Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  kernel/sched/core.c
   4 *
   5 *  Core kernel scheduler code and related syscalls
   6 *
   7 *  Copyright (C) 1991-2002  Linus Torvalds
   8 */
   9#include "sched.h"
  10
  11#include <linux/nospec.h>
  12
  13#include <linux/kcov.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  14
  15#include <asm/switch_to.h>
  16#include <asm/tlb.h>
 
 
 
 
 
  17
  18#include "../workqueue_internal.h"
 
  19#include "../smpboot.h"
  20
  21#include "pelt.h"
  22
  23#define CREATE_TRACE_POINTS
  24#include <trace/events/sched.h>
  25
  26/*
  27 * Export tracepoints that act as a bare tracehook (ie: have no trace event
  28 * associated with them) to allow external modules to probe them.
  29 */
  30EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
  31EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
  32EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
  33EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
  34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
  35EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
 
  36
 
 
 
 
 
 
 
 
 
  37DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  38
  39#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
 
 
 
 
 
 
 
 
 
 
 
 
 
  40/*
  41 * Debugging: various feature bits
  42 *
  43 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
  44 * sysctl_sched_features, defined in sched.h, to allow constants propagation
  45 * at compile time and compiler optimization based on features default.
  46 */
 
  47#define SCHED_FEAT(name, enabled)	\
  48	(1UL << __SCHED_FEAT_##name) * enabled |
 
  49const_debug unsigned int sysctl_sched_features =
  50#include "features.h"
  51	0;
 
  52#undef SCHED_FEAT
  53#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54
  55/*
  56 * Number of tasks to iterate in a single balance run.
  57 * Limited because this is done with IRQs disabled.
  58 */
  59const_debug unsigned int sysctl_sched_nr_migrate = 32;
  60
  61/*
  62 * period over which we measure -rt task CPU usage in us.
 
 
 
 
 
 
 
 
  63 * default: 1s
  64 */
  65unsigned int sysctl_sched_rt_period = 1000000;
  66
  67__read_mostly int scheduler_running;
  68
  69/*
  70 * part of the period that we allow rt tasks to run in us.
  71 * default: 0.95s
  72 */
  73int sysctl_sched_rt_runtime = 950000;
  74
 
 
  75/*
  76 * __task_rq_lock - lock the rq @p resides on.
  77 */
  78struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  79	__acquires(rq->lock)
  80{
  81	struct rq *rq;
  82
  83	lockdep_assert_held(&p->pi_lock);
  84
  85	for (;;) {
  86		rq = task_rq(p);
  87		raw_spin_lock(&rq->lock);
  88		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  89			rq_pin_lock(rq, rf);
  90			return rq;
  91		}
  92		raw_spin_unlock(&rq->lock);
  93
  94		while (unlikely(task_on_rq_migrating(p)))
  95			cpu_relax();
  96	}
  97}
  98
  99/*
 100 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 101 */
 102struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
 103	__acquires(p->pi_lock)
 104	__acquires(rq->lock)
 105{
 106	struct rq *rq;
 107
 108	for (;;) {
 109		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
 110		rq = task_rq(p);
 111		raw_spin_lock(&rq->lock);
 112		/*
 113		 *	move_queued_task()		task_rq_lock()
 114		 *
 115		 *	ACQUIRE (rq->lock)
 116		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
 117		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
 118		 *	[S] ->cpu = new_cpu		[L] task_rq()
 119		 *					[L] ->on_rq
 120		 *	RELEASE (rq->lock)
 121		 *
 122		 * If we observe the old CPU in task_rq_lock(), the acquire of
 123		 * the old rq->lock will fully serialize against the stores.
 124		 *
 125		 * If we observe the new CPU in task_rq_lock(), the address
 126		 * dependency headed by '[L] rq = task_rq()' and the acquire
 127		 * will pair with the WMB to ensure we then also see migrating.
 128		 */
 129		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
 130			rq_pin_lock(rq, rf);
 131			return rq;
 132		}
 133		raw_spin_unlock(&rq->lock);
 134		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
 135
 136		while (unlikely(task_on_rq_migrating(p)))
 137			cpu_relax();
 138	}
 139}
 140
 141/*
 142 * RQ-clock updating methods:
 143 */
 144
 145static void update_rq_clock_task(struct rq *rq, s64 delta)
 146{
 147/*
 148 * In theory, the compile should just see 0 here, and optimize out the call
 149 * to sched_rt_avg_update. But I don't trust it...
 150 */
 151	s64 __maybe_unused steal = 0, irq_delta = 0;
 152
 153#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 154	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 155
 156	/*
 157	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
 158	 * this case when a previous update_rq_clock() happened inside a
 159	 * {soft,}irq region.
 160	 *
 161	 * When this happens, we stop ->clock_task and only update the
 162	 * prev_irq_time stamp to account for the part that fit, so that a next
 163	 * update will consume the rest. This ensures ->clock_task is
 164	 * monotonic.
 165	 *
 166	 * It does however cause some slight miss-attribution of {soft,}irq
 167	 * time, a more accurate solution would be to update the irq_time using
 168	 * the current rq->clock timestamp, except that would require using
 169	 * atomic ops.
 170	 */
 171	if (irq_delta > delta)
 172		irq_delta = delta;
 173
 174	rq->prev_irq_time += irq_delta;
 175	delta -= irq_delta;
 176#endif
 177#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 178	if (static_key_false((&paravirt_steal_rq_enabled))) {
 179		steal = paravirt_steal_clock(cpu_of(rq));
 180		steal -= rq->prev_steal_time_rq;
 181
 182		if (unlikely(steal > delta))
 183			steal = delta;
 184
 185		rq->prev_steal_time_rq += steal;
 186		delta -= steal;
 187	}
 188#endif
 189
 190	rq->clock_task += delta;
 191
 192#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
 193	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
 194		update_irq_load_avg(rq, irq_delta + steal);
 195#endif
 196	update_rq_clock_pelt(rq, delta);
 197}
 198
 199void update_rq_clock(struct rq *rq)
 
 
 
 200{
 201	s64 delta;
 202
 203	lockdep_assert_held(&rq->lock);
 204
 205	if (rq->clock_update_flags & RQCF_ACT_SKIP)
 206		return;
 
 
 
 
 
 207
 208#ifdef CONFIG_SCHED_DEBUG
 209	if (sched_feat(WARN_DOUBLE_CLOCK))
 210		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
 211	rq->clock_update_flags |= RQCF_UPDATED;
 212#endif
 213
 214	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 215	if (delta < 0)
 216		return;
 217	rq->clock += delta;
 218	update_rq_clock_task(rq, delta);
 219}
 220
 221
 222#ifdef CONFIG_SCHED_HRTICK
 223/*
 224 * Use HR-timers to deliver accurate preemption points.
 
 
 
 
 
 
 
 225 */
 226
 227static void hrtick_clear(struct rq *rq)
 228{
 229	if (hrtimer_active(&rq->hrtick_timer))
 230		hrtimer_cancel(&rq->hrtick_timer);
 231}
 232
 233/*
 234 * High-resolution timer tick.
 235 * Runs from hardirq context with interrupts disabled.
 236 */
 237static enum hrtimer_restart hrtick(struct hrtimer *timer)
 238{
 239	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 240	struct rq_flags rf;
 241
 242	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 243
 244	rq_lock(rq, &rf);
 245	update_rq_clock(rq);
 246	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 247	rq_unlock(rq, &rf);
 248
 249	return HRTIMER_NORESTART;
 250}
 251
 252#ifdef CONFIG_SMP
 253
 254static void __hrtick_restart(struct rq *rq)
 255{
 256	struct hrtimer *timer = &rq->hrtick_timer;
 257
 258	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
 259}
 260
 261/*
 262 * called from hardirq (IPI) context
 263 */
 264static void __hrtick_start(void *arg)
 265{
 266	struct rq *rq = arg;
 267	struct rq_flags rf;
 268
 269	rq_lock(rq, &rf);
 270	__hrtick_restart(rq);
 271	rq->hrtick_csd_pending = 0;
 272	rq_unlock(rq, &rf);
 273}
 274
 275/*
 276 * Called to set the hrtick timer state.
 277 *
 278 * called with rq->lock held and irqs disabled
 279 */
 280void hrtick_start(struct rq *rq, u64 delay)
 281{
 282	struct hrtimer *timer = &rq->hrtick_timer;
 283	ktime_t time;
 284	s64 delta;
 285
 286	/*
 287	 * Don't schedule slices shorter than 10000ns, that just
 288	 * doesn't make sense and can cause timer DoS.
 289	 */
 290	delta = max_t(s64, delay, 10000LL);
 291	time = ktime_add_ns(timer->base->get_time(), delta);
 292
 293	hrtimer_set_expires(timer, time);
 294
 295	if (rq == this_rq()) {
 296		__hrtick_restart(rq);
 297	} else if (!rq->hrtick_csd_pending) {
 298		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
 299		rq->hrtick_csd_pending = 1;
 300	}
 301}
 302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 303#else
 304/*
 305 * Called to set the hrtick timer state.
 306 *
 307 * called with rq->lock held and irqs disabled
 308 */
 309void hrtick_start(struct rq *rq, u64 delay)
 310{
 311	/*
 312	 * Don't schedule slices shorter than 10000ns, that just
 313	 * doesn't make sense. Rely on vruntime for fairness.
 314	 */
 315	delay = max_t(u64, delay, 10000LL);
 316	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
 317		      HRTIMER_MODE_REL_PINNED_HARD);
 318}
 319#endif /* CONFIG_SMP */
 320
 321static void hrtick_rq_init(struct rq *rq)
 322{
 323#ifdef CONFIG_SMP
 324	rq->hrtick_csd_pending = 0;
 325
 326	rq->hrtick_csd.flags = 0;
 327	rq->hrtick_csd.func = __hrtick_start;
 328	rq->hrtick_csd.info = rq;
 329#endif
 330
 331	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
 332	rq->hrtick_timer.function = hrtick;
 333}
 334#else	/* CONFIG_SCHED_HRTICK */
 335static inline void hrtick_clear(struct rq *rq)
 336{
 337}
 338
 339static inline void hrtick_rq_init(struct rq *rq)
 340{
 341}
 342#endif	/* CONFIG_SCHED_HRTICK */
 343
 344/*
 345 * cmpxchg based fetch_or, macro so it works for different integer types
 346 */
 347#define fetch_or(ptr, mask)						\
 348	({								\
 349		typeof(ptr) _ptr = (ptr);				\
 350		typeof(mask) _mask = (mask);				\
 351		typeof(*_ptr) _old, _val = *_ptr;			\
 352									\
 353		for (;;) {						\
 354			_old = cmpxchg(_ptr, _val, _val | _mask);	\
 355			if (_old == _val)				\
 356				break;					\
 357			_val = _old;					\
 358		}							\
 359	_old;								\
 360})
 361
 362#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
 363/*
 364 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 365 * this avoids any races wrt polling state changes and thereby avoids
 366 * spurious IPIs.
 367 */
 368static bool set_nr_and_not_polling(struct task_struct *p)
 369{
 370	struct thread_info *ti = task_thread_info(p);
 371	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
 372}
 373
 374/*
 375 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 376 *
 377 * If this returns true, then the idle task promises to call
 378 * sched_ttwu_pending() and reschedule soon.
 379 */
 380static bool set_nr_if_polling(struct task_struct *p)
 381{
 382	struct thread_info *ti = task_thread_info(p);
 383	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
 384
 385	for (;;) {
 386		if (!(val & _TIF_POLLING_NRFLAG))
 387			return false;
 388		if (val & _TIF_NEED_RESCHED)
 389			return true;
 390		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
 391		if (old == val)
 392			break;
 393		val = old;
 394	}
 395	return true;
 396}
 397
 398#else
 399static bool set_nr_and_not_polling(struct task_struct *p)
 400{
 401	set_tsk_need_resched(p);
 402	return true;
 403}
 404
 405#ifdef CONFIG_SMP
 406static bool set_nr_if_polling(struct task_struct *p)
 407{
 408	return false;
 409}
 410#endif
 411#endif
 412
 413static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
 414{
 415	struct wake_q_node *node = &task->wake_q;
 416
 417	/*
 418	 * Atomically grab the task, if ->wake_q is !nil already it means
 419	 * its already queued (either by us or someone else) and will get the
 420	 * wakeup due to that.
 421	 *
 422	 * In order to ensure that a pending wakeup will observe our pending
 423	 * state, even in the failed case, an explicit smp_mb() must be used.
 424	 */
 425	smp_mb__before_atomic();
 426	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
 427		return false;
 428
 429	/*
 430	 * The head is context local, there can be no concurrency.
 431	 */
 432	*head->lastp = node;
 433	head->lastp = &node->next;
 434	return true;
 435}
 436
 437/**
 438 * wake_q_add() - queue a wakeup for 'later' waking.
 439 * @head: the wake_q_head to add @task to
 440 * @task: the task to queue for 'later' wakeup
 441 *
 442 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
 443 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
 444 * instantly.
 445 *
 446 * This function must be used as-if it were wake_up_process(); IOW the task
 447 * must be ready to be woken at this location.
 448 */
 449void wake_q_add(struct wake_q_head *head, struct task_struct *task)
 450{
 451	if (__wake_q_add(head, task))
 452		get_task_struct(task);
 453}
 454
 455/**
 456 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
 457 * @head: the wake_q_head to add @task to
 458 * @task: the task to queue for 'later' wakeup
 459 *
 460 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
 461 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
 462 * instantly.
 463 *
 464 * This function must be used as-if it were wake_up_process(); IOW the task
 465 * must be ready to be woken at this location.
 466 *
 467 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
 468 * that already hold reference to @task can call the 'safe' version and trust
 469 * wake_q to do the right thing depending whether or not the @task is already
 470 * queued for wakeup.
 471 */
 472void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
 473{
 474	if (!__wake_q_add(head, task))
 475		put_task_struct(task);
 476}
 477
 478void wake_up_q(struct wake_q_head *head)
 479{
 480	struct wake_q_node *node = head->first;
 481
 482	while (node != WAKE_Q_TAIL) {
 483		struct task_struct *task;
 484
 485		task = container_of(node, struct task_struct, wake_q);
 486		BUG_ON(!task);
 487		/* Task can safely be re-inserted now: */
 488		node = node->next;
 489		task->wake_q.next = NULL;
 490
 491		/*
 492		 * wake_up_process() executes a full barrier, which pairs with
 493		 * the queueing in wake_q_add() so as not to miss wakeups.
 494		 */
 495		wake_up_process(task);
 496		put_task_struct(task);
 497	}
 498}
 
 499
 500/*
 501 * resched_curr - mark rq's current task 'to be rescheduled now'.
 502 *
 503 * On UP this means the setting of the need_resched flag, on SMP it
 504 * might also involve a cross-CPU call to trigger the scheduler on
 505 * the target CPU.
 506 */
 507void resched_curr(struct rq *rq)
 
 
 
 
 
 
 508{
 509	struct task_struct *curr = rq->curr;
 510	int cpu;
 511
 512	lockdep_assert_held(&rq->lock);
 513
 514	if (test_tsk_need_resched(curr))
 515		return;
 516
 517	cpu = cpu_of(rq);
 518
 519	if (cpu == smp_processor_id()) {
 520		set_tsk_need_resched(curr);
 521		set_preempt_need_resched();
 522		return;
 523	}
 524
 525	if (set_nr_and_not_polling(curr))
 
 
 526		smp_send_reschedule(cpu);
 527	else
 528		trace_sched_wake_idle_without_ipi(cpu);
 529}
 530
 531void resched_cpu(int cpu)
 532{
 533	struct rq *rq = cpu_rq(cpu);
 534	unsigned long flags;
 535
 536	raw_spin_lock_irqsave(&rq->lock, flags);
 537	if (cpu_online(cpu) || cpu == smp_processor_id())
 538		resched_curr(rq);
 539	raw_spin_unlock_irqrestore(&rq->lock, flags);
 540}
 541
 542#ifdef CONFIG_SMP
 543#ifdef CONFIG_NO_HZ_COMMON
 544/*
 545 * In the semi idle case, use the nearest busy CPU for migrating timers
 546 * from an idle CPU.  This is good for power-savings.
 547 *
 548 * We don't do similar optimization for completely idle system, as
 549 * selecting an idle CPU will add more delays to the timers than intended
 550 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
 551 */
 552int get_nohz_timer_target(void)
 553{
 554	int i, cpu = smp_processor_id();
 
 555	struct sched_domain *sd;
 556
 557	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
 558		return cpu;
 559
 560	rcu_read_lock();
 561	for_each_domain(cpu, sd) {
 562		for_each_cpu(i, sched_domain_span(sd)) {
 563			if (cpu == i)
 564				continue;
 565
 566			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
 567				cpu = i;
 568				goto unlock;
 569			}
 570		}
 571	}
 572
 573	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
 574		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
 575unlock:
 576	rcu_read_unlock();
 577	return cpu;
 578}
 579
 580/*
 581 * When add_timer_on() enqueues a timer into the timer wheel of an
 582 * idle CPU then this timer might expire before the next timer event
 583 * which is scheduled to wake up that CPU. In case of a completely
 584 * idle system the next event might even be infinite time into the
 585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 586 * leaves the inner idle loop so the newly added timer is taken into
 587 * account when the CPU goes back to idle and evaluates the timer
 588 * wheel for the next timer event.
 589 */
 590static void wake_up_idle_cpu(int cpu)
 591{
 592	struct rq *rq = cpu_rq(cpu);
 593
 594	if (cpu == smp_processor_id())
 595		return;
 596
 597	if (set_nr_and_not_polling(rq->idle))
 598		smp_send_reschedule(cpu);
 599	else
 600		trace_sched_wake_idle_without_ipi(cpu);
 601}
 602
 603static bool wake_up_full_nohz_cpu(int cpu)
 604{
 605	/*
 606	 * We just need the target to call irq_exit() and re-evaluate
 607	 * the next tick. The nohz full kick at least implies that.
 608	 * If needed we can still optimize that later with an
 609	 * empty IRQ.
 
 610	 */
 611	if (cpu_is_offline(cpu))
 612		return true;  /* Don't try to wake offline CPUs. */
 613	if (tick_nohz_full_cpu(cpu)) {
 614		if (cpu != smp_processor_id() ||
 615		    tick_nohz_tick_stopped())
 616			tick_nohz_full_kick_cpu(cpu);
 617		return true;
 618	}
 619
 620	return false;
 621}
 622
 623/*
 624 * Wake up the specified CPU.  If the CPU is going offline, it is the
 625 * caller's responsibility to deal with the lost wakeup, for example,
 626 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 627 */
 628void wake_up_nohz_cpu(int cpu)
 629{
 630	if (!wake_up_full_nohz_cpu(cpu))
 631		wake_up_idle_cpu(cpu);
 
 
 632}
 633
 634static inline bool got_nohz_idle_kick(void)
 635{
 636	int cpu = smp_processor_id();
 637
 638	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
 639		return false;
 640
 641	if (idle_cpu(cpu) && !need_resched())
 642		return true;
 643
 644	/*
 645	 * We can't run Idle Load Balance on this CPU for this time so we
 646	 * cancel it and clear NOHZ_BALANCE_KICK
 647	 */
 648	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
 649	return false;
 650}
 651
 652#else /* CONFIG_NO_HZ_COMMON */
 653
 654static inline bool got_nohz_idle_kick(void)
 655{
 656	return false;
 657}
 658
 659#endif /* CONFIG_NO_HZ_COMMON */
 660
 661#ifdef CONFIG_NO_HZ_FULL
 662bool sched_can_stop_tick(struct rq *rq)
 663{
 664	int fifo_nr_running;
 665
 666	/* Deadline tasks, even if single, need the tick */
 667	if (rq->dl.dl_nr_running)
 668		return false;
 669
 670	/*
 671	 * If there are more than one RR tasks, we need the tick to effect the
 672	 * actual RR behaviour.
 673	 */
 674	if (rq->rt.rr_nr_running) {
 675		if (rq->rt.rr_nr_running == 1)
 676			return true;
 677		else
 678			return false;
 679	}
 
 680
 681	/*
 682	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
 683	 * forced preemption between FIFO tasks.
 684	 */
 685	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
 686	if (fifo_nr_running)
 687		return true;
 688
 689	/*
 690	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
 691	 * if there's more than one we need the tick for involuntary
 692	 * preemption.
 693	 */
 694	if (rq->nr_running > 1)
 695		return false;
 696
 697	return true;
 698}
 699#endif /* CONFIG_NO_HZ_FULL */
 700#endif /* CONFIG_SMP */
 701
 702#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 703			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 704/*
 705 * Iterate task_group tree rooted at *from, calling @down when first entering a
 706 * node and @up when leaving it for the final time.
 707 *
 708 * Caller must hold rcu_lock or sufficient equivalent.
 709 */
 710int walk_tg_tree_from(struct task_group *from,
 711			     tg_visitor down, tg_visitor up, void *data)
 712{
 713	struct task_group *parent, *child;
 714	int ret;
 715
 716	parent = from;
 717
 718down:
 719	ret = (*down)(parent, data);
 720	if (ret)
 721		goto out;
 722	list_for_each_entry_rcu(child, &parent->children, siblings) {
 723		parent = child;
 724		goto down;
 725
 726up:
 727		continue;
 728	}
 729	ret = (*up)(parent, data);
 730	if (ret || parent == from)
 731		goto out;
 732
 733	child = parent;
 734	parent = parent->parent;
 735	if (parent)
 736		goto up;
 737out:
 738	return ret;
 739}
 740
 741int tg_nop(struct task_group *tg, void *data)
 742{
 743	return 0;
 744}
 745#endif
 746
 747static void set_load_weight(struct task_struct *p, bool update_load)
 748{
 749	int prio = p->static_prio - MAX_RT_PRIO;
 750	struct load_weight *load = &p->se.load;
 751
 752	/*
 753	 * SCHED_IDLE tasks get minimal weight:
 754	 */
 755	if (task_has_idle_policy(p)) {
 756		load->weight = scale_load(WEIGHT_IDLEPRIO);
 757		load->inv_weight = WMULT_IDLEPRIO;
 758		p->se.runnable_weight = load->weight;
 759		return;
 760	}
 761
 762	/*
 763	 * SCHED_OTHER tasks have to update their load when changing their
 764	 * weight
 765	 */
 766	if (update_load && p->sched_class == &fair_sched_class) {
 767		reweight_task(p, prio);
 768	} else {
 769		load->weight = scale_load(sched_prio_to_weight[prio]);
 770		load->inv_weight = sched_prio_to_wmult[prio];
 771		p->se.runnable_weight = load->weight;
 772	}
 773}
 774
 775#ifdef CONFIG_UCLAMP_TASK
 776/*
 777 * Serializes updates of utilization clamp values
 778 *
 779 * The (slow-path) user-space triggers utilization clamp value updates which
 780 * can require updates on (fast-path) scheduler's data structures used to
 781 * support enqueue/dequeue operations.
 782 * While the per-CPU rq lock protects fast-path update operations, user-space
 783 * requests are serialized using a mutex to reduce the risk of conflicting
 784 * updates or API abuses.
 785 */
 786static DEFINE_MUTEX(uclamp_mutex);
 787
 788/* Max allowed minimum utilization */
 789unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
 790
 791/* Max allowed maximum utilization */
 792unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
 793
 794/* All clamps are required to be less or equal than these values */
 795static struct uclamp_se uclamp_default[UCLAMP_CNT];
 796
 797/* Integer rounded range for each bucket */
 798#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
 799
 800#define for_each_clamp_id(clamp_id) \
 801	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
 802
 803static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
 804{
 805	return clamp_value / UCLAMP_BUCKET_DELTA;
 
 
 806}
 807
 808static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
 809{
 810	return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
 
 
 811}
 812
 813static inline enum uclamp_id uclamp_none(enum uclamp_id clamp_id)
 814{
 815	if (clamp_id == UCLAMP_MIN)
 816		return 0;
 817	return SCHED_CAPACITY_SCALE;
 818}
 819
 820static inline void uclamp_se_set(struct uclamp_se *uc_se,
 821				 unsigned int value, bool user_defined)
 822{
 823	uc_se->value = value;
 824	uc_se->bucket_id = uclamp_bucket_id(value);
 825	uc_se->user_defined = user_defined;
 826}
 827
 828static inline unsigned int
 829uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
 830		  unsigned int clamp_value)
 831{
 832	/*
 833	 * Avoid blocked utilization pushing up the frequency when we go
 834	 * idle (which drops the max-clamp) by retaining the last known
 835	 * max-clamp.
 836	 */
 837	if (clamp_id == UCLAMP_MAX) {
 838		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
 839		return clamp_value;
 840	}
 841
 842	return uclamp_none(UCLAMP_MIN);
 843}
 844
 845static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
 846				     unsigned int clamp_value)
 847{
 848	/* Reset max-clamp retention only on idle exit */
 849	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
 850		return;
 851
 852	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
 853}
 854
 855static inline
 856enum uclamp_id uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
 857				   unsigned int clamp_value)
 858{
 859	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
 860	int bucket_id = UCLAMP_BUCKETS - 1;
 
 
 
 
 
 
 
 861
 862	/*
 863	 * Since both min and max clamps are max aggregated, find the
 864	 * top most bucket with tasks in.
 865	 */
 866	for ( ; bucket_id >= 0; bucket_id--) {
 867		if (!bucket[bucket_id].tasks)
 868			continue;
 869		return bucket[bucket_id].value;
 870	}
 871
 872	/* No tasks -- default clamp values */
 873	return uclamp_idle_value(rq, clamp_id, clamp_value);
 
 874}
 875
 876static inline struct uclamp_se
 877uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
 878{
 879	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
 880#ifdef CONFIG_UCLAMP_TASK_GROUP
 881	struct uclamp_se uc_max;
 882
 883	/*
 884	 * Tasks in autogroups or root task group will be
 885	 * restricted by system defaults.
 886	 */
 887	if (task_group_is_autogroup(task_group(p)))
 888		return uc_req;
 889	if (task_group(p) == &root_task_group)
 890		return uc_req;
 891
 892	uc_max = task_group(p)->uclamp[clamp_id];
 893	if (uc_req.value > uc_max.value || !uc_req.user_defined)
 894		return uc_max;
 895#endif
 896
 897	return uc_req;
 
 
 
 898}
 899
 900/*
 901 * The effective clamp bucket index of a task depends on, by increasing
 902 * priority:
 903 * - the task specific clamp value, when explicitly requested from userspace
 904 * - the task group effective clamp value, for tasks not either in the root
 905 *   group or in an autogroup
 906 * - the system default clamp value, defined by the sysadmin
 907 */
 908static inline struct uclamp_se
 909uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
 910{
 911	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
 912	struct uclamp_se uc_max = uclamp_default[clamp_id];
 913
 914	/* System default restrictions always apply */
 915	if (unlikely(uc_req.value > uc_max.value))
 916		return uc_max;
 917
 918	return uc_req;
 919}
 920
 921enum uclamp_id uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
 922{
 923	struct uclamp_se uc_eff;
 924
 925	/* Task currently refcounted: use back-annotated (effective) value */
 926	if (p->uclamp[clamp_id].active)
 927		return p->uclamp[clamp_id].value;
 928
 929	uc_eff = uclamp_eff_get(p, clamp_id);
 
 
 
 
 930
 931	return uc_eff.value;
 932}
 933
 934/*
 935 * When a task is enqueued on a rq, the clamp bucket currently defined by the
 936 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
 937 * updates the rq's clamp value if required.
 938 *
 939 * Tasks can have a task-specific value requested from user-space, track
 940 * within each bucket the maximum value for tasks refcounted in it.
 941 * This "local max aggregation" allows to track the exact "requested" value
 942 * for each bucket when all its RUNNABLE tasks require the same clamp.
 943 */
 944static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
 945				    enum uclamp_id clamp_id)
 946{
 947	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
 948	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
 949	struct uclamp_bucket *bucket;
 950
 951	lockdep_assert_held(&rq->lock);
 952
 953	/* Update task effective clamp */
 954	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
 955
 956	bucket = &uc_rq->bucket[uc_se->bucket_id];
 957	bucket->tasks++;
 958	uc_se->active = true;
 959
 960	uclamp_idle_reset(rq, clamp_id, uc_se->value);
 961
 962	/*
 963	 * Local max aggregation: rq buckets always track the max
 964	 * "requested" clamp value of its RUNNABLE tasks.
 965	 */
 966	if (bucket->tasks == 1 || uc_se->value > bucket->value)
 967		bucket->value = uc_se->value;
 968
 969	if (uc_se->value > READ_ONCE(uc_rq->value))
 970		WRITE_ONCE(uc_rq->value, uc_se->value);
 971}
 972
 973/*
 974 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
 975 * is released. If this is the last task reference counting the rq's max
 976 * active clamp value, then the rq's clamp value is updated.
 977 *
 978 * Both refcounted tasks and rq's cached clamp values are expected to be
 979 * always valid. If it's detected they are not, as defensive programming,
 980 * enforce the expected state and warn.
 981 */
 982static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
 983				    enum uclamp_id clamp_id)
 984{
 985	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
 986	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
 987	struct uclamp_bucket *bucket;
 988	unsigned int bkt_clamp;
 989	unsigned int rq_clamp;
 990
 991	lockdep_assert_held(&rq->lock);
 992
 993	bucket = &uc_rq->bucket[uc_se->bucket_id];
 994	SCHED_WARN_ON(!bucket->tasks);
 995	if (likely(bucket->tasks))
 996		bucket->tasks--;
 997	uc_se->active = false;
 998
 999	/*
1000	 * Keep "local max aggregation" simple and accept to (possibly)
1001	 * overboost some RUNNABLE tasks in the same bucket.
1002	 * The rq clamp bucket value is reset to its base value whenever
1003	 * there are no more RUNNABLE tasks refcounting it.
1004	 */
1005	if (likely(bucket->tasks))
1006		return;
1007
1008	rq_clamp = READ_ONCE(uc_rq->value);
1009	/*
1010	 * Defensive programming: this should never happen. If it happens,
1011	 * e.g. due to future modification, warn and fixup the expected value.
1012	 */
1013	SCHED_WARN_ON(bucket->value > rq_clamp);
1014	if (bucket->value >= rq_clamp) {
1015		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1016		WRITE_ONCE(uc_rq->value, bkt_clamp);
1017	}
1018}
1019
1020static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1021{
1022	enum uclamp_id clamp_id;
1023
1024	if (unlikely(!p->sched_class->uclamp_enabled))
1025		return;
1026
1027	for_each_clamp_id(clamp_id)
1028		uclamp_rq_inc_id(rq, p, clamp_id);
1029
1030	/* Reset clamp idle holding when there is one RUNNABLE task */
1031	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1032		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1033}
 
1034
1035static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
 
 
 
 
1036{
1037	enum uclamp_id clamp_id;
 
 
1038
1039	if (unlikely(!p->sched_class->uclamp_enabled))
1040		return;
1041
1042	for_each_clamp_id(clamp_id)
1043		uclamp_rq_dec_id(rq, p, clamp_id);
1044}
1045
1046static inline void
1047uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1048{
1049	struct rq_flags rf;
1050	struct rq *rq;
1051
1052	/*
1053	 * Lock the task and the rq where the task is (or was) queued.
1054	 *
1055	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1056	 * price to pay to safely serialize util_{min,max} updates with
1057	 * enqueues, dequeues and migration operations.
1058	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1059	 */
1060	rq = task_rq_lock(p, &rf);
1061
 
1062	/*
1063	 * Setting the clamp bucket is serialized by task_rq_lock().
1064	 * If the task is not yet RUNNABLE and its task_struct is not
1065	 * affecting a valid clamp bucket, the next time it's enqueued,
1066	 * it will already see the updated clamp bucket value.
1067	 */
1068	if (p->uclamp[clamp_id].active) {
1069		uclamp_rq_dec_id(rq, p, clamp_id);
1070		uclamp_rq_inc_id(rq, p, clamp_id);
1071	}
1072
1073	task_rq_unlock(rq, p, &rf);
 
1074}
 
1075
1076#ifdef CONFIG_UCLAMP_TASK_GROUP
1077static inline void
1078uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1079			   unsigned int clamps)
1080{
1081	enum uclamp_id clamp_id;
1082	struct css_task_iter it;
1083	struct task_struct *p;
1084
1085	css_task_iter_start(css, 0, &it);
1086	while ((p = css_task_iter_next(&it))) {
1087		for_each_clamp_id(clamp_id) {
1088			if ((0x1 << clamp_id) & clamps)
1089				uclamp_update_active(p, clamp_id);
1090		}
1091	}
1092	css_task_iter_end(&it);
1093}
1094
1095static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1096static void uclamp_update_root_tg(void)
1097{
1098	struct task_group *tg = &root_task_group;
 
1099
1100	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1101		      sysctl_sched_uclamp_util_min, false);
1102	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1103		      sysctl_sched_uclamp_util_max, false);
1104
1105	rcu_read_lock();
1106	cpu_util_update_eff(&root_task_group.css);
1107	rcu_read_unlock();
1108}
1109#else
1110static void uclamp_update_root_tg(void) { }
1111#endif
1112
1113int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1114				void __user *buffer, size_t *lenp,
1115				loff_t *ppos)
1116{
1117	bool update_root_tg = false;
1118	int old_min, old_max;
1119	int result;
1120
1121	mutex_lock(&uclamp_mutex);
1122	old_min = sysctl_sched_uclamp_util_min;
1123	old_max = sysctl_sched_uclamp_util_max;
1124
1125	result = proc_dointvec(table, write, buffer, lenp, ppos);
1126	if (result)
1127		goto undo;
1128	if (!write)
1129		goto done;
1130
1131	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1132	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1133		result = -EINVAL;
1134		goto undo;
1135	}
1136
1137	if (old_min != sysctl_sched_uclamp_util_min) {
1138		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1139			      sysctl_sched_uclamp_util_min, false);
1140		update_root_tg = true;
1141	}
1142	if (old_max != sysctl_sched_uclamp_util_max) {
1143		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1144			      sysctl_sched_uclamp_util_max, false);
1145		update_root_tg = true;
1146	}
1147
1148	if (update_root_tg)
1149		uclamp_update_root_tg();
1150
1151	/*
1152	 * We update all RUNNABLE tasks only when task groups are in use.
1153	 * Otherwise, keep it simple and do just a lazy update at each next
1154	 * task enqueue time.
 
 
 
 
 
 
 
 
 
 
1155	 */
 
 
1156
1157	goto done;
1158
1159undo:
1160	sysctl_sched_uclamp_util_min = old_min;
1161	sysctl_sched_uclamp_util_max = old_max;
1162done:
1163	mutex_unlock(&uclamp_mutex);
1164
1165	return result;
1166}
1167
1168static int uclamp_validate(struct task_struct *p,
1169			   const struct sched_attr *attr)
1170{
1171	unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1172	unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1173
1174	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1175		lower_bound = attr->sched_util_min;
1176	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1177		upper_bound = attr->sched_util_max;
1178
1179	if (lower_bound > upper_bound)
1180		return -EINVAL;
1181	if (upper_bound > SCHED_CAPACITY_SCALE)
1182		return -EINVAL;
1183
1184	return 0;
1185}
1186
1187static void __setscheduler_uclamp(struct task_struct *p,
1188				  const struct sched_attr *attr)
1189{
1190	enum uclamp_id clamp_id;
1191
1192	/*
1193	 * On scheduling class change, reset to default clamps for tasks
1194	 * without a task-specific value.
1195	 */
1196	for_each_clamp_id(clamp_id) {
1197		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1198		unsigned int clamp_value = uclamp_none(clamp_id);
1199
1200		/* Keep using defined clamps across class changes */
1201		if (uc_se->user_defined)
1202			continue;
1203
1204		/* By default, RT tasks always get 100% boost */
1205		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1206			clamp_value = uclamp_none(UCLAMP_MAX);
1207
1208		uclamp_se_set(uc_se, clamp_value, false);
1209	}
 
1210
1211	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1212		return;
1213
1214	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1215		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1216			      attr->sched_util_min, true);
1217	}
1218
1219	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1220		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1221			      attr->sched_util_max, true);
1222	}
1223}
1224
1225static void uclamp_fork(struct task_struct *p)
 
1226{
1227	enum uclamp_id clamp_id;
1228
1229	for_each_clamp_id(clamp_id)
1230		p->uclamp[clamp_id].active = false;
1231
1232	if (likely(!p->sched_reset_on_fork))
1233		return;
1234
1235	for_each_clamp_id(clamp_id) {
1236		unsigned int clamp_value = uclamp_none(clamp_id);
1237
1238		/* By default, RT tasks always get 100% boost */
1239		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1240			clamp_value = uclamp_none(UCLAMP_MAX);
1241
1242		uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false);
1243	}
 
 
 
 
1244}
1245
1246static void __init init_uclamp(void)
1247{
1248	struct uclamp_se uc_max = {};
1249	enum uclamp_id clamp_id;
1250	int cpu;
 
1251
1252	mutex_init(&uclamp_mutex);
 
 
 
 
 
 
1253
1254	for_each_possible_cpu(cpu) {
1255		memset(&cpu_rq(cpu)->uclamp, 0, sizeof(struct uclamp_rq));
1256		cpu_rq(cpu)->uclamp_flags = 0;
1257	}
1258
1259	for_each_clamp_id(clamp_id) {
1260		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1261			      uclamp_none(clamp_id), false);
1262	}
1263
1264	/* System defaults allow max clamp values for both indexes */
1265	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1266	for_each_clamp_id(clamp_id) {
1267		uclamp_default[clamp_id] = uc_max;
1268#ifdef CONFIG_UCLAMP_TASK_GROUP
1269		root_task_group.uclamp_req[clamp_id] = uc_max;
1270		root_task_group.uclamp[clamp_id] = uc_max;
1271#endif
1272	}
1273}
1274
1275#else /* CONFIG_UCLAMP_TASK */
1276static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1277static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1278static inline int uclamp_validate(struct task_struct *p,
1279				  const struct sched_attr *attr)
1280{
1281	return -EOPNOTSUPP;
1282}
1283static void __setscheduler_uclamp(struct task_struct *p,
1284				  const struct sched_attr *attr) { }
1285static inline void uclamp_fork(struct task_struct *p) { }
1286static inline void init_uclamp(void) { }
1287#endif /* CONFIG_UCLAMP_TASK */
1288
1289static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1290{
1291	if (!(flags & ENQUEUE_NOCLOCK))
1292		update_rq_clock(rq);
 
 
 
 
 
 
1293
1294	if (!(flags & ENQUEUE_RESTORE)) {
1295		sched_info_queued(rq, p);
1296		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1297	}
1298
1299	uclamp_rq_inc(rq, p);
1300	p->sched_class->enqueue_task(rq, p, flags);
1301}
1302
1303static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1304{
1305	if (!(flags & DEQUEUE_NOCLOCK))
1306		update_rq_clock(rq);
1307
1308	if (!(flags & DEQUEUE_SAVE)) {
1309		sched_info_dequeued(rq, p);
1310		psi_dequeue(p, flags & DEQUEUE_SLEEP);
 
 
 
1311	}
1312
1313	uclamp_rq_dec(rq, p);
1314	p->sched_class->dequeue_task(rq, p, flags);
1315}
1316
1317void activate_task(struct rq *rq, struct task_struct *p, int flags)
1318{
1319	if (task_contributes_to_load(p))
1320		rq->nr_uninterruptible--;
1321
1322	enqueue_task(rq, p, flags);
1323
1324	p->on_rq = TASK_ON_RQ_QUEUED;
1325}
1326
1327void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1328{
1329	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1330
1331	if (task_contributes_to_load(p))
1332		rq->nr_uninterruptible++;
1333
1334	dequeue_task(rq, p, flags);
1335}
1336
1337/*
1338 * __normal_prio - return the priority that is based on the static prio
1339 */
1340static inline int __normal_prio(struct task_struct *p)
1341{
1342	return p->static_prio;
1343}
1344
1345/*
1346 * Calculate the expected normal priority: i.e. priority
1347 * without taking RT-inheritance into account. Might be
1348 * boosted by interactivity modifiers. Changes upon fork,
1349 * setprio syscalls, and whenever the interactivity
1350 * estimator recalculates.
1351 */
1352static inline int normal_prio(struct task_struct *p)
1353{
1354	int prio;
1355
1356	if (task_has_dl_policy(p))
1357		prio = MAX_DL_PRIO-1;
1358	else if (task_has_rt_policy(p))
1359		prio = MAX_RT_PRIO-1 - p->rt_priority;
1360	else
1361		prio = __normal_prio(p);
1362	return prio;
1363}
1364
1365/*
1366 * Calculate the current priority, i.e. the priority
1367 * taken into account by the scheduler. This value might
1368 * be boosted by RT tasks, or might be boosted by
1369 * interactivity modifiers. Will be RT if the task got
1370 * RT-boosted. If not then it returns p->normal_prio.
1371 */
1372static int effective_prio(struct task_struct *p)
1373{
1374	p->normal_prio = normal_prio(p);
1375	/*
1376	 * If we are RT tasks or we were boosted to RT priority,
1377	 * keep the priority unchanged. Otherwise, update priority
1378	 * to the normal priority:
1379	 */
1380	if (!rt_prio(p->prio))
1381		return p->normal_prio;
1382	return p->prio;
1383}
1384
1385/**
1386 * task_curr - is this task currently executing on a CPU?
1387 * @p: the task in question.
1388 *
1389 * Return: 1 if the task is currently executing. 0 otherwise.
1390 */
1391inline int task_curr(const struct task_struct *p)
1392{
1393	return cpu_curr(task_cpu(p)) == p;
1394}
1395
1396/*
1397 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1398 * use the balance_callback list if you want balancing.
1399 *
1400 * this means any call to check_class_changed() must be followed by a call to
1401 * balance_callback().
1402 */
1403static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1404				       const struct sched_class *prev_class,
1405				       int oldprio)
1406{
1407	if (prev_class != p->sched_class) {
1408		if (prev_class->switched_from)
1409			prev_class->switched_from(rq, p);
1410
1411		p->sched_class->switched_to(rq, p);
1412	} else if (oldprio != p->prio || dl_task(p))
1413		p->sched_class->prio_changed(rq, p, oldprio);
1414}
1415
1416void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1417{
1418	const struct sched_class *class;
1419
1420	if (p->sched_class == rq->curr->sched_class) {
1421		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1422	} else {
1423		for_each_class(class) {
1424			if (class == rq->curr->sched_class)
1425				break;
1426			if (class == p->sched_class) {
1427				resched_curr(rq);
1428				break;
1429			}
1430		}
1431	}
1432
1433	/*
1434	 * A queue event has occurred, and we're going to schedule.  In
1435	 * this case, we can save a useless back to back clock update.
1436	 */
1437	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1438		rq_clock_skip_update(rq);
1439}
1440
1441#ifdef CONFIG_SMP
1442
1443static inline bool is_per_cpu_kthread(struct task_struct *p)
1444{
1445	if (!(p->flags & PF_KTHREAD))
1446		return false;
1447
1448	if (p->nr_cpus_allowed != 1)
1449		return false;
1450
1451	return true;
1452}
1453
1454/*
1455 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1456 * __set_cpus_allowed_ptr() and select_fallback_rq().
1457 */
1458static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1459{
1460	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1461		return false;
1462
1463	if (is_per_cpu_kthread(p))
1464		return cpu_online(cpu);
1465
1466	return cpu_active(cpu);
1467}
1468
1469/*
1470 * This is how migration works:
1471 *
1472 * 1) we invoke migration_cpu_stop() on the target CPU using
1473 *    stop_one_cpu().
1474 * 2) stopper starts to run (implicitly forcing the migrated thread
1475 *    off the CPU)
1476 * 3) it checks whether the migrated task is still in the wrong runqueue.
1477 * 4) if it's in the wrong runqueue then the migration thread removes
1478 *    it and puts it into the right queue.
1479 * 5) stopper completes and stop_one_cpu() returns and the migration
1480 *    is done.
1481 */
1482
1483/*
1484 * move_queued_task - move a queued task to new rq.
1485 *
1486 * Returns (locked) new rq. Old rq's lock is released.
1487 */
1488static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1489				   struct task_struct *p, int new_cpu)
1490{
1491	lockdep_assert_held(&rq->lock);
1492
1493	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1494	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1495	set_task_cpu(p, new_cpu);
1496	rq_unlock(rq, rf);
1497
1498	rq = cpu_rq(new_cpu);
1499
1500	rq_lock(rq, rf);
1501	BUG_ON(task_cpu(p) != new_cpu);
1502	enqueue_task(rq, p, 0);
1503	p->on_rq = TASK_ON_RQ_QUEUED;
1504	check_preempt_curr(rq, p, 0);
1505
1506	return rq;
1507}
1508
1509struct migration_arg {
1510	struct task_struct *task;
1511	int dest_cpu;
1512};
1513
1514/*
1515 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1516 * this because either it can't run here any more (set_cpus_allowed()
1517 * away from this CPU, or CPU going down), or because we're
1518 * attempting to rebalance this task on exec (sched_exec).
1519 *
1520 * So we race with normal scheduler movements, but that's OK, as long
1521 * as the task is no longer on this CPU.
1522 */
1523static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1524				 struct task_struct *p, int dest_cpu)
1525{
1526	/* Affinity changed (again). */
1527	if (!is_cpu_allowed(p, dest_cpu))
1528		return rq;
1529
1530	update_rq_clock(rq);
1531	rq = move_queued_task(rq, rf, p, dest_cpu);
1532
1533	return rq;
1534}
1535
1536/*
1537 * migration_cpu_stop - this will be executed by a highprio stopper thread
1538 * and performs thread migration by bumping thread off CPU then
1539 * 'pushing' onto another runqueue.
1540 */
1541static int migration_cpu_stop(void *data)
1542{
1543	struct migration_arg *arg = data;
1544	struct task_struct *p = arg->task;
1545	struct rq *rq = this_rq();
1546	struct rq_flags rf;
1547
1548	/*
1549	 * The original target CPU might have gone down and we might
1550	 * be on another CPU but it doesn't matter.
1551	 */
1552	local_irq_disable();
1553	/*
1554	 * We need to explicitly wake pending tasks before running
1555	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1556	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1557	 */
1558	sched_ttwu_pending();
1559
1560	raw_spin_lock(&p->pi_lock);
1561	rq_lock(rq, &rf);
1562	/*
1563	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1564	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1565	 * we're holding p->pi_lock.
1566	 */
1567	if (task_rq(p) == rq) {
1568		if (task_on_rq_queued(p))
1569			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1570		else
1571			p->wake_cpu = arg->dest_cpu;
1572	}
1573	rq_unlock(rq, &rf);
1574	raw_spin_unlock(&p->pi_lock);
1575
1576	local_irq_enable();
1577	return 0;
1578}
1579
1580/*
1581 * sched_class::set_cpus_allowed must do the below, but is not required to
1582 * actually call this function.
1583 */
1584void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1585{
1586	cpumask_copy(&p->cpus_mask, new_mask);
1587	p->nr_cpus_allowed = cpumask_weight(new_mask);
1588}
1589
1590void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1591{
1592	struct rq *rq = task_rq(p);
1593	bool queued, running;
1594
1595	lockdep_assert_held(&p->pi_lock);
1596
1597	queued = task_on_rq_queued(p);
1598	running = task_current(rq, p);
1599
1600	if (queued) {
1601		/*
1602		 * Because __kthread_bind() calls this on blocked tasks without
1603		 * holding rq->lock.
1604		 */
1605		lockdep_assert_held(&rq->lock);
1606		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1607	}
1608	if (running)
1609		put_prev_task(rq, p);
1610
1611	p->sched_class->set_cpus_allowed(p, new_mask);
1612
1613	if (queued)
1614		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1615	if (running)
1616		set_next_task(rq, p);
1617}
1618
1619/*
1620 * Change a given task's CPU affinity. Migrate the thread to a
1621 * proper CPU and schedule it away if the CPU it's executing on
1622 * is removed from the allowed bitmask.
1623 *
1624 * NOTE: the caller must have a valid reference to the task, the
1625 * task must not exit() & deallocate itself prematurely. The
1626 * call is not atomic; no spinlocks may be held.
1627 */
1628static int __set_cpus_allowed_ptr(struct task_struct *p,
1629				  const struct cpumask *new_mask, bool check)
1630{
1631	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1632	unsigned int dest_cpu;
1633	struct rq_flags rf;
1634	struct rq *rq;
1635	int ret = 0;
1636
1637	rq = task_rq_lock(p, &rf);
1638	update_rq_clock(rq);
1639
1640	if (p->flags & PF_KTHREAD) {
1641		/*
1642		 * Kernel threads are allowed on online && !active CPUs
1643		 */
1644		cpu_valid_mask = cpu_online_mask;
1645	}
1646
1647	/*
1648	 * Must re-check here, to close a race against __kthread_bind(),
1649	 * sched_setaffinity() is not guaranteed to observe the flag.
1650	 */
1651	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1652		ret = -EINVAL;
1653		goto out;
1654	}
1655
1656	if (cpumask_equal(p->cpus_ptr, new_mask))
1657		goto out;
1658
1659	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1660	if (dest_cpu >= nr_cpu_ids) {
1661		ret = -EINVAL;
1662		goto out;
1663	}
1664
1665	do_set_cpus_allowed(p, new_mask);
1666
1667	if (p->flags & PF_KTHREAD) {
1668		/*
1669		 * For kernel threads that do indeed end up on online &&
1670		 * !active we want to ensure they are strict per-CPU threads.
1671		 */
1672		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1673			!cpumask_intersects(new_mask, cpu_active_mask) &&
1674			p->nr_cpus_allowed != 1);
1675	}
1676
1677	/* Can the task run on the task's current CPU? If so, we're done */
1678	if (cpumask_test_cpu(task_cpu(p), new_mask))
1679		goto out;
1680
1681	if (task_running(rq, p) || p->state == TASK_WAKING) {
1682		struct migration_arg arg = { p, dest_cpu };
1683		/* Need help from migration thread: drop lock and wait. */
1684		task_rq_unlock(rq, p, &rf);
1685		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1686		return 0;
1687	} else if (task_on_rq_queued(p)) {
1688		/*
1689		 * OK, since we're going to drop the lock immediately
1690		 * afterwards anyway.
1691		 */
1692		rq = move_queued_task(rq, &rf, p, dest_cpu);
1693	}
1694out:
1695	task_rq_unlock(rq, p, &rf);
1696
1697	return ret;
1698}
1699
1700int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1701{
1702	return __set_cpus_allowed_ptr(p, new_mask, false);
1703}
1704EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1705
1706void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1707{
1708#ifdef CONFIG_SCHED_DEBUG
1709	/*
1710	 * We should never call set_task_cpu() on a blocked task,
1711	 * ttwu() will sort out the placement.
1712	 */
1713	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1714			!p->on_rq);
1715
1716	/*
1717	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1718	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1719	 * time relying on p->on_rq.
1720	 */
1721	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1722		     p->sched_class == &fair_sched_class &&
1723		     (p->on_rq && !task_on_rq_migrating(p)));
1724
1725#ifdef CONFIG_LOCKDEP
1726	/*
1727	 * The caller should hold either p->pi_lock or rq->lock, when changing
1728	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1729	 *
1730	 * sched_move_task() holds both and thus holding either pins the cgroup,
1731	 * see task_group().
1732	 *
1733	 * Furthermore, all task_rq users should acquire both locks, see
1734	 * task_rq_lock().
1735	 */
1736	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1737				      lockdep_is_held(&task_rq(p)->lock)));
1738#endif
1739	/*
1740	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1741	 */
1742	WARN_ON_ONCE(!cpu_online(new_cpu));
1743#endif
1744
1745	trace_sched_migrate_task(p, new_cpu);
1746
1747	if (task_cpu(p) != new_cpu) {
1748		if (p->sched_class->migrate_task_rq)
1749			p->sched_class->migrate_task_rq(p, new_cpu);
1750		p->se.nr_migrations++;
1751		rseq_migrate(p);
1752		perf_event_task_migrate(p);
1753	}
1754
1755	__set_task_cpu(p, new_cpu);
1756}
1757
1758#ifdef CONFIG_NUMA_BALANCING
1759static void __migrate_swap_task(struct task_struct *p, int cpu)
1760{
1761	if (task_on_rq_queued(p)) {
1762		struct rq *src_rq, *dst_rq;
1763		struct rq_flags srf, drf;
1764
1765		src_rq = task_rq(p);
1766		dst_rq = cpu_rq(cpu);
1767
1768		rq_pin_lock(src_rq, &srf);
1769		rq_pin_lock(dst_rq, &drf);
1770
1771		deactivate_task(src_rq, p, 0);
1772		set_task_cpu(p, cpu);
1773		activate_task(dst_rq, p, 0);
1774		check_preempt_curr(dst_rq, p, 0);
1775
1776		rq_unpin_lock(dst_rq, &drf);
1777		rq_unpin_lock(src_rq, &srf);
1778
1779	} else {
1780		/*
1781		 * Task isn't running anymore; make it appear like we migrated
1782		 * it before it went to sleep. This means on wakeup we make the
1783		 * previous CPU our target instead of where it really is.
1784		 */
1785		p->wake_cpu = cpu;
1786	}
1787}
1788
1789struct migration_swap_arg {
1790	struct task_struct *src_task, *dst_task;
1791	int src_cpu, dst_cpu;
1792};
1793
1794static int migrate_swap_stop(void *data)
1795{
1796	struct migration_swap_arg *arg = data;
1797	struct rq *src_rq, *dst_rq;
1798	int ret = -EAGAIN;
1799
1800	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1801		return -EAGAIN;
1802
1803	src_rq = cpu_rq(arg->src_cpu);
1804	dst_rq = cpu_rq(arg->dst_cpu);
1805
1806	double_raw_lock(&arg->src_task->pi_lock,
1807			&arg->dst_task->pi_lock);
1808	double_rq_lock(src_rq, dst_rq);
1809
1810	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1811		goto unlock;
1812
1813	if (task_cpu(arg->src_task) != arg->src_cpu)
1814		goto unlock;
1815
1816	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1817		goto unlock;
1818
1819	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1820		goto unlock;
1821
1822	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1823	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1824
1825	ret = 0;
1826
1827unlock:
1828	double_rq_unlock(src_rq, dst_rq);
1829	raw_spin_unlock(&arg->dst_task->pi_lock);
1830	raw_spin_unlock(&arg->src_task->pi_lock);
1831
1832	return ret;
1833}
1834
1835/*
1836 * Cross migrate two tasks
1837 */
1838int migrate_swap(struct task_struct *cur, struct task_struct *p,
1839		int target_cpu, int curr_cpu)
1840{
1841	struct migration_swap_arg arg;
1842	int ret = -EINVAL;
1843
1844	arg = (struct migration_swap_arg){
1845		.src_task = cur,
1846		.src_cpu = curr_cpu,
1847		.dst_task = p,
1848		.dst_cpu = target_cpu,
1849	};
1850
1851	if (arg.src_cpu == arg.dst_cpu)
1852		goto out;
1853
1854	/*
1855	 * These three tests are all lockless; this is OK since all of them
1856	 * will be re-checked with proper locks held further down the line.
1857	 */
1858	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1859		goto out;
1860
1861	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1862		goto out;
1863
1864	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1865		goto out;
1866
1867	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1868	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1869
1870out:
1871	return ret;
1872}
1873#endif /* CONFIG_NUMA_BALANCING */
1874
1875/*
1876 * wait_task_inactive - wait for a thread to unschedule.
1877 *
1878 * If @match_state is nonzero, it's the @p->state value just checked and
1879 * not expected to change.  If it changes, i.e. @p might have woken up,
1880 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1881 * we return a positive number (its total switch count).  If a second call
1882 * a short while later returns the same number, the caller can be sure that
1883 * @p has remained unscheduled the whole time.
1884 *
1885 * The caller must ensure that the task *will* unschedule sometime soon,
1886 * else this function might spin for a *long* time. This function can't
1887 * be called with interrupts off, or it may introduce deadlock with
1888 * smp_call_function() if an IPI is sent by the same process we are
1889 * waiting to become inactive.
1890 */
1891unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1892{
1893	int running, queued;
1894	struct rq_flags rf;
1895	unsigned long ncsw;
1896	struct rq *rq;
1897
1898	for (;;) {
1899		/*
1900		 * We do the initial early heuristics without holding
1901		 * any task-queue locks at all. We'll only try to get
1902		 * the runqueue lock when things look like they will
1903		 * work out!
1904		 */
1905		rq = task_rq(p);
1906
1907		/*
1908		 * If the task is actively running on another CPU
1909		 * still, just relax and busy-wait without holding
1910		 * any locks.
1911		 *
1912		 * NOTE! Since we don't hold any locks, it's not
1913		 * even sure that "rq" stays as the right runqueue!
1914		 * But we don't care, since "task_running()" will
1915		 * return false if the runqueue has changed and p
1916		 * is actually now running somewhere else!
1917		 */
1918		while (task_running(rq, p)) {
1919			if (match_state && unlikely(p->state != match_state))
1920				return 0;
1921			cpu_relax();
1922		}
1923
1924		/*
1925		 * Ok, time to look more closely! We need the rq
1926		 * lock now, to be *sure*. If we're wrong, we'll
1927		 * just go back and repeat.
1928		 */
1929		rq = task_rq_lock(p, &rf);
1930		trace_sched_wait_task(p);
1931		running = task_running(rq, p);
1932		queued = task_on_rq_queued(p);
1933		ncsw = 0;
1934		if (!match_state || p->state == match_state)
1935			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1936		task_rq_unlock(rq, p, &rf);
1937
1938		/*
1939		 * If it changed from the expected state, bail out now.
1940		 */
1941		if (unlikely(!ncsw))
1942			break;
1943
1944		/*
1945		 * Was it really running after all now that we
1946		 * checked with the proper locks actually held?
1947		 *
1948		 * Oops. Go back and try again..
1949		 */
1950		if (unlikely(running)) {
1951			cpu_relax();
1952			continue;
1953		}
1954
1955		/*
1956		 * It's not enough that it's not actively running,
1957		 * it must be off the runqueue _entirely_, and not
1958		 * preempted!
1959		 *
1960		 * So if it was still runnable (but just not actively
1961		 * running right now), it's preempted, and we should
1962		 * yield - it could be a while.
1963		 */
1964		if (unlikely(queued)) {
1965			ktime_t to = NSEC_PER_SEC / HZ;
1966
1967			set_current_state(TASK_UNINTERRUPTIBLE);
1968			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1969			continue;
1970		}
1971
1972		/*
1973		 * Ahh, all good. It wasn't running, and it wasn't
1974		 * runnable, which means that it will never become
1975		 * running in the future either. We're all done!
1976		 */
1977		break;
1978	}
1979
1980	return ncsw;
1981}
1982
1983/***
1984 * kick_process - kick a running thread to enter/exit the kernel
1985 * @p: the to-be-kicked thread
1986 *
1987 * Cause a process which is running on another CPU to enter
1988 * kernel-mode, without any delay. (to get signals handled.)
1989 *
1990 * NOTE: this function doesn't have to take the runqueue lock,
1991 * because all it wants to ensure is that the remote task enters
1992 * the kernel. If the IPI races and the task has been migrated
1993 * to another CPU then no harm is done and the purpose has been
1994 * achieved as well.
1995 */
1996void kick_process(struct task_struct *p)
1997{
1998	int cpu;
1999
2000	preempt_disable();
2001	cpu = task_cpu(p);
2002	if ((cpu != smp_processor_id()) && task_curr(p))
2003		smp_send_reschedule(cpu);
2004	preempt_enable();
2005}
2006EXPORT_SYMBOL_GPL(kick_process);
 
2007
 
2008/*
2009 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2010 *
2011 * A few notes on cpu_active vs cpu_online:
2012 *
2013 *  - cpu_active must be a subset of cpu_online
2014 *
2015 *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2016 *    see __set_cpus_allowed_ptr(). At this point the newly online
2017 *    CPU isn't yet part of the sched domains, and balancing will not
2018 *    see it.
2019 *
2020 *  - on CPU-down we clear cpu_active() to mask the sched domains and
2021 *    avoid the load balancer to place new tasks on the to be removed
2022 *    CPU. Existing tasks will remain running there and will be taken
2023 *    off.
2024 *
2025 * This means that fallback selection must not select !active CPUs.
2026 * And can assume that any active CPU must be online. Conversely
2027 * select_task_rq() below may allow selection of !active CPUs in order
2028 * to satisfy the above rules.
2029 */
2030static int select_fallback_rq(int cpu, struct task_struct *p)
2031{
2032	int nid = cpu_to_node(cpu);
2033	const struct cpumask *nodemask = NULL;
2034	enum { cpuset, possible, fail } state = cpuset;
2035	int dest_cpu;
2036
2037	/*
2038	 * If the node that the CPU is on has been offlined, cpu_to_node()
2039	 * will return -1. There is no CPU on the node, and we should
2040	 * select the CPU on the other node.
2041	 */
2042	if (nid != -1) {
2043		nodemask = cpumask_of_node(nid);
2044
2045		/* Look for allowed, online CPU in same node. */
2046		for_each_cpu(dest_cpu, nodemask) {
2047			if (!cpu_active(dest_cpu))
2048				continue;
2049			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2050				return dest_cpu;
2051		}
2052	}
2053
2054	for (;;) {
2055		/* Any allowed, online CPU? */
2056		for_each_cpu(dest_cpu, p->cpus_ptr) {
2057			if (!is_cpu_allowed(p, dest_cpu))
 
