Linux Audio

Check our new training course

Loading...
v5.4
   1/*
   2 * Public API and common code for kernel->userspace relay file support.
   3 *
   4 * See Documentation/filesystems/relay.txt for an overview.
   5 *
   6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
   7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
   8 *
   9 * Moved to kernel/relay.c by Paul Mundt, 2006.
  10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
  11 * 	(mathieu.desnoyers@polymtl.ca)
  12 *
  13 * This file is released under the GPL.
  14 */
  15#include <linux/errno.h>
  16#include <linux/stddef.h>
  17#include <linux/slab.h>
  18#include <linux/export.h>
  19#include <linux/string.h>
  20#include <linux/relay.h>
  21#include <linux/vmalloc.h>
  22#include <linux/mm.h>
  23#include <linux/cpu.h>
  24#include <linux/splice.h>
  25
  26/* list of open channels, for cpu hotplug */
  27static DEFINE_MUTEX(relay_channels_mutex);
  28static LIST_HEAD(relay_channels);
  29
  30/*
  31 * close() vm_op implementation for relay file mapping.
  32 */
  33static void relay_file_mmap_close(struct vm_area_struct *vma)
  34{
  35	struct rchan_buf *buf = vma->vm_private_data;
  36	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
  37}
  38
  39/*
  40 * fault() vm_op implementation for relay file mapping.
  41 */
  42static vm_fault_t relay_buf_fault(struct vm_fault *vmf)
  43{
  44	struct page *page;
  45	struct rchan_buf *buf = vmf->vma->vm_private_data;
  46	pgoff_t pgoff = vmf->pgoff;
  47
  48	if (!buf)
  49		return VM_FAULT_OOM;
  50
  51	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
  52	if (!page)
  53		return VM_FAULT_SIGBUS;
  54	get_page(page);
  55	vmf->page = page;
  56
  57	return 0;
  58}
  59
  60/*
  61 * vm_ops for relay file mappings.
  62 */
  63static const struct vm_operations_struct relay_file_mmap_ops = {
  64	.fault = relay_buf_fault,
  65	.close = relay_file_mmap_close,
  66};
  67
  68/*
  69 * allocate an array of pointers of struct page
  70 */
  71static struct page **relay_alloc_page_array(unsigned int n_pages)
  72{
  73	const size_t pa_size = n_pages * sizeof(struct page *);
  74	if (pa_size > PAGE_SIZE)
  75		return vzalloc(pa_size);
  76	return kzalloc(pa_size, GFP_KERNEL);
  77}
  78
  79/*
  80 * free an array of pointers of struct page
  81 */
  82static void relay_free_page_array(struct page **array)
  83{
  84	kvfree(array);
 
 
 
  85}
  86
  87/**
  88 *	relay_mmap_buf: - mmap channel buffer to process address space
  89 *	@buf: relay channel buffer
  90 *	@vma: vm_area_struct describing memory to be mapped
  91 *
  92 *	Returns 0 if ok, negative on error
  93 *
  94 *	Caller should already have grabbed mmap_sem.
  95 */
  96static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
  97{
  98	unsigned long length = vma->vm_end - vma->vm_start;
  99	struct file *filp = vma->vm_file;
 100
 101	if (!buf)
 102		return -EBADF;
 103
 104	if (length != (unsigned long)buf->chan->alloc_size)
 105		return -EINVAL;
 106
 107	vma->vm_ops = &relay_file_mmap_ops;
 108	vma->vm_flags |= VM_DONTEXPAND;
 109	vma->vm_private_data = buf;
 110	buf->chan->cb->buf_mapped(buf, filp);
 111
 112	return 0;
 113}
 114
 115/**
 116 *	relay_alloc_buf - allocate a channel buffer
 117 *	@buf: the buffer struct
 118 *	@size: total size of the buffer
 119 *
 120 *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
 121 *	passed in size will get page aligned, if it isn't already.
 122 */
 123static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
 124{
 125	void *mem;
 126	unsigned int i, j, n_pages;
 127
 128	*size = PAGE_ALIGN(*size);
 129	n_pages = *size >> PAGE_SHIFT;
 130
 131	buf->page_array = relay_alloc_page_array(n_pages);
 132	if (!buf->page_array)
 133		return NULL;
 134
 135	for (i = 0; i < n_pages; i++) {
 136		buf->page_array[i] = alloc_page(GFP_KERNEL);
 137		if (unlikely(!buf->page_array[i]))
 138			goto depopulate;
 139		set_page_private(buf->page_array[i], (unsigned long)buf);
 140	}
 141	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
 142	if (!mem)
 143		goto depopulate;
 144
 145	memset(mem, 0, *size);
 146	buf->page_count = n_pages;
 147	return mem;
 148
 149depopulate:
 150	for (j = 0; j < i; j++)
 151		__free_page(buf->page_array[j]);
 152	relay_free_page_array(buf->page_array);
 153	return NULL;
 154}
 155
 156/**
 157 *	relay_create_buf - allocate and initialize a channel buffer
 158 *	@chan: the relay channel
 159 *
 160 *	Returns channel buffer if successful, %NULL otherwise.
 161 */
 162static struct rchan_buf *relay_create_buf(struct rchan *chan)
 163{
 164	struct rchan_buf *buf;
 165
 166	if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t *))
 167		return NULL;
 168
 169	buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
 170	if (!buf)
 171		return NULL;
 172	buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t *),
 173				     GFP_KERNEL);
 174	if (!buf->padding)
 175		goto free_buf;
 176
 177	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
 178	if (!buf->start)
 179		goto free_buf;
 180
 181	buf->chan = chan;
 182	kref_get(&buf->chan->kref);
 183	return buf;
 184
 185free_buf:
 186	kfree(buf->padding);
 187	kfree(buf);
 188	return NULL;
 189}
 190
 191/**
 192 *	relay_destroy_channel - free the channel struct
 193 *	@kref: target kernel reference that contains the relay channel
 194 *
 195 *	Should only be called from kref_put().
 196 */
 197static void relay_destroy_channel(struct kref *kref)
 198{
 199	struct rchan *chan = container_of(kref, struct rchan, kref);
 200	kfree(chan);
 201}
 202
 203/**
 204 *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
 205 *	@buf: the buffer struct
 206 */
 207static void relay_destroy_buf(struct rchan_buf *buf)
 208{
 209	struct rchan *chan = buf->chan;
 210	unsigned int i;
 211
 212	if (likely(buf->start)) {
 213		vunmap(buf->start);
 214		for (i = 0; i < buf->page_count; i++)
 215			__free_page(buf->page_array[i]);
 216		relay_free_page_array(buf->page_array);
 217	}
 218	*per_cpu_ptr(chan->buf, buf->cpu) = NULL;
 219	kfree(buf->padding);
 220	kfree(buf);
 221	kref_put(&chan->kref, relay_destroy_channel);
 222}
 223
 224/**
 225 *	relay_remove_buf - remove a channel buffer
 226 *	@kref: target kernel reference that contains the relay buffer
 227 *
 228 *	Removes the file from the filesystem, which also frees the
 229 *	rchan_buf_struct and the channel buffer.  Should only be called from
 230 *	kref_put().
 231 */
 232static void relay_remove_buf(struct kref *kref)
 233{
 234	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
 
