blkdev.h>
  28#include <linux/mpage.h>
  29#include <linux/rmap.h>
  30#include <linux/percpu.h>
 
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  36#include <linux/pagevec.h>
  37#include <linux/timer.h>
  38#include <linux/sched/rt.h>
  39#include <linux/sched/signal.h>
  40#include <linux/mm_inline.h>
  41#include <trace/events/writeback.h>
  42
  43#include "internal.h"
  44
  45/*
  46 * Sleep at most 200ms at a time in balance_dirty_pages().
  47 */
  48#define MAX_PAUSE		max(HZ/5, 1)
  49
  50/*
  51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  52 * by raising pause time to max_pause when falls below it.
  53 */
  54#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
  55
  56/*
  57 * Estimate write bandwidth at 200ms intervals.
  58 */
  59#define BANDWIDTH_INTERVAL	max(HZ/5, 1)
  60
  61#define RATELIMIT_CALC_SHIFT	10
  62
  63/*
  64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  65 * will look to see if it needs to force writeback or throttling.
  66 */
  67static long ratelimit_pages = 32;
  68
  69/* The following parameters are exported via /proc/sys/vm */
  70
  71/*
  72 * Start background writeback (via writeback threads) at this percentage
  73 */
  74int dirty_background_ratio = 10;
  75
  76/*
  77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  78 * dirty_background_ratio * the amount of dirtyable memory
  79 */
  80unsigned long dirty_background_bytes;
  81
  82/*
  83 * free highmem will not be subtracted from the total free memory
  84 * for calculating free ratios if vm_highmem_is_dirtyable is true
  85 */
  86int vm_highmem_is_dirtyable;
  87
  88/*
  89 * The generator of dirty data starts writeback at this percentage
  90 */
  91int vm_dirty_ratio = 20;
  92
  93/*
  94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  95 * vm_dirty_ratio * the amount of dirtyable memory
  96 */
  97unsigned long vm_dirty_bytes;
  98
  99/*
 100 * The interval between `kupdate'-style writebacks
 101 */
 102unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 103
 104EXPORT_SYMBOL_GPL(dirty_writeback_interval);
 105
 106/*
 107 * The longest time for which data is allowed to remain dirty
 108 */
 109unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 110
 111/*
 112 * Flag that makes the machine dump writes/reads and block dirtyings.
 113 */
 114int block_dump;
 115
 116/*
 117 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 118 * a full sync is triggered after this time elapses without any disk activity.
 119 */
 120int laptop_mode;
 121
 122EXPORT_SYMBOL(laptop_mode);
 123
 124/* End of sysctl-exported parameters */
 125
 126struct wb_domain global_wb_domain;
 127
 128/* consolidated parameters for balance_dirty_pages() and its subroutines */
 129struct dirty_throttle_control {
 130#ifdef CONFIG_CGROUP_WRITEBACK
 131	struct wb_domain	*dom;
 132	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
 133#endif
 134	struct bdi_writeback	*wb;
 135	struct fprop_local_percpu *wb_completions;
 136
 137	unsigned long		avail;		/* dirtyable */
 138	unsigned long		dirty;		/* file_dirty + write + nfs */
 139	unsigned long		thresh;		/* dirty threshold */
 140	unsigned long		bg_thresh;	/* dirty background threshold */
 141
 142	unsigned long		wb_dirty;	/* per-wb counterparts */
 143	unsigned long		wb_thresh;
 144	unsigned long		wb_bg_thresh;
 145
 146	unsigned long		pos_ratio;
 147};
 148
 149/*
 150 * Length of period for aging writeout fractions of bdis. This is an
 151 * arbitrarily chosen number. The longer the period, the slower fractions will
 152 * reflect changes in current writeout rate.
 
 
 
 
 
 
 
 
 
 
 
 153 */
 154#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
 155
 156#ifdef CONFIG_CGROUP_WRITEBACK
 157
 158#define GDTC_INIT(__wb)		.wb = (__wb),				\
 159				.dom = &global_wb_domain,		\
 160				.wb_completions = &(__wb)->completions
 161
 162#define GDTC_INIT_NO_WB		.dom = &global_wb_domain
 163
 164#define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
 165				.dom = mem_cgroup_wb_domain(__wb),	\
 166				.wb_completions = &(__wb)->memcg_completions, \
 167				.gdtc = __gdtc
 168
 169static bool mdtc_valid(struct dirty_throttle_control *dtc)
 170{
 171	return dtc->dom;
 172}
 173
 174static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 175{
 176	return dtc->dom;
 177}
 178
 179static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 180{
 181	return mdtc->gdtc;
 182}
 183
 184static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 185{
 186	return &wb->memcg_completions;
 187}
 188
 189static void wb_min_max_ratio(struct bdi_writeback *wb,
 190			     unsigned long *minp, unsigned long *maxp)
 191{
 192	unsigned long this_bw = wb->avg_write_bandwidth;
 193	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 194	unsigned long long min = wb->bdi->min_ratio;
 195	unsigned long long max = wb->bdi->max_ratio;
 196
 197	/*
 198	 * @wb may already be clean by the time control reaches here and
 199	 * the total may not include its bw.
 200	 */
 201	if (this_bw < tot_bw) {
 202		if (min) {
 203			min *= this_bw;
 204			do_div(min, tot_bw);
 205		}
 206		if (max < 100) {
 207			max *= this_bw;
 208			do_div(max, tot_bw);
 209		}
 210	}
 211
 212	*minp = min;
 213	*maxp = max;
 214}
 215
 216#else	/* CONFIG_CGROUP_WRITEBACK */
 217
 218#define GDTC_INIT(__wb)		.wb = (__wb),                           \
 219				.wb_completions = &(__wb)->completions
 220#define GDTC_INIT_NO_WB
 221#define MDTC_INIT(__wb, __gdtc)
 222
 223static bool mdtc_valid(struct dirty_throttle_control *dtc)
 224{
 225	return false;
 226}
 227
 228static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 229{
 230	return &global_wb_domain;
 231}
 232
 233static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 234{
 235	return NULL;
 236}
 237
 238static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 239{
 240	return NULL;
 241}
 242
 243static void wb_min_max_ratio(struct bdi_writeback *wb,
 244			     unsigned long *minp, unsigned long *maxp)
 245{
 246	*minp = wb->bdi->min_ratio;
 247	*maxp = wb->bdi->max_ratio;
 248}
 249
 250#endif	/* CONFIG_CGROUP_WRITEBACK */
 251
 252/*
 253 * In a memory zone, there is a certain amount of pages we consider
 254 * available for the page cache, which is essentially the number of
 255 * free and reclaimable pages, minus some zone reserves to protect
 256 * lowmem and the ability to uphold the zone's watermarks without
 257 * requiring writeback.
 258 *
 259 * This number of dirtyable pages is the base value of which the
 260 * user-configurable dirty ratio is the effictive number of pages that
 261 * are allowed to be actually dirtied.  Per individual zone, or
 262 * globally by using the sum of dirtyable pages over all zones.
 263 *
 264 * Because the user is allowed to specify the dirty limit globally as
 265 * absolute number of bytes, calculating the per-zone dirty limit can
 266 * require translating the configured limit into a percentage of
 267 * global dirtyable memory first.
 268 */
 269
 270/**
 271 * node_dirtyable_memory - number of dirtyable pages in a node
 272 * @pgdat: the node
 273 *
 274 * Return: the node's number of pages potentially available for dirty
 275 * page cache.  This is the base value for the per-node dirty limits.
 276 */
 277static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
 278{
 279	unsigned long nr_pages = 0;
 280	int z;
 281
 282	for (z = 0; z < MAX_NR_ZONES; z++) {
 283		struct zone *zone = pgdat->node_zones + z;
 284
 285		if (!populated_zone(zone))
 286			continue;
 287
 288		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
 289	}
 290
 291	/*
 292	 * Pages reserved for the kernel should not be considered
 293	 * dirtyable, to prevent a situation where reclaim has to
 294	 * clean pages in order to balance the zones.
 295	 */
 296	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
 297
 298	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
 299	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
 300
 301	return nr_pages;
 302}
 303
 304static unsigned long highmem_dirtyable_memory(unsigned long total)
 305{
 306#ifdef CONFIG_HIGHMEM
 307	int node;
 308	unsigned long x = 0;
 309	int i;
 310
 311	for_each_node_state(node, N_HIGH_MEMORY) {
 312		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
 313			struct zone *z;
 314			unsigned long nr_pages;
 315
 316			if (!is_highmem_idx(i))
 317				continue;
 318
 319			z = &NODE_DATA(node)->node_zones[i];
 320			if (!populated_zone(z))
 321				continue;
 322
 323			nr_pages = zone_page_state(z, NR_FREE_PAGES);
 324			/* watch for underflows */
 325			nr_pages -= min(nr_pages, high_wmark_pages(z));
 326			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
 327			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
 328			x += nr_pages;
 329		}
 330	}
 331
 332	/*
 333	 * Unreclaimable memory (kernel memory or anonymous memory
 334	 * without swap) can bring down the dirtyable pages below
 335	 * the zone's dirty balance reserve and the above calculation
 336	 * will underflow.  However we still want to add in nodes
 337	 * which are below threshold (negative values) to get a more
 338	 * accurate calculation but make sure that the total never
 339	 * underflows.
 340	 */
 341	if ((long)x < 0)
 342		x = 0;
 343
 344	/*
 345	 * Make sure that the number of highmem pages is never larger
 346	 * than the number of the total dirtyable memory. This can only
 347	 * occur in very strange VM situations but we want to make sure
 348	 * that this does not occur.
 349	 */
 350	return min(x, total);
 351#else
 352	return 0;
 353#endif
 354}
 355
 356/**
 357 * global_dirtyable_memory - number of globally dirtyable pages
 358 *
 359 * Return: the global number of pages potentially available for dirty
 360 * page cache.  This is the base value for the global dirty limits.
 361 */
 362static unsigned long global_dirtyable_memory(void)
 363{
 364	unsigned long x;
 365
 366	x = global_zone_page_state(NR_FREE_PAGES);
 367	/*
 368	 * Pages reserved for the kernel should not be considered
 369	 * dirtyable, to prevent a situation where reclaim has to
 370	 * clean pages in order to balance the zones.
 371	 */
 372	x -= min(x, totalreserve_pages);
 373
 374	x += global_node_page_state(NR_INACTIVE_FILE);
 375	x += global_node_page_state(NR_ACTIVE_FILE);
 376
 377	if (!vm_highmem_is_dirtyable)
 378		x -= highmem_dirtyable_memory(x);
 379
 380	return x + 1;	/* Ensure that we never return 0 */
 381}
 382
 383/**
 384 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 385 * @dtc: dirty_throttle_control of interest
 386 *
 387 * Calculate @dtc->thresh and ->bg_thresh considering
 388 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 389 * must ensure that @dtc->avail is set before calling this function.  The
 390 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 391 * real-time tasks.
 392 */
 393static void domain_dirty_limits(struct dirty_throttle_control *dtc)
 394{
 395	const unsigned long available_memory = dtc->avail;
 396	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
 397	unsigned long bytes = vm_dirty_bytes;
 398	unsigned long bg_bytes = dirty_background_bytes;
 399	/* convert ratios to per-PAGE_SIZE for higher precision */
 400	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
 401	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
 402	unsigned long thresh;
 403	unsigned long bg_thresh;
 404	struct task_struct *tsk;
 405
 406	/* gdtc is !NULL iff @dtc is for memcg domain */
 407	if (gdtc) {
 408		unsigned long global_avail = gdtc->avail;
 409
 410		/*
 411		 * The byte settings can't be applied directly to memcg
 412		 * domains.  Convert them to ratios by scaling against
 413		 * globally available memory.  As the ratios are in
 414		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
 415		 * number of pages.
 416		 */
 417		if (bytes)
 418			ratio = min(DIV_ROUND_UP(bytes, global_avail),
 419				    PAGE_SIZE);
 420		if (bg_bytes)
 421			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
 422				       PAGE_SIZE);
 423		bytes = bg_bytes = 0;
 424	}
 425
 426	if (bytes)
 427		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
 428	else
 429		thresh = (ratio * available_memory) / PAGE_SIZE;
 430
 431	if (bg_bytes)
 432		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
 433	else
 434		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
 435
 436	if (bg_thresh >= thresh)
 437		bg_thresh = thresh / 2;
 438	tsk = current;
 439	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 440		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
 441		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
 442	}
 443	dtc->thresh = thresh;
 444	dtc->bg_thresh = bg_thresh;
 445
 446	/* we should eventually report the domain in the TP */
 447	if (!gdtc)
 448		trace_global_dirty_state(bg_thresh, thresh);
 449}
 450
 451/**
 452 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 453 * @pbackground: out parameter for bg_thresh
 454 * @pdirty: out parameter for thresh
 455 *
 456 * Calculate bg_thresh and thresh for global_wb_domain.  See
 457 * domain_dirty_limits() for details.
 458 */
 459void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 460{
 461	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
 462
 463	gdtc.avail = global_dirtyable_memory();
 464	domain_dirty_limits(&gdtc);
 465
 466	*pbackground = gdtc.bg_thresh;
 467	*pdirty = gdtc.thresh;
 
 
 
 
 
 468}
 469
 470/**
 471 * node_dirty_limit - maximum number of dirty pages allowed in a node
 472 * @pgdat: the node
 473 *
 474 * Return: the maximum number of dirty pages allowed in a node, based
 475 * on the node's dirtyable memory.
 476 */
 477static unsigned long node_dirty_limit(struct pglist_data *pgdat)
 478{
 479	unsigned long node_memory = node_dirtyable_memory(pgdat);
 480	struct task_struct *tsk = current;
 481	unsigned long dirty;
 482
 483	if (vm_dirty_bytes)
 484		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 485			node_memory / global_dirtyable_memory();
 486	else
 487		dirty = vm_dirty_ratio * node_memory / 100;
 488
 489	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
 490		dirty += dirty / 4;
 491
 492	return dirty;
 493}
 494
 495/**
 496 * node_dirty_ok - tells whether a node is within its dirty limits
 497 * @pgdat: the node to check
 498 *
 499 * Return: %true when the dirty pages in @pgdat are within the node's
 500 * dirty limit, %false if the limit is exceeded.
 501 */
 502bool node_dirty_ok(struct pglist_data *pgdat)
 503{
 504	unsigned long limit = node_dirty_limit(pgdat);
 505	unsigned long nr_pages = 0;
 506
 507	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
 508	nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
 509	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
 
 510
 511	return nr_pages <= limit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 512}
 513
 514int dirty_background_ratio_handler(struct ctl_table *table, int write,
 515		void __user *buffer, size_t *lenp,
 516		loff_t *ppos)
 517{
 518	int ret;
 519
 520	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 521	if (ret == 0 && write)
 522		dirty_background_bytes = 0;
 523	return ret;
 524}
 525
 526int dirty_background_bytes_handler(struct ctl_table *table, int write,
 527		void __user *buffer, size_t *lenp,
 528		loff_t *ppos)
 529{
 530	int ret;
 531
 532	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 533	if (ret == 0 && write)
 534		dirty_background_ratio = 0;
 535	return ret;
 536}
 537
 538int dirty_ratio_handler(struct ctl_table *table, int write,
 539		void __user *buffer, size_t *lenp,
 540		loff_t *ppos)
 541{
 542	int old_ratio = vm_dirty_ratio;
 543	int ret;
 544
 545	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 546	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 547		writeback_set_ratelimit();
 548		vm_dirty_bytes = 0;
 549	}
 550	return ret;
 551}
 552
 553int dirty_bytes_handler(struct ctl_table *table, int write,
 554		void __user *buffer, size_t *lenp,
 555		loff_t *ppos)
 556{
 557	unsigned long old_bytes = vm_dirty_bytes;
 558	int ret;
 559
 560	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 561	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 562		writeback_set_ratelimit();
 563		vm_dirty_ratio = 0;
 564	}
 565	return ret;
 566}
 567
 568static unsigned long wp_next_time(unsigned long cur_time)
 569{
 570	cur_time += VM_COMPLETIONS_PERIOD_LEN;
 571	/* 0 has a special meaning... */
 572	if (!cur_time)
 573		return 1;
 574	return cur_time;
 575}
 576
 577static void wb_domain_writeout_inc(struct wb_domain *dom,
 578				   struct fprop_local_percpu *completions,
 579				   unsigned int max_prop_frac)
 580{
 581	__fprop_inc_percpu_max(&dom->completions, completions,
 582			       max_prop_frac);
 583	/* First event after period switching was turned off? */
 584	if (unlikely(!dom->period_time)) {
 585		/*
 586		 * We can race with other __bdi_writeout_inc calls here but
 587		 * it does not cause any harm since the resulting time when
 588		 * timer will fire and what is in writeout_period_time will be
 589		 * roughly the same.
 590		 */
 591		dom->period_time = wp_next_time(jiffies);
 592		mod_timer(&dom->period_timer, dom->period_time);
 593	}
 594}
 595
 596/*
 597 * Increment @wb's writeout completion count and the global writeout
 598 * completion count. Called from test_clear_page_writeback().
 599 */
 600static inline void __wb_writeout_inc(struct bdi_writeback *wb)
 601{
 602	struct wb_domain *cgdom;
 603
 604	inc_wb_stat(wb, WB_WRITTEN);
 605	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
 606			       wb->bdi->max_prop_frac);
 607
 608	cgdom = mem_cgroup_wb_domain(wb);
 609	if (cgdom)
 610		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
 611				       wb->bdi->max_prop_frac);
 612}
 613
 614void wb_writeout_inc(struct bdi_writeback *wb)
 615{
 616	unsigned long flags;
 617
 618	local_irq_save(flags);
 619	__wb_writeout_inc(wb);
 620	local_irq_restore(flags);
 621}
 622EXPORT_SYMBOL_GPL(wb_writeout_inc);
 623
 624/*
 625 * On idle system, we can be called long after we scheduled because we use
 626 * deferred timers so count with missed periods.
 627 */
 628static void writeout_period(struct timer_list *t)
 629{
 630	struct wb_domain *dom = from_timer(dom, t, period_timer);
 631	int miss_periods = (jiffies - dom->period_time) /
 632						 VM_COMPLETIONS_PERIOD_LEN;
 633
 634	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
 635		dom->period_time = wp_next_time(dom->period_time +
 636				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
 637		mod_timer(&dom->period_timer, dom->period_time);
 638	} else {
 639		/*
 640		 * Aging has zeroed all fractions. Stop wasting CPU on period
 641		 * updates.
 642		 */
 643		dom->period_time = 0;
 644	}
 645}
 646
 647int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
 648{
 649	memset(dom, 0, sizeof(*dom));
 650
 651	spin_lock_init(&dom->lock);
 652
 653	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
 654
 655	dom->dirty_limit_tstamp = jiffies;
 656
 657	return fprop_global_init(&dom->completions, gfp);
 658}
 659
 660#ifdef CONFIG_CGROUP_WRITEBACK
 661void wb_domain_exit(struct wb_domain *dom)
 662{
 663	del_timer_sync(&dom->period_timer);
 664	fprop_global_destroy(&dom->completions);
 665}
 666#endif
 667
 668/*
 669 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 670 * registered backing devices, which, for obvious reasons, can not
 671 * exceed 100%.
 672 */
 673static unsigned int bdi_min_ratio;
 674
 675int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 676{
 677	int ret = 0;
 678
 679	spin_lock_bh(&bdi_lock);
 680	if (min_ratio > bdi->max_ratio) {
 681		ret = -EINVAL;
 682	} else {
 683		min_ratio -= bdi->min_ratio;
 684		if (bdi_min_ratio + min_ratio < 100) {
 685			bdi_min_ratio += min_ratio;
 686			bdi->min_ratio += min_ratio;
 687		} else {
 688			ret = -EINVAL;
 689		}
 690	}
 691	spin_unlock_bh(&bdi_lock);
 692
 693	return ret;
 694}
 695
 696int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 697{
 698	int ret = 0;
 699
 700	if (max_ratio > 100)
 701		return -EINVAL;
 702
 703	spin_lock_bh(&bdi_lock);
 704	if (bdi->min_ratio > max_ratio) {
 705		ret = -EINVAL;
 706	} else {
 707		bdi->max_ratio = max_ratio;
 708		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
 709	}
 710	spin_unlock_bh(&bdi_lock);
 711
 712	return ret;
 713}
 714EXPORT_SYMBOL(bdi_set_max_ratio);
 715
 716static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 717					   unsigned long bg_thresh)
 718{
 719	return (thresh + bg_thresh) / 2;
 720}
 721
 722static unsigned long hard_dirty_limit(struct wb_domain *dom,
 723				      unsigned long thresh)
 724{
 725	return max(thresh, dom->dirty_limit);
 726}
 727
 728/*
 729 * Memory which can be further allocated to a memcg domain is capped by
 730 * system-wide clean memory excluding the amount being used in the domain.
 731 */
 732static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
 733			    unsigned long filepages, unsigned long headroom)
 734{
 735	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
 736	unsigned long clean = filepages - min(filepages, mdtc->dirty);
 737	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
 738	unsigned long other_clean = global_clean - min(global_clean, clean);
 739
 740	mdtc->avail = filepages + min(headroom, other_clean);
 741}
 742
 743/**
 744 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 745 * @dtc: dirty_throttle_context of interest
 