 
2058				continue;
2059
2060			goto out;
2061		}
2062
2063		/* No more Mr. Nice Guy. */
2064		switch (state) {
2065		case cpuset:
2066			if (IS_ENABLED(CONFIG_CPUSETS)) {
2067				cpuset_cpus_allowed_fallback(p);
2068				state = possible;
2069				break;
2070			}
2071			/* Fall-through */
2072		case possible:
2073			do_set_cpus_allowed(p, cpu_possible_mask);
2074			state = fail;
2075			break;
2076
2077		case fail:
2078			BUG();
2079			break;
2080		}
2081	}
2082
2083out:
2084	if (state != cpuset) {
2085		/*
2086		 * Don't tell them about moving exiting tasks or
2087		 * kernel threads (both mm NULL), since they never
2088		 * leave kernel.
2089		 */
2090		if (p->mm && printk_ratelimit()) {
2091			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2092					task_pid_nr(p), p->comm, cpu);
2093		}
2094	}
2095
2096	return dest_cpu;
2097}
2098
2099/*
2100 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2101 */
2102static inline
2103int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2104{
2105	lockdep_assert_held(&p->pi_lock);
2106
2107	if (p->nr_cpus_allowed > 1)
2108		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2109	else
2110		cpu = cpumask_any(p->cpus_ptr);
2111
2112	/*
2113	 * In order not to call set_task_cpu() on a blocking task we need
2114	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2115	 * CPU.
2116	 *
2117	 * Since this is common to all placement strategies, this lives here.
2118	 *
2119	 * [ this allows ->select_task() to simply return task_cpu(p) and
2120	 *   not worry about this generic constraint ]
2121	 */
2122	if (unlikely(!is_cpu_allowed(p, cpu)))
 
2123		cpu = select_fallback_rq(task_cpu(p), p);
2124
2125	return cpu;
2126}
2127
2128static void update_avg(u64 *avg, u64 sample)
2129{
2130	s64 diff = sample - *avg;
2131	*avg += diff >> 3;
2132}
2133
2134void sched_set_stop_task(int cpu, struct task_struct *stop)
2135{
2136	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2137	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2138
2139	if (stop) {
2140		/*
2141		 * Make it appear like a SCHED_FIFO task, its something
2142		 * userspace knows about and won't get confused about.
2143		 *
2144		 * Also, it will make PI more or less work without too
2145		 * much confusion -- but then, stop work should not
2146		 * rely on PI working anyway.
2147		 */
2148		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2149
2150		stop->sched_class = &stop_sched_class;
2151	}
2152
2153	cpu_rq(cpu)->stop = stop;
2154
2155	if (old_stop) {
2156		/*
2157		 * Reset it back to a normal scheduling class so that
2158		 * it can die in pieces.
2159		 */
2160		old_stop->sched_class = &rt_sched_class;
2161	}
2162}
2163
2164#else
2165
2166static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2167					 const struct cpumask *new_mask, bool check)
2168{
2169	return set_cpus_allowed_ptr(p, new_mask);
2170}
2171
2172#endif /* CONFIG_SMP */
2173
2174static void
2175ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2176{
2177	struct rq *rq;
2178
2179	if (!schedstat_enabled())
2180		return;
2181
2182	rq = this_rq();
2183
2184#ifdef CONFIG_SMP
2185	if (cpu == rq->cpu) {
2186		__schedstat_inc(rq->ttwu_local);
2187		__schedstat_inc(p->se.statistics.nr_wakeups_local);
 
 
2188	} else {
2189		struct sched_domain *sd;
2190
2191		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2192		rcu_read_lock();
2193		for_each_domain(rq->cpu, sd) {
2194			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2195				__schedstat_inc(sd->ttwu_wake_remote);
2196				break;
2197			}
2198		}
2199		rcu_read_unlock();
2200	}
2201
2202	if (wake_flags & WF_MIGRATED)
2203		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
 
2204#endif /* CONFIG_SMP */
2205
2206	__schedstat_inc(rq->ttwu_count);
2207	__schedstat_inc(p->se.statistics.nr_wakeups);
2208
2209	if (wake_flags & WF_SYNC)
2210		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
 
 
 
 
 
 
 
 
 
 
 
 
2211}
2212
2213/*
2214 * Mark the task runnable and perform wakeup-preemption.
2215 */
2216static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2217			   struct rq_flags *rf)
2218{
 
2219	check_preempt_curr(rq, p, wake_flags);
2220	p->state = TASK_RUNNING;
2221	trace_sched_wakeup(p);
2222
 
2223#ifdef CONFIG_SMP
2224	if (p->sched_class->task_woken) {
2225		/*
2226		 * Our task @p is fully woken up and running; so its safe to
2227		 * drop the rq->lock, hereafter rq is only used for statistics.
2228		 */
2229		rq_unpin_lock(rq, rf);
2230		p->sched_class->task_woken(rq, p);
2231		rq_repin_lock(rq, rf);
2232	}
2233
2234	if (rq->idle_stamp) {
2235		u64 delta = rq_clock(rq) - rq->idle_stamp;
2236		u64 max = 2*rq->max_idle_balance_cost;
2237
2238		update_avg(&rq->avg_idle, delta);
2239
2240		if (rq->avg_idle > max)
2241			rq->avg_idle = max;
2242
 
2243		rq->idle_stamp = 0;
2244	}
2245#endif
2246}
2247
2248static void
2249ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2250		 struct rq_flags *rf)
2251{
2252	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2253
2254	lockdep_assert_held(&rq->lock);
2255
2256#ifdef CONFIG_SMP
2257	if (p->sched_contributes_to_load)
2258		rq->nr_uninterruptible--;
2259
2260	if (wake_flags & WF_MIGRATED)
2261		en_flags |= ENQUEUE_MIGRATED;
2262#endif
2263
2264	activate_task(rq, p, en_flags);
2265	ttwu_do_wakeup(rq, p, wake_flags, rf);
2266}
2267
2268/*
2269 * Called in case the task @p isn't fully descheduled from its runqueue,
2270 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2271 * since all we need to do is flip p->state to TASK_RUNNING, since
2272 * the task is still ->on_rq.
2273 */
2274static int ttwu_remote(struct task_struct *p, int wake_flags)
2275{
2276	struct rq_flags rf;
2277	struct rq *rq;
2278	int ret = 0;
2279
2280	rq = __task_rq_lock(p, &rf);
2281	if (task_on_rq_queued(p)) {
2282		/* check_preempt_curr() may use rq clock */
2283		update_rq_clock(rq);
2284		ttwu_do_wakeup(rq, p, wake_flags, &rf);
2285		ret = 1;
2286	}
2287	__task_rq_unlock(rq, &rf);
2288
2289	return ret;
2290}
2291
2292#ifdef CONFIG_SMP
2293void sched_ttwu_pending(void)
2294{
2295	struct rq *rq = this_rq();
2296	struct llist_node *llist = llist_del_all(&rq->wake_list);
2297	struct task_struct *p, *t;
2298	struct rq_flags rf;
2299
2300	if (!llist)
2301		return;
2302
2303	rq_lock_irqsave(rq, &rf);
2304	update_rq_clock(rq);
2305
2306	llist_for_each_entry_safe(p, t, llist, wake_entry)
2307		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
 
 
 
2308
2309	rq_unlock_irqrestore(rq, &rf);
2310}
2311
2312void scheduler_ipi(void)
2313{
2314	/*
2315	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2316	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2317	 * this IPI.
2318	 */
2319	preempt_fold_need_resched();
2320
2321	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2322		return;
2323
2324	/*
2325	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2326	 * traditionally all their work was done from the interrupt return
2327	 * path. Now that we actually do some work, we need to make sure
2328	 * we do call them.
2329	 *
2330	 * Some archs already do call them, luckily irq_enter/exit nest
2331	 * properly.
2332	 *
2333	 * Arguably we should visit all archs and update all handlers,
2334	 * however a fair share of IPIs are still resched only so this would
2335	 * somewhat pessimize the simple resched case.
2336	 */
2337	irq_enter();
2338	sched_ttwu_pending();
2339
2340	/*
2341	 * Check if someone kicked us for doing the nohz idle load balance.
2342	 */
2343	if (unlikely(got_nohz_idle_kick())) {
2344		this_rq()->idle_balance = 1;
2345		raise_softirq_irqoff(SCHED_SOFTIRQ);
2346	}
2347	irq_exit();
2348}
2349
2350static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2351{
2352	struct rq *rq = cpu_rq(cpu);
2353
2354	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2355
2356	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2357		if (!set_nr_if_polling(rq->idle))
2358			smp_send_reschedule(cpu);
2359		else
2360			trace_sched_wake_idle_without_ipi(cpu);
2361	}
2362}
2363
2364void wake_up_if_idle(int cpu)
 
2365{
2366	struct rq *rq = cpu_rq(cpu);
2367	struct rq_flags rf;
2368
2369	rcu_read_lock();
2370
2371	if (!is_idle_task(rcu_dereference(rq->curr)))
2372		goto out;
2373
2374	if (set_nr_if_polling(rq->idle)) {
2375		trace_sched_wake_idle_without_ipi(cpu);
2376	} else {
2377		rq_lock_irqsave(rq, &rf);
2378		if (is_idle_task(rq->curr))
2379			smp_send_reschedule(cpu);
2380		/* Else CPU is not idle, do nothing here: */
2381		rq_unlock_irqrestore(rq, &rf);
2382	}
 
 
 
2383
2384out:
2385	rcu_read_unlock();
2386}
 
2387
2388bool cpus_share_cache(int this_cpu, int that_cpu)
2389{
2390	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2391}
2392#endif /* CONFIG_SMP */
2393
2394static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2395{
2396	struct rq *rq = cpu_rq(cpu);
2397	struct rq_flags rf;
2398
2399#if defined(CONFIG_SMP)
2400	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2401		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2402		ttwu_queue_remote(p, cpu, wake_flags);
2403		return;
2404	}
2405#endif
2406
2407	rq_lock(rq, &rf);
2408	update_rq_clock(rq);
2409	ttwu_do_activate(rq, p, wake_flags, &rf);
2410	rq_unlock(rq, &rf);
2411}
2412
2413/*
2414 * Notes on Program-Order guarantees on SMP systems.
2415 *
2416 *  MIGRATION
2417 *
2418 * The basic program-order guarantee on SMP systems is that when a task [t]
2419 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2420 * execution on its new CPU [c1].
2421 *
2422 * For migration (of runnable tasks) this is provided by the following means:
2423 *
2424 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2425 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2426 *     rq(c1)->lock (if not at the same time, then in that order).
2427 *  C) LOCK of the rq(c1)->lock scheduling in task
2428 *
2429 * Release/acquire chaining guarantees that B happens after A and C after B.
2430 * Note: the CPU doing B need not be c0 or c1
2431 *
2432 * Example:
2433 *
2434 *   CPU0            CPU1            CPU2
2435 *
2436 *   LOCK rq(0)->lock
2437 *   sched-out X
2438 *   sched-in Y
2439 *   UNLOCK rq(0)->lock
2440 *
2441 *                                   LOCK rq(0)->lock // orders against CPU0
2442 *                                   dequeue X
2443 *                                   UNLOCK rq(0)->lock
2444 *
2445 *                                   LOCK rq(1)->lock
2446 *                                   enqueue X
2447 *                                   UNLOCK rq(1)->lock
2448 *
2449 *                   LOCK rq(1)->lock // orders against CPU2
2450 *                   sched-out Z
2451 *                   sched-in X
2452 *                   UNLOCK rq(1)->lock
2453 *
2454 *
2455 *  BLOCKING -- aka. SLEEP + WAKEUP
2456 *
2457 * For blocking we (obviously) need to provide the same guarantee as for
2458 * migration. However the means are completely different as there is no lock
2459 * chain to provide order. Instead we do:
2460 *
2461 *   1) smp_store_release(X->on_cpu, 0)
2462 *   2) smp_cond_load_acquire(!X->on_cpu)
2463 *
2464 * Example:
2465 *
2466 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2467 *
2468 *   LOCK rq(0)->lock LOCK X->pi_lock
2469 *   dequeue X
2470 *   sched-out X
2471 *   smp_store_release(X->on_cpu, 0);
2472 *
2473 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2474 *                    X->state = WAKING
2475 *                    set_task_cpu(X,2)
2476 *
2477 *                    LOCK rq(2)->lock
2478 *                    enqueue X
2479 *                    X->state = RUNNING
2480 *                    UNLOCK rq(2)->lock
2481 *
2482 *                                          LOCK rq(2)->lock // orders against CPU1
2483 *                                          sched-out Z
2484 *                                          sched-in X
2485 *                                          UNLOCK rq(2)->lock
2486 *
2487 *                    UNLOCK X->pi_lock
2488 *   UNLOCK rq(0)->lock
2489 *
2490 *
2491 * However, for wakeups there is a second guarantee we must provide, namely we
2492 * must ensure that CONDITION=1 done by the caller can not be reordered with
2493 * accesses to the task state; see try_to_wake_up() and set_current_state().
2494 */
2495
2496/**
2497 * try_to_wake_up - wake up a thread
2498 * @p: the thread to be awakened
2499 * @state: the mask of task states that can be woken
2500 * @wake_flags: wake modifier flags (WF_*)
2501 *
2502 * If (@state & @p->state) @p->state = TASK_RUNNING.
2503 *
2504 * If the task was not queued/runnable, also place it back on a runqueue.
2505 *
2506 * Atomic against schedule() which would dequeue a task, also see
2507 * set_current_state().
2508 *
2509 * This function executes a full memory barrier before accessing the task
2510 * state; see set_current_state().
2511 *
2512 * Return: %true if @p->state changes (an actual wakeup was done),
2513 *	   %false otherwise.
2514 */
2515static int
2516try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2517{
2518	unsigned long flags;
2519	int cpu, success = 0;
2520
2521	preempt_disable();
2522	if (p == current) {
2523		/*
2524		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2525		 * == smp_processor_id()'. Together this means we can special
2526		 * case the whole 'p->on_rq && ttwu_remote()' case below
2527		 * without taking any locks.
2528		 *
2529		 * In particular:
2530		 *  - we rely on Program-Order guarantees for all the ordering,
2531		 *  - we're serialized against set_special_state() by virtue of
2532		 *    it disabling IRQs (this allows not taking ->pi_lock).
2533		 */
2534		if (!(p->state & state))
2535			goto out;
2536
2537		success = 1;
2538		cpu = task_cpu(p);
2539		trace_sched_waking(p);
2540		p->state = TASK_RUNNING;
2541		trace_sched_wakeup(p);
2542		goto out;
2543	}
2544
2545	/*
2546	 * If we are going to wake up a thread waiting for CONDITION we
2547	 * need to ensure that CONDITION=1 done by the caller can not be
2548	 * reordered with p->state check below. This pairs with mb() in
2549	 * set_current_state() the waiting thread does.
2550	 */
2551	raw_spin_lock_irqsave(&p->pi_lock, flags);
2552	smp_mb__after_spinlock();
2553	if (!(p->state & state))
2554		goto unlock;
2555
2556	trace_sched_waking(p);
2557
2558	/* We're going to change ->state: */
2559	success = 1;
2560	cpu = task_cpu(p);
2561
2562	/*
2563	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2564	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2565	 * in smp_cond_load_acquire() below.
2566	 *
2567	 * sched_ttwu_pending()			try_to_wake_up()
2568	 *   STORE p->on_rq = 1			  LOAD p->state
2569	 *   UNLOCK rq->lock
2570	 *
2571	 * __schedule() (switch to task 'p')
2572	 *   LOCK rq->lock			  smp_rmb();
2573	 *   smp_mb__after_spinlock();
2574	 *   UNLOCK rq->lock
2575	 *
2576	 * [task p]
2577	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2578	 *
2579	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2580	 * __schedule().  See the comment for smp_mb__after_spinlock().
2581	 */
2582	smp_rmb();
2583	if (p->on_rq && ttwu_remote(p, wake_flags))
2584		goto unlock;
2585
2586#ifdef CONFIG_SMP
2587	/*
2588	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2589	 * possible to, falsely, observe p->on_cpu == 0.
2590	 *
2591	 * One must be running (->on_cpu == 1) in order to remove oneself
2592	 * from the runqueue.
2593	 *
2594	 * __schedule() (switch to task 'p')	try_to_wake_up()
2595	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2596	 *   UNLOCK rq->lock
2597	 *
2598	 * __schedule() (put 'p' to sleep)
2599	 *   LOCK rq->lock			  smp_rmb();
2600	 *   smp_mb__after_spinlock();
2601	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2602	 *
2603	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2604	 * __schedule().  See the comment for smp_mb__after_spinlock().
2605	 */
2606	smp_rmb();
2607
 
 
 
 
 
 
 
 
 
 
 
 
 
2608	/*
2609	 * If the owning (remote) CPU is still in the middle of schedule() with
2610	 * this task as prev, wait until its done referencing the task.
2611	 *
2612	 * Pairs with the smp_store_release() in finish_task().
2613	 *
2614	 * This ensures that tasks getting woken will be fully ordered against
2615	 * their previous state and preserve Program Order.
2616	 */
2617	smp_cond_load_acquire(&p->on_cpu, !VAL);
2618
2619	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2620	p->state = TASK_WAKING;
2621
2622	if (p->in_iowait) {
2623		delayacct_blkio_end(p);
2624		atomic_dec(&task_rq(p)->nr_iowait);
2625	}
2626
2627	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2628	if (task_cpu(p) != cpu) {
2629		wake_flags |= WF_MIGRATED;
2630		psi_ttwu_dequeue(p);
2631		set_task_cpu(p, cpu);
2632	}
 
2633
2634#else /* CONFIG_SMP */
 
 
 
 
2635
2636	if (p->in_iowait) {
2637		delayacct_blkio_end(p);
2638		atomic_dec(&task_rq(p)->nr_iowait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2639	}
2640
2641#endif /* CONFIG_SMP */
 
2642
2643	ttwu_queue(p, cpu, wake_flags);
2644unlock:
2645	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2646out:
2647	if (success)
2648		ttwu_stat(p, cpu, wake_flags);
2649	preempt_enable();
2650
2651	return success;
 
 
 
2652}
2653
2654/**
2655 * wake_up_process - Wake up a specific process
2656 * @p: The process to be woken up.
2657 *
2658 * Attempt to wake up the nominated process and move it to the set of runnable
2659 * processes.
 
2660 *
2661 * Return: 1 if the process was woken up, 0 if it was already running.
2662 *
2663 * This function executes a full memory barrier before accessing the task state.
2664 */
2665int wake_up_process(struct task_struct *p)
2666{
2667	return try_to_wake_up(p, TASK_NORMAL, 0);
2668}
2669EXPORT_SYMBOL(wake_up_process);
2670
2671int wake_up_state(struct task_struct *p, unsigned int state)
2672{
2673	return try_to_wake_up(p, state, 0);
2674}
2675
2676/*
2677 * Perform scheduler related setup for a newly forked process p.
2678 * p is forked by current.
2679 *
2680 * __sched_fork() is basic setup used by init_idle() too:
2681 */
2682static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2683{
2684	p->on_rq			= 0;
2685
2686	p->se.on_rq			= 0;
2687	p->se.exec_start		= 0;
2688	p->se.sum_exec_runtime		= 0;
2689	p->se.prev_sum_exec_runtime	= 0;
2690	p->se.nr_migrations		= 0;
2691	p->se.vruntime			= 0;
2692	INIT_LIST_HEAD(&p->se.group_node);
2693
2694#ifdef CONFIG_FAIR_GROUP_SCHED
2695	p->se.cfs_rq			= NULL;
2696#endif
2697
2698#ifdef CONFIG_SCHEDSTATS
2699	/* Even if schedstat is disabled, there should not be garbage */
2700	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2701#endif
2702
2703	RB_CLEAR_NODE(&p->dl.rb_node);
2704	init_dl_task_timer(&p->dl);
2705	init_dl_inactive_task_timer(&p->dl);
2706	__dl_clear_params(p);
2707
2708	INIT_LIST_HEAD(&p->rt.run_list);
2709	p->rt.timeout		= 0;
2710	p->rt.time_slice	= sched_rr_timeslice;
2711	p->rt.on_rq		= 0;
2712	p->rt.on_list		= 0;
2713
2714#ifdef CONFIG_PREEMPT_NOTIFIERS
2715	INIT_HLIST_HEAD(&p->preempt_notifiers);
2716#endif
2717
2718#ifdef CONFIG_COMPACTION
2719	p->capture_control = NULL;
2720#endif
2721	init_numa_balancing(clone_flags, p);
2722}
2723
2724DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2725
2726#ifdef CONFIG_NUMA_BALANCING
2727
2728void set_numabalancing_state(bool enabled)
2729{
2730	if (enabled)
2731		static_branch_enable(&sched_numa_balancing);
2732	else
2733		static_branch_disable(&sched_numa_balancing);
2734}
2735
2736#ifdef CONFIG_PROC_SYSCTL
2737int sysctl_numa_balancing(struct ctl_table *table, int write,
2738			 void __user *buffer, size_t *lenp, loff_t *ppos)
2739{
2740	struct ctl_table t;
2741	int err;
2742	int state = static_branch_likely(&sched_numa_balancing);
2743
2744	if (write && !capable(CAP_SYS_ADMIN))
2745		return -EPERM;
2746
2747	t = *table;
2748	t.data = &state;
2749	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2750	if (err < 0)
2751		return err;
2752	if (write)
2753		set_numabalancing_state(state);
2754	return err;
2755}
2756#endif
2757#endif
2758
2759#ifdef CONFIG_SCHEDSTATS
2760
2761DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2762static bool __initdata __sched_schedstats = false;
2763
2764static void set_schedstats(bool enabled)
2765{
2766	if (enabled)
2767		static_branch_enable(&sched_schedstats);
2768	else
2769		static_branch_disable(&sched_schedstats);
2770}
2771
2772void force_schedstat_enabled(void)
2773{
2774	if (!schedstat_enabled()) {
2775		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2776		static_branch_enable(&sched_schedstats);
2777	}
2778}
2779
2780static int __init setup_schedstats(char *str)
2781{
2782	int ret = 0;
2783	if (!str)
2784		goto out;
2785
2786	/*
2787	 * This code is called before jump labels have been set up, so we can't
2788	 * change the static branch directly just yet.  Instead set a temporary
2789	 * variable so init_schedstats() can do it later.
2790	 */
2791	if (!strcmp(str, "enable")) {
2792		__sched_schedstats = true;
2793		ret = 1;
2794	} else if (!strcmp(str, "disable")) {
2795		__sched_schedstats = false;
2796		ret = 1;
2797	}
2798out:
2799	if (!ret)
2800		pr_warn("Unable to parse schedstats=\n");
2801
2802	return ret;
2803}
2804__setup("schedstats=", setup_schedstats);
2805
2806static void __init init_schedstats(void)
2807{
2808	set_schedstats(__sched_schedstats);
2809}
2810
2811#ifdef CONFIG_PROC_SYSCTL
2812int sysctl_schedstats(struct ctl_table *table, int write,
2813			 void __user *buffer, size_t *lenp, loff_t *ppos)
2814{
2815	struct ctl_table t;
2816	int err;
2817	int state = static_branch_likely(&sched_schedstats);
2818
2819	if (write && !capable(CAP_SYS_ADMIN))
2820		return -EPERM;
2821
2822	t = *table;
2823	t.data = &state;
2824	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2825	if (err < 0)
2826		return err;
2827	if (write)
2828		set_schedstats(state);
2829	return err;
2830}
2831#endif /* CONFIG_PROC_SYSCTL */
2832#else  /* !CONFIG_SCHEDSTATS */
2833static inline void init_schedstats(void) {}
2834#endif /* CONFIG_SCHEDSTATS */
2835
2836/*
2837 * fork()/clone()-time setup:
2838 */
2839int sched_fork(unsigned long clone_flags, struct task_struct *p)
2840{
2841	unsigned long flags;
 
2842
2843	__sched_fork(clone_flags, p);
2844	/*
2845	 * We mark the process as NEW here. This guarantees that
2846	 * nobody will actually run it, and a signal or other external
2847	 * event cannot wake it up and insert it on the runqueue either.
2848	 */
2849	p->state = TASK_NEW;
2850
2851	/*
2852	 * Make sure we do not leak PI boosting priority to the child.
2853	 */
2854	p->prio = current->normal_prio;
2855
2856	uclamp_fork(p);
2857
2858	/*
2859	 * Revert to default priority/policy on fork if requested.
2860	 */
2861	if (unlikely(p->sched_reset_on_fork)) {
2862		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2863			p->policy = SCHED_NORMAL;
2864			p->static_prio = NICE_TO_PRIO(0);
2865			p->rt_priority = 0;
2866		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2867			p->static_prio = NICE_TO_PRIO(0);
2868
2869		p->prio = p->normal_prio = __normal_prio(p);
2870		set_load_weight(p, false);
2871
2872		/*
2873		 * We don't need the reset flag anymore after the fork. It has
2874		 * fulfilled its duty:
2875		 */
2876		p->sched_reset_on_fork = 0;
2877	}
2878
2879	if (dl_prio(p->prio))
2880		return -EAGAIN;
2881	else if (rt_prio(p->prio))
2882		p->sched_class = &rt_sched_class;
2883	else
2884		p->sched_class = &fair_sched_class;
2885
2886	init_entity_runnable_average(&p->se);
 
2887
2888	/*
2889	 * The child is not yet in the pid-hash so no cgroup attach races,
2890	 * and the cgroup is pinned to this child due to cgroup_fork()
2891	 * is ran before sched_fork().
2892	 *
2893	 * Silence PROVE_RCU.
2894	 */
2895	raw_spin_lock_irqsave(&p->pi_lock, flags);
2896	/*
2897	 * We're setting the CPU for the first time, we don't migrate,
2898	 * so use __set_task_cpu().
2899	 */
2900	__set_task_cpu(p, smp_processor_id());
2901	if (p->sched_class->task_fork)
2902		p->sched_class->task_fork(p);
2903	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2904
2905#ifdef CONFIG_SCHED_INFO
2906	if (likely(sched_info_on()))
2907		memset(&p->sched_info, 0, sizeof(p->sched_info));
2908#endif
2909#if defined(CONFIG_SMP)
2910	p->on_cpu = 0;
2911#endif
2912	init_task_preempt_count(p);
 
 
 
2913#ifdef CONFIG_SMP
2914	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2915	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2916#endif
2917	return 0;
2918}
2919
2920unsigned long to_ratio(u64 period, u64 runtime)
2921{
2922	if (runtime == RUNTIME_INF)
2923		return BW_UNIT;
2924
2925	/*
2926	 * Doing this here saves a lot of checks in all
2927	 * the calling paths, and returning zero seems
2928	 * safe for them anyway.
2929	 */
2930	if (period == 0)
2931		return 0;
2932
2933	return div64_u64(runtime << BW_SHIFT, period);
2934}
2935
2936/*
2937 * wake_up_new_task - wake up a newly created task for the first time.
2938 *
2939 * This function will do some initial scheduler statistics housekeeping
2940 * that must be done for every newly created context, then puts the task
2941 * on the runqueue and wakes it.
2942 */
2943void wake_up_new_task(struct task_struct *p)
2944{
2945	struct rq_flags rf;
2946	struct rq *rq;
2947
2948	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2949	p->state = TASK_RUNNING;
2950#ifdef CONFIG_SMP
2951	/*
2952	 * Fork balancing, do it here and not earlier because:
2953	 *  - cpus_ptr can change in the fork path
2954	 *  - any previously selected CPU might disappear through hotplug
2955	 *
2956	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2957	 * as we're not fully set-up yet.
2958	 */
2959	p->recent_used_cpu = task_cpu(p);
2960	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2961#endif
2962	rq = __task_rq_lock(p, &rf);
2963	update_rq_clock(rq);
2964	post_init_entity_util_avg(p);
2965
2966	activate_task(rq, p, ENQUEUE_NOCLOCK);
2967	trace_sched_wakeup_new(p);
 
 
2968	check_preempt_curr(rq, p, WF_FORK);
2969#ifdef CONFIG_SMP
2970	if (p->sched_class->task_woken) {
2971		/*
2972		 * Nothing relies on rq->lock after this, so its fine to
2973		 * drop it.
2974		 */
2975		rq_unpin_lock(rq, &rf);
2976		p->sched_class->task_woken(rq, p);
2977		rq_repin_lock(rq, &rf);
2978	}
2979#endif
2980	task_rq_unlock(rq, p, &rf);
2981}
2982
2983#ifdef CONFIG_PREEMPT_NOTIFIERS
2984
2985static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2986
2987void preempt_notifier_inc(void)
2988{
2989	static_branch_inc(&preempt_notifier_key);
2990}
2991EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2992
2993void preempt_notifier_dec(void)
2994{
2995	static_branch_dec(&preempt_notifier_key);
2996}
2997EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2998
2999/**
3000 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3001 * @notifier: notifier struct to register
3002 */
3003void preempt_notifier_register(struct preempt_notifier *notifier)
3004{
3005	if (!static_branch_unlikely(&preempt_notifier_key))
3006		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3007
3008	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3009}
3010EXPORT_SYMBOL_GPL(preempt_notifier_register);
3011
3012/**
3013 * preempt_notifier_unregister - no longer interested in preemption notifications
3014 * @notifier: notifier struct to unregister
3015 *
3016 * This is *not* safe to call from within a preemption notifier.
3017 */
3018void preempt_notifier_unregister(struct preempt_notifier *notifier)
3019{
3020	hlist_del(&notifier->link);
3021}
3022EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3023
3024static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3025{
3026	struct preempt_notifier *notifier;
 
3027
3028	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3029		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3030}
3031
3032static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3033{
3034	if (static_branch_unlikely(&preempt_notifier_key))
3035		__fire_sched_in_preempt_notifiers(curr);
3036}
3037
3038static void
3039__fire_sched_out_preempt_notifiers(struct task_struct *curr,
3040				   struct task_struct *next)
3041{
3042	struct preempt_notifier *notifier;
 
3043
3044	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3045		notifier->ops->sched_out(notifier, next);
3046}
3047
3048static __always_inline void
3049fire_sched_out_preempt_notifiers(struct task_struct *curr,
3050				 struct task_struct *next)
3051{
3052	if (static_branch_unlikely(&preempt_notifier_key))
3053		__fire_sched_out_preempt_notifiers(curr, next);
3054}
3055
3056#else /* !CONFIG_PREEMPT_NOTIFIERS */
3057
3058static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3059{
3060}
3061
3062static inline void
3063fire_sched_out_preempt_notifiers(struct task_struct *curr,
3064				 struct task_struct *next)
3065{
3066}
3067
3068#endif /* CONFIG_PREEMPT_NOTIFIERS */
3069
3070static inline void prepare_task(struct task_struct *next)
3071{
3072#ifdef CONFIG_SMP
3073	/*
3074	 * Claim the task as running, we do this before switching to it
3075	 * such that any running task will have this set.
3076	 */
3077	next->on_cpu = 1;
3078#endif
3079}
3080
3081static inline void finish_task(struct task_struct *prev)
3082{
3083#ifdef CONFIG_SMP
3084	/*
3085	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3086	 * We must ensure this doesn't happen until the switch is completely
3087	 * finished.
3088	 *
3089	 * In particular, the load of prev->state in finish_task_switch() must
3090	 * happen before this.
3091	 *
3092	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3093	 */
3094	smp_store_release(&prev->on_cpu, 0);
3095#endif
3096}
3097
3098static inline void
3099prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3100{
3101	/*
3102	 * Since the runqueue lock will be released by the next
3103	 * task (which is an invalid locking op but in the case
3104	 * of the scheduler it's an obvious special-case), so we
3105	 * do an early lockdep release here:
3106	 */
3107	rq_unpin_lock(rq, rf);
3108	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3109#ifdef CONFIG_DEBUG_SPINLOCK
3110	/* this is a valid case when another task releases the spinlock */
3111	rq->lock.owner = next;
3112#endif
3113}
3114
3115static inline void finish_lock_switch(struct rq *rq)
3116{
3117	/*
3118	 * If we are tracking spinlock dependencies then we have to
3119	 * fix up the runqueue lock - which gets 'carried over' from
3120	 * prev into current:
3121	 */
3122	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3123	raw_spin_unlock_irq(&rq->lock);
3124}
3125
3126/*
3127 * NOP if the arch has not defined these:
3128 */
3129
3130#ifndef prepare_arch_switch
3131# define prepare_arch_switch(next)	do { } while (0)
3132#endif
3133
3134#ifndef finish_arch_post_lock_switch
3135# define finish_arch_post_lock_switch()	do { } while (0)
3136#endif
3137
3138/**
3139 * prepare_task_switch - prepare to switch tasks
3140 * @rq: the runqueue preparing to switch
3141 * @prev: the current task that is being switched out
3142 * @next: the task we are going to switch to.
3143 *
3144 * This is called with the rq lock held and interrupts off. It must
3145 * be paired with a subsequent finish_task_switch after the context
3146 * switch.
3147 *
3148 * prepare_task_switch sets up locking and calls architecture specific
3149 * hooks.
3150 */
3151static inline void
3152prepare_task_switch(struct rq *rq, struct task_struct *prev,
3153		    struct task_struct *next)
3154{
3155	kcov_prepare_switch(prev);
3156	sched_info_switch(rq, prev, next);
3157	perf_event_task_sched_out(prev, next);
3158	rseq_preempt(prev);
3159	fire_sched_out_preempt_notifiers(prev, next);
3160	prepare_task(next);
3161	prepare_arch_switch(next);
 
3162}
3163
3164/**
3165 * finish_task_switch - clean up after a task-switch
 
3166 * @prev: the thread we just switched away from.
3167 *
3168 * finish_task_switch must be called after the context switch, paired
3169 * with a prepare_task_switch call before the context switch.
3170 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3171 * and do any other architecture-specific cleanup actions.
3172 *
3173 * Note that we may have delayed dropping an mm in context_switch(). If
3174 * so, we finish that here outside of the runqueue lock. (Doing it
3175 * with the lock held can cause deadlocks; see schedule() for
3176 * details.)
3177 *
3178 * The context switch have flipped the stack from under us and restored the
3179 * local variables which were saved when this task called schedule() in the
3180 * past. prev == current is still correct but we need to recalculate this_rq
3181 * because prev may have moved to another CPU.
3182 */
3183static struct rq *finish_task_switch(struct task_struct *prev)
3184	__releases(rq->lock)
3185{
3186	struct rq *rq = this_rq();
3187	struct mm_struct *mm = rq->prev_mm;
3188	long prev_state;
3189
3190	/*
3191	 * The previous task will have left us with a preempt_count of 2
3192	 * because it left us after:
3193	 *
3194	 *	schedule()
3195	 *	  preempt_disable();			// 1
3196	 *	  __schedule()
3197	 *	    raw_spin_lock_irq(&rq->lock)	// 2
3198	 *
3199	 * Also, see FORK_PREEMPT_COUNT.
3200	 */
3201	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3202		      "corrupted preempt_count: %s/%d/0x%x\n",
3203		      current->comm, current->pid, preempt_count()))
3204		preempt_count_set(FORK_PREEMPT_COUNT);
3205
3206	rq->prev_mm = NULL;
3207
3208	/*
3209	 * A task struct has one reference for the use as "current".
3210	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3211	 * schedule one last time. The schedule call will never return, and
3212	 * the scheduled task must drop that reference.
3213	 *
3214	 * We must observe prev->state before clearing prev->on_cpu (in
3215	 * finish_task), otherwise a concurrent wakeup can get prev
3216	 * running on another CPU and we could rave with its RUNNING -> DEAD
3217	 * transition, resulting in a double drop.
3218	 */
3219	prev_state = prev->state;
3220	vtime_task_switch(prev);
 
 
 
3221	perf_event_task_sched_in(prev, current);
3222	finish_task(prev);
3223	finish_lock_switch(rq);
 
 
3224	finish_arch_post_lock_switch();
3225	kcov_finish_switch(current);
3226
3227	fire_sched_in_preempt_notifiers(current);
3228	/*
3229	 * When switching through a kernel thread, the loop in
3230	 * membarrier_{private,global}_expedited() may have observed that
3231	 * kernel thread and not issued an IPI. It is therefore possible to
3232	 * schedule between user->kernel->user threads without passing though
3233	 * switch_mm(). Membarrier requires a barrier after storing to
3234	 * rq->curr, before returning to userspace, so provide them here:
3235	 *
3236	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3237	 *   provided by mmdrop(),
3238	 * - a sync_core for SYNC_CORE.
3239	 */
3240	if (mm) {
3241		membarrier_mm_sync_core_before_usermode(mm);
3242		mmdrop(mm);
3243	}
3244	if (unlikely(prev_state == TASK_DEAD)) {
3245		if (prev->sched_class->task_dead)
3246			prev->sched_class->task_dead(prev);
3247
3248		/*
3249		 * Remove function-return probe instances associated with this
3250		 * task and put them back on the free list.
3251		 */
3252		kprobe_flush_task(prev);
3253
3254		/* Task is done with its stack. */
3255		put_task_stack(prev);
3256
3257		put_task_struct_rcu_user(prev);
3258	}
3259
3260	tick_nohz_task_switch();
3261	return rq;
3262}
3263
3264#ifdef CONFIG_SMP
3265
 
 
 
 
 
 
 
3266/* rq->lock is NOT held, but preemption is disabled */
3267static void __balance_callback(struct rq *rq)
3268{
3269	struct callback_head *head, *next;
3270	void (*func)(struct rq *rq);
3271	unsigned long flags;
3272
3273	raw_spin_lock_irqsave(&rq->lock, flags);
3274	head = rq->balance_callback;
3275	rq->balance_callback = NULL;
3276	while (head) {
3277		func = (void (*)(struct rq *))head->func;
3278		next = head->next;
3279		head->next = NULL;
3280		head = next;
3281
3282		func(rq);
3283	}
3284	raw_spin_unlock_irqrestore(&rq->lock, flags);
3285}
3286
3287static inline void balance_callback(struct rq *rq)
 
 
3288{
3289	if (unlikely(rq->balance_callback))
3290		__balance_callback(rq);
3291}
3292
3293#else
3294
3295static inline void balance_callback(struct rq *rq)
3296{
3297}
3298
3299#endif
3300
3301/**
3302 * schedule_tail - first thing a freshly forked thread must call.
3303 * @prev: the thread we just switched away from.
3304 */
3305asmlinkage __visible void schedule_tail(struct task_struct *prev)
3306	__releases(rq->lock)
3307{
3308	struct rq *rq;
 
 
3309
3310	/*
3311	 * New tasks start with FORK_PREEMPT_COUNT, see there and
3312	 * finish_task_switch() for details.
3313	 *
3314	 * finish_task_switch() will drop rq->lock() and lower preempt_count
3315	 * and the preempt_enable() will end up enabling preemption (on
3316	 * PREEMPT_COUNT kernels).
3317	 */
 
3318
3319	rq = finish_task_switch(prev);
3320	balance_callback(rq);
3321	preempt_enable();
3322
3323	if (current->set_child_tid)
3324		put_user(task_pid_vnr(current), current->set_child_tid);
3325
3326	calculate_sigpending();
3327}
3328
3329/*
3330 * context_switch - switch to the new MM and the new thread's register state.
 
3331 */
3332static __always_inline struct rq *
3333context_switch(struct rq *rq, struct task_struct *prev,
3334	       struct task_struct *next, struct rq_flags *rf)
3335{
 
 
3336	prepare_task_switch(rq, prev, next);
3337
 
 
3338	/*
3339	 * For paravirt, this is coupled with an exit in switch_to to
3340	 * combine the page table reload and the switch backend into
3341	 * one hypercall.
3342	 */
3343	arch_start_context_switch(prev);
3344
 
 
 
 
 
 
 
 
 
 
 
3345	/*
3346	 * kernel -> kernel   lazy + transfer active
3347	 *   user -> kernel   lazy + mmgrab() active
3348	 *
3349	 * kernel ->   user   switch + mmdrop() active
3350	 *   user ->   user   switch
3351	 */
3352	if (!next->mm) {                                // to kernel
3353		enter_lazy_tlb(prev->active_mm, next);
3354
3355		next->active_mm = prev->active_mm;
3356		if (prev->mm)                           // from user
3357			mmgrab(prev->active_mm);
3358		else
3359			prev->active_mm = NULL;
3360	} else {                                        // to user
3361		membarrier_switch_mm(rq, prev->active_mm, next->mm);
3362		/*
3363		 * sys_membarrier() requires an smp_mb() between setting
3364		 * rq->curr / membarrier_switch_mm() and returning to userspace.
3365		 *
3366		 * The below provides this either through switch_mm(), or in
3367		 * case 'prev->active_mm == next->mm' through
3368		 * finish_task_switch()'s mmdrop().
3369		 */
3370		switch_mm_irqs_off(prev->active_mm, next->mm, next);
3371
3372		if (!prev->mm) {                        // from kernel
3373			/* will mmdrop() in finish_task_switch(). */
3374			rq->prev_mm = prev->active_mm;
3375			prev->active_mm = NULL;
3376		}
3377	}
3378
3379	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3380
3381	prepare_lock_switch(rq, next, rf);
3382
3383	/* Here we just switch the register state and the stack. */
3384	switch_to(prev, next, prev);
3385	barrier();
3386
3387	return finish_task_switch(prev);
 
 
 
 
 
 
3388}
3389
3390/*
3391 * nr_running and nr_context_switches:
3392 *
3393 * externally visible scheduler statistics: current number of runnable
3394 * threads, total number of context switches performed since bootup.
 
3395 */
3396unsigned long nr_running(void)
3397{
3398	unsigned long i, sum = 0;
3399
3400	for_each_online_cpu(i)
3401		sum += cpu_rq(i)->nr_running;
3402
3403	return sum;
3404}
3405
3406/*
3407 * Check if only the current task is running on the CPU.
3408 *
3409 * Caution: this function does not check that the caller has disabled
3410 * preemption, thus the result might have a time-of-check-to-time-of-use
3411 * race.  The caller is responsible to use it correctly, for example:
3412 *
3413 * - from a non-preemptible section (of course)
3414 *
3415 * - from a thread that is bound to a single CPU
3416 *
3417 * - in a loop with very short iterations (e.g. a polling loop)
3418 */
3419bool single_task_running(void)
3420{
3421	return raw_rq()->nr_running == 1;
 
 
 
 
 
 
 
 
 
 
 
 
3422}
3423EXPORT_SYMBOL(single_task_running);
3424
3425unsigned long long nr_context_switches(void)
3426{
3427	int i;
3428	unsigned long long sum = 0;
3429
3430	for_each_possible_cpu(i)
3431		sum += cpu_rq(i)->nr_switches;
3432
3433	return sum;
3434}
3435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3436/*
3437 * Consumers of these two interfaces, like for example the cpuidle menu
3438 * governor, are using nonsensical data. Preferring shallow idle state selection
3439 * for a CPU that has IO-wait which might not even end up running the task when
3440 * it does become runnable.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3441 */
3442
3443unsigned long nr_iowait_cpu(int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3444{
3445	return atomic_read(&cpu_rq(cpu)->nr_iowait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3446}
3447
3448/*
3449 * IO-wait accounting, and how its mostly bollocks (on SMP).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3450 *
3451 * The idea behind IO-wait account is to account the idle time that we could
3452 * have spend running if it were not for IO. That is, if we were to improve the
3453 * storage performance, we'd have a proportional reduction in IO-wait time.
3454 *
3455 * This all works nicely on UP, where, when a task blocks on IO, we account
3456 * idle time as IO-wait, because if the storage were faster, it could've been
3457 * running and we'd not be idle.
3458 *
3459 * This has been extended to SMP, by doing the same for each CPU. This however
3460 * is broken.
3461 *
3462 * Imagine for instance the case where two tasks block on one CPU, only the one
3463 * CPU will have IO-wait accounted, while the other has regular idle. Even
3464 * though, if the storage were faster, both could've ran at the same time,
3465 * utilising both CPUs.
 
3466 *
3467 * This means, that when looking globally, the current IO-wait accounting on
3468 * SMP is a lower bound, by reason of under accounting.
3469 *
3470 * Worse, since the numbers are provided per CPU, they are sometimes
3471 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3472 * associated with any one particular CPU, it can wake to another CPU than it
3473 * blocked on. This means the per CPU IO-wait number is meaningless.
3474 *
3475 * Task CPU affinities can make all that even more 'interesting'.
 
 
 
 
 
 
3476 */
 
 
3477
3478unsigned long nr_iowait(void)
3479{
3480	unsigned long i, sum = 0;
3481
3482	for_each_possible_cpu(i)
3483		sum += nr_iowait_cpu(i);
 
 
 
3484
3485	return sum;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3486}
3487
3488#ifdef CONFIG_SMP
3489
3490/*
3491 * sched_exec - execve() is a valuable balancing opportunity, because at
3492 * this point the task has the smallest effective memory and cache footprint.
3493 */
3494void sched_exec(void)
3495{
3496	struct task_struct *p = current;
3497	unsigned long flags;
3498	int dest_cpu;
3499
3500	raw_spin_lock_irqsave(&p->pi_lock, flags);
3501	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3502	if (dest_cpu == smp_processor_id())
3503		goto unlock;
3504
3505	if (likely(cpu_active(dest_cpu))) {
3506		struct migration_arg arg = { p, dest_cpu };
3507
3508		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3509		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3510		return;
3511	}
3512unlock:
3513	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3514}
3515
3516#endif
3517
3518DEFINE_PER_CPU(struct kernel_stat, kstat);
3519DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3520
3521EXPORT_PER_CPU_SYMBOL(kstat);
3522EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3523
3524/*
3525 * The function fair_sched_class.update_curr accesses the struct curr
3526 * and its field curr->exec_start; when called from task_sched_runtime(),
3527 * we observe a high rate of cache misses in practice.
3528 * Prefetching this data results in improved performance.
3529 */
3530static inline void prefetch_curr_exec_start(struct task_struct *p)
3531{
3532#ifdef CONFIG_FAIR_GROUP_SCHED
3533	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3534#else
3535	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3536#endif
3537	prefetch(curr);
3538	prefetch(&curr->exec_start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3539}
3540
3541/*
3542 * Return accounted runtime for the task.
3543 * In case the task is currently running, return the runtime plus current's
3544 * pending runtime that have not been accounted yet.
3545 */
3546unsigned long long task_sched_runtime(struct task_struct *p)
3547{
3548	struct rq_flags rf;
3549	struct rq *rq;
3550	u64 ns;
3551
3552#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3553	/*
3554	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3555	 * So we have a optimization chance when the task's delta_exec is 0.
3556	 * Reading ->on_cpu is racy, but this is ok.
3557	 *
3558	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3559	 * If we race with it entering CPU, unaccounted time is 0. This is
3560	 * indistinguishable from the read occurring a few cycles earlier.
3561	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3562	 * been accounted, so we're correct here as well.
3563	 */
3564	if (!p->on_cpu || !task_on_rq_queued(p))
3565		return p->se.sum_exec_runtime;
3566#endif
3567
3568	rq = task_rq_lock(p, &rf);
 
 
 
 
 
 
3569	/*
3570	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3571	 * project cycles that may never be accounted to this
3572	 * thread, breaking clock_gettime().
 
3573	 */
3574	if (task_current(rq, p) && task_on_rq_queued(p)) {
3575		prefetch_curr_exec_start(p);
3576		update_rq_clock(rq);
3577		p->sched_class->update_curr(rq);
3578	}
3579	ns = p->se.sum_exec_runtime;
3580	task_rq_unlock(rq, p, &rf);
3581
3582	return ns;
 
 
 
 
 
 
 
 
 
 
 
 
3583}
3584
 
3585/*
3586 * This function gets called by the timer code, with HZ frequency.
3587 * We call it with interrupts disabled.
 
 
3588 */
3589void scheduler_tick(void)
 
3590{
3591	int cpu = smp_processor_id();
3592	struct rq *rq = cpu_rq(cpu);
3593	struct task_struct *curr = rq->curr;
3594	struct rq_flags rf;
3595
3596	sched_clock_tick();
 
 
 
3597
3598	rq_lock(rq, &rf);
3599
3600	update_rq_clock(rq);
3601	curr->sched_class->task_tick(rq, curr, 0);
3602	calc_global_load_tick(rq);
3603	psi_task_tick(rq);
3604
3605	rq_unlock(rq, &rf);
 
 
3606
3607	perf_event_task_tick();
 
 
 
 
 
 
 
 
 
3608
3609#ifdef CONFIG_SMP
3610	rq->idle_balance = idle_cpu(cpu);
3611	trigger_load_balance(rq);
3612#endif
 
 
 
 
 
 
 
 
 
 
3613}
3614
3615#ifdef CONFIG_NO_HZ_FULL
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3616
3617struct tick_work {
3618	int			cpu;
3619	atomic_t		state;
3620	struct delayed_work	work;
3621};
3622/* Values for ->state, see diagram below. */
3623#define TICK_SCHED_REMOTE_OFFLINE	0
3624#define TICK_SCHED_REMOTE_OFFLINING	1
3625#define TICK_SCHED_REMOTE_RUNNING	2
3626
3627/*
3628 * State diagram for ->state:
3629 *
3630 *
3631 *          TICK_SCHED_REMOTE_OFFLINE
3632 *                    |   ^
3633 *                    |   |
3634 *                    |   | sched_tick_remote()
3635 *                    |   |
3636 *                    |   |
3637 *                    +--TICK_SCHED_REMOTE_OFFLINING
3638 *                    |   ^
3639 *                    |   |
3640 * sched_tick_start() |   | sched_tick_stop()
3641 *                    |   |
3642 *                    V   |
3643 *          TICK_SCHED_REMOTE_RUNNING
3644 *
3645 *
3646 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3647 * and sched_tick_start() are happy to leave the state in RUNNING.
3648 */
 
 
 
 
3649
3650static struct tick_work __percpu *tick_work_cpu;
 
 
 
 
 
 
 
 
 
 
3651
3652static void sched_tick_remote(struct work_struct *work)
 
 
 
 
 
 
 
3653{
3654	struct delayed_work *dwork = to_delayed_work(work);
3655	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3656	int cpu = twork->cpu;
3657	struct rq *rq = cpu_rq(cpu);
3658	struct task_struct *curr;
3659	struct rq_flags rf;
3660	u64 delta;
3661	int os;
3662
3663	/*
3664	 * Handle the tick only if it appears the remote CPU is running in full
3665	 * dynticks mode. The check is racy by nature, but missing a tick or
3666	 * having one too much is no big deal because the scheduler tick updates
3667	 * statistics and checks timeslices in a time-independent way, regardless
3668	 * of when exactly it is running.
3669	 */
3670	if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3671		goto out_requeue;
3672
3673	rq_lock_irq(rq, &rf);
3674	curr = rq->curr;
3675	if (is_idle_task(curr) || cpu_is_offline(cpu))
3676		goto out_unlock;
3677
3678	update_rq_clock(rq);
3679	delta = rq_clock_task(rq) - curr->se.exec_start;
3680
3681	/*
3682	 * Make sure the next tick runs within a reasonable
3683	 * amount of time.
3684	 */
3685	WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3686	curr->sched_class->task_tick(rq, curr, 0);
 
 
3687
3688out_unlock:
3689	rq_unlock_irq(rq, &rf);
 
 
 
3690
3691out_requeue:
3692	/*
3693	 * Run the remote tick once per second (1Hz). This arbitrary
3694	 * frequency is large enough to avoid overload but short enough
3695	 * to keep scheduler internal stats reasonably up to date.  But
3696	 * first update state to reflect hotplug activity if required.
3697	 */
3698	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3699	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3700	if (os == TICK_SCHED_REMOTE_RUNNING)
3701		queue_delayed_work(system_unbound_wq, dwork, HZ);
 
 
 
 
 
 
3702}
3703
3704static void sched_tick_start(int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3705{
3706	int os;
3707	struct tick_work *twork;
3708
3709	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3710		return;
3711
3712	WARN_ON_ONCE(!tick_work_cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3713
3714	twork = per_cpu_ptr(tick_work_cpu, cpu);
3715	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3716	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3717	if (os == TICK_SCHED_REMOTE_OFFLINE) {
3718		twork->cpu = cpu;
3719		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3720		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3721	}
 
 
 
 
 
 
 
 
 
 
 
3722}
3723
3724#ifdef CONFIG_HOTPLUG_CPU
3725static void sched_tick_stop(int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
3726{
3727	struct tick_work *twork;
3728	int os;
3729
3730	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
 
3731		return;
 
3732
3733	WARN_ON_ONCE(!tick_work_cpu);
 
3734
3735	twork = per_cpu_ptr(tick_work_cpu, cpu);
3736	/* There cannot be competing actions, but don't rely on stop-machine. */
3737	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3738	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3739	/* Don't cancel, as this would mess up the state machine. */
 
 
 
 
 
3740}
3741#endif /* CONFIG_HOTPLUG_CPU */
3742
3743int __init sched_tick_offload_init(void)
3744{
3745	tick_work_cpu = alloc_percpu(struct tick_work);
3746	BUG_ON(!tick_work_cpu);
3747	return 0;
 
 
 
3748}
 
3749
3750#else /* !CONFIG_NO_HZ_FULL */
3751static inline void sched_tick_start(int cpu) { }
3752static inline void sched_tick_stop(int cpu) { }
3753#endif
3754
3755#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3756				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3757/*
3758 * If the value passed in is equal to the current preempt count
3759 * then we just disabled preemption. Start timing the latency.
3760 */
3761static inline void preempt_latency_start(int val)
3762{
3763	if (preempt_count() == val) {
3764		unsigned long ip = get_lock_parent_ip();
3765#ifdef CONFIG_DEBUG_PREEMPT
3766		current->preempt_disable_ip = ip;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3767#endif
3768		trace_preempt_off(CALLER_ADDR0, ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3769	}
 
3770}
3771
3772void preempt_count_add(int val)
 
 
 
3773{
3774#ifdef CONFIG_DEBUG_PREEMPT
3775	/*
3776	 * Underflow?
3777	 */
3778	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3779		return;
3780#endif
3781	__preempt_count_add(val);
3782#ifdef CONFIG_DEBUG_PREEMPT
3783	/*
3784	 * Spinlock count overflowing soon?
3785	 */
3786	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3787				PREEMPT_MASK - 10);
3788#endif
3789	preempt_latency_start(val);
3790}
3791EXPORT_SYMBOL(preempt_count_add);
3792NOKPROBE_SYMBOL(preempt_count_add);
3793
3794/*
3795 * If the value passed in equals to the current preempt count
3796 * then we just enabled preemption. Stop timing the latency.
3797 */
3798static inline void preempt_latency_stop(int val)
3799{
3800	if (preempt_count() == val)
3801		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3802}
 
3803
3804void preempt_count_sub(int val)
3805{
3806#ifdef CONFIG_DEBUG_PREEMPT
3807	/*
3808	 * Underflow?
3809	 */
3810	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3811		return;
3812	/*
3813	 * Is the spinlock portion underflowing?
3814	 */
3815	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3816			!(preempt_count() & PREEMPT_MASK)))
3817		return;
3818#endif
3819
3820	preempt_latency_stop(val);
3821	__preempt_count_sub(val);
 
3822}
3823EXPORT_SYMBOL(preempt_count_sub);
3824NOKPROBE_SYMBOL(preempt_count_sub);
3825
3826#else
3827static inline void preempt_latency_start(int val) { }
3828static inline void preempt_latency_stop(int val) { }
3829#endif
3830
3831static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3832{
3833#ifdef CONFIG_DEBUG_PREEMPT
3834	return p->preempt_disable_ip;
3835#else
3836	return 0;
3837#endif
3838}
3839
3840/*
3841 * Print scheduling while atomic bug:
3842 */
3843static noinline void __schedule_bug(struct task_struct *prev)
3844{
3845	/* Save this before calling printk(), since that will clobber it */
3846	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3847
3848	if (oops_in_progress)
3849		return;
3850
3851	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3852		prev->comm, prev->pid, preempt_count());
3853
3854	debug_show_held_locks(prev);
3855	print_modules();
3856	if (irqs_disabled())
3857		print_irqtrace_events(prev);
3858	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3859	    && in_atomic_preempt_off()) {
3860		pr_err("Preemption disabled at:");
3861		print_ip_sym(preempt_disable_ip);
3862		pr_cont("\n");
3863	}
3864	if (panic_on_warn)
3865		panic("scheduling while atomic\n");
3866
3867	dump_stack();
3868	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3869}
3870
3871/*
3872 * Various schedule()-time debugging checks and statistics:
3873 */
3874static inline void schedule_debug(struct task_struct *prev, bool preempt)
3875{
3876#ifdef CONFIG_SCHED_STACK_END_CHECK
3877	if (task_stack_end_corrupted(prev))
3878		panic("corrupted stack end detected inside scheduler\n");
3879#endif
3880
3881#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3882	if (!preempt && prev->state && prev->non_block_count) {
3883		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3884			prev->comm, prev->pid, prev->non_block_count);
3885		dump_stack();
3886		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3887	}
3888#endif
3889
3890	if (unlikely(in_atomic_preempt_off())) {
3891		__schedule_bug(prev);
3892		preempt_count_set(PREEMPT_DISABLED);
3893	}
3894	rcu_sleep_check();
3895
3896	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3897
3898	schedstat_inc(this_rq()->sched_count);
 
 
 
 
 
 
 
3899}
3900
3901/*
3902 * Pick up the highest-prio task:
3903 */
3904static inline struct task_struct *
3905pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3906{
3907	const struct sched_class *class;
3908	struct task_struct *p;
3909
3910	/*
3911	 * Optimization: we know that if all tasks are in the fair class we can
3912	 * call that function directly, but only if the @prev task wasn't of a
3913	 * higher scheduling class, because otherwise those loose the
3914	 * opportunity to pull in more work from other CPUs.
3915	 */
3916	if (likely((prev->sched_class == &idle_sched_class ||
3917		    prev->sched_class == &fair_sched_class) &&
3918		   rq->nr_running == rq->cfs.h_nr_running)) {
3919
3920		p = fair_sched_class.pick_next_task(rq, prev, rf);
3921		if (unlikely(p == RETRY_TASK))
3922			goto restart;
3923
3924		/* Assumes fair_sched_class->next == idle_sched_class */
3925		if (unlikely(!p))
3926			p = idle_sched_class.pick_next_task(rq, prev, rf);
3927
3928		return p;
3929	}
3930
3931restart:
3932#ifdef CONFIG_SMP
3933	/*
3934	 * We must do the balancing pass before put_next_task(), such
3935	 * that when we release the rq->lock the task is in the same
3936	 * state as before we took rq->lock.
3937	 *
3938	 * We can terminate the balance pass as soon as we know there is
3939	 * a runnable task of @class priority or higher.
3940	 */
3941	for_class_range(class, prev->sched_class, &idle_sched_class) {
3942		if (class->balance(rq, prev, rf))
3943			break;
3944	}
3945#endif
3946
3947	put_prev_task(rq, prev);
3948
3949	for_each_class(class) {
3950		p = class->pick_next_task(rq, NULL, NULL);
3951		if (p)
3952			return p;
3953	}
3954
3955	/* The idle class should always have a runnable task: */
3956	BUG();
3957}
3958
3959/*
3960 * __schedule() is the main scheduler function.
3961 *
3962 * The main means of driving the scheduler and thus entering this function are:
3963 *
3964 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3965 *
3966 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3967 *      paths. For example, see arch/x86/entry_64.S.
3968 *
3969 *      To drive preemption between tasks, the scheduler sets the flag in timer
3970 *      interrupt handler scheduler_tick().
3971 *
3972 *   3. Wakeups don't really cause entry into schedule(). They add a
3973 *      task to the run-queue and that's it.
3974 *
3975 *      Now, if the new task added to the run-queue preempts the current
3976 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3977 *      called on the nearest possible occasion:
3978 *
3979 *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
3980 *
3981 *         - in syscall or exception context, at the next outmost
3982 *           preempt_enable(). (this might be as soon as the wake_up()'s
3983 *           spin_unlock()!)
3984 *
3985 *         - in IRQ context, return from interrupt-handler to
3986 *           preemptible context
3987 *
3988 *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
3989 *         then at the next:
3990 *
3991 *          - cond_resched() call
3992 *          - explicit schedule() call
3993 *          - return from syscall or exception to user-space
3994 *          - return from interrupt-handler to user-space
3995 *
3996 * WARNING: must be called with preemption disabled!
3997 */
3998static void __sched notrace __schedule(bool preempt)
3999{
4000	struct task_struct *prev, *next;
4001	unsigned long *switch_count;
4002	struct rq_flags rf;
4003	struct rq *rq;
4004	int cpu;
4005
 
 
4006	cpu = smp_processor_id();
4007	rq = cpu_rq(cpu);
 
4008	prev = rq->curr;
4009
4010	schedule_debug(prev, preempt);
4011
4012	if (sched_feat(HRTICK))
4013		hrtick_clear(rq);
4014
4015	local_irq_disable();
4016	rcu_note_context_switch(preempt);
4017
4018	/*
4019	 * Make sure that signal_pending_state()->signal_pending() below
4020	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4021	 * done by the caller to avoid the race with signal_wake_up().
4022	 *
4023	 * The membarrier system call requires a full memory barrier
4024	 * after coming from user-space, before storing to rq->curr.
4025	 */
4026	rq_lock(rq, &rf);
4027	smp_mb__after_spinlock();
4028
4029	/* Promote REQ to ACT */
4030	rq->clock_update_flags <<= 1;
4031	update_rq_clock(rq);
4032
4033	switch_count = &prev->nivcsw;
4034	if (!preempt && prev->state) {
4035		if (signal_pending_state(prev->state, prev)) {
4036			prev->state = TASK_RUNNING;
4037		} else {
4038			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
 
 
 
 
 
 
 
 
 
4039
4040			if (prev->in_iowait) {
4041				atomic_inc(&rq->nr_iowait);
4042				delayacct_blkio_start();
4043			}
4044		}
4045		switch_count = &prev->nvcsw;
4046	}
4047
4048	next = pick_next_task(rq, prev, &rf);
 
 
 
 
 
 
4049	clear_tsk_need_resched(prev);
4050	clear_preempt_need_resched();
4051
4052	if (likely(prev != next)) {
4053		rq->nr_switches++;
4054		/*
4055		 * RCU users of rcu_dereference(rq->curr) may not see
4056		 * changes to task_struct made by pick_next_task().
4057		 */
4058		RCU_INIT_POINTER(rq->curr, next);
4059		/*
4060		 * The membarrier system call requires each architecture
4061		 * to have a full memory barrier after updating
4062		 * rq->curr, before returning to user-space.
4063		 *
4064		 * Here are the schemes providing that barrier on the
4065		 * various architectures:
4066		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4067		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4068		 * - finish_lock_switch() for weakly-ordered
4069		 *   architectures where spin_unlock is a full barrier,
4070		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4071		 *   is a RELEASE barrier),
4072		 */
4073		++*switch_count;
4074
4075		trace_sched_switch(preempt, prev, next);
4076
4077		/* Also unlocks the rq: */
4078		rq = context_switch(rq, prev, next, &rf);
4079	} else {
4080		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4081		rq_unlock_irq(rq, &rf);
4082	}
4083
4084	balance_callback(rq);
4085}
4086
4087void __noreturn do_task_dead(void)
4088{
4089	/* Causes final put_task_struct in finish_task_switch(): */
4090	set_special_state(TASK_DEAD);
4091
4092	/* Tell freezer to ignore us: */
4093	current->flags |= PF_NOFREEZE;
4094
4095	__schedule(false);
4096	BUG();
4097
4098	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4099	for (;;)
4100		cpu_relax();
4101}
4102
4103static inline void sched_submit_work(struct task_struct *tsk)
4104{
4105	if (!tsk->state)
4106		return;
4107
4108	/*
4109	 * If a worker went to sleep, notify and ask workqueue whether
4110	 * it wants to wake up a task to maintain concurrency.
4111	 * As this function is called inside the schedule() context,
4112	 * we disable preemption to avoid it calling schedule() again
4113	 * in the possible wakeup of a kworker.
4114	 */
4115	if (tsk->flags & PF_WQ_WORKER) {
4116		preempt_disable();
4117		wq_worker_sleeping(tsk);
4118		preempt_enable_no_resched();
4119	}
4120
4121	if (tsk_is_pi_blocked(tsk))
4122		return;
4123
4124	/*
4125	 * If we are going to sleep and we have plugged IO queued,
4126	 * make sure to submit it to avoid deadlocks.
4127	 */
4128	if (blk_needs_flush_plug(tsk))
4129		blk_schedule_flush_plug(tsk);
4130}
4131
4132static void sched_update_worker(struct task_struct *tsk)
4133{
4134	if (tsk->flags & PF_WQ_WORKER)
4135		wq_worker_running(tsk);
4136}
4137
4138asmlinkage __visible void __sched schedule(void)
4139{
4140	struct task_struct *tsk = current;
4141
4142	sched_submit_work(tsk);
4143	do {
4144		preempt_disable();
4145		__schedule(false);
4146		sched_preempt_enable_no_resched();
4147	} while (need_resched());
4148	sched_update_worker(tsk);
4149}
4150EXPORT_SYMBOL(schedule);
4151
4152/*
4153 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4154 * state (have scheduled out non-voluntarily) by making sure that all
4155 * tasks have either left the run queue or have gone into user space.
4156 * As idle tasks do not do either, they must not ever be preempted
4157 * (schedule out non-voluntarily).
4158 *
4159 * schedule_idle() is similar to schedule_preempt_disable() except that it
4160 * never enables preemption because it does not call sched_submit_work().
4161 */
4162void __sched schedule_idle(void)
 
 
 
 
 
 
 
 
 
4163{
 
 
 
4164	/*
4165	 * As this skips calling sched_submit_work(), which the idle task does
4166	 * regardless because that function is a nop when the task is in a
4167	 * TASK_RUNNING state, make sure this isn't used someplace that the
4168	 * current task can be in any other state. Note, idle is always in the
4169	 * TASK_RUNNING state.
4170	 */
4171	WARN_ON_ONCE(current->state);
4172	do {
4173		__schedule(false);
4174	} while (need_resched());
4175}
4176
4177#ifdef CONFIG_CONTEXT_TRACKING
4178asmlinkage __visible void __sched schedule_user(void)
 
 
 
4179{
 
 
 
 
 
 
 
 
 
 
 
 
4180	/*
4181	 * If we come here after a random call to set_need_resched(),
4182	 * or we have been woken up remotely but the IPI has not yet arrived,
4183	 * we haven't yet exited the RCU idle mode. Do it here manually until
4184	 * we find a better solution.
4185	 *
4186	 * NB: There are buggy callers of this function.  Ideally we
4187	 * should warn if prev_state != CONTEXT_USER, but that will trigger
4188	 * too frequently to make sense yet.
4189	 */
4190	enum ctx_state prev_state = exception_enter();
4191	schedule();
4192	exception_exit(prev_state);
4193}
4194#endif
4195
4196/**
4197 * schedule_preempt_disabled - called with preemption disabled
4198 *
4199 * Returns with preemption disabled. Note: preempt_count must be 1
 
4200 */
4201void __sched schedule_preempt_disabled(void)
4202{
4203	sched_preempt_enable_no_resched();
4204	schedule();
4205	preempt_disable();
4206}
 
 
 
 
4207
4208static void __sched notrace preempt_schedule_common(void)
4209{
4210	do {
 
 
 
 
4211		/*
4212		 * Because the function tracer can trace preempt_count_sub()
4213		 * and it also uses preempt_enable/disable_notrace(), if
4214		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4215		 * by the function tracer will call this function again and
4216		 * cause infinite recursion.
4217		 *
4218		 * Preemption must be disabled here before the function
4219		 * tracer can trace. Break up preempt_disable() into two
4220		 * calls. One to disable preemption without fear of being
4221		 * traced. The other to still record the preemption latency,
4222		 * which can also be traced by the function tracer.
4223		 */
4224		preempt_disable_notrace();
4225		preempt_latency_start(1);
4226		__schedule(true);
4227		preempt_latency_stop(1);
4228		preempt_enable_no_resched_notrace();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4229
4230		/*
4231		 * Check again in case we missed a preemption opportunity
4232		 * between schedule and now.
4233		 */
 
4234	} while (need_resched());
4235}
4236
4237#ifdef CONFIG_PREEMPTION
 
 
 
 
 
 
 
 
4238/*
4239 * This is the entry point to schedule() from in-kernel preemption
4240 * off of preempt_enable.
 