 235	relay_destroy_buf(buf);
 236}
 237
 238/**
 239 *	relay_buf_empty - boolean, is the channel buffer empty?
 240 *	@buf: channel buffer
 241 *
 242 *	Returns 1 if the buffer is empty, 0 otherwise.
 243 */
 244static int relay_buf_empty(struct rchan_buf *buf)
 245{
 246	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
 247}
 248
 249/**
 250 *	relay_buf_full - boolean, is the channel buffer full?
 251 *	@buf: channel buffer
 252 *
 253 *	Returns 1 if the buffer is full, 0 otherwise.
 254 */
 255int relay_buf_full(struct rchan_buf *buf)
 256{
 257	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
 258	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
 259}
 260EXPORT_SYMBOL_GPL(relay_buf_full);
 261
 262/*
 263 * High-level relay kernel API and associated functions.
 264 */
 265
 266/*
 267 * rchan_callback implementations defining default channel behavior.  Used
 268 * in place of corresponding NULL values in client callback struct.
 269 */
 270
 271/*
 272 * subbuf_start() default callback.  Does nothing.
 273 */
 274static int subbuf_start_default_callback (struct rchan_buf *buf,
 275					  void *subbuf,
 276					  void *prev_subbuf,
 277					  size_t prev_padding)
 278{
 279	if (relay_buf_full(buf))
 280		return 0;
 281
 282	return 1;
 283}
 284
 285/*
 286 * buf_mapped() default callback.  Does nothing.
 287 */
 288static void buf_mapped_default_callback(struct rchan_buf *buf,
 289					struct file *filp)
 290{
 291}
 292
 293/*
 294 * buf_unmapped() default callback.  Does nothing.
 295 */
 296static void buf_unmapped_default_callback(struct rchan_buf *buf,
 297					  struct file *filp)
 298{
 299}
 300
 301/*
 302 * create_buf_file_create() default callback.  Does nothing.
 303 */
 304static struct dentry *create_buf_file_default_callback(const char *filename,
 305						       struct dentry *parent,
 306						       umode_t mode,
 307						       struct rchan_buf *buf,
 308						       int *is_global)
 309{
 310	return NULL;
 311}
 312
 313/*
 314 * remove_buf_file() default callback.  Does nothing.
 315 */
 316static int remove_buf_file_default_callback(struct dentry *dentry)
 317{
 318	return -EINVAL;
 319}
 320
 321/* relay channel default callbacks */
 322static struct rchan_callbacks default_channel_callbacks = {
 323	.subbuf_start = subbuf_start_default_callback,
 324	.buf_mapped = buf_mapped_default_callback,
 325	.buf_unmapped = buf_unmapped_default_callback,
 326	.create_buf_file = create_buf_file_default_callback,
 327	.remove_buf_file = remove_buf_file_default_callback,
 328};
 329
 330/**
 331 *	wakeup_readers - wake up readers waiting on a channel
 332 *	@work: contains the channel buffer
 333 *
 334 *	This is the function used to defer reader waking
 335 */
 336static void wakeup_readers(struct irq_work *work)
 337{
 338	struct rchan_buf *buf;
 339
 340	buf = container_of(work, struct rchan_buf, wakeup_work);
 341	wake_up_interruptible(&buf->read_wait);
 342}
 343
 344/**
 345 *	__relay_reset - reset a channel buffer
 346 *	@buf: the channel buffer
 347 *	@init: 1 if this is a first-time initialization
 348 *
 349 *	See relay_reset() for description of effect.
 350 */
 351static void __relay_reset(struct rchan_buf *buf, unsigned int init)
 352{
 353	size_t i;
 354
 355	if (init) {
 356		init_waitqueue_head(&buf->read_wait);
 357		kref_init(&buf->kref);
 358		init_irq_work(&buf->wakeup_work, wakeup_readers);
 359	} else {
 360		irq_work_sync(&buf->wakeup_work);
 361	}
 362
 363	buf->subbufs_produced = 0;
 364	buf->subbufs_consumed = 0;
 365	buf->bytes_consumed = 0;
 366	buf->finalized = 0;
 367	buf->data = buf->start;
 368	buf->offset = 0;
 369
 370	for (i = 0; i < buf->chan->n_subbufs; i++)
 371		buf->padding[i] = 0;
 372
 373	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
 374}
 375
 376/**
 377 *	relay_reset - reset the channel
 378 *	@chan: the channel
 379 *
 380 *	This has the effect of erasing all data from all channel buffers
 381 *	and restarting the channel in its initial state.  The buffers
 382 *	are not freed, so any mappings are still in effect.
 383 *
 384 *	NOTE. Care should be taken that the channel isn't actually
 385 *	being used by anything when this call is made.
 386 */
 387void relay_reset(struct rchan *chan)
 388{
 389	struct rchan_buf *buf;
 390	unsigned int i;
 391
 392	if (!chan)
 393		return;
 394
 395	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
 396		__relay_reset(buf, 0);
 397		return;
 398	}
 399
 400	mutex_lock(&relay_channels_mutex);
 401	for_each_possible_cpu(i)
 402		if ((buf = *per_cpu_ptr(chan->buf, i)))
 403			__relay_reset(buf, 0);
 404	mutex_unlock(&relay_channels_mutex);
 405}
 406EXPORT_SYMBOL_GPL(relay_reset);
 407
 408static inline void relay_set_buf_dentry(struct rchan_buf *buf,
 409					struct dentry *dentry)
 410{
 411	buf->dentry = dentry;
 412	d_inode(buf->dentry)->i_size = buf->early_bytes;
 413}
 414
 415static struct dentry *relay_create_buf_file(struct rchan *chan,
 416					    struct rchan_buf *buf,
 417					    unsigned int cpu)
 418{
 419	struct dentry *dentry;
 420	char *tmpname;
 421
 422	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
 423	if (!tmpname)
 424		return NULL;
 425	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
 426
 427	/* Create file in fs */
 428	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
 429					   S_IRUSR, buf,
 430					   &chan->is_global);
 431	if (IS_ERR(dentry))
 432		dentry = NULL;
 433
 434	kfree(tmpname);
 435
 436	return dentry;
 437}
 438
 439/*
 440 *	relay_open_buf - create a new relay channel buffer
 441 *
 442 *	used by relay_open() and CPU hotplug.
 443 */
 444static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
 445{
 446 	struct rchan_buf *buf = NULL;
 447	struct dentry *dentry;
 448
 449 	if (chan->is_global)
 450		return *per_cpu_ptr(chan->buf, 0);
 451
 452	buf = relay_create_buf(chan);
 453	if (!buf)
 454		return NULL;
 455
 456	if (chan->has_base_filename) {
 457		dentry = relay_create_buf_file(chan, buf, cpu);
 458		if (!dentry)
 459			goto free_buf;
 460		relay_set_buf_dentry(buf, dentry);
 461	} else {
 462		/* Only retrieve global info, nothing more, nothing less */
 463		dentry = chan->cb->create_buf_file(NULL, NULL,
 464						   S_IRUSR, buf,
 465						   &chan->is_global);
 466		if (IS_ERR_OR_NULL(dentry))
 467			goto free_buf;
 468	}
 469
 470 	buf->cpu = cpu;
 471 	__relay_reset(buf, 1);
 472
 473 	if(chan->is_global) {
 474		*per_cpu_ptr(chan->buf, 0) = buf;
 475 		buf->cpu = 0;
 476  	}
 477
 478	return buf;
 479
 480free_buf:
 481 	relay_destroy_buf(buf);
 482	return NULL;
 483}
 484
 485/**
 486 *	relay_close_buf - close a channel buffer
 487 *	@buf: channel buffer
 488 *
 489 *	Marks the buffer finalized and restores the default callbacks.
 490 *	The channel buffer and channel buffer data structure are then freed
 491 *	automatically when the last reference is given up.
 492 */
 493static void relay_close_buf(struct rchan_buf *buf)
 494{
 495	buf->finalized = 1;
 496	irq_work_sync(&buf->wakeup_work);
 497	buf->chan->cb->remove_buf_file(buf->dentry);
 498	kref_put(&buf->kref, relay_remove_buf);
 499}
 500
 501static void setup_callbacks(struct rchan *chan,
 502				   struct rchan_callbacks *cb)
 503{
 504	if (!cb) {
 505		chan->cb = &default_channel_callbacks;
 506		return;
 507	}
 508
 509	if (!cb->subbuf_start)
 510		cb->subbuf_start = subbuf_start_default_callback;
 511	if (!cb->buf_mapped)
 512		cb->buf_mapped = buf_mapped_default_callback;
 513	if (!cb->buf_unmapped)
 514		cb->buf_unmapped = buf_unmapped_default_callback;
 515	if (!cb->create_buf_file)
 516		cb->create_buf_file = create_buf_file_default_callback;
 517	if (!cb->remove_buf_file)
 518		cb->remove_buf_file = remove_buf_file_default_callback;
 519	chan->cb = cb;
 520}
 521
 522int relay_prepare_cpu(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 523{
 
 524	struct rchan *chan;
 525	struct rchan_buf *buf;
 526
 527	mutex_lock(&relay_channels_mutex);
 528	list_for_each_entry(chan, &relay_channels, list) {
 529		if ((buf = *per_cpu_ptr(chan->buf, cpu)))
 530			continue;
 531		buf = relay_open_buf(chan, cpu);
 532		if (!buf) {
 533			pr_err("relay: cpu %d buffer creation failed\n", cpu);
 534			mutex_unlock(&relay_channels_mutex);
 535			return -ENOMEM;
 
 
 
 
 
 
 536		}
 537		*per_cpu_ptr(chan->buf, cpu) = buf;
 
 
 
 
 