 
 
 
 746 *
 747 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 748 * when sleeping max_pause per page is not enough to keep the dirty pages under
 749 * control. For example, when the device is completely stalled due to some error
 750 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 751 * In the other normal situations, it acts more gently by throttling the tasks
 752 * more (rather than completely block them) when the wb dirty pages go high.
 753 *
 754 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 755 * - starving fast devices
 756 * - piling up dirty pages (that will take long time to sync) on slow devices
 757 *
 758 * The wb's share of dirty limit will be adapting to its throughput and
 759 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 760 *
 761 * Return: @wb's dirty limit in pages. The term "dirty" in the context of
 762 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 763 */
 764static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
 765{
 766	struct wb_domain *dom = dtc_dom(dtc);
 767	unsigned long thresh = dtc->thresh;
 768	u64 wb_thresh;
 769	long numerator, denominator;
 770	unsigned long wb_min_ratio, wb_max_ratio;
 771
 772	/*
 773	 * Calculate this BDI's share of the thresh ratio.
 774	 */
 775	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
 776			      &numerator, &denominator);
 777
 778	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
 779	wb_thresh *= numerator;
 780	do_div(wb_thresh, denominator);
 781
 782	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
 783
 784	wb_thresh += (thresh * wb_min_ratio) / 100;
 785	if (wb_thresh > (thresh * wb_max_ratio) / 100)
 786		wb_thresh = thresh * wb_max_ratio / 100;
 787
 788	return wb_thresh;
 789}
 790
 791unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
 792{
 793	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
 794					       .thresh = thresh };
 795	return __wb_calc_thresh(&gdtc);
 796}
 797
 798/*
 799 *                           setpoint - dirty 3
 800 *        f(dirty) := 1.0 + (----------------)
 801 *                           limit - setpoint
 802 *
 803 * it's a 3rd order polynomial that subjects to
 804 *
 805 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 806 * (2) f(setpoint) = 1.0 => the balance point
 807 * (3) f(limit)    = 0   => the hard limit
 808 * (4) df/dx      <= 0	 => negative feedback control
 809 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 810 *     => fast response on large errors; small oscillation near setpoint
 811 */
 812static long long pos_ratio_polynom(unsigned long setpoint,
 813					  unsigned long dirty,
 814					  unsigned long limit)
 815{
 816	long long pos_ratio;
 817	long x;
 818
 819	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
 820		      (limit - setpoint) | 1);
 821	pos_ratio = x;
 822	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 823	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 824	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 825
 826	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
 827}
 828
 829/*
 830 * Dirty position control.
 831 *
 832 * (o) global/bdi setpoints
 833 *
 834 * We want the dirty pages be balanced around the global/wb setpoints.
 835 * When the number of dirty pages is higher/lower than the setpoint, the
 836 * dirty position control ratio (and hence task dirty ratelimit) will be
 837 * decreased/increased to bring the dirty pages back to the setpoint.
 838 *
 839 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 840 *
 841 *     if (dirty < setpoint) scale up   pos_ratio
 842 *     if (dirty > setpoint) scale down pos_ratio
 843 *
 844 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 845 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
 846 *
 847 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 848 *
 849 * (o) global control line
 850 *
 851 *     ^ pos_ratio
 852 *     |
 853 *     |            |<===== global dirty control scope ======>|
 854 * 2.0 .............*
 855 *     |            .*
 856 *     |            . *
 857 *     |            .   *
 858 *     |            .     *
 859 *     |            .        *
 860 *     |            .            *
 861 * 1.0 ................................*
 862 *     |            .                  .     *
 863 *     |            .                  .          *
 864 *     |            .                  .              *
 865 *     |            .                  .                 *
 866 *     |            .                  .                    *
 867 *   0 +------------.------------------.----------------------*------------->
 868 *           freerun^          setpoint^                 limit^   dirty pages
 869 *
 870 * (o) wb control line
 871 *
 872 *     ^ pos_ratio
 873 *     |
 874 *     |            *
 875 *     |              *
 876 *     |                *
 877 *     |                  *
 878 *     |                    * |<=========== span ============>|
 879 * 1.0 .......................*
 880 *     |                      . *
 881 *     |                      .   *
 882 *     |                      .     *
 883 *     |                      .       *
 884 *     |                      .         *
 885 *     |                      .           *
 886 *     |                      .             *
 887 *     |                      .               *
 888 *     |                      .                 *
 889 *     |                      .                   *
 890 *     |                      .                     *
 891 * 1/4 ...............................................* * * * * * * * * * * *
 892 *     |                      .                         .
 893 *     |                      .                           .
 894 *     |                      .                             .
 895 *   0 +----------------------.-------------------------------.------------->
 896 *                wb_setpoint^                    x_intercept^
 897 *
 898 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
 899 * be smoothly throttled down to normal if it starts high in situations like
 900 * - start writing to a slow SD card and a fast disk at the same time. The SD
 901 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 902 * - the wb dirty thresh drops quickly due to change of JBOD workload
 903 */
 904static void wb_position_ratio(struct dirty_throttle_control *dtc)
 905{
 906	struct bdi_writeback *wb = dtc->wb;
 907	unsigned long write_bw = wb->avg_write_bandwidth;
 908	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
 909	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
 910	unsigned long wb_thresh = dtc->wb_thresh;
 
 
 
 911	unsigned long x_intercept;
 912	unsigned long setpoint;		/* dirty pages' target balance point */
 913	unsigned long wb_setpoint;
 914	unsigned long span;
 915	long long pos_ratio;		/* for scaling up/down the rate limit */
 916	long x;
 917
 918	dtc->pos_ratio = 0;
 919
 920	if (unlikely(dtc->dirty >= limit))
 921		return;
 922
 923	/*
 924	 * global setpoint
 925	 *
 926	 * See comment for pos_ratio_polynom().
 
 
 
 
 
 
 
 
 
 
 
 927	 */
 928	setpoint = (freerun + limit) / 2;
 929	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
 930
 931	/*
 932	 * The strictlimit feature is a tool preventing mistrusted filesystems
 933	 * from growing a large number of dirty pages before throttling. For
 934	 * such filesystems balance_dirty_pages always checks wb counters
 935	 * against wb limits. Even if global "nr_dirty" is under "freerun".
 936	 * This is especially important for fuse which sets bdi->max_ratio to
 937	 * 1% by default. Without strictlimit feature, fuse writeback may
 938	 * consume arbitrary amount of RAM because it is accounted in
 939	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
 940	 *
 941	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
 942	 * two values: wb_dirty and wb_thresh. Let's consider an example:
 943	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
 944	 * limits are set by default to 10% and 20% (background and throttle).
 945	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
 946	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
 947	 * about ~6K pages (as the average of background and throttle wb
 948	 * limits). The 3rd order polynomial will provide positive feedback if
 949	 * wb_dirty is under wb_setpoint and vice versa.
 950	 *
 951	 * Note, that we cannot use global counters in these calculations
 952	 * because we want to throttle process writing to a strictlimit wb
 953	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
 954	 * in the example above).
 955	 */
 956	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
 957		long long wb_pos_ratio;
 958
 959		if (dtc->wb_dirty < 8) {
 960			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
 961					   2 << RATELIMIT_CALC_SHIFT);
 962			return;
 963		}
 964
 965		if (dtc->wb_dirty >= wb_thresh)
 966			return;
 967
 968		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
 969						    dtc->wb_bg_thresh);
 970
 971		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
 972			return;
 973
 974		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
 975						 wb_thresh);
 976
 977		/*
 978		 * Typically, for strictlimit case, wb_setpoint << setpoint
 979		 * and pos_ratio >> wb_pos_ratio. In the other words global
 980		 * state ("dirty") is not limiting factor and we have to
 981		 * make decision based on wb counters. But there is an
 982		 * important case when global pos_ratio should get precedence:
 983		 * global limits are exceeded (e.g. due to activities on other
 984		 * wb's) while given strictlimit wb is below limit.
 985		 *
 986		 * "pos_ratio * wb_pos_ratio" would work for the case above,
 987		 * but it would look too non-natural for the case of all
 988		 * activity in the system coming from a single strictlimit wb
 989		 * with bdi->max_ratio == 100%.
 990		 *
 991		 * Note that min() below somewhat changes the dynamics of the
 992		 * control system. Normally, pos_ratio value can be well over 3
 993		 * (when globally we are at freerun and wb is well below wb
 994		 * setpoint). Now the maximum pos_ratio in the same situation
 995		 * is 2. We might want to tweak this if we observe the control
 996		 * system is too slow to adapt.
 997		 */
 998		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
 999		return;
1000	}
1001
1002	/*
1003	 * We have computed basic pos_ratio above based on global situation. If
1004	 * the wb is over/under its share of dirty pages, we want to scale
1005	 * pos_ratio further down/up. That is done by the following mechanism.
1006	 */
1007
1008	/*
1009	 * wb setpoint
1010	 *
1011	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1012	 *
1013	 *                        x_intercept - wb_dirty
1014	 *                     := --------------------------
1015	 *                        x_intercept - wb_setpoint
1016	 *
1017	 * The main wb control line is a linear function that subjects to
1018	 *
1019	 * (1) f(wb_setpoint) = 1.0
1020	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1021	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1022	 *
1023	 * For single wb case, the dirty pages are observed to fluctuate
1024	 * regularly within range
1025	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1026	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1027	 * fluctuation range for pos_ratio.
1028	 *
1029	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1030	 * own size, so move the slope over accordingly and choose a slope that
1031	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1032	 */
1033	if (unlikely(wb_thresh > dtc->thresh))
1034		wb_thresh = dtc->thresh;
1035	/*
1036	 * It's very possible that wb_thresh is close to 0 not because the
1037	 * device is slow, but that it has remained inactive for long time.
1038	 * Honour such devices a reasonable good (hopefully IO efficient)
1039	 * threshold, so that the occasional writes won't be blocked and active
1040	 * writes can rampup the threshold quickly.
1041	 */
1042	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1043	/*
1044	 * scale global setpoint to wb's:
1045	 *	wb_setpoint = setpoint * wb_thresh / thresh
1046	 */
1047	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1048	wb_setpoint = setpoint * (u64)x >> 16;
1049	/*
1050	 * Use span=(8*write_bw) in single wb case as indicated by
1051	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1052	 *
1053	 *        wb_thresh                    thresh - wb_thresh
1054	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1055	 *         thresh                           thresh
1056	 */
1057	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1058	x_intercept = wb_setpoint + span;
1059
1060	if (dtc->wb_dirty < x_intercept - span / 4) {
1061		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1062				      (x_intercept - wb_setpoint) | 1);
1063	} else
1064		pos_ratio /= 4;
1065
1066	/*
1067	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1068	 * It may push the desired control point of global dirty pages higher
1069	 * than setpoint.
1070	 */
1071	x_intercept = wb_thresh / 2;
1072	if (dtc->wb_dirty < x_intercept) {
1073		if (dtc->wb_dirty > x_intercept / 8)
1074			pos_ratio = div_u64(pos_ratio * x_intercept,
1075					    dtc->wb_dirty);
1076		else
1077			pos_ratio *= 8;
1078	}
1079
1080	dtc->pos_ratio = pos_ratio;
1081}
1082
1083static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1084				      unsigned long elapsed,
1085				      unsigned long written)
1086{
1087	const unsigned long period = roundup_pow_of_two(3 * HZ);
1088	unsigned long avg = wb->avg_write_bandwidth;
1089	unsigned long old = wb->write_bandwidth;
1090	u64 bw;
1091
1092	/*
1093	 * bw = written * HZ / elapsed
1094	 *
1095	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1096	 * write_bandwidth = ---------------------------------------------------
1097	 *                                          period
1098	 *
1099	 * @written may have decreased due to account_page_redirty().
1100	 * Avoid underflowing @bw calculation.
1101	 */
1102	bw = written - min(written, wb->written_stamp);
1103	bw *= HZ;
1104	if (unlikely(elapsed > period)) {
1105		do_div(bw, elapsed);
1106		avg = bw;
1107		goto out;
1108	}
1109	bw += (u64)wb->write_bandwidth * (period - elapsed);
1110	bw >>= ilog2(period);
1111
1112	/*
1113	 * one more level of smoothing, for filtering out sudden spikes
1114	 */
1115	if (avg > old && old >= (unsigned long)bw)
1116		avg -= (avg - old) >> 3;
1117
1118	if (avg < old && old <= (unsigned long)bw)
1119		avg += (old - avg) >> 3;
1120
1121out:
1122	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1123	avg = max(avg, 1LU);
1124	if (wb_has_dirty_io(wb)) {
1125		long delta = avg - wb->avg_write_bandwidth;
1126		WARN_ON_ONCE(atomic_long_add_return(delta,
1127					&wb->bdi->tot_write_bandwidth) <= 0);
1128	}
1129	wb->write_bandwidth = bw;
1130	wb->avg_write_bandwidth = avg;
1131}
1132
1133static void update_dirty_limit(struct dirty_throttle_control *dtc)
1134{
1135	struct wb_domain *dom = dtc_dom(dtc);
1136	unsigned long thresh = dtc->thresh;
1137	unsigned long limit = dom->dirty_limit;
1138
1139	/*
1140	 * Follow up in one step.
1141	 */
1142	if (limit < thresh) {
1143		limit = thresh;
1144		goto update;
1145	}
1146
1147	/*
1148	 * Follow down slowly. Use the higher one as the target, because thresh
1149	 * may drop below dirty. This is exactly the reason to introduce
1150	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1151	 */
1152	thresh = max(thresh, dtc->dirty);
1153	if (limit > thresh) {
1154		limit -= (limit - thresh) >> 5;
1155		goto update;
1156	}
1157	return;
1158update:
1159	dom->dirty_limit = limit;
1160}
1161
1162static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
 
1163				    unsigned long now)
1164{
1165	struct wb_domain *dom = dtc_dom(dtc);
 
1166
1167	/*
1168	 * check locklessly first to optimize away locking for the most time
1169	 */
1170	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1171		return;
1172
1173	spin_lock(&dom->lock);
1174	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1175		update_dirty_limit(dtc);
1176		dom->dirty_limit_tstamp = now;
1177	}
1178	spin_unlock(&dom->lock);
1179}
1180
1181/*
1182 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1183 *
1184 * Normal wb tasks will be curbed at or below it in long term.
1185 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1186 */
1187static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1188				      unsigned long dirtied,
1189				      unsigned long elapsed)
1190{
1191	struct bdi_writeback *wb = dtc->wb;
1192	unsigned long dirty = dtc->dirty;
1193	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1194	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
 
 
 
1195	unsigned long setpoint = (freerun + limit) / 2;
1196	unsigned long write_bw = wb->avg_write_bandwidth;
1197	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1198	unsigned long dirty_rate;
1199	unsigned long task_ratelimit;
1200	unsigned long balanced_dirty_ratelimit;
 
1201	unsigned long step;
1202	unsigned long x;
1203	unsigned long shift;
1204
1205	/*
1206	 * The dirty rate will match the writeout rate in long term, except
1207	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1208	 */
1209	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1210
 
 
1211	/*
1212	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1213	 */
1214	task_ratelimit = (u64)dirty_ratelimit *
1215					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1216	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1217
1218	/*
1219	 * A linear estimation of the "balanced" throttle rate. The theory is,
1220	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1221	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1222	 * formula will yield the balanced rate limit (write_bw / N).
1223	 *
1224	 * Note that the expanded form is not a pure rate feedback:
1225	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1226	 * but also takes pos_ratio into account:
1227	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1228	 *
1229	 * (1) is not realistic because pos_ratio also takes part in balancing
1230	 * the dirty rate.  Consider the state
1231	 *	pos_ratio = 0.5						     (3)
1232	 *	rate = 2 * (write_bw / N)				     (4)
1233	 * If (1) is used, it will stuck in that state! Because each dd will
1234	 * be throttled at
1235	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1236	 * yielding
1237	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1238	 * put (6) into (1) we get
1239	 *	rate_(i+1) = rate_(i)					     (7)
1240	 *
1241	 * So we end up using (2) to always keep
1242	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1243	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1244	 * pos_ratio is able to drive itself to 1.0, which is not only where
1245	 * the dirty count meet the setpoint, but also where the slope of
1246	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1247	 */
1248	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1249					   dirty_rate | 1);
1250	/*
1251	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1252	 */
1253	if (unlikely(balanced_dirty_ratelimit > write_bw))
1254		balanced_dirty_ratelimit = write_bw;
1255
1256	/*
1257	 * We could safely do this and return immediately:
1258	 *
1259	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1260	 *
1261	 * However to get a more stable dirty_ratelimit, the below elaborated
1262	 * code makes use of task_ratelimit to filter out singular points and
1263	 * limit the step size.
1264	 *
1265	 * The below code essentially only uses the relative value of
1266	 *
1267	 *	task_ratelimit - dirty_ratelimit
1268	 *	= (pos_ratio - 1) * dirty_ratelimit
1269	 *
1270	 * which reflects the direction and size of dirty position error.
1271	 */
1272
1273	/*
1274	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1275	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1276	 * For example, when
1277	 * - dirty_ratelimit > balanced_dirty_ratelimit
1278	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1279	 * lowering dirty_ratelimit will help meet both the position and rate
1280	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1281	 * only help meet the rate target. After all, what the users ultimately
1282	 * feel and care are stable dirty rate and small position error.
1283	 *
1284	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1285	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1286	 * keeps jumping around randomly and can even leap far away at times
1287	 * due to the small 200ms estimation period of dirty_rate (we want to
1288	 * keep that period small to reduce time lags).
1289	 */
1290	step = 0;
1291
1292	/*
1293	 * For strictlimit case, calculations above were based on wb counters
1294	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1295	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1296	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1297	 * "dirty" and wb_setpoint as "setpoint".
1298	 *
1299	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1300	 * it's possible that wb_thresh is close to zero due to inactivity
1301	 * of backing device.
1302	 */
1303	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1304		dirty = dtc->wb_dirty;
1305		if (dtc->wb_dirty < 8)
1306			setpoint = dtc->wb_dirty + 1;
1307		else
1308			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1309	}
1310
1311	if (dirty < setpoint) {
1312		x = min3(wb->balanced_dirty_ratelimit,
1313			 balanced_dirty_ratelimit, task_ratelimit);
1314		if (dirty_ratelimit < x)
1315			step = x - dirty_ratelimit;
1316	} else {
1317		x = max3(wb->balanced_dirty_ratelimit,
1318			 balanced_dirty_ratelimit, task_ratelimit);
1319		if (dirty_ratelimit > x)
1320			step = dirty_ratelimit - x;
1321	}
1322
1323	/*
1324	 * Don't pursue 100% rate matching. It's impossible since the balanced
1325	 * rate itself is constantly fluctuating. So decrease the track speed
1326	 * when it gets close to the target. Helps eliminate pointless tremors.
1327	 */
1328	shift = dirty_ratelimit / (2 * step + 1);
1329	if (shift < BITS_PER_LONG)
1330		step = DIV_ROUND_UP(step >> shift, 8);
1331	else
1332		step = 0;
1333
1334	if (dirty_ratelimit < balanced_dirty_ratelimit)
1335		dirty_ratelimit += step;
1336	else
1337		dirty_ratelimit -= step;
1338
1339	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1340	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1341
1342	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1343}
1344
1345static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1346				  struct dirty_throttle_control *mdtc,
1347				  unsigned long start_time,
1348				  bool update_ratelimit)
 
 
 