 
 
 
 
4241 */
4242asmlinkage __visible void __sched notrace preempt_schedule(void)
 
4243{
4244	/*
4245	 * If there is a non-zero preempt_count or interrupts are disabled,
4246	 * we do not want to preempt the current task. Just return..
4247	 */
4248	if (likely(!preemptible()))
4249		return;
4250
4251	preempt_schedule_common();
 
 
 
4252}
4253NOKPROBE_SYMBOL(preempt_schedule);
4254EXPORT_SYMBOL(preempt_schedule);
4255
4256/**
4257 * preempt_schedule_notrace - preempt_schedule called by tracing
 
 
 
 
4258 *
4259 * The tracing infrastructure uses preempt_enable_notrace to prevent
4260 * recursion and tracing preempt enabling caused by the tracing
4261 * infrastructure itself. But as tracing can happen in areas coming
4262 * from userspace or just about to enter userspace, a preempt enable
4263 * can occur before user_exit() is called. This will cause the scheduler
4264 * to be called when the system is still in usermode.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4265 *
4266 * To prevent this, the preempt_enable_notrace will use this function
4267 * instead of preempt_schedule() to exit user context if needed before
4268 * calling the scheduler.
 
4269 */
4270asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
 
4271{
4272	enum ctx_state prev_ctx;
 
4273
4274	if (likely(!preemptible()))
4275		return;
4276
4277	do {
4278		/*
4279		 * Because the function tracer can trace preempt_count_sub()
4280		 * and it also uses preempt_enable/disable_notrace(), if
4281		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4282		 * by the function tracer will call this function again and
4283		 * cause infinite recursion.
4284		 *
4285		 * Preemption must be disabled here before the function
4286		 * tracer can trace. Break up preempt_disable() into two
4287		 * calls. One to disable preemption without fear of being
4288		 * traced. The other to still record the preemption latency,
4289		 * which can also be traced by the function tracer.
4290		 */
4291		preempt_disable_notrace();
4292		preempt_latency_start(1);
4293		/*
4294		 * Needs preempt disabled in case user_exit() is traced
4295		 * and the tracer calls preempt_enable_notrace() causing
4296		 * an infinite recursion.
4297		 */
4298		prev_ctx = exception_enter();
4299		__schedule(true);
4300		exception_exit(prev_ctx);
4301
4302		preempt_latency_stop(1);
4303		preempt_enable_no_resched_notrace();
4304	} while (need_resched());
4305}
4306EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4307
4308#endif /* CONFIG_PREEMPTION */
4309
4310/*
4311 * This is the entry point to schedule() from kernel preemption
4312 * off of irq context.
4313 * Note, that this is called and return with irqs disabled. This will
4314 * protect us against recursive calling from irq.
4315 */
4316asmlinkage __visible void __sched preempt_schedule_irq(void)
4317{
4318	enum ctx_state prev_state;
 
 
4319
4320	/* Catch callers which need to be fixed */
4321	BUG_ON(preempt_count() || !irqs_disabled());
 
 
 
 
 
 
 
 
 
 
 
 
 
4322
4323	prev_state = exception_enter();
 
 
 
 
 
4324
4325	do {
4326		preempt_disable();
4327		local_irq_enable();
4328		__schedule(true);
4329		local_irq_disable();
4330		sched_preempt_enable_no_resched();
4331	} while (need_resched());
 
 
 
 
 
4332
4333	exception_exit(prev_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4334}
4335
4336int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4337			  void *key)
 
 
 
 
 
 
 
 
 
4338{
4339	return try_to_wake_up(curr->private, mode, wake_flags);
4340}
4341EXPORT_SYMBOL(default_wake_function);
4342
4343#ifdef CONFIG_RT_MUTEXES
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4344
4345static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
 
 
 
 
 
 
 
 
 
4346{
4347	if (pi_task)
4348		prio = min(prio, pi_task->prio);
 
 
 
 
4349
4350	return prio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4351}
 
4352
4353static inline int rt_effective_prio(struct task_struct *p, int prio)
 
 
 
 
 
 
 
 
 
 
 
 
4354{
4355	struct task_struct *pi_task = rt_mutex_get_top_task(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4356
4357	return __rt_effective_prio(pi_task, prio);
4358}
4359
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4360/*
4361 * rt_mutex_setprio - set the current priority of a task
4362 * @p: task to boost
4363 * @pi_task: donor task
4364 *
4365 * This function changes the 'effective' priority of a task. It does
4366 * not touch ->normal_prio like __setscheduler().
4367 *
4368 * Used by the rt_mutex code to implement priority inheritance
4369 * logic. Call site only calls if the priority of the task changed.
4370 */
4371void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4372{
4373	int prio, oldprio, queued, running, queue_flag =
4374		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4375	const struct sched_class *prev_class;
4376	struct rq_flags rf;
4377	struct rq *rq;
 
4378
4379	/* XXX used to be waiter->prio, not waiter->task->prio */
4380	prio = __rt_effective_prio(pi_task, p->normal_prio);
4381
4382	/*
4383	 * If nothing changed; bail early.
4384	 */
4385	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4386		return;
4387
4388	rq = __task_rq_lock(p, &rf);
4389	update_rq_clock(rq);
4390	/*
4391	 * Set under pi_lock && rq->lock, such that the value can be used under
4392	 * either lock.
4393	 *
4394	 * Note that there is loads of tricky to make this pointer cache work
4395	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4396	 * ensure a task is de-boosted (pi_task is set to NULL) before the
4397	 * task is allowed to run again (and can exit). This ensures the pointer
4398	 * points to a blocked task -- which guaratees the task is present.
4399	 */
4400	p->pi_top_task = pi_task;
4401
4402	/*
4403	 * For FIFO/RR we only need to set prio, if that matches we're done.
4404	 */
4405	if (prio == p->prio && !dl_prio(prio))
4406		goto out_unlock;
4407
4408	/*
4409	 * Idle task boosting is a nono in general. There is one
4410	 * exception, when PREEMPT_RT and NOHZ is active:
4411	 *
4412	 * The idle task calls get_next_timer_interrupt() and holds
4413	 * the timer wheel base->lock on the CPU and another CPU wants
4414	 * to access the timer (probably to cancel it). We can safely
4415	 * ignore the boosting request, as the idle CPU runs this code
4416	 * with interrupts disabled and will complete the lock
4417	 * protected section without being interrupted. So there is no
4418	 * real need to boost.
4419	 */
4420	if (unlikely(p == rq->idle)) {
4421		WARN_ON(p != rq->curr);
4422		WARN_ON(p->pi_blocked_on);
4423		goto out_unlock;
4424	}
4425
4426	trace_sched_pi_setprio(p, pi_task);
4427	oldprio = p->prio;
4428
4429	if (oldprio == prio)
4430		queue_flag &= ~DEQUEUE_MOVE;
4431
4432	prev_class = p->sched_class;
4433	queued = task_on_rq_queued(p);
4434	running = task_current(rq, p);
4435	if (queued)
4436		dequeue_task(rq, p, queue_flag);
4437	if (running)
4438		put_prev_task(rq, p);
4439
4440	/*
4441	 * Boosting condition are:
4442	 * 1. -rt task is running and holds mutex A
4443	 *      --> -dl task blocks on mutex A
4444	 *
4445	 * 2. -dl task is running and holds mutex A
4446	 *      --> -dl task blocks on mutex A and could preempt the
4447	 *          running task
4448	 */
4449	if (dl_prio(prio)) {
4450		if (!dl_prio(p->normal_prio) ||
4451		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4452			p->dl.dl_boosted = 1;
4453			queue_flag |= ENQUEUE_REPLENISH;
4454		} else
4455			p->dl.dl_boosted = 0;
4456		p->sched_class = &dl_sched_class;
4457	} else if (rt_prio(prio)) {
4458		if (dl_prio(oldprio))
4459			p->dl.dl_boosted = 0;
4460		if (oldprio < prio)
4461			queue_flag |= ENQUEUE_HEAD;
4462		p->sched_class = &rt_sched_class;
4463	} else {
4464		if (dl_prio(oldprio))
4465			p->dl.dl_boosted = 0;
4466		if (rt_prio(oldprio))
4467			p->rt.timeout = 0;
4468		p->sched_class = &fair_sched_class;
4469	}
4470
4471	p->prio = prio;
4472
4473	if (queued)
4474		enqueue_task(rq, p, queue_flag);
4475	if (running)
4476		set_next_task(rq, p);
 
 
4477
4478	check_class_changed(rq, p, prev_class, oldprio);
4479out_unlock:
4480	/* Avoid rq from going away on us: */
4481	preempt_disable();
4482	__task_rq_unlock(rq, &rf);
4483
4484	balance_callback(rq);
4485	preempt_enable();
4486}
4487#else
4488static inline int rt_effective_prio(struct task_struct *p, int prio)
4489{
4490	return prio;
4491}
4492#endif
4493
4494void set_user_nice(struct task_struct *p, long nice)
4495{
4496	bool queued, running;
4497	int old_prio, delta;
4498	struct rq_flags rf;
4499	struct rq *rq;
4500
4501	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4502		return;
4503	/*
4504	 * We have to be careful, if called from sys_setpriority(),
4505	 * the task might be in the middle of scheduling on another CPU.
4506	 */
4507	rq = task_rq_lock(p, &rf);
4508	update_rq_clock(rq);
4509
4510	/*
4511	 * The RT priorities are set via sched_setscheduler(), but we still
4512	 * allow the 'normal' nice value to be set - but as expected
4513	 * it wont have any effect on scheduling until the task is
4514	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4515	 */
4516	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4517		p->static_prio = NICE_TO_PRIO(nice);
4518		goto out_unlock;
4519	}
4520	queued = task_on_rq_queued(p);
4521	running = task_current(rq, p);
4522	if (queued)
4523		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4524	if (running)
4525		put_prev_task(rq, p);
4526
4527	p->static_prio = NICE_TO_PRIO(nice);
4528	set_load_weight(p, true);
4529	old_prio = p->prio;
4530	p->prio = effective_prio(p);
4531	delta = p->prio - old_prio;
4532
4533	if (queued) {
4534		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4535		/*
4536		 * If the task increased its priority or is running and
4537		 * lowered its priority, then reschedule its CPU:
4538		 */
4539		if (delta < 0 || (delta > 0 && task_running(rq, p)))
4540			resched_curr(rq);
4541	}
4542	if (running)
4543		set_next_task(rq, p);
4544out_unlock:
4545	task_rq_unlock(rq, p, &rf);
4546}
4547EXPORT_SYMBOL(set_user_nice);
4548
4549/*
4550 * can_nice - check if a task can reduce its nice value
4551 * @p: task
4552 * @nice: nice value
4553 */
4554int can_nice(const struct task_struct *p, const int nice)
4555{
4556	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
4557	int nice_rlim = nice_to_rlimit(nice);
4558
4559	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4560		capable(CAP_SYS_NICE));
4561}
4562
4563#ifdef __ARCH_WANT_SYS_NICE
4564
4565/*
4566 * sys_nice - change the priority of the current process.
4567 * @increment: priority increment
4568 *
4569 * sys_setpriority is a more generic, but much slower function that
4570 * does similar things.
4571 */
4572SYSCALL_DEFINE1(nice, int, increment)
4573{
4574	long nice, retval;
4575
4576	/*
4577	 * Setpriority might change our priority at the same moment.
4578	 * We don't have to worry. Conceptually one call occurs first
4579	 * and we have a single winner.
4580	 */
4581	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4582	nice = task_nice(current) + increment;
 
 
 
 
 
 
 
 
4583
4584	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4585	if (increment < 0 && !can_nice(current, nice))
4586		return -EPERM;
4587
4588	retval = security_task_setnice(current, nice);
4589	if (retval)
4590		return retval;
4591
4592	set_user_nice(current, nice);
4593	return 0;
4594}
4595
4596#endif
4597
4598/**
4599 * task_prio - return the priority value of a given task.
4600 * @p: the task in question.
4601 *
4602 * Return: The priority value as seen by users in /proc.
4603 * RT tasks are offset by -200. Normal tasks are centered
4604 * around 0, value goes from -16 to +15.
4605 */
4606int task_prio(const struct task_struct *p)
4607{
4608	return p->prio - MAX_RT_PRIO;
4609}
4610
4611/**
4612 * idle_cpu - is a given CPU idle currently?
 
 
 
 
 
 
 
 
 
 
4613 * @cpu: the processor in question.
4614 *
4615 * Return: 1 if the CPU is currently idle. 0 otherwise.
4616 */
4617int idle_cpu(int cpu)
4618{
4619	struct rq *rq = cpu_rq(cpu);
4620
4621	if (rq->curr != rq->idle)
4622		return 0;
4623
4624	if (rq->nr_running)
4625		return 0;
4626
4627#ifdef CONFIG_SMP
4628	if (!llist_empty(&rq->wake_list))
4629		return 0;
4630#endif
4631
4632	return 1;
4633}
4634
4635/**
4636 * available_idle_cpu - is a given CPU idle for enqueuing work.
4637 * @cpu: the CPU in question.
4638 *
4639 * Return: 1 if the CPU is currently idle. 0 otherwise.
4640 */
4641int available_idle_cpu(int cpu)
4642{
4643	if (!idle_cpu(cpu))
4644		return 0;
4645
4646	if (vcpu_is_preempted(cpu))
4647		return 0;
4648
4649	return 1;
4650}
4651
4652/**
4653 * idle_task - return the idle task for a given CPU.
4654 * @cpu: the processor in question.
4655 *
4656 * Return: The idle task for the CPU @cpu.
4657 */
4658struct task_struct *idle_task(int cpu)
4659{
4660	return cpu_rq(cpu)->idle;
4661}
4662
4663/**
4664 * find_process_by_pid - find a process with a matching PID value.
4665 * @pid: the pid in question.
4666 *
4667 * The task of @pid, if found. %NULL otherwise.
4668 */
4669static struct task_struct *find_process_by_pid(pid_t pid)
4670{
4671	return pid ? find_task_by_vpid(pid) : current;
4672}
4673
4674/*
4675 * sched_setparam() passes in -1 for its policy, to let the functions
4676 * it calls know not to change it.
4677 */
4678#define SETPARAM_POLICY	-1
4679
4680static void __setscheduler_params(struct task_struct *p,
4681		const struct sched_attr *attr)
4682{
4683	int policy = attr->sched_policy;
4684
4685	if (policy == SETPARAM_POLICY)
4686		policy = p->policy;
4687
4688	p->policy = policy;
4689
4690	if (dl_policy(policy))
4691		__setparam_dl(p, attr);
4692	else if (fair_policy(policy))
4693		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4694
4695	/*
4696	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4697	 * !rt_policy. Always setting this ensures that things like
4698	 * getparam()/getattr() don't report silly values for !rt tasks.
4699	 */
4700	p->rt_priority = attr->sched_priority;
4701	p->normal_prio = normal_prio(p);
4702	set_load_weight(p, true);
4703}
4704
4705/* Actually do priority change: must hold pi & rq lock. */
4706static void __setscheduler(struct rq *rq, struct task_struct *p,
4707			   const struct sched_attr *attr, bool keep_boost)
4708{
4709	/*
4710	 * If params can't change scheduling class changes aren't allowed
4711	 * either.
4712	 */
4713	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4714		return;
4715
4716	__setscheduler_params(p, attr);
4717
4718	/*
4719	 * Keep a potential priority boosting if called from
4720	 * sched_setscheduler().
4721	 */
4722	p->prio = normal_prio(p);
4723	if (keep_boost)
4724		p->prio = rt_effective_prio(p, p->prio);
4725
4726	if (dl_prio(p->prio))
4727		p->sched_class = &dl_sched_class;
4728	else if (rt_prio(p->prio))
4729		p->sched_class = &rt_sched_class;
4730	else
4731		p->sched_class = &fair_sched_class;
 
4732}
4733
4734/*
4735 * Check the target process has a UID that matches the current process's:
4736 */
4737static bool check_same_owner(struct task_struct *p)
4738{
4739	const struct cred *cred = current_cred(), *pcred;
4740	bool match;
4741
4742	rcu_read_lock();
4743	pcred = __task_cred(p);
4744	match = (uid_eq(cred->euid, pcred->euid) ||
4745		 uid_eq(cred->euid, pcred->uid));
4746	rcu_read_unlock();
4747	return match;
4748}
4749
4750static int __sched_setscheduler(struct task_struct *p,
4751				const struct sched_attr *attr,
4752				bool user, bool pi)
4753{
4754	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4755		      MAX_RT_PRIO - 1 - attr->sched_priority;
4756	int retval, oldprio, oldpolicy = -1, queued, running;
4757	int new_effective_prio, policy = attr->sched_policy;
4758	const struct sched_class *prev_class;
4759	struct rq_flags rf;
4760	int reset_on_fork;
4761	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4762	struct rq *rq;
 
4763
4764	/* The pi code expects interrupts enabled */
4765	BUG_ON(pi && in_interrupt());
4766recheck:
4767	/* Double check policy once rq lock held: */
4768	if (policy < 0) {
4769		reset_on_fork = p->sched_reset_on_fork;
4770		policy = oldpolicy = p->policy;
4771	} else {
4772		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
 
4773
4774		if (!valid_policy(policy))
 
 
4775			return -EINVAL;
4776	}
4777
4778	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4779		return -EINVAL;
4780
4781	/*
4782	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4783	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4784	 * SCHED_BATCH and SCHED_IDLE is 0.
4785	 */
4786	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4787	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
 
4788		return -EINVAL;
4789	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4790	    (rt_policy(policy) != (attr->sched_priority != 0)))
4791		return -EINVAL;
4792
4793	/*
4794	 * Allow unprivileged RT tasks to decrease priority:
4795	 */
4796	if (user && !capable(CAP_SYS_NICE)) {
4797		if (fair_policy(policy)) {
4798			if (attr->sched_nice < task_nice(p) &&
4799			    !can_nice(p, attr->sched_nice))
4800				return -EPERM;
4801		}
4802
4803		if (rt_policy(policy)) {
4804			unsigned long rlim_rtprio =
4805					task_rlimit(p, RLIMIT_RTPRIO);
4806
4807			/* Can't set/change the rt policy: */
4808			if (policy != p->policy && !rlim_rtprio)
4809				return -EPERM;
4810
4811			/* Can't increase priority: */
4812			if (attr->sched_priority > p->rt_priority &&
4813			    attr->sched_priority > rlim_rtprio)
4814				return -EPERM;
4815		}
4816
4817		 /*
4818		  * Can't set/change SCHED_DEADLINE policy at all for now
4819		  * (safest behavior); in the future we would like to allow
4820		  * unprivileged DL tasks to increase their relative deadline
4821		  * or reduce their runtime (both ways reducing utilization)
4822		  */
4823		if (dl_policy(policy))
4824			return -EPERM;
4825
4826		/*
4827		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4828		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4829		 */
4830		if (task_has_idle_policy(p) && !idle_policy(policy)) {
4831			if (!can_nice(p, task_nice(p)))
4832				return -EPERM;
4833		}
4834
4835		/* Can't change other user's priorities: */
4836		if (!check_same_owner(p))
4837			return -EPERM;
4838
4839		/* Normal users shall not reset the sched_reset_on_fork flag: */
4840		if (p->sched_reset_on_fork && !reset_on_fork)
4841			return -EPERM;
4842	}
4843
4844	if (user) {
4845		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4846			return -EINVAL;
4847
4848		retval = security_task_setscheduler(p);
4849		if (retval)
4850			return retval;
4851	}
4852
4853	/* Update task specific "requested" clamps */
4854	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4855		retval = uclamp_validate(p, attr);
4856		if (retval)
4857			return retval;
4858	}
4859
4860	if (pi)
4861		cpuset_read_lock();
4862
4863	/*
4864	 * Make sure no PI-waiters arrive (or leave) while we are
4865	 * changing the priority of the task:
4866	 *
4867	 * To be able to change p->policy safely, the appropriate
4868	 * runqueue lock must be held.
4869	 */
4870	rq = task_rq_lock(p, &rf);
4871	update_rq_clock(rq);
4872
4873	/*
4874	 * Changing the policy of the stop threads its a very bad idea:
4875	 */
4876	if (p == rq->stop) {
4877		retval = -EINVAL;
4878		goto unlock;
4879	}
4880
4881	/*
4882	 * If not changing anything there's no need to proceed further,
4883	 * but store a possible modification of reset_on_fork.
4884	 */
4885	if (unlikely(policy == p->policy)) {
4886		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4887			goto change;
4888		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4889			goto change;
4890		if (dl_policy(policy) && dl_param_changed(p, attr))
4891			goto change;
4892		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4893			goto change;
4894
4895		p->sched_reset_on_fork = reset_on_fork;
4896		retval = 0;
4897		goto unlock;
4898	}
4899change:
4900
4901	if (user) {
4902#ifdef CONFIG_RT_GROUP_SCHED
 
4903		/*
4904		 * Do not allow realtime tasks into groups that have no runtime
4905		 * assigned.
4906		 */
4907		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4908				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4909				!task_group_is_autogroup(task_group(p))) {
4910			retval = -EPERM;
4911			goto unlock;
4912		}
4913#endif
4914#ifdef CONFIG_SMP
4915		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4916				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4917			cpumask_t *span = rq->rd->span;
4918
4919			/*
4920			 * Don't allow tasks with an affinity mask smaller than
4921			 * the entire root_domain to become SCHED_DEADLINE. We
4922			 * will also fail if there's no bandwidth available.
4923			 */
4924			if (!cpumask_subset(span, p->cpus_ptr) ||
4925			    rq->rd->dl_bw.bw == 0) {
4926				retval = -EPERM;
4927				goto unlock;
4928			}
4929		}
4930#endif
4931	}
 
4932
4933	/* Re-check policy now with rq lock held: */
4934	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4935		policy = oldpolicy = -1;
4936		task_rq_unlock(rq, p, &rf);
4937		if (pi)
4938			cpuset_read_unlock();
4939		goto recheck;
4940	}
4941
4942	/*
4943	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4944	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4945	 * is available.
4946	 */
4947	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4948		retval = -EBUSY;
4949		goto unlock;
4950	}
4951
4952	p->sched_reset_on_fork = reset_on_fork;
4953	oldprio = p->prio;
4954
4955	if (pi) {
4956		/*
4957		 * Take priority boosted tasks into account. If the new
4958		 * effective priority is unchanged, we just store the new
4959		 * normal parameters and do not touch the scheduler class and
4960		 * the runqueue. This will be done when the task deboost
4961		 * itself.
4962		 */
4963		new_effective_prio = rt_effective_prio(p, newprio);
4964		if (new_effective_prio == oldprio)
4965			queue_flags &= ~DEQUEUE_MOVE;
4966	}
4967
4968	queued = task_on_rq_queued(p);
4969	running = task_current(rq, p);
4970	if (queued)
4971		dequeue_task(rq, p, queue_flags);
4972	if (running)
4973		put_prev_task(rq, p);
4974
4975	prev_class = p->sched_class;
4976
4977	__setscheduler(rq, p, attr, pi);
4978	__setscheduler_uclamp(p, attr);
4979
4980	if (queued) {
4981		/*
4982		 * We enqueue to tail when the priority of a task is
4983		 * increased (user space view).
4984		 */
4985		if (oldprio < p->prio)
4986			queue_flags |= ENQUEUE_HEAD;
4987
4988		enqueue_task(rq, p, queue_flags);
4989	}
4990	if (running)
4991		set_next_task(rq, p);
 
 
4992
4993	check_class_changed(rq, p, prev_class, oldprio);
 
4994
4995	/* Avoid rq from going away on us: */
4996	preempt_disable();
4997	task_rq_unlock(rq, p, &rf);
4998
4999	if (pi) {
5000		cpuset_read_unlock();
5001		rt_mutex_adjust_pi(p);
5002	}
5003
5004	/* Run balance callbacks after we've adjusted the PI chain: */
5005	balance_callback(rq);
5006	preempt_enable();
5007
5008	return 0;
5009
5010unlock:
5011	task_rq_unlock(rq, p, &rf);
5012	if (pi)
5013		cpuset_read_unlock();
5014	return retval;
5015}
5016
5017static int _sched_setscheduler(struct task_struct *p, int policy,
5018			       const struct sched_param *param, bool check)
5019{
5020	struct sched_attr attr = {
5021		.sched_policy   = policy,
5022		.sched_priority = param->sched_priority,
5023		.sched_nice	= PRIO_TO_NICE(p->static_prio),
5024	};
5025
5026	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5027	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5028		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5029		policy &= ~SCHED_RESET_ON_FORK;
5030		attr.sched_policy = policy;
5031	}
5032
5033	return __sched_setscheduler(p, &attr, check, true);
5034}
5035/**
5036 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5037 * @p: the task in question.
5038 * @policy: new policy.
5039 * @param: structure containing the new RT priority.
5040 *
5041 * Return: 0 on success. An error code otherwise.
5042 *
5043 * NOTE that the task may be already dead.
5044 */
5045int sched_setscheduler(struct task_struct *p, int policy,
5046		       const struct sched_param *param)
5047{
5048	return _sched_setscheduler(p, policy, param, true);
5049}
5050EXPORT_SYMBOL_GPL(sched_setscheduler);
5051
5052int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5053{
5054	return __sched_setscheduler(p, attr, true, true);
5055}
5056EXPORT_SYMBOL_GPL(sched_setattr);
5057
5058int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5059{
5060	return __sched_setscheduler(p, attr, false, true);
5061}
5062
5063/**
5064 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5065 * @p: the task in question.
5066 * @policy: new policy.
5067 * @param: structure containing the new RT priority.
5068 *
5069 * Just like sched_setscheduler, only don't bother checking if the
5070 * current context has permission.  For example, this is needed in
5071 * stop_machine(): we create temporary high priority worker threads,
5072 * but our caller might not have that capability.
5073 *
5074 * Return: 0 on success. An error code otherwise.
5075 */
5076int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5077			       const struct sched_param *param)
5078{
5079	return _sched_setscheduler(p, policy, param, false);
5080}
5081EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5082
5083static int
5084do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5085{
5086	struct sched_param lparam;
5087	struct task_struct *p;
5088	int retval;
5089
5090	if (!param || pid < 0)
5091		return -EINVAL;
5092	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5093		return -EFAULT;
5094
5095	rcu_read_lock();
5096	retval = -ESRCH;
5097	p = find_process_by_pid(pid);
5098	if (likely(p))
5099		get_task_struct(p);
5100	rcu_read_unlock();
5101
5102	if (likely(p)) {
5103		retval = sched_setscheduler(p, policy, &lparam);
5104		put_task_struct(p);
5105	}
5106
5107	return retval;
5108}
5109
5110/*
5111 * Mimics kernel/events/core.c perf_copy_attr().
5112 */
5113static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5114{
5115	u32 size;
5116	int ret;
5117
5118	/* Zero the full structure, so that a short copy will be nice: */
5119	memset(attr, 0, sizeof(*attr));
5120
5121	ret = get_user(size, &uattr->size);
5122	if (ret)
5123		return ret;
5124
5125	/* ABI compatibility quirk: */
5126	if (!size)
5127		size = SCHED_ATTR_SIZE_VER0;
5128	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5129		goto err_size;
5130
5131	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5132	if (ret) {
5133		if (ret == -E2BIG)
5134			goto err_size;
5135		return ret;
5136	}
5137
5138	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5139	    size < SCHED_ATTR_SIZE_VER1)
5140		return -EINVAL;
5141
5142	/*
5143	 * XXX: Do we want to be lenient like existing syscalls; or do we want
5144	 * to be strict and return an error on out-of-bounds values?
5145	 */
5146	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5147
5148	return 0;
5149
5150err_size:
5151	put_user(sizeof(*attr), &uattr->size);
5152	return -E2BIG;
5153}
5154
5155/**
5156 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5157 * @pid: the pid in question.
5158 * @policy: new policy.
5159 * @param: structure containing the new RT priority.
5160 *
5161 * Return: 0 on success. An error code otherwise.
5162 */
5163SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
 
5164{
 
5165	if (policy < 0)
5166		return -EINVAL;
5167
5168	return do_sched_setscheduler(pid, policy, param);
5169}
5170
5171/**
5172 * sys_sched_setparam - set/change the RT priority of a thread
5173 * @pid: the pid in question.
5174 * @param: structure containing the new RT priority.
5175 *
5176 * Return: 0 on success. An error code otherwise.
5177 */
5178SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5179{
5180	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5181}
5182
5183/**
5184 * sys_sched_setattr - same as above, but with extended sched_attr
5185 * @pid: the pid in question.
5186 * @uattr: structure containing the extended parameters.
5187 * @flags: for future extension.
5188 */
5189SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5190			       unsigned int, flags)
5191{
5192	struct sched_attr attr;
5193	struct task_struct *p;
5194	int retval;
5195
5196	if (!uattr || pid < 0 || flags)
5197		return -EINVAL;
5198
5199	retval = sched_copy_attr(uattr, &attr);
5200	if (retval)
5201		return retval;
5202
5203	if ((int)attr.sched_policy < 0)
5204		return -EINVAL;
5205	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5206		attr.sched_policy = SETPARAM_POLICY;
5207
5208	rcu_read_lock();
5209	retval = -ESRCH;
5210	p = find_process_by_pid(pid);
5211	if (likely(p))
5212		get_task_struct(p);
5213	rcu_read_unlock();
5214
5215	if (likely(p)) {
5216		retval = sched_setattr(p, &attr);
5217		put_task_struct(p);
5218	}
5219
5220	return retval;
5221}
5222
5223/**
5224 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5225 * @pid: the pid in question.
5226 *
5227 * Return: On success, the policy of the thread. Otherwise, a negative error
5228 * code.
5229 */
5230SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5231{
5232	struct task_struct *p;
5233	int retval;
5234
5235	if (pid < 0)
5236		return -EINVAL;
5237
5238	retval = -ESRCH;
5239	rcu_read_lock();
5240	p = find_process_by_pid(pid);
5241	if (p) {
5242		retval = security_task_getscheduler(p);
5243		if (!retval)
5244			retval = p->policy
5245				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5246	}
5247	rcu_read_unlock();
5248	return retval;
5249}
5250
5251/**
5252 * sys_sched_getparam - get the RT priority of a thread
5253 * @pid: the pid in question.
5254 * @param: structure containing the RT priority.
5255 *
5256 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5257 * code.
5258 */
5259SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5260{
5261	struct sched_param lp = { .sched_priority = 0 };
5262	struct task_struct *p;
5263	int retval;
5264
5265	if (!param || pid < 0)
5266		return -EINVAL;
5267
5268	rcu_read_lock();
5269	p = find_process_by_pid(pid);
5270	retval = -ESRCH;
5271	if (!p)
5272		goto out_unlock;
5273
5274	retval = security_task_getscheduler(p);
5275	if (retval)
5276		goto out_unlock;
5277
5278	if (task_has_rt_policy(p))
5279		lp.sched_priority = p->rt_priority;
5280	rcu_read_unlock();
5281
5282	/*
5283	 * This one might sleep, we cannot do it with a spinlock held ...
5284	 */
5285	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5286
5287	return retval;
5288
5289out_unlock:
5290	rcu_read_unlock();
5291	return retval;
5292}
5293
5294/*
5295 * Copy the kernel size attribute structure (which might be larger
5296 * than what user-space knows about) to user-space.
5297 *
5298 * Note that all cases are valid: user-space buffer can be larger or
5299 * smaller than the kernel-space buffer. The usual case is that both
5300 * have the same size.
5301 */
5302static int
5303sched_attr_copy_to_user(struct sched_attr __user *uattr,
5304			struct sched_attr *kattr,
5305			unsigned int usize)
5306{
5307	unsigned int ksize = sizeof(*kattr);
5308
5309	if (!access_ok(uattr, usize))
5310		return -EFAULT;
5311
5312	/*
5313	 * sched_getattr() ABI forwards and backwards compatibility:
5314	 *
5315	 * If usize == ksize then we just copy everything to user-space and all is good.
5316	 *
5317	 * If usize < ksize then we only copy as much as user-space has space for,
5318	 * this keeps ABI compatibility as well. We skip the rest.
5319	 *
5320	 * If usize > ksize then user-space is using a newer version of the ABI,
5321	 * which part the kernel doesn't know about. Just ignore it - tooling can
5322	 * detect the kernel's knowledge of attributes from the attr->size value
5323	 * which is set to ksize in this case.
5324	 */
5325	kattr->size = min(usize, ksize);
5326
5327	if (copy_to_user(uattr, kattr, kattr->size))
5328		return -EFAULT;
5329
5330	return 0;
5331}
5332
5333/**
5334 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5335 * @pid: the pid in question.
5336 * @uattr: structure containing the extended parameters.
5337 * @usize: sizeof(attr) for fwd/bwd comp.
5338 * @flags: for future extension.
5339 */
5340SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5341		unsigned int, usize, unsigned int, flags)
5342{
5343	struct sched_attr kattr = { };
5344	struct task_struct *p;
5345	int retval;
5346
5347	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5348	    usize < SCHED_ATTR_SIZE_VER0 || flags)
5349		return -EINVAL;
5350
5351	rcu_read_lock();
5352	p = find_process_by_pid(pid);
5353	retval = -ESRCH;
5354	if (!p)
5355		goto out_unlock;
5356
5357	retval = security_task_getscheduler(p);
5358	if (retval)
5359		goto out_unlock;
5360
5361	kattr.sched_policy = p->policy;
5362	if (p->sched_reset_on_fork)
5363		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5364	if (task_has_dl_policy(p))
5365		__getparam_dl(p, &kattr);
5366	else if (task_has_rt_policy(p))
5367		kattr.sched_priority = p->rt_priority;
5368	else
5369		kattr.sched_nice = task_nice(p);
5370
5371#ifdef CONFIG_UCLAMP_TASK
5372	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5373	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5374#endif
5375
5376	rcu_read_unlock();
5377
5378	return sched_attr_copy_to_user(uattr, &kattr, usize);
5379
5380out_unlock:
5381	rcu_read_unlock();
5382	return retval;
5383}
5384
5385long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5386{
5387	cpumask_var_t cpus_allowed, new_mask;
5388	struct task_struct *p;
5389	int retval;
5390
 
5391	rcu_read_lock();
5392
5393	p = find_process_by_pid(pid);
5394	if (!p) {
5395		rcu_read_unlock();
 
5396		return -ESRCH;
5397	}
5398
5399	/* Prevent p going away */
5400	get_task_struct(p);
5401	rcu_read_unlock();
5402
5403	if (p->flags & PF_NO_SETAFFINITY) {
5404		retval = -EINVAL;
5405		goto out_put_task;
5406	}
5407	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5408		retval = -ENOMEM;
5409		goto out_put_task;
5410	}
5411	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5412		retval = -ENOMEM;
5413		goto out_free_cpus_allowed;
5414	}
5415	retval = -EPERM;
5416	if (!check_same_owner(p)) {
5417		rcu_read_lock();
5418		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5419			rcu_read_unlock();
5420			goto out_free_new_mask;
5421		}
5422		rcu_read_unlock();
5423	}
5424
5425	retval = security_task_setscheduler(p);
5426	if (retval)
5427		goto out_free_new_mask;
5428
5429
5430	cpuset_cpus_allowed(p, cpus_allowed);
5431	cpumask_and(new_mask, in_mask, cpus_allowed);
5432
5433	/*
5434	 * Since bandwidth control happens on root_domain basis,
5435	 * if admission test is enabled, we only admit -deadline
5436	 * tasks allowed to run on all the CPUs in the task's
5437	 * root_domain.
5438	 */
5439#ifdef CONFIG_SMP
5440	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5441		rcu_read_lock();
5442		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5443			retval = -EBUSY;
5444			rcu_read_unlock();
5445			goto out_free_new_mask;
5446		}
5447		rcu_read_unlock();
5448	}
5449#endif
5450again:
5451	retval = __set_cpus_allowed_ptr(p, new_mask, true);
5452
5453	if (!retval) {
5454		cpuset_cpus_allowed(p, cpus_allowed);
5455		if (!cpumask_subset(new_mask, cpus_allowed)) {
5456			/*
5457			 * We must have raced with a concurrent cpuset
5458			 * update. Just reset the cpus_allowed to the
5459			 * cpuset's cpus_allowed
5460			 */
5461			cpumask_copy(new_mask, cpus_allowed);
5462			goto again;
5463		}
5464	}
5465out_free_new_mask:
5466	free_cpumask_var(new_mask);
5467out_free_cpus_allowed:
5468	free_cpumask_var(cpus_allowed);
5469out_put_task:
5470	put_task_struct(p);
 
5471	return retval;
5472}
5473
5474static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5475			     struct cpumask *new_mask)
5476{
5477	if (len < cpumask_size())
5478		cpumask_clear(new_mask);
5479	else if (len > cpumask_size())
5480		len = cpumask_size();
5481
5482	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5483}
5484
5485/**
5486 * sys_sched_setaffinity - set the CPU affinity of a process
5487 * @pid: pid of the process
5488 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5489 * @user_mask_ptr: user-space pointer to the new CPU mask
5490 *
5491 * Return: 0 on success. An error code otherwise.
5492 */
5493SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5494		unsigned long __user *, user_mask_ptr)
5495{
5496	cpumask_var_t new_mask;
5497	int retval;
5498
5499	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5500		return -ENOMEM;
5501
5502	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5503	if (retval == 0)
5504		retval = sched_setaffinity(pid, new_mask);
5505	free_cpumask_var(new_mask);
5506	return retval;
5507}
5508
5509long sched_getaffinity(pid_t pid, struct cpumask *mask)
5510{
5511	struct task_struct *p;
5512	unsigned long flags;
5513	int retval;
5514
 
5515	rcu_read_lock();
5516
5517	retval = -ESRCH;
5518	p = find_process_by_pid(pid);
5519	if (!p)
5520		goto out_unlock;
5521
5522	retval = security_task_getscheduler(p);
5523	if (retval)
5524		goto out_unlock;
5525
5526	raw_spin_lock_irqsave(&p->pi_lock, flags);
5527	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5528	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5529
5530out_unlock:
5531	rcu_read_unlock();
 
5532
5533	return retval;
5534}
5535
5536/**
5537 * sys_sched_getaffinity - get the CPU affinity of a process
5538 * @pid: pid of the process
5539 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5540 * @user_mask_ptr: user-space pointer to hold the current CPU mask
5541 *
5542 * Return: size of CPU mask copied to user_mask_ptr on success. An
5543 * error code otherwise.
5544 */
5545SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5546		unsigned long __user *, user_mask_ptr)
5547{
5548	int ret;
5549	cpumask_var_t mask;
5550
5551	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5552		return -EINVAL;
5553	if (len & (sizeof(unsigned long)-1))
5554		return -EINVAL;
5555
5556	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5557		return -ENOMEM;
5558
5559	ret = sched_getaffinity(pid, mask);
5560	if (ret == 0) {
5561		unsigned int retlen = min(len, cpumask_size());
5562
5563		if (copy_to_user(user_mask_ptr, mask, retlen))
5564			ret = -EFAULT;
5565		else
5566			ret = retlen;
5567	}
5568	free_cpumask_var(mask);
5569
5570	return ret;
5571}
5572
5573/**
5574 * sys_sched_yield - yield the current processor to other threads.
5575 *
5576 * This function yields the current CPU to other tasks. If there are no
5577 * other threads running on this CPU then this function will return.
5578 *
5579 * Return: 0.
5580 */
5581static void do_sched_yield(void)
5582{
5583	struct rq_flags rf;
5584	struct rq *rq;
5585
5586	rq = this_rq_lock_irq(&rf);
5587
5588	schedstat_inc(rq->yld_count);
5589	current->sched_class->yield_task(rq);
5590
5591	/*
5592	 * Since we are going to call schedule() anyway, there's
5593	 * no need to preempt or enable interrupts:
5594	 */
5595	preempt_disable();
5596	rq_unlock(rq, &rf);
 
5597	sched_preempt_enable_no_resched();
5598
5599	schedule();
 
 
5600}
5601
5602SYSCALL_DEFINE0(sched_yield)
5603{
5604	do_sched_yield();
5605	return 0;
 
 
 
 
 
 
5606}
5607
5608#ifndef CONFIG_PREEMPTION
5609int __sched _cond_resched(void)
5610{
5611	if (should_resched(0)) {
5612		preempt_schedule_common();
5613		return 1;
5614	}
5615	rcu_all_qs();
5616	return 0;
5617}
5618EXPORT_SYMBOL(_cond_resched);
5619#endif
5620
5621/*
5622 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5623 * call schedule, and on return reacquire the lock.
5624 *
5625 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5626 * operations here to prevent schedule() from being called twice (once via
5627 * spin_unlock(), once by hand).
5628 */
5629int __cond_resched_lock(spinlock_t *lock)
5630{
5631	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5632	int ret = 0;
5633
5634	lockdep_assert_held(lock);
5635
5636	if (spin_needbreak(lock) || resched) {
5637		spin_unlock(lock);
5638		if (resched)
5639			preempt_schedule_common();
5640		else
5641			cpu_relax();
5642		ret = 1;
5643		spin_lock(lock);
5644	}
5645	return ret;
5646}
5647EXPORT_SYMBOL(__cond_resched_lock);
5648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5649/**
5650 * yield - yield the current processor to other threads.
5651 *
5652 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5653 *
5654 * The scheduler is at all times free to pick the calling task as the most
5655 * eligible task to run, if removing the yield() call from your code breaks
5656 * it, its already broken.
5657 *
5658 * Typical broken usage is:
5659 *
5660 * while (!event)
5661 *	yield();
5662 *
5663 * where one assumes that yield() will let 'the other' process run that will
5664 * make event true. If the current task is a SCHED_FIFO task that will never
5665 * happen. Never use yield() as a progress guarantee!!
5666 *
5667 * If you want to use yield() to wait for something, use wait_event().
5668 * If you want to use yield() to be 'nice' for others, use cond_resched().
5669 * If you still want to use yield(), do not!
5670 */
5671void __sched yield(void)
5672{
5673	set_current_state(TASK_RUNNING);
5674	do_sched_yield();
5675}
5676EXPORT_SYMBOL(yield);
5677
5678/**
5679 * yield_to - yield the current processor to another thread in
5680 * your thread group, or accelerate that thread toward the
5681 * processor it's on.
5682 * @p: target task
5683 * @preempt: whether task preemption is allowed or not
5684 *
5685 * It's the caller's job to ensure that the target task struct
5686 * can't go away on us before we can do any checks.
5687 *
5688 * Return:
5689 *	true (>0) if we indeed boosted the target task.
5690 *	false (0) if we failed to boost the target.
5691 *	-ESRCH if there's no task to yield to.
5692 */
5693int __sched yield_to(struct task_struct *p, bool preempt)
5694{
5695	struct task_struct *curr = current;
5696	struct rq *rq, *p_rq;
5697	unsigned long flags;
5698	int yielded = 0;
5699
5700	local_irq_save(flags);
5701	rq = this_rq();
5702
5703again:
5704	p_rq = task_rq(p);
5705	/*
5706	 * If we're the only runnable task on the rq and target rq also
5707	 * has only one task, there's absolutely no point in yielding.
5708	 */
5709	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5710		yielded = -ESRCH;
5711		goto out_irq;
5712	}
5713
5714	double_rq_lock(rq, p_rq);
5715	if (task_rq(p) != p_rq) {
5716		double_rq_unlock(rq, p_rq);
5717		goto again;
5718	}
5719
5720	if (!curr->sched_class->yield_to_task)
5721		goto out_unlock;
5722
5723	if (curr->sched_class != p->sched_class)
5724		goto out_unlock;
5725
5726	if (task_running(p_rq, p) || p->state)
5727		goto out_unlock;
5728
5729	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5730	if (yielded) {
5731		schedstat_inc(rq->yld_count);
5732		/*
5733		 * Make p's CPU reschedule; pick_next_entity takes care of
5734		 * fairness.
5735		 */
5736		if (preempt && rq != p_rq)
5737			resched_curr(p_rq);
 
 
 
 
 
 
 
5738	}
5739
5740out_unlock:
5741	double_rq_unlock(rq, p_rq);
5742out_irq:
5743	local_irq_restore(flags);
5744
5745	if (yielded > 0)
5746		schedule();
5747
5748	return yielded;
5749}
5750EXPORT_SYMBOL_GPL(yield_to);
5751
5752int io_schedule_prepare(void)
 
 
 
 
5753{
5754	int old_iowait = current->in_iowait;
5755
 
 
 
5756	current->in_iowait = 1;
5757	blk_schedule_flush_plug(current);
5758
5759	return old_iowait;
5760}
5761
5762void io_schedule_finish(int token)
5763{
5764	current->in_iowait = token;
5765}
 
5766
5767/*
5768 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5769 * that process accounting knows that this is a task in IO wait state.
5770 */
5771long __sched io_schedule_timeout(long timeout)
5772{
5773	int token;
5774	long ret;
5775
5776	token = io_schedule_prepare();
 
 
 
5777	ret = schedule_timeout(timeout);
5778	io_schedule_finish(token);
5779
 
5780	return ret;
5781}
5782EXPORT_SYMBOL(io_schedule_timeout);
5783
5784void __sched io_schedule(void)
5785{
5786	int token;
5787
5788	token = io_schedule_prepare();
5789	schedule();
5790	io_schedule_finish(token);
5791}
5792EXPORT_SYMBOL(io_schedule);
5793
5794/**
5795 * sys_sched_get_priority_max - return maximum RT priority.
5796 * @policy: scheduling class.
5797 *
5798 * Return: On success, this syscall returns the maximum
5799 * rt_priority that can be used by a given scheduling class.
5800 * On failure, a negative error code is returned.
5801 */
5802SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5803{
5804	int ret = -EINVAL;
5805
5806	switch (policy) {
5807	case SCHED_FIFO:
5808	case SCHED_RR:
5809		ret = MAX_USER_RT_PRIO-1;
5810		break;
5811	case SCHED_DEADLINE:
5812	case SCHED_NORMAL:
5813	case SCHED_BATCH:
5814	case SCHED_IDLE:
5815		ret = 0;
5816		break;
5817	}
5818	return ret;
5819}
5820
5821/**
5822 * sys_sched_get_priority_min - return minimum RT priority.
5823 * @policy: scheduling class.
5824 *
5825 * Return: On success, this syscall returns the minimum
5826 * rt_priority that can be used by a given scheduling class.
5827 * On failure, a negative error code is returned.
5828 */
5829SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5830{
5831	int ret = -EINVAL;
5832
5833	switch (policy) {
5834	case SCHED_FIFO:
5835	case SCHED_RR:
5836		ret = 1;
5837		break;
5838	case SCHED_DEADLINE:
5839	case SCHED_NORMAL:
5840	case SCHED_BATCH:
5841	case SCHED_IDLE:
5842		ret = 0;
5843	}
5844	return ret;
5845}
5846
5847static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
 
 
 
 
 
 
 
 
 
5848{
5849	struct task_struct *p;
5850	unsigned int time_slice;
5851	struct rq_flags rf;
5852	struct rq *rq;
5853	int retval;
 
5854
5855	if (pid < 0)
5856		return -EINVAL;
5857
5858	retval = -ESRCH;
5859	rcu_read_lock();
5860	p = find_process_by_pid(pid);
5861	if (!p)
5862		goto out_unlock;
5863
5864	retval = security_task_getscheduler(p);
5865	if (retval)
5866		goto out_unlock;
5867
5868	rq = task_rq_lock(p, &rf);
5869	time_slice = 0;
5870	if (p->sched_class->get_rr_interval)
5871		time_slice = p->sched_class->get_rr_interval(rq, p);
5872	task_rq_unlock(rq, p, &rf);
5873
5874	rcu_read_unlock();
5875	jiffies_to_timespec64(time_slice, t);
5876	return 0;
 
5877
5878out_unlock:
5879	rcu_read_unlock();
5880	return retval;
5881}
5882
5883/**
5884 * sys_sched_rr_get_interval - return the default timeslice of a process.
5885 * @pid: pid of the process.
5886 * @interval: userspace pointer to the timeslice value.
5887 *
5888 * this syscall writes the default timeslice value of a given process
5889 * into the user-space timespec buffer. A value of '0' means infinity.
5890 *
5891 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5892 * an error code.
5893 */
5894SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5895		struct __kernel_timespec __user *, interval)
5896{
5897	struct timespec64 t;
5898	int retval = sched_rr_get_interval(pid, &t);
5899
5900	if (retval == 0)
5901		retval = put_timespec64(&t, interval);
5902
5903	return retval;
5904}
5905
5906#ifdef CONFIG_COMPAT_32BIT_TIME
5907SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5908		struct old_timespec32 __user *, interval)
5909{
5910	struct timespec64 t;
5911	int retval = sched_rr_get_interval(pid, &t);
5912
5913	if (retval == 0)
5914		retval = put_old_timespec32(&t, interval);
5915	return retval;
5916}
5917#endif
5918
5919void sched_show_task(struct task_struct *p)
5920{
5921	unsigned long free = 0;
5922	int ppid;
5923
5924	if (!try_get_task_stack(p))
5925		return;
5926
5927	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5928
5929	if (p->state == TASK_RUNNING)
 
 
 
 
 
 
 
 
 
5930		printk(KERN_CONT "  running task    ");
 
 
 
5931#ifdef CONFIG_DEBUG_STACK_USAGE
5932	free = stack_not_used(p);
5933#endif
5934	ppid = 0;
5935	rcu_read_lock();
5936	if (pid_alive(p))
5937		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5938	rcu_read_unlock();
5939	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5940		task_pid_nr(p), ppid,
5941		(unsigned long)task_thread_info(p)->flags);
5942
5943	print_worker_info(KERN_INFO, p);
5944	show_stack(p, NULL);
5945	put_task_stack(p);
5946}
5947EXPORT_SYMBOL_GPL(sched_show_task);
5948
5949static inline bool
5950state_filter_match(unsigned long state_filter, struct task_struct *p)
5951{
5952	/* no filter, everything matches */
5953	if (!state_filter)
5954		return true;
5955
5956	/* filter, but doesn't match */
5957	if (!(p->state & state_filter))
5958		return false;
5959
5960	/*
5961	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5962	 * TASK_KILLABLE).
5963	 */
5964	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5965		return false;
5966
5967	return true;
5968}
5969
5970
5971void show_state_filter(unsigned long state_filter)
5972{
5973	struct task_struct *g, *p;
5974
5975#if BITS_PER_LONG == 32
5976	printk(KERN_INFO
5977		"  task                PC stack   pid father\n");
5978#else
5979	printk(KERN_INFO
5980		"  task                        PC stack   pid father\n");
5981#endif
5982	rcu_read_lock();
5983	for_each_process_thread(g, p) {
5984		/*
5985		 * reset the NMI-timeout, listing all files on a slow
5986		 * console might take a lot of time:
5987		 * Also, reset softlockup watchdogs on all CPUs, because
5988		 * another CPU might be blocked waiting for us to process
5989		 * an IPI.
5990		 */
5991		touch_nmi_watchdog();
5992		touch_all_softlockup_watchdogs();
5993		if (state_filter_match(state_filter, p))
5994			sched_show_task(p);
5995	}
 
 
5996
5997#ifdef CONFIG_SCHED_DEBUG
5998	if (!state_filter)
5999		sysrq_sched_debug_show();
6000#endif
6001	rcu_read_unlock();
6002	/*
6003	 * Only show locks if all tasks are dumped:
6004	 */
6005	if (!state_filter)
6006		debug_show_all_locks();
6007}
6008
 
 
 
 
 
6009/**
6010 * init_idle - set up an idle thread for a given CPU
6011 * @idle: task in question
6012 * @cpu: CPU the idle task belongs to
6013 *
6014 * NOTE: this function does not set the idle thread's NEED_RESCHED
6015 * flag, to make booting more robust.
6016 */
6017void init_idle(struct task_struct *idle, int cpu)
6018{
6019	struct rq *rq = cpu_rq(cpu);
6020	unsigned long flags;
6021
6022	__sched_fork(0, idle);
6023
6024	raw_spin_lock_irqsave(&idle->pi_lock, flags);
6025	raw_spin_lock(&rq->lock);
6026
 
6027	idle->state = TASK_RUNNING;
6028	idle->se.exec_start = sched_clock();
6029	idle->flags |= PF_IDLE;
6030
6031	kasan_unpoison_task_stack(idle);
6032
6033#ifdef CONFIG_SMP
6034	/*
6035	 * Its possible that init_idle() gets called multiple times on a task,
6036	 * in that case do_set_cpus_allowed() will not do the right thing.
6037	 *
6038	 * And since this is boot we can forgo the serialization.
6039	 */
6040	set_cpus_allowed_common(idle, cpumask_of(cpu));
6041#endif
6042	/*
6043	 * We're having a chicken and egg problem, even though we are
6044	 * holding rq->lock, the CPU isn't yet set to this CPU so the
6045	 * lockdep check in task_group() will fail.
6046	 *
6047	 * Similar case to sched_fork(). / Alternatively we could
6048	 * use task_rq_lock() here and obtain the other rq->lock.
6049	 *
6050	 * Silence PROVE_RCU
6051	 */
6052	rcu_read_lock();
6053	__set_task_cpu(idle, cpu);
6054	rcu_read_unlock();
6055
6056	rq->idle = idle;
6057	rcu_assign_pointer(rq->curr, idle);
6058	idle->on_rq = TASK_ON_RQ_QUEUED;
6059#ifdef CONFIG_SMP
6060	idle->on_cpu = 1;
6061#endif
6062	raw_spin_unlock(&rq->lock);
6063	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6064
6065	/* Set the preempt count _outside_ the spinlocks! */
6066	init_idle_preempt_count(idle, cpu);
6067
6068	/*
6069	 * The idle tasks have their own, simple scheduling class:
6070	 */
6071	idle->sched_class = &idle_sched_class;
6072	ftrace_graph_init_idle_task(idle, cpu);
6073	vtime_init_idle(idle, cpu);
6074#ifdef CONFIG_SMP
6075	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6076#endif
6077}
6078
6079#ifdef CONFIG_SMP
6080
6081int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6082			      const struct cpumask *trial)
6083{
6084	int ret = 1;
6085
6086	if (!cpumask_weight(cur))
6087		return ret;
6088
6089	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6090
6091	return ret;
6092}
6093
6094int task_can_attach(struct task_struct *p,
6095		    const struct cpumask *cs_cpus_allowed)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6096{
 
 
 
6097	int ret = 0;
6098
6099	/*
6100	 * Kthreads which disallow setaffinity shouldn't be moved
6101	 * to a new cpuset; we don't want to change their CPU
6102	 * affinity and isolating such threads by their set of
6103	 * allowed nodes is unnecessary.  Thus, cpusets are not
6104	 * applicable for such threads.  This prevents checking for
6105	 * success of set_cpus_allowed_ptr() on all attached tasks
6106	 * before cpus_mask may be changed.
6107	 */
6108	if (p->flags & PF_NO_SETAFFINITY) {
6109		ret = -EINVAL;
6110		goto out;
6111	}
6112
6113	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6114					      cs_cpus_allowed))
6115		ret = dl_task_can_attach(p, cs_cpus_allowed);
 