 
 538	}
 539	mutex_unlock(&relay_channels_mutex);
 540	return 0;
 541}
 542
 543/**
 544 *	relay_open - create a new relay channel
 545 *	@base_filename: base name of files to create, %NULL for buffering only
 546 *	@parent: dentry of parent directory, %NULL for root directory or buffer
 547 *	@subbuf_size: size of sub-buffers
 548 *	@n_subbufs: number of sub-buffers
 549 *	@cb: client callback functions
 550 *	@private_data: user-defined data
 551 *
 552 *	Returns channel pointer if successful, %NULL otherwise.
 553 *
 554 *	Creates a channel buffer for each cpu using the sizes and
 555 *	attributes specified.  The created channel buffer files
 556 *	will be named base_filename0...base_filenameN-1.  File
 557 *	permissions will be %S_IRUSR.
 558 *
 559 *	If opening a buffer (@parent = NULL) that you later wish to register
 560 *	in a filesystem, call relay_late_setup_files() once the @parent dentry
 561 *	is available.
 562 */
 563struct rchan *relay_open(const char *base_filename,
 564			 struct dentry *parent,
 565			 size_t subbuf_size,
 566			 size_t n_subbufs,
 567			 struct rchan_callbacks *cb,
 568			 void *private_data)
 569{
 570	unsigned int i;
 571	struct rchan *chan;
 572	struct rchan_buf *buf;
 573
 574	if (!(subbuf_size && n_subbufs))
 575		return NULL;
 576	if (subbuf_size > UINT_MAX / n_subbufs)
 577		return NULL;
 578
 579	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
 580	if (!chan)
 581		return NULL;
 582
 583	chan->buf = alloc_percpu(struct rchan_buf *);
 584	chan->version = RELAYFS_CHANNEL_VERSION;
 585	chan->n_subbufs = n_subbufs;
 586	chan->subbuf_size = subbuf_size;
 587	chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
 588	chan->parent = parent;
 589	chan->private_data = private_data;
 590	if (base_filename) {
 591		chan->has_base_filename = 1;
 592		strlcpy(chan->base_filename, base_filename, NAME_MAX);
 593	}
 594	setup_callbacks(chan, cb);
 595	kref_init(&chan->kref);
 596
 597	mutex_lock(&relay_channels_mutex);
 598	for_each_online_cpu(i) {
 599		buf = relay_open_buf(chan, i);
 600		if (!buf)
 601			goto free_bufs;
 602		*per_cpu_ptr(chan->buf, i) = buf;
 603	}
 604	list_add(&chan->list, &relay_channels);
 605	mutex_unlock(&relay_channels_mutex);
 606
 607	return chan;
 608
 609free_bufs:
 610	for_each_possible_cpu(i) {
 611		if ((buf = *per_cpu_ptr(chan->buf, i)))
 612			relay_close_buf(buf);
 613	}
 614
 615	kref_put(&chan->kref, relay_destroy_channel);
 616	mutex_unlock(&relay_channels_mutex);
 617	return NULL;
 618}
 619EXPORT_SYMBOL_GPL(relay_open);
 620
 621struct rchan_percpu_buf_dispatcher {
 622	struct rchan_buf *buf;
 623	struct dentry *dentry;
 624};
 625
 626/* Called in atomic context. */
 627static void __relay_set_buf_dentry(void *info)
 628{
 629	struct rchan_percpu_buf_dispatcher *p = info;
 630
 631	relay_set_buf_dentry(p->buf, p->dentry);
 632}
 633
 634/**
 635 *	relay_late_setup_files - triggers file creation
 636 *	@chan: channel to operate on
 637 *	@base_filename: base name of files to create
 638 *	@parent: dentry of parent directory, %NULL for root directory
 639 *
 640 *	Returns 0 if successful, non-zero otherwise.
 641 *
 642 *	Use to setup files for a previously buffer-only channel created
 643 *	by relay_open() with a NULL parent dentry.
 644 *
 645 *	For example, this is useful for perfomring early tracing in kernel,
 646 *	before VFS is up and then exposing the early results once the dentry
 647 *	is available.
 648 */
 649int relay_late_setup_files(struct rchan *chan,
 650			   const char *base_filename,
 651			   struct dentry *parent)
 652{
 653	int err = 0;
 654	unsigned int i, curr_cpu;
 655	unsigned long flags;
 656	struct dentry *dentry;
 657	struct rchan_buf *buf;
 658	struct rchan_percpu_buf_dispatcher disp;
 659
 660	if (!chan || !base_filename)
 661		return -EINVAL;
 662
 663	strlcpy(chan->base_filename, base_filename, NAME_MAX);
 664
 665	mutex_lock(&relay_channels_mutex);
 666	/* Is chan already set up? */
 667	if (unlikely(chan->has_base_filename)) {
 668		mutex_unlock(&relay_channels_mutex);
 669		return -EEXIST;
 670	}
 671	chan->has_base_filename = 1;
 672	chan->parent = parent;
 673
 674	if (chan->is_global) {
 675		err = -EINVAL;
 676		buf = *per_cpu_ptr(chan->buf, 0);
 677		if (!WARN_ON_ONCE(!buf)) {
 678			dentry = relay_create_buf_file(chan, buf, 0);
 679			if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
 680				relay_set_buf_dentry(buf, dentry);
 681				err = 0;
 682			}
 683		}
 684		mutex_unlock(&relay_channels_mutex);
 685		return err;
 686	}
 687
 688	curr_cpu = get_cpu();
 689	/*
 690	 * The CPU hotplug notifier ran before us and created buffers with
 691	 * no files associated. So it's safe to call relay_setup_buf_file()
 692	 * on all currently online CPUs.
 693	 */
 694	for_each_online_cpu(i) {
 695		buf = *per_cpu_ptr(chan->buf, i);
 696		if (unlikely(!buf)) {
 697			WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
 698			err = -EINVAL;
 699			break;
 700		}
 701
 702		dentry = relay_create_buf_file(chan, buf, i);
 703		if (unlikely(!dentry)) {
 704			err = -EINVAL;
 705			break;
 706		}
 707
 708		if (curr_cpu == i) {
 709			local_irq_save(flags);
 710			relay_set_buf_dentry(buf, dentry);
 711			local_irq_restore(flags);
 712		} else {
 713			disp.buf = buf;
 714			disp.dentry = dentry;
 715			smp_mb();
 716			/* relay_channels_mutex must be held, so wait. */
 717			err = smp_call_function_single(i,
 718						       __relay_set_buf_dentry,
 719						       &disp, 1);
 720		}
 721		if (unlikely(err))
 722			break;
 723	}
 724	put_cpu();
 725	mutex_unlock(&relay_channels_mutex);
 726
 727	return err;
 728}
 729EXPORT_SYMBOL_GPL(relay_late_setup_files);
 730
 731/**
 732 *	relay_switch_subbuf - switch to a new sub-buffer
 733 *	@buf: channel buffer
 734 *	@length: size of current event
 735 *
 736 *	Returns either the length passed in or 0 if full.
 737 *
 738 *	Performs sub-buffer-switch tasks such as invoking callbacks,
 739 *	updating padding counts, waking up readers, etc.
 740 */
 741size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
 742{
 743	void *old, *new;
 744	size_t old_subbuf, new_subbuf;
 745
 746	if (unlikely(length > buf->chan->subbuf_size))
 747		goto toobig;
 748
 749	if (buf->offset != buf->chan->subbuf_size + 1) {
 750		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
 751		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
 752		buf->padding[old_subbuf] = buf->prev_padding;
 753		buf->subbufs_produced++;
 754		if (buf->dentry)
 755			d_inode(buf->dentry)->i_size +=
 756				buf->chan->subbuf_size -
 757				buf->padding[old_subbuf];
 758		else
 759			buf->early_bytes += buf->chan->subbuf_size -
 760					    buf->padding[old_subbuf];
 761		smp_mb();
 762		if (waitqueue_active(&buf->read_wait)) {
 763			/*
 764			 * Calling wake_up_interruptible() from here
 765			 * will deadlock if we happen to be logging
 766			 * from the scheduler (trying to re-grab
 767			 * rq->lock), so defer it.
 768			 */
 769			irq_work_queue(&buf->wakeup_work);
 770		}
 771	}
 772
 773	old = buf->data;
 774	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
 775	new = buf->start + new_subbuf * buf->chan->subbuf_size;
 776	buf->offset = 0;
 777	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
 778		buf->offset = buf->chan->subbuf_size + 1;
 779		return 0;
 780	}
 781	buf->data = new;
 782	buf->padding[new_subbuf] = 0;
 783
 784	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
 785		goto toobig;
 786
 787	return length;
 788
 789toobig:
 790	buf->chan->last_toobig = length;
 791	return 0;
 792}
 793EXPORT_SYMBOL_GPL(relay_switch_subbuf);
 794
 795/**
 796 *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
 797 *	@chan: the channel
 798 *	@cpu: the cpu associated with the channel buffer to update
 799 *	@subbufs_consumed: number of sub-buffers to add to current buf's count
 800 *
 801 *	Adds to the channel buffer's consumed sub-buffer count.
 802 *	subbufs_consumed should be the number of sub-buffers newly consumed,
 803 *	not the total consumed.
 804 *
 805 *	NOTE. Kernel clients don't need to call this function if the channel
 806 *	mode is 'overwrite'.
 807 */
 808void relay_subbufs_consumed(struct rchan *chan,
 809			    unsigned int cpu,
 810			    size_t subbufs_consumed)
 811{
 812	struct rchan_buf *buf;
 813
 814	if (!chan || cpu >= NR_CPUS)
 815		return;
 816
 817	buf = *per_cpu_ptr(chan->buf, cpu);
 818	if (!buf || subbufs_consumed > chan->n_subbufs)
 819		return;
 820
 
 821	if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
 822		buf->subbufs_consumed = buf->subbufs_produced;
 823	else
 824		buf->subbufs_consumed += subbufs_consumed;
 825}
 826EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
 827
 828/**
 829 *	relay_close - close the channel
 830 *	@chan: the channel
 831 *
 832 *	Closes all channel buffers and frees the channel.
 833 */
 834void relay_close(struct rchan *chan)
 835{
 836	struct rchan_buf *buf;
 837	unsigned int i;
 838
 839	if (!chan)
 840		return;
 841
 842	mutex_lock(&relay_channels_mutex);
 843	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
 844		relay_close_buf(buf);
 845	else
 846		for_each_possible_cpu(i)
 847			if ((buf = *per_cpu_ptr(chan->buf, i)))
 848				relay_close_buf(buf);
 849
 850	if (chan->last_toobig)
 851		printk(KERN_WARNING "relay: one or more items not logged "
 852		       "[item size (%zd) > sub-buffer size (%zd)]\n",
 853		       chan->last_toobig, chan->subbuf_size);
 854
 855	list_del(&chan->list);
 856	kref_put(&chan->kref, relay_destroy_channel);
 857	mutex_unlock(&relay_channels_mutex);
 858}
 859EXPORT_SYMBOL_GPL(relay_close);
 860
 861/**
 862 *	relay_flush - close the channel
 863 *	@chan: the channel
 864 *
 865 *	Flushes all channel buffers, i.e. forces buffer switch.
 866 */
 867void relay_flush(struct rchan *chan)
 868{
 869	struct rchan_buf *buf;
 870	unsigned int i;
 871
 872	if (!chan)
 873		return;
 874
 875	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
 876		relay_switch_subbuf(buf, 0);
 877		return;
 878	}
 879
 880	mutex_lock(&relay_channels_mutex);
 881	for_each_possible_cpu(i)
 882		if ((buf = *per_cpu_ptr(chan->buf, i)))
 883			relay_switch_subbuf(buf, 0);
 884	mutex_unlock(&relay_channels_mutex);
 885}
 886EXPORT_SYMBOL_GPL(relay_flush);
 887
 888/**
 889 *	relay_file_open - open file op for relay files
 890 *	@inode: the inode
 891 *	@filp: the file
 892 *
 893 *	Increments the channel buffer refcount.
 894 */
 895static int relay_file_open(struct inode *inode, struct file *filp)
 896{
 897	struct rchan_buf *buf = inode->i_private;
 898	kref_get(&buf->kref);
 899	filp->private_data = buf;
 900
 901	return nonseekable_open(inode, filp);
 902}
 903
 904/**
 905 *	relay_file_mmap - mmap file op for relay files
 906 *	@filp: the file
 907 *	@vma: the vma describing what to map
 908 *
 909 *	Calls upon relay_mmap_buf() to map the file into user space.
 910 */
 911static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
 912{
 913	struct rchan_buf *buf = filp->private_data;
 914	return relay_mmap_buf(buf, vma);
 915}
 916
 917/**
 918 *	relay_file_poll - poll file op for relay files
 919 *	@filp: the file
 920 *	@wait: poll table
 921 *
 922 *	Poll implemention.
 923 */
 924static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
 925{
 926	__poll_t mask = 0;
 927	struct rchan_buf *buf = filp->private_data;
 928
 929	if (buf->finalized)
 930		return EPOLLERR;
 931
 932	if (filp->f_mode & FMODE_READ) {
 933		poll_wait(filp, &buf->read_wait, wait);
 934		if (!relay_buf_empty(buf))
 935			mask |= EPOLLIN | EPOLLRDNORM;
 936	}
 937
 938	return mask;
 939}
 940
 941/**
 942 *	relay_file_release - release file op for relay files
 943 *	@inode: the inode
 944 *	@filp: the file
 945 *
 946 *	Decrements the channel refcount, as the filesystem is
 947 *	no longer using it.
 948 */
 949static int relay_file_release(struct inode *inode, struct file *filp)
 950{
 951	struct rchan_buf *buf = filp->private_data;
 952	kref_put(&buf->kref, relay_remove_buf);
 953
 954	return 0;
 955}
 956
 957/*
 958 *	relay_file_read_consume - update the consumed count for the buffer
 959 */
 960static void relay_file_read_consume(struct rchan_buf *buf,
 961				    size_t read_pos,
 962				    size_t bytes_consumed)
 963{
 964	size_t subbuf_size = buf->chan->subbuf_size;
 965	size_t n_subbufs = buf->chan->n_subbufs;
 966	size_t read_subbuf;
 967
 968	if (buf->subbufs_produced == buf->subbufs_consumed &&
 969	    buf->offset == buf->bytes_consumed)
 970		return;
 971
 972	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
 973		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
 974		buf->bytes_consumed = 0;
 975	}
 976
 977	buf->bytes_consumed += bytes_consumed;
 978	if (!read_pos)
 979		read_subbuf = buf->subbufs_consumed % n_subbufs;
 980	else
 981		read_subbuf = read_pos / buf->chan->subbuf_size;
 982	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
 983		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
 984		    (buf->offset == subbuf_size))
 985			return;
 986		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
 987		buf->bytes_consumed = 0;
 988	}
 989}
 990
 991/*
 992 *	relay_file_read_avail - boolean, are there unconsumed bytes available?
 993 */
 994static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
 995{
 996	size_t subbuf_size = buf->chan->subbuf_size;
 997	size_t n_subbufs = buf->chan->n_subbufs;
 998	size_t produced = buf->subbufs_produced;
 999	size_t consumed = buf->subbufs_consumed;
1000
1001	relay_file_read_consume(buf, read_pos, 0);
1002
1003	consumed = buf->subbufs_consumed;
1004
1005	if (unlikely(buf->offset > subbuf_size)) {
1006		if (produced == consumed)
1007			return 0;
1008		return 1;
1009	}
1010
1011	if (unlikely(produced - consumed >= n_subbufs)) {
1012		consumed = produced - n_subbufs + 1;
1013		buf->subbufs_consumed = consumed;
1014		buf->bytes_consumed = 0;
1015	}
1016
1017	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
1018	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
1019
1020	if (consumed > produced)
1021		produced += n_subbufs * subbuf_size;
1022
1023	if (consumed == produced) {
1024		if (buf->offset == subbuf_size &&
1025		    buf->subbufs_produced > buf->subbufs_consumed)
1026			return 1;
1027		return 0;
1028	}
1029
1030	return 1;
1031}
1032
1033/**
1034 *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
1035 *	@read_pos: file read position
1036 *	@buf: relay channel buffer
1037 */
1038static size_t relay_file_read_subbuf_avail(size_t read_pos,
1039					   struct rchan_buf *buf)
1040{
1041	size_t padding, avail = 0;
1042	size_t read_subbuf, read_offset, write_subbuf, write_offset;
1043	size_t subbuf_size = buf->chan->subbuf_size;
1044
1045	write_subbuf = (buf->data - buf->start) / subbuf_size;
1046	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1047	read_subbuf = read_pos / subbuf_size;
1048	read_offset = read_pos % subbuf_size;
1049	padding = buf->padding[read_subbuf];
1050
1051	if (read_subbuf == write_subbuf) {
1052		if (read_offset + padding < write_offset)
1053			avail = write_offset - (read_offset + padding);
1054	} else
1055		avail = (subbuf_size - padding) - read_offset;
1056
1057	return avail;
1058}
1059
1060/**
1061 *	relay_file_read_start_pos - find the first available byte to read
1062 *	@read_pos: file read position
1063 *	@buf: relay channel buffer
1064 *
1065 *	If the @read_pos is in the middle of padding, return the
1066 *	position of the first actually available byte, otherwise
1067 *	return the original value.
1068 */
1069static size_t relay_file_read_start_pos(size_t read_pos,
1070					struct rchan_buf *buf)
1071{
1072	size_t read_subbuf, padding, padding_start, padding_end;
1073	size_t subbuf_size = buf->chan->subbuf_size;
1074	size_t n_subbufs = buf->chan->n_subbufs;
1075	size_t consumed = buf->subbufs_consumed % n_subbufs;
1076
1077	if (!read_pos)
1078		read_pos = consumed * subbuf_size + buf->bytes_consumed;
1079	read_subbuf = read_pos / subbuf_size;
1080	padding = buf->padding[read_subbuf];
1081	padding_start = (read_subbuf + 1) * subbuf_size - padding;
1082	padding_end = (read_subbuf + 1) * subbuf_size;
1083	if (read_pos >= padding_start && read_pos < padding_end) {
1084		read_subbuf = (read_subbuf + 1) % n_subbufs;
1085		read_pos = read_subbuf * subbuf_size;
1086	}
1087
1088	return read_pos;
1089}
1090
1091/**
1092 *	relay_file_read_end_pos - return the new read position
1093 *	@read_pos: file read position
1094 *	@buf: relay channel buffer
1095 *	@count: number of bytes to be read
1096 */
1097static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1098				      size_t read_pos,
1099				      size_t count)
1100{
1101	size_t read_subbuf, padding, end_pos;
1102	size_t subbuf_size = buf->chan->subbuf_size;
1103	size_t n_subbufs = buf->chan->n_subbufs;
1104
1105	read_subbuf = read_pos / subbuf_size;
1106	padding = buf->padding[read_subbuf];
1107	if (read_pos % subbuf_size + count + padding == subbuf_size)
1108		end_pos = (read_subbuf + 1) * subbuf_size;
1109	else
1110		end_pos = read_pos + count;
1111	if (end_pos >= subbuf_size * n_subbufs)
1112		end_pos = 0;
1113
1114	return end_pos;
1115}
1116
1117static ssize_t relay_file_read(struct file *filp,
1118			       char __user *buffer,
1119			       size_t count,
1120			       loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1121{
1122	struct rchan_buf *buf = filp->private_data;
1123	size_t read_start, avail;
1124	size_t written = 0;
1125	int ret;
1126
1127	if (!count)
1128		return 0;
1129
1130	inode_lock(file_inode(filp));
1131	do {
1132		void *from;
1133
1134		if (!relay_file_read_avail(buf, *ppos))
1135			break;
1136
1137		read_start = relay_file_read_start_pos(*ppos, buf);
1138		avail = relay_file_read_subbuf_avail(read_start, buf);
1139		if (!avail)
1140			break;
1141
1142		avail = min(count, avail);
1143		from = buf->start + read_start;
1144		ret = avail;
1145		if (copy_to_user(buffer, from, avail))
1146			break;
1147
1148		buffer += ret;
1149		written += ret;
1150		count -= ret;
1151
1152		relay_file_read_consume(buf, read_start, ret);
1153		*ppos = relay_file_read_end_pos(buf, read_start, ret);
1154	} while (count);
1155	inode_unlock(file_inode(filp));
 