1349{
1350	struct bdi_writeback *wb = gdtc->wb;
1351	unsigned long now = jiffies;
1352	unsigned long elapsed = now - wb->bw_time_stamp;
1353	unsigned long dirtied;
1354	unsigned long written;
1355
1356	lockdep_assert_held(&wb->list_lock);
1357
1358	/*
1359	 * rate-limit, only update once every 200ms.
1360	 */
1361	if (elapsed < BANDWIDTH_INTERVAL)
1362		return;
1363
1364	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1365	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1366
1367	/*
1368	 * Skip quiet periods when disk bandwidth is under-utilized.
1369	 * (at least 1s idle time between two flusher runs)
1370	 */
1371	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1372		goto snapshot;
1373
1374	if (update_ratelimit) {
1375		domain_update_bandwidth(gdtc, now);
1376		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1377
1378		/*
1379		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1380		 * compiler has no way to figure that out.  Help it.
1381		 */
1382		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1383			domain_update_bandwidth(mdtc, now);
1384			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1385		}
1386	}
1387	wb_update_write_bandwidth(wb, elapsed, written);
1388
1389snapshot:
1390	wb->dirtied_stamp = dirtied;
1391	wb->written_stamp = written;
1392	wb->bw_time_stamp = now;
1393}
1394
1395void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
 
 
 
 
 
 
1396{
1397	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1398
1399	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
 
 
 
1400}
1401
1402/*
1403 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1404 * will look to see if it needs to start dirty throttling.
1405 *
1406 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1407 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1408 * (the number of pages we may dirty without exceeding the dirty limits).
1409 */
1410static unsigned long dirty_poll_interval(unsigned long dirty,
1411					 unsigned long thresh)
1412{
1413	if (thresh > dirty)
1414		return 1UL << (ilog2(thresh - dirty) >> 1);
1415
1416	return 1;
1417}
1418
1419static unsigned long wb_max_pause(struct bdi_writeback *wb,
1420				  unsigned long wb_dirty)
1421{
1422	unsigned long bw = wb->avg_write_bandwidth;
1423	unsigned long t;
1424
1425	/*
1426	 * Limit pause time for small memory systems. If sleeping for too long
1427	 * time, a small pool of dirty/writeback pages may go empty and disk go
1428	 * idle.
1429	 *
1430	 * 8 serves as the safety ratio.
1431	 */
1432	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1433	t++;
1434
1435	return min_t(unsigned long, t, MAX_PAUSE);
1436}
1437
1438static long wb_min_pause(struct bdi_writeback *wb,
1439			 long max_pause,
1440			 unsigned long task_ratelimit,
1441			 unsigned long dirty_ratelimit,
1442			 int *nr_dirtied_pause)
1443{
1444	long hi = ilog2(wb->avg_write_bandwidth);
1445	long lo = ilog2(wb->dirty_ratelimit);
1446	long t;		/* target pause */
1447	long pause;	/* estimated next pause */
1448	int pages;	/* target nr_dirtied_pause */
1449
1450	/* target for 10ms pause on 1-dd case */
1451	t = max(1, HZ / 100);
1452
1453	/*
1454	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1455	 * overheads.
1456	 *
1457	 * (N * 10ms) on 2^N concurrent tasks.
1458	 */
1459	if (hi > lo)
1460		t += (hi - lo) * (10 * HZ) / 1024;
1461
1462	/*
1463	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1464	 * on the much more stable dirty_ratelimit. However the next pause time
1465	 * will be computed based on task_ratelimit and the two rate limits may
1466	 * depart considerably at some time. Especially if task_ratelimit goes
1467	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1468	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1469	 * result task_ratelimit won't be executed faithfully, which could
1470	 * eventually bring down dirty_ratelimit.
1471	 *
1472	 * We apply two rules to fix it up:
1473	 * 1) try to estimate the next pause time and if necessary, use a lower
1474	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1475	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1476	 * 2) limit the target pause time to max_pause/2, so that the normal
1477	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1478	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1479	 */
1480	t = min(t, 1 + max_pause / 2);
1481	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1482
1483	/*
1484	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1485	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1486	 * When the 16 consecutive reads are often interrupted by some dirty
1487	 * throttling pause during the async writes, cfq will go into idles
1488	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1489	 * until reaches DIRTY_POLL_THRESH=32 pages.
1490	 */
1491	if (pages < DIRTY_POLL_THRESH) {
1492		t = max_pause;
1493		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1494		if (pages > DIRTY_POLL_THRESH) {
1495			pages = DIRTY_POLL_THRESH;
1496			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1497		}
1498	}
1499
1500	pause = HZ * pages / (task_ratelimit + 1);
1501	if (pause > max_pause) {
1502		t = max_pause;
1503		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1504	}
1505
1506	*nr_dirtied_pause = pages;
1507	/*
1508	 * The minimal pause time will normally be half the target pause time.
1509	 */
1510	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1511}
1512
1513static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1514{
1515	struct bdi_writeback *wb = dtc->wb;
1516	unsigned long wb_reclaimable;
1517
1518	/*
1519	 * wb_thresh is not treated as some limiting factor as
1520	 * dirty_thresh, due to reasons
1521	 * - in JBOD setup, wb_thresh can fluctuate a lot
1522	 * - in a system with HDD and USB key, the USB key may somehow
1523	 *   go into state (wb_dirty >> wb_thresh) either because
1524	 *   wb_dirty starts high, or because wb_thresh drops low.
1525	 *   In this case we don't want to hard throttle the USB key
1526	 *   dirtiers for 100 seconds until wb_dirty drops under
1527	 *   wb_thresh. Instead the auxiliary wb control line in
1528	 *   wb_position_ratio() will let the dirtier task progress
1529	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1530	 */
1531	dtc->wb_thresh = __wb_calc_thresh(dtc);
1532	dtc->wb_bg_thresh = dtc->thresh ?
1533		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1534
1535	/*
1536	 * In order to avoid the stacked BDI deadlock we need
1537	 * to ensure we accurately count the 'dirty' pages when
1538	 * the threshold is low.
1539	 *
1540	 * Otherwise it would be possible to get thresh+n pages
1541	 * reported dirty, even though there are thresh-m pages
1542	 * actually dirty; with m+n sitting in the percpu
1543	 * deltas.
1544	 */
1545	if (dtc->wb_thresh < 2 * wb_stat_error()) {
1546		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1547		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1548	} else {
1549		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1550		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1551	}
1552}
1553
1554/*
1555 * balance_dirty_pages() must be called by processes which are generating dirty
1556 * data.  It looks at the number of dirty pages in the machine and will force
1557 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1558 * If we're over `background_thresh' then the writeback threads are woken to
1559 * perform some writeout.
1560 */
1561static void balance_dirty_pages(struct bdi_writeback *wb,
1562				unsigned long pages_dirtied)
1563{
1564	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1565	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1566	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1567	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1568						     &mdtc_stor : NULL;
1569	struct dirty_throttle_control *sdtc;
1570	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
 
 
 
 
 
 
 
1571	long period;
1572	long pause;
1573	long max_pause;
1574	long min_pause;
1575	int nr_dirtied_pause;
1576	bool dirty_exceeded = false;
1577	unsigned long task_ratelimit;
1578	unsigned long dirty_ratelimit;
1579	struct backing_dev_info *bdi = wb->bdi;
1580	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1581	unsigned long start_time = jiffies;
1582
1583	for (;;) {
1584		unsigned long now = jiffies;
1585		unsigned long dirty, thresh, bg_thresh;
1586		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1587		unsigned long m_thresh = 0;
1588		unsigned long m_bg_thresh = 0;
1589
1590		/*
1591		 * Unstable writes are a feature of certain networked
1592		 * filesystems (i.e. NFS) in which data may have been
1593		 * written to the server's write cache, but has not yet
1594		 * been flushed to permanent storage.
1595		 */
1596		nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
1597					global_node_page_state(NR_UNSTABLE_NFS);
1598		gdtc->avail = global_dirtyable_memory();
1599		gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1600
1601		domain_dirty_limits(gdtc);
1602
1603		if (unlikely(strictlimit)) {
1604			wb_dirty_limits(gdtc);
1605
1606			dirty = gdtc->wb_dirty;
1607			thresh = gdtc->wb_thresh;
1608			bg_thresh = gdtc->wb_bg_thresh;
1609		} else {
1610			dirty = gdtc->dirty;
1611			thresh = gdtc->thresh;
1612			bg_thresh = gdtc->bg_thresh;
1613		}
1614
1615		if (mdtc) {
1616			unsigned long filepages, headroom, writeback;
1617
1618			/*
1619			 * If @wb belongs to !root memcg, repeat the same
1620			 * basic calculations for the memcg domain.
1621			 */
1622			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1623					    &mdtc->dirty, &writeback);
1624			mdtc->dirty += writeback;
1625			mdtc_calc_avail(mdtc, filepages, headroom);
1626
1627			domain_dirty_limits(mdtc);
1628
1629			if (unlikely(strictlimit)) {
1630				wb_dirty_limits(mdtc);
1631				m_dirty = mdtc->wb_dirty;
1632				m_thresh = mdtc->wb_thresh;
1633				m_bg_thresh = mdtc->wb_bg_thresh;
1634			} else {
1635				m_dirty = mdtc->dirty;
1636				m_thresh = mdtc->thresh;
1637				m_bg_thresh = mdtc->bg_thresh;
1638			}
1639		}
1640
1641		/*
1642		 * Throttle it only when the background writeback cannot
1643		 * catch-up. This avoids (excessively) small writeouts
1644		 * when the wb limits are ramping up in case of !strictlimit.
1645		 *
1646		 * In strictlimit case make decision based on the wb counters
1647		 * and limits. Small writeouts when the wb limits are ramping
1648		 * up are the price we consciously pay for strictlimit-ing.
1649		 *
1650		 * If memcg domain is in effect, @dirty should be under
1651		 * both global and memcg freerun ceilings.
1652		 */
1653		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1654		    (!mdtc ||
1655		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1656			unsigned long intv = dirty_poll_interval(dirty, thresh);
1657			unsigned long m_intv = ULONG_MAX;
1658
1659			current->dirty_paused_when = now;
1660			current->nr_dirtied = 0;
1661			if (mdtc)
1662				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1663			current->nr_dirtied_pause = min(intv, m_intv);
1664			break;
1665		}
1666
1667		if (unlikely(!writeback_in_progress(wb)))
1668			wb_start_background_writeback(wb);
1669
1670		mem_cgroup_flush_foreign(wb);
1671
1672		/*
1673		 * Calculate global domain's pos_ratio and select the
1674		 * global dtc by default.
 
 
 
 
 
 
 
 
 
1675		 */
1676		if (!strictlimit)
1677			wb_dirty_limits(gdtc);
1678
1679		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1680			((gdtc->dirty > gdtc->thresh) || strictlimit);
1681
1682		wb_position_ratio(gdtc);
1683		sdtc = gdtc;
1684
1685		if (mdtc) {
1686			/*
1687			 * If memcg domain is in effect, calculate its
1688			 * pos_ratio.  @wb should satisfy constraints from
1689			 * both global and memcg domains.  Choose the one
1690			 * w/ lower pos_ratio.
1691			 */
1692			if (!strictlimit)
1693				wb_dirty_limits(mdtc);
1694
1695			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1696				((mdtc->dirty > mdtc->thresh) || strictlimit);
1697
1698			wb_position_ratio(mdtc);
1699			if (mdtc->pos_ratio < gdtc->pos_ratio)
1700				sdtc = mdtc;
1701		}
1702
1703		if (dirty_exceeded && !wb->dirty_exceeded)
1704			wb->dirty_exceeded = 1;
1705
1706		if (time_is_before_jiffies(wb->bw_time_stamp +
1707					   BANDWIDTH_INTERVAL)) {
1708			spin_lock(&wb->list_lock);
1709			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1710			spin_unlock(&wb->list_lock);
1711		}
1712
1713		/* throttle according to the chosen dtc */
1714		dirty_ratelimit = wb->dirty_ratelimit;
1715		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
 
 
 
1716							RATELIMIT_CALC_SHIFT;
1717		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1718		min_pause = wb_min_pause(wb, max_pause,
1719					 task_ratelimit, dirty_ratelimit,
1720					 &nr_dirtied_pause);
1721
1722		if (unlikely(task_ratelimit == 0)) {
1723			period = max_pause;
1724			pause = max_pause;
1725			goto pause;
1726		}
1727		period = HZ * pages_dirtied / task_ratelimit;
1728		pause = period;
1729		if (current->dirty_paused_when)
1730			pause -= now - current->dirty_paused_when;
1731		/*
1732		 * For less than 1s think time (ext3/4 may block the dirtier
1733		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1734		 * however at much less frequency), try to compensate it in
1735		 * future periods by updating the virtual time; otherwise just
1736		 * do a reset, as it may be a light dirtier.
1737		 */
1738		if (pause < min_pause) {
1739			trace_balance_dirty_pages(wb,
1740						  sdtc->thresh,
1741						  sdtc->bg_thresh,
1742						  sdtc->dirty,
1743						  sdtc->wb_thresh,
1744						  sdtc->wb_dirty,
1745						  dirty_ratelimit,
1746						  task_ratelimit,
1747						  pages_dirtied,
1748						  period,
1749						  min(pause, 0L),
1750						  start_time);
1751			if (pause < -HZ) {
1752				current->dirty_paused_when = now;
1753				current->nr_dirtied = 0;
1754			} else if (period) {
1755				current->dirty_paused_when += period;
1756				current->nr_dirtied = 0;
1757			} else if (current->nr_dirtied_pause <= pages_dirtied)
1758				current->nr_dirtied_pause += pages_dirtied;
1759			break;
1760		}
1761		if (unlikely(pause > max_pause)) {
1762			/* for occasional dropped task_ratelimit */
1763			now += min(pause - max_pause, max_pause);
1764			pause = max_pause;
1765		}
1766
1767pause:
1768		trace_balance_dirty_pages(wb,
1769					  sdtc->thresh,
1770					  sdtc->bg_thresh,
1771					  sdtc->dirty,
1772					  sdtc->wb_thresh,
1773					  sdtc->wb_dirty,
1774					  dirty_ratelimit,
1775					  task_ratelimit,
1776					  pages_dirtied,
1777					  period,
1778					  pause,
1779					  start_time);
1780		__set_current_state(TASK_KILLABLE);
1781		wb->dirty_sleep = now;
1782		io_schedule_timeout(pause);
1783
1784		current->dirty_paused_when = now + pause;
1785		current->nr_dirtied = 0;
1786		current->nr_dirtied_pause = nr_dirtied_pause;
1787
1788		/*
1789		 * This is typically equal to (dirty < thresh) and can also
1790		 * keep "1000+ dd on a slow USB stick" under control.
1791		 */
1792		if (task_ratelimit)
1793			break;
1794
1795		/*
1796		 * In the case of an unresponding NFS server and the NFS dirty
1797		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1798		 * to go through, so that tasks on them still remain responsive.
1799		 *
1800		 * In theory 1 page is enough to keep the consumer-producer
1801		 * pipe going: the flusher cleans 1 page => the task dirties 1
1802		 * more page. However wb_dirty has accounting errors.  So use
1803		 * the larger and more IO friendly wb_stat_error.
1804		 */
1805		if (sdtc->wb_dirty <= wb_stat_error())
1806			break;
1807
1808		if (fatal_signal_pending(current))
1809			break;
1810	}
1811
1812	if (!dirty_exceeded && wb->dirty_exceeded)
1813		wb->dirty_exceeded = 0;
1814
1815	if (writeback_in_progress(wb))
1816		return;
1817
1818	/*
1819	 * In laptop mode, we wait until hitting the higher threshold before
1820	 * starting background writeout, and then write out all the way down
1821	 * to the lower threshold.  So slow writers cause minimal disk activity.
1822	 *
1823	 * In normal mode, we start background writeout at the lower
1824	 * background_thresh, to keep the amount of dirty memory low.
1825	 */
1826	if (laptop_mode)
1827		return;
1828
1829	if (nr_reclaimable > gdtc->bg_thresh)
1830		wb_start_background_writeback(wb);
 
 
 
 
 
 
 
 
 
 
1831}
1832
1833static DEFINE_PER_CPU(int, bdp_ratelimits);
1834
1835/*
1836 * Normal tasks are throttled by
1837 *	loop {
1838 *		dirty tsk->nr_dirtied_pause pages;
1839 *		take a snap in balance_dirty_pages();
1840 *	}
1841 * However there is a worst case. If every task exit immediately when dirtied
1842 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1843 * called to throttle the page dirties. The solution is to save the not yet
1844 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1845 * randomly into the running tasks. This works well for the above worst case,
1846 * as the new task will pick up and accumulate the old task's leaked dirty
1847 * count and eventually get throttled.
1848 */
1849DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1850
1851/**
1852 * balance_dirty_pages_ratelimited - balance dirty memory state
1853 * @mapping: address_space which was dirtied
 
1854 *
1855 * Processes which are dirtying memory should call in here once for each page
1856 * which was newly dirtied.  The function will periodically check the system's
1857 * dirty state and will initiate writeback if needed.
1858 *
1859 * On really big machines, get_writeback_state is expensive, so try to avoid
1860 * calling it too often (ratelimiting).  But once we're over the dirty memory
1861 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1862 * from overshooting the limit by (ratelimit_pages) each.
1863 */
1864void balance_dirty_pages_ratelimited(struct address_space *mapping)
 
1865{
1866	struct inode *inode = mapping->host;
1867	struct backing_dev_info *bdi = inode_to_bdi(inode);
1868	struct bdi_writeback *wb = NULL;
1869	int ratelimit;
1870	int *p;
1871
1872	if (!bdi_cap_account_dirty(bdi))
1873		return;
1874
1875	if (inode_cgwb_enabled(inode))
1876		wb = wb_get_create_current(bdi, GFP_KERNEL);
1877	if (!wb)
1878		wb = &bdi->wb;
1879
1880	ratelimit = current->nr_dirtied_pause;
1881	if (wb->dirty_exceeded)
1882		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1883
1884	preempt_disable();
1885	/*
1886	 * This prevents one CPU to accumulate too many dirtied pages without
1887	 * calling into balance_dirty_pages(), which can happen when there are
1888	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1889	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1890	 */
1891	p =  this_cpu_ptr(&bdp_ratelimits);
1892	if (unlikely(current->nr_dirtied >= ratelimit))
1893		*p = 0;
1894	else if (unlikely(*p >= ratelimit_pages)) {
1895		*p = 0;
1896		ratelimit = 0;
1897	}
1898	/*
1899	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1900	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1901	 * the dirty throttling and livelock other long-run dirtiers.
1902	 */
1903	p = this_cpu_ptr(&dirty_throttle_leaks);
1904	if (*p > 0 && current->nr_dirtied < ratelimit) {
1905		unsigned long nr_pages_dirtied;
1906		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1907		*p -= nr_pages_dirtied;
1908		current->nr_dirtied += nr_pages_dirtied;
1909	}
1910	preempt_enable();
1911
1912	if (unlikely(current->nr_dirtied >= ratelimit))
1913		balance_dirty_pages(wb, current->nr_dirtied);
1914
1915	wb_put(wb);
1916}
1917EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1918
1919/**
1920 * wb_over_bg_thresh - does @wb need to be written back?
1921 * @wb: bdi_writeback of interest
1922 *
1923 * Determines whether background writeback should keep writing @wb or it's
1924 * clean enough.
1925 *
1926 * Return: %true if writeback should continue.
1927 */
1928bool wb_over_bg_thresh(struct bdi_writeback *wb)
1929{
1930	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1931	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1932	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1933	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1934						     &mdtc_stor : NULL;
1935
1936	/*
1937	 * Similar to balance_dirty_pages() but ignores pages being written
1938	 * as we're trying to decide whether to put more under writeback.
1939	 */
1940	gdtc->avail = global_dirtyable_memory();
1941	gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
1942		      global_node_page_state(NR_UNSTABLE_NFS);
1943	domain_dirty_limits(gdtc);
1944
1945	if (gdtc->dirty > gdtc->bg_thresh)
1946		return true;
1947
1948	if (wb_stat(wb, WB_RECLAIMABLE) >
1949	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1950		return true;
1951
1952	if (mdtc) {
1953		unsigned long filepages, headroom, writeback;
1954
1955		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1956				    &writeback);
1957		mdtc_calc_avail(mdtc, filepages, headroom);
1958		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
1959
1960		if (mdtc->dirty > mdtc->bg_thresh)
1961			return true;
1962
1963		if (wb_stat(wb, WB_RECLAIMABLE) >
1964		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1965			return true;
1966	}
 
 
 
 
 
 
 
 
 
 
1967
1968	return false;
 
 
 
 
 
 
 