6116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6117out:
 
 
6118	return ret;
6119}
 
6120
6121bool sched_smp_initialized __read_mostly;
6122
6123#ifdef CONFIG_NUMA_BALANCING
6124/* Migrate current task p to target_cpu */
6125int migrate_task_to(struct task_struct *p, int target_cpu)
 
 
 
 
 
 
 
6126{
6127	struct migration_arg arg = { p, target_cpu };
6128	int curr_cpu = task_cpu(p);
6129
6130	if (curr_cpu == target_cpu)
6131		return 0;
6132
6133	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6134		return -EINVAL;
6135
6136	/* TODO: This is not properly updating schedstats */
 
 
 
 
 
 
 
6137
6138	trace_sched_move_numa(p, curr_cpu, target_cpu);
6139	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6140}
6141
6142/*
6143 * Requeue a task on a given node and accurately track the number of NUMA
6144 * tasks on the runqueues
 
6145 */
6146void sched_setnuma(struct task_struct *p, int nid)
6147{
6148	bool queued, running;
6149	struct rq_flags rf;
6150	struct rq *rq;
6151
6152	rq = task_rq_lock(p, &rf);
6153	queued = task_on_rq_queued(p);
6154	running = task_current(rq, p);
6155
6156	if (queued)
6157		dequeue_task(rq, p, DEQUEUE_SAVE);
6158	if (running)
6159		put_prev_task(rq, p);
6160
6161	p->numa_preferred_nid = nid;
6162
6163	if (queued)
6164		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6165	if (running)
6166		set_next_task(rq, p);
6167	task_rq_unlock(rq, p, &rf);
 
 
 
6168}
6169#endif /* CONFIG_NUMA_BALANCING */
6170
6171#ifdef CONFIG_HOTPLUG_CPU
 
6172/*
6173 * Ensure that the idle task is using init_mm right before its CPU goes
6174 * offline.
6175 */
6176void idle_task_exit(void)
6177{
6178	struct mm_struct *mm = current->active_mm;
6179
6180	BUG_ON(cpu_online(smp_processor_id()));
6181
6182	if (mm != &init_mm) {
6183		switch_mm(mm, &init_mm, current);
6184		current->active_mm = &init_mm;
6185		finish_arch_post_lock_switch();
6186	}
6187	mmdrop(mm);
6188}
6189
6190/*
6191 * Since this CPU is going 'away' for a while, fold any nr_active delta
6192 * we might have. Assumes we're called after migrate_tasks() so that the
6193 * nr_active count is stable. We need to take the teardown thread which
6194 * is calling this into account, so we hand in adjust = 1 to the load
6195 * calculation.
6196 *
6197 * Also see the comment "Global load-average calculations".
6198 */
6199static void calc_load_migrate(struct rq *rq)
6200{
6201	long delta = calc_load_fold_active(rq, 1);
6202	if (delta)
6203		atomic_long_add(delta, &calc_load_tasks);
 
6204}
6205
6206static struct task_struct *__pick_migrate_task(struct rq *rq)
 
 
 
6207{
6208	const struct sched_class *class;
6209	struct task_struct *next;
6210
6211	for_each_class(class) {
6212		next = class->pick_next_task(rq, NULL, NULL);
6213		if (next) {
6214			next->sched_class->put_prev_task(rq, next);
6215			return next;
6216		}
6217	}
6218
6219	/* The idle class should always have a runnable task */
6220	BUG();
6221}
6222
6223/*
6224 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6225 * try_to_wake_up()->select_task_rq().
6226 *
6227 * Called with rq->lock held even though we'er in stop_machine() and
6228 * there's no concurrency possible, we hold the required locks anyway
6229 * because of lock validation efforts.
6230 */
6231static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6232{
6233	struct rq *rq = dead_rq;
6234	struct task_struct *next, *stop = rq->stop;
6235	struct rq_flags orf = *rf;
6236	int dest_cpu;
6237
6238	/*
6239	 * Fudge the rq selection such that the below task selection loop
6240	 * doesn't get stuck on the currently eligible stop task.
6241	 *
6242	 * We're currently inside stop_machine() and the rq is either stuck
6243	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6244	 * either way we should never end up calling schedule() until we're
6245	 * done here.
6246	 */
6247	rq->stop = NULL;
6248
6249	/*
6250	 * put_prev_task() and pick_next_task() sched
6251	 * class method both need to have an up-to-date
6252	 * value of rq->clock[_task]
6253	 */
6254	update_rq_clock(rq);
6255
6256	for (;;) {
6257		/*
6258		 * There's this thread running, bail when that's the only
6259		 * remaining thread:
6260		 */
6261		if (rq->nr_running == 1)
6262			break;
6263
6264		next = __pick_migrate_task(rq);
 
 
6265
6266		/*
6267		 * Rules for changing task_struct::cpus_mask are holding
6268		 * both pi_lock and rq->lock, such that holding either
6269		 * stabilizes the mask.
6270		 *
6271		 * Drop rq->lock is not quite as disastrous as it usually is
6272		 * because !cpu_active at this point, which means load-balance
6273		 * will not interfere. Also, stop-machine.
6274		 */
6275		rq_unlock(rq, rf);
6276		raw_spin_lock(&next->pi_lock);
6277		rq_relock(rq, rf);
6278
6279		/*
6280		 * Since we're inside stop-machine, _nothing_ should have
6281		 * changed the task, WARN if weird stuff happened, because in
6282		 * that case the above rq->lock drop is a fail too.
6283		 */
6284		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6285			raw_spin_unlock(&next->pi_lock);
6286			continue;
6287		}
6288
6289		/* Find suitable destination for @next, with force if needed. */
6290		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6291		rq = __migrate_task(rq, rf, next, dest_cpu);
6292		if (rq != dead_rq) {
6293			rq_unlock(rq, rf);
6294			rq = dead_rq;
6295			*rf = orf;
6296			rq_relock(rq, rf);
6297		}
6298		raw_spin_unlock(&next->pi_lock);
6299	}
6300
6301	rq->stop = stop;
6302}
 
6303#endif /* CONFIG_HOTPLUG_CPU */
6304
6305void set_rq_online(struct rq *rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6306{
6307	if (!rq->online) {
6308		const struct sched_class *class;
6309
6310		cpumask_set_cpu(rq->cpu, rq->rd->online);
6311		rq->online = 1;
6312
6313		for_each_class(class) {
6314			if (class->rq_online)
6315				class->rq_online(rq);
6316		}
6317	}
6318}
6319
6320void set_rq_offline(struct rq *rq)
6321{
6322	if (rq->online) {
6323		const struct sched_class *class;
6324
6325		for_each_class(class) {
6326			if (class->rq_offline)
6327				class->rq_offline(rq);
6328		}
6329
6330		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6331		rq->online = 0;
6332	}
6333}
6334
6335/*
6336 * used to mark begin/end of suspend/resume:
 
6337 */
6338static int num_cpus_frozen;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6339
6340/*
6341 * Update cpusets according to cpu_active mask.  If cpusets are
6342 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6343 * around partition_sched_domains().
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6344 *
6345 * If we come here as part of a suspend/resume, don't touch cpusets because we
6346 * want to restore it back to its original state upon resume anyway.
6347 */
6348static void cpuset_cpu_active(void)
6349{
6350	if (cpuhp_tasks_frozen) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6351		/*
6352		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6353		 * resume sequence. As long as this is not the last online
6354		 * operation in the resume sequence, just build a single sched
6355		 * domain, ignoring cpusets.
6356		 */
6357		partition_sched_domains(1, NULL, NULL);
6358		if (--num_cpus_frozen)
6359			return;
6360		/*
6361		 * This is the last CPU online operation. So fall through and
6362		 * restore the original sched domains by considering the
6363		 * cpuset configurations.
6364		 */
6365		cpuset_force_rebuild();
 
 
 
 
 
 
 
 
 
6366	}
6367	cpuset_update_active_cpus();
 
 
 
 
 
 
 
6368}
6369
6370static int cpuset_cpu_inactive(unsigned int cpu)
6371{
6372	if (!cpuhp_tasks_frozen) {
6373		if (dl_cpu_busy(cpu))
6374			return -EBUSY;
6375		cpuset_update_active_cpus();
6376	} else {
6377		num_cpus_frozen++;
6378		partition_sched_domains(1, NULL, NULL);
 
 
 
6379	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6380	return 0;
6381}
6382
6383int sched_cpu_activate(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
6384{
6385	struct rq *rq = cpu_rq(cpu);
6386	struct rq_flags rf;
 
 
 
 
 
 
 
 
 
6387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6388#ifdef CONFIG_SCHED_SMT
6389	/*
6390	 * When going up, increment the number of cores with SMT present.
6391	 */
6392	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6393		static_branch_inc_cpuslocked(&sched_smt_present);
 
 
6394#endif
6395	set_cpu_active(cpu, true);
6396
6397	if (sched_smp_initialized) {
6398		sched_domains_numa_masks_set(cpu);
6399		cpuset_cpu_active();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6400	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6401
6402	/*
6403	 * Put the rq online, if not already. This happens:
6404	 *
6405	 * 1) In the early boot process, because we build the real domains
6406	 *    after all CPUs have been brought up.
6407	 *
6408	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6409	 *    domains.
6410	 */
6411	rq_lock_irqsave(rq, &rf);
6412	if (rq->rd) {
6413		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6414		set_rq_online(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6415	}
6416	rq_unlock_irqrestore(rq, &rf);
 
6417
6418	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
6419}
6420
6421int sched_cpu_deactivate(unsigned int cpu)
6422{
6423	int ret;
 
 
 
 
 
 
 
6424
6425	set_cpu_active(cpu, false);
6426	/*
6427	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6428	 * users of this state to go away such that all new such users will
6429	 * observe it.
6430	 *
6431	 * Do sync before park smpboot threads to take care the rcu boost case.
 
6432	 */
6433	synchronize_rcu();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6434
6435#ifdef CONFIG_SCHED_SMT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6436	/*
6437	 * When going down, decrement the number of cores with SMT present.
 
 
 
 
6438	 */
6439	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6440		static_branch_dec_cpuslocked(&sched_smt_present);
6441#endif
6442
6443	if (!sched_smp_initialized)
6444		return 0;
 
6445
6446	ret = cpuset_cpu_inactive(cpu);
6447	if (ret) {
6448		set_cpu_active(cpu, true);
6449		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6450	}
6451	sched_domains_numa_masks_clear(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6452	return 0;
6453}
6454
6455static void sched_rq_cpu_starting(unsigned int cpu)
6456{
6457	struct rq *rq = cpu_rq(cpu);
 
6458
6459	rq->calc_load_update = calc_load_update;
6460	update_max_interval();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6461}
6462
6463int sched_cpu_starting(unsigned int cpu)
 
 
 
6464{
6465	sched_rq_cpu_starting(cpu);
6466	sched_tick_start(cpu);
6467	return 0;
 
 
 
 
 
 
 
 
 
 
 
6468}
6469
6470#ifdef CONFIG_HOTPLUG_CPU
6471int sched_cpu_dying(unsigned int cpu)
 
 
 
 
6472{
6473	struct rq *rq = cpu_rq(cpu);
6474	struct rq_flags rf;
 
 
6475
6476	/* Handle pending wakeups and then migrate everything off */
6477	sched_ttwu_pending();
6478	sched_tick_stop(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
6479
6480	rq_lock_irqsave(rq, &rf);
6481	if (rq->rd) {
6482		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6483		set_rq_offline(rq);
6484	}
6485	migrate_tasks(rq, &rf);
6486	BUG_ON(rq->nr_running != 1);
6487	rq_unlock_irqrestore(rq, &rf);
6488
6489	calc_load_migrate(rq);
6490	update_max_interval();
6491	nohz_balance_exit_idle(rq);
6492	hrtick_clear(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6493	return 0;
6494}
6495#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6496
6497void __init sched_init_smp(void)
6498{
 
 
 
 
 
6499	sched_init_numa();
6500
6501	/*
6502	 * There's no userspace yet to cause hotplug operations; hence all the
6503	 * CPU masks are stable and all blatant races in the below code cannot
6504	 * happen.
6505	 */
6506	mutex_lock(&sched_domains_mutex);
6507	sched_init_domains(cpu_active_mask);
 
 
 
6508	mutex_unlock(&sched_domains_mutex);
 
 
 
 
 
 
 
 
 
6509
6510	/* Move init over to a non-isolated CPU */
6511	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6512		BUG();
6513	sched_init_granularity();
 
6514
6515	init_sched_rt_class();
6516	init_sched_dl_class();
6517
6518	sched_smp_initialized = true;
6519}
6520
6521static int __init migration_init(void)
6522{
6523	sched_cpu_starting(smp_processor_id());
6524	return 0;
6525}
6526early_initcall(migration_init);
6527
6528#else
6529void __init sched_init_smp(void)
6530{
6531	sched_init_granularity();
6532}
6533#endif /* CONFIG_SMP */
6534
 
 
6535int in_sched_functions(unsigned long addr)
6536{
6537	return in_lock_functions(addr) ||
6538		(addr >= (unsigned long)__sched_text_start
6539		&& addr < (unsigned long)__sched_text_end);
6540}
6541
6542#ifdef CONFIG_CGROUP_SCHED
6543/*
6544 * Default task group.
6545 * Every task in system belongs to this group at bootup.
6546 */
6547struct task_group root_task_group;
6548LIST_HEAD(task_groups);
6549
6550/* Cacheline aligned slab cache for task_group */
6551static struct kmem_cache *task_group_cache __read_mostly;
6552#endif
6553
6554DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6555DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6556
6557void __init sched_init(void)
6558{
6559	unsigned long ptr = 0;
6560	int i;
6561
6562	wait_bit_init();
6563
6564#ifdef CONFIG_FAIR_GROUP_SCHED
6565	ptr += 2 * nr_cpu_ids * sizeof(void **);
6566#endif
6567#ifdef CONFIG_RT_GROUP_SCHED
6568	ptr += 2 * nr_cpu_ids * sizeof(void **);
6569#endif
6570	if (ptr) {
6571		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
 
 
 
6572
6573#ifdef CONFIG_FAIR_GROUP_SCHED
6574		root_task_group.se = (struct sched_entity **)ptr;
6575		ptr += nr_cpu_ids * sizeof(void **);
6576
6577		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6578		ptr += nr_cpu_ids * sizeof(void **);
6579
6580#endif /* CONFIG_FAIR_GROUP_SCHED */
6581#ifdef CONFIG_RT_GROUP_SCHED
6582		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6583		ptr += nr_cpu_ids * sizeof(void **);
6584
6585		root_task_group.rt_rq = (struct rt_rq **)ptr;
6586		ptr += nr_cpu_ids * sizeof(void **);
6587
6588#endif /* CONFIG_RT_GROUP_SCHED */
6589	}
6590#ifdef CONFIG_CPUMASK_OFFSTACK
6591	for_each_possible_cpu(i) {
6592		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6593			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6594		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6595			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6596	}
6597#endif /* CONFIG_CPUMASK_OFFSTACK */
6598
6599	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6600	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6601
6602#ifdef CONFIG_SMP
6603	init_defrootdomain();
6604#endif
6605
 
 
 
6606#ifdef CONFIG_RT_GROUP_SCHED
6607	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6608			global_rt_period(), global_rt_runtime());
6609#endif /* CONFIG_RT_GROUP_SCHED */
6610
6611#ifdef CONFIG_CGROUP_SCHED
6612	task_group_cache = KMEM_CACHE(task_group, 0);
6613
6614	list_add(&root_task_group.list, &task_groups);
6615	INIT_LIST_HEAD(&root_task_group.children);
6616	INIT_LIST_HEAD(&root_task_group.siblings);
6617	autogroup_init(&init_task);
 
6618#endif /* CONFIG_CGROUP_SCHED */
6619
 
 
 
 
 
 
6620	for_each_possible_cpu(i) {
6621		struct rq *rq;
6622
6623		rq = cpu_rq(i);
6624		raw_spin_lock_init(&rq->lock);
6625		rq->nr_running = 0;
6626		rq->calc_load_active = 0;
6627		rq->calc_load_update = jiffies + LOAD_FREQ;
6628		init_cfs_rq(&rq->cfs);
6629		init_rt_rq(&rq->rt);
6630		init_dl_rq(&rq->dl);
6631#ifdef CONFIG_FAIR_GROUP_SCHED
6632		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6633		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6634		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6635		/*
6636		 * How much CPU bandwidth does root_task_group get?
6637		 *
6638		 * In case of task-groups formed thr' the cgroup filesystem, it
6639		 * gets 100% of the CPU resources in the system. This overall
6640		 * system CPU resource is divided among the tasks of
6641		 * root_task_group and its child task-groups in a fair manner,
6642		 * based on each entity's (task or task-group's) weight
6643		 * (se->load.weight).
6644		 *
6645		 * In other words, if root_task_group has 10 tasks of weight
6646		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6647		 * then A0's share of the CPU resource is:
6648		 *
6649		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6650		 *
6651		 * We achieve this by letting root_task_group's tasks sit
6652		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6653		 */
6654		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6655		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6656#endif /* CONFIG_FAIR_GROUP_SCHED */
6657
6658		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6659#ifdef CONFIG_RT_GROUP_SCHED
 
6660		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6661#endif
 
 
 
 
 
 
6662#ifdef CONFIG_SMP
6663		rq->sd = NULL;
6664		rq->rd = NULL;
6665		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6666		rq->balance_callback = NULL;
6667		rq->active_balance = 0;
6668		rq->next_balance = jiffies;
6669		rq->push_cpu = 0;
6670		rq->cpu = i;
6671		rq->online = 0;
6672		rq->idle_stamp = 0;
6673		rq->avg_idle = 2*sysctl_sched_migration_cost;
6674		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6675
6676		INIT_LIST_HEAD(&rq->cfs_tasks);
6677
6678		rq_attach_root(rq, &def_root_domain);
6679#ifdef CONFIG_NO_HZ_COMMON
6680		rq->last_load_update_tick = jiffies;
6681		rq->last_blocked_load_update_tick = jiffies;
6682		atomic_set(&rq->nohz_flags, 0);
6683#endif
6684#endif /* CONFIG_SMP */
6685		hrtick_rq_init(rq);
6686		atomic_set(&rq->nr_iowait, 0);
6687	}
6688
6689	set_load_weight(&init_task, false);
 
 
 
 
 
 
 
 
6690
6691	/*
6692	 * The boot idle thread does lazy MMU switching as well:
6693	 */
6694	mmgrab(&init_mm);
6695	enter_lazy_tlb(&init_mm, current);
6696
6697	/*
6698	 * Make us the idle thread. Technically, schedule() should not be
6699	 * called from this thread, however somewhere below it might be,
6700	 * but because we are the idle thread, we just pick up running again
6701	 * when this runqueue becomes "idle".
6702	 */
6703	init_idle(current, smp_processor_id());
6704
6705	calc_load_update = jiffies + LOAD_FREQ;
6706
 
 
 
 
 
6707#ifdef CONFIG_SMP
 
 
 
 
6708	idle_thread_set_boot_cpu();
6709#endif
6710	init_sched_fair_class();
6711
6712	init_schedstats();
6713
6714	psi_init();
6715
6716	init_uclamp();
6717
6718	scheduler_running = 1;
6719}
6720
6721#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6722static inline int preempt_count_equals(int preempt_offset)
6723{
6724	int nested = preempt_count() + rcu_preempt_depth();
6725
6726	return (nested == preempt_offset);
6727}
6728
6729void __might_sleep(const char *file, int line, int preempt_offset)
6730{
6731	/*
6732	 * Blocking primitives will set (and therefore destroy) current->state,
6733	 * since we will exit with TASK_RUNNING make sure we enter with it,
6734	 * otherwise we will destroy state.
6735	 */
6736	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6737			"do not call blocking ops when !TASK_RUNNING; "
6738			"state=%lx set at [<%p>] %pS\n",
6739			current->state,
6740			(void *)current->task_state_change,
6741			(void *)current->task_state_change);
6742
6743	___might_sleep(file, line, preempt_offset);
6744}
6745EXPORT_SYMBOL(__might_sleep);
6746
6747void ___might_sleep(const char *file, int line, int preempt_offset)
6748{
6749	/* Ratelimiting timestamp: */
6750	static unsigned long prev_jiffy;
6751
6752	unsigned long preempt_disable_ip;
6753
6754	/* WARN_ON_ONCE() by default, no rate limit required: */
6755	rcu_sleep_check();
6756
6757	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6758	     !is_idle_task(current) && !current->non_block_count) ||
6759	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6760	    oops_in_progress)
6761		return;
6762
6763	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6764		return;
6765	prev_jiffy = jiffies;
6766
6767	/* Save this before calling printk(), since that will clobber it: */
6768	preempt_disable_ip = get_preempt_disable_ip(current);
6769
6770	printk(KERN_ERR
6771		"BUG: sleeping function called from invalid context at %s:%d\n",
6772			file, line);
6773	printk(KERN_ERR
6774		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6775			in_atomic(), irqs_disabled(), current->non_block_count,
6776			current->pid, current->comm);
6777
6778	if (task_stack_end_corrupted(current))
6779		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6780
6781	debug_show_held_locks(current);
6782	if (irqs_disabled())
6783		print_irqtrace_events(current);
6784	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6785	    && !preempt_count_equals(preempt_offset)) {
6786		pr_err("Preemption disabled at:");
6787		print_ip_sym(preempt_disable_ip);
6788		pr_cont("\n");
6789	}
6790	dump_stack();
6791	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6792}
6793EXPORT_SYMBOL(___might_sleep);
 
6794
6795void __cant_sleep(const char *file, int line, int preempt_offset)
 
6796{
6797	static unsigned long prev_jiffy;
6798
6799	if (irqs_disabled())
6800		return;
6801
6802	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6803		return;
6804
6805	if (preempt_count() > preempt_offset)
6806		return;
6807
6808	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6809		return;
6810	prev_jiffy = jiffies;
6811
6812	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6813	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6814			in_atomic(), irqs_disabled(),
6815			current->pid, current->comm);
6816
6817	debug_show_held_locks(current);
6818	dump_stack();
6819	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6820}
6821EXPORT_SYMBOL_GPL(__cant_sleep);
6822#endif
6823
6824#ifdef CONFIG_MAGIC_SYSRQ
6825void normalize_rt_tasks(void)
6826{
6827	struct task_struct *g, *p;
6828	struct sched_attr attr = {
6829		.sched_policy = SCHED_NORMAL,
6830	};
6831
6832	read_lock(&tasklist_lock);
6833	for_each_process_thread(g, p) {
6834		/*
6835		 * Only normalize user tasks:
6836		 */
6837		if (p->flags & PF_KTHREAD)
6838			continue;
6839
6840		p->se.exec_start = 0;
6841		schedstat_set(p->se.statistics.wait_start,  0);
6842		schedstat_set(p->se.statistics.sleep_start, 0);
6843		schedstat_set(p->se.statistics.block_start, 0);
 
 
6844
6845		if (!dl_task(p) && !rt_task(p)) {
6846			/*
6847			 * Renice negative nice level userspace
6848			 * tasks back to 0:
6849			 */
6850			if (task_nice(p) < 0)
6851				set_user_nice(p, 0);
6852			continue;
6853		}
6854
6855		__sched_setscheduler(p, &attr, false, false);
6856	}
6857	read_unlock(&tasklist_lock);
 
 
 
 
 
 
 
6858}
6859
6860#endif /* CONFIG_MAGIC_SYSRQ */
6861
6862#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6863/*
6864 * These functions are only useful for the IA64 MCA handling, or kdb.
6865 *
6866 * They can only be called when the whole system has been
6867 * stopped - every CPU needs to be quiescent, and no scheduling
6868 * activity can take place. Using them for anything else would
6869 * be a serious bug, and as a result, they aren't even visible
6870 * under any other configuration.
6871 */
6872
6873/**
6874 * curr_task - return the current task for a given CPU.
6875 * @cpu: the processor in question.
6876 *
6877 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6878 *
6879 * Return: The current task for @cpu.
6880 */
6881struct task_struct *curr_task(int cpu)
6882{
6883	return cpu_curr(cpu);
6884}
6885
6886#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6887
6888#ifdef CONFIG_IA64
6889/**
6890 * ia64_set_curr_task - set the current task for a given CPU.
6891 * @cpu: the processor in question.
6892 * @p: the task pointer to set.
6893 *
6894 * Description: This function must only be used when non-maskable interrupts
6895 * are serviced on a separate stack. It allows the architecture to switch the
6896 * notion of the current task on a CPU in a non-blocking manner. This function
6897 * must be called with all CPU's synchronized, and interrupts disabled, the
6898 * and caller must save the original value of the current task (see
6899 * curr_task() above) and restore that value before reenabling interrupts and
6900 * re-starting the system.
6901 *
6902 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6903 */
6904void ia64_set_curr_task(int cpu, struct task_struct *p)
6905{
6906	cpu_curr(cpu) = p;
6907}
6908
6909#endif
6910
6911#ifdef CONFIG_CGROUP_SCHED
6912/* task_group_lock serializes the addition/removal of task groups */
6913static DEFINE_SPINLOCK(task_group_lock);
6914
6915static inline void alloc_uclamp_sched_group(struct task_group *tg,
6916					    struct task_group *parent)
6917{
6918#ifdef CONFIG_UCLAMP_TASK_GROUP
6919	enum uclamp_id clamp_id;
6920
6921	for_each_clamp_id(clamp_id) {
6922		uclamp_se_set(&tg->uclamp_req[clamp_id],
6923			      uclamp_none(clamp_id), false);
6924		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
6925	}
6926#endif
6927}
6928
6929static void sched_free_group(struct task_group *tg)
6930{
6931	free_fair_sched_group(tg);
6932	free_rt_sched_group(tg);
6933	autogroup_free(tg);
6934	kmem_cache_free(task_group_cache, tg);
6935}
6936
6937/* allocate runqueue etc for a new task group */
6938struct task_group *sched_create_group(struct task_group *parent)
6939{
6940	struct task_group *tg;
 
6941
6942	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6943	if (!tg)
6944		return ERR_PTR(-ENOMEM);
6945
6946	if (!alloc_fair_sched_group(tg, parent))
6947		goto err;
6948
6949	if (!alloc_rt_sched_group(tg, parent))
6950		goto err;
6951
6952	alloc_uclamp_sched_group(tg, parent);
6953
6954	return tg;
6955
6956err:
6957	sched_free_group(tg);
6958	return ERR_PTR(-ENOMEM);
6959}
6960
6961void sched_online_group(struct task_group *tg, struct task_group *parent)
6962{
6963	unsigned long flags;
6964
6965	spin_lock_irqsave(&task_group_lock, flags);
6966	list_add_rcu(&tg->list, &task_groups);
6967
6968	/* Root should already exist: */
6969	WARN_ON(!parent);
6970
6971	tg->parent = parent;
6972	INIT_LIST_HEAD(&tg->children);
6973	list_add_rcu(&tg->siblings, &parent->children);
6974	spin_unlock_irqrestore(&task_group_lock, flags);
6975
6976	online_fair_sched_group(tg);
 
 
 
 
6977}
6978
6979/* rcu callback to free various structures associated with a task group */
6980static void sched_free_group_rcu(struct rcu_head *rhp)
6981{
6982	/* Now it should be safe to free those cfs_rqs: */
6983	sched_free_group(container_of(rhp, struct task_group, rcu));
6984}
6985
 
6986void sched_destroy_group(struct task_group *tg)
6987{
6988	/* Wait for possible concurrent references to cfs_rqs complete: */
6989	call_rcu(&tg->rcu, sched_free_group_rcu);
6990}
6991
6992void sched_offline_group(struct task_group *tg)
6993{
6994	unsigned long flags;
 
6995
6996	/* End participation in shares distribution: */
6997	unregister_fair_sched_group(tg);
 
6998
6999	spin_lock_irqsave(&task_group_lock, flags);
7000	list_del_rcu(&tg->list);
7001	list_del_rcu(&tg->siblings);
7002	spin_unlock_irqrestore(&task_group_lock, flags);
 
 
 
7003}
7004
7005static void sched_change_group(struct task_struct *tsk, int type)
 
 
 
 
 
7006{
7007	struct task_group *tg;
 
 
 
7008
7009	/*
7010	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7011	 * which is pointless here. Thus, we pass "true" to task_css_check()
7012	 * to prevent lockdep warnings.
7013	 */
7014	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
 
 
 
 
 
 
7015			  struct task_group, css);
7016	tg = autogroup_task_group(tsk, tg);
7017	tsk->sched_task_group = tg;
7018
7019#ifdef CONFIG_FAIR_GROUP_SCHED
7020	if (tsk->sched_class->task_change_group)
7021		tsk->sched_class->task_change_group(tsk, type);
7022	else
7023#endif
7024		set_task_rq(tsk, task_cpu(tsk));
 
 
 
 
 
 
 
7025}
 
7026
7027/*
7028 * Change task's runqueue when it moves between groups.
7029 *
7030 * The caller of this function should have put the task in its new group by
7031 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7032 * its new group.
7033 */
7034void sched_move_task(struct task_struct *tsk)
7035{
7036	int queued, running, queue_flags =
7037		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7038	struct rq_flags rf;
7039	struct rq *rq;
7040
7041	rq = task_rq_lock(tsk, &rf);
7042	update_rq_clock(rq);
7043
7044	running = task_current(rq, tsk);
7045	queued = task_on_rq_queued(tsk);
 
7046
7047	if (queued)
7048		dequeue_task(rq, tsk, queue_flags);
7049	if (running)
7050		put_prev_task(rq, tsk);
 
7051
7052	sched_change_group(tsk, TASK_MOVE_GROUP);
 
 
 
7053
7054	if (queued)
7055		enqueue_task(rq, tsk, queue_flags);
7056	if (running)
7057		set_next_task(rq, tsk);
7058
7059	task_rq_unlock(rq, tsk, &rf);
7060}
7061
7062static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7063{
7064	return css ? container_of(css, struct task_group, css) : NULL;
7065}
 
7066
7067static struct cgroup_subsys_state *
7068cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7069{
7070	struct task_group *parent = css_tg(parent_css);
7071	struct task_group *tg;
 
 
7072
7073	if (!parent) {
7074		/* This is early initialization for the top cgroup */
7075		return &root_task_group.css;
 
 
 
7076	}
7077
7078	tg = sched_create_group(parent);
7079	if (IS_ERR(tg))
7080		return ERR_PTR(-ENOMEM);
 
 
7081
7082	return &tg->css;
7083}
 
 
 
7084
7085/* Expose task group only after completing cgroup initialization */
7086static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7087{
7088	struct task_group *tg = css_tg(css);
7089	struct task_group *parent = css_tg(css->parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7090
7091	if (parent)
7092		sched_online_group(tg, parent);
7093	return 0;
7094}
7095
7096static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7097{
7098	struct task_group *tg = css_tg(css);
7099
7100	sched_offline_group(tg);
7101}
 
 
 
7102
7103static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7104{
7105	struct task_group *tg = css_tg(css);
7106
7107	/*
7108	 * Relies on the RCU grace period between css_released() and this.
7109	 */
7110	sched_free_group(tg);
7111}
7112
7113/*
7114 * This is called before wake_up_new_task(), therefore we really only
7115 * have to set its group bits, all the other stuff does not apply.
7116 */
7117static void cpu_cgroup_fork(struct task_struct *task)
7118{
7119	struct rq_flags rf;
7120	struct rq *rq;
7121
7122	rq = task_rq_lock(task, &rf);
 
 
 
 
7123
7124	update_rq_clock(rq);
7125	sched_change_group(task, TASK_SET_GROUP);
 
 
 
 
7126
7127	task_rq_unlock(rq, task, &rf);
 
 
 
 
 
 
 
 
 
7128}
7129
7130static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7131{
7132	struct task_struct *task;
7133	struct cgroup_subsys_state *css;
7134	int ret = 0;
7135
7136	cgroup_taskset_for_each(task, css, tset) {
7137#ifdef CONFIG_RT_GROUP_SCHED
7138		if (!sched_rt_can_attach(css_tg(css), task))
7139			return -EINVAL;
7140#endif
7141		/*
7142		 * Serialize against wake_up_new_task() such that if its
7143		 * running, we're sure to observe its full state.
7144		 */
7145		raw_spin_lock_irq(&task->pi_lock);
7146		/*
7147		 * Avoid calling sched_move_task() before wake_up_new_task()
7148		 * has happened. This would lead to problems with PELT, due to
7149		 * move wanting to detach+attach while we're not attached yet.
7150		 */
7151		if (task->state == TASK_NEW)
7152			ret = -EINVAL;
7153		raw_spin_unlock_irq(&task->pi_lock);
7154
7155		if (ret)
7156			break;
7157	}
7158	return ret;
7159}
7160
7161static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7162{
7163	struct task_struct *task;
7164	struct cgroup_subsys_state *css;
7165
7166	cgroup_taskset_for_each(task, css, tset)
7167		sched_move_task(task);
 
 
 
 
7168}
7169
7170#ifdef CONFIG_UCLAMP_TASK_GROUP
7171static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7172{
7173	struct cgroup_subsys_state *top_css = css;
7174	struct uclamp_se *uc_parent = NULL;
7175	struct uclamp_se *uc_se = NULL;
7176	unsigned int eff[UCLAMP_CNT];
7177	enum uclamp_id clamp_id;
7178	unsigned int clamps;
7179
7180	css_for_each_descendant_pre(css, top_css) {
7181		uc_parent = css_tg(css)->parent
7182			? css_tg(css)->parent->uclamp : NULL;
7183
7184		for_each_clamp_id(clamp_id) {
7185			/* Assume effective clamps matches requested clamps */
7186			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7187			/* Cap effective clamps with parent's effective clamps */
7188			if (uc_parent &&
7189			    eff[clamp_id] > uc_parent[clamp_id].value) {
7190				eff[clamp_id] = uc_parent[clamp_id].value;
7191			}
7192		}
7193		/* Ensure protection is always capped by limit */
7194		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7195
7196		/* Propagate most restrictive effective clamps */
7197		clamps = 0x0;
7198		uc_se = css_tg(css)->uclamp;
7199		for_each_clamp_id(clamp_id) {
7200			if (eff[clamp_id] == uc_se[clamp_id].value)
7201				continue;
7202			uc_se[clamp_id].value = eff[clamp_id];
7203			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7204			clamps |= (0x1 << clamp_id);
7205		}
7206		if (!clamps) {
7207			css = css_rightmost_descendant(css);
7208			continue;
7209		}
7210
7211		/* Immediately update descendants RUNNABLE tasks */
7212		uclamp_update_active_tasks(css, clamps);
7213	}
 
7214}
7215
7216/*
7217 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7218 * C expression. Since there is no way to convert a macro argument (N) into a
7219 * character constant, use two levels of macros.
7220 */
7221#define _POW10(exp) ((unsigned int)1e##exp)
7222#define POW10(exp) _POW10(exp)
7223
7224struct uclamp_request {
7225#define UCLAMP_PERCENT_SHIFT	2
7226#define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
7227	s64 percent;
7228	u64 util;
7229	int ret;
7230};
7231
7232static inline struct uclamp_request
7233capacity_from_percent(char *buf)
7234{
7235	struct uclamp_request req = {
7236		.percent = UCLAMP_PERCENT_SCALE,
7237		.util = SCHED_CAPACITY_SCALE,
7238		.ret = 0,
7239	};
7240
7241	buf = strim(buf);
7242	if (strcmp(buf, "max")) {
7243		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7244					     &req.percent);
7245		if (req.ret)
7246			return req;
7247		if (req.percent > UCLAMP_PERCENT_SCALE) {
7248			req.ret = -ERANGE;
7249			return req;
7250		}
7251
7252		req.util = req.percent << SCHED_CAPACITY_SHIFT;
7253		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7254	}
7255
7256	return req;
 
 
 
 
 
 
 
 
 
 
 
 
7257}
7258
7259static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7260				size_t nbytes, loff_t off,
7261				enum uclamp_id clamp_id)
7262{
7263	struct uclamp_request req;
7264	struct task_group *tg;
 
7265
7266	req = capacity_from_percent(buf);
7267	if (req.ret)
7268		return req.ret;
7269
7270	mutex_lock(&uclamp_mutex);
7271	rcu_read_lock();
 
 
 
7272
7273	tg = css_tg(of_css(of));
7274	if (tg->uclamp_req[clamp_id].value != req.util)
7275		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7276
7277	/*
7278	 * Because of not recoverable conversion rounding we keep track of the
7279	 * exact requested value
7280	 */
7281	tg->uclamp_pct[clamp_id] = req.percent;
 
7282
7283	/* Update effective clamps to track the most restrictive value */
7284	cpu_util_update_eff(of_css(of));
 
7285
7286	rcu_read_unlock();
7287	mutex_unlock(&uclamp_mutex);
 
 
 
7288
7289	return nbytes;
7290}
 
7291
7292static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7293				    char *buf, size_t nbytes,
7294				    loff_t off)
7295{
7296	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7297}
7298
7299static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7300				    char *buf, size_t nbytes,
7301				    loff_t off)
 
7302{
7303	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
 
7304}
7305
7306static inline void cpu_uclamp_print(struct seq_file *sf,
7307				    enum uclamp_id clamp_id)
7308{
7309	struct task_group *tg;
7310	u64 util_clamp;
7311	u64 percent;
7312	u32 rem;
7313
7314	rcu_read_lock();
7315	tg = css_tg(seq_css(sf));
7316	util_clamp = tg->uclamp_req[clamp_id].value;
7317	rcu_read_unlock();
7318
7319	if (util_clamp == SCHED_CAPACITY_SCALE) {
7320		seq_puts(sf, "max\n");
7321		return;
7322	}
7323
7324	percent = tg->uclamp_pct[clamp_id];
7325	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7326	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
 
 
 
7327}
7328
7329static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7330{
7331	cpu_uclamp_print(sf, UCLAMP_MIN);
7332	return 0;
 
7333}
7334
7335static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
 
7336{
7337	cpu_uclamp_print(sf, UCLAMP_MAX);
 
 
 
 
 
 
 
 
 
 
 
7338	return 0;
7339}
7340#endif /* CONFIG_UCLAMP_TASK_GROUP */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7341
7342#ifdef CONFIG_FAIR_GROUP_SCHED
7343static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7344				struct cftype *cftype, u64 shareval)
7345{
7346	if (shareval > scale_load_down(ULONG_MAX))
7347		shareval = MAX_SHARES;
7348	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7349}
7350
7351static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7352			       struct cftype *cft)
7353{
7354	struct task_group *tg = css_tg(css);
7355
7356	return (u64) scale_load_down(tg->shares);
7357}
7358
7359#ifdef CONFIG_CFS_BANDWIDTH
7360static DEFINE_MUTEX(cfs_constraints_mutex);
7361
7362const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7363static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7364
7365static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7366
7367static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7368{
7369	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7370	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7371
7372	if (tg == &root_task_group)
7373		return -EINVAL;
7374
7375	/*
7376	 * Ensure we have at some amount of bandwidth every period.  This is
7377	 * to prevent reaching a state of large arrears when throttled via
7378	 * entity_tick() resulting in prolonged exit starvation.
7379	 */
7380	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7381		return -EINVAL;
7382
7383	/*
7384	 * Likewise, bound things on the otherside by preventing insane quota
7385	 * periods.  This also allows us to normalize in computing quota
7386	 * feasibility.
7387	 */
7388	if (period > max_cfs_quota_period)
7389		return -EINVAL;
7390
7391	/*
7392	 * Prevent race between setting of cfs_rq->runtime_enabled and
7393	 * unthrottle_offline_cfs_rqs().
7394	 */
7395	get_online_cpus();
7396	mutex_lock(&cfs_constraints_mutex);
7397	ret = __cfs_schedulable(tg, period, quota);
7398	if (ret)
7399		goto out_unlock;
7400
7401	runtime_enabled = quota != RUNTIME_INF;
7402	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7403	/*
7404	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7405	 * before making related changes, and on->off must occur afterwards
7406	 */
7407	if (runtime_enabled && !runtime_was_enabled)
7408		cfs_bandwidth_usage_inc();
7409	raw_spin_lock_irq(&cfs_b->lock);
7410	cfs_b->period = ns_to_ktime(period);
7411	cfs_b->quota = quota;
7412
7413	__refill_cfs_bandwidth_runtime(cfs_b);
7414
7415	/* Restart the period timer (if active) to handle new period expiry: */
7416	if (runtime_enabled)
7417		start_cfs_bandwidth(cfs_b);
7418
 
7419	raw_spin_unlock_irq(&cfs_b->lock);
7420
7421	for_each_online_cpu(i) {
7422		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7423		struct rq *rq = cfs_rq->rq;
7424		struct rq_flags rf;
7425
7426		rq_lock_irq(rq, &rf);
7427		cfs_rq->runtime_enabled = runtime_enabled;
7428		cfs_rq->runtime_remaining = 0;
7429
7430		if (cfs_rq->throttled)
7431			unthrottle_cfs_rq(cfs_rq);
7432		rq_unlock_irq(rq, &rf);
7433	}
7434	if (runtime_was_enabled && !runtime_enabled)
7435		cfs_bandwidth_usage_dec();
7436out_unlock:
7437	mutex_unlock(&cfs_constraints_mutex);
7438	put_online_cpus();
7439
7440	return ret;
7441}
7442
7443static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7444{
7445	u64 quota, period;
7446
7447	period = ktime_to_ns(tg->cfs_bandwidth.period);
7448	if (cfs_quota_us < 0)
7449		quota = RUNTIME_INF;
7450	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7451		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7452	else
7453		return -EINVAL;
7454
7455	return tg_set_cfs_bandwidth(tg, period, quota);
7456}
7457
7458static long tg_get_cfs_quota(struct task_group *tg)
7459{
7460	u64 quota_us;
7461
7462	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7463		return -1;
7464
7465	quota_us = tg->cfs_bandwidth.quota;
7466	do_div(quota_us, NSEC_PER_USEC);
7467
7468	return quota_us;
7469}
7470
7471static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7472{
7473	u64 quota, period;
7474
7475	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7476		return -EINVAL;
7477
7478	period = (u64)cfs_period_us * NSEC_PER_USEC;
7479	quota = tg->cfs_bandwidth.quota;
7480
7481	return tg_set_cfs_bandwidth(tg, period, quota);
7482}
7483
7484static long tg_get_cfs_period(struct task_group *tg)
7485{
7486	u64 cfs_period_us;
7487
7488	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7489	do_div(cfs_period_us, NSEC_PER_USEC);
7490
7491	return cfs_period_us;
7492}
7493
7494static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7495				  struct cftype *cft)
7496{
7497	return tg_get_cfs_quota(css_tg(css));
7498}
7499
7500static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7501				   struct cftype *cftype, s64 cfs_quota_us)
7502{
7503	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7504}
7505
7506static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7507				   struct cftype *cft)
7508{
7509	return tg_get_cfs_period(css_tg(css));
7510}
7511
7512static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7513				    struct cftype *cftype, u64 cfs_period_us)
7514{
7515	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7516}
7517
7518struct cfs_schedulable_data {
7519	struct task_group *tg;
7520	u64 period, quota;
7521};
7522
7523/*
7524 * normalize group quota/period to be quota/max_period
7525 * note: units are usecs
7526 */
7527static u64 normalize_cfs_quota(struct task_group *tg,
7528			       struct cfs_schedulable_data *d)
7529{
7530	u64 quota, period;
7531
7532	if (tg == d->tg) {
7533		period = d->period;
7534		quota = d->quota;
7535	} else {
7536		period = tg_get_cfs_period(tg);
7537		quota = tg_get_cfs_quota(tg);
7538	}
7539
7540	/* note: these should typically be equivalent */
7541	if (quota == RUNTIME_INF || quota == -1)
7542		return RUNTIME_INF;
7543
7544	return to_ratio(period, quota);
7545}
7546
7547static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7548{
7549	struct cfs_schedulable_data *d = data;
7550	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7551	s64 quota = 0, parent_quota = -1;
7552
7553	if (!tg->parent) {
7554		quota = RUNTIME_INF;
7555	} else {
7556		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7557
7558		quota = normalize_cfs_quota(tg, d);
7559		parent_quota = parent_b->hierarchical_quota;
7560
7561		/*
7562		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
7563		 * always take the min.  On cgroup1, only inherit when no
7564		 * limit is set:
7565		 */
7566		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7567			quota = min(quota, parent_quota);
7568		} else {
7569			if (quota == RUNTIME_INF)
7570				quota = parent_quota;
7571			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7572				return -EINVAL;
7573		}
7574	}
7575	cfs_b->hierarchical_quota = quota;
7576
7577	return 0;
7578}
7579
7580static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7581{
7582	int ret;
7583	struct cfs_schedulable_data data = {
7584		.tg = tg,
7585		.period = period,
7586		.quota = quota,
7587	};
7588
7589	if (quota != RUNTIME_INF) {
7590		do_div(data.period, NSEC_PER_USEC);
7591		do_div(data.quota, NSEC_PER_USEC);
7592	}
7593
7594	rcu_read_lock();
7595	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7596	rcu_read_unlock();
7597
7598	return ret;
7599}
7600
7601static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
 
7602{
7603	struct task_group *tg = css_tg(seq_css(sf));
7604	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7605
7606	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7607	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7608	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7609
7610	if (schedstat_enabled() && tg != &root_task_group) {
7611		u64 ws = 0;
7612		int i;
7613
7614		for_each_possible_cpu(i)
7615			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7616
7617		seq_printf(sf, "wait_sum %llu\n", ws);
7618	}
7619
7620	return 0;
7621}
7622#endif /* CONFIG_CFS_BANDWIDTH */
7623#endif /* CONFIG_FAIR_GROUP_SCHED */
7624
7625#ifdef CONFIG_RT_GROUP_SCHED
7626static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7627				struct cftype *cft, s64 val)
7628{
7629	return sched_group_set_rt_runtime(css_tg(css), val);
7630}
7631
7632static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7633			       struct cftype *cft)
7634{
7635	return sched_group_rt_runtime(css_tg(css));
7636}
7637
7638static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7639				    struct cftype *cftype, u64 rt_period_us)
7640{
7641	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7642}
7643
7644static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7645				   struct cftype *cft)
7646{
7647	return sched_group_rt_period(css_tg(css));
7648}
7649#endif /* CONFIG_RT_GROUP_SCHED */
7650
7651static struct cftype cpu_legacy_files[] = {
7652#ifdef CONFIG_FAIR_GROUP_SCHED
7653	{
7654		.name = "shares",
7655		.read_u64 = cpu_shares_read_u64,
7656		.write_u64 = cpu_shares_write_u64,
7657	},
7658#endif
7659#ifdef CONFIG_CFS_BANDWIDTH
7660	{
7661		.name = "cfs_quota_us",
7662		.read_s64 = cpu_cfs_quota_read_s64,
7663		.write_s64 = cpu_cfs_quota_write_s64,
7664	},
7665	{
7666		.name = "cfs_period_us",
7667		.read_u64 = cpu_cfs_period_read_u64,
7668		.write_u64 = cpu_cfs_period_write_u64,
7669	},
7670	{
7671		.name = "stat",
7672		.seq_show = cpu_cfs_stat_show,
7673	},
7674#endif
7675#ifdef CONFIG_RT_GROUP_SCHED
7676	{
7677		.name = "rt_runtime_us",
7678		.read_s64 = cpu_rt_runtime_read,
7679		.write_s64 = cpu_rt_runtime_write,
7680	},
7681	{
7682		.name = "rt_period_us",
7683		.read_u64 = cpu_rt_period_read_uint,
7684		.write_u64 = cpu_rt_period_write_uint,
7685	},
7686#endif
7687#ifdef CONFIG_UCLAMP_TASK_GROUP
7688	{
7689		.name = "uclamp.min",
7690		.flags = CFTYPE_NOT_ON_ROOT,
7691		.seq_show = cpu_uclamp_min_show,
7692		.write = cpu_uclamp_min_write,
7693	},
7694	{
7695		.name = "uclamp.max",
7696		.flags = CFTYPE_NOT_ON_ROOT,
7697		.seq_show = cpu_uclamp_max_show,
7698		.write = cpu_uclamp_max_write,
7699	},
7700#endif
7701	{ }	/* Terminate */
7702};
7703
7704static int cpu_extra_stat_show(struct seq_file *sf,
7705			       struct cgroup_subsys_state *css)
7706{
7707#ifdef CONFIG_CFS_BANDWIDTH
7708	{
7709		struct task_group *tg = css_tg(css);
7710		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7711		u64 throttled_usec;
7712
7713		throttled_usec = cfs_b->throttled_time;
7714		do_div(throttled_usec, NSEC_PER_USEC);
7715
7716		seq_printf(sf, "nr_periods %d\n"
7717			   "nr_throttled %d\n"
7718			   "throttled_usec %llu\n",
7719			   cfs_b->nr_periods, cfs_b->nr_throttled,
7720			   throttled_usec);
7721	}
7722#endif
7723	return 0;
7724}
7725
7726#ifdef CONFIG_FAIR_GROUP_SCHED
7727static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7728			       struct cftype *cft)
7729{
7730	struct task_group *tg = css_tg(css);
7731	u64 weight = scale_load_down(tg->shares);
7732
7733	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7734}
7735
7736static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7737				struct cftype *cft, u64 weight)
 
 
 
 
 
 
 
7738{
7739	/*
7740	 * cgroup weight knobs should use the common MIN, DFL and MAX
7741	 * values which are 1, 100 and 10000 respectively.  While it loses
7742	 * a bit of range on both ends, it maps pretty well onto the shares
7743	 * value used by scheduler and the round-trip conversions preserve
7744	 * the original value over the entire range.
7745	 */
7746	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7747		return -ERANGE;
7748
7749	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
 
 
7750
7751	return sched_group_set_shares(css_tg(css), scale_load(weight));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7752}
7753
7754static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7755				    struct cftype *cft)
7756{
7757	unsigned long weight = scale_load_down(css_tg(css)->shares);
7758	int last_delta = INT_MAX;
7759	int prio, delta;
7760
7761	/* find the closest nice value to the current weight */
7762	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7763		delta = abs(sched_prio_to_weight[prio] - weight);
7764		if (delta >= last_delta)
7765			break;
7766		last_delta = delta;
7767	}
7768
7769	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7770}
7771
7772static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7773				     struct cftype *cft, s64 nice)
7774{
7775	unsigned long weight;
7776	int idx;
7777
7778	if (nice < MIN_NICE || nice > MAX_NICE)
7779		return -ERANGE;
7780
7781	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7782	idx = array_index_nospec(idx, 40);
7783	weight = sched_prio_to_weight[idx];
 
 
 
 
 
 
 
7784
7785	return sched_group_set_shares(css_tg(css), scale_load(weight));
7786}
7787#endif
7788
7789static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7790						  long period, long quota)
7791{
7792	if (quota < 0)
7793		seq_puts(sf, "max");
7794	else
7795		seq_printf(sf, "%ld", quota);
7796
7797	seq_printf(sf, " %ld\n", period);
 
 
 
 
 
 
 
 
 
7798}
7799
7800/* caller should put the current value in *@periodp before calling */
7801static int __maybe_unused cpu_period_quota_parse(char *buf,
7802						 u64 *periodp, u64 *quotap)
7803{
7804	char tok[21];	/* U64_MAX */
 
 
7805
7806	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7807		return -EINVAL;
7808
7809	*periodp *= NSEC_PER_USEC;
 
7810
7811	if (sscanf(tok, "%llu", quotap))
7812		*quotap *= NSEC_PER_USEC;
7813	else if (!strcmp(tok, "max"))
7814		*quotap = RUNTIME_INF;
7815	else
7816		return -EINVAL;
7817
7818	return 0;
 
 
 
 
 
 
 
 
 
7819}
7820
7821#ifdef CONFIG_CFS_BANDWIDTH
7822static int cpu_max_show(struct seq_file *sf, void *v)
7823{
7824	struct task_group *tg = css_tg(seq_css(sf));
 
 
7825
7826	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
 
 
 
 
7827	return 0;
7828}
7829
7830static ssize_t cpu_max_write(struct kernfs_open_file *of,
7831			     char *buf, size_t nbytes, loff_t off)
 
 
 
 
 
7832{
7833	struct task_group *tg = css_tg(of_css(of));
7834	u64 period = tg_get_cfs_period(tg);
7835	u64 quota;
7836	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7837
7838	ret = cpu_period_quota_parse(buf, &period, &quota);
7839	if (!ret)
7840		ret = tg_set_cfs_bandwidth(tg, period, quota);
7841	return ret ?: nbytes;
7842}
7843#endif
7844
7845static struct cftype cpu_files[] = {
7846#ifdef CONFIG_FAIR_GROUP_SCHED
7847	{
7848		.name = "weight",
7849		.flags = CFTYPE_NOT_ON_ROOT,
7850		.read_u64 = cpu_weight_read_u64,
7851		.write_u64 = cpu_weight_write_u64,
7852	},
7853	{
7854		.name = "weight.nice",
7855		.flags = CFTYPE_NOT_ON_ROOT,
7856		.read_s64 = cpu_weight_nice_read_s64,
7857		.write_s64 = cpu_weight_nice_write_s64,
7858	},
7859#endif
7860#ifdef CONFIG_CFS_BANDWIDTH
7861	{
7862		.name = "max",
7863		.flags = CFTYPE_NOT_ON_ROOT,
7864		.seq_show = cpu_max_show,
7865		.write = cpu_max_write,
7866	},
7867#endif
7868#ifdef CONFIG_UCLAMP_TASK_GROUP
7869	{
7870		.name = "uclamp.min",
7871		.flags = CFTYPE_NOT_ON_ROOT,
7872		.seq_show = cpu_uclamp_min_show,
7873		.write = cpu_uclamp_min_write,
7874	},
7875	{
7876		.name = "uclamp.max",
7877		.flags = CFTYPE_NOT_ON_ROOT,
7878		.seq_show = cpu_uclamp_max_show,
7879		.write = cpu_uclamp_max_write,
7880	},
7881#endif
7882	{ }	/* terminate */
7883};
7884
7885struct cgroup_subsys cpu_cgrp_subsys = {
7886	.css_alloc	= cpu_cgroup_css_alloc,
7887	.css_online	= cpu_cgroup_css_online,
7888	.css_released	= cpu_cgroup_css_released,
7889	.css_free	= cpu_cgroup_css_free,
7890	.css_extra_stat_show = cpu_extra_stat_show,
7891	.fork		= cpu_cgroup_fork,
7892	.can_attach	= cpu_cgroup_can_attach,
7893	.attach		= cpu_cgroup_attach,
7894	.legacy_cftypes	= cpu_legacy_files,
7895	.dfl_cftypes	= cpu_files,
7896	.early_init	= true,
7897	.threaded	= true,
7898};
7899
7900#endif	/* CONFIG_CGROUP_SCHED */
 
7901
7902void dump_cpu_task(int cpu)
7903{
7904	pr_info("Task dump for CPU %d:\n", cpu);
7905	sched_show_task(cpu_curr(cpu));
7906}
7907
7908/*
7909 * Nice levels are multiplicative, with a gentle 10% change for every
7910 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7911 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7912 * that remained on nice 0.
7913 *
7914 * The "10% effect" is relative and cumulative: from _any_ nice level,
7915 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7916 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7917 * If a task goes up by ~10% and another task goes down by ~10% then
7918 * the relative distance between them is ~25%.)
7919 */
7920const int sched_prio_to_weight[40] = {
7921 /* -20 */     88761,     71755,     56483,     46273,     36291,
7922 /* -15 */     29154,     23254,     18705,     14949,     11916,
7923 /* -10 */      9548,      7620,      6100,      4904,      3906,
7924 /*  -5 */      3121,      2501,      1991,      1586,      1277,
7925 /*   0 */      1024,       820,       655,       526,       423,
7926 /*   5 */       335,       272,       215,       172,       137,
7927 /*  10 */       110,        87,        70,        56,        45,
7928 /*  15 */        36,        29,        23,        18,        15,
7929};
7930
7931/*
7932 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7933 *
7934 * In cases where the weight does not change often, we can use the
7935 * precalculated inverse to speed up arithmetics by turning divisions
7936 * into multiplications:
7937 */
7938const u32 sched_prio_to_wmult[40] = {
7939 /* -20 */     48388,     59856,     76040,     92818,    118348,
7940 /* -15 */    147320,    184698,    229616,    287308,    360437,
7941 /* -10 */    449829,    563644,    704093,    875809,   1099582,
7942 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7943 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7944 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7945 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7946 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7947};
7948
7949#undef CREATE_TRACE_POINTS
 
 
 
 
 
 
 
 
 
 
v3.5.6
 
   1/*
   2 *  kernel/sched/core.c
   3 *
   4 *  Kernel scheduler and related syscalls
   5 *
   6 *  Copyright (C) 1991-2002  Linus Torvalds
   7 *
   8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
   9 *		make semaphores SMP safe
  10 *  1998-11-19	Implemented schedule_timeout() and related stuff
  11 *		by Andrea Arcangeli
  12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
  13 *		hybrid priority-list and round-robin design with
  14 *		an array-switch method of distributing timeslices
  15 *		and per-CPU runqueues.  Cleanups and useful suggestions
  16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
  17 *  2003-09-03	Interactivity tuning by Con Kolivas.
  18 *  2004-04-02	Scheduler domains code by Nick Piggin
  19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
  20 *              fair scheduling design by Con Kolivas.
  21 *  2007-05-05  Load balancing (smp-nice) and other improvements
  22 *              by Peter Williams
  23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
  24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
  25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26 *              Thomas Gleixner, Mike Kravetz
  27 */
  28
  29#include <linux/mm.h>
  30#include <linux/module.h>
  31#include <linux/nmi.h>
  32#include <linux/init.h>
  33#include <linux/uaccess.h>
  34#include <linux/highmem.h>
  35#include <asm/mmu_context.h>
  36#include <linux/interrupt.h>
  37#include <linux/capability.h>
  38#include <linux/completion.h>
  39#include <linux/kernel_stat.h>
  40#include <linux/debug_locks.h>
  41#include <linux/perf_event.h>
  42#include <linux/security.h>
  43#include <linux/notifier.h>
  44#include <linux/profile.h>
  45#include <linux/freezer.h>
  46#include <linux/vmalloc.h>
  47#include <linux/blkdev.h>
  48#include <linux/delay.h>
  49#include <linux/pid_namespace.h>
  50#include <linux/smp.h>
  51#include <linux/threads.h>
  52#include <linux/timer.h>
  53#include <linux/rcupdate.h>
  54#include <linux/cpu.h>
  55#include <linux/cpuset.h>
  56#include <linux/percpu.h>
  57#include <linux/proc_fs.h>
  58#include <linux/seq_file.h>
  59#include <linux/sysctl.h>
  60#include <linux/syscalls.h>
  61#include <linux/times.h>
  62#include <linux/tsacct_kern.h>
  63#include <linux/kprobes.h>
  64#include <linux/delayacct.h>
  65#include <linux/unistd.h>
  66#include <linux/pagemap.h>
  67#include <linux/hrtimer.h>
  68#include <linux/tick.h>
  69#include <linux/debugfs.h>
  70#include <linux/ctype.h>
  71#include <linux/ftrace.h>
  72#include <linux/slab.h>
  73#include <linux/init_task.h>
  74#include <linux/binfmts.h>
  75
  76#include <asm/switch_to.h>
  77#include <asm/tlb.h>
  78#include <asm/irq_regs.h>
  79#include <asm/mutex.h>
  80#ifdef CONFIG_PARAVIRT
  81#include <asm/paravirt.h>
  82#endif
  83
  84#include "sched.h"
  85#include "../workqueue_sched.h"
  86#include "../smpboot.h"
  87
 
 
  88#define CREATE_TRACE_POINTS
  89#include <trace/events/sched.h>
  90
  91void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  92{
  93	unsigned long delta;
  94	ktime_t soft, hard, now;
  95
  96	for (;;) {
  97		if (hrtimer_active(period_timer))
  98			break;
  99
 100		now = hrtimer_cb_get_time(period_timer);
 101		hrtimer_forward(period_timer, now, period);
 102
 103		soft = hrtimer_get_softexpires(period_timer);
 104		hard = hrtimer_get_expires(period_timer);
 105		delta = ktime_to_ns(ktime_sub(hard, soft));
 106		__hrtimer_start_range_ns(period_timer, soft, delta,
 107					 HRTIMER_MODE_ABS_PINNED, 0);
 108	}
 109}
 110
 111DEFINE_MUTEX(sched_domains_mutex);
 112DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 113
 114static void update_rq_clock_task(struct rq *rq, s64 delta);
 115
 116void update_rq_clock(struct rq *rq)
 117{
 118	s64 delta;
 119
 120	if (rq->skip_clock_update > 0)
 121		return;
 122
 123	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 124	rq->clock += delta;
 125	update_rq_clock_task(rq, delta);
 126}
 127
 128/*
 129 * Debugging: various feature bits
 
 
 