1156
1157	return written;
 
 
 
 
 
 
 
 
 
 
 
1158}
1159
1160static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1161{
1162	rbuf->bytes_consumed += bytes_consumed;
1163
1164	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1165		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1166		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1167	}
1168}
1169
1170static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1171				   struct pipe_buffer *buf)
1172{
1173	struct rchan_buf *rbuf;
1174
1175	rbuf = (struct rchan_buf *)page_private(buf->page);
1176	relay_consume_bytes(rbuf, buf->private);
1177}
1178
1179static const struct pipe_buf_operations relay_pipe_buf_ops = {
 
 
 
1180	.confirm = generic_pipe_buf_confirm,
1181	.release = relay_pipe_buf_release,
1182	.steal = generic_pipe_buf_steal,
1183	.get = generic_pipe_buf_get,
1184};
1185
1186static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1187{
1188}
1189
1190/*
1191 *	subbuf_splice_actor - splice up to one subbuf's worth of data
1192 */
1193static ssize_t subbuf_splice_actor(struct file *in,
1194			       loff_t *ppos,
1195			       struct pipe_inode_info *pipe,
1196			       size_t len,
1197			       unsigned int flags,
1198			       int *nonpad_ret)
1199{
1200	unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1201	struct rchan_buf *rbuf = in->private_data;
1202	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1203	uint64_t pos = (uint64_t) *ppos;
1204	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1205	size_t read_start = (size_t) do_div(pos, alloc_size);
1206	size_t read_subbuf = read_start / subbuf_size;
1207	size_t padding = rbuf->padding[read_subbuf];
1208	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1209	struct page *pages[PIPE_DEF_BUFFERS];
1210	struct partial_page partial[PIPE_DEF_BUFFERS];
1211	struct splice_pipe_desc spd = {
1212		.pages = pages,
1213		.nr_pages = 0,
1214		.nr_pages_max = PIPE_DEF_BUFFERS,
1215		.partial = partial,
 
