Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * super.c - NILFS module and super block management.
   4 *
   5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   6 *
   7 * Written by Ryusuke Konishi.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   8 */
   9/*
  10 *  linux/fs/ext2/super.c
  11 *
  12 * Copyright (C) 1992, 1993, 1994, 1995
  13 * Remy Card (card@masi.ibp.fr)
  14 * Laboratoire MASI - Institut Blaise Pascal
  15 * Universite Pierre et Marie Curie (Paris VI)
  16 *
  17 *  from
  18 *
  19 *  linux/fs/minix/inode.c
  20 *
  21 *  Copyright (C) 1991, 1992  Linus Torvalds
  22 *
  23 *  Big-endian to little-endian byte-swapping/bitmaps by
  24 *        David S. Miller (davem@caip.rutgers.edu), 1995
  25 */
  26
  27#include <linux/module.h>
  28#include <linux/string.h>
  29#include <linux/slab.h>
  30#include <linux/init.h>
  31#include <linux/blkdev.h>
  32#include <linux/parser.h>
  33#include <linux/crc32.h>
  34#include <linux/vfs.h>
  35#include <linux/writeback.h>
  36#include <linux/seq_file.h>
  37#include <linux/mount.h>
  38#include "nilfs.h"
  39#include "export.h"
  40#include "mdt.h"
  41#include "alloc.h"
  42#include "btree.h"
  43#include "btnode.h"
  44#include "page.h"
  45#include "cpfile.h"
  46#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
  47#include "ifile.h"
  48#include "dat.h"
  49#include "segment.h"
  50#include "segbuf.h"
  51
  52MODULE_AUTHOR("NTT Corp.");
  53MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  54		   "(NILFS)");
  55MODULE_LICENSE("GPL");
  56
  57static struct kmem_cache *nilfs_inode_cachep;
  58struct kmem_cache *nilfs_transaction_cachep;
  59struct kmem_cache *nilfs_segbuf_cachep;
  60struct kmem_cache *nilfs_btree_path_cache;
  61
  62static int nilfs_setup_super(struct super_block *sb, int is_mount);
  63static int nilfs_remount(struct super_block *sb, int *flags, char *data);
  64
  65void __nilfs_msg(struct super_block *sb, const char *level, const char *fmt,
  66		 ...)
  67{
  68	struct va_format vaf;
  69	va_list args;
  70
  71	va_start(args, fmt);
  72	vaf.fmt = fmt;
  73	vaf.va = &args;
  74	if (sb)
  75		printk("%sNILFS (%s): %pV\n", level, sb->s_id, &vaf);
  76	else
  77		printk("%sNILFS: %pV\n", level, &vaf);
  78	va_end(args);
  79}
  80
  81static void nilfs_set_error(struct super_block *sb)
  82{
  83	struct the_nilfs *nilfs = sb->s_fs_info;
  84	struct nilfs_super_block **sbp;
  85
  86	down_write(&nilfs->ns_sem);
  87	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  88		nilfs->ns_mount_state |= NILFS_ERROR_FS;
  89		sbp = nilfs_prepare_super(sb, 0);
  90		if (likely(sbp)) {
  91			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  92			if (sbp[1])
  93				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  94			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
  95		}
  96	}
  97	up_write(&nilfs->ns_sem);
  98}
  99
 100/**
 101 * __nilfs_error() - report failure condition on a filesystem
 102 *
 103 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
 104 * reporting an error message.  This function should be called when
 105 * NILFS detects incoherences or defects of meta data on disk.
 106 *
 107 * This implements the body of nilfs_error() macro.  Normally,
 108 * nilfs_error() should be used.  As for sustainable errors such as a
 109 * single-shot I/O error, nilfs_msg() should be used instead.
 
 
 110 *
 111 * Callers should not add a trailing newline since this will do it.
 
 112 */
 113void __nilfs_error(struct super_block *sb, const char *function,
 114		   const char *fmt, ...)
 115{
 116	struct the_nilfs *nilfs = sb->s_fs_info;
 117	struct va_format vaf;
 118	va_list args;
 119
 120	va_start(args, fmt);
 121
 122	vaf.fmt = fmt;
 123	vaf.va = &args;
 124
 125	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
 126	       sb->s_id, function, &vaf);
 127
 128	va_end(args);
 129
 130	if (!sb_rdonly(sb)) {
 131		nilfs_set_error(sb);
 132
 133		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
 134			printk(KERN_CRIT "Remounting filesystem read-only\n");
 135			sb->s_flags |= SB_RDONLY;
 136		}
 137	}
 138
 139	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 140		panic("NILFS (device %s): panic forced after error\n",
 141		      sb->s_id);
 142}
 143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 144struct inode *nilfs_alloc_inode(struct super_block *sb)
 145{
 146	struct nilfs_inode_info *ii;
 147
 148	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
 149	if (!ii)
 150		return NULL;
 151	ii->i_bh = NULL;
 152	ii->i_state = 0;
 153	ii->i_cno = 0;
 154	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
 