 
 130 */
 131
 132#define SCHED_FEAT(name, enabled)	\
 133	(1UL << __SCHED_FEAT_##name) * enabled |
 134
 135const_debug unsigned int sysctl_sched_features =
 136#include "features.h"
 137	0;
 138
 139#undef SCHED_FEAT
 140
 141#ifdef CONFIG_SCHED_DEBUG
 142#define SCHED_FEAT(name, enabled)	\
 143	#name ,
 144
 145static const char * const sched_feat_names[] = {
 146#include "features.h"
 147};
 148
 149#undef SCHED_FEAT
 150
 151static int sched_feat_show(struct seq_file *m, void *v)
 152{
 153	int i;
 154
 155	for (i = 0; i < __SCHED_FEAT_NR; i++) {
 156		if (!(sysctl_sched_features & (1UL << i)))
 157			seq_puts(m, "NO_");
 158		seq_printf(m, "%s ", sched_feat_names[i]);
 159	}
 160	seq_puts(m, "\n");
 161
 162	return 0;
 163}
 164
 165#ifdef HAVE_JUMP_LABEL
 166
 167#define jump_label_key__true  STATIC_KEY_INIT_TRUE
 168#define jump_label_key__false STATIC_KEY_INIT_FALSE
 169
 170#define SCHED_FEAT(name, enabled)	\
 171	jump_label_key__##enabled ,
 172
 173struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
 174#include "features.h"
 175};
 176
 177#undef SCHED_FEAT
 178
 179static void sched_feat_disable(int i)
 180{
 181	if (static_key_enabled(&sched_feat_keys[i]))
 182		static_key_slow_dec(&sched_feat_keys[i]);
 183}
 184
 185static void sched_feat_enable(int i)
 186{
 187	if (!static_key_enabled(&sched_feat_keys[i]))
 188		static_key_slow_inc(&sched_feat_keys[i]);
 189}
 190#else
 191static void sched_feat_disable(int i) { };
 192static void sched_feat_enable(int i) { };
 193#endif /* HAVE_JUMP_LABEL */
 194
 195static ssize_t
 196sched_feat_write(struct file *filp, const char __user *ubuf,
 197		size_t cnt, loff_t *ppos)
 198{
 199	char buf[64];
 200	char *cmp;
 201	int neg = 0;
 202	int i;
 203
 204	if (cnt > 63)
 205		cnt = 63;
 206
 207	if (copy_from_user(&buf, ubuf, cnt))
 208		return -EFAULT;
 209
 210	buf[cnt] = 0;
 211	cmp = strstrip(buf);
 212
 213	if (strncmp(cmp, "NO_", 3) == 0) {
 214		neg = 1;
 215		cmp += 3;
 216	}
 217
 218	for (i = 0; i < __SCHED_FEAT_NR; i++) {
 219		if (strcmp(cmp, sched_feat_names[i]) == 0) {
 220			if (neg) {
 221				sysctl_sched_features &= ~(1UL << i);
 222				sched_feat_disable(i);
 223			} else {
 224				sysctl_sched_features |= (1UL << i);
 225				sched_feat_enable(i);
 226			}
 227			break;
 228		}
 229	}
 230
 231	if (i == __SCHED_FEAT_NR)
 232		return -EINVAL;
 233
 234	*ppos += cnt;
 235
 236	return cnt;
 237}
 238
 239static int sched_feat_open(struct inode *inode, struct file *filp)
 240{
 241	return single_open(filp, sched_feat_show, NULL);
 242}
 243
 244static const struct file_operations sched_feat_fops = {
 245	.open		= sched_feat_open,
 246	.write		= sched_feat_write,
 247	.read		= seq_read,
 248	.llseek		= seq_lseek,
 249	.release	= single_release,
 250};
 251
 252static __init int sched_init_debug(void)
 253{
 254	debugfs_create_file("sched_features", 0644, NULL, NULL,
 255			&sched_feat_fops);
 256
 257	return 0;
 258}
 259late_initcall(sched_init_debug);
 260#endif /* CONFIG_SCHED_DEBUG */
 261
 262/*
 263 * Number of tasks to iterate in a single balance run.
 264 * Limited because this is done with IRQs disabled.
 265 */
 266const_debug unsigned int sysctl_sched_nr_migrate = 32;
 267
 268/*
 269 * period over which we average the RT time consumption, measured
 270 * in ms.
 271 *
 272 * default: 1s
 273 */
 274const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
 275
 276/*
 277 * period over which we measure -rt task cpu usage in us.
 278 * default: 1s
 279 */
 280unsigned int sysctl_sched_rt_period = 1000000;
 281
 282__read_mostly int scheduler_running;
 283
 284/*
 285 * part of the period that we allow rt tasks to run in us.
 286 * default: 0.95s
 287 */
 288int sysctl_sched_rt_runtime = 950000;
 289
 290
 291
 292/*
 293 * __task_rq_lock - lock the rq @p resides on.
 294 */
 295static inline struct rq *__task_rq_lock(struct task_struct *p)
 296	__acquires(rq->lock)
 297{
 298	struct rq *rq;
 299
 300	lockdep_assert_held(&p->pi_lock);
 301
 302	for (;;) {
 303		rq = task_rq(p);
 304		raw_spin_lock(&rq->lock);
 305		if (likely(rq == task_rq(p)))
 
 306			return rq;
 
 307		raw_spin_unlock(&rq->lock);
 
 
 
 308	}
 309}
 310
 311/*
 312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 313 */
 314static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
 315	__acquires(p->pi_lock)
 316	__acquires(rq->lock)
 317{
 318	struct rq *rq;
 319
 320	for (;;) {
 321		raw_spin_lock_irqsave(&p->pi_lock, *flags);
 322		rq = task_rq(p);
 323		raw_spin_lock(&rq->lock);
 324		if (likely(rq == task_rq(p)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 325			return rq;
 
 326		raw_spin_unlock(&rq->lock);
 327		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
 
 
 
 328	}
 329}
 330
 331static void __task_rq_unlock(struct rq *rq)
 332	__releases(rq->lock)
 
 
 
 333{
 334	raw_spin_unlock(&rq->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335}
 336
 337static inline void
 338task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
 339	__releases(rq->lock)
 340	__releases(p->pi_lock)
 341{
 342	raw_spin_unlock(&rq->lock);
 343	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
 344}
 345
 346/*
 347 * this_rq_lock - lock this runqueue and disable interrupts.
 348 */
 349static struct rq *this_rq_lock(void)
 350	__acquires(rq->lock)
 351{
 352	struct rq *rq;
 353
 354	local_irq_disable();
 355	rq = this_rq();
 356	raw_spin_lock(&rq->lock);
 
 
 357
 358	return rq;
 
 
 
 
 359}
 360
 
 361#ifdef CONFIG_SCHED_HRTICK
 362/*
 363 * Use HR-timers to deliver accurate preemption points.
 364 *
 365 * Its all a bit involved since we cannot program an hrt while holding the
 366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 367 * reschedule event.
 368 *
 369 * When we get rescheduled we reprogram the hrtick_timer outside of the
 370 * rq->lock.
 371 */
 372
 373static void hrtick_clear(struct rq *rq)
 374{
 375	if (hrtimer_active(&rq->hrtick_timer))
 376		hrtimer_cancel(&rq->hrtick_timer);
 377}
 378
 379/*
 380 * High-resolution timer tick.
 381 * Runs from hardirq context with interrupts disabled.
 382 */
 383static enum hrtimer_restart hrtick(struct hrtimer *timer)
 384{
 385	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 
 386
 387	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 388
 389	raw_spin_lock(&rq->lock);
 390	update_rq_clock(rq);
 391	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 392	raw_spin_unlock(&rq->lock);
 393
 394	return HRTIMER_NORESTART;
 395}
 396
 397#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 398/*
 399 * called from hardirq (IPI) context
 400 */
 401static void __hrtick_start(void *arg)
 402{
 403	struct rq *rq = arg;
 
 404
 405	raw_spin_lock(&rq->lock);
 406	hrtimer_restart(&rq->hrtick_timer);
 407	rq->hrtick_csd_pending = 0;
 408	raw_spin_unlock(&rq->lock);
 409}
 410
 411/*
 412 * Called to set the hrtick timer state.
 413 *
 414 * called with rq->lock held and irqs disabled
 415 */
 416void hrtick_start(struct rq *rq, u64 delay)
 417{
 418	struct hrtimer *timer = &rq->hrtick_timer;
 419	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
 
 
 
 
 
 
 
 
 420
 421	hrtimer_set_expires(timer, time);
 422
 423	if (rq == this_rq()) {
 424		hrtimer_restart(timer);
 425	} else if (!rq->hrtick_csd_pending) {
 426		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
 427		rq->hrtick_csd_pending = 1;
 428	}
 429}
 430
 431static int
 432hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
 433{
 434	int cpu = (int)(long)hcpu;
 435
 436	switch (action) {
 437	case CPU_UP_CANCELED:
 438	case CPU_UP_CANCELED_FROZEN:
 439	case CPU_DOWN_PREPARE:
 440	case CPU_DOWN_PREPARE_FROZEN:
 441	case CPU_DEAD:
 442	case CPU_DEAD_FROZEN:
 443		hrtick_clear(cpu_rq(cpu));
 444		return NOTIFY_OK;
 445	}
 446
 447	return NOTIFY_DONE;
 448}
 449
 450static __init void init_hrtick(void)
 451{
 452	hotcpu_notifier(hotplug_hrtick, 0);
 453}
 454#else
 455/*
 456 * Called to set the hrtick timer state.
 457 *
 458 * called with rq->lock held and irqs disabled
 459 */
 460void hrtick_start(struct rq *rq, u64 delay)
 461{
 462	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
 463			HRTIMER_MODE_REL_PINNED, 0);
 464}
 465
 466static inline void init_hrtick(void)
 467{
 
 468}
 469#endif /* CONFIG_SMP */
 470
 471static void init_rq_hrtick(struct rq *rq)
 472{
 473#ifdef CONFIG_SMP
 474	rq->hrtick_csd_pending = 0;
 475
 476	rq->hrtick_csd.flags = 0;
 477	rq->hrtick_csd.func = __hrtick_start;
 478	rq->hrtick_csd.info = rq;
 479#endif
 480
 481	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 482	rq->hrtick_timer.function = hrtick;
 483}
 484#else	/* CONFIG_SCHED_HRTICK */
 485static inline void hrtick_clear(struct rq *rq)
 486{
 487}
 488
 489static inline void init_rq_hrtick(struct rq *rq)
 490{
 491}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492
 493static inline void init_hrtick(void)
 
 
 
 
 
 
 494{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 495}
 496#endif	/* CONFIG_SCHED_HRTICK */
 497
 498/*
 499 * resched_task - mark a task 'to be rescheduled now'.
 500 *
 501 * On UP this means the setting of the need_resched flag, on SMP it
 502 * might also involve a cross-CPU call to trigger the scheduler on
 503 * the target CPU.
 504 */
 505#ifdef CONFIG_SMP
 506
 507#ifndef tsk_is_polling
 508#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
 509#endif
 510
 511void resched_task(struct task_struct *p)
 512{
 
 513	int cpu;
 514
 515	assert_raw_spin_locked(&task_rq(p)->lock);
 516
 517	if (test_tsk_need_resched(p))
 518		return;
 519
 520	set_tsk_need_resched(p);
 521
 522	cpu = task_cpu(p);
 523	if (cpu == smp_processor_id())
 
 524		return;
 
 525
 526	/* NEED_RESCHED must be visible before we test polling */
 527	smp_mb();
 528	if (!tsk_is_polling(p))
 529		smp_send_reschedule(cpu);
 
 
 530}
 531
 532void resched_cpu(int cpu)
 533{
 534	struct rq *rq = cpu_rq(cpu);
 535	unsigned long flags;
 536
 537	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
 538		return;
 539	resched_task(cpu_curr(cpu));
 540	raw_spin_unlock_irqrestore(&rq->lock, flags);
 541}
 542
 543#ifdef CONFIG_NO_HZ
 
 544/*
 545 * In the semi idle case, use the nearest busy cpu for migrating timers
 546 * from an idle cpu.  This is good for power-savings.
 547 *
 548 * We don't do similar optimization for completely idle system, as
 549 * selecting an idle cpu will add more delays to the timers than intended
 550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 551 */
 552int get_nohz_timer_target(void)
 553{
 554	int cpu = smp_processor_id();
 555	int i;
 556	struct sched_domain *sd;
 557
 
 
 
 558	rcu_read_lock();
 559	for_each_domain(cpu, sd) {
 560		for_each_cpu(i, sched_domain_span(sd)) {
 561			if (!idle_cpu(i)) {
 
 
 
 562				cpu = i;
 563				goto unlock;
 564			}
 565		}
 566	}
 
 
 
 567unlock:
 568	rcu_read_unlock();
 569	return cpu;
 570}
 
 571/*
 572 * When add_timer_on() enqueues a timer into the timer wheel of an
 573 * idle CPU then this timer might expire before the next timer event
 574 * which is scheduled to wake up that CPU. In case of a completely
 575 * idle system the next event might even be infinite time into the
 576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 577 * leaves the inner idle loop so the newly added timer is taken into
 578 * account when the CPU goes back to idle and evaluates the timer
 579 * wheel for the next timer event.
 580 */
 581void wake_up_idle_cpu(int cpu)
 582{
 583	struct rq *rq = cpu_rq(cpu);
 584
 585	if (cpu == smp_processor_id())
 586		return;
 587
 
 
 
 
 
 
 
 
 588	/*
 589	 * This is safe, as this function is called with the timer
 590	 * wheel base lock of (cpu) held. When the CPU is on the way
 591	 * to idle and has not yet set rq->curr to idle then it will
 592	 * be serialized on the timer wheel base lock and take the new
 593	 * timer into account automatically.
 594	 */
 595	if (rq->curr != rq->idle)
 596		return;
 
 
 
 
 
 
 
 
 
 597
 598	/*
 599	 * We can set TIF_RESCHED on the idle task of the other CPU
 600	 * lockless. The worst case is that the other CPU runs the
 601	 * idle task through an additional NOOP schedule()
 602	 */
 603	set_tsk_need_resched(rq->idle);
 604
 605	/* NEED_RESCHED must be visible before we test polling */
 606	smp_mb();
 607	if (!tsk_is_polling(rq->idle))
 608		smp_send_reschedule(cpu);
 609}
 610
 611static inline bool got_nohz_idle_kick(void)
 612{
 613	int cpu = smp_processor_id();
 614	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
 
 
 
 
 
 
 
 
 
 
 
 
 615}
 616
 617#else /* CONFIG_NO_HZ */
 618
 619static inline bool got_nohz_idle_kick(void)
 620{
 621	return false;
 622}
 623
 624#endif /* CONFIG_NO_HZ */
 625
 626void sched_avg_update(struct rq *rq)
 
 627{
 628	s64 period = sched_avg_period();
 629
 630	while ((s64)(rq->clock - rq->age_stamp) > period) {
 631		/*
 632		 * Inline assembly required to prevent the compiler
 633		 * optimising this loop into a divmod call.
 634		 * See __iter_div_u64_rem() for another example of this.
 635		 */
 636		asm("" : "+rm" (rq->age_stamp));
 637		rq->age_stamp += period;
 638		rq->rt_avg /= 2;
 
 
 
 
 639	}
 640}
 641
 642#else /* !CONFIG_SMP */
 643void resched_task(struct task_struct *p)
 644{
 645	assert_raw_spin_locked(&task_rq(p)->lock);
 646	set_tsk_need_resched(p);
 
 
 
 
 
 
 
 
 
 
 
 
 647}
 
 648#endif /* CONFIG_SMP */
 649
 650#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 651			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 652/*
 653 * Iterate task_group tree rooted at *from, calling @down when first entering a
 654 * node and @up when leaving it for the final time.
 655 *
 656 * Caller must hold rcu_lock or sufficient equivalent.
 657 */
 658int walk_tg_tree_from(struct task_group *from,
 659			     tg_visitor down, tg_visitor up, void *data)
 660{
 661	struct task_group *parent, *child;
 662	int ret;
 663
 664	parent = from;
 665
 666down:
 667	ret = (*down)(parent, data);
 668	if (ret)
 669		goto out;
 670	list_for_each_entry_rcu(child, &parent->children, siblings) {
 671		parent = child;
 672		goto down;
 673
 674up:
 675		continue;
 676	}
 677	ret = (*up)(parent, data);
 678	if (ret || parent == from)
 679		goto out;
 680
 681	child = parent;
 682	parent = parent->parent;
 683	if (parent)
 684		goto up;
 685out:
 686	return ret;
 687}
 688
 689int tg_nop(struct task_group *tg, void *data)
 690{
 691	return 0;
 692}
 693#endif
 694
 695static void set_load_weight(struct task_struct *p)
 696{
 697	int prio = p->static_prio - MAX_RT_PRIO;
 698	struct load_weight *load = &p->se.load;
 699
 700	/*
 701	 * SCHED_IDLE tasks get minimal weight:
 702	 */
 703	if (p->policy == SCHED_IDLE) {
 704		load->weight = scale_load(WEIGHT_IDLEPRIO);
 705		load->inv_weight = WMULT_IDLEPRIO;
 
 706		return;
 707	}
 708
 709	load->weight = scale_load(prio_to_weight[prio]);
 710	load->inv_weight = prio_to_wmult[prio];
 
 
 
 
 
 
 
 
 
 711}
 712
 713static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 714{
 715	update_rq_clock(rq);
 716	sched_info_queued(p);
 717	p->sched_class->enqueue_task(rq, p, flags);
 718}
 719
 720static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 721{
 722	update_rq_clock(rq);
 723	sched_info_dequeued(p);
 724	p->sched_class->dequeue_task(rq, p, flags);
 725}
 726
 727void activate_task(struct rq *rq, struct task_struct *p, int flags)
 728{
 729	if (task_contributes_to_load(p))
 730		rq->nr_uninterruptible--;
 
 
 731
 732	enqueue_task(rq, p, flags);
 
 
 
 
 
 733}
 734
 735void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 
 
 736{
 737	if (task_contributes_to_load(p))
 738		rq->nr_uninterruptible++;
 
 
 
 
 
 
 
 739
 740	dequeue_task(rq, p, flags);
 741}
 742
 743#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 
 
 
 
 
 
 
 
 744
 745/*
 746 * There are no locks covering percpu hardirq/softirq time.
 747 * They are only modified in account_system_vtime, on corresponding CPU
 748 * with interrupts disabled. So, writes are safe.
 749 * They are read and saved off onto struct rq in update_rq_clock().
 750 * This may result in other CPU reading this CPU's irq time and can
 751 * race with irq/account_system_vtime on this CPU. We would either get old
 752 * or new value with a side effect of accounting a slice of irq time to wrong
 753 * task when irq is in progress while we read rq->clock. That is a worthy
 754 * compromise in place of having locks on each irq in account_system_time.
 755 */
 756static DEFINE_PER_CPU(u64, cpu_hardirq_time);
 757static DEFINE_PER_CPU(u64, cpu_softirq_time);
 758
 759static DEFINE_PER_CPU(u64, irq_start_time);
 760static int sched_clock_irqtime;
 
 
 
 
 
 
 
 761
 762void enable_sched_clock_irqtime(void)
 763{
 764	sched_clock_irqtime = 1;
 765}
 766
 767void disable_sched_clock_irqtime(void)
 
 768{
 769	sched_clock_irqtime = 0;
 770}
 
 
 
 
 
 
 
 
 
 
 771
 772#ifndef CONFIG_64BIT
 773static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
 
 
 774
 775static inline void irq_time_write_begin(void)
 776{
 777	__this_cpu_inc(irq_time_seq.sequence);
 778	smp_wmb();
 779}
 780
 781static inline void irq_time_write_end(void)
 
 
 
 
 
 
 
 
 
 782{
 783	smp_wmb();
 784	__this_cpu_inc(irq_time_seq.sequence);
 
 
 
 
 
 
 785}
 786
 787static inline u64 irq_time_read(int cpu)
 788{
 789	u64 irq_time;
 790	unsigned seq;
 
 
 
 791
 792	do {
 793		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
 794		irq_time = per_cpu(cpu_softirq_time, cpu) +
 795			   per_cpu(cpu_hardirq_time, cpu);
 796	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
 797
 798	return irq_time;
 799}
 800#else /* CONFIG_64BIT */
 801static inline void irq_time_write_begin(void)
 
 
 
 
 
 
 
 
 
 
 
 802{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 803}
 804
 805static inline void irq_time_write_end(void)
 
 
 
 
 
 
 
 
 
 
 806{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 807}
 808
 809static inline u64 irq_time_read(int cpu)
 810{
 811	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
 
 
 
 
 
 
 
 
 
 
 812}
 813#endif /* CONFIG_64BIT */
 814
 815/*
 816 * Called before incrementing preempt_count on {soft,}irq_enter
 817 * and before decrementing preempt_count on {soft,}irq_exit.
 818 */
 819void account_system_vtime(struct task_struct *curr)
 820{
 821	unsigned long flags;
 822	s64 delta;
 823	int cpu;
 824
 825	if (!sched_clock_irqtime)
 826		return;
 827
 828	local_irq_save(flags);
 
 
 
 
 
 
 
 
 829
 830	cpu = smp_processor_id();
 831	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
 832	__this_cpu_add(irq_start_time, delta);
 
 
 
 
 
 
 833
 834	irq_time_write_begin();
 835	/*
 836	 * We do not account for softirq time from ksoftirqd here.
 837	 * We want to continue accounting softirq time to ksoftirqd thread
 838	 * in that case, so as not to confuse scheduler with a special task
 839	 * that do not consume any time, but still wants to run.
 840	 */
 841	if (hardirq_count())
 842		__this_cpu_add(cpu_hardirq_time, delta);
 843	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
 844		__this_cpu_add(cpu_softirq_time, delta);
 845
 846	irq_time_write_end();
 847	local_irq_restore(flags);
 848}
 849EXPORT_SYMBOL_GPL(account_system_vtime);
 850
 851#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 852
 853#ifdef CONFIG_PARAVIRT
 854static inline u64 steal_ticks(u64 steal)
 855{
 856	if (unlikely(steal > NSEC_PER_SEC))
 857		return div_u64(steal, TICK_NSEC);
 858
 859	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
 
 
 
 
 
 
 
 860}
 
 
 861#endif
 862
 863static void update_rq_clock_task(struct rq *rq, s64 delta)
 
 
 864{
 865/*
 866 * In theory, the compile should just see 0 here, and optimize out the call
 867 * to sched_rt_avg_update. But I don't trust it...
 868 */
 869#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 870	s64 steal = 0, irq_delta = 0;
 871#endif
 872#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 873	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 874
 875	/*
 876	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
 877	 * this case when a previous update_rq_clock() happened inside a
 878	 * {soft,}irq region.
 879	 *
 880	 * When this happens, we stop ->clock_task and only update the
 881	 * prev_irq_time stamp to account for the part that fit, so that a next
 882	 * update will consume the rest. This ensures ->clock_task is
 883	 * monotonic.
 884	 *
 885	 * It does however cause some slight miss-attribution of {soft,}irq
 886	 * time, a more accurate solution would be to update the irq_time using
 887	 * the current rq->clock timestamp, except that would require using
 888	 * atomic ops.
 889	 */
 890	if (irq_delta > delta)
 891		irq_delta = delta;
 892
 893	rq->prev_irq_time += irq_delta;
 894	delta -= irq_delta;
 895#endif
 896#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 897	if (static_key_false((&paravirt_steal_rq_enabled))) {
 898		u64 st;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899
 900		steal = paravirt_steal_clock(cpu_of(rq));
 901		steal -= rq->prev_steal_time_rq;
 
 
 902
 903		if (unlikely(steal > delta))
 904			steal = delta;
 
 
 
 
 
 905
 906		st = steal_ticks(steal);
 907		steal = st * TICK_NSEC;
 
 908
 909		rq->prev_steal_time_rq += steal;
 
 
 910
 911		delta -= steal;
 912	}
 913#endif
 914
 915	rq->clock_task += delta;
 
 
 
 
 
 
 916
 917#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 918	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
 919		sched_rt_avg_update(rq, irq_delta + steal);
 920#endif
 921}
 922
 923#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 924static int irqtime_account_hi_update(void)
 925{
 926	u64 *cpustat = kcpustat_this_cpu->cpustat;
 927	unsigned long flags;
 928	u64 latest_ns;
 929	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 930
 931	local_irq_save(flags);
 932	latest_ns = this_cpu_read(cpu_hardirq_time);
 933	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
 934		ret = 1;
 935	local_irq_restore(flags);
 936	return ret;
 937}
 938
 939static int irqtime_account_si_update(void)
 940{
 941	u64 *cpustat = kcpustat_this_cpu->cpustat;
 942	unsigned long flags;
 943	u64 latest_ns;
 944	int ret = 0;
 945
 946	local_irq_save(flags);
 947	latest_ns = this_cpu_read(cpu_softirq_time);
 948	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
 949		ret = 1;
 950	local_irq_restore(flags);
 951	return ret;
 952}
 953
 954#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 
 
 
 955
 956#define sched_clock_irqtime	(0)
 
 
 
 957
 
 
 
 
 
 
 
 958#endif
 
 
 959
 960void sched_set_stop_task(int cpu, struct task_struct *stop)
 
 
 
 
 961{
 962	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 963	struct task_struct *old_stop = cpu_rq(cpu)->stop;
 
 
 
 
 
 964
 965	if (stop) {
 966		/*
 967		 * Make it appear like a SCHED_FIFO task, its something
 968		 * userspace knows about and won't get confused about.
 969		 *
 970		 * Also, it will make PI more or less work without too
 971		 * much confusion -- but then, stop work should not
 972		 * rely on PI working anyway.
 973		 */
 974		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
 975
 976		stop->sched_class = &stop_sched_class;
 
 
 977	}
 978
 979	cpu_rq(cpu)->stop = stop;
 
 
 
 
 
 
 
 980
 981	if (old_stop) {
 982		/*
 983		 * Reset it back to a normal scheduling class so that
 984		 * it can die in pieces.
 985		 */
 986		old_stop->sched_class = &rt_sched_class;
 987	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 988}
 989
 990/*
 991 * __normal_prio - return the priority that is based on the static prio
 992 */
 993static inline int __normal_prio(struct task_struct *p)
 994{
 995	return p->static_prio;
 996}
 997
 998/*
 999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1004 */
1005static inline int normal_prio(struct task_struct *p)
1006{
1007	int prio;
1008
1009	if (task_has_rt_policy(p))
 
 
1010		prio = MAX_RT_PRIO-1 - p->rt_priority;
1011	else
1012		prio = __normal_prio(p);
1013	return prio;
1014}
1015
1016/*
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1022 */
1023static int effective_prio(struct task_struct *p)
1024{
1025	p->normal_prio = normal_prio(p);
1026	/*
1027	 * If we are RT tasks or we were boosted to RT priority,
1028	 * keep the priority unchanged. Otherwise, update priority
1029	 * to the normal priority:
1030	 */
1031	if (!rt_prio(p->prio))
1032		return p->normal_prio;
1033	return p->prio;
1034}
1035
1036/**
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
 
 
1039 */
1040inline int task_curr(const struct task_struct *p)
1041{
1042	return cpu_curr(task_cpu(p)) == p;
1043}
1044
 
 
 
 
 
 
 
1045static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046				       const struct sched_class *prev_class,
1047				       int oldprio)
1048{
1049	if (prev_class != p->sched_class) {
1050		if (prev_class->switched_from)
1051			prev_class->switched_from(rq, p);
 
1052		p->sched_class->switched_to(rq, p);
1053	} else if (oldprio != p->prio)
1054		p->sched_class->prio_changed(rq, p, oldprio);
1055}
1056
1057void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1058{
1059	const struct sched_class *class;
1060
1061	if (p->sched_class == rq->curr->sched_class) {
1062		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063	} else {
1064		for_each_class(class) {
1065			if (class == rq->curr->sched_class)
1066				break;
1067			if (class == p->sched_class) {
1068				resched_task(rq->curr);
1069				break;
1070			}
1071		}
1072	}
1073
1074	/*
1075	 * A queue event has occurred, and we're going to schedule.  In
1076	 * this case, we can save a useless back to back clock update.
1077	 */
1078	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1079		rq->skip_clock_update = 1;
1080}
1081
1082#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1084{
1085#ifdef CONFIG_SCHED_DEBUG
1086	/*
1087	 * We should never call set_task_cpu() on a blocked task,
1088	 * ttwu() will sort out the placement.
1089	 */
1090	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
 
 
 
 
 
 
 
 
 
1092
1093#ifdef CONFIG_LOCKDEP
1094	/*
1095	 * The caller should hold either p->pi_lock or rq->lock, when changing
1096	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097	 *
1098	 * sched_move_task() holds both and thus holding either pins the cgroup,
1099	 * see task_group().
1100	 *
1101	 * Furthermore, all task_rq users should acquire both locks, see
1102	 * task_rq_lock().
1103	 */
1104	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105				      lockdep_is_held(&task_rq(p)->lock)));
1106#endif
 
 
 
 
1107#endif
1108
1109	trace_sched_migrate_task(p, new_cpu);
1110
1111	if (task_cpu(p) != new_cpu) {
 
 
1112		p->se.nr_migrations++;
1113		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
 
1114	}
1115
1116	__set_task_cpu(p, new_cpu);
1117}
1118
1119struct migration_arg {
1120	struct task_struct *task;
1121	int dest_cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122};
1123
1124static int migration_cpu_stop(void *data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1125
1126/*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change.  If it changes, i.e. @p might have woken up,
1131 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count).  If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1135 *
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1141 */
1142unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1143{
1144	unsigned long flags;
1145	int running, on_rq;
1146	unsigned long ncsw;
1147	struct rq *rq;
1148
1149	for (;;) {
1150		/*
1151		 * We do the initial early heuristics without holding
1152		 * any task-queue locks at all. We'll only try to get
1153		 * the runqueue lock when things look like they will
1154		 * work out!
1155		 */
1156		rq = task_rq(p);
1157
1158		/*
1159		 * If the task is actively running on another CPU
1160		 * still, just relax and busy-wait without holding
1161		 * any locks.
1162		 *
1163		 * NOTE! Since we don't hold any locks, it's not
1164		 * even sure that "rq" stays as the right runqueue!
1165		 * But we don't care, since "task_running()" will
1166		 * return false if the runqueue has changed and p
1167		 * is actually now running somewhere else!
1168		 */
1169		while (task_running(rq, p)) {
1170			if (match_state && unlikely(p->state != match_state))
1171				return 0;
1172			cpu_relax();
1173		}
1174
1175		/*
1176		 * Ok, time to look more closely! We need the rq
1177		 * lock now, to be *sure*. If we're wrong, we'll
1178		 * just go back and repeat.
1179		 */
1180		rq = task_rq_lock(p, &flags);
1181		trace_sched_wait_task(p);
1182		running = task_running(rq, p);
1183		on_rq = p->on_rq;
1184		ncsw = 0;
1185		if (!match_state || p->state == match_state)
1186			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1187		task_rq_unlock(rq, p, &flags);
1188
1189		/*
1190		 * If it changed from the expected state, bail out now.
1191		 */
1192		if (unlikely(!ncsw))
1193			break;
1194
1195		/*
1196		 * Was it really running after all now that we
1197		 * checked with the proper locks actually held?
1198		 *
1199		 * Oops. Go back and try again..
1200		 */
1201		if (unlikely(running)) {
1202			cpu_relax();
1203			continue;
1204		}
1205
1206		/*
1207		 * It's not enough that it's not actively running,
1208		 * it must be off the runqueue _entirely_, and not
1209		 * preempted!
1210		 *
1211		 * So if it was still runnable (but just not actively
1212		 * running right now), it's preempted, and we should
1213		 * yield - it could be a while.
1214		 */
1215		if (unlikely(on_rq)) {
1216			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217
1218			set_current_state(TASK_UNINTERRUPTIBLE);
1219			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1220			continue;
1221		}
1222
1223		/*
1224		 * Ahh, all good. It wasn't running, and it wasn't
1225		 * runnable, which means that it will never become
1226		 * running in the future either. We're all done!
1227		 */
1228		break;
1229	}
1230
1231	return ncsw;
1232}
1233
1234/***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1237 *
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1240 *
1241 * NOTE: this function doesn't have to take the runqueue lock,
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1246 */
1247void kick_process(struct task_struct *p)
1248{
1249	int cpu;
1250
1251	preempt_disable();
1252	cpu = task_cpu(p);
1253	if ((cpu != smp_processor_id()) && task_curr(p))
1254		smp_send_reschedule(cpu);
1255	preempt_enable();
1256}
1257EXPORT_SYMBOL_GPL(kick_process);
1258#endif /* CONFIG_SMP */
1259
1260#ifdef CONFIG_SMP
1261/*
1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263 */
1264static int select_fallback_rq(int cpu, struct task_struct *p)
1265{
1266	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
 
1267	enum { cpuset, possible, fail } state = cpuset;
1268	int dest_cpu;
1269
1270	/* Look for allowed, online CPU in same node. */
1271	for_each_cpu(dest_cpu, nodemask) {
1272		if (!cpu_online(dest_cpu))
1273			continue;
1274		if (!cpu_active(dest_cpu))
1275			continue;
1276		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1277			return dest_cpu;
 
 
 
 
 
 
 
1278	}
1279
1280	for (;;) {
1281		/* Any allowed, online CPU? */
1282		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1283			if (!cpu_online(dest_cpu))
1284				continue;
1285			if (!cpu_active(dest_cpu))
1286				continue;
 
1287			goto out;
1288		}
1289
 
1290		switch (state) {
1291		case cpuset:
1292			/* No more Mr. Nice Guy. */
1293			cpuset_cpus_allowed_fallback(p);
1294			state = possible;
1295			break;
1296
 
1297		case possible:
1298			do_set_cpus_allowed(p, cpu_possible_mask);
1299			state = fail;
1300			break;
1301
1302		case fail:
1303			BUG();
1304			break;
1305		}
1306	}
1307
1308out:
1309	if (state != cpuset) {
1310		/*
1311		 * Don't tell them about moving exiting tasks or
1312		 * kernel threads (both mm NULL), since they never
1313		 * leave kernel.
1314		 */
1315		if (p->mm && printk_ratelimit()) {
1316			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1317					task_pid_nr(p), p->comm, cpu);
1318		}
1319	}
1320
1321	return dest_cpu;
1322}
1323
1324/*
1325 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1326 */
1327static inline
1328int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1329{
1330	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
 
 
 
 
 
1331
1332	/*
1333	 * In order not to call set_task_cpu() on a blocking task we need
1334	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1335	 * cpu.
1336	 *
1337	 * Since this is common to all placement strategies, this lives here.
1338	 *
1339	 * [ this allows ->select_task() to simply return task_cpu(p) and
1340	 *   not worry about this generic constraint ]
1341	 */
1342	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1343		     !cpu_online(cpu)))
1344		cpu = select_fallback_rq(task_cpu(p), p);
1345
1346	return cpu;
1347}
1348
1349static void update_avg(u64 *avg, u64 sample)
1350{
1351	s64 diff = sample - *avg;
1352	*avg += diff >> 3;
1353}
1354#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1355
1356static void
1357ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1358{
1359#ifdef CONFIG_SCHEDSTATS
1360	struct rq *rq = this_rq();
 
 
 
 
1361
1362#ifdef CONFIG_SMP
1363	int this_cpu = smp_processor_id();
1364
1365	if (cpu == this_cpu) {
1366		schedstat_inc(rq, ttwu_local);
1367		schedstat_inc(p, se.statistics.nr_wakeups_local);
1368	} else {
1369		struct sched_domain *sd;
1370
1371		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1372		rcu_read_lock();
1373		for_each_domain(this_cpu, sd) {
1374			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1375				schedstat_inc(sd, ttwu_wake_remote);
1376				break;
1377			}
1378		}
1379		rcu_read_unlock();
1380	}
1381
1382	if (wake_flags & WF_MIGRATED)
1383		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1384
1385#endif /* CONFIG_SMP */
1386
1387	schedstat_inc(rq, ttwu_count);
1388	schedstat_inc(p, se.statistics.nr_wakeups);
1389
1390	if (wake_flags & WF_SYNC)
1391		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1392
1393#endif /* CONFIG_SCHEDSTATS */
1394}
1395
1396static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1397{
1398	activate_task(rq, p, en_flags);
1399	p->on_rq = 1;
1400
1401	/* if a worker is waking up, notify workqueue */
1402	if (p->flags & PF_WQ_WORKER)
1403		wq_worker_waking_up(p, cpu_of(rq));
1404}
1405
1406/*
1407 * Mark the task runnable and perform wakeup-preemption.
1408 */
1409static void
1410ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1411{
1412	trace_sched_wakeup(p, true);
1413	check_preempt_curr(rq, p, wake_flags);
 
 
1414
1415	p->state = TASK_RUNNING;
1416#ifdef CONFIG_SMP
1417	if (p->sched_class->task_woken)
 
 
 
 
 
1418		p->sched_class->task_woken(rq, p);
 
 
1419
1420	if (rq->idle_stamp) {
1421		u64 delta = rq->clock - rq->idle_stamp;
1422		u64 max = 2*sysctl_sched_migration_cost;
1423
1424		if (delta > max)
 
 
1425			rq->avg_idle = max;
1426		else
1427			update_avg(&rq->avg_idle, delta);
1428		rq->idle_stamp = 0;
1429	}
1430#endif
1431}
1432
1433static void
1434ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
 
1435{
 
 
 
 
1436#ifdef CONFIG_SMP
1437	if (p->sched_contributes_to_load)
1438		rq->nr_uninterruptible--;
 
 
 
1439#endif
1440
1441	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1442	ttwu_do_wakeup(rq, p, wake_flags);
1443}
1444
1445/*
1446 * Called in case the task @p isn't fully descheduled from its runqueue,
1447 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1448 * since all we need to do is flip p->state to TASK_RUNNING, since
1449 * the task is still ->on_rq.
1450 */
1451static int ttwu_remote(struct task_struct *p, int wake_flags)
1452{
 
1453	struct rq *rq;
1454	int ret = 0;
1455
1456	rq = __task_rq_lock(p);
1457	if (p->on_rq) {
1458		ttwu_do_wakeup(rq, p, wake_flags);
 
 
1459		ret = 1;
1460	}
1461	__task_rq_unlock(rq);
1462
1463	return ret;
1464}
1465
1466#ifdef CONFIG_SMP
1467static void sched_ttwu_pending(void)
1468{
1469	struct rq *rq = this_rq();
1470	struct llist_node *llist = llist_del_all(&rq->wake_list);
1471	struct task_struct *p;
 
 
 
 
1472
1473	raw_spin_lock(&rq->lock);
 
1474
1475	while (llist) {
1476		p = llist_entry(llist, struct task_struct, wake_entry);
1477		llist = llist_next(llist);
1478		ttwu_do_activate(rq, p, 0);
1479	}
1480
1481	raw_spin_unlock(&rq->lock);
1482}
1483
1484void scheduler_ipi(void)
1485{
 
 
 
 
 
 
 
1486	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1487		return;
1488
1489	/*
1490	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1491	 * traditionally all their work was done from the interrupt return
1492	 * path. Now that we actually do some work, we need to make sure
1493	 * we do call them.
1494	 *
1495	 * Some archs already do call them, luckily irq_enter/exit nest
1496	 * properly.
1497	 *
1498	 * Arguably we should visit all archs and update all handlers,
1499	 * however a fair share of IPIs are still resched only so this would
1500	 * somewhat pessimize the simple resched case.
1501	 */
1502	irq_enter();
1503	sched_ttwu_pending();
1504
1505	/*
1506	 * Check if someone kicked us for doing the nohz idle load balance.
1507	 */
1508	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1509		this_rq()->idle_balance = 1;
1510		raise_softirq_irqoff(SCHED_SOFTIRQ);
1511	}
1512	irq_exit();
1513}
1514
1515static void ttwu_queue_remote(struct task_struct *p, int cpu)
1516{
1517	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1518		smp_send_reschedule(cpu);
 
 
 
 
 
 
 
 
1519}
1520
1521#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1522static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1523{
1524	struct rq *rq;
1525	int ret = 0;
 
 
 
 
 
1526
1527	rq = __task_rq_lock(p);
1528	if (p->on_cpu) {
1529		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1530		ttwu_do_wakeup(rq, p, wake_flags);
1531		ret = 1;
 
 
 
1532	}
1533	__task_rq_unlock(rq);
1534
1535	return ret;
1536
 
 
1537}
1538#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1539
1540bool cpus_share_cache(int this_cpu, int that_cpu)
1541{
1542	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1543}
1544#endif /* CONFIG_SMP */
1545
1546static void ttwu_queue(struct task_struct *p, int cpu)
1547{
1548	struct rq *rq = cpu_rq(cpu);
 
1549
1550#if defined(CONFIG_SMP)
1551	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1552		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1553		ttwu_queue_remote(p, cpu);
1554		return;
1555	}
1556#endif
1557
1558	raw_spin_lock(&rq->lock);
1559	ttwu_do_activate(rq, p, 0);
1560	raw_spin_unlock(&rq->lock);
 
1561}
1562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1563/**
1564 * try_to_wake_up - wake up a thread
1565 * @p: the thread to be awakened
1566 * @state: the mask of task states that can be woken
1567 * @wake_flags: wake modifier flags (WF_*)
1568 *
1569 * Put it on the run-queue if it's not already there. The "current"
1570 * thread is always on the run-queue (except when the actual
1571 * re-schedule is in progress), and as such you're allowed to do
1572 * the simpler "current->state = TASK_RUNNING" to mark yourself
1573 * runnable without the overhead of this.
 
1574 *
1575 * Returns %true if @p was woken up, %false if it was already running
1576 * or @state didn't match @p's state.
 
 
 
1577 */
1578static int
1579try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1580{
1581	unsigned long flags;
1582	int cpu, success = 0;
1583
1584	smp_wmb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1585	raw_spin_lock_irqsave(&p->pi_lock, flags);
 
1586	if (!(p->state & state))
1587		goto out;
 
 
1588
1589	success = 1; /* we're going to change ->state */
 
1590	cpu = task_cpu(p);
1591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1592	if (p->on_rq && ttwu_remote(p, wake_flags))
1593		goto stat;
1594
1595#ifdef CONFIG_SMP
1596	/*
1597	 * If the owning (remote) cpu is still in the middle of schedule() with
1598	 * this task as prev, wait until its done referencing the task.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1599	 */
1600	while (p->on_cpu) {
1601#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1602		/*
1603		 * In case the architecture enables interrupts in
1604		 * context_switch(), we cannot busy wait, since that
1605		 * would lead to deadlocks when an interrupt hits and
1606		 * tries to wake up @prev. So bail and do a complete
1607		 * remote wakeup.
1608		 */
1609		if (ttwu_activate_remote(p, wake_flags))
1610			goto stat;
1611#else
1612		cpu_relax();
1613#endif
1614	}
1615	/*
1616	 * Pairs with the smp_wmb() in finish_lock_switch().
 
 
 
 
 
 
1617	 */
1618	smp_rmb();
1619
1620	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1621	p->state = TASK_WAKING;
1622
1623	if (p->sched_class->task_waking)
1624		p->sched_class->task_waking(p);
 
 
1625
1626	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1627	if (task_cpu(p) != cpu) {
1628		wake_flags |= WF_MIGRATED;
 
1629		set_task_cpu(p, cpu);
1630	}
1631#endif /* CONFIG_SMP */
1632
1633	ttwu_queue(p, cpu);
1634stat:
1635	ttwu_stat(p, cpu, wake_flags);
1636out:
1637	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1638
1639	return success;
1640}
1641
1642/**
1643 * try_to_wake_up_local - try to wake up a local task with rq lock held
1644 * @p: the thread to be awakened
1645 *
1646 * Put @p on the run-queue if it's not already there. The caller must
1647 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1648 * the current task.
1649 */
1650static void try_to_wake_up_local(struct task_struct *p)
1651{
1652	struct rq *rq = task_rq(p);
1653
1654	BUG_ON(rq != this_rq());
1655	BUG_ON(p == current);
1656	lockdep_assert_held(&rq->lock);
1657
1658	if (!raw_spin_trylock(&p->pi_lock)) {
1659		raw_spin_unlock(&rq->lock);
1660		raw_spin_lock(&p->pi_lock);
1661		raw_spin_lock(&rq->lock);
1662	}
1663
1664	if (!(p->state & TASK_NORMAL))
1665		goto out;
1666
1667	if (!p->on_rq)
1668		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
 
 
 
 
 
1669
1670	ttwu_do_wakeup(rq, p, 0);
1671	ttwu_stat(p, smp_processor_id(), 0);
1672out:
1673	raw_spin_unlock(&p->pi_lock);
1674}
1675
1676/**
1677 * wake_up_process - Wake up a specific process
1678 * @p: The process to be woken up.
1679 *
1680 * Attempt to wake up the nominated process and move it to the set of runnable
1681 * processes.  Returns 1 if the process was woken up, 0 if it was already
1682 * running.
1683 *
1684 * It may be assumed that this function implies a write memory barrier before
1685 * changing the task state if and only if any tasks are woken up.
 
1686 */
1687int wake_up_process(struct task_struct *p)
1688{
1689	return try_to_wake_up(p, TASK_ALL, 0);
1690}
1691EXPORT_SYMBOL(wake_up_process);
1692
1693int wake_up_state(struct task_struct *p, unsigned int state)
1694{
1695	return try_to_wake_up(p, state, 0);
1696}
1697
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704static void __sched_fork(struct task_struct *p)
1705{
1706	p->on_rq			= 0;
1707
1708	p->se.on_rq			= 0;
1709	p->se.exec_start		= 0;
1710	p->se.sum_exec_runtime		= 0;
1711	p->se.prev_sum_exec_runtime	= 0;
1712	p->se.nr_migrations		= 0;
1713	p->se.vruntime			= 0;
1714	INIT_LIST_HEAD(&p->se.group_node);
1715
 
 
 
 
1716#ifdef CONFIG_SCHEDSTATS
 
1717	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718#endif
1719
 
 
 
 
 
1720	INIT_LIST_HEAD(&p->rt.run_list);
 
 
 
 
1721
1722#ifdef CONFIG_PREEMPT_NOTIFIERS
1723	INIT_HLIST_HEAD(&p->preempt_notifiers);
1724#endif
 
 
 
 
 
1725}
1726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1727/*
1728 * fork()/clone()-time setup:
1729 */
1730void sched_fork(struct task_struct *p)
1731{
1732	unsigned long flags;
1733	int cpu = get_cpu();
1734
1735	__sched_fork(p);
1736	/*
1737	 * We mark the process as running here. This guarantees that
1738	 * nobody will actually run it, and a signal or other external
1739	 * event cannot wake it up and insert it on the runqueue either.
1740	 */
1741	p->state = TASK_RUNNING;
1742
1743	/*
1744	 * Make sure we do not leak PI boosting priority to the child.
1745	 */
1746	p->prio = current->normal_prio;
1747
 
 
1748	/*
1749	 * Revert to default priority/policy on fork if requested.
1750	 */
1751	if (unlikely(p->sched_reset_on_fork)) {
1752		if (task_has_rt_policy(p)) {
1753			p->policy = SCHED_NORMAL;
1754			p->static_prio = NICE_TO_PRIO(0);
1755			p->rt_priority = 0;
1756		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1757			p->static_prio = NICE_TO_PRIO(0);
1758
1759		p->prio = p->normal_prio = __normal_prio(p);
1760		set_load_weight(p);
1761
1762		/*
1763		 * We don't need the reset flag anymore after the fork. It has
1764		 * fulfilled its duty:
1765		 */
1766		p->sched_reset_on_fork = 0;
1767	}
1768
1769	if (!rt_prio(p->prio))
 
 
 
 
1770		p->sched_class = &fair_sched_class;
1771
1772	if (p->sched_class->task_fork)
1773		p->sched_class->task_fork(p);
1774
1775	/*
1776	 * The child is not yet in the pid-hash so no cgroup attach races,
1777	 * and the cgroup is pinned to this child due to cgroup_fork()
1778	 * is ran before sched_fork().
1779	 *
1780	 * Silence PROVE_RCU.
1781	 */
1782	raw_spin_lock_irqsave(&p->pi_lock, flags);
1783	set_task_cpu(p, cpu);
 
 
 
 
 
 
1784	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1785
1786#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1787	if (likely(sched_info_on()))
1788		memset(&p->sched_info, 0, sizeof(p->sched_info));
1789#endif
1790#if defined(CONFIG_SMP)
1791	p->on_cpu = 0;
1792#endif
1793#ifdef CONFIG_PREEMPT_COUNT
1794	/* Want to start with kernel preemption disabled. */
1795	task_thread_info(p)->preempt_count = 1;
1796#endif
1797#ifdef CONFIG_SMP
1798	plist_node_init(&p->pushable_tasks, MAX_PRIO);
 
1799#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1800
1801	put_cpu();
1802}
1803
1804/*
1805 * wake_up_new_task - wake up a newly created task for the first time.
1806 *
1807 * This function will do some initial scheduler statistics housekeeping
1808 * that must be done for every newly created context, then puts the task
1809 * on the runqueue and wakes it.
1810 */
1811void wake_up_new_task(struct task_struct *p)
1812{
1813	unsigned long flags;
1814	struct rq *rq;
1815
1816	raw_spin_lock_irqsave(&p->pi_lock, flags);
 
1817#ifdef CONFIG_SMP
1818	/*
1819	 * Fork balancing, do it here and not earlier because:
1820	 *  - cpus_allowed can change in the fork path
1821	 *  - any previously selected cpu might disappear through hotplug
 
 
 
1822	 */
1823	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
 
1824#endif
 
 
 
1825
1826	rq = __task_rq_lock(p);
1827	activate_task(rq, p, 0);
1828	p->on_rq = 1;
1829	trace_sched_wakeup_new(p, true);
1830	check_preempt_curr(rq, p, WF_FORK);
1831#ifdef CONFIG_SMP
1832	if (p->sched_class->task_woken)
 
 
 
 
 
1833		p->sched_class->task_woken(rq, p);
 
 
1834#endif
1835	task_rq_unlock(rq, p, &flags);
1836}
1837
1838#ifdef CONFIG_PREEMPT_NOTIFIERS
1839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1840/**
1841 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1842 * @notifier: notifier struct to register
1843 */
1844void preempt_notifier_register(struct preempt_notifier *notifier)
1845{
 
 
 
1846	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1847}
1848EXPORT_SYMBOL_GPL(preempt_notifier_register);
1849
1850/**
1851 * preempt_notifier_unregister - no longer interested in preemption notifications
1852 * @notifier: notifier struct to unregister
1853 *
1854 * This is safe to call from within a preemption notifier.
1855 */
1856void preempt_notifier_unregister(struct preempt_notifier *notifier)
1857{
1858	hlist_del(&notifier->link);
1859}
1860EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1861
1862static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1863{
1864	struct preempt_notifier *notifier;
1865	struct hlist_node *node;
1866
1867	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1868		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1869}
1870
 
 
 
 
 
 
1871static void
1872fire_sched_out_preempt_notifiers(struct task_struct *curr,
1873				 struct task_struct *next)
1874{
1875	struct preempt_notifier *notifier;
1876	struct hlist_node *node;
1877
1878	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1879		notifier->ops->sched_out(notifier, next);
1880}
1881
 
 
 
 
 
 
 
 
1882#else /* !CONFIG_PREEMPT_NOTIFIERS */
1883
1884static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1885{
1886}
1887
1888static void
1889fire_sched_out_preempt_notifiers(struct task_struct *curr,
1890				 struct task_struct *next)
1891{
1892}
1893
1894#endif /* CONFIG_PREEMPT_NOTIFIERS */
1895
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1896/**
1897 * prepare_task_switch - prepare to switch tasks
1898 * @rq: the runqueue preparing to switch
1899 * @prev: the current task that is being switched out
1900 * @next: the task we are going to switch to.
1901 *
1902 * This is called with the rq lock held and interrupts off. It must
1903 * be paired with a subsequent finish_task_switch after the context
1904 * switch.
1905 *
1906 * prepare_task_switch sets up locking and calls architecture specific
1907 * hooks.
1908 */
1909static inline void
1910prepare_task_switch(struct rq *rq, struct task_struct *prev,
1911		    struct task_struct *next)
1912{
1913	sched_info_switch(prev, next);
 
1914	perf_event_task_sched_out(prev, next);
 
1915	fire_sched_out_preempt_notifiers(prev, next);
1916	prepare_lock_switch(rq, next);
1917	prepare_arch_switch(next);
1918	trace_sched_switch(prev, next);
1919}
1920
1921/**
1922 * finish_task_switch - clean up after a task-switch
1923 * @rq: runqueue associated with task-switch
1924 * @prev: the thread we just switched away from.
1925 *
1926 * finish_task_switch must be called after the context switch, paired
1927 * with a prepare_task_switch call before the context switch.
1928 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1929 * and do any other architecture-specific cleanup actions.
1930 *
1931 * Note that we may have delayed dropping an mm in context_switch(). If
1932 * so, we finish that here outside of the runqueue lock. (Doing it
1933 * with the lock held can cause deadlocks; see schedule() for
1934 * details.)
 
 
 
 
 
1935 */
1936static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1937	__releases(rq->lock)
1938{
 
1939	struct mm_struct *mm = rq->prev_mm;
1940	long prev_state;
1941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1942	rq->prev_mm = NULL;
1943
1944	/*
1945	 * A task struct has one reference for the use as "current".
1946	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1947	 * schedule one last time. The schedule call will never return, and
1948	 * the scheduled task must drop that reference.
1949	 * The test for TASK_DEAD must occur while the runqueue locks are
1950	 * still held, otherwise prev could be scheduled on another cpu, die
1951	 * there before we look at prev->state, and then the reference would
1952	 * be dropped twice.
1953	 *		Manfred Spraul <manfred@colorfullife.com>
1954	 */
1955	prev_state = prev->state;
1956	finish_arch_switch(prev);
1957#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1958	local_irq_disable();
1959#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1960	perf_event_task_sched_in(prev, current);
1961#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1962	local_irq_enable();
1963#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1964	finish_lock_switch(rq, prev);
1965	finish_arch_post_lock_switch();
 
1966
1967	fire_sched_in_preempt_notifiers(current);
1968	if (mm)
 
 
 
 
 
 
 
 
 
 
 
 
 
1969		mmdrop(mm);
 
1970	if (unlikely(prev_state == TASK_DEAD)) {
 
 
 
1971		/*
1972		 * Remove function-return probe instances associated with this
1973		 * task and put them back on the free list.
1974		 */
1975		kprobe_flush_task(prev);
1976		put_task_struct(prev);
 
 
 
 
1977	}
 
 
 
1978}
1979
1980#ifdef CONFIG_SMP
1981
1982/* assumes rq->lock is held */
1983static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1984{
1985	if (prev->sched_class->pre_schedule)
1986		prev->sched_class->pre_schedule(rq, prev);
1987}
1988
1989/* rq->lock is NOT held, but preemption is disabled */
1990static inline void post_schedule(struct rq *rq)
1991{
1992	if (rq->post_schedule) {
1993		unsigned long flags;
 
1994
1995		raw_spin_lock_irqsave(&rq->lock, flags);
1996		if (rq->curr->sched_class->post_schedule)
1997			rq->curr->sched_class->post_schedule(rq);
1998		raw_spin_unlock_irqrestore(&rq->lock, flags);
 
 
 
 
1999
2000		rq->post_schedule = 0;
2001	}
 
2002}
2003
2004#else
2005
2006static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2007{
 
 
2008}
2009
2010static inline void post_schedule(struct rq *rq)
 
 
2011{
2012}
2013
2014#endif
2015
2016/**
2017 * schedule_tail - first thing a freshly forked thread must call.
2018 * @prev: the thread we just switched away from.
2019 */
2020asmlinkage void schedule_tail(struct task_struct *prev)
2021	__releases(rq->lock)
2022{
2023	struct rq *rq = this_rq();
2024
2025	finish_task_switch(rq, prev);
2026
2027	/*
2028	 * FIXME: do we need to worry about rq being invalidated by the
2029	 * task_switch?
 
 
 
 
2030	 */
2031	post_schedule(rq);
2032
2033#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2034	/* In this case, finish_task_switch does not reenable preemption */
2035	preempt_enable();
2036#endif
2037	if (current->set_child_tid)
2038		put_user(task_pid_vnr(current), current->set_child_tid);
 
 
2039}
2040
2041/*
2042 * context_switch - switch to the new MM and the new
2043 * thread's register state.
2044 */
2045static inline void
2046context_switch(struct rq *rq, struct task_struct *prev,
2047	       struct task_struct *next)
2048{
2049	struct mm_struct *mm, *oldmm;
2050
2051	prepare_task_switch(rq, prev, next);
2052
2053	mm = next->mm;
2054	oldmm = prev->active_mm;
2055	/*
2056	 * For paravirt, this is coupled with an exit in switch_to to
2057	 * combine the page table reload and the switch backend into
2058	 * one hypercall.
2059	 */
2060	arch_start_context_switch(prev);
2061
2062	if (!mm) {
2063		next->active_mm = oldmm;
2064		atomic_inc(&oldmm->mm_count);
2065		enter_lazy_tlb(oldmm, next);
2066	} else
2067		switch_mm(oldmm, mm, next);
2068
2069	if (!prev->mm) {
2070		prev->active_mm = NULL;
2071		rq->prev_mm = oldmm;
2072	}
2073	/*
2074	 * Since the runqueue lock will be released by the next
2075	 * task (which is an invalid locking op but in the case
2076	 * of the scheduler it's an obvious special-case), so we
2077	 * do an early lockdep release here:
 
2078	 */
2079#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2080	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2081#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2082
2083	/* Here we just switch the register state and the stack. */
2084	switch_to(prev, next, prev);
 
2085
2086	barrier();
2087	/*
2088	 * this_rq must be evaluated again because prev may have moved
2089	 * CPUs since it called schedule(), thus the 'rq' on its stack
2090	 * frame will be invalid.
2091	 */
2092	finish_task_switch(this_rq(), prev);
2093}
2094
2095/*
2096 * nr_running, nr_uninterruptible and nr_context_switches:
2097 *
2098 * externally visible scheduler statistics: current number of runnable
2099 * threads, current number of uninterruptible-sleeping threads, total
2100 * number of context switches performed since bootup.
2101 */
2102unsigned long nr_running(void)
2103{
2104	unsigned long i, sum = 0;
2105
2106	for_each_online_cpu(i)
2107		sum += cpu_rq(i)->nr_running;
2108
2109	return sum;
2110}
2111
2112unsigned long nr_uninterruptible(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
2113{
2114	unsigned long i, sum = 0;
2115
2116	for_each_possible_cpu(i)
2117		sum += cpu_rq(i)->nr_uninterruptible;
2118
2119	/*
2120	 * Since we read the counters lockless, it might be slightly
2121	 * inaccurate. Do not allow it to go below zero though:
2122	 */
2123	if (unlikely((long)sum < 0))
2124		sum = 0;
2125
2126	return sum;
2127}
 
2128
2129unsigned long long nr_context_switches(void)
2130{
2131	int i;
2132	unsigned long long sum = 0;
2133
2134	for_each_possible_cpu(i)
2135		sum += cpu_rq(i)->nr_switches;
2136
2137	return sum;
2138}
2139
2140unsigned long nr_iowait(void)
2141{
2142	unsigned long i, sum = 0;
2143
2144	for_each_possible_cpu(i)
2145		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2146
2147	return sum;
2148}
2149
2150unsigned long nr_iowait_cpu(int cpu)
2151{
2152	struct rq *this = cpu_rq(cpu);
2153	return atomic_read(&this->nr_iowait);
2154}
2155
2156unsigned long this_cpu_load(void)
2157{
2158	struct rq *this = this_rq();
2159	return this->cpu_load[0];
2160}
2161
2162
2163/*
2164 * Global load-average calculations
2165 *
2166 * We take a distributed and async approach to calculating the global load-avg
2167 * in order to minimize overhead.
2168 *
2169 * The global load average is an exponentially decaying average of nr_running +
2170 * nr_uninterruptible.
2171 *
2172 * Once every LOAD_FREQ:
2173 *
2174 *   nr_active = 0;
2175 *   for_each_possible_cpu(cpu)
2176 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2177 *
2178 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2179 *
2180 * Due to a number of reasons the above turns in the mess below:
2181 *
2182 *  - for_each_possible_cpu() is prohibitively expensive on machines with
2183 *    serious number of cpus, therefore we need to take a distributed approach
2184 *    to calculating nr_active.
2185 *
2186 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2187 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2188 *
2189 *    So assuming nr_active := 0 when we start out -- true per definition, we
2190 *    can simply take per-cpu deltas and fold those into a global accumulate
2191 *    to obtain the same result. See calc_load_fold_active().
2192 *
2193 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2194 *    across the machine, we assume 10 ticks is sufficient time for every
2195 *    cpu to have completed this task.
2196 *
2197 *    This places an upper-bound on the IRQ-off latency of the machine. Then
2198 *    again, being late doesn't loose the delta, just wrecks the sample.
2199 *
2200 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2201 *    this would add another cross-cpu cacheline miss and atomic operation
2202 *    to the wakeup path. Instead we increment on whatever cpu the task ran
2203 *    when it went into uninterruptible state and decrement on whatever cpu
2204 *    did the wakeup. This means that only the sum of nr_uninterruptible over
2205 *    all cpus yields the correct result.
2206 *
2207 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2208 */
2209
2210/* Variables and functions for calc_load */
2211static atomic_long_t calc_load_tasks;
2212static unsigned long calc_load_update;
2213unsigned long avenrun[3];
2214EXPORT_SYMBOL(avenrun); /* should be removed */
2215
2216/**
2217 * get_avenrun - get the load average array
2218 * @loads:	pointer to dest load array
2219 * @offset:	offset to add
2220 * @shift:	shift count to shift the result left
2221 *
2222 * These values are estimates at best, so no need for locking.
2223 */
2224void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2225{
2226	loads[0] = (avenrun[0] + offset) << shift;
2227	loads[1] = (avenrun[1] + offset) << shift;
2228	loads[2] = (avenrun[2] + offset) << shift;
2229}
2230
2231static long calc_load_fold_active(struct rq *this_rq)
2232{
2233	long nr_active, delta = 0;
2234
2235	nr_active = this_rq->nr_running;
2236	nr_active += (long) this_rq->nr_uninterruptible;
2237
2238	if (nr_active != this_rq->calc_load_active) {
2239		delta = nr_active - this_rq->calc_load_active;
2240		this_rq->calc_load_active = nr_active;
2241	}
2242
2243	return delta;
2244}
2245
2246/*
2247 * a1 = a0 * e + a * (1 - e)
2248 */
2249static unsigned long
2250calc_load(unsigned long load, unsigned long exp, unsigned long active)
2251{
2252	load *= exp;
2253	load += active * (FIXED_1 - exp);
2254	load += 1UL << (FSHIFT - 1);
2255	return load >> FSHIFT;
2256}
2257
2258#ifdef CONFIG_NO_HZ
2259/*
2260 * Handle NO_HZ for the global load-average.
2261 *
2262 * Since the above described distributed algorithm to compute the global
2263 * load-average relies on per-cpu sampling from the tick, it is affected by
2264 * NO_HZ.
2265 *
2266 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2267 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2268 * when we read the global state.
2269 *
2270 * Obviously reality has to ruin such a delightfully simple scheme:
2271 *
2272 *  - When we go NO_HZ idle during the window, we can negate our sample
2273 *    contribution, causing under-accounting.
 