1216		.ops = &relay_pipe_buf_ops,
1217		.spd_release = relay_page_release,
1218	};
1219	ssize_t ret;
1220
1221	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1222		return 0;
1223	if (splice_grow_spd(pipe, &spd))
1224		return -ENOMEM;
1225
1226	/*
1227	 * Adjust read len, if longer than what is available
1228	 */
1229	if (len > (subbuf_size - read_start % subbuf_size))
1230		len = subbuf_size - read_start % subbuf_size;
1231
1232	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1233	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1234	poff = read_start & ~PAGE_MASK;
1235	nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1236
1237	for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1238		unsigned int this_len, this_end, private;
1239		unsigned int cur_pos = read_start + total_len;
1240
1241		if (!len)
1242			break;
1243
1244		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1245		private = this_len;
1246
1247		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1248		spd.partial[spd.nr_pages].offset = poff;
1249
1250		this_end = cur_pos + this_len;
1251		if (this_end >= nonpad_end) {
1252			this_len = nonpad_end - cur_pos;
1253			private = this_len + padding;
1254		}
1255		spd.partial[spd.nr_pages].len = this_len;
1256		spd.partial[spd.nr_pages].private = private;
1257
1258		len -= this_len;
1259		total_len += this_len;
1260		poff = 0;
1261		pidx = (pidx + 1) % subbuf_pages;
1262
1263		if (this_end >= nonpad_end) {
1264			spd.nr_pages++;
1265			break;
1266		}
1267	}
1268
1269	ret = 0;
1270	if (!spd.nr_pages)
1271		goto out;
1272
1273	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1274	if (ret < 0 || ret < total_len)
1275		goto out;
1276
1277        if (read_start + ret == nonpad_end)
1278                ret += padding;
1279
1280out:
1281	splice_shrink_spd(&spd);
1282	return ret;
1283}
1284
1285static ssize_t relay_file_splice_read(struct file *in,
1286				      loff_t *ppos,
1287				      struct pipe_inode_info *pipe,
1288				      size_t len,
1289				      unsigned int flags)
1290{
1291	ssize_t spliced;
1292	int ret;
1293	int nonpad_ret = 0;
1294
1295	ret = 0;
1296	spliced = 0;
1297
1298	while (len && !spliced) {
1299		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1300		if (ret < 0)
1301			break;
1302		else if (!ret) {
1303			if (flags & SPLICE_F_NONBLOCK)
1304				ret = -EAGAIN;
1305			break;
1306		}
1307
1308		*ppos += ret;
1309		if (ret > len)
1310			len = 0;
1311		else
1312			len -= ret;
1313		spliced += nonpad_ret;
1314		nonpad_ret = 0;
1315	}
1316
1317	if (spliced)
1318		return spliced;
1319
1320	return ret;
1321}
1322
1323const struct file_operations relay_file_operations = {
1324	.open		= relay_file_open,
1325	.poll		= relay_file_poll,
1326	.mmap		= relay_file_mmap,
1327	.read		= relay_file_read,
1328	.llseek		= no_llseek,
1329	.release	= relay_file_release,
1330	.splice_read	= relay_file_splice_read,
1331};
1332EXPORT_SYMBOL_GPL(relay_file_operations);
v3.5.6
   1/*
   2 * Public API and common code for kernel->userspace relay file support.
   3 *
   4 * See Documentation/filesystems/relay.txt for an overview.
   5 *
   6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
   7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
   8 *
   9 * Moved to kernel/relay.c by Paul Mundt, 2006.
  10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
  11 * 	(mathieu.desnoyers@polymtl.ca)
  12 *
  13 * This file is released under the GPL.
  14 */
  15#include <linux/errno.h>
  16#include <linux/stddef.h>
  17#include <linux/slab.h>
  18#include <linux/export.h>
  19#include <linux/string.h>
  20#include <linux/relay.h>
  21#include <linux/vmalloc.h>
  22#include <linux/mm.h>
  23#include <linux/cpu.h>
  24#include <linux/splice.h>
  25
  26/* list of open channels, for cpu hotplug */
  27static DEFINE_MUTEX(relay_channels_mutex);
  28static LIST_HEAD(relay_channels);
  29
  30/*
  31 * close() vm_op implementation for relay file mapping.
  32 */
  33static void relay_file_mmap_close(struct vm_area_struct *vma)
  34{
  35	struct rchan_buf *buf = vma->vm_private_data;
  36	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
  37}
  38
  39/*
  40 * fault() vm_op implementation for relay file mapping.
  41 */
  42static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  43{
  44	struct page *page;
  45	struct rchan_buf *buf = vma->vm_private_data;
  46	pgoff_t pgoff = vmf->pgoff;
  47
  48	if (!buf)
  49		return VM_FAULT_OOM;
  50
  51	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
  52	if (!page)
  53		return VM_FAULT_SIGBUS;
  54	get_page(page);
  55	vmf->page = page;
  56
  57	return 0;
  58}
  59
  60/*
  61 * vm_ops for relay file mappings.
  62 */
  63static const struct vm_operations_struct relay_file_mmap_ops = {
  64	.fault = relay_buf_fault,
  65	.close = relay_file_mmap_close,
  66};
  67
  68/*
  69 * allocate an array of pointers of struct page
  70 */
  71static struct page **relay_alloc_page_array(unsigned int n_pages)
  72{
  73	const size_t pa_size = n_pages * sizeof(struct page *);
  74	if (pa_size > PAGE_SIZE)
  75		return vzalloc(pa_size);
  76	return kzalloc(pa_size, GFP_KERNEL);
  77}
  78
  79/*
  80 * free an array of pointers of struct page
  81 */
  82static void relay_free_page_array(struct page **array)
  83{
  84	if (is_vmalloc_addr(array))
  85		vfree(array);
  86	else
  87		kfree(array);
  88}
  89
  90/**
  91 *	relay_mmap_buf: - mmap channel buffer to process address space
  92 *	@buf: relay channel buffer
  93 *	@vma: vm_area_struct describing memory to be mapped
  94 *
  95 *	Returns 0 if ok, negative on error
  96 *
  97 *	Caller should already have grabbed mmap_sem.
  98 */
  99static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
 100{
 101	unsigned long length = vma->vm_end - vma->vm_start;
 102	struct file *filp = vma->vm_file;
 103
 104	if (!buf)
 105		return -EBADF;
 106
 107	if (length != (unsigned long)buf->chan->alloc_size)
 108		return -EINVAL;
 109
 110	vma->vm_ops = &relay_file_mmap_ops;
 111	vma->vm_flags |= VM_DONTEXPAND;
 112	vma->vm_private_data = buf;
 113	buf->chan->cb->buf_mapped(buf, filp);
 114
 115	return 0;
 116}
 117
 118/**
 119 *	relay_alloc_buf - allocate a channel buffer
 120 *	@buf: the buffer struct
 121 *	@size: total size of the buffer
 122 *
 123 *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
 124 *	passed in size will get page aligned, if it isn't already.
 125 */
 126static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
 127{
 128	void *mem;
 129	unsigned int i, j, n_pages;
 130
 131	*size = PAGE_ALIGN(*size);
 132	n_pages = *size >> PAGE_SHIFT;
 133
 134	buf->page_array = relay_alloc_page_array(n_pages);
 135	if (!buf->page_array)
 136		return NULL;
 137
 138	for (i = 0; i < n_pages; i++) {
 139		buf->page_array[i] = alloc_page(GFP_KERNEL);
 140		if (unlikely(!buf->page_array[i]))
 141			goto depopulate;
 142		set_page_private(buf->page_array[i], (unsigned long)buf);
 143	}
 144	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
 145	if (!mem)
 146		goto depopulate;
 147
 148	memset(mem, 0, *size);
 149	buf->page_count = n_pages;
 150	return mem;
 151
 152depopulate:
 153	for (j = 0; j < i; j++)
 154		__free_page(buf->page_array[j]);
 155	relay_free_page_array(buf->page_array);
 156	return NULL;
 157}
 158
 159/**
 160 *	relay_create_buf - allocate and initialize a channel buffer
 161 *	@chan: the relay channel
 162 *
 163 *	Returns channel buffer if successful, %NULL otherwise.
 164 */
 165static struct rchan_buf *relay_create_buf(struct rchan *chan)
 166{
 167	struct rchan_buf *buf;
 168
 169	if (chan->n_subbufs > UINT_MAX / sizeof(size_t *))
 170		return NULL;
 171
 172	buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
 173	if (!buf)
 174		return NULL;
 175	buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
 
 176	if (!buf->padding)
 177		goto free_buf;
 178
 179	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
 180	if (!buf->start)
 181		goto free_buf;
 182
 183	buf->chan = chan;
 184	kref_get(&buf->chan->kref);
 185	return buf;
 186
 187free_buf:
 188	kfree(buf->padding);
 189	kfree(buf);
 190	return NULL;
 191}
 192
 193/**
 194 *	relay_destroy_channel - free the channel struct
 195 *	@kref: target kernel reference that contains the relay channel
 196 *
 197 *	Should only be called from kref_put().
 198 */
 199static void relay_destroy_channel(struct kref *kref)
 200{
 201	struct rchan *chan = container_of(kref, struct rchan, kref);
 202	kfree(chan);
 203}
 204
 205/**
 206 *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
 207 *	@buf: the buffer struct
 208 */
 209static void relay_destroy_buf(struct rchan_buf *buf)
 210{
 211	struct rchan *chan = buf->chan;
 212	unsigned int i;
 213
 214	if (likely(buf->start)) {
 215		vunmap(buf->start);
 216		for (i = 0; i < buf->page_count; i++)
 217			__free_page(buf->page_array[i]);
 218		relay_free_page_array(buf->page_array);
 219	}
 220	chan->buf[buf->cpu] = NULL;
 221	kfree(buf->padding);
 222	kfree(buf);
 223	kref_put(&chan->kref, relay_destroy_channel);
 224}
 225
 226/**
 227 *	relay_remove_buf - remove a channel buffer
 228 *	@kref: target kernel reference that contains the relay buffer
 229 *
 230 *	Removes the file from the fileystem, which also frees the
 231 *	rchan_buf_struct and the channel buffer.  Should only be called from
 232 *	kref_put().
 233 */
 234static void relay_remove_buf(struct kref *kref)
 235{
 236	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
 237	buf->chan->cb->remove_buf_file(buf->dentry);
 238	relay_destroy_buf(buf);
 239}
 240
 241/**
 242 *	relay_buf_empty - boolean, is the channel buffer empty?
 243 *	@buf: channel buffer
 244 *
 245 *	Returns 1 if the buffer is empty, 0 otherwise.
 246 */
 247static int relay_buf_empty(struct rchan_buf *buf)
 248{
 249	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
 250}
 251
 252/**
 253 *	relay_buf_full - boolean, is the channel buffer full?
 254 *	@buf: channel buffer
 255 *
 256 *	Returns 1 if the buffer is full, 0 otherwise.
 257 */
 258int relay_buf_full(struct rchan_buf *buf)
 259{
 260	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
 261	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
 262}
 263EXPORT_SYMBOL_GPL(relay_buf_full);
 264
 265/*
 266 * High-level relay kernel API and associated functions.
 267 */
 268
 269/*
 270 * rchan_callback implementations defining default channel behavior.  Used
 271 * in place of corresponding NULL values in client callback struct.
 272 */
 273
 274/*
 275 * subbuf_start() default callback.  Does nothing.
 276 */
 277static int subbuf_start_default_callback (struct rchan_buf *buf,
 278					  void *subbuf,
 279					  void *prev_subbuf,
 280					  size_t prev_padding)
 281{
 282	if (relay_buf_full(buf))
 283		return 0;
 284
 285	return 1;
 286}
 287
 288/*
 289 * buf_mapped() default callback.  Does nothing.
 290 */
 291static void buf_mapped_default_callback(struct rchan_buf *buf,
 292					struct file *filp)
 293{
 294}
 295
 296/*
 297 * buf_unmapped() default callback.  Does nothing.
 298 */
 299static void buf_unmapped_default_callback(struct rchan_buf *buf,
 300					  struct file *filp)
 301{
 302}
 303
 304/*
 305 * create_buf_file_create() default callback.  Does nothing.
 306 */
 307static struct dentry *create_buf_file_default_callback(const char *filename,
 308						       struct dentry *parent,
 309						       umode_t mode,
 310						       struct rchan_buf *buf,
 311						       int *is_global)
 312{
 313	return NULL;
 314}
 315
 316/*
 317 * remove_buf_file() default callback.  Does nothing.
 318 */
 319static int remove_buf_file_default_callback(struct dentry *dentry)
 320{
 321	return -EINVAL;
 322}
 323
 324/* relay channel default callbacks */
 325static struct rchan_callbacks default_channel_callbacks = {
 326	.subbuf_start = subbuf_start_default_callback,
 327	.buf_mapped = buf_mapped_default_callback,
 328	.buf_unmapped = buf_unmapped_default_callback,
 329	.create_buf_file = create_buf_file_default_callback,
 330	.remove_buf_file = remove_buf_file_default_callback,
 331};
 332
 333/**
 334 *	wakeup_readers - wake up readers waiting on a channel
 335 *	@data: contains the channel buffer
 336 *
 337 *	This is the timer function used to defer reader waking.
 338 */
 339static void wakeup_readers(unsigned long data)
 340{
 341	struct rchan_buf *buf = (struct rchan_buf *)data;
 
 
 342	wake_up_interruptible(&buf->read_wait);
 343}
 344
 345/**
 346 *	__relay_reset - reset a channel buffer
 347 *	@buf: the channel buffer
 348 *	@init: 1 if this is a first-time initialization
 349 *
 350 *	See relay_reset() for description of effect.
 351 */
 352static void __relay_reset(struct rchan_buf *buf, unsigned int init)
 353{
 354	size_t i;
 355
 356	if (init) {
 357		init_waitqueue_head(&buf->read_wait);
 358		kref_init(&buf->kref);
 359		setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
 360	} else
 361		del_timer_sync(&buf->timer);
 