1969}
1970
1971/*
1972 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1973 */
1974int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1975	void __user *buffer, size_t *length, loff_t *ppos)
1976{
1977	unsigned int old_interval = dirty_writeback_interval;
1978	int ret;
1979
1980	ret = proc_dointvec(table, write, buffer, length, ppos);
1981
1982	/*
1983	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
1984	 * and a different non-zero value will wakeup the writeback threads.
1985	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
1986	 * iterate over all bdis and wbs.
1987	 * The reason we do this is to make the change take effect immediately.
1988	 */
1989	if (!ret && write && dirty_writeback_interval &&
1990		dirty_writeback_interval != old_interval)
1991		wakeup_flusher_threads(WB_REASON_PERIODIC);
1992
1993	return ret;
1994}
1995
1996#ifdef CONFIG_BLOCK
1997void laptop_mode_timer_fn(struct timer_list *t)
1998{
1999	struct backing_dev_info *backing_dev_info =
2000		from_timer(backing_dev_info, t, laptop_mode_wb_timer);
 
2001
2002	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
 
 
 
 
 
 
2003}
2004
2005/*
2006 * We've spun up the disk and we're in laptop mode: schedule writeback
2007 * of all dirty data a few seconds from now.  If the flush is already scheduled
2008 * then push it back - the user is still using the disk.
2009 */
2010void laptop_io_completion(struct backing_dev_info *info)
2011{
2012	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2013}
2014
2015/*
2016 * We're in laptop mode and we've just synced. The sync's writes will have
2017 * caused another writeback to be scheduled by laptop_io_completion.
2018 * Nothing needs to be written back anymore, so we unschedule the writeback.
2019 */
2020void laptop_sync_completion(void)
2021{
2022	struct backing_dev_info *bdi;
2023
2024	rcu_read_lock();
2025
2026	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2027		del_timer(&bdi->laptop_mode_wb_timer);
2028
2029	rcu_read_unlock();
2030}
2031#endif
2032
2033/*
2034 * If ratelimit_pages is too high then we can get into dirty-data overload
2035 * if a large number of processes all perform writes at the same time.
2036 * If it is too low then SMP machines will call the (expensive)
2037 * get_writeback_state too often.
2038 *
2039 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2040 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2041 * thresholds.
2042 */
2043
2044void writeback_set_ratelimit(void)
2045{
2046	struct wb_domain *dom = &global_wb_domain;
2047	unsigned long background_thresh;
2048	unsigned long dirty_thresh;
2049
2050	global_dirty_limits(&background_thresh, &dirty_thresh);
2051	dom->dirty_limit = dirty_thresh;
2052	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2053	if (ratelimit_pages < 16)
2054		ratelimit_pages = 16;
2055}
2056
2057static int page_writeback_cpu_online(unsigned int cpu)
 
2058{
2059	writeback_set_ratelimit();
2060	return 0;
2061}
2062
 
 
 
 
 
2063/*
2064 * Called early on to tune the page writeback dirty limits.
2065 *
2066 * We used to scale dirty pages according to how total memory
2067 * related to pages that could be allocated for buffers (by
2068 * comparing nr_free_buffer_pages() to vm_total_pages.
2069 *
2070 * However, that was when we used "dirty_ratio" to scale with
2071 * all memory, and we don't do that any more. "dirty_ratio"
2072 * is now applied to total non-HIGHPAGE memory (by subtracting
2073 * totalhigh_pages from vm_total_pages), and as such we can't
2074 * get into the old insane situation any more where we had
2075 * large amounts of dirty pages compared to a small amount of
2076 * non-HIGHMEM memory.
2077 *
2078 * But we might still want to scale the dirty_ratio by how
2079 * much memory the box has..
2080 */
2081void __init page_writeback_init(void)
2082{
2083	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2084
2085	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2086			  page_writeback_cpu_online, NULL);
2087	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2088			  page_writeback_cpu_online);
 
2089}
2090
2091/**
2092 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2093 * @mapping: address space structure to write
2094 * @start: starting page index
2095 * @end: ending page index (inclusive)
2096 *
2097 * This function scans the page range from @start to @end (inclusive) and tags
2098 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2099 * that write_cache_pages (or whoever calls this function) will then use
2100 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2101 * used to avoid livelocking of writeback by a process steadily creating new
2102 * dirty pages in the file (thus it is important for this function to be quick
2103 * so that it can tag pages faster than a dirtying process can create them).
2104 */
 
 
 
2105void tag_pages_for_writeback(struct address_space *mapping,
2106			     pgoff_t start, pgoff_t end)
2107{
2108	XA_STATE(xas, &mapping->i_pages, start);
2109	unsigned int tagged = 0;
2110	void *page;
2111
2112	xas_lock_irq(&xas);
2113	xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2114		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2115		if (++tagged % XA_CHECK_SCHED)
2116			continue;
2117
2118		xas_pause(&xas);
2119		xas_unlock_irq(&xas);
 
 
 
 
 
2120		cond_resched();
2121		xas_lock_irq(&xas);
2122	}
2123	xas_unlock_irq(&xas);
2124}
2125EXPORT_SYMBOL(tag_pages_for_writeback);
2126
2127/**
2128 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2129 * @mapping: address space structure to write
2130 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2131 * @writepage: function called for each page
2132 * @data: data passed to writepage function
2133 *
2134 * If a page is already under I/O, write_cache_pages() skips it, even
2135 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2136 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2137 * and msync() need to guarantee that all the data which was dirty at the time
2138 * the call was made get new I/O started against them.  If wbc->sync_mode is
2139 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2140 * existing IO to complete.
2141 *
2142 * To avoid livelocks (when other process dirties new pages), we first tag
2143 * pages which should be written back with TOWRITE tag and only then start
2144 * writing them. For data-integrity sync we have to be careful so that we do
2145 * not miss some pages (e.g., because some other process has cleared TOWRITE
2146 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2147 * by the process clearing the DIRTY tag (and submitting the page for IO).
2148 *
2149 * To avoid deadlocks between range_cyclic writeback and callers that hold
2150 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2151 * we do not loop back to the start of the file. Doing so causes a page
2152 * lock/page writeback access order inversion - we should only ever lock
2153 * multiple pages in ascending page->index order, and looping back to the start
2154 * of the file violates that rule and causes deadlocks.
2155 *
2156 * Return: %0 on success, negative error code otherwise
2157 */
2158int write_cache_pages(struct address_space *mapping,
2159		      struct writeback_control *wbc, writepage_t writepage,
2160		      void *data)
2161{
2162	int ret = 0;
2163	int done = 0;
2164	int error;
2165	struct pagevec pvec;
2166	int nr_pages;
2167	pgoff_t uninitialized_var(writeback_index);
2168	pgoff_t index;
2169	pgoff_t end;		/* Inclusive */
2170	pgoff_t done_index;
 
2171	int range_whole = 0;
2172	xa_mark_t tag;
2173
2174	pagevec_init(&pvec);
2175	if (wbc->range_cyclic) {
2176		writeback_index = mapping->writeback_index; /* prev offset */
2177		index = writeback_index;
 
 
 
 
2178		end = -1;
2179	} else {
2180		index = wbc->range_start >> PAGE_SHIFT;
2181		end = wbc->range_end >> PAGE_SHIFT;
2182		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2183			range_whole = 1;
 
2184	}
2185	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2186		tag = PAGECACHE_TAG_TOWRITE;
2187	else
2188		tag = PAGECACHE_TAG_DIRTY;
 
2189	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2190		tag_pages_for_writeback(mapping, index, end);
2191	done_index = index;
2192	while (!done && (index <= end)) {
2193		int i;
2194
2195		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2196				tag);
2197		if (nr_pages == 0)
2198			break;
2199
2200		for (i = 0; i < nr_pages; i++) {
2201			struct page *page = pvec.pages[i];
2202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2203			done_index = page->index;
2204
2205			lock_page(page);
2206
2207			/*
2208			 * Page truncated or invalidated. We can freely skip it
2209			 * then, even for data integrity operations: the page
2210			 * has disappeared concurrently, so there could be no
2211			 * real expectation of this data interity operation
2212			 * even if there is now a new, dirty page at the same
2213			 * pagecache address.
2214			 */
2215			if (unlikely(page->mapping != mapping)) {
2216continue_unlock:
2217				unlock_page(page);
2218				continue;
2219			}
2220
2221			if (!PageDirty(page)) {
2222				/* someone wrote it for us */
2223				goto continue_unlock;
2224			}
2225
2226			if (PageWriteback(page)) {
2227				if (wbc->sync_mode != WB_SYNC_NONE)
2228					wait_on_page_writeback(page);
2229				else
2230					goto continue_unlock;
2231			}
2232
2233			BUG_ON(PageWriteback(page));
2234			if (!clear_page_dirty_for_io(page))
2235				goto continue_unlock;
2236
2237			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2238			error = (*writepage)(page, wbc, data);
2239			if (unlikely(error)) {
2240				/*
2241				 * Handle errors according to the type of
2242				 * writeback. There's no need to continue for
2243				 * background writeback. Just push done_index
2244				 * past this page so media errors won't choke
2245				 * writeout for the entire file. For integrity
2246				 * writeback, we must process the entire dirty
2247				 * set regardless of errors because the fs may
2248				 * still have state to clear for each page. In
2249				 * that case we continue processing and return
2250				 * the first error.
2251				 */
2252				if (error == AOP_WRITEPAGE_ACTIVATE) {
2253					unlock_page(page);
2254					error = 0;
2255				} else if (wbc->sync_mode != WB_SYNC_ALL) {
2256					ret = error;
 
 
 
 
 
 
 
 
2257					done_index = page->index + 1;
2258					done = 1;
2259					break;
2260				}
2261				if (!ret)
2262					ret = error;
2263			}
2264
2265			/*
2266			 * We stop writing back only if we are not doing
2267			 * integrity sync. In case of integrity sync we have to
2268			 * keep going until we have written all the pages
2269			 * we tagged for writeback prior to entering this loop.
2270			 */
2271			if (--wbc->nr_to_write <= 0 &&
2272			    wbc->sync_mode == WB_SYNC_NONE) {
2273				done = 1;
2274				break;
2275			}
2276		}
2277		pagevec_release(&pvec);
2278		cond_resched();
2279	}
2280
2281	/*
2282	 * If we hit the last page and there is more work to be done: wrap
2283	 * back the index back to the start of the file for the next
2284	 * time we are called.
2285	 */
2286	if (wbc->range_cyclic && !done)
2287		done_index = 0;
 
 
 
2288	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2289		mapping->writeback_index = done_index;
2290
2291	return ret;
2292}
2293EXPORT_SYMBOL(write_cache_pages);
2294
2295/*
2296 * Function used by generic_writepages to call the real writepage
2297 * function and set the mapping flags on error
2298 */
2299static int __writepage(struct page *page, struct writeback_control *wbc,
2300		       void *data)
2301{
2302	struct address_space *mapping = data;
2303	int ret = mapping->a_ops->writepage(page, wbc);
2304	mapping_set_error(mapping, ret);
2305	return ret;
2306}
2307
2308/**
2309 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2310 * @mapping: address space structure to write
2311 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2312 *
2313 * This is a library function, which implements the writepages()
2314 * address_space_operation.
2315 *
2316 * Return: %0 on success, negative error code otherwise
2317 */
2318int generic_writepages(struct address_space *mapping,
2319		       struct writeback_control *wbc)
2320{
2321	struct blk_plug plug;
2322	int ret;
2323
2324	/* deal with chardevs and other special file */
2325	if (!mapping->a_ops->writepage)
2326		return 0;
2327
2328	blk_start_plug(&plug);
2329	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2330	blk_finish_plug(&plug);
2331	return ret;
2332}
2333
2334EXPORT_SYMBOL(generic_writepages);
2335
2336int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2337{
2338	int ret;
2339
2340	if (wbc->nr_to_write <= 0)
2341		return 0;
2342	while (1) {
2343		if (mapping->a_ops->writepages)
2344			ret = mapping->a_ops->writepages(mapping, wbc);
2345		else
2346			ret = generic_writepages(mapping, wbc);
2347		if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2348			break;
2349		cond_resched();
2350		congestion_wait(BLK_RW_ASYNC, HZ/50);
2351	}
2352	return ret;
2353}
2354
2355/**
2356 * write_one_page - write out a single page and wait on I/O
2357 * @page: the page to write
 
2358 *
2359 * The page must be locked by the caller and will be unlocked upon return.
2360 *
2361 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2362 * function returns.
2363 *
2364 * Return: %0 on success, negative error code otherwise
2365 */
2366int write_one_page(struct page *page)
2367{
2368	struct address_space *mapping = page->mapping;
2369	int ret = 0;
2370	struct writeback_control wbc = {
2371		.sync_mode = WB_SYNC_ALL,
2372		.nr_to_write = 1,
2373	};
2374
2375	BUG_ON(!PageLocked(page));
2376
2377	wait_on_page_writeback(page);
 
2378
2379	if (clear_page_dirty_for_io(page)) {
2380		get_page(page);
2381		ret = mapping->a_ops->writepage(page, &wbc);
2382		if (ret == 0)
2383			wait_on_page_writeback(page);
2384		put_page(page);
 
 
 
2385	} else {
2386		unlock_page(page);
2387	}
2388
2389	if (!ret)
2390		ret = filemap_check_errors(mapping);
2391	return ret;
2392}
2393EXPORT_SYMBOL(write_one_page);
2394
2395/*
2396 * For address_spaces which do not use buffers nor write back.
2397 */
2398int __set_page_dirty_no_writeback(struct page *page)
2399{
2400	if (!PageDirty(page))
2401		return !TestSetPageDirty(page);
2402	return 0;
2403}
2404
2405/*
2406 * Helper function for set_page_dirty family.
2407 *
2408 * Caller must hold lock_page_memcg().
2409 *
2410 * NOTE: This relies on being atomic wrt interrupts.
2411 */
2412void account_page_dirtied(struct page *page, struct address_space *mapping)
2413{
2414	struct inode *inode = mapping->host;
2415
2416	trace_writeback_dirty_page(page, mapping);
2417
2418	if (mapping_cap_account_dirty(mapping)) {
2419		struct bdi_writeback *wb;
2420
2421		inode_attach_wb(inode, page);
2422		wb = inode_to_wb(inode);
2423
2424		__inc_lruvec_page_state(page, NR_FILE_DIRTY);
2425		__inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2426		__inc_node_page_state(page, NR_DIRTIED);
2427		inc_wb_stat(wb, WB_RECLAIMABLE);
2428		inc_wb_stat(wb, WB_DIRTIED);
2429		task_io_account_write(PAGE_SIZE);
2430		current->nr_dirtied++;
2431		this_cpu_inc(bdp_ratelimits);
2432
2433		mem_cgroup_track_foreign_dirty(page, wb);
2434	}
2435}
 
2436
2437/*
2438 * Helper function for deaccounting dirty page without writeback.
2439 *
2440 * Caller must hold lock_page_memcg().
2441 */
2442void account_page_cleaned(struct page *page, struct address_space *mapping,
2443			  struct bdi_writeback *wb)
2444{
2445	if (mapping_cap_account_dirty(mapping)) {
2446		dec_lruvec_page_state(page, NR_FILE_DIRTY);
2447		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2448		dec_wb_stat(wb, WB_RECLAIMABLE);
2449		task_io_account_cancelled_write(PAGE_SIZE);
2450	}
2451}
 
2452
2453/*
2454 * For address_spaces which do not use buffers.  Just tag the page as dirty in
2455 * the xarray.
2456 *
2457 * This is also used when a single buffer is being dirtied: we want to set the
2458 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2459 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2460 *
2461 * The caller must ensure this doesn't race with truncation.  Most will simply
2462 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2463 * the pte lock held, which also locks out truncation.
 
 
 
2464 */
2465int __set_page_dirty_nobuffers(struct page *page)
2466{
2467	lock_page_memcg(page);
2468	if (!TestSetPageDirty(page)) {
2469		struct address_space *mapping = page_mapping(page);
2470		unsigned long flags;
2471
2472		if (!mapping) {
2473			unlock_page_memcg(page);
2474			return 1;
2475		}
2476
2477		xa_lock_irqsave(&mapping->i_pages, flags);
2478		BUG_ON(page_mapping(page) != mapping);
2479		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2480		account_page_dirtied(page, mapping);
2481		__xa_set_mark(&mapping->i_pages, page_index(page),
2482				   PAGECACHE_TAG_DIRTY);
2483		xa_unlock_irqrestore(&mapping->i_pages, flags);
2484		unlock_page_memcg(page);
2485
 
 
 
 
 
 
 
 
 
 
2486		if (mapping->host) {
2487			/* !PageAnon && !swapper_space */
2488			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2489		}
2490		return 1;
2491	}
2492	unlock_page_memcg(page);
2493	return 0;
2494}
2495EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2496
2497/*
2498 * Call this whenever redirtying a page, to de-account the dirty counters
2499 * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2500 * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2501 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2502 * control.
2503 */
2504void account_page_redirty(struct page *page)
2505{
2506	struct address_space *mapping = page->mapping;
2507
2508	if (mapping && mapping_cap_account_dirty(mapping)) {
2509		struct inode *inode = mapping->host;
2510		struct bdi_writeback *wb;
2511		struct wb_lock_cookie cookie = {};
2512
2513		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2514		current->nr_dirtied--;
2515		dec_node_page_state(page, NR_DIRTIED);
2516		dec_wb_stat(wb, WB_DIRTIED);
2517		unlocked_inode_to_wb_end(inode, &cookie);
2518	}
2519}
2520EXPORT_SYMBOL(account_page_redirty);
2521
2522/*
2523 * When a writepage implementation decides that it doesn't want to write this
2524 * page for some reason, it should redirty the locked page via
2525 * redirty_page_for_writepage() and it should then unlock the page and return 0
2526 */
2527int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2528{
2529	int ret;
2530
2531	wbc->pages_skipped++;
2532	ret = __set_page_dirty_nobuffers(page);
2533	account_page_redirty(page);
2534	return ret;
2535}
2536EXPORT_SYMBOL(redirty_page_for_writepage);
2537
2538/*
2539 * Dirty a page.
2540 *
2541 * For pages with a mapping this should be done under the page lock
2542 * for the benefit of asynchronous memory errors who prefer a consistent
2543 * dirty state. This rule can be broken in some special cases,
2544 * but should be better not to.
2545 *
2546 * If the mapping doesn't provide a set_page_dirty a_op, then
2547 * just fall through and assume that it wants buffer_heads.
2548 */
2549int set_page_dirty(struct page *page)
2550{
2551	struct address_space *mapping = page_mapping(page);
2552
2553	page = compound_head(page);
2554	if (likely(mapping)) {
2555		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2556		/*
2557		 * readahead/lru_deactivate_page could remain
2558		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2559		 * About readahead, if the page is written, the flags would be
2560		 * reset. So no problem.
2561		 * About lru_deactivate_page, if the page is redirty, the flag
2562		 * will be reset. So no problem. but if the page is used by readahead
2563		 * it will confuse readahead and make it restart the size rampup
2564		 * process. But it's a trivial problem.
2565		 */
2566		if (PageReclaim(page))
2567			ClearPageReclaim(page);
2568#ifdef CONFIG_BLOCK
2569		if (!spd)
2570			spd = __set_page_dirty_buffers;
2571#endif
2572		return (*spd)(page);
2573	}
2574	if (!PageDirty(page)) {
2575		if (!TestSetPageDirty(page))
2576			return 1;
2577	}
2578	return 0;
2579}
2580EXPORT_SYMBOL(set_page_dirty);
2581
2582/*
2583 * set_page_dirty() is racy if the caller has no reference against
2584 * page->mapping->host, and if the page is unlocked.  This is because another
2585 * CPU could truncate the page off the mapping and then free the mapping.
2586 *
2587 * Usually, the page _is_ locked, or the caller is a user-space process which
2588 * holds a reference on the inode by having an open file.
2589 *
2590 * In other cases, the page should be locked before running set_page_dirty().
2591 */
2592int set_page_dirty_lock(struct page *page)
2593{
2594	int ret;
2595
2596	lock_page(page);
2597	ret = set_page_dirty(page);
2598	unlock_page(page);
2599	return ret;
2600}
2601EXPORT_SYMBOL(set_page_dirty_lock);
2602
2603/*
2604 * This cancels just the dirty bit on the kernel page itself, it does NOT
2605 * actually remove dirty bits on any mmap's that may be around. It also
2606 * leaves the page tagged dirty, so any sync activity will still find it on
2607 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2608 * look at the dirty bits in the VM.
2609 *
2610 * Doing this should *normally* only ever be done when a page is truncated,
2611 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2612 * this when it notices that somebody has cleaned out all the buffers on a
2613 * page without actually doing it through the VM. Can you say "ext3 is
2614 * horribly ugly"? Thought you could.
2615 */
2616void __cancel_dirty_page(struct page *page)
2617{
2618	struct address_space *mapping = page_mapping(page);
2619
2620	if (mapping_cap_account_dirty(mapping)) {
2621		struct inode *inode = mapping->host;
2622		struct bdi_writeback *wb;
2623		struct wb_lock_cookie cookie = {};
2624
2625		lock_page_memcg(page);
2626		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2627
2628		if (TestClearPageDirty(page))
2629			account_page_cleaned(page, mapping, wb);
2630
2631		unlocked_inode_to_wb_end(inode, &cookie);
2632		unlock_page_memcg(page);
2633	} else {
2634		ClearPageDirty(page);
2635	}
2636}
2637EXPORT_SYMBOL(__cancel_dirty_page);
2638
2639/*
2640 * Clear a page's dirty flag, while caring for dirty memory accounting.
2641 * Returns true if the page was previously dirty.
2642 *
2643 * This is for preparing to put the page under writeout.  We leave the page
2644 * tagged as dirty in the xarray so that a concurrent write-for-sync
2645 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2646 * implementation will run either set_page_writeback() or set_page_dirty(),
2647 * at which stage we bring the page's dirty flag and xarray dirty tag
2648 * back into sync.
2649 *
2650 * This incoherency between the page's dirty flag and xarray tag is
2651 * unfortunate, but it only exists while the page is locked.
2652 */
2653int clear_page_dirty_for_io(struct page *page)
2654{
2655	struct address_space *mapping = page_mapping(page);
2656	int ret = 0;
2657
2658	BUG_ON(!PageLocked(page));
2659
2660	if (mapping && mapping_cap_account_dirty(mapping)) {
2661		struct inode *inode = mapping->host;
2662		struct bdi_writeback *wb;
2663		struct wb_lock_cookie cookie = {};
2664
2665		/*
2666		 * Yes, Virginia, this is indeed insane.
2667		 *
2668		 * We use this sequence to make sure that
2669		 *  (a) we account for dirty stats properly
2670		 *  (b) we tell the low-level filesystem to
2671		 *      mark the whole page dirty if it was
2672		 *      dirty in a pagetable. Only to then
2673		 *  (c) clean the page again and return 1 to
2674		 *      cause the writeback.
2675		 *
2676		 * This way we avoid all nasty races with the
2677		 * dirty bit in multiple places and clearing
2678		 * them concurrently from different threads.
2679		 *
2680		 * Note! Normally the "set_page_dirty(page)"
2681		 * has no effect on the actual dirty bit - since
2682		 * that will already usually be set. But we
2683		 * need the side effects, and it can help us
2684		 * avoid races.
2685		 *
2686		 * We basically use the page "master dirty bit"
2687		 * as a serialization point for all the different
2688		 * threads doing their things.
2689		 */
2690		if (page_mkclean(page))
2691			set_page_dirty(page);
2692		/*
2693		 * We carefully synchronise fault handlers against
2694		 * installing a dirty pte and marking the page dirty
2695		 * at this point.  We do this by having them hold the
2696		 * page lock while dirtying the page, and pages are
2697		 * always locked coming in here, so we get the desired
2698		 * exclusion.
 