2274 *
2275 *    We avoid this by keeping two idle-delta counters and flipping them
2276 *    when the window starts, thus separating old and new NO_HZ load.
 
2277 *
2278 *    The only trick is the slight shift in index flip for read vs write.
 
2279 *
2280 *        0s            5s            10s           15s
2281 *          +10           +10           +10           +10
2282 *        |-|-----------|-|-----------|-|-----------|-|
2283 *    r:0 0 1           1 0           0 1           1 0
2284 *    w:0 1 1           0 0           1 1           0 0
2285 *
2286 *    This ensures we'll fold the old idle contribution in this window while
2287 *    accumlating the new one.
2288 *
2289 *  - When we wake up from NO_HZ idle during the window, we push up our
2290 *    contribution, since we effectively move our sample point to a known
2291 *    busy state.
 
2292 *
2293 *    This is solved by pushing the window forward, and thus skipping the
2294 *    sample, for this cpu (effectively using the idle-delta for this cpu which
2295 *    was in effect at the time the window opened). This also solves the issue
2296 *    of having to deal with a cpu having been in NOHZ idle for multiple
2297 *    LOAD_FREQ intervals.
2298 *
2299 * When making the ILB scale, we should try to pull this in as well.
2300 */
2301static atomic_long_t calc_load_idle[2];
2302static int calc_load_idx;
2303
2304static inline int calc_load_write_idx(void)
2305{
2306	int idx = calc_load_idx;
2307
2308	/*
2309	 * See calc_global_nohz(), if we observe the new index, we also
2310	 * need to observe the new update time.
2311	 */
2312	smp_rmb();
2313
2314	/*
2315	 * If the folding window started, make sure we start writing in the
2316	 * next idle-delta.
2317	 */
2318	if (!time_before(jiffies, calc_load_update))
2319		idx++;
2320
2321	return idx & 1;
2322}
2323
2324static inline int calc_load_read_idx(void)
2325{
2326	return calc_load_idx & 1;
2327}
2328
2329void calc_load_enter_idle(void)
2330{
2331	struct rq *this_rq = this_rq();
2332	long delta;
2333
2334	/*
2335	 * We're going into NOHZ mode, if there's any pending delta, fold it
2336	 * into the pending idle delta.
2337	 */
2338	delta = calc_load_fold_active(this_rq);
2339	if (delta) {
2340		int idx = calc_load_write_idx();
2341		atomic_long_add(delta, &calc_load_idle[idx]);
2342	}
2343}
2344
2345void calc_load_exit_idle(void)
2346{
2347	struct rq *this_rq = this_rq();
2348
2349	/*
2350	 * If we're still before the sample window, we're done.
2351	 */
2352	if (time_before(jiffies, this_rq->calc_load_update))
2353		return;
2354
2355	/*
2356	 * We woke inside or after the sample window, this means we're already
2357	 * accounted through the nohz accounting, so skip the entire deal and
2358	 * sync up for the next window.
2359	 */
2360	this_rq->calc_load_update = calc_load_update;
2361	if (time_before(jiffies, this_rq->calc_load_update + 10))
2362		this_rq->calc_load_update += LOAD_FREQ;
2363}
2364
2365static long calc_load_fold_idle(void)
2366{
2367	int idx = calc_load_read_idx();
2368	long delta = 0;
2369
2370	if (atomic_long_read(&calc_load_idle[idx]))
2371		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2372
2373	return delta;
2374}
2375
2376/**
2377 * fixed_power_int - compute: x^n, in O(log n) time
2378 *
2379 * @x:         base of the power
2380 * @frac_bits: fractional bits of @x
2381 * @n:         power to raise @x to.
2382 *
2383 * By exploiting the relation between the definition of the natural power
2384 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2385 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2386 * (where: n_i \elem {0, 1}, the binary vector representing n),
2387 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2388 * of course trivially computable in O(log_2 n), the length of our binary
2389 * vector.
2390 */
2391static unsigned long
2392fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2393{
2394	unsigned long result = 1UL << frac_bits;
2395
2396	if (n) for (;;) {
2397		if (n & 1) {
2398			result *= x;
2399			result += 1UL << (frac_bits - 1);
2400			result >>= frac_bits;
2401		}
2402		n >>= 1;
2403		if (!n)
2404			break;
2405		x *= x;
2406		x += 1UL << (frac_bits - 1);
2407		x >>= frac_bits;
2408	}
2409
2410	return result;
2411}
2412
2413/*
2414 * a1 = a0 * e + a * (1 - e)
2415 *
2416 * a2 = a1 * e + a * (1 - e)
2417 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2418 *    = a0 * e^2 + a * (1 - e) * (1 + e)
2419 *
2420 * a3 = a2 * e + a * (1 - e)
2421 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2422 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2423 *
2424 *  ...
2425 *
2426 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2427 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2428 *    = a0 * e^n + a * (1 - e^n)
2429 *
2430 * [1] application of the geometric series:
2431 *
2432 *              n         1 - x^(n+1)
2433 *     S_n := \Sum x^i = -------------
2434 *             i=0          1 - x
2435 */
2436static unsigned long
2437calc_load_n(unsigned long load, unsigned long exp,
2438	    unsigned long active, unsigned int n)
2439{
2440
2441	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2442}
2443
2444/*
2445 * NO_HZ can leave us missing all per-cpu ticks calling
2446 * calc_load_account_active(), but since an idle CPU folds its delta into
2447 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2448 * in the pending idle delta if our idle period crossed a load cycle boundary.
2449 *
2450 * Once we've updated the global active value, we need to apply the exponential
2451 * weights adjusted to the number of cycles missed.
2452 */
2453static void calc_global_nohz(void)
2454{
2455	long delta, active, n;
2456
2457	if (!time_before(jiffies, calc_load_update + 10)) {
2458		/*
2459		 * Catch-up, fold however many we are behind still
2460		 */
2461		delta = jiffies - calc_load_update - 10;
2462		n = 1 + (delta / LOAD_FREQ);
2463
2464		active = atomic_long_read(&calc_load_tasks);
2465		active = active > 0 ? active * FIXED_1 : 0;
2466
2467		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2468		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2469		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2470
2471		calc_load_update += n * LOAD_FREQ;
2472	}
2473
2474	/*
2475	 * Flip the idle index...
2476	 *
2477	 * Make sure we first write the new time then flip the index, so that
2478	 * calc_load_write_idx() will see the new time when it reads the new
2479	 * index, this avoids a double flip messing things up.
2480	 */
2481	smp_wmb();
2482	calc_load_idx++;
2483}
2484#else /* !CONFIG_NO_HZ */
2485
2486static inline long calc_load_fold_idle(void) { return 0; }
2487static inline void calc_global_nohz(void) { }
2488
2489#endif /* CONFIG_NO_HZ */
2490
2491/*
2492 * calc_load - update the avenrun load estimates 10 ticks after the
2493 * CPUs have updated calc_load_tasks.
2494 */
2495void calc_global_load(unsigned long ticks)
2496{
2497	long active, delta;
2498
2499	if (time_before(jiffies, calc_load_update + 10))
2500		return;
2501
2502	/*
2503	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2504	 */
2505	delta = calc_load_fold_idle();
2506	if (delta)
2507		atomic_long_add(delta, &calc_load_tasks);
2508
2509	active = atomic_long_read(&calc_load_tasks);
2510	active = active > 0 ? active * FIXED_1 : 0;
2511
2512	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2513	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2514	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2515
2516	calc_load_update += LOAD_FREQ;
2517
2518	/*
2519	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2520	 */
2521	calc_global_nohz();
2522}
2523
2524/*
2525 * Called from update_cpu_load() to periodically update this CPU's
2526 * active count.
2527 */
2528static void calc_load_account_active(struct rq *this_rq)
2529{
2530	long delta;
2531
2532	if (time_before(jiffies, this_rq->calc_load_update))
2533		return;
2534
2535	delta  = calc_load_fold_active(this_rq);
2536	if (delta)
2537		atomic_long_add(delta, &calc_load_tasks);
2538
2539	this_rq->calc_load_update += LOAD_FREQ;
2540}
2541
2542/*
2543 * End of global load-average stuff
2544 */
2545
2546/*
2547 * The exact cpuload at various idx values, calculated at every tick would be
2548 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2549 *
2550 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2551 * on nth tick when cpu may be busy, then we have:
2552 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2553 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2554 *
2555 * decay_load_missed() below does efficient calculation of
2556 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2557 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2558 *
2559 * The calculation is approximated on a 128 point scale.
2560 * degrade_zero_ticks is the number of ticks after which load at any
2561 * particular idx is approximated to be zero.
2562 * degrade_factor is a precomputed table, a row for each load idx.
2563 * Each column corresponds to degradation factor for a power of two ticks,
2564 * based on 128 point scale.
2565 * Example:
2566 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2567 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2568 *
2569 * With this power of 2 load factors, we can degrade the load n times
2570 * by looking at 1 bits in n and doing as many mult/shift instead of
2571 * n mult/shifts needed by the exact degradation.
2572 */
2573#define DEGRADE_SHIFT		7
2574static const unsigned char
2575		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2576static const unsigned char
2577		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2578					{0, 0, 0, 0, 0, 0, 0, 0},
2579					{64, 32, 8, 0, 0, 0, 0, 0},
2580					{96, 72, 40, 12, 1, 0, 0},
2581					{112, 98, 75, 43, 15, 1, 0},
2582					{120, 112, 98, 76, 45, 16, 2} };
2583
2584/*
2585 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2586 * would be when CPU is idle and so we just decay the old load without
2587 * adding any new load.
2588 */
2589static unsigned long
2590decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2591{
2592	int j = 0;
2593
2594	if (!missed_updates)
2595		return load;
2596
2597	if (missed_updates >= degrade_zero_ticks[idx])
2598		return 0;
2599
2600	if (idx == 1)
2601		return load >> missed_updates;
2602
2603	while (missed_updates) {
2604		if (missed_updates % 2)
2605			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2606
2607		missed_updates >>= 1;
2608		j++;
2609	}
2610	return load;
2611}
2612
2613/*
2614 * Update rq->cpu_load[] statistics. This function is usually called every
2615 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2616 * every tick. We fix it up based on jiffies.
2617 */
2618static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2619			      unsigned long pending_updates)
2620{
2621	int i, scale;
2622
2623	this_rq->nr_load_updates++;
2624
2625	/* Update our load: */
2626	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2627	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2628		unsigned long old_load, new_load;
2629
2630		/* scale is effectively 1 << i now, and >> i divides by scale */
2631
2632		old_load = this_rq->cpu_load[i];
2633		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2634		new_load = this_load;
2635		/*
2636		 * Round up the averaging division if load is increasing. This
2637		 * prevents us from getting stuck on 9 if the load is 10, for
2638		 * example.
2639		 */
2640		if (new_load > old_load)
2641			new_load += scale - 1;
2642
2643		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2644	}
2645
2646	sched_avg_update(this_rq);
2647}
2648
2649#ifdef CONFIG_NO_HZ
2650/*
2651 * There is no sane way to deal with nohz on smp when using jiffies because the
2652 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2653 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2654 *
2655 * Therefore we cannot use the delta approach from the regular tick since that
2656 * would seriously skew the load calculation. However we'll make do for those
2657 * updates happening while idle (nohz_idle_balance) or coming out of idle
2658 * (tick_nohz_idle_exit).
2659 *
2660 * This means we might still be one tick off for nohz periods.
2661 */
2662
2663/*
2664 * Called from nohz_idle_balance() to update the load ratings before doing the
2665 * idle balance.
2666 */
2667void update_idle_cpu_load(struct rq *this_rq)
2668{
2669	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2670	unsigned long load = this_rq->load.weight;
2671	unsigned long pending_updates;
2672
2673	/*
2674	 * bail if there's load or we're actually up-to-date.
2675	 */
2676	if (load || curr_jiffies == this_rq->last_load_update_tick)
2677		return;
2678
2679	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2680	this_rq->last_load_update_tick = curr_jiffies;
2681
2682	__update_cpu_load(this_rq, load, pending_updates);
2683}
2684
2685/*
2686 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2687 */
2688void update_cpu_load_nohz(void)
2689{
2690	struct rq *this_rq = this_rq();
2691	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2692	unsigned long pending_updates;
2693
2694	if (curr_jiffies == this_rq->last_load_update_tick)
2695		return;
2696
2697	raw_spin_lock(&this_rq->lock);
2698	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2699	if (pending_updates) {
2700		this_rq->last_load_update_tick = curr_jiffies;
2701		/*
2702		 * We were idle, this means load 0, the current load might be
2703		 * !0 due to remote wakeups and the sort.
2704		 */
2705		__update_cpu_load(this_rq, 0, pending_updates);
2706	}
2707	raw_spin_unlock(&this_rq->lock);
2708}
2709#endif /* CONFIG_NO_HZ */
2710
2711/*
2712 * Called from scheduler_tick()
2713 */
2714static void update_cpu_load_active(struct rq *this_rq)
2715{
2716	/*
2717	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2718	 */
2719	this_rq->last_load_update_tick = jiffies;
2720	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2721
2722	calc_load_account_active(this_rq);
2723}
2724
2725#ifdef CONFIG_SMP
2726
2727/*
2728 * sched_exec - execve() is a valuable balancing opportunity, because at
2729 * this point the task has the smallest effective memory and cache footprint.
2730 */
2731void sched_exec(void)
2732{
2733	struct task_struct *p = current;
2734	unsigned long flags;
2735	int dest_cpu;
2736
2737	raw_spin_lock_irqsave(&p->pi_lock, flags);
2738	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2739	if (dest_cpu == smp_processor_id())
2740		goto unlock;
2741
2742	if (likely(cpu_active(dest_cpu))) {
2743		struct migration_arg arg = { p, dest_cpu };
2744
2745		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2746		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2747		return;
2748	}
2749unlock:
2750	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2751}
2752
2753#endif
2754
2755DEFINE_PER_CPU(struct kernel_stat, kstat);
2756DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2757
2758EXPORT_PER_CPU_SYMBOL(kstat);
2759EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2760
2761/*
2762 * Return any ns on the sched_clock that have not yet been accounted in
2763 * @p in case that task is currently running.
2764 *
2765 * Called with task_rq_lock() held on @rq.
2766 */
2767static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2768{
2769	u64 ns = 0;
2770
2771	if (task_current(rq, p)) {
2772		update_rq_clock(rq);
2773		ns = rq->clock_task - p->se.exec_start;
2774		if ((s64)ns < 0)
2775			ns = 0;
2776	}
2777
2778	return ns;
2779}
2780
2781unsigned long long task_delta_exec(struct task_struct *p)
2782{
2783	unsigned long flags;
2784	struct rq *rq;
2785	u64 ns = 0;
2786
2787	rq = task_rq_lock(p, &flags);
2788	ns = do_task_delta_exec(p, rq);
2789	task_rq_unlock(rq, p, &flags);
2790
2791	return ns;
2792}
2793
2794/*
2795 * Return accounted runtime for the task.
2796 * In case the task is currently running, return the runtime plus current's
2797 * pending runtime that have not been accounted yet.
2798 */
2799unsigned long long task_sched_runtime(struct task_struct *p)
2800{
2801	unsigned long flags;
2802	struct rq *rq;
2803	u64 ns = 0;
2804
2805	rq = task_rq_lock(p, &flags);
2806	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2807	task_rq_unlock(rq, p, &flags);
2808
2809	return ns;
2810}
2811
2812#ifdef CONFIG_CGROUP_CPUACCT
2813struct cgroup_subsys cpuacct_subsys;
2814struct cpuacct root_cpuacct;
 
 
 
 
2815#endif
2816
2817static inline void task_group_account_field(struct task_struct *p, int index,
2818					    u64 tmp)
2819{
2820#ifdef CONFIG_CGROUP_CPUACCT
2821	struct kernel_cpustat *kcpustat;
2822	struct cpuacct *ca;
2823#endif
2824	/*
2825	 * Since all updates are sure to touch the root cgroup, we
2826	 * get ourselves ahead and touch it first. If the root cgroup
2827	 * is the only cgroup, then nothing else should be necessary.
2828	 *
2829	 */
2830	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
 
 
 
 
 
 
2831
2832#ifdef CONFIG_CGROUP_CPUACCT
2833	if (unlikely(!cpuacct_subsys.active))
2834		return;
2835
2836	rcu_read_lock();
2837	ca = task_ca(p);
2838	while (ca && (ca != &root_cpuacct)) {
2839		kcpustat = this_cpu_ptr(ca->cpustat);
2840		kcpustat->cpustat[index] += tmp;
2841		ca = parent_ca(ca);
2842	}
2843	rcu_read_unlock();
2844#endif
2845}
2846
2847
2848/*
2849 * Account user cpu time to a process.
2850 * @p: the process that the cpu time gets accounted to
2851 * @cputime: the cpu time spent in user space since the last update
2852 * @cputime_scaled: cputime scaled by cpu frequency
2853 */
2854void account_user_time(struct task_struct *p, cputime_t cputime,
2855		       cputime_t cputime_scaled)
2856{
2857	int index;
 
 
 
2858
2859	/* Add user time to process. */
2860	p->utime += cputime;
2861	p->utimescaled += cputime_scaled;
2862	account_group_user_time(p, cputime);
2863
2864	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2865
2866	/* Add user time to cpustat. */
2867	task_group_account_field(p, index, (__force u64) cputime);
 
 
2868
2869	/* Account for user time used */
2870	acct_update_integrals(p);
2871}
2872
2873/*
2874 * Account guest cpu time to a process.
2875 * @p: the process that the cpu time gets accounted to
2876 * @cputime: the cpu time spent in virtual machine since the last update
2877 * @cputime_scaled: cputime scaled by cpu frequency
2878 */
2879static void account_guest_time(struct task_struct *p, cputime_t cputime,
2880			       cputime_t cputime_scaled)
2881{
2882	u64 *cpustat = kcpustat_this_cpu->cpustat;
2883
2884	/* Add guest time to process. */
2885	p->utime += cputime;
2886	p->utimescaled += cputime_scaled;
2887	account_group_user_time(p, cputime);
2888	p->gtime += cputime;
2889
2890	/* Add guest time to cpustat. */
2891	if (TASK_NICE(p) > 0) {
2892		cpustat[CPUTIME_NICE] += (__force u64) cputime;
2893		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2894	} else {
2895		cpustat[CPUTIME_USER] += (__force u64) cputime;
2896		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2897	}
2898}
2899
2900/*
2901 * Account system cpu time to a process and desired cpustat field
2902 * @p: the process that the cpu time gets accounted to
2903 * @cputime: the cpu time spent in kernel space since the last update
2904 * @cputime_scaled: cputime scaled by cpu frequency
2905 * @target_cputime64: pointer to cpustat field that has to be updated
2906 */
2907static inline
2908void __account_system_time(struct task_struct *p, cputime_t cputime,
2909			cputime_t cputime_scaled, int index)
2910{
2911	/* Add system time to process. */
2912	p->stime += cputime;
2913	p->stimescaled += cputime_scaled;
2914	account_group_system_time(p, cputime);
2915
2916	/* Add system time to cpustat. */
2917	task_group_account_field(p, index, (__force u64) cputime);
2918
2919	/* Account for system time used */
2920	acct_update_integrals(p);
2921}
 
 
 
2922
2923/*
2924 * Account system cpu time to a process.
2925 * @p: the process that the cpu time gets accounted to
2926 * @hardirq_offset: the offset to subtract from hardirq_count()
2927 * @cputime: the cpu time spent in kernel space since the last update
2928 * @cputime_scaled: cputime scaled by cpu frequency
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2929 */
2930void account_system_time(struct task_struct *p, int hardirq_offset,
2931			 cputime_t cputime, cputime_t cputime_scaled)
2932{
2933	int index;
2934
2935	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2936		account_guest_time(p, cputime, cputime_scaled);
2937		return;
2938	}
2939
2940	if (hardirq_count() - hardirq_offset)
2941		index = CPUTIME_IRQ;
2942	else if (in_serving_softirq())
2943		index = CPUTIME_SOFTIRQ;
2944	else
2945		index = CPUTIME_SYSTEM;
2946
2947	__account_system_time(p, cputime, cputime_scaled, index);
2948}
2949
2950/*
2951 * Account for involuntary wait time.
2952 * @cputime: the cpu time spent in involuntary wait
2953 */
2954void account_steal_time(cputime_t cputime)
2955{
2956	u64 *cpustat = kcpustat_this_cpu->cpustat;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2957
2958	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2959}
2960
2961/*
2962 * Account for idle time.
2963 * @cputime: the cpu time spent in idle wait
2964 */
2965void account_idle_time(cputime_t cputime)
2966{
2967	u64 *cpustat = kcpustat_this_cpu->cpustat;
2968	struct rq *rq = this_rq();
2969
2970	if (atomic_read(&rq->nr_iowait) > 0)
2971		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2972	else
2973		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2974}
2975
2976static __always_inline bool steal_account_process_tick(void)
2977{
2978#ifdef CONFIG_PARAVIRT
2979	if (static_key_false(&paravirt_steal_enabled)) {
2980		u64 steal, st = 0;
2981
2982		steal = paravirt_steal_clock(smp_processor_id());
2983		steal -= this_rq()->prev_steal_time;
2984
2985		st = steal_ticks(steal);
2986		this_rq()->prev_steal_time += st * TICK_NSEC;
2987
2988		account_steal_time(st);
2989		return st;
2990	}
2991#endif
2992	return false;
2993}
2994
2995#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2996
2997#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2998/*
2999 * Account a tick to a process and cpustat
3000 * @p: the process that the cpu time gets accounted to
3001 * @user_tick: is the tick from userspace
3002 * @rq: the pointer to rq
3003 *
3004 * Tick demultiplexing follows the order
3005 * - pending hardirq update
3006 * - pending softirq update
3007 * - user_time
3008 * - idle_time
3009 * - system time
3010 *   - check for guest_time
3011 *   - else account as system_time
3012 *
3013 * Check for hardirq is done both for system and user time as there is
3014 * no timer going off while we are on hardirq and hence we may never get an
3015 * opportunity to update it solely in system time.
3016 * p->stime and friends are only updated on system time and not on irq
3017 * softirq as those do not count in task exec_runtime any more.
3018 */
3019static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3020						struct rq *rq)
3021{
3022	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3023	u64 *cpustat = kcpustat_this_cpu->cpustat;
3024
3025	if (steal_account_process_tick())
3026		return;
3027
3028	if (irqtime_account_hi_update()) {
3029		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
3030	} else if (irqtime_account_si_update()) {
3031		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
3032	} else if (this_cpu_ksoftirqd() == p) {
3033		/*
3034		 * ksoftirqd time do not get accounted in cpu_softirq_time.
3035		 * So, we have to handle it separately here.
3036		 * Also, p->stime needs to be updated for ksoftirqd.
3037		 */
3038		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3039					CPUTIME_SOFTIRQ);
3040	} else if (user_tick) {
3041		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3042	} else if (p == rq->idle) {
3043		account_idle_time(cputime_one_jiffy);
3044	} else if (p->flags & PF_VCPU) { /* System time or guest time */
3045		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3046	} else {
3047		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3048					CPUTIME_SYSTEM);
3049	}
3050}
3051
3052static void irqtime_account_idle_ticks(int ticks)
3053{
3054	int i;
3055	struct rq *rq = this_rq();
3056
3057	for (i = 0; i < ticks; i++)
3058		irqtime_account_process_tick(current, 0, rq);
3059}
3060#else /* CONFIG_IRQ_TIME_ACCOUNTING */
3061static void irqtime_account_idle_ticks(int ticks) {}
3062static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3063						struct rq *rq) {}
3064#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3065
3066/*
3067 * Account a single tick of cpu time.
3068 * @p: the process that the cpu time gets accounted to
3069 * @user_tick: indicates if the tick is a user or a system tick
3070 */
3071void account_process_tick(struct task_struct *p, int user_tick)
3072{
3073	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3074	struct rq *rq = this_rq();
3075
3076	if (sched_clock_irqtime) {
3077		irqtime_account_process_tick(p, user_tick, rq);
3078		return;
3079	}
3080
3081	if (steal_account_process_tick())
3082		return;
3083
3084	if (user_tick)
3085		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3086	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3087		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3088				    one_jiffy_scaled);
3089	else
3090		account_idle_time(cputime_one_jiffy);
3091}
3092
3093/*
3094 * Account multiple ticks of steal time.
3095 * @p: the process from which the cpu time has been stolen
3096 * @ticks: number of stolen ticks
3097 */
3098void account_steal_ticks(unsigned long ticks)
3099{
3100	account_steal_time(jiffies_to_cputime(ticks));
3101}
3102
3103/*
3104 * Account multiple ticks of idle time.
3105 * @ticks: number of stolen ticks
3106 */
3107void account_idle_ticks(unsigned long ticks)
3108{
 
 
3109
3110	if (sched_clock_irqtime) {
3111		irqtime_account_idle_ticks(ticks);
3112		return;
3113	}
3114
3115	account_idle_time(jiffies_to_cputime(ticks));
3116}
3117
3118#endif
3119
3120/*
3121 * Use precise platform statistics if available:
3122 */
3123#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3124void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3125{
3126	*ut = p->utime;
3127	*st = p->stime;
3128}
 
3129
3130void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3131{
3132	struct task_cputime cputime;
3133
3134	thread_group_cputime(p, &cputime);
3135
3136	*ut = cputime.utime;
3137	*st = cputime.stime;
3138}
3139#else
3140
3141#ifndef nsecs_to_cputime
3142# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
 
3143#endif
3144
3145static cputime_t scale_utime(cputime_t utime, cputime_t rtime, cputime_t total)
3146{
3147	u64 temp = (__force u64) rtime;
3148
3149	temp *= (__force u64) utime;
3150
3151	if (sizeof(cputime_t) == 4)
3152		temp = div_u64(temp, (__force u32) total);
3153	else
3154		temp = div64_u64(temp, (__force u64) total);
3155
3156	return (__force cputime_t) temp;
3157}
3158
3159void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3160{
3161	cputime_t rtime, utime = p->utime, total = utime + p->stime;
3162
3163	/*
3164	 * Use CFS's precise accounting:
3165	 */
3166	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3167
3168	if (total)
3169		utime = scale_utime(utime, rtime, total);
3170	else
3171		utime = rtime;
3172
3173	/*
3174	 * Compare with previous values, to keep monotonicity:
3175	 */
3176	p->prev_utime = max(p->prev_utime, utime);
3177	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
3178
3179	*ut = p->prev_utime;
3180	*st = p->prev_stime;
3181}
3182
3183/*
3184 * Must be called with siglock held.
 
3185 */
3186void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3187{
3188	struct signal_struct *sig = p->signal;
3189	struct task_cputime cputime;
3190	cputime_t rtime, utime, total;
3191
3192	thread_group_cputime(p, &cputime);
3193
3194	total = cputime.utime + cputime.stime;
3195	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3196
3197	if (total)
3198		utime = scale_utime(cputime.utime, rtime, total);
3199	else
3200		utime = rtime;
3201
3202	sig->prev_utime = max(sig->prev_utime, utime);
3203	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3204
3205	*ut = sig->prev_utime;
3206	*st = sig->prev_stime;
3207}
3208#endif
3209
3210/*
3211 * This function gets called by the timer code, with HZ frequency.
3212 * We call it with interrupts disabled.
3213 */
3214void scheduler_tick(void)
3215{
3216	int cpu = smp_processor_id();
3217	struct rq *rq = cpu_rq(cpu);
3218	struct task_struct *curr = rq->curr;
3219
3220	sched_clock_tick();
3221
3222	raw_spin_lock(&rq->lock);
3223	update_rq_clock(rq);
3224	update_cpu_load_active(rq);
3225	curr->sched_class->task_tick(rq, curr, 0);
3226	raw_spin_unlock(&rq->lock);
3227
3228	perf_event_task_tick();
3229
3230#ifdef CONFIG_SMP
3231	rq->idle_balance = idle_cpu(cpu);
3232	trigger_load_balance(rq, cpu);
3233#endif
3234}
3235
3236notrace unsigned long get_parent_ip(unsigned long addr)
3237{
3238	if (in_lock_functions(addr)) {
3239		addr = CALLER_ADDR2;
3240		if (in_lock_functions(addr))
3241			addr = CALLER_ADDR3;
3242	}
3243	return addr;
3244}
3245
3246#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3247				defined(CONFIG_PREEMPT_TRACER))
3248
3249void __kprobes add_preempt_count(int val)
3250{
3251#ifdef CONFIG_DEBUG_PREEMPT
3252	/*
3253	 * Underflow?
3254	 */
3255	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3256		return;
3257#endif
3258	preempt_count() += val;
3259#ifdef CONFIG_DEBUG_PREEMPT
3260	/*
3261	 * Spinlock count overflowing soon?
3262	 */
3263	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3264				PREEMPT_MASK - 10);
3265#endif
 
 
 
 
 
 
 
 
 
 
 
3266	if (preempt_count() == val)
3267		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3268}
3269EXPORT_SYMBOL(add_preempt_count);
3270
3271void __kprobes sub_preempt_count(int val)
3272{
3273#ifdef CONFIG_DEBUG_PREEMPT
3274	/*
3275	 * Underflow?
3276	 */
3277	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3278		return;
3279	/*
3280	 * Is the spinlock portion underflowing?
3281	 */
3282	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3283			!(preempt_count() & PREEMPT_MASK)))
3284		return;
3285#endif
3286
3287	if (preempt_count() == val)
3288		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3289	preempt_count() -= val;
3290}
3291EXPORT_SYMBOL(sub_preempt_count);
 
 
 
 
 
 
3292
 
 
 
 
 
 
3293#endif
 
3294
3295/*
3296 * Print scheduling while atomic bug:
3297 */
3298static noinline void __schedule_bug(struct task_struct *prev)
3299{
 
 
 
3300	if (oops_in_progress)
3301		return;
3302
3303	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3304		prev->comm, prev->pid, preempt_count());
3305
3306	debug_show_held_locks(prev);
3307	print_modules();
3308	if (irqs_disabled())
3309		print_irqtrace_events(prev);
 
 
 
 
 
 
 
 
 
3310	dump_stack();
3311	add_taint(TAINT_WARN);
3312}
3313
3314/*
3315 * Various schedule()-time debugging checks and statistics:
3316 */
3317static inline void schedule_debug(struct task_struct *prev)
3318{
3319	/*
3320	 * Test if we are atomic. Since do_exit() needs to call into
3321	 * schedule() atomically, we ignore that path for now.
3322	 * Otherwise, whine if we are scheduling when we should not be.
3323	 */
3324	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
 
 
 
 
 
 
 
 
 
3325		__schedule_bug(prev);
 
 
3326	rcu_sleep_check();
3327
3328	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3329
3330	schedstat_inc(this_rq(), sched_count);
3331}
3332
3333static void put_prev_task(struct rq *rq, struct task_struct *prev)
3334{
3335	if (prev->on_rq || rq->skip_clock_update < 0)
3336		update_rq_clock(rq);
3337	prev->sched_class->put_prev_task(rq, prev);
3338}
3339
3340/*
3341 * Pick up the highest-prio task:
3342 */
3343static inline struct task_struct *
3344pick_next_task(struct rq *rq)
3345{
3346	const struct sched_class *class;
3347	struct task_struct *p;
3348
3349	/*
3350	 * Optimization: we know that if all tasks are in
3351	 * the fair class we can call that function directly:
 
 
3352	 */
3353	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3354		p = fair_sched_class.pick_next_task(rq);
3355		if (likely(p))
3356			return p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3357	}
 
 
 
3358
3359	for_each_class(class) {
3360		p = class->pick_next_task(rq);
3361		if (p)
3362			return p;
3363	}
3364
3365	BUG(); /* the idle class will always have a runnable task */
 
3366}
3367
3368/*
3369 * __schedule() is the main scheduler function.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3370 */
3371static void __sched __schedule(void)
3372{
3373	struct task_struct *prev, *next;
3374	unsigned long *switch_count;
 
3375	struct rq *rq;
3376	int cpu;
3377
3378need_resched:
3379	preempt_disable();
3380	cpu = smp_processor_id();
3381	rq = cpu_rq(cpu);
3382	rcu_note_context_switch(cpu);
3383	prev = rq->curr;
3384
3385	schedule_debug(prev);
3386
3387	if (sched_feat(HRTICK))
3388		hrtick_clear(rq);
3389
3390	raw_spin_lock_irq(&rq->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3391
3392	switch_count = &prev->nivcsw;
3393	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3394		if (unlikely(signal_pending_state(prev->state, prev))) {
3395			prev->state = TASK_RUNNING;
3396		} else {
3397			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3398			prev->on_rq = 0;
3399
3400			/*
3401			 * If a worker went to sleep, notify and ask workqueue
3402			 * whether it wants to wake up a task to maintain
3403			 * concurrency.
3404			 */
3405			if (prev->flags & PF_WQ_WORKER) {
3406				struct task_struct *to_wakeup;
3407
3408				to_wakeup = wq_worker_sleeping(prev, cpu);
3409				if (to_wakeup)
3410					try_to_wake_up_local(to_wakeup);
3411			}
3412		}
3413		switch_count = &prev->nvcsw;
3414	}
3415
3416	pre_schedule(rq, prev);
3417
3418	if (unlikely(!rq->nr_running))
3419		idle_balance(cpu, rq);
3420
3421	put_prev_task(rq, prev);
3422	next = pick_next_task(rq);
3423	clear_tsk_need_resched(prev);
3424	rq->skip_clock_update = 0;
3425
3426	if (likely(prev != next)) {
3427		rq->nr_switches++;
3428		rq->curr = next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3429		++*switch_count;
3430
3431		context_switch(rq, prev, next); /* unlocks the rq */
3432		/*
3433		 * The context switch have flipped the stack from under us
3434		 * and restored the local variables which were saved when
3435		 * this task called schedule() in the past. prev == current
3436		 * is still correct, but it can be moved to another cpu/rq.
3437		 */
3438		cpu = smp_processor_id();
3439		rq = cpu_rq(cpu);
3440	} else
3441		raw_spin_unlock_irq(&rq->lock);
 
 
 
 
 
 
 
 
3442
3443	post_schedule(rq);
 
3444
3445	sched_preempt_enable_no_resched();
3446	if (need_resched())
3447		goto need_resched;
3448}
3449
3450static inline void sched_submit_work(struct task_struct *tsk)
3451{
3452	if (!tsk->state || tsk_is_pi_blocked(tsk))
3453		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3454	/*
3455	 * If we are going to sleep and we have plugged IO queued,
3456	 * make sure to submit it to avoid deadlocks.
3457	 */
3458	if (blk_needs_flush_plug(tsk))
3459		blk_schedule_flush_plug(tsk);
3460}
3461
3462asmlinkage void __sched schedule(void)
 
 
 
 
 
 
3463{
3464	struct task_struct *tsk = current;
3465
3466	sched_submit_work(tsk);
3467	__schedule();
 
 
 
 
 
3468}
3469EXPORT_SYMBOL(schedule);
3470
3471/**
3472 * schedule_preempt_disabled - called with preemption disabled
 
 
 
 
3473 *
3474 * Returns with preemption disabled. Note: preempt_count must be 1
 
3475 */
3476void __sched schedule_preempt_disabled(void)
3477{
3478	sched_preempt_enable_no_resched();
3479	schedule();
3480	preempt_disable();
3481}
3482
3483#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3484
3485static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3486{
3487	if (lock->owner != owner)
3488		return false;
3489
3490	/*
3491	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3492	 * lock->owner still matches owner, if that fails, owner might
3493	 * point to free()d memory, if it still matches, the rcu_read_lock()
3494	 * ensures the memory stays valid.
 
3495	 */
3496	barrier();
3497
3498	return owner->on_cpu;
 
3499}
3500
3501/*
3502 * Look out! "owner" is an entirely speculative pointer
3503 * access and not reliable.
3504 */
3505int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3506{
3507	if (!sched_feat(OWNER_SPIN))
3508		return 0;
3509
3510	rcu_read_lock();
3511	while (owner_running(lock, owner)) {
3512		if (need_resched())
3513			break;
3514
3515		arch_mutex_cpu_relax();
3516	}
3517	rcu_read_unlock();
3518
3519	/*
3520	 * We break out the loop above on need_resched() and when the
3521	 * owner changed, which is a sign for heavy contention. Return
3522	 * success only when lock->owner is NULL.
 
 
 
 
 
3523	 */
3524	return lock->owner == NULL;
 
 
3525}
3526#endif
3527
3528#ifdef CONFIG_PREEMPT
3529/*
3530 * this is the entry point to schedule() from in-kernel preemption
3531 * off of preempt_enable. Kernel preemptions off return from interrupt
3532 * occur there and call schedule directly.
3533 */
3534asmlinkage void __sched notrace preempt_schedule(void)
3535{
3536	struct thread_info *ti = current_thread_info();
3537
3538	/*
3539	 * If there is a non-zero preempt_count or interrupts are disabled,
3540	 * we do not want to preempt the current task. Just return..
3541	 */
3542	if (likely(ti->preempt_count || irqs_disabled()))
3543		return;
3544
 
 
3545	do {
3546		add_preempt_count_notrace(PREEMPT_ACTIVE);
3547		__schedule();
3548		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3549
3550		/*
3551		 * Check again in case we missed a preemption opportunity
3552		 * between schedule and now.
 
 
 
 
 
 
 
 
 
3553		 */
3554		barrier();
3555	} while (need_resched());
3556}
3557EXPORT_SYMBOL(preempt_schedule);
3558
3559/*
3560 * this is the entry point to schedule() from kernel preemption
3561 * off of irq context.
3562 * Note, that this is called and return with irqs disabled. This will
3563 * protect us against recursive calling from irq.
3564 */
3565asmlinkage void __sched preempt_schedule_irq(void)
3566{
3567	struct thread_info *ti = current_thread_info();
3568
3569	/* Catch callers which need to be fixed */
3570	BUG_ON(ti->preempt_count || !irqs_disabled());
3571
3572	do {
3573		add_preempt_count(PREEMPT_ACTIVE);
3574		local_irq_enable();
3575		__schedule();
3576		local_irq_disable();
3577		sub_preempt_count(PREEMPT_ACTIVE);
3578
3579		/*
3580		 * Check again in case we missed a preemption opportunity
3581		 * between schedule and now.
3582		 */
3583		barrier();
3584	} while (need_resched());
3585}
3586
3587#endif /* CONFIG_PREEMPT */
3588
3589int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3590			  void *key)
3591{
3592	return try_to_wake_up(curr->private, mode, wake_flags);
3593}
3594EXPORT_SYMBOL(default_wake_function);
3595
3596/*
3597 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3598 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3599 * number) then we wake all the non-exclusive tasks and one exclusive task.
3600 *
3601 * There are circumstances in which we can try to wake a task which has already
3602 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3603 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3604 */
3605static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3606			int nr_exclusive, int wake_flags, void *key)
3607{
3608	wait_queue_t *curr, *next;
3609
3610	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3611		unsigned flags = curr->flags;
 
 
3612
3613		if (curr->func(curr, mode, wake_flags, key) &&
3614				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3615			break;
3616	}
3617}
 
 
3618
3619/**
3620 * __wake_up - wake up threads blocked on a waitqueue.
3621 * @q: the waitqueue
3622 * @mode: which threads
3623 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3624 * @key: is directly passed to the wakeup function
3625 *
3626 * It may be assumed that this function implies a write memory barrier before
3627 * changing the task state if and only if any tasks are woken up.
3628 */
3629void __wake_up(wait_queue_head_t *q, unsigned int mode,
3630			int nr_exclusive, void *key)
3631{
3632	unsigned long flags;
3633
3634	spin_lock_irqsave(&q->lock, flags);
3635	__wake_up_common(q, mode, nr_exclusive, 0, key);
3636	spin_unlock_irqrestore(&q->lock, flags);
3637}
3638EXPORT_SYMBOL(__wake_up);
3639
3640/*
3641 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3642 */
3643void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3644{
3645	__wake_up_common(q, mode, nr, 0, NULL);
3646}
3647EXPORT_SYMBOL_GPL(__wake_up_locked);
3648
3649void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3650{
3651	__wake_up_common(q, mode, 1, 0, key);
3652}
3653EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3654
3655/**
3656 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3657 * @q: the waitqueue
3658 * @mode: which threads
3659 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3660 * @key: opaque value to be passed to wakeup targets
3661 *
3662 * The sync wakeup differs that the waker knows that it will schedule
3663 * away soon, so while the target thread will be woken up, it will not
3664 * be migrated to another CPU - ie. the two threads are 'synchronized'
3665 * with each other. This can prevent needless bouncing between CPUs.
3666 *
3667 * On UP it can prevent extra preemption.
3668 *
3669 * It may be assumed that this function implies a write memory barrier before
3670 * changing the task state if and only if any tasks are woken up.
3671 */
3672void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3673			int nr_exclusive, void *key)
3674{
3675	unsigned long flags;
3676	int wake_flags = WF_SYNC;
3677
3678	if (unlikely(!q))
3679		return;
3680
3681	if (unlikely(!nr_exclusive))
3682		wake_flags = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3683
3684	spin_lock_irqsave(&q->lock, flags);
3685	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3686	spin_unlock_irqrestore(&q->lock, flags);
3687}
3688EXPORT_SYMBOL_GPL(__wake_up_sync_key);
 
 
3689
3690/*
3691 * __wake_up_sync - see __wake_up_sync_key()
 
 
 
3692 */
3693void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3694{
3695	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3696}
3697EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3698
3699/**
3700 * complete: - signals a single thread waiting on this completion
3701 * @x:  holds the state of this particular completion
3702 *
3703 * This will wake up a single thread waiting on this completion. Threads will be
3704 * awakened in the same order in which they were queued.
3705 *
3706 * See also complete_all(), wait_for_completion() and related routines.
3707 *
3708 * It may be assumed that this function implies a write memory barrier before
3709 * changing the task state if and only if any tasks are woken up.
3710 */
3711void complete(struct completion *x)
3712{
3713	unsigned long flags;
3714
3715	spin_lock_irqsave(&x->wait.lock, flags);
3716	x->done++;
3717	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3718	spin_unlock_irqrestore(&x->wait.lock, flags);
3719}
3720EXPORT_SYMBOL(complete);
3721
3722/**
3723 * complete_all: - signals all threads waiting on this completion
3724 * @x:  holds the state of this particular completion
3725 *
3726 * This will wake up all threads waiting on this particular completion event.
3727 *
3728 * It may be assumed that this function implies a write memory barrier before
3729 * changing the task state if and only if any tasks are woken up.
3730 */
3731void complete_all(struct completion *x)
3732{
3733	unsigned long flags;
3734
3735	spin_lock_irqsave(&x->wait.lock, flags);
3736	x->done += UINT_MAX/2;
3737	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3738	spin_unlock_irqrestore(&x->wait.lock, flags);
3739}
3740EXPORT_SYMBOL(complete_all);
3741
3742static inline long __sched
3743do_wait_for_common(struct completion *x, long timeout, int state)
3744{
3745	if (!x->done) {
3746		DECLARE_WAITQUEUE(wait, current);
3747
3748		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3749		do {
3750			if (signal_pending_state(state, current)) {
3751				timeout = -ERESTARTSYS;
3752				break;
3753			}
3754			__set_current_state(state);
3755			spin_unlock_irq(&x->wait.lock);
3756			timeout = schedule_timeout(timeout);
3757			spin_lock_irq(&x->wait.lock);
3758		} while (!x->done && timeout);
3759		__remove_wait_queue(&x->wait, &wait);
3760		if (!x->done)
3761			return timeout;
3762	}
3763	x->done--;
3764	return timeout ?: 1;
3765}
3766
3767static long __sched
3768wait_for_common(struct completion *x, long timeout, int state)
3769{
3770	might_sleep();
3771
3772	spin_lock_irq(&x->wait.lock);
3773	timeout = do_wait_for_common(x, timeout, state);
3774	spin_unlock_irq(&x->wait.lock);
3775	return timeout;
3776}
3777
3778/**
3779 * wait_for_completion: - waits for completion of a task
3780 * @x:  holds the state of this particular completion
3781 *
3782 * This waits to be signaled for completion of a specific task. It is NOT
3783 * interruptible and there is no timeout.
3784 *
3785 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3786 * and interrupt capability. Also see complete().
3787 */
3788void __sched wait_for_completion(struct completion *x)
3789{
3790	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3791}
3792EXPORT_SYMBOL(wait_for_completion);
3793
3794/**
3795 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3796 * @x:  holds the state of this particular completion
3797 * @timeout:  timeout value in jiffies
3798 *
3799 * This waits for either a completion of a specific task to be signaled or for a
3800 * specified timeout to expire. The timeout is in jiffies. It is not
3801 * interruptible.
3802 *
3803 * The return value is 0 if timed out, and positive (at least 1, or number of
3804 * jiffies left till timeout) if completed.
3805 */
3806unsigned long __sched
3807wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3808{
3809	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3810}
3811EXPORT_SYMBOL(wait_for_completion_timeout);
3812
3813/**
3814 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3815 * @x:  holds the state of this particular completion
3816 *
3817 * This waits for completion of a specific task to be signaled. It is
3818 * interruptible.
3819 *
3820 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3821 */
3822int __sched wait_for_completion_interruptible(struct completion *x)
3823{
3824	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3825	if (t == -ERESTARTSYS)
3826		return t;
3827	return 0;
3828}
3829EXPORT_SYMBOL(wait_for_completion_interruptible);
3830
3831/**
3832 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3833 * @x:  holds the state of this particular completion
3834 * @timeout:  timeout value in jiffies
3835 *
3836 * This waits for either a completion of a specific task to be signaled or for a
3837 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3838 *
3839 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3840 * positive (at least 1, or number of jiffies left till timeout) if completed.
3841 */
3842long __sched
3843wait_for_completion_interruptible_timeout(struct completion *x,
3844					  unsigned long timeout)
3845{
3846	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3847}
3848EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3849
3850/**
3851 * wait_for_completion_killable: - waits for completion of a task (killable)
3852 * @x:  holds the state of this particular completion
3853 *
3854 * This waits to be signaled for completion of a specific task. It can be
3855 * interrupted by a kill signal.
3856 *
3857 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3858 */
3859int __sched wait_for_completion_killable(struct completion *x)
3860{
3861	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3862	if (t == -ERESTARTSYS)
3863		return t;
3864	return 0;
3865}
3866EXPORT_SYMBOL(wait_for_completion_killable);
3867
3868/**
3869 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3870 * @x:  holds the state of this particular completion
3871 * @timeout:  timeout value in jiffies
3872 *
3873 * This waits for either a completion of a specific task to be
3874 * signaled or for a specified timeout to expire. It can be
3875 * interrupted by a kill signal. The timeout is in jiffies.
3876 *
3877 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3878 * positive (at least 1, or number of jiffies left till timeout) if completed.
3879 */
3880long __sched
3881wait_for_completion_killable_timeout(struct completion *x,
3882				     unsigned long timeout)
3883{
3884	return wait_for_common(x, timeout, TASK_KILLABLE);
3885}
3886EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3887
3888/**
3889 *	try_wait_for_completion - try to decrement a completion without blocking
3890 *	@x:	completion structure
3891 *
3892 *	Returns: 0 if a decrement cannot be done without blocking
3893 *		 1 if a decrement succeeded.
3894 *
3895 *	If a completion is being used as a counting completion,
3896 *	attempt to decrement the counter without blocking. This
3897 *	enables us to avoid waiting if the resource the completion
3898 *	is protecting is not available.
3899 */
3900bool try_wait_for_completion(struct completion *x)
3901{
3902	unsigned long flags;
3903	int ret = 1;
3904
3905	spin_lock_irqsave(&x->wait.lock, flags);
3906	if (!x->done)
3907		ret = 0;
3908	else
3909		x->done--;
3910	spin_unlock_irqrestore(&x->wait.lock, flags);
3911	return ret;
3912}
3913EXPORT_SYMBOL(try_wait_for_completion);
3914
3915/**
3916 *	completion_done - Test to see if a completion has any waiters
3917 *	@x:	completion structure
3918 *
3919 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3920 *		 1 if there are no waiters.
3921 *
3922 */
3923bool completion_done(struct completion *x)
3924{
3925	unsigned long flags;
3926	int ret = 1;
3927
3928	spin_lock_irqsave(&x->wait.lock, flags);
3929	if (!x->done)
3930		ret = 0;
3931	spin_unlock_irqrestore(&x->wait.lock, flags);
3932	return ret;
3933}
3934EXPORT_SYMBOL(completion_done);
3935
3936static long __sched
3937sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3938{
3939	unsigned long flags;
3940	wait_queue_t wait;
3941
3942	init_waitqueue_entry(&wait, current);
3943
3944	__set_current_state(state);
3945
3946	spin_lock_irqsave(&q->lock, flags);
3947	__add_wait_queue(q, &wait);
3948	spin_unlock(&q->lock);
3949	timeout = schedule_timeout(timeout);
3950	spin_lock_irq(&q->lock);
3951	__remove_wait_queue(q, &wait);
3952	spin_unlock_irqrestore(&q->lock, flags);
3953
3954	return timeout;
3955}
3956
3957void __sched interruptible_sleep_on(wait_queue_head_t *q)
3958{
3959	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3960}
3961EXPORT_SYMBOL(interruptible_sleep_on);
3962
3963long __sched
3964interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3965{
3966	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3967}
3968EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3969
3970void __sched sleep_on(wait_queue_head_t *q)
3971{
3972	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3973}
3974EXPORT_SYMBOL(sleep_on);
3975
3976long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3977{
3978	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3979}
3980EXPORT_SYMBOL(sleep_on_timeout);
3981
3982#ifdef CONFIG_RT_MUTEXES
3983
3984/*
3985 * rt_mutex_setprio - set the current priority of a task
3986 * @p: task
3987 * @prio: prio value (kernel-internal form)
3988 *
3989 * This function changes the 'effective' priority of a task. It does
3990 * not touch ->normal_prio like __setscheduler().
3991 *
3992 * Used by the rt_mutex code to implement priority inheritance logic.
 
3993 */
3994void rt_mutex_setprio(struct task_struct *p, int prio)
3995{
3996	int oldprio, on_rq, running;
 
 
 
3997	struct rq *rq;
3998	const struct sched_class *prev_class;
3999
4000	BUG_ON(prio < 0 || prio > MAX_PRIO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4001
4002	rq = __task_rq_lock(p);
 
 
 
 
4003
4004	/*
4005	 * Idle task boosting is a nono in general. There is one
4006	 * exception, when PREEMPT_RT and NOHZ is active:
4007	 *
4008	 * The idle task calls get_next_timer_interrupt() and holds
4009	 * the timer wheel base->lock on the CPU and another CPU wants
4010	 * to access the timer (probably to cancel it). We can safely
4011	 * ignore the boosting request, as the idle CPU runs this code
4012	 * with interrupts disabled and will complete the lock
4013	 * protected section without being interrupted. So there is no
4014	 * real need to boost.
4015	 */
4016	if (unlikely(p == rq->idle)) {
4017		WARN_ON(p != rq->curr);
4018		WARN_ON(p->pi_blocked_on);
4019		goto out_unlock;
4020	}
4021
4022	trace_sched_pi_setprio(p, prio);
4023	oldprio = p->prio;
 
 
 
 
4024	prev_class = p->sched_class;
4025	on_rq = p->on_rq;
4026	running = task_current(rq, p);
4027	if (on_rq)
4028		dequeue_task(rq, p, 0);
4029	if (running)
4030		p->sched_class->put_prev_task(rq, p);
4031
4032	if (rt_prio(prio))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4033		p->sched_class = &rt_sched_class;
4034	else
 
 
 
 
4035		p->sched_class = &fair_sched_class;
 
4036
4037	p->prio = prio;
4038
 
 
4039	if (running)
4040		p->sched_class->set_curr_task(rq);
4041	if (on_rq)
4042		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4043
4044	check_class_changed(rq, p, prev_class, oldprio);
4045out_unlock:
4046	__task_rq_unlock(rq);
 
 
 
 
 
 
 
 
 
 
4047}
4048#endif
 
4049void set_user_nice(struct task_struct *p, long nice)
4050{
4051	int old_prio, delta, on_rq;
4052	unsigned long flags;
 
4053	struct rq *rq;
4054
4055	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4056		return;
4057	/*
4058	 * We have to be careful, if called from sys_setpriority(),
4059	 * the task might be in the middle of scheduling on another CPU.
4060	 */
4061	rq = task_rq_lock(p, &flags);
 
 
4062	/*
4063	 * The RT priorities are set via sched_setscheduler(), but we still
4064	 * allow the 'normal' nice value to be set - but as expected
4065	 * it wont have any effect on scheduling until the task is
4066	 * SCHED_FIFO/SCHED_RR:
4067	 */
4068	if (task_has_rt_policy(p)) {
4069		p->static_prio = NICE_TO_PRIO(nice);
4070		goto out_unlock;
4071	}
4072	on_rq = p->on_rq;
4073	if (on_rq)
4074		dequeue_task(rq, p, 0);
 
 
 
4075
4076	p->static_prio = NICE_TO_PRIO(nice);
4077	set_load_weight(p);
4078	old_prio = p->prio;
4079	p->prio = effective_prio(p);
4080	delta = p->prio - old_prio;
4081
4082	if (on_rq) {
4083		enqueue_task(rq, p, 0);
4084		/*
4085		 * If the task increased its priority or is running and
4086		 * lowered its priority, then reschedule its CPU:
4087		 */
4088		if (delta < 0 || (delta > 0 && task_running(rq, p)))
4089			resched_task(rq->curr);
4090	}
 
 
4091out_unlock:
4092	task_rq_unlock(rq, p, &flags);
4093}
4094EXPORT_SYMBOL(set_user_nice);
4095
4096/*
4097 * can_nice - check if a task can reduce its nice value
4098 * @p: task
4099 * @nice: nice value
4100 */
4101int can_nice(const struct task_struct *p, const int nice)
4102{
4103	/* convert nice value [19,-20] to rlimit style value [1,40] */
4104	int nice_rlim = 20 - nice;
4105
4106	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4107		capable(CAP_SYS_NICE));
4108}
4109
4110#ifdef __ARCH_WANT_SYS_NICE
4111
4112/*
4113 * sys_nice - change the priority of the current process.
4114 * @increment: priority increment
4115 *
4116 * sys_setpriority is a more generic, but much slower function that
4117 * does similar things.
4118 */
4119SYSCALL_DEFINE1(nice, int, increment)
4120{
4121	long nice, retval;
4122
4123	/*
4124	 * Setpriority might change our priority at the same moment.
4125	 * We don't have to worry. Conceptually one call occurs first
4126	 * and we have a single winner.
4127	 */
4128	if (increment < -40)
4129		increment = -40;
4130	if (increment > 40)
4131		increment = 40;
4132
4133	nice = TASK_NICE(current) + increment;
4134	if (nice < -20)
4135		nice = -20;
4136	if (nice > 19)
4137		nice = 19;
4138
 
4139	if (increment < 0 && !can_nice(current, nice))
4140		return -EPERM;
4141
4142	retval = security_task_setnice(current, nice);
4143	if (retval)
4144		return retval;
4145
4146	set_user_nice(current, nice);
4147	return 0;
4148}
4149
4150#endif
4151
4152/**
4153 * task_prio - return the priority value of a given task.
4154 * @p: the task in question.
4155 *
4156 * This is the priority value as seen by users in /proc.
4157 * RT tasks are offset by -200. Normal tasks are centered
4158 * around 0, value goes from -16 to +15.
4159 */
4160int task_prio(const struct task_struct *p)
4161{
4162	return p->prio - MAX_RT_PRIO;
4163}
4164
4165/**
4166 * task_nice - return the nice value of a given task.
4167 * @p: the task in question.
4168 */
4169int task_nice(const struct task_struct *p)
4170{
4171	return TASK_NICE(p);
4172}
4173EXPORT_SYMBOL(task_nice);
4174
4175/**
4176 * idle_cpu - is a given cpu idle currently?
4177 * @cpu: the processor in question.
 
 
4178 */
4179int idle_cpu(int cpu)
4180{
4181	struct rq *rq = cpu_rq(cpu);
4182
4183	if (rq->curr != rq->idle)
4184		return 0;
4185
4186	if (rq->nr_running)
4187		return 0;
4188
4189#ifdef CONFIG_SMP
4190	if (!llist_empty(&rq->wake_list))
4191		return 0;
4192#endif
4193
4194	return 1;
4195}
4196
4197/**
4198 * idle_task - return the idle task for a given cpu.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4199 * @cpu: the processor in question.
 
 
4200 */
4201struct task_struct *idle_task(int cpu)
4202{
4203	return cpu_rq(cpu)->idle;
4204}
4205
4206/**
4207 * find_process_by_pid - find a process with a matching PID value.
4208 * @pid: the pid in question.
 
 
4209 */
4210static struct task_struct *find_process_by_pid(pid_t pid)
4211{
4212	return pid ? find_task_by_vpid(pid) : current;
4213}
4214
4215/* Actually do priority change: must hold rq lock. */
4216static void
4217__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
 
 
 
 
 
4218{
 
 
 
 
 
4219	p->policy = policy;
4220	p->rt_priority = prio;
 
 
 
 
 
 
 
 
 
 
 
4221	p->normal_prio = normal_prio(p);
4222	/* we are holding p->pi_lock already */
4223	p->prio = rt_mutex_getprio(p);
4224	if (rt_prio(p->prio))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4225		p->sched_class = &rt_sched_class;
4226	else
4227		p->sched_class = &fair_sched_class;
4228	set_load_weight(p);
4229}
4230
4231/*
4232 * check the target process has a UID that matches the current process's
4233 */
4234static bool check_same_owner(struct task_struct *p)
4235{
4236	const struct cred *cred = current_cred(), *pcred;
4237	bool match;
4238
4239	rcu_read_lock();
4240	pcred = __task_cred(p);
4241	match = (uid_eq(cred->euid, pcred->euid) ||
4242		 uid_eq(cred->euid, pcred->uid));
4243	rcu_read_unlock();
4244	return match;
4245}
4246
4247static int __sched_setscheduler(struct task_struct *p, int policy,
4248				const struct sched_param *param, bool user)
4249{
4250	int retval, oldprio, oldpolicy = -1, on_rq, running;
4251	unsigned long flags;
 
 
 
4252	const struct sched_class *prev_class;
 
 
 
4253	struct rq *rq;
4254	int reset_on_fork;
4255
4256	/* may grab non-irq protected spin_locks */
4257	BUG_ON(in_interrupt());
4258recheck:
4259	/* double check policy once rq lock held */
4260	if (policy < 0) {
4261		reset_on_fork = p->sched_reset_on_fork;
4262		policy = oldpolicy = p->policy;
4263	} else {
4264		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4265		policy &= ~SCHED_RESET_ON_FORK;
4266
4267		if (policy != SCHED_FIFO && policy != SCHED_RR &&
4268				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4269				policy != SCHED_IDLE)
4270			return -EINVAL;
4271	}
4272
 
 
 
4273	/*
4274	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4275	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4276	 * SCHED_BATCH and SCHED_IDLE is 0.
4277	 */
4278	if (param->sched_priority < 0 ||
4279	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4280	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4281		return -EINVAL;
4282	if (rt_policy(policy) != (param->sched_priority != 0))
 
4283		return -EINVAL;
4284
4285	/*
4286	 * Allow unprivileged RT tasks to decrease priority:
4287	 */
4288	if (user && !capable(CAP_SYS_NICE)) {
 
 
 
 
 
 
4289		if (rt_policy(policy)) {
4290			unsigned long rlim_rtprio =
4291					task_rlimit(p, RLIMIT_RTPRIO);
4292
4293			/* can't set/change the rt policy */
4294			if (policy != p->policy && !rlim_rtprio)
4295				return -EPERM;
4296
4297			/* can't increase priority */
4298			if (param->sched_priority > p->rt_priority &&
4299			    param->sched_priority > rlim_rtprio)
4300				return -EPERM;
4301		}
4302
 
 
 
 
 
 
 
 
 
4303		/*
4304		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4305		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4306		 */
4307		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4308			if (!can_nice(p, TASK_NICE(p)))
4309				return -EPERM;
4310		}
4311
4312		/* can't change other user's priorities */
4313		if (!check_same_owner(p))
4314			return -EPERM;
4315
4316		/* Normal users shall not reset the sched_reset_on_fork flag */
4317		if (p->sched_reset_on_fork && !reset_on_fork)
4318			return -EPERM;
4319	}
4320
4321	if (user) {
 
 
 
4322		retval = security_task_setscheduler(p);
4323		if (retval)
4324			return retval;
4325	}
4326
 
 
 
 
 
 
 
 
 
 
4327	/*
4328	 * make sure no PI-waiters arrive (or leave) while we are
4329	 * changing the priority of the task:
4330	 *
4331	 * To be able to change p->policy safely, the appropriate
4332	 * runqueue lock must be held.
4333	 */
4334	rq = task_rq_lock(p, &flags);
 
4335
4336	/*
4337	 * Changing the policy of the stop threads its a very bad idea
4338	 */
4339	if (p == rq->stop) {
4340		task_rq_unlock(rq, p, &flags);
4341		return -EINVAL;
4342	}
4343
4344	/*
4345	 * If not changing anything there's no need to proceed further:
 
4346	 */
4347	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4348			param->sched_priority == p->rt_priority))) {
 
 
 
 
 
 
 
4349
4350		__task_rq_unlock(rq);
4351		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4352		return 0;
4353	}
 
4354
 
4355#ifdef CONFIG_RT_GROUP_SCHED
4356	if (user) {
4357		/*
4358		 * Do not allow realtime tasks into groups that have no runtime
4359		 * assigned.
4360		 */
4361		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4362				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4363				!task_group_is_autogroup(task_group(p))) {
4364			task_rq_unlock(rq, p, &flags);
4365			return -EPERM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4366		}
 
4367	}
4368#endif
4369
4370	/* recheck policy now with rq lock held */
4371	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4372		policy = oldpolicy = -1;
4373		task_rq_unlock(rq, p, &flags);
 
 
4374		goto recheck;
4375	}
4376	on_rq = p->on_rq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4377	running = task_current(rq, p);
4378	if (on_rq)
4379		dequeue_task(rq, p, 0);
4380	if (running)
4381		p->sched_class->put_prev_task(rq, p);
4382
4383	p->sched_reset_on_fork = reset_on_fork;
 
 
 
4384
4385	oldprio = p->prio;
4386	prev_class = p->sched_class;
4387	__setscheduler(rq, p, policy, param->sched_priority);
 
 
 
 
4388
 
 
4389	if (running)
4390		p->sched_class->set_curr_task(rq);
4391	if (on_rq)
4392		enqueue_task(rq, p, 0);
4393
4394	check_class_changed(rq, p, prev_class, oldprio);
4395	task_rq_unlock(rq, p, &flags);
4396
4397	rt_mutex_adjust_pi(p);
 
 
 
 
 
 
 
 
 
 
 
4398
4399	return 0;
 
 
 
 
 
 
4400}
4401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4402/**
4403 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4404 * @p: the task in question.
4405 * @policy: new policy.
4406 * @param: structure containing the new RT priority.
4407 *
 
 
4408 * NOTE that the task may be already dead.
4409 */
4410int sched_setscheduler(struct task_struct *p, int policy,
4411		       const struct sched_param *param)
4412{
4413	return __sched_setscheduler(p, policy, param, true);
4414}
4415EXPORT_SYMBOL_GPL(sched_setscheduler);
4416
 
 
 
 
 
 
 
 
 
 
 
4417/**
4418 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4419 * @p: the task in question.
4420 * @policy: new policy.
4421 * @param: structure containing the new RT priority.
4422 *
4423 * Just like sched_setscheduler, only don't bother checking if the
4424 * current context has permission.  For example, this is needed in
4425 * stop_machine(): we create temporary high priority worker threads,
4426 * but our caller might not have that capability.
 