 362
 363	buf->subbufs_produced = 0;
 364	buf->subbufs_consumed = 0;
 365	buf->bytes_consumed = 0;
 366	buf->finalized = 0;
 367	buf->data = buf->start;
 368	buf->offset = 0;
 369
 370	for (i = 0; i < buf->chan->n_subbufs; i++)
 371		buf->padding[i] = 0;
 372
 373	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
 374}
 375
 376/**
 377 *	relay_reset - reset the channel
 378 *	@chan: the channel
 379 *
 380 *	This has the effect of erasing all data from all channel buffers
 381 *	and restarting the channel in its initial state.  The buffers
 382 *	are not freed, so any mappings are still in effect.
 383 *
 384 *	NOTE. Care should be taken that the channel isn't actually
 385 *	being used by anything when this call is made.
 386 */
 387void relay_reset(struct rchan *chan)
 388{
 
 389	unsigned int i;
 390
 391	if (!chan)
 392		return;
 393
 394	if (chan->is_global && chan->buf[0]) {
 395		__relay_reset(chan->buf[0], 0);
 396		return;
 397	}
 398
 399	mutex_lock(&relay_channels_mutex);
 400	for_each_possible_cpu(i)
 401		if (chan->buf[i])
 402			__relay_reset(chan->buf[i], 0);
 403	mutex_unlock(&relay_channels_mutex);
 404}
 405EXPORT_SYMBOL_GPL(relay_reset);
 406
 407static inline void relay_set_buf_dentry(struct rchan_buf *buf,
 408					struct dentry *dentry)
 409{
 410	buf->dentry = dentry;
 411	buf->dentry->d_inode->i_size = buf->early_bytes;
 412}
 413
 414static struct dentry *relay_create_buf_file(struct rchan *chan,
 415					    struct rchan_buf *buf,
 416					    unsigned int cpu)
 417{
 418	struct dentry *dentry;
 419	char *tmpname;
 420
 421	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
 422	if (!tmpname)
 423		return NULL;
 424	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
 425
 426	/* Create file in fs */
 427	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
 428					   S_IRUSR, buf,
 429					   &chan->is_global);
 
 
 430
 431	kfree(tmpname);
 432
 433	return dentry;
 434}
 435
 436/*
 437 *	relay_open_buf - create a new relay channel buffer
 438 *
 439 *	used by relay_open() and CPU hotplug.
 440 */
 441static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
 442{
 443 	struct rchan_buf *buf = NULL;
 444	struct dentry *dentry;
 445
 446 	if (chan->is_global)
 447		return chan->buf[0];
 448
 449	buf = relay_create_buf(chan);
 450	if (!buf)
 451		return NULL;
 452
 453	if (chan->has_base_filename) {
 454		dentry = relay_create_buf_file(chan, buf, cpu);
 455		if (!dentry)
 456			goto free_buf;
 457		relay_set_buf_dentry(buf, dentry);
 
 
 
 
 
 
 
 458	}
 459
 460 	buf->cpu = cpu;
 461 	__relay_reset(buf, 1);
 462
 463 	if(chan->is_global) {
 464 		chan->buf[0] = buf;
 465 		buf->cpu = 0;
 466  	}
 467
 468	return buf;
 469
 470free_buf:
 471 	relay_destroy_buf(buf);
 472	return NULL;
 473}
 474
 475/**
 476 *	relay_close_buf - close a channel buffer
 477 *	@buf: channel buffer
 478 *
 479 *	Marks the buffer finalized and restores the default callbacks.
 480 *	The channel buffer and channel buffer data structure are then freed
 481 *	automatically when the last reference is given up.
 482 */
 483static void relay_close_buf(struct rchan_buf *buf)
 484{
 485	buf->finalized = 1;
 486	del_timer_sync(&buf->timer);
 
 487	kref_put(&buf->kref, relay_remove_buf);
 488}
 489
 490static void setup_callbacks(struct rchan *chan,
 491				   struct rchan_callbacks *cb)
 492{
 493	if (!cb) {
 494		chan->cb = &default_channel_callbacks;
 495		return;
 496	}
 497
 498	if (!cb->subbuf_start)
 499		cb->subbuf_start = subbuf_start_default_callback;
 500	if (!cb->buf_mapped)
 501		cb->buf_mapped = buf_mapped_default_callback;
 502	if (!cb->buf_unmapped)
 503		cb->buf_unmapped = buf_unmapped_default_callback;
 504	if (!cb->create_buf_file)
 505		cb->create_buf_file = create_buf_file_default_callback;
 506	if (!cb->remove_buf_file)
 507		cb->remove_buf_file = remove_buf_file_default_callback;
 508	chan->cb = cb;
 509}
 510
 511/**
 512 * 	relay_hotcpu_callback - CPU hotplug callback
 513 * 	@nb: notifier block
 514 * 	@action: hotplug action to take
 515 * 	@hcpu: CPU number
 516 *
 517 * 	Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
 518 */
 519static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
 520				unsigned long action,
 521				void *hcpu)
 522{
 523	unsigned int hotcpu = (unsigned long)hcpu;
 524	struct rchan *chan;
 
 525
 526	switch(action) {
 527	case CPU_UP_PREPARE:
 528	case CPU_UP_PREPARE_FROZEN:
 529		mutex_lock(&relay_channels_mutex);
 530		list_for_each_entry(chan, &relay_channels, list) {
 531			if (chan->buf[hotcpu])
 532				continue;
 533			chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
 534			if(!chan->buf[hotcpu]) {
 535				printk(KERN_ERR
 536					"relay_hotcpu_callback: cpu %d buffer "
 537					"creation failed\n", hotcpu);
 538				mutex_unlock(&relay_channels_mutex);
 539				return notifier_from_errno(-ENOMEM);
 540			}
 541		}
 542		mutex_unlock(&relay_channels_mutex);
 543		break;
 544	case CPU_DEAD:
 545	case CPU_DEAD_FROZEN:
 546		/* No need to flush the cpu : will be flushed upon
 547		 * final relay_flush() call. */
 548		break;
 549	}
 550	return NOTIFY_OK;
 
 551}
 552
 553/**
 554 *	relay_open - create a new relay channel
 555 *	@base_filename: base name of files to create, %NULL for buffering only
 556 *	@parent: dentry of parent directory, %NULL for root directory or buffer
 557 *	@subbuf_size: size of sub-buffers
 558 *	@n_subbufs: number of sub-buffers
 559 *	@cb: client callback functions
 560 *	@private_data: user-defined data
 561 *
 562 *	Returns channel pointer if successful, %NULL otherwise.
 563 *
 564 *	Creates a channel buffer for each cpu using the sizes and
 565 *	attributes specified.  The created channel buffer files
 566 *	will be named base_filename0...base_filenameN-1.  File
 567 *	permissions will be %S_IRUSR.
 
 
 
 
 568 */
 569struct rchan *relay_open(const char *base_filename,
 570			 struct dentry *parent,
 571			 size_t subbuf_size,
 572			 size_t n_subbufs,
 573			 struct rchan_callbacks *cb,
 574			 void *private_data)
 575{
 576	unsigned int i;
 577	struct rchan *chan;
 
 578
 579	if (!(subbuf_size && n_subbufs))
 580		return NULL;
 581	if (subbuf_size > UINT_MAX / n_subbufs)
 582		return NULL;
 583
 584	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
 585	if (!chan)
 586		return NULL;
 587
 
 588	chan->version = RELAYFS_CHANNEL_VERSION;
 589	chan->n_subbufs = n_subbufs;
 590	chan->subbuf_size = subbuf_size;
 591	chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
 592	chan->parent = parent;
 593	chan->private_data = private_data;
 594	if (base_filename) {
 595		chan->has_base_filename = 1;
 596		strlcpy(chan->base_filename, base_filename, NAME_MAX);
 597	}
 598	setup_callbacks(chan, cb);
 599	kref_init(&chan->kref);
 600
 601	mutex_lock(&relay_channels_mutex);
 602	for_each_online_cpu(i) {
 603		chan->buf[i] = relay_open_buf(chan, i);
 604		if (!chan->buf[i])
 605			goto free_bufs;
 
 606	}
 607	list_add(&chan->list, &relay_channels);
 608	mutex_unlock(&relay_channels_mutex);
 609
 610	return chan;
 611
 612free_bufs:
 613	for_each_possible_cpu(i) {
 614		if (chan->buf[i])
 615			relay_close_buf(chan->buf[i]);
 616	}
 617
 618	kref_put(&chan->kref, relay_destroy_channel);
 619	mutex_unlock(&relay_channels_mutex);
 620	return NULL;
 621}
 622EXPORT_SYMBOL_GPL(relay_open);
 623
 624struct rchan_percpu_buf_dispatcher {
 625	struct rchan_buf *buf;
 626	struct dentry *dentry;
 627};
 628
 629/* Called in atomic context. */
 630static void __relay_set_buf_dentry(void *info)
 631{
 632	struct rchan_percpu_buf_dispatcher *p = info;
 633
 634	relay_set_buf_dentry(p->buf, p->dentry);
 635}
 636
 637/**
 638 *	relay_late_setup_files - triggers file creation
 639 *	@chan: channel to operate on
 640 *	@base_filename: base name of files to create
 641 *	@parent: dentry of parent directory, %NULL for root directory
 642 *
 643 *	Returns 0 if successful, non-zero otherwise.
 644 *
 645 *	Use to setup files for a previously buffer-only channel.
 646 *	Useful to do early tracing in kernel, before VFS is up, for example.
 