 
2699		 */
2700		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2701		if (TestClearPageDirty(page)) {
2702			dec_lruvec_page_state(page, NR_FILE_DIRTY);
2703			dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2704			dec_wb_stat(wb, WB_RECLAIMABLE);
2705			ret = 1;
2706		}
2707		unlocked_inode_to_wb_end(inode, &cookie);
2708		return ret;
2709	}
2710	return TestClearPageDirty(page);
2711}
2712EXPORT_SYMBOL(clear_page_dirty_for_io);
2713
2714int test_clear_page_writeback(struct page *page)
2715{
2716	struct address_space *mapping = page_mapping(page);
2717	struct mem_cgroup *memcg;
2718	struct lruvec *lruvec;
2719	int ret;
2720
2721	memcg = lock_page_memcg(page);
2722	lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
2723	if (mapping && mapping_use_writeback_tags(mapping)) {
2724		struct inode *inode = mapping->host;
2725		struct backing_dev_info *bdi = inode_to_bdi(inode);
2726		unsigned long flags;
2727
2728		xa_lock_irqsave(&mapping->i_pages, flags);
2729		ret = TestClearPageWriteback(page);
2730		if (ret) {
2731			__xa_clear_mark(&mapping->i_pages, page_index(page),
 
2732						PAGECACHE_TAG_WRITEBACK);
2733			if (bdi_cap_account_writeback(bdi)) {
2734				struct bdi_writeback *wb = inode_to_wb(inode);
2735
2736				dec_wb_stat(wb, WB_WRITEBACK);
2737				__wb_writeout_inc(wb);
2738			}
2739		}
2740
2741		if (mapping->host && !mapping_tagged(mapping,
2742						     PAGECACHE_TAG_WRITEBACK))
2743			sb_clear_inode_writeback(mapping->host);
2744
2745		xa_unlock_irqrestore(&mapping->i_pages, flags);
2746	} else {
2747		ret = TestClearPageWriteback(page);
2748	}
2749	/*
2750	 * NOTE: Page might be free now! Writeback doesn't hold a page
2751	 * reference on its own, it relies on truncation to wait for
2752	 * the clearing of PG_writeback. The below can only access
2753	 * page state that is static across allocation cycles.
2754	 */
2755	if (ret) {
2756		dec_lruvec_state(lruvec, NR_WRITEBACK);
2757		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2758		inc_node_page_state(page, NR_WRITTEN);
2759	}
2760	__unlock_page_memcg(memcg);
2761	return ret;
2762}
2763
2764int __test_set_page_writeback(struct page *page, bool keep_write)
2765{
2766	struct address_space *mapping = page_mapping(page);
2767	int ret;
2768
2769	lock_page_memcg(page);
2770	if (mapping && mapping_use_writeback_tags(mapping)) {
2771		XA_STATE(xas, &mapping->i_pages, page_index(page));
2772		struct inode *inode = mapping->host;
2773		struct backing_dev_info *bdi = inode_to_bdi(inode);
2774		unsigned long flags;
2775
2776		xas_lock_irqsave(&xas, flags);
2777		xas_load(&xas);
2778		ret = TestSetPageWriteback(page);
2779		if (!ret) {
2780			bool on_wblist;
2781
2782			on_wblist = mapping_tagged(mapping,
2783						   PAGECACHE_TAG_WRITEBACK);
2784
2785			xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2786			if (bdi_cap_account_writeback(bdi))
2787				inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2788
2789			/*
2790			 * We can come through here when swapping anonymous
2791			 * pages, so we don't necessarily have an inode to track
2792			 * for sync.
2793			 */
2794			if (mapping->host && !on_wblist)
2795				sb_mark_inode_writeback(mapping->host);
2796		}
2797		if (!PageDirty(page))
2798			xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2799		if (!keep_write)
2800			xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2801		xas_unlock_irqrestore(&xas, flags);
 
 
 
2802	} else {
2803		ret = TestSetPageWriteback(page);
2804	}
2805	if (!ret) {
2806		inc_lruvec_page_state(page, NR_WRITEBACK);
2807		inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2808	}
2809	unlock_page_memcg(page);
2810	return ret;
2811
2812}
2813EXPORT_SYMBOL(__test_set_page_writeback);
2814
2815/*
2816 * Wait for a page to complete writeback
2817 */
2818void wait_on_page_writeback(struct page *page)
2819{
2820	if (PageWriteback(page)) {
2821		trace_wait_on_page_writeback(page, page_mapping(page));
2822		wait_on_page_bit(page, PG_writeback);
2823	}
2824}
2825EXPORT_SYMBOL_GPL(wait_on_page_writeback);
2826
2827/**
2828 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2829 * @page:	The page to wait on.
2830 *
2831 * This function determines if the given page is related to a backing device
2832 * that requires page contents to be held stable during writeback.  If so, then
2833 * it will wait for any pending writeback to complete.
2834 */
2835void wait_for_stable_page(struct page *page)
2836{
2837	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2838		wait_on_page_writeback(page);
2839}
2840EXPORT_SYMBOL_GPL(wait_for_stable_page);
v3.5.6
 
   1/*
   2 * mm/page-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   6 *
   7 * Contains functions related to writing back dirty pages at the
   8 * address_space level.
   9 *
  10 * 10Apr2002	Andrew Morton
  11 *		Initial version
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/export.h>
  16#include <linux/spinlock.h>
  17#include <linux/fs.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/slab.h>
  21#include <linux/pagemap.h>
  22#include <linux/writeback.h>
  23#include <linux/init.h>
  24#include <linux/backing-dev.h>
  25#include <linux/task_io_accounting_ops.h>
  26#include <linux/blkdev.h>
  27#include <linux/mpage.h>
  28#include <linux/rmap.h>
  29#include <linux/percpu.h>
  30#include <linux/notifier.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  36#include <linux/pagevec.h>
 
 
 
 
  37#include <trace/events/writeback.h>
  38
 
 
  39/*
  40 * Sleep at most 200ms at a time in balance_dirty_pages().
  41 */
  42#define MAX_PAUSE		max(HZ/5, 1)
  43
  44/*
  45 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  46 * by raising pause time to max_pause when falls below it.
  47 */
  48#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
  49
  50/*
  51 * Estimate write bandwidth at 200ms intervals.
  52 */
  53#define BANDWIDTH_INTERVAL	max(HZ/5, 1)
  54
  55#define RATELIMIT_CALC_SHIFT	10
  56
  57/*
  58 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  59 * will look to see if it needs to force writeback or throttling.
  60 */
  61static long ratelimit_pages = 32;
  62
  63/* The following parameters are exported via /proc/sys/vm */
  64
  65/*
  66 * Start background writeback (via writeback threads) at this percentage
  67 */
  68int dirty_background_ratio = 10;
  69
  70/*
  71 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  72 * dirty_background_ratio * the amount of dirtyable memory
  73 */
  74unsigned long dirty_background_bytes;
  75
  76/*
  77 * free highmem will not be subtracted from the total free memory
  78 * for calculating free ratios if vm_highmem_is_dirtyable is true
  79 */
  80int vm_highmem_is_dirtyable;
  81
  82/*
  83 * The generator of dirty data starts writeback at this percentage
  84 */
  85int vm_dirty_ratio = 20;
  86
  87/*
  88 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  89 * vm_dirty_ratio * the amount of dirtyable memory
  90 */
  91unsigned long vm_dirty_bytes;
  92
  93/*
  94 * The interval between `kupdate'-style writebacks
  95 */
  96unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  97
  98EXPORT_SYMBOL_GPL(dirty_writeback_interval);
  99
 100/*
 101 * The longest time for which data is allowed to remain dirty
 102 */
 103unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 104
 105/*
 106 * Flag that makes the machine dump writes/reads and block dirtyings.
 107 */
 108int block_dump;
 109
 110/*
 111 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 112 * a full sync is triggered after this time elapses without any disk activity.
 113 */
 114int laptop_mode;
 115
 116EXPORT_SYMBOL(laptop_mode);
 117
 118/* End of sysctl-exported parameters */
 119
 120unsigned long global_dirty_limit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121
 122/*
 123 * Scale the writeback cache size proportional to the relative writeout speeds.
 124 *
 125 * We do this by keeping a floating proportion between BDIs, based on page
 126 * writeback completions [end_page_writeback()]. Those devices that write out
 127 * pages fastest will get the larger share, while the slower will get a smaller
 128 * share.
 129 *
 130 * We use page writeout completions because we are interested in getting rid of
 131 * dirty pages. Having them written out is the primary goal.
 132 *
 133 * We introduce a concept of time, a period over which we measure these events,
 134 * because demand can/will vary over time. The length of this period itself is
 135 * measured in page writeback completions.
 136 *
 137 */
 138static struct prop_descriptor vm_completions;
 
 
 
 
 
 
 
 
 139
 140/*
 141 * Work out the current dirty-memory clamping and background writeout
 142 * thresholds.
 143 *
 144 * The main aim here is to lower them aggressively if there is a lot of mapped
 145 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
 146 * pages.  It is better to clamp down on writers than to start swapping, and
 147 * performing lots of scanning.
 148 *
 149 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
 150 *
 151 * We don't permit the clamping level to fall below 5% - that is getting rather
 152 * excessive.
 153 *
 154 * We make sure that the background writeout level is below the adjusted
 155 * clamping level.
 156 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157
 158/*
 159 * In a memory zone, there is a certain amount of pages we consider
 160 * available for the page cache, which is essentially the number of
 161 * free and reclaimable pages, minus some zone reserves to protect
 162 * lowmem and the ability to uphold the zone's watermarks without
 163 * requiring writeback.
 164 *
 165 * This number of dirtyable pages is the base value of which the
 166 * user-configurable dirty ratio is the effictive number of pages that
 167 * are allowed to be actually dirtied.  Per individual zone, or
 168 * globally by using the sum of dirtyable pages over all zones.
 169 *
 170 * Because the user is allowed to specify the dirty limit globally as
 171 * absolute number of bytes, calculating the per-zone dirty limit can
 172 * require translating the configured limit into a percentage of
 173 * global dirtyable memory first.
 174 */
 175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 176static unsigned long highmem_dirtyable_memory(unsigned long total)
 177{
 178#ifdef CONFIG_HIGHMEM
 179	int node;
 180	unsigned long x = 0;
 
 181
 182	for_each_node_state(node, N_HIGH_MEMORY) {
 183		struct zone *z =
 184			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
 
 
 
 
 
 
 
 
 185
 186		x += zone_page_state(z, NR_FREE_PAGES) +
 187		     zone_reclaimable_pages(z) - z->dirty_balance_reserve;
 
 
 
 
 
 188	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 189	/*
 190	 * Make sure that the number of highmem pages is never larger
 191	 * than the number of the total dirtyable memory. This can only
 192	 * occur in very strange VM situations but we want to make sure
 193	 * that this does not occur.
 194	 */
 195	return min(x, total);
 196#else
 197	return 0;
 198#endif
 199}
 200
 201/**
 202 * global_dirtyable_memory - number of globally dirtyable pages
 203 *
 204 * Returns the global number of pages potentially available for dirty
 205 * page cache.  This is the base value for the global dirty limits.
 206 */
 207static unsigned long global_dirtyable_memory(void)
 208{
 209	unsigned long x;
 210
 211	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages() -
 212	    dirty_balance_reserve;
 
 
 
 
 
 
 
 
 213
 214	if (!vm_highmem_is_dirtyable)
 215		x -= highmem_dirtyable_memory(x);
 216
 217	return x + 1;	/* Ensure that we never return 0 */
 218}
 219
 220/*
 221 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 
 222 *
 223 * Calculate the dirty thresholds based on sysctl parameters
 224 * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
 225 * - vm.dirty_ratio             or  vm.dirty_bytes
 226 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 227 * real-time tasks.
 228 */
 229void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 230{
 231	unsigned long background;
 232	unsigned long dirty;
 233	unsigned long uninitialized_var(available_memory);
 
 
 
 
 
 
 234	struct task_struct *tsk;
 235
 236	if (!vm_dirty_bytes || !dirty_background_bytes)
 237		available_memory = global_dirtyable_memory();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 238
 239	if (vm_dirty_bytes)
 240		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
 241	else
 242		dirty = (vm_dirty_ratio * available_memory) / 100;
 243
 244	if (dirty_background_bytes)
 245		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
 246	else
 247		background = (dirty_background_ratio * available_memory) / 100;
 248
 249	if (background >= dirty)
 250		background = dirty / 2;
 251	tsk = current;
 252	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 253		background += background / 4;
 254		dirty += dirty / 4;
 255	}
 256	*pbackground = background;
 257	*pdirty = dirty;
 258	trace_global_dirty_state(background, dirty);
 
 
 
 259}
 260
 261/**
 262 * zone_dirtyable_memory - number of dirtyable pages in a zone
 263 * @zone: the zone
 
 264 *
 265 * Returns the zone's number of pages potentially available for dirty
 266 * page cache.  This is the base value for the per-zone dirty limits.
 267 */
 268static unsigned long zone_dirtyable_memory(struct zone *zone)
 269{
 270	/*
 271	 * The effective global number of dirtyable pages may exclude
 272	 * highmem as a big-picture measure to keep the ratio between
 273	 * dirty memory and lowmem reasonable.
 274	 *
 275	 * But this function is purely about the individual zone and a
 276	 * highmem zone can hold its share of dirty pages, so we don't
 277	 * care about vm_highmem_is_dirtyable here.
 278	 */
 279	return zone_page_state(zone, NR_FREE_PAGES) +
 280	       zone_reclaimable_pages(zone) -
 281	       zone->dirty_balance_reserve;
 282}
 283
 284/**
 285 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
 286 * @zone: the zone
 287 *
 288 * Returns the maximum number of dirty pages allowed in a zone, based
 289 * on the zone's dirtyable memory.
 290 */
 291static unsigned long zone_dirty_limit(struct zone *zone)
 292{
 293	unsigned long zone_memory = zone_dirtyable_memory(zone);
 294	struct task_struct *tsk = current;
 295	unsigned long dirty;
 296
 297	if (vm_dirty_bytes)
 298		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 299			zone_memory / global_dirtyable_memory();
 300	else
 301		dirty = vm_dirty_ratio * zone_memory / 100;
 302
 303	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
 304		dirty += dirty / 4;
 305
 306	return dirty;
 307}
 308
 309/**
 310 * zone_dirty_ok - tells whether a zone is within its dirty limits
 311 * @zone: the zone to check
 312 *
 313 * Returns %true when the dirty pages in @zone are within the zone's
 314 * dirty limit, %false if the limit is exceeded.
 315 */
 316bool zone_dirty_ok(struct zone *zone)
 317{
 318	unsigned long limit = zone_dirty_limit(zone);
 
 319
 320	return zone_page_state(zone, NR_FILE_DIRTY) +
 321	       zone_page_state(zone, NR_UNSTABLE_NFS) +
 322	       zone_page_state(zone, NR_WRITEBACK) <= limit;
 323}
 324
 325/*
 326 * couple the period to the dirty_ratio:
 327 *
 328 *   period/2 ~ roundup_pow_of_two(dirty limit)
 329 */
 330static int calc_period_shift(void)
 331{
 332	unsigned long dirty_total;
 333
 334	if (vm_dirty_bytes)
 335		dirty_total = vm_dirty_bytes / PAGE_SIZE;
 336	else
 337		dirty_total = (vm_dirty_ratio * global_dirtyable_memory()) /
 338				100;
 339	return 2 + ilog2(dirty_total - 1);
 340}
 341
 342/*
 343 * update the period when the dirty threshold changes.
 344 */
 345static void update_completion_period(void)
 346{
 347	int shift = calc_period_shift();
 348	prop_change_shift(&vm_completions, shift);
 349
 350	writeback_set_ratelimit();
 351}
 352
 353int dirty_background_ratio_handler(struct ctl_table *table, int write,
 354		void __user *buffer, size_t *lenp,
 355		loff_t *ppos)
 356{
 357	int ret;
 358
 359	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 360	if (ret == 0 && write)
 361		dirty_background_bytes = 0;
 362	return ret;
 363}
 364
 365int dirty_background_bytes_handler(struct ctl_table *table, int write,
 366		void __user *buffer, size_t *lenp,
 367		loff_t *ppos)
 368{
 369	int ret;
 370
 371	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 372	if (ret == 0 && write)
 373		dirty_background_ratio = 0;
 374	return ret;
 375}
 376
 377int dirty_ratio_handler(struct ctl_table *table, int write,
 378		void __user *buffer, size_t *lenp,
 379		loff_t *ppos)
 380{
 381	int old_ratio = vm_dirty_ratio;
 382	int ret;
 383
 384	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 385	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 386		update_completion_period();
 387		vm_dirty_bytes = 0;
 388	}
 389	return ret;
 390}
 391
 392int dirty_bytes_handler(struct ctl_table *table, int write,
 393		void __user *buffer, size_t *lenp,
 394		loff_t *ppos)
 395{
 396	unsigned long old_bytes = vm_dirty_bytes;
 397	int ret;
 398
 399	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 400	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 401		update_completion_period();
 402		vm_dirty_ratio = 0;
 403	}
 404	return ret;
 405}
 406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407/*
 408 * Increment the BDI's writeout completion count and the global writeout
 409 * completion count. Called from test_clear_page_writeback().
 410 */
 411static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
 412{
 413	__inc_bdi_stat(bdi, BDI_WRITTEN);
 414	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
 415			      bdi->max_prop_frac);
 
 
 
 
 
 
 
 416}
 417
 418void bdi_writeout_inc(struct backing_dev_info *bdi)
 419{
 420	unsigned long flags;
 421
 422	local_irq_save(flags);
 423	__bdi_writeout_inc(bdi);
 424	local_irq_restore(flags);
 425}
 426EXPORT_SYMBOL_GPL(bdi_writeout_inc);
 427
 428/*
 429 * Obtain an accurate fraction of the BDI's portion.
 