 
4427 */
4428int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4429			       const struct sched_param *param)
4430{
4431	return __sched_setscheduler(p, policy, param, false);
4432}
 
4433
4434static int
4435do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4436{
4437	struct sched_param lparam;
4438	struct task_struct *p;
4439	int retval;
4440
4441	if (!param || pid < 0)
4442		return -EINVAL;
4443	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4444		return -EFAULT;
4445
4446	rcu_read_lock();
4447	retval = -ESRCH;
4448	p = find_process_by_pid(pid);
4449	if (p != NULL)
 
 
 
 
4450		retval = sched_setscheduler(p, policy, &lparam);
4451	rcu_read_unlock();
 
4452
4453	return retval;
4454}
4455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4456/**
4457 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4458 * @pid: the pid in question.
4459 * @policy: new policy.
4460 * @param: structure containing the new RT priority.
 
 
4461 */
4462SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4463		struct sched_param __user *, param)
4464{
4465	/* negative values for policy are not valid */
4466	if (policy < 0)
4467		return -EINVAL;
4468
4469	return do_sched_setscheduler(pid, policy, param);
4470}
4471
4472/**
4473 * sys_sched_setparam - set/change the RT priority of a thread
4474 * @pid: the pid in question.
4475 * @param: structure containing the new RT priority.
 
 
4476 */
4477SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4478{
4479	return do_sched_setscheduler(pid, -1, param);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4480}
4481
4482/**
4483 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4484 * @pid: the pid in question.
 
 
 
4485 */
4486SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4487{
4488	struct task_struct *p;
4489	int retval;
4490
4491	if (pid < 0)
4492		return -EINVAL;
4493
4494	retval = -ESRCH;
4495	rcu_read_lock();
4496	p = find_process_by_pid(pid);
4497	if (p) {
4498		retval = security_task_getscheduler(p);
4499		if (!retval)
4500			retval = p->policy
4501				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4502	}
4503	rcu_read_unlock();
4504	return retval;
4505}
4506
4507/**
4508 * sys_sched_getparam - get the RT priority of a thread
4509 * @pid: the pid in question.
4510 * @param: structure containing the RT priority.
 
 
 
4511 */
4512SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4513{
4514	struct sched_param lp;
4515	struct task_struct *p;
4516	int retval;
4517
4518	if (!param || pid < 0)
4519		return -EINVAL;
4520
4521	rcu_read_lock();
4522	p = find_process_by_pid(pid);
4523	retval = -ESRCH;
4524	if (!p)
4525		goto out_unlock;
4526
4527	retval = security_task_getscheduler(p);
4528	if (retval)
4529		goto out_unlock;
4530
4531	lp.sched_priority = p->rt_priority;
 
4532	rcu_read_unlock();
4533
4534	/*
4535	 * This one might sleep, we cannot do it with a spinlock held ...
4536	 */
4537	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4538
4539	return retval;
4540
4541out_unlock:
4542	rcu_read_unlock();
4543	return retval;
4544}
4545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4546long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4547{
4548	cpumask_var_t cpus_allowed, new_mask;
4549	struct task_struct *p;
4550	int retval;
4551
4552	get_online_cpus();
4553	rcu_read_lock();
4554
4555	p = find_process_by_pid(pid);
4556	if (!p) {
4557		rcu_read_unlock();
4558		put_online_cpus();
4559		return -ESRCH;
4560	}
4561
4562	/* Prevent p going away */
4563	get_task_struct(p);
4564	rcu_read_unlock();
4565
 
 
 
 
4566	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4567		retval = -ENOMEM;
4568		goto out_put_task;
4569	}
4570	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4571		retval = -ENOMEM;
4572		goto out_free_cpus_allowed;
4573	}
4574	retval = -EPERM;
4575	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4576		goto out_unlock;
 
 
 
 
 
 
4577
4578	retval = security_task_setscheduler(p);
4579	if (retval)
4580		goto out_unlock;
 
4581
4582	cpuset_cpus_allowed(p, cpus_allowed);
4583	cpumask_and(new_mask, in_mask, cpus_allowed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4584again:
4585	retval = set_cpus_allowed_ptr(p, new_mask);
4586
4587	if (!retval) {
4588		cpuset_cpus_allowed(p, cpus_allowed);
4589		if (!cpumask_subset(new_mask, cpus_allowed)) {
4590			/*
4591			 * We must have raced with a concurrent cpuset
4592			 * update. Just reset the cpus_allowed to the
4593			 * cpuset's cpus_allowed
4594			 */
4595			cpumask_copy(new_mask, cpus_allowed);
4596			goto again;
4597		}
4598	}
4599out_unlock:
4600	free_cpumask_var(new_mask);
4601out_free_cpus_allowed:
4602	free_cpumask_var(cpus_allowed);
4603out_put_task:
4604	put_task_struct(p);
4605	put_online_cpus();
4606	return retval;
4607}
4608
4609static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4610			     struct cpumask *new_mask)
4611{
4612	if (len < cpumask_size())
4613		cpumask_clear(new_mask);
4614	else if (len > cpumask_size())
4615		len = cpumask_size();
4616
4617	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4618}
4619
4620/**
4621 * sys_sched_setaffinity - set the cpu affinity of a process
4622 * @pid: pid of the process
4623 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4624 * @user_mask_ptr: user-space pointer to the new cpu mask
 
 
4625 */
4626SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4627		unsigned long __user *, user_mask_ptr)
4628{
4629	cpumask_var_t new_mask;
4630	int retval;
4631
4632	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4633		return -ENOMEM;
4634
4635	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4636	if (retval == 0)
4637		retval = sched_setaffinity(pid, new_mask);
4638	free_cpumask_var(new_mask);
4639	return retval;
4640}
4641
4642long sched_getaffinity(pid_t pid, struct cpumask *mask)
4643{
4644	struct task_struct *p;
4645	unsigned long flags;
4646	int retval;
4647
4648	get_online_cpus();
4649	rcu_read_lock();
4650
4651	retval = -ESRCH;
4652	p = find_process_by_pid(pid);
4653	if (!p)
4654		goto out_unlock;
4655
4656	retval = security_task_getscheduler(p);
4657	if (retval)
4658		goto out_unlock;
4659
4660	raw_spin_lock_irqsave(&p->pi_lock, flags);
4661	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4662	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4663
4664out_unlock:
4665	rcu_read_unlock();
4666	put_online_cpus();
4667
4668	return retval;
4669}
4670
4671/**
4672 * sys_sched_getaffinity - get the cpu affinity of a process
4673 * @pid: pid of the process
4674 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4675 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 
 
 
4676 */
4677SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4678		unsigned long __user *, user_mask_ptr)
4679{
4680	int ret;
4681	cpumask_var_t mask;
4682
4683	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4684		return -EINVAL;
4685	if (len & (sizeof(unsigned long)-1))
4686		return -EINVAL;
4687
4688	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4689		return -ENOMEM;
4690
4691	ret = sched_getaffinity(pid, mask);
4692	if (ret == 0) {
4693		size_t retlen = min_t(size_t, len, cpumask_size());
4694
4695		if (copy_to_user(user_mask_ptr, mask, retlen))
4696			ret = -EFAULT;
4697		else
4698			ret = retlen;
4699	}
4700	free_cpumask_var(mask);
4701
4702	return ret;
4703}
4704
4705/**
4706 * sys_sched_yield - yield the current processor to other threads.
4707 *
4708 * This function yields the current CPU to other tasks. If there are no
4709 * other threads running on this CPU then this function will return.
 
 
4710 */
4711SYSCALL_DEFINE0(sched_yield)
4712{
4713	struct rq *rq = this_rq_lock();
 
 
 
4714
4715	schedstat_inc(rq, yld_count);
4716	current->sched_class->yield_task(rq);
4717
4718	/*
4719	 * Since we are going to call schedule() anyway, there's
4720	 * no need to preempt or enable interrupts:
4721	 */
4722	__release(rq->lock);
4723	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4724	do_raw_spin_unlock(&rq->lock);
4725	sched_preempt_enable_no_resched();
4726
4727	schedule();
4728
4729	return 0;
4730}
4731
4732static inline int should_resched(void)
4733{
4734	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4735}
4736
4737static void __cond_resched(void)
4738{
4739	add_preempt_count(PREEMPT_ACTIVE);
4740	__schedule();
4741	sub_preempt_count(PREEMPT_ACTIVE);
4742}
4743
 
4744int __sched _cond_resched(void)
4745{
4746	if (should_resched()) {
4747		__cond_resched();
4748		return 1;
4749	}
 
4750	return 0;
4751}
4752EXPORT_SYMBOL(_cond_resched);
 
4753
4754/*
4755 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4756 * call schedule, and on return reacquire the lock.
4757 *
4758 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4759 * operations here to prevent schedule() from being called twice (once via
4760 * spin_unlock(), once by hand).
4761 */
4762int __cond_resched_lock(spinlock_t *lock)
4763{
4764	int resched = should_resched();
4765	int ret = 0;
4766
4767	lockdep_assert_held(lock);
4768
4769	if (spin_needbreak(lock) || resched) {
4770		spin_unlock(lock);
4771		if (resched)
4772			__cond_resched();
4773		else
4774			cpu_relax();
4775		ret = 1;
4776		spin_lock(lock);
4777	}
4778	return ret;
4779}
4780EXPORT_SYMBOL(__cond_resched_lock);
4781
4782int __sched __cond_resched_softirq(void)
4783{
4784	BUG_ON(!in_softirq());
4785
4786	if (should_resched()) {
4787		local_bh_enable();
4788		__cond_resched();
4789		local_bh_disable();
4790		return 1;
4791	}
4792	return 0;
4793}
4794EXPORT_SYMBOL(__cond_resched_softirq);
4795
4796/**
4797 * yield - yield the current processor to other threads.
4798 *
4799 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4800 *
4801 * The scheduler is at all times free to pick the calling task as the most
4802 * eligible task to run, if removing the yield() call from your code breaks
4803 * it, its already broken.
4804 *
4805 * Typical broken usage is:
4806 *
4807 * while (!event)
4808 * 	yield();
4809 *
4810 * where one assumes that yield() will let 'the other' process run that will
4811 * make event true. If the current task is a SCHED_FIFO task that will never
4812 * happen. Never use yield() as a progress guarantee!!
4813 *
4814 * If you want to use yield() to wait for something, use wait_event().
4815 * If you want to use yield() to be 'nice' for others, use cond_resched().
4816 * If you still want to use yield(), do not!
4817 */
4818void __sched yield(void)
4819{
4820	set_current_state(TASK_RUNNING);
4821	sys_sched_yield();
4822}
4823EXPORT_SYMBOL(yield);
4824
4825/**
4826 * yield_to - yield the current processor to another thread in
4827 * your thread group, or accelerate that thread toward the
4828 * processor it's on.
4829 * @p: target task
4830 * @preempt: whether task preemption is allowed or not
4831 *
4832 * It's the caller's job to ensure that the target task struct
4833 * can't go away on us before we can do any checks.
4834 *
4835 * Returns true if we indeed boosted the target task.
 
 
 
4836 */
4837bool __sched yield_to(struct task_struct *p, bool preempt)
4838{
4839	struct task_struct *curr = current;
4840	struct rq *rq, *p_rq;
4841	unsigned long flags;
4842	bool yielded = 0;
4843
4844	local_irq_save(flags);
4845	rq = this_rq();
4846
4847again:
4848	p_rq = task_rq(p);
 
 
 
 
 
 
 
 
 
4849	double_rq_lock(rq, p_rq);
4850	while (task_rq(p) != p_rq) {
4851		double_rq_unlock(rq, p_rq);
4852		goto again;
4853	}
4854
4855	if (!curr->sched_class->yield_to_task)
4856		goto out;
4857
4858	if (curr->sched_class != p->sched_class)
4859		goto out;
4860
4861	if (task_running(p_rq, p) || p->state)
4862		goto out;
4863
4864	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4865	if (yielded) {
4866		schedstat_inc(rq, yld_count);
4867		/*
4868		 * Make p's CPU reschedule; pick_next_entity takes care of
4869		 * fairness.
4870		 */
4871		if (preempt && rq != p_rq)
4872			resched_task(p_rq->curr);
4873	} else {
4874		/*
4875		 * We might have set it in task_yield_fair(), but are
4876		 * not going to schedule(), so don't want to skip
4877		 * the next update.
4878		 */
4879		rq->skip_clock_update = 0;
4880	}
4881
4882out:
4883	double_rq_unlock(rq, p_rq);
 
4884	local_irq_restore(flags);
4885
4886	if (yielded)
4887		schedule();
4888
4889	return yielded;
4890}
4891EXPORT_SYMBOL_GPL(yield_to);
4892
4893/*
4894 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4895 * that process accounting knows that this is a task in IO wait state.
4896 */
4897void __sched io_schedule(void)
4898{
4899	struct rq *rq = raw_rq();
4900
4901	delayacct_blkio_start();
4902	atomic_inc(&rq->nr_iowait);
4903	blk_flush_plug(current);
4904	current->in_iowait = 1;
4905	schedule();
4906	current->in_iowait = 0;
4907	atomic_dec(&rq->nr_iowait);
4908	delayacct_blkio_end();
 
 
 
 
4909}
4910EXPORT_SYMBOL(io_schedule);
4911
 
 
 
 
4912long __sched io_schedule_timeout(long timeout)
4913{
4914	struct rq *rq = raw_rq();
4915	long ret;
4916
4917	delayacct_blkio_start();
4918	atomic_inc(&rq->nr_iowait);
4919	blk_flush_plug(current);
4920	current->in_iowait = 1;
4921	ret = schedule_timeout(timeout);
4922	current->in_iowait = 0;
4923	atomic_dec(&rq->nr_iowait);
4924	delayacct_blkio_end();
4925	return ret;
4926}
 
 
 
 
 
 
 
 
 
 
 
4927
4928/**
4929 * sys_sched_get_priority_max - return maximum RT priority.
4930 * @policy: scheduling class.
4931 *
4932 * this syscall returns the maximum rt_priority that can be used
4933 * by a given scheduling class.
 
4934 */
4935SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4936{
4937	int ret = -EINVAL;
4938
4939	switch (policy) {
4940	case SCHED_FIFO:
4941	case SCHED_RR:
4942		ret = MAX_USER_RT_PRIO-1;
4943		break;
 
4944	case SCHED_NORMAL:
4945	case SCHED_BATCH:
4946	case SCHED_IDLE:
4947		ret = 0;
4948		break;
4949	}
4950	return ret;
4951}
4952
4953/**
4954 * sys_sched_get_priority_min - return minimum RT priority.
4955 * @policy: scheduling class.
4956 *
4957 * this syscall returns the minimum rt_priority that can be used
4958 * by a given scheduling class.
 
4959 */
4960SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4961{
4962	int ret = -EINVAL;
4963
4964	switch (policy) {
4965	case SCHED_FIFO:
4966	case SCHED_RR:
4967		ret = 1;
4968		break;
 
4969	case SCHED_NORMAL:
4970	case SCHED_BATCH:
4971	case SCHED_IDLE:
4972		ret = 0;
4973	}
4974	return ret;
4975}
4976
4977/**
4978 * sys_sched_rr_get_interval - return the default timeslice of a process.
4979 * @pid: pid of the process.
4980 * @interval: userspace pointer to the timeslice value.
4981 *
4982 * this syscall writes the default timeslice value of a given process
4983 * into the user-space timespec buffer. A value of '0' means infinity.
4984 */
4985SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4986		struct timespec __user *, interval)
4987{
4988	struct task_struct *p;
4989	unsigned int time_slice;
4990	unsigned long flags;
4991	struct rq *rq;
4992	int retval;
4993	struct timespec t;
4994
4995	if (pid < 0)
4996		return -EINVAL;
4997
4998	retval = -ESRCH;
4999	rcu_read_lock();
5000	p = find_process_by_pid(pid);
5001	if (!p)
5002		goto out_unlock;
5003
5004	retval = security_task_getscheduler(p);
5005	if (retval)
5006		goto out_unlock;
5007
5008	rq = task_rq_lock(p, &flags);
5009	time_slice = p->sched_class->get_rr_interval(rq, p);
5010	task_rq_unlock(rq, p, &flags);
 
 
5011
5012	rcu_read_unlock();
5013	jiffies_to_timespec(time_slice, &t);
5014	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5015	return retval;
5016
5017out_unlock:
5018	rcu_read_unlock();
5019	return retval;
5020}
5021
5022static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5023
5024void sched_show_task(struct task_struct *p)
5025{
5026	unsigned long free = 0;
5027	unsigned state;
 
 
 
 
 
5028
5029	state = p->state ? __ffs(p->state) + 1 : 0;
5030	printk(KERN_INFO "%-15.15s %c", p->comm,
5031		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5032#if BITS_PER_LONG == 32
5033	if (state == TASK_RUNNING)
5034		printk(KERN_CONT " running  ");
5035	else
5036		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5037#else
5038	if (state == TASK_RUNNING)
5039		printk(KERN_CONT "  running task    ");
5040	else
5041		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5042#endif
5043#ifdef CONFIG_DEBUG_STACK_USAGE
5044	free = stack_not_used(p);
5045#endif
 
 
 
 
 
5046	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5047		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
5048		(unsigned long)task_thread_info(p)->flags);
5049
 
5050	show_stack(p, NULL);
 
5051}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5052
5053void show_state_filter(unsigned long state_filter)
5054{
5055	struct task_struct *g, *p;
5056
5057#if BITS_PER_LONG == 32
5058	printk(KERN_INFO
5059		"  task                PC stack   pid father\n");
5060#else
5061	printk(KERN_INFO
5062		"  task                        PC stack   pid father\n");
5063#endif
5064	rcu_read_lock();
5065	do_each_thread(g, p) {
5066		/*
5067		 * reset the NMI-timeout, listing all files on a slow
5068		 * console might take a lot of time:
 
 
 
5069		 */
5070		touch_nmi_watchdog();
5071		if (!state_filter || (p->state & state_filter))
 
5072			sched_show_task(p);
5073	} while_each_thread(g, p);
5074
5075	touch_all_softlockup_watchdogs();
5076
5077#ifdef CONFIG_SCHED_DEBUG
5078	sysrq_sched_debug_show();
 
5079#endif
5080	rcu_read_unlock();
5081	/*
5082	 * Only show locks if all tasks are dumped:
5083	 */
5084	if (!state_filter)
5085		debug_show_all_locks();
5086}
5087
5088void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5089{
5090	idle->sched_class = &idle_sched_class;
5091}
5092
5093/**
5094 * init_idle - set up an idle thread for a given CPU
5095 * @idle: task in question
5096 * @cpu: cpu the idle task belongs to
5097 *
5098 * NOTE: this function does not set the idle thread's NEED_RESCHED
5099 * flag, to make booting more robust.
5100 */
5101void __cpuinit init_idle(struct task_struct *idle, int cpu)
5102{
5103	struct rq *rq = cpu_rq(cpu);
5104	unsigned long flags;
5105
5106	raw_spin_lock_irqsave(&rq->lock, flags);
 
 
 
5107
5108	__sched_fork(idle);
5109	idle->state = TASK_RUNNING;
5110	idle->se.exec_start = sched_clock();
 
 
 
5111
5112	do_set_cpus_allowed(idle, cpumask_of(cpu));
 
 
 
 
 
 
 
 
5113	/*
5114	 * We're having a chicken and egg problem, even though we are
5115	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5116	 * lockdep check in task_group() will fail.
5117	 *
5118	 * Similar case to sched_fork(). / Alternatively we could
5119	 * use task_rq_lock() here and obtain the other rq->lock.
5120	 *
5121	 * Silence PROVE_RCU
5122	 */
5123	rcu_read_lock();
5124	__set_task_cpu(idle, cpu);
5125	rcu_read_unlock();
5126
5127	rq->curr = rq->idle = idle;
5128#if defined(CONFIG_SMP)
 
 
5129	idle->on_cpu = 1;
5130#endif
5131	raw_spin_unlock_irqrestore(&rq->lock, flags);
 
5132
5133	/* Set the preempt count _outside_ the spinlocks! */
5134	task_thread_info(idle)->preempt_count = 0;
5135
5136	/*
5137	 * The idle tasks have their own, simple scheduling class:
5138	 */
5139	idle->sched_class = &idle_sched_class;
5140	ftrace_graph_init_idle_task(idle, cpu);
5141#if defined(CONFIG_SMP)
 
5142	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5143#endif
5144}
5145
5146#ifdef CONFIG_SMP
5147void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
 
 
5148{
5149	if (p->sched_class && p->sched_class->set_cpus_allowed)
5150		p->sched_class->set_cpus_allowed(p, new_mask);
 
 
5151
5152	cpumask_copy(&p->cpus_allowed, new_mask);
5153	p->nr_cpus_allowed = cpumask_weight(new_mask);
 
5154}
5155
5156/*
5157 * This is how migration works:
5158 *
5159 * 1) we invoke migration_cpu_stop() on the target CPU using
5160 *    stop_one_cpu().
5161 * 2) stopper starts to run (implicitly forcing the migrated thread
5162 *    off the CPU)
5163 * 3) it checks whether the migrated task is still in the wrong runqueue.
5164 * 4) if it's in the wrong runqueue then the migration thread removes
5165 *    it and puts it into the right queue.
5166 * 5) stopper completes and stop_one_cpu() returns and the migration
5167 *    is done.
5168 */
5169
5170/*
5171 * Change a given task's CPU affinity. Migrate the thread to a
5172 * proper CPU and schedule it away if the CPU it's executing on
5173 * is removed from the allowed bitmask.
5174 *
5175 * NOTE: the caller must have a valid reference to the task, the
5176 * task must not exit() & deallocate itself prematurely. The
5177 * call is not atomic; no spinlocks may be held.
5178 */
5179int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5180{
5181	unsigned long flags;
5182	struct rq *rq;
5183	unsigned int dest_cpu;
5184	int ret = 0;
5185
5186	rq = task_rq_lock(p, &flags);
5187
5188	if (cpumask_equal(&p->cpus_allowed, new_mask))
5189		goto out;
5190
5191	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
 
 
 
 
5192		ret = -EINVAL;
5193		goto out;
5194	}
5195
5196	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5197		ret = -EINVAL;
5198		goto out;
5199	}
5200
5201	do_set_cpus_allowed(p, new_mask);
5202
5203	/* Can the task run on the task's current CPU? If so, we're done */
5204	if (cpumask_test_cpu(task_cpu(p), new_mask))
5205		goto out;
5206
5207	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5208	if (p->on_rq) {
5209		struct migration_arg arg = { p, dest_cpu };
5210		/* Need help from migration thread: drop lock and wait. */
5211		task_rq_unlock(rq, p, &flags);
5212		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5213		tlb_migrate_finish(p->mm);
5214		return 0;
5215	}
5216out:
5217	task_rq_unlock(rq, p, &flags);
5218
5219	return ret;
5220}
5221EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5222
5223/*
5224 * Move (not current) task off this cpu, onto dest cpu. We're doing
5225 * this because either it can't run here any more (set_cpus_allowed()
5226 * away from this CPU, or CPU going down), or because we're
5227 * attempting to rebalance this task on exec (sched_exec).
5228 *
5229 * So we race with normal scheduler movements, but that's OK, as long
5230 * as the task is no longer on this CPU.
5231 *
5232 * Returns non-zero if task was successfully migrated.
5233 */
5234static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5235{
5236	struct rq *rq_dest, *rq_src;
5237	int ret = 0;
5238
5239	if (unlikely(!cpu_active(dest_cpu)))
5240		return ret;
5241
5242	rq_src = cpu_rq(src_cpu);
5243	rq_dest = cpu_rq(dest_cpu);
5244
5245	raw_spin_lock(&p->pi_lock);
5246	double_rq_lock(rq_src, rq_dest);
5247	/* Already moved. */
5248	if (task_cpu(p) != src_cpu)
5249		goto done;
5250	/* Affinity changed (again). */
5251	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5252		goto fail;
5253
5254	/*
5255	 * If we're not on a rq, the next wake-up will ensure we're
5256	 * placed properly.
5257	 */
5258	if (p->on_rq) {
5259		dequeue_task(rq_src, p, 0);
5260		set_task_cpu(p, dest_cpu);
5261		enqueue_task(rq_dest, p, 0);
5262		check_preempt_curr(rq_dest, p, 0);
5263	}
5264done:
5265	ret = 1;
5266fail:
5267	double_rq_unlock(rq_src, rq_dest);
5268	raw_spin_unlock(&p->pi_lock);
5269	return ret;
5270}
5271
5272/*
5273 * migration_cpu_stop - this will be executed by a highprio stopper thread
5274 * and performs thread migration by bumping thread off CPU then
5275 * 'pushing' onto another runqueue.
5276 */
5277static int migration_cpu_stop(void *data)
5278{
5279	struct migration_arg *arg = data;
 
 
 
 
 
 
 
 
 
 
 
 
 
5280
5281	/*
5282	 * The original target cpu might have gone down and we might
5283	 * be on another cpu but it doesn't matter.
5284	 */
5285	local_irq_disable();
5286	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5287	local_irq_enable();
5288	return 0;
5289}
 
5290
5291#ifdef CONFIG_HOTPLUG_CPU
5292
5293/*
5294 * Ensures that the idle task is using init_mm right before its cpu goes
5295 * offline.
5296 */
5297void idle_task_exit(void)
5298{
5299	struct mm_struct *mm = current->active_mm;
5300
5301	BUG_ON(cpu_online(smp_processor_id()));
5302
5303	if (mm != &init_mm)
5304		switch_mm(mm, &init_mm, current);
 
 
 
5305	mmdrop(mm);
5306}
5307
5308/*
5309 * While a dead CPU has no uninterruptible tasks queued at this point,
5310 * it might still have a nonzero ->nr_uninterruptible counter, because
5311 * for performance reasons the counter is not stricly tracking tasks to
5312 * their home CPUs. So we just add the counter to another CPU's counter,
5313 * to keep the global sum constant after CPU-down:
 
 
5314 */
5315static void migrate_nr_uninterruptible(struct rq *rq_src)
5316{
5317	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5318
5319	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5320	rq_src->nr_uninterruptible = 0;
5321}
5322
5323/*
5324 * remove the tasks which were accounted by rq from calc_load_tasks.
5325 */
5326static void calc_global_load_remove(struct rq *rq)
5327{
5328	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5329	rq->calc_load_active = 0;
 
 
 
 
 
 
 
 
 
 
 
5330}
5331
5332/*
5333 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5334 * try_to_wake_up()->select_task_rq().
5335 *
5336 * Called with rq->lock held even though we'er in stop_machine() and
5337 * there's no concurrency possible, we hold the required locks anyway
5338 * because of lock validation efforts.
5339 */
5340static void migrate_tasks(unsigned int dead_cpu)
5341{
5342	struct rq *rq = cpu_rq(dead_cpu);
5343	struct task_struct *next, *stop = rq->stop;
 
5344	int dest_cpu;
5345
5346	/*
5347	 * Fudge the rq selection such that the below task selection loop
5348	 * doesn't get stuck on the currently eligible stop task.
5349	 *
5350	 * We're currently inside stop_machine() and the rq is either stuck
5351	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5352	 * either way we should never end up calling schedule() until we're
5353	 * done here.
5354	 */
5355	rq->stop = NULL;
5356
5357	/* Ensure any throttled groups are reachable by pick_next_task */
5358	unthrottle_offline_cfs_rqs(rq);
 
 
 
 
5359
5360	for ( ; ; ) {
5361		/*
5362		 * There's this thread running, bail when that's the only
5363		 * remaining thread.
5364		 */
5365		if (rq->nr_running == 1)
5366			break;
5367
5368		next = pick_next_task(rq);
5369		BUG_ON(!next);
5370		next->sched_class->put_prev_task(rq, next);
5371
5372		/* Find suitable destination for @next, with force if needed. */
5373		dest_cpu = select_fallback_rq(dead_cpu, next);
5374		raw_spin_unlock(&rq->lock);
 
 
 
 
 
 
 
 
 
5375
5376		__migrate_task(next, dead_cpu, dest_cpu);
 
 
 
 
 
 
 
 
5377
5378		raw_spin_lock(&rq->lock);
 
 
 
 
 
 
 
 
 
5379	}
5380
5381	rq->stop = stop;
5382}
5383
5384#endif /* CONFIG_HOTPLUG_CPU */
5385
5386#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5387
5388static struct ctl_table sd_ctl_dir[] = {
5389	{
5390		.procname	= "sched_domain",
5391		.mode		= 0555,
5392	},
5393	{}
5394};
5395
5396static struct ctl_table sd_ctl_root[] = {
5397	{
5398		.procname	= "kernel",
5399		.mode		= 0555,
5400		.child		= sd_ctl_dir,
5401	},
5402	{}
5403};
5404
5405static struct ctl_table *sd_alloc_ctl_entry(int n)
5406{
5407	struct ctl_table *entry =
5408		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5409
5410	return entry;
5411}
5412
5413static void sd_free_ctl_entry(struct ctl_table **tablep)
5414{
5415	struct ctl_table *entry;
5416
5417	/*
5418	 * In the intermediate directories, both the child directory and
5419	 * procname are dynamically allocated and could fail but the mode
5420	 * will always be set. In the lowest directory the names are
5421	 * static strings and all have proc handlers.
5422	 */
5423	for (entry = *tablep; entry->mode; entry++) {
5424		if (entry->child)
5425			sd_free_ctl_entry(&entry->child);
5426		if (entry->proc_handler == NULL)
5427			kfree(entry->procname);
5428	}
5429
5430	kfree(*tablep);
5431	*tablep = NULL;
5432}
5433
5434static void
5435set_table_entry(struct ctl_table *entry,
5436		const char *procname, void *data, int maxlen,
5437		umode_t mode, proc_handler *proc_handler)
5438{
5439	entry->procname = procname;
5440	entry->data = data;
5441	entry->maxlen = maxlen;
5442	entry->mode = mode;
5443	entry->proc_handler = proc_handler;
5444}
5445
5446static struct ctl_table *
5447sd_alloc_ctl_domain_table(struct sched_domain *sd)
5448{
5449	struct ctl_table *table = sd_alloc_ctl_entry(13);
5450
5451	if (table == NULL)
5452		return NULL;
5453
5454	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5455		sizeof(long), 0644, proc_doulongvec_minmax);
5456	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5457		sizeof(long), 0644, proc_doulongvec_minmax);
5458	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5459		sizeof(int), 0644, proc_dointvec_minmax);
5460	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5461		sizeof(int), 0644, proc_dointvec_minmax);
5462	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5463		sizeof(int), 0644, proc_dointvec_minmax);
5464	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5465		sizeof(int), 0644, proc_dointvec_minmax);
5466	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5467		sizeof(int), 0644, proc_dointvec_minmax);
5468	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5469		sizeof(int), 0644, proc_dointvec_minmax);
5470	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5471		sizeof(int), 0644, proc_dointvec_minmax);
5472	set_table_entry(&table[9], "cache_nice_tries",
5473		&sd->cache_nice_tries,
5474		sizeof(int), 0644, proc_dointvec_minmax);
5475	set_table_entry(&table[10], "flags", &sd->flags,
5476		sizeof(int), 0644, proc_dointvec_minmax);
5477	set_table_entry(&table[11], "name", sd->name,
5478		CORENAME_MAX_SIZE, 0444, proc_dostring);
5479	/* &table[12] is terminator */
5480
5481	return table;
5482}
5483
5484static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5485{
5486	struct ctl_table *entry, *table;
5487	struct sched_domain *sd;
5488	int domain_num = 0, i;
5489	char buf[32];
5490
5491	for_each_domain(cpu, sd)
5492		domain_num++;
5493	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5494	if (table == NULL)
5495		return NULL;
5496
5497	i = 0;
5498	for_each_domain(cpu, sd) {
5499		snprintf(buf, 32, "domain%d", i);
5500		entry->procname = kstrdup(buf, GFP_KERNEL);
5501		entry->mode = 0555;
5502		entry->child = sd_alloc_ctl_domain_table(sd);
5503		entry++;
5504		i++;
5505	}
5506	return table;
5507}
5508
5509static struct ctl_table_header *sd_sysctl_header;
5510static void register_sched_domain_sysctl(void)
5511{
5512	int i, cpu_num = num_possible_cpus();
5513	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5514	char buf[32];
5515
5516	WARN_ON(sd_ctl_dir[0].child);
5517	sd_ctl_dir[0].child = entry;
5518
5519	if (entry == NULL)
5520		return;
5521
5522	for_each_possible_cpu(i) {
5523		snprintf(buf, 32, "cpu%d", i);
5524		entry->procname = kstrdup(buf, GFP_KERNEL);
5525		entry->mode = 0555;
5526		entry->child = sd_alloc_ctl_cpu_table(i);
5527		entry++;
5528	}
5529
5530	WARN_ON(sd_sysctl_header);
5531	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5532}
5533
5534/* may be called multiple times per register */
5535static void unregister_sched_domain_sysctl(void)
5536{
5537	if (sd_sysctl_header)
5538		unregister_sysctl_table(sd_sysctl_header);
5539	sd_sysctl_header = NULL;
5540	if (sd_ctl_dir[0].child)
5541		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5542}
5543#else
5544static void register_sched_domain_sysctl(void)
5545{
5546}
5547static void unregister_sched_domain_sysctl(void)
5548{
5549}
5550#endif
5551
5552static void set_rq_online(struct rq *rq)
5553{
5554	if (!rq->online) {
5555		const struct sched_class *class;
5556
5557		cpumask_set_cpu(rq->cpu, rq->rd->online);
5558		rq->online = 1;
5559
5560		for_each_class(class) {
5561			if (class->rq_online)
5562				class->rq_online(rq);
5563		}
5564	}
5565}
5566
5567static void set_rq_offline(struct rq *rq)
5568{
5569	if (rq->online) {
5570		const struct sched_class *class;
5571
5572		for_each_class(class) {
5573			if (class->rq_offline)
5574				class->rq_offline(rq);
5575		}
5576
5577		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5578		rq->online = 0;
5579	}
5580}
5581
5582/*
5583 * migration_call - callback that gets triggered when a CPU is added.
5584 * Here we can start up the necessary migration thread for the new CPU.
5585 */
5586static int __cpuinit
5587migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5588{
5589	int cpu = (long)hcpu;
5590	unsigned long flags;
5591	struct rq *rq = cpu_rq(cpu);
5592
5593	switch (action & ~CPU_TASKS_FROZEN) {
5594
5595	case CPU_UP_PREPARE:
5596		rq->calc_load_update = calc_load_update;
5597		break;
5598
5599	case CPU_ONLINE:
5600		/* Update our root-domain */
5601		raw_spin_lock_irqsave(&rq->lock, flags);
5602		if (rq->rd) {
5603			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5604
5605			set_rq_online(rq);
5606		}
5607		raw_spin_unlock_irqrestore(&rq->lock, flags);
5608		break;
5609
5610#ifdef CONFIG_HOTPLUG_CPU
5611	case CPU_DYING:
5612		sched_ttwu_pending();
5613		/* Update our root-domain */
5614		raw_spin_lock_irqsave(&rq->lock, flags);
5615		if (rq->rd) {
5616			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5617			set_rq_offline(rq);
5618		}
5619		migrate_tasks(cpu);
5620		BUG_ON(rq->nr_running != 1); /* the migration thread */
5621		raw_spin_unlock_irqrestore(&rq->lock, flags);
5622
5623		migrate_nr_uninterruptible(rq);
5624		calc_global_load_remove(rq);
5625		break;
5626#endif
5627	}
5628
5629	update_max_interval();
5630
5631	return NOTIFY_OK;
5632}
5633
5634/*
5635 * Register at high priority so that task migration (migrate_all_tasks)
5636 * happens before everything else.  This has to be lower priority than
5637 * the notifier in the perf_event subsystem, though.
5638 */
5639static struct notifier_block __cpuinitdata migration_notifier = {
5640	.notifier_call = migration_call,
5641	.priority = CPU_PRI_MIGRATION,
5642};
5643
5644static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5645				      unsigned long action, void *hcpu)
5646{
5647	switch (action & ~CPU_TASKS_FROZEN) {
5648	case CPU_STARTING:
5649	case CPU_DOWN_FAILED:
5650		set_cpu_active((long)hcpu, true);
5651		return NOTIFY_OK;
5652	default:
5653		return NOTIFY_DONE;
5654	}
5655}
5656
5657static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5658					unsigned long action, void *hcpu)
5659{
5660	switch (action & ~CPU_TASKS_FROZEN) {
5661	case CPU_DOWN_PREPARE:
5662		set_cpu_active((long)hcpu, false);
5663		return NOTIFY_OK;
5664	default:
5665		return NOTIFY_DONE;
5666	}
5667}
5668
5669static int __init migration_init(void)
5670{
5671	void *cpu = (void *)(long)smp_processor_id();
5672	int err;
5673
5674	/* Initialize migration for the boot CPU */
5675	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5676	BUG_ON(err == NOTIFY_BAD);
5677	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5678	register_cpu_notifier(&migration_notifier);
5679
5680	/* Register cpu active notifiers */
5681	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5682	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5683
5684	return 0;
5685}
5686early_initcall(migration_init);
5687#endif
5688
5689#ifdef CONFIG_SMP
5690
5691static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5692
5693#ifdef CONFIG_SCHED_DEBUG
5694
5695static __read_mostly int sched_debug_enabled;
5696
5697static int __init sched_debug_setup(char *str)
5698{
5699	sched_debug_enabled = 1;
5700
5701	return 0;
5702}
5703early_param("sched_debug", sched_debug_setup);
5704
5705static inline bool sched_debug(void)
5706{
5707	return sched_debug_enabled;
5708}
5709
5710static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5711				  struct cpumask *groupmask)
5712{
5713	struct sched_group *group = sd->groups;
5714	char str[256];
5715
5716	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5717	cpumask_clear(groupmask);
5718
5719	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5720
5721	if (!(sd->flags & SD_LOAD_BALANCE)) {
5722		printk("does not load-balance\n");
5723		if (sd->parent)
5724			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5725					" has parent");
5726		return -1;
5727	}
5728
5729	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5730
5731	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5732		printk(KERN_ERR "ERROR: domain->span does not contain "
5733				"CPU%d\n", cpu);
5734	}
5735	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5736		printk(KERN_ERR "ERROR: domain->groups does not contain"
5737				" CPU%d\n", cpu);
5738	}
5739
5740	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5741	do {
5742		if (!group) {
5743			printk("\n");
5744			printk(KERN_ERR "ERROR: group is NULL\n");
5745			break;
5746		}
5747
5748		/*
5749		 * Even though we initialize ->power to something semi-sane,
5750		 * we leave power_orig unset. This allows us to detect if
5751		 * domain iteration is still funny without causing /0 traps.
5752		 */
5753		if (!group->sgp->power_orig) {
5754			printk(KERN_CONT "\n");
5755			printk(KERN_ERR "ERROR: domain->cpu_power not "
5756					"set\n");
5757			break;
5758		}
5759
5760		if (!cpumask_weight(sched_group_cpus(group))) {
5761			printk(KERN_CONT "\n");
5762			printk(KERN_ERR "ERROR: empty group\n");
5763			break;
5764		}
5765
5766		if (!(sd->flags & SD_OVERLAP) &&
5767		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5768			printk(KERN_CONT "\n");
5769			printk(KERN_ERR "ERROR: repeated CPUs\n");
5770			break;
5771		}
5772
5773		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5774
5775		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5776
5777		printk(KERN_CONT " %s", str);
5778		if (group->sgp->power != SCHED_POWER_SCALE) {
5779			printk(KERN_CONT " (cpu_power = %d)",
5780				group->sgp->power);
5781		}
5782
5783		group = group->next;
5784	} while (group != sd->groups);
5785	printk(KERN_CONT "\n");
5786
5787	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5788		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5789
5790	if (sd->parent &&
5791	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5792		printk(KERN_ERR "ERROR: parent span is not a superset "
5793			"of domain->span\n");
5794	return 0;
5795}
5796
5797static void sched_domain_debug(struct sched_domain *sd, int cpu)
5798{
5799	int level = 0;
5800
5801	if (!sched_debug_enabled)
5802		return;
5803
5804	if (!sd) {
5805		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5806		return;
5807	}
5808
5809	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5810
5811	for (;;) {
5812		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5813			break;
5814		level++;
5815		sd = sd->parent;
5816		if (!sd)
5817			break;
5818	}
5819}
5820#else /* !CONFIG_SCHED_DEBUG */
5821# define sched_domain_debug(sd, cpu) do { } while (0)
5822static inline bool sched_debug(void)
5823{
5824	return false;
5825}
5826#endif /* CONFIG_SCHED_DEBUG */
5827
5828static int sd_degenerate(struct sched_domain *sd)
5829{
5830	if (cpumask_weight(sched_domain_span(sd)) == 1)
5831		return 1;
5832
5833	/* Following flags need at least 2 groups */
5834	if (sd->flags & (SD_LOAD_BALANCE |
5835			 SD_BALANCE_NEWIDLE |
5836			 SD_BALANCE_FORK |
5837			 SD_BALANCE_EXEC |
5838			 SD_SHARE_CPUPOWER |
5839			 SD_SHARE_PKG_RESOURCES)) {
5840		if (sd->groups != sd->groups->next)
5841			return 0;
5842	}
5843
5844	/* Following flags don't use groups */
5845	if (sd->flags & (SD_WAKE_AFFINE))
5846		return 0;
5847
5848	return 1;
5849}
5850
5851static int
5852sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5853{
5854	unsigned long cflags = sd->flags, pflags = parent->flags;
5855
5856	if (sd_degenerate(parent))
5857		return 1;
5858
5859	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5860		return 0;
5861
5862	/* Flags needing groups don't count if only 1 group in parent */
5863	if (parent->groups == parent->groups->next) {
5864		pflags &= ~(SD_LOAD_BALANCE |
5865				SD_BALANCE_NEWIDLE |
5866				SD_BALANCE_FORK |
5867				SD_BALANCE_EXEC |
5868				SD_SHARE_CPUPOWER |
5869				SD_SHARE_PKG_RESOURCES);
5870		if (nr_node_ids == 1)
5871			pflags &= ~SD_SERIALIZE;
5872	}
5873	if (~cflags & pflags)
5874		return 0;
5875
5876	return 1;
5877}
5878
5879static void free_rootdomain(struct rcu_head *rcu)
5880{
5881	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5882
5883	cpupri_cleanup(&rd->cpupri);
5884	free_cpumask_var(rd->rto_mask);
5885	free_cpumask_var(rd->online);
5886	free_cpumask_var(rd->span);
5887	kfree(rd);
5888}
5889
5890static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5891{
5892	struct root_domain *old_rd = NULL;
5893	unsigned long flags;
5894
5895	raw_spin_lock_irqsave(&rq->lock, flags);
5896
5897	if (rq->rd) {
5898		old_rd = rq->rd;
5899
5900		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5901			set_rq_offline(rq);
5902
5903		cpumask_clear_cpu(rq->cpu, old_rd->span);
5904
5905		/*
5906		 * If we dont want to free the old_rt yet then
5907		 * set old_rd to NULL to skip the freeing later
5908		 * in this function:
5909		 */
5910		if (!atomic_dec_and_test(&old_rd->refcount))
5911			old_rd = NULL;
5912	}
5913
5914	atomic_inc(&rd->refcount);
5915	rq->rd = rd;
5916
5917	cpumask_set_cpu(rq->cpu, rd->span);
5918	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5919		set_rq_online(rq);
5920
5921	raw_spin_unlock_irqrestore(&rq->lock, flags);
5922
5923	if (old_rd)
5924		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5925}
5926
5927static int init_rootdomain(struct root_domain *rd)
5928{
5929	memset(rd, 0, sizeof(*rd));
5930
5931	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5932		goto out;
5933	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5934		goto free_span;
5935	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5936		goto free_online;
5937
5938	if (cpupri_init(&rd->cpupri) != 0)
5939		goto free_rto_mask;
5940	return 0;
5941
5942free_rto_mask:
5943	free_cpumask_var(rd->rto_mask);
5944free_online:
5945	free_cpumask_var(rd->online);
5946free_span:
5947	free_cpumask_var(rd->span);
5948out:
5949	return -ENOMEM;
5950}
5951
5952/*
5953 * By default the system creates a single root-domain with all cpus as
5954 * members (mimicking the global state we have today).
5955 */
5956struct root_domain def_root_domain;
5957
5958static void init_defrootdomain(void)
5959{
5960	init_rootdomain(&def_root_domain);
5961
5962	atomic_set(&def_root_domain.refcount, 1);
5963}
5964
5965static struct root_domain *alloc_rootdomain(void)
5966{
5967	struct root_domain *rd;
5968
5969	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5970	if (!rd)
5971		return NULL;
5972
5973	if (init_rootdomain(rd) != 0) {
5974		kfree(rd);
5975		return NULL;
5976	}
5977
5978	return rd;
5979}
5980
5981static void free_sched_groups(struct sched_group *sg, int free_sgp)
5982{
5983	struct sched_group *tmp, *first;
5984
5985	if (!sg)
5986		return;
5987
5988	first = sg;
5989	do {
5990		tmp = sg->next;
5991
5992		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5993			kfree(sg->sgp);
5994
5995		kfree(sg);
5996		sg = tmp;
5997	} while (sg != first);
5998}
5999
6000static void free_sched_domain(struct rcu_head *rcu)
6001{
6002	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6003
6004	/*
6005	 * If its an overlapping domain it has private groups, iterate and
6006	 * nuke them all.
6007	 */
6008	if (sd->flags & SD_OVERLAP) {
6009		free_sched_groups(sd->groups, 1);
6010	} else if (atomic_dec_and_test(&sd->groups->ref)) {
6011		kfree(sd->groups->sgp);
6012		kfree(sd->groups);
6013	}
6014	kfree(sd);
6015}
6016
6017static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6018{
6019	call_rcu(&sd->rcu, free_sched_domain);
6020}
6021
6022static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6023{
6024	for (; sd; sd = sd->parent)
6025		destroy_sched_domain(sd, cpu);
6026}
6027
6028/*
6029 * Keep a special pointer to the highest sched_domain that has
6030 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6031 * allows us to avoid some pointer chasing select_idle_sibling().
6032 *
6033 * Also keep a unique ID per domain (we use the first cpu number in
6034 * the cpumask of the domain), this allows us to quickly tell if
6035 * two cpus are in the same cache domain, see cpus_share_cache().
6036 */
6037DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6038DEFINE_PER_CPU(int, sd_llc_id);
6039
6040static void update_top_cache_domain(int cpu)
6041{
6042	struct sched_domain *sd;
6043	int id = cpu;
6044
6045	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6046	if (sd)
6047		id = cpumask_first(sched_domain_span(sd));
6048
6049	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6050	per_cpu(sd_llc_id, cpu) = id;
6051}
6052
6053/*
6054 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6055 * hold the hotplug lock.
6056 */
6057static void
6058cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6059{
6060	struct rq *rq = cpu_rq(cpu);
6061	struct sched_domain *tmp;
6062
6063	/* Remove the sched domains which do not contribute to scheduling. */
6064	for (tmp = sd; tmp; ) {
6065		struct sched_domain *parent = tmp->parent;
6066		if (!parent)
6067			break;
6068
6069		if (sd_parent_degenerate(tmp, parent)) {
6070			tmp->parent = parent->parent;
6071			if (parent->parent)
6072				parent->parent->child = tmp;
6073			destroy_sched_domain(parent, cpu);
6074		} else
6075			tmp = tmp->parent;
6076	}
6077
6078	if (sd && sd_degenerate(sd)) {
6079		tmp = sd;
6080		sd = sd->parent;
6081		destroy_sched_domain(tmp, cpu);
6082		if (sd)
6083			sd->child = NULL;
6084	}
6085
6086	sched_domain_debug(sd, cpu);
6087
6088	rq_attach_root(rq, rd);
6089	tmp = rq->sd;
6090	rcu_assign_pointer(rq->sd, sd);
6091	destroy_sched_domains(tmp, cpu);
6092
6093	update_top_cache_domain(cpu);
6094}
6095
6096/* cpus with isolated domains */
6097static cpumask_var_t cpu_isolated_map;
6098
6099/* Setup the mask of cpus configured for isolated domains */
6100static int __init isolated_cpu_setup(char *str)
6101{
6102	alloc_bootmem_cpumask_var(&cpu_isolated_map);
6103	cpulist_parse(str, cpu_isolated_map);
6104	return 1;
6105}
6106
6107__setup("isolcpus=", isolated_cpu_setup);
6108
6109static const struct cpumask *cpu_cpu_mask(int cpu)
6110{
6111	return cpumask_of_node(cpu_to_node(cpu));
6112}
6113
6114struct sd_data {
6115	struct sched_domain **__percpu sd;
6116	struct sched_group **__percpu sg;
6117	struct sched_group_power **__percpu sgp;
6118};
6119
6120struct s_data {
6121	struct sched_domain ** __percpu sd;
6122	struct root_domain	*rd;
6123};
6124
6125enum s_alloc {
6126	sa_rootdomain,
6127	sa_sd,
6128	sa_sd_storage,
6129	sa_none,
6130};
6131
6132struct sched_domain_topology_level;
6133
6134typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
6135typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6136
6137#define SDTL_OVERLAP	0x01
6138
6139struct sched_domain_topology_level {
6140	sched_domain_init_f init;
6141	sched_domain_mask_f mask;
6142	int		    flags;
6143	int		    numa_level;
6144	struct sd_data      data;
6145};
6146
6147/*
6148 * Build an iteration mask that can exclude certain CPUs from the upwards
6149 * domain traversal.
6150 *
6151 * Asymmetric node setups can result in situations where the domain tree is of
6152 * unequal depth, make sure to skip domains that already cover the entire
6153 * range.
6154 *
6155 * In that case build_sched_domains() will have terminated the iteration early
6156 * and our sibling sd spans will be empty. Domains should always include the
6157 * cpu they're built on, so check that.
6158 *
 
 
6159 */
6160static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6161{
6162	const struct cpumask *span = sched_domain_span(sd);
6163	struct sd_data *sdd = sd->private;
6164	struct sched_domain *sibling;
6165	int i;
6166
6167	for_each_cpu(i, span) {
6168		sibling = *per_cpu_ptr(sdd->sd, i);
6169		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6170			continue;
6171
6172		cpumask_set_cpu(i, sched_group_mask(sg));
6173	}
6174}
6175
6176/*
6177 * Return the canonical balance cpu for this group, this is the first cpu
6178 * of this group that's also in the iteration mask.
6179 */
6180int group_balance_cpu(struct sched_group *sg)
6181{
6182	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6183}
6184
6185static int
6186build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6187{
6188	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6189	const struct cpumask *span = sched_domain_span(sd);
6190	struct cpumask *covered = sched_domains_tmpmask;
6191	struct sd_data *sdd = sd->private;
6192	struct sched_domain *child;
6193	int i;
6194
6195	cpumask_clear(covered);
6196
6197	for_each_cpu(i, span) {
6198		struct cpumask *sg_span;
6199
6200		if (cpumask_test_cpu(i, covered))
6201			continue;
6202
6203		child = *per_cpu_ptr(sdd->sd, i);
6204
6205		/* See the comment near build_group_mask(). */
6206		if (!cpumask_test_cpu(i, sched_domain_span(child)))
6207			continue;
6208
6209		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6210				GFP_KERNEL, cpu_to_node(cpu));
6211
6212		if (!sg)
6213			goto fail;
6214
6215		sg_span = sched_group_cpus(sg);
6216		if (child->child) {
6217			child = child->child;
6218			cpumask_copy(sg_span, sched_domain_span(child));
6219		} else
6220			cpumask_set_cpu(i, sg_span);
6221
6222		cpumask_or(covered, covered, sg_span);
6223
6224		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
6225		if (atomic_inc_return(&sg->sgp->ref) == 1)
6226			build_group_mask(sd, sg);
6227
6228		/*
6229		 * Initialize sgp->power such that even if we mess up the
6230		 * domains and no possible iteration will get us here, we won't
6231		 * die on a /0 trap.
 
6232		 */
6233		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
6234
 
6235		/*
6236		 * Make sure the first group of this domain contains the
6237		 * canonical balance cpu. Otherwise the sched_domain iteration
6238		 * breaks. See update_sg_lb_stats().
6239		 */
6240		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6241		    group_balance_cpu(sg) == cpu)
6242			groups = sg;
6243
6244		if (!first)
6245			first = sg;
6246		if (last)
6247			last->next = sg;
6248		last = sg;
6249		last->next = first;
6250	}
6251	sd->groups = groups;
6252
6253	return 0;
6254
6255fail:
6256	free_sched_groups(first, 0);
6257
6258	return -ENOMEM;
6259}
6260
6261static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6262{
6263	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6264	struct sched_domain *child = sd->child;
6265
6266	if (child)
6267		cpu = cpumask_first(sched_domain_span(child));
6268
6269	if (sg) {
6270		*sg = *per_cpu_ptr(sdd->sg, cpu);
6271		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6272		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6273	}
6274
6275	return cpu;
6276}
6277
6278/*
6279 * build_sched_groups will build a circular linked list of the groups
6280 * covered by the given span, and will set each group's ->cpumask correctly,
6281 * and ->cpu_power to 0.
6282 *
6283 * Assumes the sched_domain tree is fully constructed
6284 */
6285static int
6286build_sched_groups(struct sched_domain *sd, int cpu)
6287{
6288	struct sched_group *first = NULL, *last = NULL;
6289	struct sd_data *sdd = sd->private;
6290	const struct cpumask *span = sched_domain_span(sd);
6291	struct cpumask *covered;
6292	int i;
6293
6294	get_group(cpu, sdd, &sd->groups);
6295	atomic_inc(&sd->groups->ref);
6296
6297	if (cpu != cpumask_first(sched_domain_span(sd)))
6298		return 0;
6299
6300	lockdep_assert_held(&sched_domains_mutex);
6301	covered = sched_domains_tmpmask;
6302
6303	cpumask_clear(covered);
6304
6305	for_each_cpu(i, span) {
6306		struct sched_group *sg;
6307		int group = get_group(i, sdd, &sg);
6308		int j;
6309
6310		if (cpumask_test_cpu(i, covered))
6311			continue;
6312
6313		cpumask_clear(sched_group_cpus(sg));
6314		sg->sgp->power = 0;
6315		cpumask_setall(sched_group_mask(sg));
6316
6317		for_each_cpu(j, span) {
6318			if (get_group(j, sdd, NULL) != group)
6319				continue;
6320
6321			cpumask_set_cpu(j, covered);
6322			cpumask_set_cpu(j, sched_group_cpus(sg));
6323		}
6324
6325		if (!first)
6326			first = sg;
6327		if (last)
6328			last->next = sg;
6329		last = sg;
6330	}
6331	last->next = first;
6332
6333	return 0;
6334}
6335
6336/*
6337 * Initialize sched groups cpu_power.
6338 *
6339 * cpu_power indicates the capacity of sched group, which is used while
6340 * distributing the load between different sched groups in a sched domain.
6341 * Typically cpu_power for all the groups in a sched domain will be same unless
6342 * there are asymmetries in the topology. If there are asymmetries, group
6343 * having more cpu_power will pickup more load compared to the group having
6344 * less cpu_power.
6345 */
6346static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6347{
6348	struct sched_group *sg = sd->groups;
6349
6350	WARN_ON(!sd || !sg);
6351
6352	do {
6353		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6354		sg = sg->next;
6355	} while (sg != sd->groups);
6356
6357	if (cpu != group_balance_cpu(sg))
6358		return;
6359
6360	update_group_power(sd, cpu);
6361	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6362}
6363
6364int __weak arch_sd_sibling_asym_packing(void)
6365{
6366       return 0*SD_ASYM_PACKING;
6367}
6368
6369/*
6370 * Initializers for schedule domains
6371 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6372 */
6373
6374#ifdef CONFIG_SCHED_DEBUG
6375# define SD_INIT_NAME(sd, type)		sd->name = #type
6376#else
6377# define SD_INIT_NAME(sd, type)		do { } while (0)
6378#endif
6379
6380#define SD_INIT_FUNC(type)						\
6381static noinline struct sched_domain *					\
6382sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
6383{									\
6384	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
6385	*sd = SD_##type##_INIT;						\
6386	SD_INIT_NAME(sd, type);						\
6387	sd->private = &tl->data;					\
6388	return sd;							\
6389}
6390
6391SD_INIT_FUNC(CPU)
6392#ifdef CONFIG_SCHED_SMT
6393 SD_INIT_FUNC(SIBLING)
6394#endif
6395#ifdef CONFIG_SCHED_MC
6396 SD_INIT_FUNC(MC)
6397#endif
6398#ifdef CONFIG_SCHED_BOOK
6399 SD_INIT_FUNC(BOOK)
6400#endif
 
6401
6402static int default_relax_domain_level = -1;
6403int sched_domain_level_max;
6404
6405static int __init setup_relax_domain_level(char *str)
6406{
6407	if (kstrtoint(str, 0, &default_relax_domain_level))
6408		pr_warn("Unable to set relax_domain_level\n");
6409
6410	return 1;
6411}
6412__setup("relax_domain_level=", setup_relax_domain_level);
6413
6414static void set_domain_attribute(struct sched_domain *sd,
6415				 struct sched_domain_attr *attr)
6416{
6417	int request;
6418
6419	if (!attr || attr->relax_domain_level < 0) {
6420		if (default_relax_domain_level < 0)
6421			return;
6422		else
6423			request = default_relax_domain_level;
6424	} else
6425		request = attr->relax_domain_level;
6426	if (request < sd->level) {
6427		/* turn off idle balance on this domain */
6428		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6429	} else {
6430		/* turn on idle balance on this domain */
6431		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6432	}
6433}
6434
6435static void __sdt_free(const struct cpumask *cpu_map);
6436static int __sdt_alloc(const struct cpumask *cpu_map);
6437
6438static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6439				 const struct cpumask *cpu_map)
6440{
6441	switch (what) {
6442	case sa_rootdomain:
6443		if (!atomic_read(&d->rd->refcount))
6444			free_rootdomain(&d->rd->rcu); /* fall through */
6445	case sa_sd:
6446		free_percpu(d->sd); /* fall through */
6447	case sa_sd_storage:
6448		__sdt_free(cpu_map); /* fall through */
6449	case sa_none:
6450		break;
6451	}
6452}
6453
6454static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6455						   const struct cpumask *cpu_map)
6456{
6457	memset(d, 0, sizeof(*d));
6458
6459	if (__sdt_alloc(cpu_map))
6460		return sa_sd_storage;
6461	d->sd = alloc_percpu(struct sched_domain *);
6462	if (!d->sd)
6463		return sa_sd_storage;
6464	d->rd = alloc_rootdomain();
6465	if (!d->rd)
6466		return sa_sd;
6467	return sa_rootdomain;
6468}
6469
6470/*
6471 * NULL the sd_data elements we've used to build the sched_domain and
6472 * sched_group structure so that the subsequent __free_domain_allocs()
6473 * will not free the data we're using.
6474 */
6475static void claim_allocations(int cpu, struct sched_domain *sd)
6476{
6477	struct sd_data *sdd = sd->private;
6478
6479	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6480	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6481
6482	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6483		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6484
6485	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6486		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6487}
6488
6489#ifdef CONFIG_SCHED_SMT
6490static const struct cpumask *cpu_smt_mask(int cpu)
6491{
6492	return topology_thread_cpumask(cpu);
6493}
6494#endif
6495
6496/*
6497 * Topology list, bottom-up.
6498 */
6499static struct sched_domain_topology_level default_topology[] = {
6500#ifdef CONFIG_SCHED_SMT
6501	{ sd_init_SIBLING, cpu_smt_mask, },
6502#endif
6503#ifdef CONFIG_SCHED_MC
6504	{ sd_init_MC, cpu_coregroup_mask, },
6505#endif
6506#ifdef CONFIG_SCHED_BOOK
6507	{ sd_init_BOOK, cpu_book_mask, },
6508#endif
6509	{ sd_init_CPU, cpu_cpu_mask, },
6510	{ NULL, },
6511};
6512
6513static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6514
6515#ifdef CONFIG_NUMA
6516
6517static int sched_domains_numa_levels;
6518static int *sched_domains_numa_distance;
6519static struct cpumask ***sched_domains_numa_masks;
6520static int sched_domains_curr_level;
6521
6522static inline int sd_local_flags(int level)
6523{
6524	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6525		return 0;
6526
6527	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6528}
6529
6530static struct sched_domain *
6531sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6532{
6533	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6534	int level = tl->numa_level;
6535	int sd_weight = cpumask_weight(
6536			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6537
6538	*sd = (struct sched_domain){
6539		.min_interval		= sd_weight,
6540		.max_interval		= 2*sd_weight,
6541		.busy_factor		= 32,
6542		.imbalance_pct		= 125,
6543		.cache_nice_tries	= 2,
6544		.busy_idx		= 3,
6545		.idle_idx		= 2,
6546		.newidle_idx		= 0,
6547		.wake_idx		= 0,
6548		.forkexec_idx		= 0,
6549
6550		.flags			= 1*SD_LOAD_BALANCE
6551					| 1*SD_BALANCE_NEWIDLE
6552					| 0*SD_BALANCE_EXEC
6553					| 0*SD_BALANCE_FORK
6554					| 0*SD_BALANCE_WAKE
6555					| 0*SD_WAKE_AFFINE
6556					| 0*SD_PREFER_LOCAL
6557					| 0*SD_SHARE_CPUPOWER
6558					| 0*SD_SHARE_PKG_RESOURCES
6559					| 1*SD_SERIALIZE
6560					| 0*SD_PREFER_SIBLING
6561					| sd_local_flags(level)
6562					,
6563		.last_balance		= jiffies,
6564		.balance_interval	= sd_weight,
6565	};
6566	SD_INIT_NAME(sd, NUMA);
6567	sd->private = &tl->data;
6568
6569	/*
6570	 * Ugly hack to pass state to sd_numa_mask()...
 