 155	return &ii->vfs_inode;
 156}
 157
 158static void nilfs_free_inode(struct inode *inode)
 159{
 160	if (nilfs_is_metadata_file_inode(inode))
 161		nilfs_mdt_destroy(inode);
 162
 
 
 
 
 163	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
 164}
 165
 
 
 
 
 
 166static int nilfs_sync_super(struct super_block *sb, int flag)
 167{
 168	struct the_nilfs *nilfs = sb->s_fs_info;
 169	int err;
 170
 171 retry:
 172	set_buffer_dirty(nilfs->ns_sbh[0]);
 173	if (nilfs_test_opt(nilfs, BARRIER)) {
 174		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
 175					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
 176	} else {
 177		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
 178	}
 179
 180	if (unlikely(err)) {
 181		nilfs_msg(sb, KERN_ERR, "unable to write superblock: err=%d",
 182			  err);
 183		if (err == -EIO && nilfs->ns_sbh[1]) {
 184			/*
 185			 * sbp[0] points to newer log than sbp[1],
 186			 * so copy sbp[0] to sbp[1] to take over sbp[0].
 187			 */
 188			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
 189			       nilfs->ns_sbsize);
 190			nilfs_fall_back_super_block(nilfs);
 191			goto retry;
 192		}
 193	} else {
 194		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
 195
 196		nilfs->ns_sbwcount++;
 197
 198		/*
 199		 * The latest segment becomes trailable from the position
 200		 * written in superblock.
 201		 */
 202		clear_nilfs_discontinued(nilfs);
 203
 204		/* update GC protection for recent segments */
 205		if (nilfs->ns_sbh[1]) {
 206			if (flag == NILFS_SB_COMMIT_ALL) {
 207				set_buffer_dirty(nilfs->ns_sbh[1]);
 208				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
 209					goto out;
 210			}
 211			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
 212			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
 213				sbp = nilfs->ns_sbp[1];
 214		}
 215
 216		spin_lock(&nilfs->ns_last_segment_lock);
 217		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
 218		spin_unlock(&nilfs->ns_last_segment_lock);
 219	}
 220 out:
 221	return err;
 222}
 223
 224void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
 225			  struct the_nilfs *nilfs)
 226{
 227	sector_t nfreeblocks;
 228
 229	/* nilfs->ns_sem must be locked by the caller. */
 230	nilfs_count_free_blocks(nilfs, &nfreeblocks);
 231	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
 232
 233	spin_lock(&nilfs->ns_last_segment_lock);
 234	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
 235	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
 236	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
 237	spin_unlock(&nilfs->ns_last_segment_lock);
 238}
 239
 240struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
 241					       int flip)
 242{
 243	struct the_nilfs *nilfs = sb->s_fs_info;
 244	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 245
 246	/* nilfs->ns_sem must be locked by the caller. */
 247	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 248		if (sbp[1] &&
 249		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
 250			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
 251		} else {
 252			nilfs_msg(sb, KERN_CRIT, "superblock broke");
 