 430 */
 431static void bdi_writeout_fraction(struct backing_dev_info *bdi,
 432		long *numerator, long *denominator)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 433{
 434	prop_fraction_percpu(&vm_completions, &bdi->completions,
 435				numerator, denominator);
 
 
 
 
 
 
 
 436}
 437
 
 
 
 
 
 
 
 
 438/*
 439 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 440 * registered backing devices, which, for obvious reasons, can not
 441 * exceed 100%.
 442 */
 443static unsigned int bdi_min_ratio;
 444
 445int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 446{
 447	int ret = 0;
 448
 449	spin_lock_bh(&bdi_lock);
 450	if (min_ratio > bdi->max_ratio) {
 451		ret = -EINVAL;
 452	} else {
 453		min_ratio -= bdi->min_ratio;
 454		if (bdi_min_ratio + min_ratio < 100) {
 455			bdi_min_ratio += min_ratio;
 456			bdi->min_ratio += min_ratio;
 457		} else {
 458			ret = -EINVAL;
 459		}
 460	}
 461	spin_unlock_bh(&bdi_lock);
 462
 463	return ret;
 464}
 465
 466int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 467{
 468	int ret = 0;
 469
 470	if (max_ratio > 100)
 471		return -EINVAL;
 472
 473	spin_lock_bh(&bdi_lock);
 474	if (bdi->min_ratio > max_ratio) {
 475		ret = -EINVAL;
 476	} else {
 477		bdi->max_ratio = max_ratio;
 478		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
 479	}
 480	spin_unlock_bh(&bdi_lock);
 481
 482	return ret;
 483}
 484EXPORT_SYMBOL(bdi_set_max_ratio);
 485
 486static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 487					   unsigned long bg_thresh)
 488{
 489	return (thresh + bg_thresh) / 2;
 490}
 491
 492static unsigned long hard_dirty_limit(unsigned long thresh)
 
 
 
 
 
 
 
 
 
 
 
 493{
 494	return max(thresh, global_dirty_limit);
 
 
 
 
 
 495}
 496
 497/**
 498 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
 499 * @bdi: the backing_dev_info to query
 500 * @dirty: global dirty limit in pages
 501 *
 502 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
 503 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 504 *
 505 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 506 * when sleeping max_pause per page is not enough to keep the dirty pages under
 507 * control. For example, when the device is completely stalled due to some error
 508 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 509 * In the other normal situations, it acts more gently by throttling the tasks
 510 * more (rather than completely block them) when the bdi dirty pages go high.
 511 *
 512 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 513 * - starving fast devices
 514 * - piling up dirty pages (that will take long time to sync) on slow devices
 515 *
 516 * The bdi's share of dirty limit will be adapting to its throughput and
 517 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 
 
 
 518 */
 519unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
 520{
 521	u64 bdi_dirty;
 
 
 522	long numerator, denominator;
 
 523
 524	/*
 525	 * Calculate this BDI's share of the dirty ratio.
 526	 */
 527	bdi_writeout_fraction(bdi, &numerator, &denominator);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 528
 529	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
 530	bdi_dirty *= numerator;
 531	do_div(bdi_dirty, denominator);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 532
 533	bdi_dirty += (dirty * bdi->min_ratio) / 100;
 534	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
 535		bdi_dirty = dirty * bdi->max_ratio / 100;
 
 
 
 536
 537	return bdi_dirty;
 538}
 539
 540/*
 541 * Dirty position control.
 542 *
 543 * (o) global/bdi setpoints
 544 *
 545 * We want the dirty pages be balanced around the global/bdi setpoints.
 546 * When the number of dirty pages is higher/lower than the setpoint, the
 547 * dirty position control ratio (and hence task dirty ratelimit) will be
 548 * decreased/increased to bring the dirty pages back to the setpoint.
 549 *
 550 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 551 *
 552 *     if (dirty < setpoint) scale up   pos_ratio
 553 *     if (dirty > setpoint) scale down pos_ratio
 554 *
 555 *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
 556 *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
 557 *
 558 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 559 *
 560 * (o) global control line
 561 *
 562 *     ^ pos_ratio
 563 *     |
 564 *     |            |<===== global dirty control scope ======>|
 565 * 2.0 .............*
 566 *     |            .*
 567 *     |            . *
 568 *     |            .   *
 569 *     |            .     *
 570 *     |            .        *
 571 *     |            .            *
 572 * 1.0 ................................*
 573 *     |            .                  .     *
 574 *     |            .                  .          *
 575 *     |            .                  .              *
 576 *     |            .                  .                 *
 577 *     |            .                  .                    *
 578 *   0 +------------.------------------.----------------------*------------->
 579 *           freerun^          setpoint^                 limit^   dirty pages
 580 *
 581 * (o) bdi control line
 582 *
 583 *     ^ pos_ratio
 584 *     |
 585 *     |            *
 586 *     |              *
 587 *     |                *
 588 *     |                  *
 589 *     |                    * |<=========== span ============>|
 590 * 1.0 .......................*
 591 *     |                      . *
 592 *     |                      .   *
 593 *     |                      .     *
 594 *     |                      .       *
 595 *     |                      .         *
 596 *     |                      .           *
 597 *     |                      .             *
 598 *     |                      .               *
 599 *     |                      .                 *
 600 *     |                      .                   *
 601 *     |                      .                     *
 602 * 1/4 ...............................................* * * * * * * * * * * *
 603 *     |                      .                         .
 604 *     |                      .                           .
 605 *     |                      .                             .
 606 *   0 +----------------------.-------------------------------.------------->
 607 *                bdi_setpoint^                    x_intercept^
 608 *
 609 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
 610 * be smoothly throttled down to normal if it starts high in situations like
 611 * - start writing to a slow SD card and a fast disk at the same time. The SD
 612 *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
 613 * - the bdi dirty thresh drops quickly due to change of JBOD workload
 614 */
 615static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
 616					unsigned long thresh,
 617					unsigned long bg_thresh,
 618					unsigned long dirty,
 619					unsigned long bdi_thresh,
 620					unsigned long bdi_dirty)
 621{
 622	unsigned long write_bw = bdi->avg_write_bandwidth;
 623	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
 624	unsigned long limit = hard_dirty_limit(thresh);
 625	unsigned long x_intercept;
 626	unsigned long setpoint;		/* dirty pages' target balance point */
 627	unsigned long bdi_setpoint;
 628	unsigned long span;
 629	long long pos_ratio;		/* for scaling up/down the rate limit */
 630	long x;
 631
 632	if (unlikely(dirty >= limit))
 633		return 0;
 
 
 634
 635	/*
 636	 * global setpoint
 637	 *
 638	 *                           setpoint - dirty 3
 639	 *        f(dirty) := 1.0 + (----------------)
 640	 *                           limit - setpoint
 641	 *
 642	 * it's a 3rd order polynomial that subjects to
 643	 *
 644	 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 645	 * (2) f(setpoint) = 1.0 => the balance point
 646	 * (3) f(limit)    = 0   => the hard limit
 647	 * (4) df/dx      <= 0	 => negative feedback control
 648	 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 649	 *     => fast response on large errors; small oscillation near setpoint
 650	 */
 651	setpoint = (freerun + limit) / 2;
 652	x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
 653		    limit - setpoint + 1);
 654	pos_ratio = x;
 655	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 656	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 657	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 658
 659	/*
 660	 * We have computed basic pos_ratio above based on global situation. If
 661	 * the bdi is over/under its share of dirty pages, we want to scale
 662	 * pos_ratio further down/up. That is done by the following mechanism.
 663	 */
 664
 665	/*
 666	 * bdi setpoint
 667	 *
 668	 *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
 669	 *
 670	 *                        x_intercept - bdi_dirty
 671	 *                     := --------------------------
 672	 *                        x_intercept - bdi_setpoint
 673	 *
 674	 * The main bdi control line is a linear function that subjects to
 675	 *
 676	 * (1) f(bdi_setpoint) = 1.0
 677	 * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
 678	 *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
 679	 *
 680	 * For single bdi case, the dirty pages are observed to fluctuate
 681	 * regularly within range
 682	 *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
 683	 * for various filesystems, where (2) can yield in a reasonable 12.5%
 684	 * fluctuation range for pos_ratio.
 685	 *
 686	 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
 687	 * own size, so move the slope over accordingly and choose a slope that
 688	 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
 689	 */
 690	if (unlikely(bdi_thresh > thresh))
 691		bdi_thresh = thresh;
 692	/*
 693	 * It's very possible that bdi_thresh is close to 0 not because the
 694	 * device is slow, but that it has remained inactive for long time.
 695	 * Honour such devices a reasonable good (hopefully IO efficient)
 696	 * threshold, so that the occasional writes won't be blocked and active
 697	 * writes can rampup the threshold quickly.
 698	 */
 699	bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
 700	/*
 701	 * scale global setpoint to bdi's:
 702	 *	bdi_setpoint = setpoint * bdi_thresh / thresh
 703	 */
 704	x = div_u64((u64)bdi_thresh << 16, thresh + 1);
 705	bdi_setpoint = setpoint * (u64)x >> 16;
 706	/*
 707	 * Use span=(8*write_bw) in single bdi case as indicated by
 708	 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
 709	 *
 710	 *        bdi_thresh                    thresh - bdi_thresh
 711	 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
 712	 *          thresh                            thresh
 713	 */
 714	span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
 715	x_intercept = bdi_setpoint + span;
 716
 717	if (bdi_dirty < x_intercept - span / 4) {
 718		pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
 719				    x_intercept - bdi_setpoint + 1);
 720	} else
 721		pos_ratio /= 4;
 722
 723	/*
 724	 * bdi reserve area, safeguard against dirty pool underrun and disk idle
 725	 * It may push the desired control point of global dirty pages higher
 726	 * than setpoint.
 727	 */
 728	x_intercept = bdi_thresh / 2;
 729	if (bdi_dirty < x_intercept) {
 730		if (bdi_dirty > x_intercept / 8)
 731			pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
 
 732		else
 733			pos_ratio *= 8;
 734	}
 735
 736	return pos_ratio;
 737}
 738
 739static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
 740				       unsigned long elapsed,
 741				       unsigned long written)
 742{
 743	const unsigned long period = roundup_pow_of_two(3 * HZ);
 744	unsigned long avg = bdi->avg_write_bandwidth;
 745	unsigned long old = bdi->write_bandwidth;
 746	u64 bw;
 747
 748	/*
 749	 * bw = written * HZ / elapsed
 750	 *
 751	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
 752	 * write_bandwidth = ---------------------------------------------------
 753	 *                                          period
 
 
 
 754	 */
 755	bw = written - bdi->written_stamp;
 756	bw *= HZ;
 757	if (unlikely(elapsed > period)) {
 758		do_div(bw, elapsed);
 759		avg = bw;
 760		goto out;
 761	}
 762	bw += (u64)bdi->write_bandwidth * (period - elapsed);
 763	bw >>= ilog2(period);
 764
 765	/*
 766	 * one more level of smoothing, for filtering out sudden spikes
 767	 */
 768	if (avg > old && old >= (unsigned long)bw)
 769		avg -= (avg - old) >> 3;
 770
 771	if (avg < old && old <= (unsigned long)bw)
 772		avg += (old - avg) >> 3;
 773
 774out:
 775	bdi->write_bandwidth = bw;
 776	bdi->avg_write_bandwidth = avg;
 777}
 778
 779/*
 780 * The global dirtyable memory and dirty threshold could be suddenly knocked
 781 * down by a large amount (eg. on the startup of KVM in a swapless system).
 782 * This may throw the system into deep dirty exceeded state and throttle
 783 * heavy/light dirtiers alike. To retain good responsiveness, maintain
 784 * global_dirty_limit for tracking slowly down to the knocked down dirty
 785 * threshold.
 786 */
 787static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
 788{
 789	unsigned long limit = global_dirty_limit;
 
 790
 791	/*
 792	 * Follow up in one step.
 793	 */
 794	if (limit < thresh) {
 795		limit = thresh;
 796		goto update;
 797	}
 798
 799	/*
 800	 * Follow down slowly. Use the higher one as the target, because thresh
 801	 * may drop below dirty. This is exactly the reason to introduce
 802	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
 803	 */
 804	thresh = max(thresh, dirty);
 805	if (limit > thresh) {
 806		limit -= (limit - thresh) >> 5;
 807		goto update;
 808	}
 809	return;
 810update:
 811	global_dirty_limit = limit;
 812}
 813
 814static void global_update_bandwidth(unsigned long thresh,
 815				    unsigned long dirty,
 816				    unsigned long now)
 817{
 818	static DEFINE_SPINLOCK(dirty_lock);
 819	static unsigned long update_time;
 820
 821	/*
 822	 * check locklessly first to optimize away locking for the most time
 823	 */
 824	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
 825		return;
 826
 827	spin_lock(&dirty_lock);
 828	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
 829		update_dirty_limit(thresh, dirty);
 830		update_time = now;
 831	}
 832	spin_unlock(&dirty_lock);
 833}
 834
 835/*
 836 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
 837 *
 838 * Normal bdi tasks will be curbed at or below it in long term.
 839 * Obviously it should be around (write_bw / N) when there are N dd tasks.
 840 */
 841static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
 842				       unsigned long thresh,
 843				       unsigned long bg_thresh,
 844				       unsigned long dirty,
 845				       unsigned long bdi_thresh,
 846				       unsigned long bdi_dirty,
 847				       unsigned long dirtied,
 848				       unsigned long elapsed)
 849{
 850	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
 851	unsigned long limit = hard_dirty_limit(thresh);
 852	unsigned long setpoint = (freerun + limit) / 2;
 853	unsigned long write_bw = bdi->avg_write_bandwidth;
 854	unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
 855	unsigned long dirty_rate;
 856	unsigned long task_ratelimit;
 857	unsigned long balanced_dirty_ratelimit;
 858	unsigned long pos_ratio;
 859	unsigned long step;
 860	unsigned long x;
 
 861
 862	/*
 863	 * The dirty rate will match the writeout rate in long term, except
 864	 * when dirty pages are truncated by userspace or re-dirtied by FS.
 865	 */
 866	dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
 867
 868	pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
 869				       bdi_thresh, bdi_dirty);
 870	/*
 871	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
 872	 */
 873	task_ratelimit = (u64)dirty_ratelimit *
 874					pos_ratio >> RATELIMIT_CALC_SHIFT;
 875	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
 876
 877	/*
 878	 * A linear estimation of the "balanced" throttle rate. The theory is,
 879	 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
 880	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
 881	 * formula will yield the balanced rate limit (write_bw / N).
 882	 *
 883	 * Note that the expanded form is not a pure rate feedback:
 884	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
 885	 * but also takes pos_ratio into account:
 886	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
 887	 *
 888	 * (1) is not realistic because pos_ratio also takes part in balancing
 889	 * the dirty rate.  Consider the state
 890	 *	pos_ratio = 0.5						     (3)
 891	 *	rate = 2 * (write_bw / N)				     (4)
 892	 * If (1) is used, it will stuck in that state! Because each dd will
 893	 * be throttled at
 894	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
 895	 * yielding
 896	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
 897	 * put (6) into (1) we get
 898	 *	rate_(i+1) = rate_(i)					     (7)
 899	 *
 900	 * So we end up using (2) to always keep
 901	 *	rate_(i+1) ~= (write_bw / N)				     (8)
 902	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
 903	 * pos_ratio is able to drive itself to 1.0, which is not only where
 904	 * the dirty count meet the setpoint, but also where the slope of
 905	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
 906	 */
 907	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
 908					   dirty_rate | 1);
 909	/*
 910	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
 911	 */
 912	if (unlikely(balanced_dirty_ratelimit > write_bw))
 913		balanced_dirty_ratelimit = write_bw;
 914
 915	/*
 916	 * We could safely do this and return immediately:
 917	 *
 918	 *	bdi->dirty_ratelimit = balanced_dirty_ratelimit;
 919	 *
 920	 * However to get a more stable dirty_ratelimit, the below elaborated
 921	 * code makes use of task_ratelimit to filter out sigular points and
 922	 * limit the step size.
 923	 *
 924	 * The below code essentially only uses the relative value of
 925	 *
 926	 *	task_ratelimit - dirty_ratelimit
 927	 *	= (pos_ratio - 1) * dirty_ratelimit
 928	 *
 929	 * which reflects the direction and size of dirty position error.
 930	 */
 931
 932	/*
 933	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
 934	 * task_ratelimit is on the same side of dirty_ratelimit, too.
 935	 * For example, when
 936	 * - dirty_ratelimit > balanced_dirty_ratelimit
 937	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
 938	 * lowering dirty_ratelimit will help meet both the position and rate
 939	 * control targets. Otherwise, don't update dirty_ratelimit if it will
 940	 * only help meet the rate target. After all, what the users ultimately
 941	 * feel and care are stable dirty rate and small position error.
 942	 *
 943	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
 944	 * and filter out the sigular points of balanced_dirty_ratelimit. Which
 945	 * keeps jumping around randomly and can even leap far away at times
 946	 * due to the small 200ms estimation period of dirty_rate (we want to
 947	 * keep that period small to reduce time lags).
 948	 */
 949	step = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 950	if (dirty < setpoint) {
 951		x = min(bdi->balanced_dirty_ratelimit,
 952			 min(balanced_dirty_ratelimit, task_ratelimit));
 953		if (dirty_ratelimit < x)
 954			step = x - dirty_ratelimit;
 955	} else {
 956		x = max(bdi->balanced_dirty_ratelimit,
 957			 max(balanced_dirty_ratelimit, task_ratelimit));
 958		if (dirty_ratelimit > x)
 959			step = dirty_ratelimit - x;
 960	}
 961
 962	/*
 963	 * Don't pursue 100% rate matching. It's impossible since the balanced
 964	 * rate itself is constantly fluctuating. So decrease the track speed
 965	 * when it gets close to the target. Helps eliminate pointless tremors.
 966	 */
 967	step >>= dirty_ratelimit / (2 * step + 1);
 968	/*
 969	 * Limit the tracking speed to avoid overshooting.
 970	 */
 971	step = (step + 7) / 8;
 972
 973	if (dirty_ratelimit < balanced_dirty_ratelimit)
 974		dirty_ratelimit += step;
 975	else
 976		dirty_ratelimit -= step;
 977
 978	bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
 979	bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
 980
 981	trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
 982}
 983
 984void __bdi_update_bandwidth(struct backing_dev_info *bdi,
 985			    unsigned long thresh,
 986			    unsigned long bg_thresh,
 987			    unsigned long dirty,
 988			    unsigned long bdi_thresh,
 989			    unsigned long bdi_dirty,
 990			    unsigned long start_time)
 991{
 
 992	unsigned long now = jiffies;
 993	unsigned long elapsed = now - bdi->bw_time_stamp;
 994	unsigned long dirtied;
 995	unsigned long written;
 996
 
 
 997	/*
 998	 * rate-limit, only update once every 200ms.
 999	 */
1000	if (elapsed < BANDWIDTH_INTERVAL)
1001		return;
1002
1003	dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1004	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1005
1006	/*
1007	 * Skip quiet periods when disk bandwidth is under-utilized.
1008	 * (at least 1s idle time between two flusher runs)
1009	 */
1010	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1011		goto snapshot;
1012
1013	if (thresh) {
1014		global_update_bandwidth(thresh, dirty, now);
1015		bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1016					   bdi_thresh, bdi_dirty,
1017					   dirtied, elapsed);
 
 
 
 
 
 
 