 
 
 
 647 */
 648int relay_late_setup_files(struct rchan *chan,
 649			   const char *base_filename,
 650			   struct dentry *parent)
 651{
 652	int err = 0;
 653	unsigned int i, curr_cpu;
 654	unsigned long flags;
 655	struct dentry *dentry;
 
 656	struct rchan_percpu_buf_dispatcher disp;
 657
 658	if (!chan || !base_filename)
 659		return -EINVAL;
 660
 661	strlcpy(chan->base_filename, base_filename, NAME_MAX);
 662
 663	mutex_lock(&relay_channels_mutex);
 664	/* Is chan already set up? */
 665	if (unlikely(chan->has_base_filename)) {
 666		mutex_unlock(&relay_channels_mutex);
 667		return -EEXIST;
 668	}
 669	chan->has_base_filename = 1;
 670	chan->parent = parent;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671	curr_cpu = get_cpu();
 672	/*
 673	 * The CPU hotplug notifier ran before us and created buffers with
 674	 * no files associated. So it's safe to call relay_setup_buf_file()
 675	 * on all currently online CPUs.
 676	 */
 677	for_each_online_cpu(i) {
 678		if (unlikely(!chan->buf[i])) {
 
 679			WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
 680			err = -EINVAL;
 681			break;
 682		}
 683
 684		dentry = relay_create_buf_file(chan, chan->buf[i], i);
 685		if (unlikely(!dentry)) {
 686			err = -EINVAL;
 687			break;
 688		}
 689
 690		if (curr_cpu == i) {
 691			local_irq_save(flags);
 692			relay_set_buf_dentry(chan->buf[i], dentry);
 693			local_irq_restore(flags);
 694		} else {
 695			disp.buf = chan->buf[i];
 696			disp.dentry = dentry;
 697			smp_mb();
 698			/* relay_channels_mutex must be held, so wait. */
 699			err = smp_call_function_single(i,
 700						       __relay_set_buf_dentry,
 701						       &disp, 1);
 702		}
 703		if (unlikely(err))
 704			break;
 705	}
 706	put_cpu();
 707	mutex_unlock(&relay_channels_mutex);
 708
 709	return err;
 710}
 
 711
 712/**
 713 *	relay_switch_subbuf - switch to a new sub-buffer
 714 *	@buf: channel buffer
 715 *	@length: size of current event
 716 *
 717 *	Returns either the length passed in or 0 if full.
 718 *
 719 *	Performs sub-buffer-switch tasks such as invoking callbacks,
 720 *	updating padding counts, waking up readers, etc.
 721 */
 722size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
 723{
 724	void *old, *new;
 725	size_t old_subbuf, new_subbuf;
 726
 727	if (unlikely(length > buf->chan->subbuf_size))
 728		goto toobig;
 729
 730	if (buf->offset != buf->chan->subbuf_size + 1) {
 731		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
 732		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
 733		buf->padding[old_subbuf] = buf->prev_padding;
 734		buf->subbufs_produced++;
 735		if (buf->dentry)
 736			buf->dentry->d_inode->i_size +=
 737				buf->chan->subbuf_size -
 738				buf->padding[old_subbuf];
 739		else
 740			buf->early_bytes += buf->chan->subbuf_size -
 741					    buf->padding[old_subbuf];
 742		smp_mb();
 743		if (waitqueue_active(&buf->read_wait))
 744			/*
 745			 * Calling wake_up_interruptible() from here
 746			 * will deadlock if we happen to be logging
 747			 * from the scheduler (trying to re-grab
 748			 * rq->lock), so defer it.
 749			 */
 750			mod_timer(&buf->timer, jiffies + 1);
 
 751	}
 752
 753	old = buf->data;
 754	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
 755	new = buf->start + new_subbuf * buf->chan->subbuf_size;
 756	buf->offset = 0;
 757	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
 758		buf->offset = buf->chan->subbuf_size + 1;
 759		return 0;
 760	}
 761	buf->data = new;
 762	buf->padding[new_subbuf] = 0;
 763
 764	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
 765		goto toobig;
 766
 767	return length;
 768
 769toobig:
 770	buf->chan->last_toobig = length;
 771	return 0;
 772}
 773EXPORT_SYMBOL_GPL(relay_switch_subbuf);
 774
 775/**
 776 *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
 777 *	@chan: the channel
 778 *	@cpu: the cpu associated with the channel buffer to update
 779 *	@subbufs_consumed: number of sub-buffers to add to current buf's count
 780 *
 781 *	Adds to the channel buffer's consumed sub-buffer count.
 782 *	subbufs_consumed should be the number of sub-buffers newly consumed,
 783 *	not the total consumed.
 784 *
 785 *	NOTE. Kernel clients don't need to call this function if the channel
 786 *	mode is 'overwrite'.
 787 */
 788void relay_subbufs_consumed(struct rchan *chan,
 789			    unsigned int cpu,
 790			    size_t subbufs_consumed)
 791{
 792	struct rchan_buf *buf;
 793
 794	if (!chan)
 795		return;
 796
 797	if (cpu >= NR_CPUS || !chan->buf[cpu] ||
 798					subbufs_consumed > chan->n_subbufs)
 799		return;
 800
 801	buf = chan->buf[cpu];
 802	if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
 803		buf->subbufs_consumed = buf->subbufs_produced;
 804	else
 805		buf->subbufs_consumed += subbufs_consumed;
 806}
 807EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
 808
 809/**
 810 *	relay_close - close the channel
 811 *	@chan: the channel
 812 *
 813 *	Closes all channel buffers and frees the channel.
 814 */
 815void relay_close(struct rchan *chan)
 816{
 
 817	unsigned int i;
 818
 819	if (!chan)
 820		return;
 821
 822	mutex_lock(&relay_channels_mutex);
 823	if (chan->is_global && chan->buf[0])
 824		relay_close_buf(chan->buf[0]);
 825	else
 826		for_each_possible_cpu(i)
 827			if (chan->buf[i])
 828				relay_close_buf(chan->buf[i]);
 829
 830	if (chan->last_toobig)
 831		printk(KERN_WARNING "relay: one or more items not logged "
 832		       "[item size (%Zd) > sub-buffer size (%Zd)]\n",
 833		       chan->last_toobig, chan->subbuf_size);
 834
 835	list_del(&chan->list);
 836	kref_put(&chan->kref, relay_destroy_channel);
 837	mutex_unlock(&relay_channels_mutex);
 838}
 839EXPORT_SYMBOL_GPL(relay_close);
 840
 841/**
 842 *	relay_flush - close the channel
 843 *	@chan: the channel
 844 *
 845 *	Flushes all channel buffers, i.e. forces buffer switch.
 846 */
 847void relay_flush(struct rchan *chan)
 848{
 
 849	unsigned int i;
 850
 851	if (!chan)
 852		return;
 853
 854	if (chan->is_global && chan->buf[0]) {
 855		relay_switch_subbuf(chan->buf[0], 0);
 856		return;
 857	}
 858
 859	mutex_lock(&relay_channels_mutex);
 860	for_each_possible_cpu(i)
 861		if (chan->buf[i])
 862			relay_switch_subbuf(chan->buf[i], 0);
 863	mutex_unlock(&relay_channels_mutex);
 864}
 865EXPORT_SYMBOL_GPL(relay_flush);
 866
 867/**
 868 *	relay_file_open - open file op for relay files
 869 *	@inode: the inode
 870 *	@filp: the file
 871 *
 872 *	Increments the channel buffer refcount.
 873 */
 874static int relay_file_open(struct inode *inode, struct file *filp)
 875{
 876	struct rchan_buf *buf = inode->i_private;
 877	kref_get(&buf->kref);
 878	filp->private_data = buf;
 879
 880	return nonseekable_open(inode, filp);
 881}
 882
 883/**
 884 *	relay_file_mmap - mmap file op for relay files
 885 *	@filp: the file
 886 *	@vma: the vma describing what to map
 887 *
 888 *	Calls upon relay_mmap_buf() to map the file into user space.
 889 */
 890static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
 891{
 892	struct rchan_buf *buf = filp->private_data;
 893	return relay_mmap_buf(buf, vma);
 894}
 895
 896/**
 897 *	relay_file_poll - poll file op for relay files
 898 *	@filp: the file
 899 *	@wait: poll table
 900 *
 901 *	Poll implemention.
 902 */
 903static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
 904{
 905	unsigned int mask = 0;
 906	struct rchan_buf *buf = filp->private_data;
 907
 908	if (buf->finalized)
 909		return POLLERR;
 910
 911	if (filp->f_mode & FMODE_READ) {
 912		poll_wait(filp, &buf->read_wait, wait);
 913		if (!relay_buf_empty(buf))
 914			mask |= POLLIN | POLLRDNORM;
 915	}
 916
 917	return mask;
 918}
 919
 920/**
 921 *	relay_file_release - release file op for relay files
 922 *	@inode: the inode
 923 *	@filp: the file
 924 *
 925 *	Decrements the channel refcount, as the filesystem is
 926 *	no longer using it.
 927 */
 928static int relay_file_release(struct inode *inode, struct file *filp)
 929{
 930	struct rchan_buf *buf = filp->private_data;
 931	kref_put(&buf->kref, relay_remove_buf);
 932
 933	return 0;
 934}
 935
 936/*
 937 *	relay_file_read_consume - update the consumed count for the buffer
 938 */
 939static void relay_file_read_consume(struct rchan_buf *buf,
 940				    size_t read_pos,
 941				    size_t bytes_consumed)
 942{
 943	size_t subbuf_size = buf->chan->subbuf_size;
 944	size_t n_subbufs = buf->chan->n_subbufs;
 945	size_t read_subbuf;
 946
 947	if (buf->subbufs_produced == buf->subbufs_consumed &&
 948	    buf->offset == buf->bytes_consumed)
 949		return;
 950
 951	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
 952		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
 953		buf->bytes_consumed = 0;
 954	}
 955
 956	buf->bytes_consumed += bytes_consumed;
 957	if (!read_pos)
 958		read_subbuf = buf->subbufs_consumed % n_subbufs;
 959	else
 960		read_subbuf = read_pos / buf->chan->subbuf_size;
 961	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
 962		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
 963		    (buf->offset == subbuf_size))
 964			return;
 965		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
 966		buf->bytes_consumed = 0;
 967	}
 968}
 969
 970/*
 971 *	relay_file_read_avail - boolean, are there unconsumed bytes available?
 972 */
 973static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
 974{
 975	size_t subbuf_size = buf->chan->subbuf_size;
 976	size_t n_subbufs = buf->chan->n_subbufs;
 977	size_t produced = buf->subbufs_produced;
 978	size_t consumed = buf->subbufs_consumed;
 979
 980	relay_file_read_consume(buf, read_pos, 0);
 981
 982	consumed = buf->subbufs_consumed;
 983
 984	if (unlikely(buf->offset > subbuf_size)) {
 985		if (produced == consumed)
 986			return 0;
 987		return 1;
 988	}
 989
 990	if (unlikely(produced - consumed >= n_subbufs)) {
 991		consumed = produced - n_subbufs + 1;
 992		buf->subbufs_consumed = consumed;
 993		buf->bytes_consumed = 0;
 994	}
 995
 996	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
 997	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
 998
 999	if (consumed > produced)
1000		produced += n_subbufs * subbuf_size;
1001
1002	if (consumed == produced) {
1003		if (buf->offset == subbuf_size &&
1004		    buf->subbufs_produced > buf->subbufs_consumed)
1005			return 1;
1006		return 0;
1007	}
1008
1009	return 1;
1010}
1011
1012/**
1013 *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
1014 *	@read_pos: file read position
1015 *	@buf: relay channel buffer
1016 */
1017static size_t relay_file_read_subbuf_avail(size_t read_pos,
1018					   struct rchan_buf *buf)
1019{
1020	size_t padding, avail = 0;
1021	size_t read_subbuf, read_offset, write_subbuf, write_offset;
1022	size_t subbuf_size = buf->chan->subbuf_size;
1023
1024	write_subbuf = (buf->data - buf->start) / subbuf_size;
1025	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1026	read_subbuf = read_pos / subbuf_size;
1027	read_offset = read_pos % subbuf_size;
1028	padding = buf->padding[read_subbuf];
1029
1030	if (read_subbuf == write_subbuf) {
1031		if (read_offset + padding < write_offset)
1032			avail = write_offset - (read_offset + padding);
1033	} else
1034		avail = (subbuf_size - padding) - read_offset;
1035
1036	return avail;
1037}
1038
1039/**
1040 *	relay_file_read_start_pos - find the first available byte to read
1041 *	@read_pos: file read position
1042 *	@buf: relay channel buffer
1043 *
1044 *	If the @read_pos is in the middle of padding, return the
1045 *	position of the first actually available byte, otherwise
1046 *	return the original value.
1047 */
1048static size_t relay_file_read_start_pos(size_t read_pos,
1049					struct rchan_buf *buf)
1050{
1051	size_t read_subbuf, padding, padding_start, padding_end;
1052	size_t subbuf_size = buf->chan->subbuf_size;
1053	size_t n_subbufs = buf->chan->n_subbufs;
1054	size_t consumed = buf->subbufs_consumed % n_subbufs;
1055
1056	if (!read_pos)
1057		read_pos = consumed * subbuf_size + buf->bytes_consumed;
1058	read_subbuf = read_pos / subbuf_size;
1059	padding = buf->padding[read_subbuf];
1060	padding_start = (read_subbuf + 1) * subbuf_size - padding;
1061	padding_end = (read_subbuf + 1) * subbuf_size;
1062	if (read_pos >= padding_start && read_pos < padding_end) {
1063		read_subbuf = (read_subbuf + 1) % n_subbufs;
1064		read_pos = read_subbuf * subbuf_size;
1065	}
1066
1067	return read_pos;
1068}
1069
1070/**
1071 *	relay_file_read_end_pos - return the new read position
1072 *	@read_pos: file read position
1073 *	@buf: relay channel buffer
1074 *	@count: number of bytes to be read
1075 */
1076static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1077				      size_t read_pos,
1078				      size_t count)
1079{
1080	size_t read_subbuf, padding, end_pos;
1081	size_t subbuf_size = buf->chan->subbuf_size;
1082	size_t n_subbufs = buf->chan->n_subbufs;
1083
1084	read_subbuf = read_pos / subbuf_size;
1085	padding = buf->padding[read_subbuf];
1086	if (read_pos % subbuf_size + count + padding == subbuf_size)
1087		end_pos = (read_subbuf + 1) * subbuf_size;
1088	else
1089		end_pos = read_pos + count;
1090	if (end_pos >= subbuf_size * n_subbufs)
1091		end_pos = 0;
1092
1093	return end_pos;
1094}
1095
1096/*
1097 *	subbuf_read_actor - read up to one subbuf's worth of data
1098 */
1099static int subbuf_read_actor(size_t read_start,
1100			     struct rchan_buf *buf,
1101			     size_t avail,
1102			     read_descriptor_t *desc,
1103			     read_actor_t actor)
1104{
1105	void *from;
1106	int ret = 0;
1107
1108	from = buf->start + read_start;
1109	ret = avail;
1110	if (copy_to_user(desc->arg.buf, from, avail)) {
1111		desc->error = -EFAULT;
1112		ret = 0;
1113	}
1114	desc->arg.data += ret;
1115	desc->written += ret;
1116	desc->count -= ret;
1117
1118	return ret;
1119}
1120
1121typedef int (*subbuf_actor_t) (size_t read_start,
1122			       struct rchan_buf *buf,
1123			       size_t avail,
1124			       read_descriptor_t *desc,
1125			       read_actor_t actor);
1126
1127/*
1128 *	relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1129 */
1130static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1131					subbuf_actor_t subbuf_actor,
1132					read_actor_t actor,
1133					read_descriptor_t *desc)
1134{
1135	struct rchan_buf *buf = filp->private_data;
1136	size_t read_start, avail;
 