 
 
 
 
 
6571	 */
6572	sched_domains_curr_level = tl->numa_level;
6573
6574	return sd;
6575}
6576
6577static const struct cpumask *sd_numa_mask(int cpu)
6578{
6579	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6580}
6581
6582static void sched_numa_warn(const char *str)
6583{
6584	static int done = false;
6585	int i,j;
6586
6587	if (done)
6588		return;
6589
6590	done = true;
6591
6592	printk(KERN_WARNING "ERROR: %s\n\n", str);
6593
6594	for (i = 0; i < nr_node_ids; i++) {
6595		printk(KERN_WARNING "  ");
6596		for (j = 0; j < nr_node_ids; j++)
6597			printk(KERN_CONT "%02d ", node_distance(i,j));
6598		printk(KERN_CONT "\n");
6599	}
6600	printk(KERN_WARNING "\n");
6601}
6602
6603static bool find_numa_distance(int distance)
6604{
6605	int i;
6606
6607	if (distance == node_distance(0, 0))
6608		return true;
6609
6610	for (i = 0; i < sched_domains_numa_levels; i++) {
6611		if (sched_domains_numa_distance[i] == distance)
6612			return true;
6613	}
6614
6615	return false;
6616}
6617
6618static void sched_init_numa(void)
6619{
6620	int next_distance, curr_distance = node_distance(0, 0);
6621	struct sched_domain_topology_level *tl;
6622	int level = 0;
6623	int i, j, k;
6624
6625	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6626	if (!sched_domains_numa_distance)
6627		return;
6628
 
6629	/*
6630	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6631	 * unique distances in the node_distance() table.
 
6632	 *
6633	 * Assumes node_distance(0,j) includes all distances in
6634	 * node_distance(i,j) in order to avoid cubic time.
6635	 */
6636	next_distance = curr_distance;
6637	for (i = 0; i < nr_node_ids; i++) {
6638		for (j = 0; j < nr_node_ids; j++) {
6639			for (k = 0; k < nr_node_ids; k++) {
6640				int distance = node_distance(i, k);
6641
6642				if (distance > curr_distance &&
6643				    (distance < next_distance ||
6644				     next_distance == curr_distance))
6645					next_distance = distance;
6646
6647				/*
6648				 * While not a strong assumption it would be nice to know
6649				 * about cases where if node A is connected to B, B is not
6650				 * equally connected to A.
6651				 */
6652				if (sched_debug() && node_distance(k, i) != distance)
6653					sched_numa_warn("Node-distance not symmetric");
6654
6655				if (sched_debug() && i && !find_numa_distance(distance))
6656					sched_numa_warn("Node-0 not representative");
6657			}
6658			if (next_distance != curr_distance) {
6659				sched_domains_numa_distance[level++] = next_distance;
6660				sched_domains_numa_levels = level;
6661				curr_distance = next_distance;
6662			} else break;
6663		}
6664
6665		/*
6666		 * In case of sched_debug() we verify the above assumption.
6667		 */
6668		if (!sched_debug())
6669			break;
6670	}
6671	/*
6672	 * 'level' contains the number of unique distances, excluding the
6673	 * identity distance node_distance(i,i).
6674	 *
6675	 * The sched_domains_nume_distance[] array includes the actual distance
6676	 * numbers.
6677	 */
 
 
 
6678
6679	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6680	if (!sched_domains_numa_masks)
6681		return;
6682
6683	/*
6684	 * Now for each level, construct a mask per node which contains all
6685	 * cpus of nodes that are that many hops away from us.
6686	 */
6687	for (i = 0; i < level; i++) {
6688		sched_domains_numa_masks[i] =
6689			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6690		if (!sched_domains_numa_masks[i])
6691			return;
6692
6693		for (j = 0; j < nr_node_ids; j++) {
6694			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6695			if (!mask)
6696				return;
6697
6698			sched_domains_numa_masks[i][j] = mask;
6699
6700			for (k = 0; k < nr_node_ids; k++) {
6701				if (node_distance(j, k) > sched_domains_numa_distance[i])
6702					continue;
6703
6704				cpumask_or(mask, mask, cpumask_of_node(k));
6705			}
6706		}
6707	}
6708
6709	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6710			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6711	if (!tl)
6712		return;
6713
6714	/*
6715	 * Copy the default topology bits..
6716	 */
6717	for (i = 0; default_topology[i].init; i++)
6718		tl[i] = default_topology[i];
6719
6720	/*
6721	 * .. and append 'j' levels of NUMA goodness.
6722	 */
6723	for (j = 0; j < level; i++, j++) {
6724		tl[i] = (struct sched_domain_topology_level){
6725			.init = sd_numa_init,
6726			.mask = sd_numa_mask,
6727			.flags = SDTL_OVERLAP,
6728			.numa_level = j,
6729		};
6730	}
6731
6732	sched_domain_topology = tl;
6733}
6734#else
6735static inline void sched_init_numa(void)
6736{
6737}
6738#endif /* CONFIG_NUMA */
6739
6740static int __sdt_alloc(const struct cpumask *cpu_map)
6741{
6742	struct sched_domain_topology_level *tl;
6743	int j;
6744
6745	for (tl = sched_domain_topology; tl->init; tl++) {
6746		struct sd_data *sdd = &tl->data;
6747
6748		sdd->sd = alloc_percpu(struct sched_domain *);
6749		if (!sdd->sd)
6750			return -ENOMEM;
6751
6752		sdd->sg = alloc_percpu(struct sched_group *);
6753		if (!sdd->sg)
6754			return -ENOMEM;
6755
6756		sdd->sgp = alloc_percpu(struct sched_group_power *);
6757		if (!sdd->sgp)
6758			return -ENOMEM;
6759
6760		for_each_cpu(j, cpu_map) {
6761			struct sched_domain *sd;
6762			struct sched_group *sg;
6763			struct sched_group_power *sgp;
6764
6765		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6766					GFP_KERNEL, cpu_to_node(j));
6767			if (!sd)
6768				return -ENOMEM;
6769
6770			*per_cpu_ptr(sdd->sd, j) = sd;
6771
6772			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6773					GFP_KERNEL, cpu_to_node(j));
6774			if (!sg)
6775				return -ENOMEM;
6776
6777			sg->next = sg;
6778
6779			*per_cpu_ptr(sdd->sg, j) = sg;
6780
6781			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6782					GFP_KERNEL, cpu_to_node(j));
6783			if (!sgp)
6784				return -ENOMEM;
6785
6786			*per_cpu_ptr(sdd->sgp, j) = sgp;
6787		}
6788	}
6789
6790	return 0;
6791}
6792
6793static void __sdt_free(const struct cpumask *cpu_map)
6794{
6795	struct sched_domain_topology_level *tl;
6796	int j;
6797
6798	for (tl = sched_domain_topology; tl->init; tl++) {
6799		struct sd_data *sdd = &tl->data;
6800
6801		for_each_cpu(j, cpu_map) {
6802			struct sched_domain *sd;
6803
6804			if (sdd->sd) {
6805				sd = *per_cpu_ptr(sdd->sd, j);
6806				if (sd && (sd->flags & SD_OVERLAP))
6807					free_sched_groups(sd->groups, 0);
6808				kfree(*per_cpu_ptr(sdd->sd, j));
6809			}
6810
6811			if (sdd->sg)
6812				kfree(*per_cpu_ptr(sdd->sg, j));
6813			if (sdd->sgp)
6814				kfree(*per_cpu_ptr(sdd->sgp, j));
6815		}
6816		free_percpu(sdd->sd);
6817		sdd->sd = NULL;
6818		free_percpu(sdd->sg);
6819		sdd->sg = NULL;
6820		free_percpu(sdd->sgp);
6821		sdd->sgp = NULL;
6822	}
6823}
6824
6825struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6826		struct s_data *d, const struct cpumask *cpu_map,
6827		struct sched_domain_attr *attr, struct sched_domain *child,
6828		int cpu)
6829{
6830	struct sched_domain *sd = tl->init(tl, cpu);
6831	if (!sd)
6832		return child;
6833
6834	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6835	if (child) {
6836		sd->level = child->level + 1;
6837		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6838		child->parent = sd;
6839	}
6840	sd->child = child;
6841	set_domain_attribute(sd, attr);
6842
6843	return sd;
6844}
6845
6846/*
6847 * Build sched domains for a given set of cpus and attach the sched domains
6848 * to the individual cpus
6849 */
6850static int build_sched_domains(const struct cpumask *cpu_map,
6851			       struct sched_domain_attr *attr)
6852{
6853	enum s_alloc alloc_state = sa_none;
6854	struct sched_domain *sd;
6855	struct s_data d;
6856	int i, ret = -ENOMEM;
6857
6858	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6859	if (alloc_state != sa_rootdomain)
6860		goto error;
6861
6862	/* Set up domains for cpus specified by the cpu_map. */
6863	for_each_cpu(i, cpu_map) {
6864		struct sched_domain_topology_level *tl;
6865
6866		sd = NULL;
6867		for (tl = sched_domain_topology; tl->init; tl++) {
6868			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6869			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6870				sd->flags |= SD_OVERLAP;
6871			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6872				break;
6873		}
6874
6875		while (sd->child)
6876			sd = sd->child;
6877
6878		*per_cpu_ptr(d.sd, i) = sd;
6879	}
 
 
 
6880
6881	/* Build the groups for the domains */
6882	for_each_cpu(i, cpu_map) {
6883		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6884			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6885			if (sd->flags & SD_OVERLAP) {
6886				if (build_overlap_sched_groups(sd, i))
6887					goto error;
6888			} else {
6889				if (build_sched_groups(sd, i))
6890					goto error;
6891			}
6892		}
6893	}
6894
6895	/* Calculate CPU power for physical packages and nodes */
6896	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6897		if (!cpumask_test_cpu(i, cpu_map))
6898			continue;
6899
6900		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6901			claim_allocations(i, sd);
6902			init_sched_groups_power(i, sd);
6903		}
6904	}
6905
6906	/* Attach the domains */
6907	rcu_read_lock();
6908	for_each_cpu(i, cpu_map) {
6909		sd = *per_cpu_ptr(d.sd, i);
6910		cpu_attach_domain(sd, d.rd, i);
6911	}
6912	rcu_read_unlock();
6913
6914	ret = 0;
6915error:
6916	__free_domain_allocs(&d, alloc_state, cpu_map);
6917	return ret;
6918}
6919
6920static cpumask_var_t *doms_cur;	/* current sched domains */
6921static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6922static struct sched_domain_attr *dattr_cur;
6923				/* attribues of custom domains in 'doms_cur' */
6924
6925/*
6926 * Special case: If a kmalloc of a doms_cur partition (array of
6927 * cpumask) fails, then fallback to a single sched domain,
6928 * as determined by the single cpumask fallback_doms.
6929 */
6930static cpumask_var_t fallback_doms;
6931
6932/*
6933 * arch_update_cpu_topology lets virtualized architectures update the
6934 * cpu core maps. It is supposed to return 1 if the topology changed
6935 * or 0 if it stayed the same.
6936 */
6937int __attribute__((weak)) arch_update_cpu_topology(void)
6938{
6939	return 0;
6940}
6941
6942cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6943{
6944	int i;
6945	cpumask_var_t *doms;
6946
6947	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6948	if (!doms)
6949		return NULL;
6950	for (i = 0; i < ndoms; i++) {
6951		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6952			free_sched_domains(doms, i);
6953			return NULL;
6954		}
6955	}
6956	return doms;
6957}
6958
6959void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6960{
6961	unsigned int i;
6962	for (i = 0; i < ndoms; i++)
6963		free_cpumask_var(doms[i]);
6964	kfree(doms);
6965}
6966
6967/*
6968 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6969 * For now this just excludes isolated cpus, but could be used to
6970 * exclude other special cases in the future.
6971 */
6972static int init_sched_domains(const struct cpumask *cpu_map)
6973{
6974	int err;
6975
6976	arch_update_cpu_topology();
6977	ndoms_cur = 1;
6978	doms_cur = alloc_sched_domains(ndoms_cur);
6979	if (!doms_cur)
6980		doms_cur = &fallback_doms;
6981	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6982	err = build_sched_domains(doms_cur[0], NULL);
6983	register_sched_domain_sysctl();
6984
6985	return err;
6986}
6987
6988/*
6989 * Detach sched domains from a group of cpus specified in cpu_map
6990 * These cpus will now be attached to the NULL domain
6991 */
6992static void detach_destroy_domains(const struct cpumask *cpu_map)
6993{
6994	int i;
6995
6996	rcu_read_lock();
6997	for_each_cpu(i, cpu_map)
6998		cpu_attach_domain(NULL, &def_root_domain, i);
6999	rcu_read_unlock();
7000}
7001
7002/* handle null as "default" */
7003static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7004			struct sched_domain_attr *new, int idx_new)
7005{
7006	struct sched_domain_attr tmp;
7007
7008	/* fast path */
7009	if (!new && !cur)
7010		return 1;
7011
7012	tmp = SD_ATTR_INIT;
7013	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7014			new ? (new + idx_new) : &tmp,
7015			sizeof(struct sched_domain_attr));
7016}
7017
7018/*
7019 * Partition sched domains as specified by the 'ndoms_new'
7020 * cpumasks in the array doms_new[] of cpumasks. This compares
7021 * doms_new[] to the current sched domain partitioning, doms_cur[].
7022 * It destroys each deleted domain and builds each new domain.
7023 *
7024 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7025 * The masks don't intersect (don't overlap.) We should setup one
7026 * sched domain for each mask. CPUs not in any of the cpumasks will
7027 * not be load balanced. If the same cpumask appears both in the
7028 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7029 * it as it is.
7030 *
7031 * The passed in 'doms_new' should be allocated using
7032 * alloc_sched_domains.  This routine takes ownership of it and will
7033 * free_sched_domains it when done with it. If the caller failed the
7034 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7035 * and partition_sched_domains() will fallback to the single partition
7036 * 'fallback_doms', it also forces the domains to be rebuilt.
7037 *
7038 * If doms_new == NULL it will be replaced with cpu_online_mask.
7039 * ndoms_new == 0 is a special case for destroying existing domains,
7040 * and it will not create the default domain.
7041 *
7042 * Call with hotplug lock held
7043 */
7044void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7045			     struct sched_domain_attr *dattr_new)
7046{
7047	int i, j, n;
7048	int new_topology;
7049
7050	mutex_lock(&sched_domains_mutex);
7051
7052	/* always unregister in case we don't destroy any domains */
7053	unregister_sched_domain_sysctl();
7054
7055	/* Let architecture update cpu core mappings. */
7056	new_topology = arch_update_cpu_topology();
7057
7058	n = doms_new ? ndoms_new : 0;
7059
7060	/* Destroy deleted domains */
7061	for (i = 0; i < ndoms_cur; i++) {
7062		for (j = 0; j < n && !new_topology; j++) {
7063			if (cpumask_equal(doms_cur[i], doms_new[j])
7064			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7065				goto match1;
7066		}
7067		/* no match - a current sched domain not in new doms_new[] */
7068		detach_destroy_domains(doms_cur[i]);
7069match1:
7070		;
7071	}
7072
7073	if (doms_new == NULL) {
7074		ndoms_cur = 0;
7075		doms_new = &fallback_doms;
7076		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7077		WARN_ON_ONCE(dattr_new);
7078	}
7079
7080	/* Build new domains */
7081	for (i = 0; i < ndoms_new; i++) {
7082		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7083			if (cpumask_equal(doms_new[i], doms_cur[j])
7084			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7085				goto match2;
7086		}
7087		/* no match - add a new doms_new */
7088		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7089match2:
7090		;
7091	}
7092
7093	/* Remember the new sched domains */
7094	if (doms_cur != &fallback_doms)
7095		free_sched_domains(doms_cur, ndoms_cur);
7096	kfree(dattr_cur);	/* kfree(NULL) is safe */
7097	doms_cur = doms_new;
7098	dattr_cur = dattr_new;
7099	ndoms_cur = ndoms_new;
7100
7101	register_sched_domain_sysctl();
7102
7103	mutex_unlock(&sched_domains_mutex);
7104}
7105
7106/*
7107 * Update cpusets according to cpu_active mask.  If cpusets are
7108 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7109 * around partition_sched_domains().
7110 */
7111static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7112			     void *hcpu)
7113{
7114	switch (action & ~CPU_TASKS_FROZEN) {
7115	case CPU_ONLINE:
7116	case CPU_DOWN_FAILED:
7117		cpuset_update_active_cpus();
7118		return NOTIFY_OK;
7119	default:
7120		return NOTIFY_DONE;
7121	}
7122}
7123
7124static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7125			       void *hcpu)
7126{
7127	switch (action & ~CPU_TASKS_FROZEN) {
7128	case CPU_DOWN_PREPARE:
7129		cpuset_update_active_cpus();
7130		return NOTIFY_OK;
7131	default:
7132		return NOTIFY_DONE;
7133	}
7134}
7135
7136void __init sched_init_smp(void)
7137{
7138	cpumask_var_t non_isolated_cpus;
7139
7140	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7141	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7142
7143	sched_init_numa();
7144
7145	get_online_cpus();
 
 
 
 
7146	mutex_lock(&sched_domains_mutex);
7147	init_sched_domains(cpu_active_mask);
7148	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7149	if (cpumask_empty(non_isolated_cpus))
7150		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7151	mutex_unlock(&sched_domains_mutex);
7152	put_online_cpus();
7153
7154	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7155	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7156
7157	/* RT runtime code needs to handle some hotplug events */
7158	hotcpu_notifier(update_runtime, 0);
7159
7160	init_hrtick();
7161
7162	/* Move init over to a non-isolated CPU */
7163	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7164		BUG();
7165	sched_init_granularity();
7166	free_cpumask_var(non_isolated_cpus);
7167
7168	init_sched_rt_class();
 
 
 
 
 
 
 
 
 
7169}
 
 
7170#else
7171void __init sched_init_smp(void)
7172{
7173	sched_init_granularity();
7174}
7175#endif /* CONFIG_SMP */
7176
7177const_debug unsigned int sysctl_timer_migration = 1;
7178
7179int in_sched_functions(unsigned long addr)
7180{
7181	return in_lock_functions(addr) ||
7182		(addr >= (unsigned long)__sched_text_start
7183		&& addr < (unsigned long)__sched_text_end);
7184}
7185
7186#ifdef CONFIG_CGROUP_SCHED
 
 
 
 
7187struct task_group root_task_group;
7188LIST_HEAD(task_groups);
 
 
 
7189#endif
7190
7191DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
 
7192
7193void __init sched_init(void)
7194{
7195	int i, j;
7196	unsigned long alloc_size = 0, ptr;
 
 
7197
7198#ifdef CONFIG_FAIR_GROUP_SCHED
7199	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7200#endif
7201#ifdef CONFIG_RT_GROUP_SCHED
7202	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7203#endif
7204#ifdef CONFIG_CPUMASK_OFFSTACK
7205	alloc_size += num_possible_cpus() * cpumask_size();
7206#endif
7207	if (alloc_size) {
7208		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7209
7210#ifdef CONFIG_FAIR_GROUP_SCHED
7211		root_task_group.se = (struct sched_entity **)ptr;
7212		ptr += nr_cpu_ids * sizeof(void **);
7213
7214		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7215		ptr += nr_cpu_ids * sizeof(void **);
7216
7217#endif /* CONFIG_FAIR_GROUP_SCHED */
7218#ifdef CONFIG_RT_GROUP_SCHED
7219		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7220		ptr += nr_cpu_ids * sizeof(void **);
7221
7222		root_task_group.rt_rq = (struct rt_rq **)ptr;
7223		ptr += nr_cpu_ids * sizeof(void **);
7224
7225#endif /* CONFIG_RT_GROUP_SCHED */
 
7226#ifdef CONFIG_CPUMASK_OFFSTACK
7227		for_each_possible_cpu(i) {
7228			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7229			ptr += cpumask_size();
7230		}
 
 
7231#endif /* CONFIG_CPUMASK_OFFSTACK */
7232	}
 
 
7233
7234#ifdef CONFIG_SMP
7235	init_defrootdomain();
7236#endif
7237
7238	init_rt_bandwidth(&def_rt_bandwidth,
7239			global_rt_period(), global_rt_runtime());
7240
7241#ifdef CONFIG_RT_GROUP_SCHED
7242	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7243			global_rt_period(), global_rt_runtime());
7244#endif /* CONFIG_RT_GROUP_SCHED */
7245
7246#ifdef CONFIG_CGROUP_SCHED
 
 
7247	list_add(&root_task_group.list, &task_groups);
7248	INIT_LIST_HEAD(&root_task_group.children);
7249	INIT_LIST_HEAD(&root_task_group.siblings);
7250	autogroup_init(&init_task);
7251
7252#endif /* CONFIG_CGROUP_SCHED */
7253
7254#ifdef CONFIG_CGROUP_CPUACCT
7255	root_cpuacct.cpustat = &kernel_cpustat;
7256	root_cpuacct.cpuusage = alloc_percpu(u64);
7257	/* Too early, not expected to fail */
7258	BUG_ON(!root_cpuacct.cpuusage);
7259#endif
7260	for_each_possible_cpu(i) {
7261		struct rq *rq;
7262
7263		rq = cpu_rq(i);
7264		raw_spin_lock_init(&rq->lock);
7265		rq->nr_running = 0;
7266		rq->calc_load_active = 0;
7267		rq->calc_load_update = jiffies + LOAD_FREQ;
7268		init_cfs_rq(&rq->cfs);
7269		init_rt_rq(&rq->rt, rq);
 
7270#ifdef CONFIG_FAIR_GROUP_SCHED
7271		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7272		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
 
7273		/*
7274		 * How much cpu bandwidth does root_task_group get?
7275		 *
7276		 * In case of task-groups formed thr' the cgroup filesystem, it
7277		 * gets 100% of the cpu resources in the system. This overall
7278		 * system cpu resource is divided among the tasks of
7279		 * root_task_group and its child task-groups in a fair manner,
7280		 * based on each entity's (task or task-group's) weight
7281		 * (se->load.weight).
7282		 *
7283		 * In other words, if root_task_group has 10 tasks of weight
7284		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7285		 * then A0's share of the cpu resource is:
7286		 *
7287		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7288		 *
7289		 * We achieve this by letting root_task_group's tasks sit
7290		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7291		 */
7292		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7293		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7294#endif /* CONFIG_FAIR_GROUP_SCHED */
7295
7296		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7297#ifdef CONFIG_RT_GROUP_SCHED
7298		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7299		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7300#endif
7301
7302		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7303			rq->cpu_load[j] = 0;
7304
7305		rq->last_load_update_tick = jiffies;
7306
7307#ifdef CONFIG_SMP
7308		rq->sd = NULL;
7309		rq->rd = NULL;
7310		rq->cpu_power = SCHED_POWER_SCALE;
7311		rq->post_schedule = 0;
7312		rq->active_balance = 0;
7313		rq->next_balance = jiffies;
7314		rq->push_cpu = 0;
7315		rq->cpu = i;
7316		rq->online = 0;
7317		rq->idle_stamp = 0;
7318		rq->avg_idle = 2*sysctl_sched_migration_cost;
 
7319
7320		INIT_LIST_HEAD(&rq->cfs_tasks);
7321
7322		rq_attach_root(rq, &def_root_domain);
7323#ifdef CONFIG_NO_HZ
7324		rq->nohz_flags = 0;
 
 
7325#endif
7326#endif
7327		init_rq_hrtick(rq);
7328		atomic_set(&rq->nr_iowait, 0);
7329	}
7330
7331	set_load_weight(&init_task);
7332
7333#ifdef CONFIG_PREEMPT_NOTIFIERS
7334	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7335#endif
7336
7337#ifdef CONFIG_RT_MUTEXES
7338	plist_head_init(&init_task.pi_waiters);
7339#endif
7340
7341	/*
7342	 * The boot idle thread does lazy MMU switching as well:
7343	 */
7344	atomic_inc(&init_mm.mm_count);
7345	enter_lazy_tlb(&init_mm, current);
7346
7347	/*
7348	 * Make us the idle thread. Technically, schedule() should not be
7349	 * called from this thread, however somewhere below it might be,
7350	 * but because we are the idle thread, we just pick up running again
7351	 * when this runqueue becomes "idle".
7352	 */
7353	init_idle(current, smp_processor_id());
7354
7355	calc_load_update = jiffies + LOAD_FREQ;
7356
7357	/*
7358	 * During early bootup we pretend to be a normal task:
7359	 */
7360	current->sched_class = &fair_sched_class;
7361
7362#ifdef CONFIG_SMP
7363	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7364	/* May be allocated at isolcpus cmdline parse time */
7365	if (cpu_isolated_map == NULL)
7366		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7367	idle_thread_set_boot_cpu();
7368#endif
7369	init_sched_fair_class();
7370
 
 
 
 
 
 
7371	scheduler_running = 1;
7372}
7373
7374#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7375static inline int preempt_count_equals(int preempt_offset)
7376{
7377	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7378
7379	return (nested == preempt_offset);
7380}
7381
7382void __might_sleep(const char *file, int line, int preempt_offset)
7383{
7384	static unsigned long prev_jiffy;	/* ratelimiting */
 
 
 
 
 
 
 
 
 
 
7385
7386	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7387	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7388	    system_state != SYSTEM_RUNNING || oops_in_progress)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7389		return;
 
7390	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7391		return;
7392	prev_jiffy = jiffies;
7393
 
 
 
7394	printk(KERN_ERR
7395		"BUG: sleeping function called from invalid context at %s:%d\n",
7396			file, line);
7397	printk(KERN_ERR
7398		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7399			in_atomic(), irqs_disabled(),
7400			current->pid, current->comm);
7401
 
 
 
7402	debug_show_held_locks(current);
7403	if (irqs_disabled())
7404		print_irqtrace_events(current);
 
 
 
 
 
 
7405	dump_stack();
 
7406}
7407EXPORT_SYMBOL(__might_sleep);
7408#endif
7409
7410#ifdef CONFIG_MAGIC_SYSRQ
7411static void normalize_task(struct rq *rq, struct task_struct *p)
7412{
7413	const struct sched_class *prev_class = p->sched_class;
7414	int old_prio = p->prio;
7415	int on_rq;
7416
7417	on_rq = p->on_rq;
7418	if (on_rq)
7419		dequeue_task(rq, p, 0);
7420	__setscheduler(rq, p, SCHED_NORMAL, 0);
7421	if (on_rq) {
7422		enqueue_task(rq, p, 0);
7423		resched_task(rq->curr);
7424	}
 
 
 
 
 
 
 
7425
7426	check_class_changed(rq, p, prev_class, old_prio);
 
 
7427}
 
 
7428
 
7429void normalize_rt_tasks(void)
7430{
7431	struct task_struct *g, *p;
7432	unsigned long flags;
7433	struct rq *rq;
 
7434
7435	read_lock_irqsave(&tasklist_lock, flags);
7436	do_each_thread(g, p) {
7437		/*
7438		 * Only normalize user tasks:
7439		 */
7440		if (!p->mm)
7441			continue;
7442
7443		p->se.exec_start		= 0;
7444#ifdef CONFIG_SCHEDSTATS
7445		p->se.statistics.wait_start	= 0;
7446		p->se.statistics.sleep_start	= 0;
7447		p->se.statistics.block_start	= 0;
7448#endif
7449
7450		if (!rt_task(p)) {
7451			/*
7452			 * Renice negative nice level userspace
7453			 * tasks back to 0:
7454			 */
7455			if (TASK_NICE(p) < 0 && p->mm)
7456				set_user_nice(p, 0);
7457			continue;
7458		}
7459
7460		raw_spin_lock(&p->pi_lock);
7461		rq = __task_rq_lock(p);
7462
7463		normalize_task(rq, p);
7464
7465		__task_rq_unlock(rq);
7466		raw_spin_unlock(&p->pi_lock);
7467	} while_each_thread(g, p);
7468
7469	read_unlock_irqrestore(&tasklist_lock, flags);
7470}
7471
7472#endif /* CONFIG_MAGIC_SYSRQ */
7473
7474#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7475/*
7476 * These functions are only useful for the IA64 MCA handling, or kdb.
7477 *
7478 * They can only be called when the whole system has been
7479 * stopped - every CPU needs to be quiescent, and no scheduling
7480 * activity can take place. Using them for anything else would
7481 * be a serious bug, and as a result, they aren't even visible
7482 * under any other configuration.
7483 */
7484
7485/**
7486 * curr_task - return the current task for a given cpu.
7487 * @cpu: the processor in question.
7488 *
7489 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 
 
7490 */
7491struct task_struct *curr_task(int cpu)
7492{
7493	return cpu_curr(cpu);
7494}
7495
7496#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7497
7498#ifdef CONFIG_IA64
7499/**
7500 * set_curr_task - set the current task for a given cpu.
7501 * @cpu: the processor in question.
7502 * @p: the task pointer to set.
7503 *
7504 * Description: This function must only be used when non-maskable interrupts
7505 * are serviced on a separate stack. It allows the architecture to switch the
7506 * notion of the current task on a cpu in a non-blocking manner. This function
7507 * must be called with all CPU's synchronized, and interrupts disabled, the
7508 * and caller must save the original value of the current task (see
7509 * curr_task() above) and restore that value before reenabling interrupts and
7510 * re-starting the system.
7511 *
7512 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7513 */
7514void set_curr_task(int cpu, struct task_struct *p)
7515{
7516	cpu_curr(cpu) = p;
7517}
7518
7519#endif
7520
7521#ifdef CONFIG_CGROUP_SCHED
7522/* task_group_lock serializes the addition/removal of task groups */
7523static DEFINE_SPINLOCK(task_group_lock);
7524
7525static void free_sched_group(struct task_group *tg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7526{
7527	free_fair_sched_group(tg);
7528	free_rt_sched_group(tg);
7529	autogroup_free(tg);
7530	kfree(tg);
7531}
7532
7533/* allocate runqueue etc for a new task group */
7534struct task_group *sched_create_group(struct task_group *parent)
7535{
7536	struct task_group *tg;
7537	unsigned long flags;
7538
7539	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7540	if (!tg)
7541		return ERR_PTR(-ENOMEM);
7542
7543	if (!alloc_fair_sched_group(tg, parent))
7544		goto err;
7545
7546	if (!alloc_rt_sched_group(tg, parent))
7547		goto err;
7548
 
 
 
 
 
 
 
 
 
 
 
 
 
7549	spin_lock_irqsave(&task_group_lock, flags);
7550	list_add_rcu(&tg->list, &task_groups);
7551
7552	WARN_ON(!parent); /* root should already exist */
 
7553
7554	tg->parent = parent;
7555	INIT_LIST_HEAD(&tg->children);
7556	list_add_rcu(&tg->siblings, &parent->children);
7557	spin_unlock_irqrestore(&task_group_lock, flags);
7558
7559	return tg;
7560
7561err:
7562	free_sched_group(tg);
7563	return ERR_PTR(-ENOMEM);
7564}
7565
7566/* rcu callback to free various structures associated with a task group */
7567static void free_sched_group_rcu(struct rcu_head *rhp)
7568{
7569	/* now it should be safe to free those cfs_rqs */
7570	free_sched_group(container_of(rhp, struct task_group, rcu));
7571}
7572
7573/* Destroy runqueue etc associated with a task group */
7574void sched_destroy_group(struct task_group *tg)
7575{
 
 
 
 
 
 
7576	unsigned long flags;
7577	int i;
7578
7579	/* end participation in shares distribution */
7580	for_each_possible_cpu(i)
7581		unregister_fair_sched_group(tg, i);
7582
7583	spin_lock_irqsave(&task_group_lock, flags);
7584	list_del_rcu(&tg->list);
7585	list_del_rcu(&tg->siblings);
7586	spin_unlock_irqrestore(&task_group_lock, flags);
7587
7588	/* wait for possible concurrent references to cfs_rqs complete */
7589	call_rcu(&tg->rcu, free_sched_group_rcu);
7590}
7591
7592/* change task's runqueue when it moves between groups.
7593 *	The caller of this function should have put the task in its new group
7594 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7595 *	reflect its new group.
7596 */
7597void sched_move_task(struct task_struct *tsk)
7598{
7599	struct task_group *tg;
7600	int on_rq, running;
7601	unsigned long flags;
7602	struct rq *rq;
7603
7604	rq = task_rq_lock(tsk, &flags);
7605
7606	running = task_current(rq, tsk);
7607	on_rq = tsk->on_rq;
7608
7609	if (on_rq)
7610		dequeue_task(rq, tsk, 0);
7611	if (unlikely(running))
7612		tsk->sched_class->put_prev_task(rq, tsk);
7613
7614	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7615				lockdep_is_held(&tsk->sighand->siglock)),
7616			  struct task_group, css);
7617	tg = autogroup_task_group(tsk, tg);
7618	tsk->sched_task_group = tg;
7619
7620#ifdef CONFIG_FAIR_GROUP_SCHED
7621	if (tsk->sched_class->task_move_group)
7622		tsk->sched_class->task_move_group(tsk, on_rq);
7623	else
7624#endif
7625		set_task_rq(tsk, task_cpu(tsk));
7626
7627	if (unlikely(running))
7628		tsk->sched_class->set_curr_task(rq);
7629	if (on_rq)
7630		enqueue_task(rq, tsk, 0);
7631
7632	task_rq_unlock(rq, tsk, &flags);
7633}
7634#endif /* CONFIG_CGROUP_SCHED */
7635
7636#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7637static unsigned long to_ratio(u64 period, u64 runtime)
 
 
 
 
 
 
7638{
7639	if (runtime == RUNTIME_INF)
7640		return 1ULL << 20;
 
 
 
 
 
7641
7642	return div64_u64(runtime << 20, period);
7643}
7644#endif
7645
7646#ifdef CONFIG_RT_GROUP_SCHED
7647/*
7648 * Ensure that the real time constraints are schedulable.
7649 */
7650static DEFINE_MUTEX(rt_constraints_mutex);
7651
7652/* Must be called with tasklist_lock held */
7653static inline int tg_has_rt_tasks(struct task_group *tg)
7654{
7655	struct task_struct *g, *p;
7656
7657	do_each_thread(g, p) {
7658		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7659			return 1;
7660	} while_each_thread(g, p);
7661
7662	return 0;
7663}
7664
7665struct rt_schedulable_data {
7666	struct task_group *tg;
7667	u64 rt_period;
7668	u64 rt_runtime;
7669};
7670
7671static int tg_rt_schedulable(struct task_group *tg, void *data)
 
7672{
7673	struct rt_schedulable_data *d = data;
7674	struct task_group *child;
7675	unsigned long total, sum = 0;
7676	u64 period, runtime;
7677
7678	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7679	runtime = tg->rt_bandwidth.rt_runtime;
7680
7681	if (tg == d->tg) {
7682		period = d->rt_period;
7683		runtime = d->rt_runtime;
7684	}
7685
7686	/*
7687	 * Cannot have more runtime than the period.
7688	 */
7689	if (runtime > period && runtime != RUNTIME_INF)
7690		return -EINVAL;
7691
7692	/*
7693	 * Ensure we don't starve existing RT tasks.
7694	 */
7695	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7696		return -EBUSY;
7697
7698	total = to_ratio(period, runtime);
7699
7700	/*
7701	 * Nobody can have more than the global setting allows.
7702	 */
7703	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7704		return -EINVAL;
7705
7706	/*
7707	 * The sum of our children's runtime should not exceed our own.
7708	 */
7709	list_for_each_entry_rcu(child, &tg->children, siblings) {
7710		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7711		runtime = child->rt_bandwidth.rt_runtime;
7712
7713		if (child == d->tg) {
7714			period = d->rt_period;
7715			runtime = d->rt_runtime;
7716		}
7717
7718		sum += to_ratio(period, runtime);
7719	}
7720
7721	if (sum > total)
7722		return -EINVAL;
7723
 
 
7724	return 0;
7725}
7726
7727static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7728{
7729	int ret;
7730
7731	struct rt_schedulable_data data = {
7732		.tg = tg,
7733		.rt_period = period,
7734		.rt_runtime = runtime,
7735	};
7736
7737	rcu_read_lock();
7738	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7739	rcu_read_unlock();
7740
7741	return ret;
 
 
 
7742}
7743
7744static int tg_set_rt_bandwidth(struct task_group *tg,
7745		u64 rt_period, u64 rt_runtime)
 
 
 
7746{
7747	int i, err = 0;
 
7748
7749	mutex_lock(&rt_constraints_mutex);
7750	read_lock(&tasklist_lock);
7751	err = __rt_schedulable(tg, rt_period, rt_runtime);
7752	if (err)
7753		goto unlock;
7754
7755	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7756	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7757	tg->rt_bandwidth.rt_runtime = rt_runtime;
7758
7759	for_each_possible_cpu(i) {
7760		struct rt_rq *rt_rq = tg->rt_rq[i];
7761
7762		raw_spin_lock(&rt_rq->rt_runtime_lock);
7763		rt_rq->rt_runtime = rt_runtime;
7764		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7765	}
7766	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7767unlock:
7768	read_unlock(&tasklist_lock);
7769	mutex_unlock(&rt_constraints_mutex);
7770
7771	return err;
7772}
7773
7774int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7775{
7776	u64 rt_runtime, rt_period;
 
 
7777
7778	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7779	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7780	if (rt_runtime_us < 0)
7781		rt_runtime = RUNTIME_INF;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7782
7783	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
 
 
 
7784}
7785
7786long sched_group_rt_runtime(struct task_group *tg)
7787{
7788	u64 rt_runtime_us;
 
7789
7790	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7791		return -1;
7792
7793	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7794	do_div(rt_runtime_us, NSEC_PER_USEC);
7795	return rt_runtime_us;
7796}
7797
7798int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
 
7799{
7800	u64 rt_runtime, rt_period;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7801
7802	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7803	rt_runtime = tg->rt_bandwidth.rt_runtime;
 
 
 
 
 
 
 
 
 
 
 
 
7804
7805	if (rt_period == 0)
7806		return -EINVAL;
7807
7808	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7809}
7810
7811long sched_group_rt_period(struct task_group *tg)
7812{
7813	u64 rt_period_us;
 
 
 
 
7814
7815	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7816	do_div(rt_period_us, NSEC_PER_USEC);
7817	return rt_period_us;
7818}
 
 
 
7819
7820static int sched_rt_global_constraints(void)
 
7821{
7822	u64 runtime, period;
7823	int ret = 0;
 
 
 
7824
7825	if (sysctl_sched_rt_period <= 0)
7826		return -EINVAL;
 
 
 
 
 
 
 
 
7827
7828	runtime = global_rt_runtime();
7829	period = global_rt_period();
 
7830
7831	/*
7832	 * Sanity check on the sysctl variables.
7833	 */
7834	if (runtime > period && runtime != RUNTIME_INF)
7835		return -EINVAL;
7836
7837	mutex_lock(&rt_constraints_mutex);
7838	read_lock(&tasklist_lock);
7839	ret = __rt_schedulable(NULL, 0, 0);
7840	read_unlock(&tasklist_lock);
7841	mutex_unlock(&rt_constraints_mutex);
7842
7843	return ret;
7844}
7845
7846int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
 
 
7847{
7848	/* Don't accept realtime tasks when there is no way for them to run */
7849	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7850		return 0;
7851
7852	return 1;
7853}
 
7854
7855#else /* !CONFIG_RT_GROUP_SCHED */
7856static int sched_rt_global_constraints(void)
7857{
7858	unsigned long flags;
7859	int i;
7860
7861	if (sysctl_sched_rt_period <= 0)
7862		return -EINVAL;
 
7863
7864	/*
7865	 * There's always some RT tasks in the root group
7866	 * -- migration, kstopmachine etc..
7867	 */
7868	if (sysctl_sched_rt_runtime == 0)
7869		return -EBUSY;
7870
7871	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7872	for_each_possible_cpu(i) {
7873		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7874
7875		raw_spin_lock(&rt_rq->rt_runtime_lock);
7876		rt_rq->rt_runtime = global_rt_runtime();
7877		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7878	}
7879	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7880
7881	return 0;
7882}
7883#endif /* CONFIG_RT_GROUP_SCHED */
7884
7885int sched_rt_handler(struct ctl_table *table, int write,
7886		void __user *buffer, size_t *lenp,
7887		loff_t *ppos)
7888{
7889	int ret;
7890	int old_period, old_runtime;
7891	static DEFINE_MUTEX(mutex);
7892
7893	mutex_lock(&mutex);
7894	old_period = sysctl_sched_rt_period;
7895	old_runtime = sysctl_sched_rt_runtime;
7896
7897	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7898
7899	if (!ret && write) {
7900		ret = sched_rt_global_constraints();
7901		if (ret) {
7902			sysctl_sched_rt_period = old_period;
7903			sysctl_sched_rt_runtime = old_runtime;
7904		} else {
7905			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7906			def_rt_bandwidth.rt_period =
7907				ns_to_ktime(global_rt_period());
7908		}
7909	}
7910	mutex_unlock(&mutex);
7911
7912	return ret;
7913}
7914
7915#ifdef CONFIG_CGROUP_SCHED
7916
7917/* return corresponding task_group object of a cgroup */
7918static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7919{
7920	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7921			    struct task_group, css);
7922}
7923
7924static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
 
7925{
7926	struct task_group *tg, *parent;
 
 
 
 
 
 
 
 
7927
7928	if (!cgrp->parent) {
7929		/* This is early initialization for the top cgroup */
7930		return &root_task_group.css;
7931	}
7932
7933	parent = cgroup_tg(cgrp->parent);
7934	tg = sched_create_group(parent);
7935	if (IS_ERR(tg))
7936		return ERR_PTR(-ENOMEM);
7937
7938	return &tg->css;
7939}
7940
7941static void cpu_cgroup_destroy(struct cgroup *cgrp)
7942{
7943	struct task_group *tg = cgroup_tg(cgrp);
7944
7945	sched_destroy_group(tg);
7946}
7947
7948static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7949				 struct cgroup_taskset *tset)
7950{
7951	struct task_struct *task;
7952
7953	cgroup_taskset_for_each(task, cgrp, tset) {
7954#ifdef CONFIG_RT_GROUP_SCHED
7955		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7956			return -EINVAL;
7957#else
7958		/* We don't support RT-tasks being in separate groups */
7959		if (task->sched_class != &fair_sched_class)
7960			return -EINVAL;
7961#endif
7962	}
7963	return 0;
7964}
7965
7966static void cpu_cgroup_attach(struct cgroup *cgrp,
7967			      struct cgroup_taskset *tset)
7968{
7969	struct task_struct *task;
7970
7971	cgroup_taskset_for_each(task, cgrp, tset)
7972		sched_move_task(task);
7973}
7974
7975static void
7976cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7977		struct task_struct *task)
7978{
7979	/*
7980	 * cgroup_exit() is called in the copy_process() failure path.
7981	 * Ignore this case since the task hasn't ran yet, this avoids
7982	 * trying to poke a half freed task state from generic code.
7983	 */
7984	if (!(task->flags & PF_EXITING))
7985		return;
7986
7987	sched_move_task(task);
7988}
7989
7990#ifdef CONFIG_FAIR_GROUP_SCHED
7991static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7992				u64 shareval)
7993{
7994	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
 
 
7995}
7996
7997static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
 
7998{
7999	struct task_group *tg = cgroup_tg(cgrp);
8000
8001	return (u64) scale_load_down(tg->shares);
8002}
8003
8004#ifdef CONFIG_CFS_BANDWIDTH
8005static DEFINE_MUTEX(cfs_constraints_mutex);
8006
8007const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8008const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8009
8010static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8011
8012static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8013{
8014	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8015	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8016
8017	if (tg == &root_task_group)
8018		return -EINVAL;
8019
8020	/*
8021	 * Ensure we have at some amount of bandwidth every period.  This is
8022	 * to prevent reaching a state of large arrears when throttled via
8023	 * entity_tick() resulting in prolonged exit starvation.
8024	 */
8025	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8026		return -EINVAL;
8027
8028	/*
8029	 * Likewise, bound things on the otherside by preventing insane quota
8030	 * periods.  This also allows us to normalize in computing quota
8031	 * feasibility.
8032	 */
8033	if (period > max_cfs_quota_period)
8034		return -EINVAL;
8035
 
 
 
 
 
8036	mutex_lock(&cfs_constraints_mutex);
8037	ret = __cfs_schedulable(tg, period, quota);
8038	if (ret)
8039		goto out_unlock;
8040
8041	runtime_enabled = quota != RUNTIME_INF;
8042	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8043	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
 
 
 
 
 
8044	raw_spin_lock_irq(&cfs_b->lock);
8045	cfs_b->period = ns_to_ktime(period);
8046	cfs_b->quota = quota;
8047
8048	__refill_cfs_bandwidth_runtime(cfs_b);
8049	/* restart the period timer (if active) to handle new period expiry */
8050	if (runtime_enabled && cfs_b->timer_active) {
8051		/* force a reprogram */
8052		cfs_b->timer_active = 0;
8053		__start_cfs_bandwidth(cfs_b);
8054	}
8055	raw_spin_unlock_irq(&cfs_b->lock);
8056
8057	for_each_possible_cpu(i) {
8058		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8059		struct rq *rq = cfs_rq->rq;
 
8060
8061		raw_spin_lock_irq(&rq->lock);
8062		cfs_rq->runtime_enabled = runtime_enabled;
8063		cfs_rq->runtime_remaining = 0;
8064
8065		if (cfs_rq->throttled)
8066			unthrottle_cfs_rq(cfs_rq);
8067		raw_spin_unlock_irq(&rq->lock);
8068	}
 
 
8069out_unlock:
8070	mutex_unlock(&cfs_constraints_mutex);
 
8071
8072	return ret;
8073}
8074
8075int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8076{
8077	u64 quota, period;
8078
8079	period = ktime_to_ns(tg->cfs_bandwidth.period);
8080	if (cfs_quota_us < 0)
8081		quota = RUNTIME_INF;
 
 
8082	else
8083		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8084
8085	return tg_set_cfs_bandwidth(tg, period, quota);
8086}
8087
8088long tg_get_cfs_quota(struct task_group *tg)
8089{
8090	u64 quota_us;
8091
8092	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8093		return -1;
8094
8095	quota_us = tg->cfs_bandwidth.quota;
8096	do_div(quota_us, NSEC_PER_USEC);
8097
8098	return quota_us;
8099}
8100
8101int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8102{
8103	u64 quota, period;
8104
 
 
 
8105	period = (u64)cfs_period_us * NSEC_PER_USEC;
8106	quota = tg->cfs_bandwidth.quota;
8107
8108	return tg_set_cfs_bandwidth(tg, period, quota);
8109}
8110
8111long tg_get_cfs_period(struct task_group *tg)
8112{
8113	u64 cfs_period_us;
8114
8115	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8116	do_div(cfs_period_us, NSEC_PER_USEC);
8117
8118	return cfs_period_us;
8119}
8120
8121static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
 
8122{
8123	return tg_get_cfs_quota(cgroup_tg(cgrp));
8124}
8125
8126static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
8127				s64 cfs_quota_us)
8128{
8129	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
8130}
8131
8132static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
 
8133{
8134	return tg_get_cfs_period(cgroup_tg(cgrp));
8135}
8136
8137static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8138				u64 cfs_period_us)
8139{
8140	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
8141}
8142
8143struct cfs_schedulable_data {
8144	struct task_group *tg;
8145	u64 period, quota;
8146};
8147
8148/*
8149 * normalize group quota/period to be quota/max_period
8150 * note: units are usecs
8151 */
8152static u64 normalize_cfs_quota(struct task_group *tg,
8153			       struct cfs_schedulable_data *d)
8154{
8155	u64 quota, period;
8156
8157	if (tg == d->tg) {
8158		period = d->period;
8159		quota = d->quota;
8160	} else {
8161		period = tg_get_cfs_period(tg);
8162		quota = tg_get_cfs_quota(tg);
8163	}
8164
8165	/* note: these should typically be equivalent */
8166	if (quota == RUNTIME_INF || quota == -1)
8167		return RUNTIME_INF;
8168
8169	return to_ratio(period, quota);
8170}
8171
8172static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8173{
8174	struct cfs_schedulable_data *d = data;
8175	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8176	s64 quota = 0, parent_quota = -1;
8177
8178	if (!tg->parent) {
8179		quota = RUNTIME_INF;
8180	} else {
8181		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8182
8183		quota = normalize_cfs_quota(tg, d);
8184		parent_quota = parent_b->hierarchal_quota;
8185
8186		/*
8187		 * ensure max(child_quota) <= parent_quota, inherit when no
8188		 * limit is set
 
8189		 */
8190		if (quota == RUNTIME_INF)
8191			quota = parent_quota;
8192		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8193			return -EINVAL;
 
 
 
 
8194	}
8195	cfs_b->hierarchal_quota = quota;
8196
8197	return 0;
8198}
8199
8200static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8201{
8202	int ret;
8203	struct cfs_schedulable_data data = {
8204		.tg = tg,
8205		.period = period,
8206		.quota = quota,
8207	};
8208
8209	if (quota != RUNTIME_INF) {
8210		do_div(data.period, NSEC_PER_USEC);
8211		do_div(data.quota, NSEC_PER_USEC);
8212	}
8213
8214	rcu_read_lock();
8215	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8216	rcu_read_unlock();
8217
8218	return ret;
8219}
8220
8221static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
8222		struct cgroup_map_cb *cb)
8223{
8224	struct task_group *tg = cgroup_tg(cgrp);
8225	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8226
8227	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
8228	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
8229	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
 
 
 
 
 
 
 
 
 
 
8230
8231	return 0;
8232}
8233#endif /* CONFIG_CFS_BANDWIDTH */
8234#endif /* CONFIG_FAIR_GROUP_SCHED */
8235
8236#ifdef CONFIG_RT_GROUP_SCHED
8237static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8238				s64 val)
8239{
8240	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8241}
8242
8243static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
 
8244{
8245	return sched_group_rt_runtime(cgroup_tg(cgrp));
8246}
8247
8248static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8249		u64 rt_period_us)
8250{
8251	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8252}
8253
8254static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
 
8255{
8256	return sched_group_rt_period(cgroup_tg(cgrp));
8257}
8258#endif /* CONFIG_RT_GROUP_SCHED */
8259
8260static struct cftype cpu_files[] = {
8261#ifdef CONFIG_FAIR_GROUP_SCHED
8262	{
8263		.name = "shares",
8264		.read_u64 = cpu_shares_read_u64,
8265		.write_u64 = cpu_shares_write_u64,
8266	},
8267#endif
8268#ifdef CONFIG_CFS_BANDWIDTH
8269	{
8270		.name = "cfs_quota_us",
8271		.read_s64 = cpu_cfs_quota_read_s64,
8272		.write_s64 = cpu_cfs_quota_write_s64,
8273	},
8274	{
8275		.name = "cfs_period_us",
8276		.read_u64 = cpu_cfs_period_read_u64,
8277		.write_u64 = cpu_cfs_period_write_u64,
8278	},
8279	{
8280		.name = "stat",
8281		.read_map = cpu_stats_show,
8282	},
8283#endif
8284#ifdef CONFIG_RT_GROUP_SCHED
8285	{
8286		.name = "rt_runtime_us",
8287		.read_s64 = cpu_rt_runtime_read,
8288		.write_s64 = cpu_rt_runtime_write,
8289	},
8290	{
8291		.name = "rt_period_us",
8292		.read_u64 = cpu_rt_period_read_uint,
8293		.write_u64 = cpu_rt_period_write_uint,
8294	},
8295#endif
8296	{ }	/* terminate */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8297};
8298
8299struct cgroup_subsys cpu_cgroup_subsys = {
8300	.name		= "cpu",
8301	.create		= cpu_cgroup_create,
8302	.destroy	= cpu_cgroup_destroy,
8303	.can_attach	= cpu_cgroup_can_attach,
8304	.attach		= cpu_cgroup_attach,
8305	.exit		= cpu_cgroup_exit,
8306	.subsys_id	= cpu_cgroup_subsys_id,
8307	.base_cftypes	= cpu_files,
8308	.early_init	= 1,
8309};
 
 
 
 
 
 
 
 
 
 
8310
8311#endif	/* CONFIG_CGROUP_SCHED */
 
 
 
 
 
8312
8313#ifdef CONFIG_CGROUP_CPUACCT
 
8314
8315/*
8316 * CPU accounting code for task groups.
8317 *
8318 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8319 * (balbir@in.ibm.com).
8320 */
8321
8322/* create a new cpu accounting group */
8323static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8324{
8325	struct cpuacct *ca;
8326
8327	if (!cgrp->parent)
8328		return &root_cpuacct.css;
 
 
 
 
 
8329
8330	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8331	if (!ca)
8332		goto out;
8333
8334	ca->cpuusage = alloc_percpu(u64);
8335	if (!ca->cpuusage)
8336		goto out_free_ca;
8337
8338	ca->cpustat = alloc_percpu(struct kernel_cpustat);
8339	if (!ca->cpustat)
8340		goto out_free_cpuusage;
8341
8342	return &ca->css;
8343
8344out_free_cpuusage:
8345	free_percpu(ca->cpuusage);
8346out_free_ca:
8347	kfree(ca);
8348out:
8349	return ERR_PTR(-ENOMEM);
8350}
8351
8352/* destroy an existing cpu accounting group */
8353static void cpuacct_destroy(struct cgroup *cgrp)
8354{
8355	struct cpuacct *ca = cgroup_ca(cgrp);
 
 
8356
8357	free_percpu(ca->cpustat);
8358	free_percpu(ca->cpuusage);
8359	kfree(ca);
 
 
 
 
 
 
8360}
8361
8362static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
 
8363{
8364	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8365	u64 data;
 
 
 
8366
8367#ifndef CONFIG_64BIT
8368	/*
8369	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8370	 */
8371	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8372	data = *cpuusage;
8373	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8374#else
8375	data = *cpuusage;
8376#endif
8377
8378	return data;
8379}
 
8380
8381static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
 
8382{
8383	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
 
 
 
8384
8385#ifndef CONFIG_64BIT
8386	/*
8387	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8388	 */
8389	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8390	*cpuusage = val;
8391	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8392#else
8393	*cpuusage = val;
8394#endif
8395}
8396
8397/* return total cpu usage (in nanoseconds) of a group */
8398static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
 
8399{
8400	struct cpuacct *ca = cgroup_ca(cgrp);
8401	u64 totalcpuusage = 0;
8402	int i;
8403
8404	for_each_present_cpu(i)
8405		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8406
8407	return totalcpuusage;
8408}
8409
8410static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8411								u64 reset)
8412{
8413	struct cpuacct *ca = cgroup_ca(cgrp);
8414	int err = 0;
8415	int i;
8416
8417	if (reset) {
8418		err = -EINVAL;
8419		goto out;
8420	}
8421
8422	for_each_present_cpu(i)
8423		cpuacct_cpuusage_write(ca, i, 0);
8424
8425out:
8426	return err;
8427}
8428
8429static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8430				   struct seq_file *m)
8431{
8432	struct cpuacct *ca = cgroup_ca(cgroup);
8433	u64 percpu;
8434	int i;
8435
8436	for_each_present_cpu(i) {
8437		percpu = cpuacct_cpuusage_read(ca, i);
8438		seq_printf(m, "%llu ", (unsigned long long) percpu);
8439	}
8440	seq_printf(m, "\n");
8441	return 0;
8442}
8443
8444static const char *cpuacct_stat_desc[] = {
8445	[CPUACCT_STAT_USER] = "user",
8446	[CPUACCT_STAT_SYSTEM] = "system",
8447};
8448
8449static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8450			      struct cgroup_map_cb *cb)
8451{
8452	struct cpuacct *ca = cgroup_ca(cgrp);
8453	int cpu;
8454	s64 val = 0;
8455
8456	for_each_online_cpu(cpu) {
8457		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8458		val += kcpustat->cpustat[CPUTIME_USER];
8459		val += kcpustat->cpustat[CPUTIME_NICE];
8460	}
8461	val = cputime64_to_clock_t(val);
8462	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8463
8464	val = 0;
8465	for_each_online_cpu(cpu) {
8466		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8467		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8468		val += kcpustat->cpustat[CPUTIME_IRQ];
8469		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8470	}
8471
8472	val = cputime64_to_clock_t(val);
8473	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8474
8475	return 0;
8476}
 
8477
8478static struct cftype files[] = {
 
8479	{
8480		.name = "usage",
8481		.read_u64 = cpuusage_read,
8482		.write_u64 = cpuusage_write,
 
8483	},
8484	{
8485		.name = "usage_percpu",
8486		.read_seq_string = cpuacct_percpu_seq_read,
 
 
8487	},
 
 
 
 
 
 
 
 
 
 
8488	{
8489		.name = "stat",
8490		.read_map = cpuacct_stats_show,
 
 
 
 
 
 
 
 
8491	},
 
8492	{ }	/* terminate */
8493};
8494
8495/*
8496 * charge this task's execution time to its accounting group.
8497 *
8498 * called with rq->lock held.
8499 */
8500void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8501{
8502	struct cpuacct *ca;
8503	int cpu;
 
 
 
 
 
8504
8505	if (unlikely(!cpuacct_subsys.active))
8506		return;
8507
8508	cpu = task_cpu(tsk);
 
 
 
 
8509
8510	rcu_read_lock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8511
8512	ca = task_ca(tsk);
8513
8514	for (; ca; ca = parent_ca(ca)) {
8515		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8516		*cpuusage += cputime;
8517	}
 
 
 
 
 
 
 
 
 
 
 
8518
8519	rcu_read_unlock();
8520}
8521
8522struct cgroup_subsys cpuacct_subsys = {
8523	.name = "cpuacct",
8524	.create = cpuacct_create,
8525	.destroy = cpuacct_destroy,
8526	.subsys_id = cpuacct_subsys_id,
8527	.base_cftypes = files,
8528};
8529#endif	/* CONFIG_CGROUP_CPUACCT */