1018	}
1019	bdi_update_write_bandwidth(bdi, elapsed, written);
1020
1021snapshot:
1022	bdi->dirtied_stamp = dirtied;
1023	bdi->written_stamp = written;
1024	bdi->bw_time_stamp = now;
1025}
1026
1027static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1028				 unsigned long thresh,
1029				 unsigned long bg_thresh,
1030				 unsigned long dirty,
1031				 unsigned long bdi_thresh,
1032				 unsigned long bdi_dirty,
1033				 unsigned long start_time)
1034{
1035	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1036		return;
1037	spin_lock(&bdi->wb.list_lock);
1038	__bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1039			       bdi_thresh, bdi_dirty, start_time);
1040	spin_unlock(&bdi->wb.list_lock);
1041}
1042
1043/*
1044 * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
1045 * will look to see if it needs to start dirty throttling.
1046 *
1047 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1048 * global_page_state() too often. So scale it near-sqrt to the safety margin
1049 * (the number of pages we may dirty without exceeding the dirty limits).
1050 */
1051static unsigned long dirty_poll_interval(unsigned long dirty,
1052					 unsigned long thresh)
1053{
1054	if (thresh > dirty)
1055		return 1UL << (ilog2(thresh - dirty) >> 1);
1056
1057	return 1;
1058}
1059
1060static long bdi_max_pause(struct backing_dev_info *bdi,
1061			  unsigned long bdi_dirty)
1062{
1063	long bw = bdi->avg_write_bandwidth;
1064	long t;
1065
1066	/*
1067	 * Limit pause time for small memory systems. If sleeping for too long
1068	 * time, a small pool of dirty/writeback pages may go empty and disk go
1069	 * idle.
1070	 *
1071	 * 8 serves as the safety ratio.
1072	 */
1073	t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1074	t++;
1075
1076	return min_t(long, t, MAX_PAUSE);
1077}
1078
1079static long bdi_min_pause(struct backing_dev_info *bdi,
1080			  long max_pause,
1081			  unsigned long task_ratelimit,
1082			  unsigned long dirty_ratelimit,
1083			  int *nr_dirtied_pause)
1084{
1085	long hi = ilog2(bdi->avg_write_bandwidth);
1086	long lo = ilog2(bdi->dirty_ratelimit);
1087	long t;		/* target pause */
1088	long pause;	/* estimated next pause */
1089	int pages;	/* target nr_dirtied_pause */
1090
1091	/* target for 10ms pause on 1-dd case */
1092	t = max(1, HZ / 100);
1093
1094	/*
1095	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1096	 * overheads.
1097	 *
1098	 * (N * 10ms) on 2^N concurrent tasks.
1099	 */
1100	if (hi > lo)
1101		t += (hi - lo) * (10 * HZ) / 1024;
1102
1103	/*
1104	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1105	 * on the much more stable dirty_ratelimit. However the next pause time
1106	 * will be computed based on task_ratelimit and the two rate limits may
1107	 * depart considerably at some time. Especially if task_ratelimit goes
1108	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1109	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1110	 * result task_ratelimit won't be executed faithfully, which could
1111	 * eventually bring down dirty_ratelimit.
1112	 *
1113	 * We apply two rules to fix it up:
1114	 * 1) try to estimate the next pause time and if necessary, use a lower
1115	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1116	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1117	 * 2) limit the target pause time to max_pause/2, so that the normal
1118	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1119	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1120	 */
1121	t = min(t, 1 + max_pause / 2);
1122	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1123
1124	/*
1125	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1126	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1127	 * When the 16 consecutive reads are often interrupted by some dirty
1128	 * throttling pause during the async writes, cfq will go into idles
1129	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1130	 * until reaches DIRTY_POLL_THRESH=32 pages.
1131	 */
1132	if (pages < DIRTY_POLL_THRESH) {
1133		t = max_pause;
1134		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1135		if (pages > DIRTY_POLL_THRESH) {
1136			pages = DIRTY_POLL_THRESH;
1137			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1138		}
1139	}
1140
1141	pause = HZ * pages / (task_ratelimit + 1);
1142	if (pause > max_pause) {
1143		t = max_pause;
1144		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1145	}
1146
1147	*nr_dirtied_pause = pages;
1148	/*
1149	 * The minimal pause time will normally be half the target pause time.
1150	 */
1151	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1152}
1153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1154/*
1155 * balance_dirty_pages() must be called by processes which are generating dirty
1156 * data.  It looks at the number of dirty pages in the machine and will force
1157 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1158 * If we're over `background_thresh' then the writeback threads are woken to
1159 * perform some writeout.
1160 */
1161static void balance_dirty_pages(struct address_space *mapping,
1162				unsigned long pages_dirtied)
1163{
 
 
 
 
 
 
1164	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1165	unsigned long bdi_reclaimable;
1166	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1167	unsigned long bdi_dirty;
1168	unsigned long freerun;
1169	unsigned long background_thresh;
1170	unsigned long dirty_thresh;
1171	unsigned long bdi_thresh;
1172	long period;
1173	long pause;
1174	long max_pause;
1175	long min_pause;
1176	int nr_dirtied_pause;
1177	bool dirty_exceeded = false;
1178	unsigned long task_ratelimit;
1179	unsigned long dirty_ratelimit;
1180	unsigned long pos_ratio;
1181	struct backing_dev_info *bdi = mapping->backing_dev_info;
1182	unsigned long start_time = jiffies;
1183
1184	for (;;) {
1185		unsigned long now = jiffies;
 
 
 
 
1186
1187		/*
1188		 * Unstable writes are a feature of certain networked
1189		 * filesystems (i.e. NFS) in which data may have been
1190		 * written to the server's write cache, but has not yet
1191		 * been flushed to permanent storage.
1192		 */
1193		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1194					global_page_state(NR_UNSTABLE_NFS);
1195		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1196
1197		global_dirty_limits(&background_thresh, &dirty_thresh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1198
1199		/*
1200		 * Throttle it only when the background writeback cannot
1201		 * catch-up. This avoids (excessively) small writeouts
1202		 * when the bdi limits are ramping up.
 
 
 
 
 
 
 
1203		 */
1204		freerun = dirty_freerun_ceiling(dirty_thresh,
1205						background_thresh);
1206		if (nr_dirty <= freerun) {
 
 
 
1207			current->dirty_paused_when = now;
1208			current->nr_dirtied = 0;
1209			current->nr_dirtied_pause =
1210				dirty_poll_interval(nr_dirty, dirty_thresh);
 
1211			break;
1212		}
1213
1214		if (unlikely(!writeback_in_progress(bdi)))
1215			bdi_start_background_writeback(bdi);
 
 
1216
1217		/*
1218		 * bdi_thresh is not treated as some limiting factor as
1219		 * dirty_thresh, due to reasons
1220		 * - in JBOD setup, bdi_thresh can fluctuate a lot
1221		 * - in a system with HDD and USB key, the USB key may somehow
1222		 *   go into state (bdi_dirty >> bdi_thresh) either because
1223		 *   bdi_dirty starts high, or because bdi_thresh drops low.
1224		 *   In this case we don't want to hard throttle the USB key
1225		 *   dirtiers for 100 seconds until bdi_dirty drops under
1226		 *   bdi_thresh. Instead the auxiliary bdi control line in
1227		 *   bdi_position_ratio() will let the dirtier task progress
1228		 *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1229		 */
1230		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
 
 
 
 
 
 
 
1231
1232		/*
1233		 * In order to avoid the stacked BDI deadlock we need
1234		 * to ensure we accurately count the 'dirty' pages when
1235		 * the threshold is low.
1236		 *
1237		 * Otherwise it would be possible to get thresh+n pages
1238		 * reported dirty, even though there are thresh-m pages
1239		 * actually dirty; with m+n sitting in the percpu
1240		 * deltas.
1241		 */
1242		if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1243			bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1244			bdi_dirty = bdi_reclaimable +
1245				    bdi_stat_sum(bdi, BDI_WRITEBACK);
1246		} else {
1247			bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1248			bdi_dirty = bdi_reclaimable +
1249				    bdi_stat(bdi, BDI_WRITEBACK);
1250		}
1251
1252		dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1253				  (nr_dirty > dirty_thresh);
1254		if (dirty_exceeded && !bdi->dirty_exceeded)
1255			bdi->dirty_exceeded = 1;
1256
1257		bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1258				     nr_dirty, bdi_thresh, bdi_dirty,
1259				     start_time);
1260
1261		dirty_ratelimit = bdi->dirty_ratelimit;
1262		pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1263					       background_thresh, nr_dirty,
1264					       bdi_thresh, bdi_dirty);
1265		task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1266							RATELIMIT_CALC_SHIFT;
1267		max_pause = bdi_max_pause(bdi, bdi_dirty);
1268		min_pause = bdi_min_pause(bdi, max_pause,
1269					  task_ratelimit, dirty_ratelimit,
1270					  &nr_dirtied_pause);
1271
1272		if (unlikely(task_ratelimit == 0)) {
1273			period = max_pause;
1274			pause = max_pause;
1275			goto pause;
1276		}
1277		period = HZ * pages_dirtied / task_ratelimit;
1278		pause = period;
1279		if (current->dirty_paused_when)
1280			pause -= now - current->dirty_paused_when;
1281		/*
1282		 * For less than 1s think time (ext3/4 may block the dirtier
1283		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1284		 * however at much less frequency), try to compensate it in
1285		 * future periods by updating the virtual time; otherwise just
1286		 * do a reset, as it may be a light dirtier.
1287		 */
1288		if (pause < min_pause) {
1289			trace_balance_dirty_pages(bdi,
1290						  dirty_thresh,
1291						  background_thresh,
1292						  nr_dirty,
1293						  bdi_thresh,
1294						  bdi_dirty,
1295						  dirty_ratelimit,
1296						  task_ratelimit,
1297						  pages_dirtied,
1298						  period,
1299						  min(pause, 0L),
1300						  start_time);
1301			if (pause < -HZ) {
1302				current->dirty_paused_when = now;
1303				current->nr_dirtied = 0;
1304			} else if (period) {
1305				current->dirty_paused_when += period;
1306				current->nr_dirtied = 0;
1307			} else if (current->nr_dirtied_pause <= pages_dirtied)
1308				current->nr_dirtied_pause += pages_dirtied;
1309			break;
1310		}
1311		if (unlikely(pause > max_pause)) {
1312			/* for occasional dropped task_ratelimit */
1313			now += min(pause - max_pause, max_pause);
1314			pause = max_pause;
1315		}
1316
1317pause:
1318		trace_balance_dirty_pages(bdi,
1319					  dirty_thresh,
1320					  background_thresh,
1321					  nr_dirty,
1322					  bdi_thresh,
1323					  bdi_dirty,
1324					  dirty_ratelimit,
1325					  task_ratelimit,
1326					  pages_dirtied,
1327					  period,
1328					  pause,
1329					  start_time);
1330		__set_current_state(TASK_KILLABLE);
 
1331		io_schedule_timeout(pause);
1332
1333		current->dirty_paused_when = now + pause;
1334		current->nr_dirtied = 0;
1335		current->nr_dirtied_pause = nr_dirtied_pause;
1336
1337		/*
1338		 * This is typically equal to (nr_dirty < dirty_thresh) and can
1339		 * also keep "1000+ dd on a slow USB stick" under control.
1340		 */
1341		if (task_ratelimit)
1342			break;
1343
1344		/*
1345		 * In the case of an unresponding NFS server and the NFS dirty
1346		 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1347		 * to go through, so that tasks on them still remain responsive.
1348		 *
1349		 * In theory 1 page is enough to keep the comsumer-producer
1350		 * pipe going: the flusher cleans 1 page => the task dirties 1
1351		 * more page. However bdi_dirty has accounting errors.  So use
1352		 * the larger and more IO friendly bdi_stat_error.
1353		 */
1354		if (bdi_dirty <= bdi_stat_error(bdi))
1355			break;
1356
1357		if (fatal_signal_pending(current))
1358			break;
1359	}
1360
1361	if (!dirty_exceeded && bdi->dirty_exceeded)
1362		bdi->dirty_exceeded = 0;
1363
1364	if (writeback_in_progress(bdi))
1365		return;
1366
1367	/*
1368	 * In laptop mode, we wait until hitting the higher threshold before
1369	 * starting background writeout, and then write out all the way down
1370	 * to the lower threshold.  So slow writers cause minimal disk activity.
1371	 *
1372	 * In normal mode, we start background writeout at the lower
1373	 * background_thresh, to keep the amount of dirty memory low.
1374	 */
1375	if (laptop_mode)
1376		return;
1377
1378	if (nr_reclaimable > background_thresh)
1379		bdi_start_background_writeback(bdi);
1380}
1381
1382void set_page_dirty_balance(struct page *page, int page_mkwrite)
1383{
1384	if (set_page_dirty(page) || page_mkwrite) {
1385		struct address_space *mapping = page_mapping(page);
1386
1387		if (mapping)
1388			balance_dirty_pages_ratelimited(mapping);
1389	}
1390}
1391
1392static DEFINE_PER_CPU(int, bdp_ratelimits);
1393
1394/*
1395 * Normal tasks are throttled by
1396 *	loop {
1397 *		dirty tsk->nr_dirtied_pause pages;
1398 *		take a snap in balance_dirty_pages();
1399 *	}
1400 * However there is a worst case. If every task exit immediately when dirtied
1401 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1402 * called to throttle the page dirties. The solution is to save the not yet
1403 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1404 * randomly into the running tasks. This works well for the above worst case,
1405 * as the new task will pick up and accumulate the old task's leaked dirty
1406 * count and eventually get throttled.
1407 */
1408DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1409
1410/**
1411 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1412 * @mapping: address_space which was dirtied
1413 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1414 *
1415 * Processes which are dirtying memory should call in here once for each page
1416 * which was newly dirtied.  The function will periodically check the system's
1417 * dirty state and will initiate writeback if needed.
1418 *
1419 * On really big machines, get_writeback_state is expensive, so try to avoid
1420 * calling it too often (ratelimiting).  But once we're over the dirty memory
1421 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1422 * from overshooting the limit by (ratelimit_pages) each.
1423 */
1424void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1425					unsigned long nr_pages_dirtied)
1426{
1427	struct backing_dev_info *bdi = mapping->backing_dev_info;
 
 
1428	int ratelimit;
1429	int *p;
1430
1431	if (!bdi_cap_account_dirty(bdi))
1432		return;
1433
 
 
 
 
 
1434	ratelimit = current->nr_dirtied_pause;
1435	if (bdi->dirty_exceeded)
1436		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1437
1438	preempt_disable();
1439	/*
1440	 * This prevents one CPU to accumulate too many dirtied pages without
1441	 * calling into balance_dirty_pages(), which can happen when there are
1442	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1443	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1444	 */
1445	p =  &__get_cpu_var(bdp_ratelimits);
1446	if (unlikely(current->nr_dirtied >= ratelimit))
1447		*p = 0;
1448	else if (unlikely(*p >= ratelimit_pages)) {
1449		*p = 0;
1450		ratelimit = 0;
1451	}
1452	/*
1453	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1454	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1455	 * the dirty throttling and livelock other long-run dirtiers.
1456	 */
1457	p = &__get_cpu_var(dirty_throttle_leaks);
1458	if (*p > 0 && current->nr_dirtied < ratelimit) {
 
1459		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1460		*p -= nr_pages_dirtied;
1461		current->nr_dirtied += nr_pages_dirtied;
1462	}
1463	preempt_enable();
1464
1465	if (unlikely(current->nr_dirtied >= ratelimit))
1466		balance_dirty_pages(mapping, current->nr_dirtied);
 
 
1467}
1468EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1469
1470void throttle_vm_writeout(gfp_t gfp_mask)
 
 
 
 
 
 
 
 
 
1471{
1472	unsigned long background_thresh;
1473	unsigned long dirty_thresh;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1474
1475        for ( ; ; ) {
1476		global_dirty_limits(&background_thresh, &dirty_thresh);
1477		dirty_thresh = hard_dirty_limit(dirty_thresh);
1478
1479                /*
1480                 * Boost the allowable dirty threshold a bit for page
1481                 * allocators so they don't get DoS'ed by heavy writers
1482                 */
1483                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1484
1485                if (global_page_state(NR_UNSTABLE_NFS) +
1486			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1487                        	break;
1488                congestion_wait(BLK_RW_ASYNC, HZ/10);
1489
1490		/*
1491		 * The caller might hold locks which can prevent IO completion
1492		 * or progress in the filesystem.  So we cannot just sit here
1493		 * waiting for IO to complete.
1494		 */
1495		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1496			break;
1497        }
1498}
1499
1500/*
1501 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1502 */
1503int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1504	void __user *buffer, size_t *length, loff_t *ppos)
1505{
1506	proc_dointvec(table, write, buffer, length, ppos);
1507	bdi_arm_supers_timer();
1508	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509}
1510
1511#ifdef CONFIG_BLOCK
1512void laptop_mode_timer_fn(unsigned long data)
1513{
1514	struct request_queue *q = (struct request_queue *)data;
1515	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1516		global_page_state(NR_UNSTABLE_NFS);
1517
1518	/*
1519	 * We want to write everything out, not just down to the dirty
1520	 * threshold
1521	 */
1522	if (bdi_has_dirty_io(&q->backing_dev_info))
1523		bdi_start_writeback(&q->backing_dev_info, nr_pages,
1524					WB_REASON_LAPTOP_TIMER);
1525}
1526
1527/*
1528 * We've spun up the disk and we're in laptop mode: schedule writeback
1529 * of all dirty data a few seconds from now.  If the flush is already scheduled
1530 * then push it back - the user is still using the disk.
1531 */
1532void laptop_io_completion(struct backing_dev_info *info)
1533{
1534	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1535}
1536
1537/*
1538 * We're in laptop mode and we've just synced. The sync's writes will have
1539 * caused another writeback to be scheduled by laptop_io_completion.
1540 * Nothing needs to be written back anymore, so we unschedule the writeback.
1541 */
1542void laptop_sync_completion(void)
1543{
1544	struct backing_dev_info *bdi;
1545
1546	rcu_read_lock();
1547
1548	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1549		del_timer(&bdi->laptop_mode_wb_timer);
1550
1551	rcu_read_unlock();
1552}
1553#endif
1554
1555/*
1556 * If ratelimit_pages is too high then we can get into dirty-data overload
1557 * if a large number of processes all perform writes at the same time.
1558 * If it is too low then SMP machines will call the (expensive)
1559 * get_writeback_state too often.
1560 *
1561 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1562 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1563 * thresholds.
1564 */
1565
1566void writeback_set_ratelimit(void)
1567{
 
1568	unsigned long background_thresh;
1569	unsigned long dirty_thresh;
 
1570	global_dirty_limits(&background_thresh, &dirty_thresh);
1571	global_dirty_limit = dirty_thresh;
1572	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1573	if (ratelimit_pages < 16)
1574		ratelimit_pages = 16;
1575}
1576
1577static int __cpuinit
1578ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1579{
1580	writeback_set_ratelimit();
1581	return NOTIFY_DONE;
1582}
1583
1584static struct notifier_block __cpuinitdata ratelimit_nb = {
1585	.notifier_call	= ratelimit_handler,
1586	.next		= NULL,
1587};
1588
1589/*
1590 * Called early on to tune the page writeback dirty limits.
1591 *
1592 * We used to scale dirty pages according to how total memory
1593 * related to pages that could be allocated for buffers (by
1594 * comparing nr_free_buffer_pages() to vm_total_pages.
1595 *
1596 * However, that was when we used "dirty_ratio" to scale with
1597 * all memory, and we don't do that any more. "dirty_ratio"
1598 * is now applied to total non-HIGHPAGE memory (by subtracting
1599 * totalhigh_pages from vm_total_pages), and as such we can't
1600 * get into the old insane situation any more where we had
1601 * large amounts of dirty pages compared to a small amount of
1602 * non-HIGHMEM memory.
1603 *
1604 * But we might still want to scale the dirty_ratio by how
1605 * much memory the box has..
1606 */
1607void __init page_writeback_init(void)
1608{
1609	int shift;
1610
1611	writeback_set_ratelimit();
1612	register_cpu_notifier(&ratelimit_nb);
1613
1614	shift = calc_period_shift();
1615	prop_descriptor_init(&vm_completions, shift);
1616}
1617
1618/**
1619 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1620 * @mapping: address space structure to write
1621 * @start: starting page index
1622 * @end: ending page index (inclusive)
1623 *
1624 * This function scans the page range from @start to @end (inclusive) and tags
1625 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1626 * that write_cache_pages (or whoever calls this function) will then use
1627 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1628 * used to avoid livelocking of writeback by a process steadily creating new
1629 * dirty pages in the file (thus it is important for this function to be quick
1630 * so that it can tag pages faster than a dirtying process can create them).
1631 */
1632/*
1633 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1634 */
1635void tag_pages_for_writeback(struct address_space *mapping,
1636			     pgoff_t start, pgoff_t end)
1637{
1638#define WRITEBACK_TAG_BATCH 4096
1639	unsigned long tagged;
 
 
 
 
 
 
 
1640
1641	do {
1642		spin_lock_irq(&mapping->tree_lock);
1643		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1644				&start, end, WRITEBACK_TAG_BATCH,
1645				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1646		spin_unlock_irq(&mapping->tree_lock);
1647		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1648		cond_resched();
1649		/* We check 'start' to handle wrapping when end == ~0UL */
1650	} while (tagged >= WRITEBACK_TAG_BATCH && start);
 
1651}
1652EXPORT_SYMBOL(tag_pages_for_writeback);
1653
1654/**
1655 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1656 * @mapping: address space structure to write
1657 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1658 * @writepage: function called for each page
1659 * @data: data passed to writepage function
1660 *
1661 * If a page is already under I/O, write_cache_pages() skips it, even
1662 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1663 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1664 * and msync() need to guarantee that all the data which was dirty at the time
1665 * the call was made get new I/O started against them.  If wbc->sync_mode is
1666 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1667 * existing IO to complete.
1668 *
1669 * To avoid livelocks (when other process dirties new pages), we first tag
1670 * pages which should be written back with TOWRITE tag and only then start
1671 * writing them. For data-integrity sync we have to be careful so that we do
1672 * not miss some pages (e.g., because some other process has cleared TOWRITE
1673 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1674 * by the process clearing the DIRTY tag (and submitting the page for IO).
 