1137	int ret;
1138
1139	if (!desc->count)
1140		return 0;
1141
1142	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
1143	do {
 
 
1144		if (!relay_file_read_avail(buf, *ppos))
1145			break;
1146
1147		read_start = relay_file_read_start_pos(*ppos, buf);
1148		avail = relay_file_read_subbuf_avail(read_start, buf);
1149		if (!avail)
1150			break;
1151
1152		avail = min(desc->count, avail);
1153		ret = subbuf_actor(read_start, buf, avail, desc, actor);
1154		if (desc->error < 0)
 
1155			break;
1156
1157		if (ret) {
1158			relay_file_read_consume(buf, read_start, ret);
1159			*ppos = relay_file_read_end_pos(buf, read_start, ret);
1160		}
1161	} while (desc->count && ret);
1162	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1163
1164	return desc->written;
1165}
1166
1167static ssize_t relay_file_read(struct file *filp,
1168			       char __user *buffer,
1169			       size_t count,
1170			       loff_t *ppos)
1171{
1172	read_descriptor_t desc;
1173	desc.written = 0;
1174	desc.count = count;
1175	desc.arg.buf = buffer;
1176	desc.error = 0;
1177	return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1178				       NULL, &desc);
1179}
1180
1181static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1182{
1183	rbuf->bytes_consumed += bytes_consumed;
1184
1185	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1186		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1187		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1188	}
1189}
1190
1191static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1192				   struct pipe_buffer *buf)
1193{
1194	struct rchan_buf *rbuf;
1195
1196	rbuf = (struct rchan_buf *)page_private(buf->page);
1197	relay_consume_bytes(rbuf, buf->private);
1198}
1199
1200static const struct pipe_buf_operations relay_pipe_buf_ops = {
1201	.can_merge = 0,
1202	.map = generic_pipe_buf_map,
1203	.unmap = generic_pipe_buf_unmap,
1204	.confirm = generic_pipe_buf_confirm,
1205	.release = relay_pipe_buf_release,
1206	.steal = generic_pipe_buf_steal,
1207	.get = generic_pipe_buf_get,
1208};
1209
1210static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1211{
1212}
1213
1214/*
1215 *	subbuf_splice_actor - splice up to one subbuf's worth of data
1216 */
1217static ssize_t subbuf_splice_actor(struct file *in,
1218			       loff_t *ppos,
1219			       struct pipe_inode_info *pipe,
1220			       size_t len,
1221			       unsigned int flags,
1222			       int *nonpad_ret)
1223{
1224	unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1225	struct rchan_buf *rbuf = in->private_data;
1226	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1227	uint64_t pos = (uint64_t) *ppos;
1228	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1229	size_t read_start = (size_t) do_div(pos, alloc_size);
1230	size_t read_subbuf = read_start / subbuf_size;
1231	size_t padding = rbuf->padding[read_subbuf];
1232	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1233	struct page *pages[PIPE_DEF_BUFFERS];
1234	struct partial_page partial[PIPE_DEF_BUFFERS];
1235	struct splice_pipe_desc spd = {
1236		.pages = pages,
1237		.nr_pages = 0,
1238		.nr_pages_max = PIPE_DEF_BUFFERS,
1239		.partial = partial,
1240		.flags = flags,
1241		.ops = &relay_pipe_buf_ops,
1242		.spd_release = relay_page_release,
1243	};
1244	ssize_t ret;
1245
1246	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1247		return 0;
1248	if (splice_grow_spd(pipe, &spd))
1249		return -ENOMEM;
1250
1251	/*
1252	 * Adjust read len, if longer than what is available
1253	 */
1254	if (len > (subbuf_size - read_start % subbuf_size))
1255		len = subbuf_size - read_start % subbuf_size;
1256
1257	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1258	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1259	poff = read_start & ~PAGE_MASK;
1260	nr_pages = min_t(unsigned int, subbuf_pages, pipe->buffers);
1261
1262	for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1263		unsigned int this_len, this_end, private;
1264		unsigned int cur_pos = read_start + total_len;
1265
1266		if (!len)
1267			break;
1268
1269		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1270		private = this_len;
1271
1272		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1273		spd.partial[spd.nr_pages].offset = poff;
1274
1275		this_end = cur_pos + this_len;
1276		if (this_end >= nonpad_end) {
1277			this_len = nonpad_end - cur_pos;
1278			private = this_len + padding;
1279		}
1280		spd.partial[spd.nr_pages].len = this_len;
1281		spd.partial[spd.nr_pages].private = private;
1282
1283		len -= this_len;
1284		total_len += this_len;
1285		poff = 0;
1286		pidx = (pidx + 1) % subbuf_pages;
1287
1288		if (this_end >= nonpad_end) {
1289			spd.nr_pages++;
1290			break;
1291		}
1292	}
1293
1294	ret = 0;
1295	if (!spd.nr_pages)
1296		goto out;
1297
1298	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1299	if (ret < 0 || ret < total_len)
1300		goto out;
1301
1302        if (read_start + ret == nonpad_end)
1303                ret += padding;
1304
1305out:
1306	splice_shrink_spd(&spd);
1307	return ret;
1308}
1309
1310static ssize_t relay_file_splice_read(struct file *in,
1311				      loff_t *ppos,
1312				      struct pipe_inode_info *pipe,
1313				      size_t len,
1314				      unsigned int flags)
1315{
1316	ssize_t spliced;
1317	int ret;
1318	int nonpad_ret = 0;
1319
1320	ret = 0;
1321	spliced = 0;
1322
1323	while (len && !spliced) {
1324		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1325		if (ret < 0)
1326			break;
1327		else if (!ret) {
1328			if (flags & SPLICE_F_NONBLOCK)
1329				ret = -EAGAIN;
1330			break;
1331		}
1332
1333		*ppos += ret;
1334		if (ret > len)
1335			len = 0;
1336		else
1337			len -= ret;
1338		spliced += nonpad_ret;
1339		nonpad_ret = 0;
1340	}
1341
1342	if (spliced)
1343		return spliced;
1344
1345	return ret;
1346}
1347
1348const struct file_operations relay_file_operations = {
1349	.open		= relay_file_open,
1350	.poll		= relay_file_poll,
1351	.mmap		= relay_file_mmap,
1352	.read		= relay_file_read,
1353	.llseek		= no_llseek,
1354	.release	= relay_file_release,
1355	.splice_read	= relay_file_splice_read,
1356};
1357EXPORT_SYMBOL_GPL(relay_file_operations);
1358
1359static __init int relay_init(void)
1360{
1361
1362	hotcpu_notifier(relay_hotcpu_callback, 0);
1363	return 0;
1364}
1365
1366early_initcall(relay_init);