 
 
 
 
 
 
 
 
1675 */
1676int write_cache_pages(struct address_space *mapping,
1677		      struct writeback_control *wbc, writepage_t writepage,
1678		      void *data)
1679{
1680	int ret = 0;
1681	int done = 0;
 
1682	struct pagevec pvec;
1683	int nr_pages;
1684	pgoff_t uninitialized_var(writeback_index);
1685	pgoff_t index;
1686	pgoff_t end;		/* Inclusive */
1687	pgoff_t done_index;
1688	int cycled;
1689	int range_whole = 0;
1690	int tag;
1691
1692	pagevec_init(&pvec, 0);
1693	if (wbc->range_cyclic) {
1694		writeback_index = mapping->writeback_index; /* prev offset */
1695		index = writeback_index;
1696		if (index == 0)
1697			cycled = 1;
1698		else
1699			cycled = 0;
1700		end = -1;
1701	} else {
1702		index = wbc->range_start >> PAGE_CACHE_SHIFT;
1703		end = wbc->range_end >> PAGE_CACHE_SHIFT;
1704		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1705			range_whole = 1;
1706		cycled = 1; /* ignore range_cyclic tests */
1707	}
1708	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1709		tag = PAGECACHE_TAG_TOWRITE;
1710	else
1711		tag = PAGECACHE_TAG_DIRTY;
1712retry:
1713	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1714		tag_pages_for_writeback(mapping, index, end);
1715	done_index = index;
1716	while (!done && (index <= end)) {
1717		int i;
1718
1719		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1720			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1721		if (nr_pages == 0)
1722			break;
1723
1724		for (i = 0; i < nr_pages; i++) {
1725			struct page *page = pvec.pages[i];
1726
1727			/*
1728			 * At this point, the page may be truncated or
1729			 * invalidated (changing page->mapping to NULL), or
1730			 * even swizzled back from swapper_space to tmpfs file
1731			 * mapping. However, page->index will not change
1732			 * because we have a reference on the page.
1733			 */
1734			if (page->index > end) {
1735				/*
1736				 * can't be range_cyclic (1st pass) because
1737				 * end == -1 in that case.
1738				 */
1739				done = 1;
1740				break;
1741			}
1742
1743			done_index = page->index;
1744
1745			lock_page(page);
1746
1747			/*
1748			 * Page truncated or invalidated. We can freely skip it
1749			 * then, even for data integrity operations: the page
1750			 * has disappeared concurrently, so there could be no
1751			 * real expectation of this data interity operation
1752			 * even if there is now a new, dirty page at the same
1753			 * pagecache address.
1754			 */
1755			if (unlikely(page->mapping != mapping)) {
1756continue_unlock:
1757				unlock_page(page);
1758				continue;
1759			}
1760
1761			if (!PageDirty(page)) {
1762				/* someone wrote it for us */
1763				goto continue_unlock;
1764			}
1765
1766			if (PageWriteback(page)) {
1767				if (wbc->sync_mode != WB_SYNC_NONE)
1768					wait_on_page_writeback(page);
1769				else
1770					goto continue_unlock;
1771			}
1772
1773			BUG_ON(PageWriteback(page));
1774			if (!clear_page_dirty_for_io(page))
1775				goto continue_unlock;
1776
1777			trace_wbc_writepage(wbc, mapping->backing_dev_info);
1778			ret = (*writepage)(page, wbc, data);
1779			if (unlikely(ret)) {
1780				if (ret == AOP_WRITEPAGE_ACTIVATE) {
 
 
 
 
 
 
 
 
 
 
 
 
1781					unlock_page(page);
1782					ret = 0;
1783				} else {
1784					/*
1785					 * done_index is set past this page,
1786					 * so media errors will not choke
1787					 * background writeout for the entire
1788					 * file. This has consequences for
1789					 * range_cyclic semantics (ie. it may
1790					 * not be suitable for data integrity
1791					 * writeout).
1792					 */
1793					done_index = page->index + 1;
1794					done = 1;
1795					break;
1796				}
 
 
1797			}
1798
1799			/*
1800			 * We stop writing back only if we are not doing
1801			 * integrity sync. In case of integrity sync we have to
1802			 * keep going until we have written all the pages
1803			 * we tagged for writeback prior to entering this loop.
1804			 */
1805			if (--wbc->nr_to_write <= 0 &&
1806			    wbc->sync_mode == WB_SYNC_NONE) {
1807				done = 1;
1808				break;
1809			}
1810		}
1811		pagevec_release(&pvec);
1812		cond_resched();
1813	}
1814	if (!cycled && !done) {
1815		/*
1816		 * range_cyclic:
1817		 * We hit the last page and there is more work to be done: wrap
1818		 * back to the start of the file
1819		 */
1820		cycled = 1;
1821		index = 0;
1822		end = writeback_index - 1;
1823		goto retry;
1824	}
1825	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1826		mapping->writeback_index = done_index;
1827
1828	return ret;
1829}
1830EXPORT_SYMBOL(write_cache_pages);
1831
1832/*
1833 * Function used by generic_writepages to call the real writepage
1834 * function and set the mapping flags on error
1835 */
1836static int __writepage(struct page *page, struct writeback_control *wbc,
1837		       void *data)
1838{
1839	struct address_space *mapping = data;
1840	int ret = mapping->a_ops->writepage(page, wbc);
1841	mapping_set_error(mapping, ret);
1842	return ret;
1843}
1844
1845/**
1846 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1847 * @mapping: address space structure to write
1848 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1849 *
1850 * This is a library function, which implements the writepages()
1851 * address_space_operation.
 
 
1852 */
1853int generic_writepages(struct address_space *mapping,
1854		       struct writeback_control *wbc)
1855{
1856	struct blk_plug plug;
1857	int ret;
1858
1859	/* deal with chardevs and other special file */
1860	if (!mapping->a_ops->writepage)
1861		return 0;
1862
1863	blk_start_plug(&plug);
1864	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1865	blk_finish_plug(&plug);
1866	return ret;
1867}
1868
1869EXPORT_SYMBOL(generic_writepages);
1870
1871int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1872{
1873	int ret;
1874
1875	if (wbc->nr_to_write <= 0)
1876		return 0;
1877	if (mapping->a_ops->writepages)
1878		ret = mapping->a_ops->writepages(mapping, wbc);
1879	else
1880		ret = generic_writepages(mapping, wbc);
 
 
 
 
 
 
1881	return ret;
1882}
1883
1884/**
1885 * write_one_page - write out a single page and optionally wait on I/O
1886 * @page: the page to write
1887 * @wait: if true, wait on writeout
1888 *
1889 * The page must be locked by the caller and will be unlocked upon return.
1890 *
1891 * write_one_page() returns a negative error code if I/O failed.
 
 
 
1892 */
1893int write_one_page(struct page *page, int wait)
1894{
1895	struct address_space *mapping = page->mapping;
1896	int ret = 0;
1897	struct writeback_control wbc = {
1898		.sync_mode = WB_SYNC_ALL,
1899		.nr_to_write = 1,
1900	};
1901
1902	BUG_ON(!PageLocked(page));
1903
1904	if (wait)
1905		wait_on_page_writeback(page);
1906
1907	if (clear_page_dirty_for_io(page)) {
1908		page_cache_get(page);
1909		ret = mapping->a_ops->writepage(page, &wbc);
1910		if (ret == 0 && wait) {
1911			wait_on_page_writeback(page);
1912			if (PageError(page))
1913				ret = -EIO;
1914		}
1915		page_cache_release(page);
1916	} else {
1917		unlock_page(page);
1918	}
 
 
 
1919	return ret;
1920}
1921EXPORT_SYMBOL(write_one_page);
1922
1923/*
1924 * For address_spaces which do not use buffers nor write back.
1925 */
1926int __set_page_dirty_no_writeback(struct page *page)
1927{
1928	if (!PageDirty(page))
1929		return !TestSetPageDirty(page);
1930	return 0;
1931}
1932
1933/*
1934 * Helper function for set_page_dirty family.
 
 
 
1935 * NOTE: This relies on being atomic wrt interrupts.
1936 */
1937void account_page_dirtied(struct page *page, struct address_space *mapping)
1938{
 
 
 
 
1939	if (mapping_cap_account_dirty(mapping)) {
1940		__inc_zone_page_state(page, NR_FILE_DIRTY);
1941		__inc_zone_page_state(page, NR_DIRTIED);
1942		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1943		__inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1944		task_io_account_write(PAGE_CACHE_SIZE);
 
 
 
 
 
 
1945		current->nr_dirtied++;
1946		this_cpu_inc(bdp_ratelimits);
 
 
1947	}
1948}
1949EXPORT_SYMBOL(account_page_dirtied);
1950
1951/*
1952 * Helper function for set_page_writeback family.
1953 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1954 * wrt interrupts.
1955 */
1956void account_page_writeback(struct page *page)
 
1957{
1958	inc_zone_page_state(page, NR_WRITEBACK);
 
 
 
 
 
1959}
1960EXPORT_SYMBOL(account_page_writeback);
1961
1962/*
1963 * For address_spaces which do not use buffers.  Just tag the page as dirty in
1964 * its radix tree.
1965 *
1966 * This is also used when a single buffer is being dirtied: we want to set the
1967 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1968 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1969 *
1970 * Most callers have locked the page, which pins the address_space in memory.
1971 * But zap_pte_range() does not lock the page, however in that case the
1972 * mapping is pinned by the vma's ->vm_file reference.
1973 *
1974 * We take care to handle the case where the page was truncated from the
1975 * mapping by re-checking page_mapping() inside tree_lock.
1976 */
1977int __set_page_dirty_nobuffers(struct page *page)
1978{
 
1979	if (!TestSetPageDirty(page)) {
1980		struct address_space *mapping = page_mapping(page);
1981		struct address_space *mapping2;
1982
1983		if (!mapping)
 
1984			return 1;
 
 
 
 
 
 
 
 
 
 
1985
1986		spin_lock_irq(&mapping->tree_lock);
1987		mapping2 = page_mapping(page);
1988		if (mapping2) { /* Race with truncate? */
1989			BUG_ON(mapping2 != mapping);
1990			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1991			account_page_dirtied(page, mapping);
1992			radix_tree_tag_set(&mapping->page_tree,
1993				page_index(page), PAGECACHE_TAG_DIRTY);
1994		}
1995		spin_unlock_irq(&mapping->tree_lock);
1996		if (mapping->host) {
1997			/* !PageAnon && !swapper_space */
1998			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1999		}
2000		return 1;
2001	}
 
2002	return 0;
2003}
2004EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2005
2006/*
2007 * Call this whenever redirtying a page, to de-account the dirty counters
2008 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2009 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2010 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2011 * control.
2012 */
2013void account_page_redirty(struct page *page)
2014{
2015	struct address_space *mapping = page->mapping;
 
2016	if (mapping && mapping_cap_account_dirty(mapping)) {
 
 
 
 
 
2017		current->nr_dirtied--;
2018		dec_zone_page_state(page, NR_DIRTIED);
2019		dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
 
2020	}
2021}
2022EXPORT_SYMBOL(account_page_redirty);
2023
2024/*
2025 * When a writepage implementation decides that it doesn't want to write this
2026 * page for some reason, it should redirty the locked page via
2027 * redirty_page_for_writepage() and it should then unlock the page and return 0
2028 */
2029int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2030{
 
 
2031	wbc->pages_skipped++;
 
2032	account_page_redirty(page);
2033	return __set_page_dirty_nobuffers(page);
2034}
2035EXPORT_SYMBOL(redirty_page_for_writepage);
2036
2037/*
2038 * Dirty a page.
2039 *
2040 * For pages with a mapping this should be done under the page lock
2041 * for the benefit of asynchronous memory errors who prefer a consistent
2042 * dirty state. This rule can be broken in some special cases,
2043 * but should be better not to.
2044 *
2045 * If the mapping doesn't provide a set_page_dirty a_op, then
2046 * just fall through and assume that it wants buffer_heads.
2047 */
2048int set_page_dirty(struct page *page)
2049{
2050	struct address_space *mapping = page_mapping(page);
2051
 
2052	if (likely(mapping)) {
2053		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2054		/*
2055		 * readahead/lru_deactivate_page could remain
2056		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2057		 * About readahead, if the page is written, the flags would be
2058		 * reset. So no problem.
2059		 * About lru_deactivate_page, if the page is redirty, the flag
2060		 * will be reset. So no problem. but if the page is used by readahead
2061		 * it will confuse readahead and make it restart the size rampup
2062		 * process. But it's a trivial problem.
2063		 */
2064		ClearPageReclaim(page);
 
2065#ifdef CONFIG_BLOCK
2066		if (!spd)
2067			spd = __set_page_dirty_buffers;
2068#endif
2069		return (*spd)(page);
2070	}
2071	if (!PageDirty(page)) {
2072		if (!TestSetPageDirty(page))
2073			return 1;
2074	}
2075	return 0;
2076}
2077EXPORT_SYMBOL(set_page_dirty);
2078
2079/*
2080 * set_page_dirty() is racy if the caller has no reference against
2081 * page->mapping->host, and if the page is unlocked.  This is because another
2082 * CPU could truncate the page off the mapping and then free the mapping.
2083 *
2084 * Usually, the page _is_ locked, or the caller is a user-space process which
2085 * holds a reference on the inode by having an open file.
2086 *
2087 * In other cases, the page should be locked before running set_page_dirty().
2088 */
2089int set_page_dirty_lock(struct page *page)
2090{
2091	int ret;
2092
2093	lock_page(page);
2094	ret = set_page_dirty(page);
2095	unlock_page(page);
2096	return ret;
2097}
2098EXPORT_SYMBOL(set_page_dirty_lock);
2099
2100/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2101 * Clear a page's dirty flag, while caring for dirty memory accounting.
2102 * Returns true if the page was previously dirty.
2103 *
2104 * This is for preparing to put the page under writeout.  We leave the page
2105 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2106 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2107 * implementation will run either set_page_writeback() or set_page_dirty(),
2108 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2109 * back into sync.
2110 *
2111 * This incoherency between the page's dirty flag and radix-tree tag is
2112 * unfortunate, but it only exists while the page is locked.
2113 */
2114int clear_page_dirty_for_io(struct page *page)
2115{
2116	struct address_space *mapping = page_mapping(page);
 
2117
2118	BUG_ON(!PageLocked(page));
2119
2120	if (mapping && mapping_cap_account_dirty(mapping)) {
 
 
 
 
2121		/*
2122		 * Yes, Virginia, this is indeed insane.
2123		 *
2124		 * We use this sequence to make sure that
2125		 *  (a) we account for dirty stats properly
2126		 *  (b) we tell the low-level filesystem to
2127		 *      mark the whole page dirty if it was
2128		 *      dirty in a pagetable. Only to then
2129		 *  (c) clean the page again and return 1 to
2130		 *      cause the writeback.
2131		 *
2132		 * This way we avoid all nasty races with the
2133		 * dirty bit in multiple places and clearing
2134		 * them concurrently from different threads.
2135		 *
2136		 * Note! Normally the "set_page_dirty(page)"
2137		 * has no effect on the actual dirty bit - since
2138		 * that will already usually be set. But we
2139		 * need the side effects, and it can help us
2140		 * avoid races.
2141		 *
2142		 * We basically use the page "master dirty bit"
2143		 * as a serialization point for all the different
2144		 * threads doing their things.
2145		 */
2146		if (page_mkclean(page))
2147			set_page_dirty(page);
2148		/*
2149		 * We carefully synchronise fault handlers against
2150		 * installing a dirty pte and marking the page dirty
2151		 * at this point. We do this by having them hold the
2152		 * page lock at some point after installing their
2153		 * pte, but before marking the page dirty.
2154		 * Pages are always locked coming in here, so we get
2155		 * the desired exclusion. See mm/memory.c:do_wp_page()
2156		 * for more comments.
2157		 */
 
2158		if (TestClearPageDirty(page)) {
2159			dec_zone_page_state(page, NR_FILE_DIRTY);
2160			dec_bdi_stat(mapping->backing_dev_info,
2161					BDI_RECLAIMABLE);
2162			return 1;
2163		}
2164		return 0;
 
2165	}
2166	return TestClearPageDirty(page);
2167}
2168EXPORT_SYMBOL(clear_page_dirty_for_io);
2169
2170int test_clear_page_writeback(struct page *page)
2171{
2172	struct address_space *mapping = page_mapping(page);
 
 
2173	int ret;
2174
2175	if (mapping) {
2176		struct backing_dev_info *bdi = mapping->backing_dev_info;
 
 
 
2177		unsigned long flags;
2178
2179		spin_lock_irqsave(&mapping->tree_lock, flags);
2180		ret = TestClearPageWriteback(page);
2181		if (ret) {
2182			radix_tree_tag_clear(&mapping->page_tree,
2183						page_index(page),
2184						PAGECACHE_TAG_WRITEBACK);
2185			if (bdi_cap_account_writeback(bdi)) {
2186				__dec_bdi_stat(bdi, BDI_WRITEBACK);
2187				__bdi_writeout_inc(bdi);
 
 
2188			}
2189		}
2190		spin_unlock_irqrestore(&mapping->tree_lock, flags);
 
 
 
 
 
2191	} else {
2192		ret = TestClearPageWriteback(page);
2193	}
 
 
 
 
 
 
2194	if (ret) {
2195		dec_zone_page_state(page, NR_WRITEBACK);
2196		inc_zone_page_state(page, NR_WRITTEN);
 
2197	}
 
2198	return ret;
2199}
2200
2201int test_set_page_writeback(struct page *page)
2202{
2203	struct address_space *mapping = page_mapping(page);
2204	int ret;
2205
2206	if (mapping) {
2207		struct backing_dev_info *bdi = mapping->backing_dev_info;
 
 
 
2208		unsigned long flags;
2209
2210		spin_lock_irqsave(&mapping->tree_lock, flags);
 
2211		ret = TestSetPageWriteback(page);
2212		if (!ret) {
2213			radix_tree_tag_set(&mapping->page_tree,
2214						page_index(page),
2215						PAGECACHE_TAG_WRITEBACK);
 
 
 
2216			if (bdi_cap_account_writeback(bdi))
2217				__inc_bdi_stat(bdi, BDI_WRITEBACK);
 
 
 
 
 
 
 
 
2218		}
2219		if (!PageDirty(page))
2220			radix_tree_tag_clear(&mapping->page_tree,
2221						page_index(page),
2222						PAGECACHE_TAG_DIRTY);
2223		radix_tree_tag_clear(&mapping->page_tree,
2224				     page_index(page),
2225				     PAGECACHE_TAG_TOWRITE);
2226		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2227	} else {
2228		ret = TestSetPageWriteback(page);
2229	}
2230	if (!ret)
2231		account_page_writeback(page);
 
 
 
2232	return ret;
2233
2234}
2235EXPORT_SYMBOL(test_set_page_writeback);
2236
2237/*
2238 * Return true if any of the pages in the mapping are marked with the
2239 * passed tag.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2240 */
2241int mapping_tagged(struct address_space *mapping, int tag)
2242{
2243	return radix_tree_tagged(&mapping->page_tree, tag);
 
2244}
2245EXPORT_SYMBOL(mapping_tagged);