 253			return NULL;
 254		}
 255	} else if (sbp[1] &&
 256		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 257		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 258	}
 259
 260	if (flip && sbp[1])
 261		nilfs_swap_super_block(nilfs);
 262
 263	return sbp;
 264}
 265
 266int nilfs_commit_super(struct super_block *sb, int flag)
 267{
 268	struct the_nilfs *nilfs = sb->s_fs_info;
 269	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 270	time64_t t;
 271
 272	/* nilfs->ns_sem must be locked by the caller. */
 273	t = ktime_get_real_seconds();
 274	nilfs->ns_sbwtime = t;
 275	sbp[0]->s_wtime = cpu_to_le64(t);
 276	sbp[0]->s_sum = 0;
 277	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 278					     (unsigned char *)sbp[0],
 279					     nilfs->ns_sbsize));
 280	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
 281		sbp[1]->s_wtime = sbp[0]->s_wtime;
 282		sbp[1]->s_sum = 0;
 283		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 284					    (unsigned char *)sbp[1],
 285					    nilfs->ns_sbsize));
 286	}
 287	clear_nilfs_sb_dirty(nilfs);
 288	nilfs->ns_flushed_device = 1;
 289	/* make sure store to ns_flushed_device cannot be reordered */
 290	smp_wmb();
 291	return nilfs_sync_super(sb, flag);
 292}
 293
 294/**
 295 * nilfs_cleanup_super() - write filesystem state for cleanup
 296 * @sb: super block instance to be unmounted or degraded to read-only
 297 *
 298 * This function restores state flags in the on-disk super block.
 299 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
 300 * filesystem was not clean previously.
 301 */
 302int nilfs_cleanup_super(struct super_block *sb)
 303{
 304	struct the_nilfs *nilfs = sb->s_fs_info;
 305	struct nilfs_super_block **sbp;
 306	int flag = NILFS_SB_COMMIT;
 307	int ret = -EIO;
 308
 309	sbp = nilfs_prepare_super(sb, 0);
 310	if (sbp) {
 311		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
 312		nilfs_set_log_cursor(sbp[0], nilfs);
 313		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
 314			/*
 315			 * make the "clean" flag also to the opposite
 316			 * super block if both super blocks point to
 317			 * the same checkpoint.
 318			 */
 319			sbp[1]->s_state = sbp[0]->s_state;
 320			flag = NILFS_SB_COMMIT_ALL;
 321		}
 322		ret = nilfs_commit_super(sb, flag);
 323	}
 324	return ret;
 325}
 326
 327/**
 328 * nilfs_move_2nd_super - relocate secondary super block
 329 * @sb: super block instance
 330 * @sb2off: new offset of the secondary super block (in bytes)
 331 */
 332static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
 333{
 334	struct the_nilfs *nilfs = sb->s_fs_info;
 335	struct buffer_head *nsbh;
 336	struct nilfs_super_block *nsbp;
 337	sector_t blocknr, newblocknr;
 338	unsigned long offset;
 339	int sb2i;  /* array index of the secondary superblock */
 340	int ret = 0;
 341
 342	/* nilfs->ns_sem must be locked by the caller. */
 343	if (nilfs->ns_sbh[1] &&
 344	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
 345		sb2i = 1;
 346		blocknr = nilfs->ns_sbh[1]->b_blocknr;
 347	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
 348		sb2i = 0;
 349		blocknr = nilfs->ns_sbh[0]->b_blocknr;
 350	} else {
 351		sb2i = -1;
 352		blocknr = 0;
 353	}
 354	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
 355		goto out;  /* super block location is unchanged */
 356
 357	/* Get new super block buffer */
 358	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
 359	offset = sb2off & (nilfs->ns_blocksize - 1);
 360	nsbh = sb_getblk(sb, newblocknr);
 361	if (!nsbh) {
 362		nilfs_msg(sb, KERN_WARNING,
 363			  "unable to move secondary superblock to block %llu",
 364			  (unsigned long long)newblocknr);
 365		ret = -EIO;
 366		goto out;
 367	}
 368	nsbp = (void *)nsbh->b_data + offset;
 369	memset(nsbp, 0, nilfs->ns_blocksize);
 370
 371	if (sb2i >= 0) {
 372		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
 373		brelse(nilfs->ns_sbh[sb2i]);
 374		nilfs->ns_sbh[sb2i] = nsbh;
 375		nilfs->ns_sbp[sb2i] = nsbp;
 376	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
 377		/* secondary super block will be restored to index 1 */
 378		nilfs->ns_sbh[1] = nsbh;
 379		nilfs->ns_sbp[1] = nsbp;
 380	} else {
 381		brelse(nsbh);
 382	}
 383out:
 384	return ret;
 385}
 386
 387/**
 388 * nilfs_resize_fs - resize the filesystem
 389 * @sb: super block instance
 390 * @newsize: new size of the filesystem (in bytes)
 391 */
 392int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
 393{
 394	struct the_nilfs *nilfs = sb->s_fs_info;
 395	struct nilfs_super_block **sbp;
 396	__u64 devsize, newnsegs;
 397	loff_t sb2off;
 398	int ret;
 399
 400	ret = -ERANGE;
 401	devsize = i_size_read(sb->s_bdev->bd_inode);
 402	if (newsize > devsize)
 403		goto out;
 404
 405	/*
 406	 * Write lock is required to protect some functions depending
 407	 * on the number of segments, the number of reserved segments,
 408	 * and so forth.
 409	 */
 410	down_write(&nilfs->ns_segctor_sem);
 411
 412	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
 413	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
 414	do_div(newnsegs, nilfs->ns_blocks_per_segment);
 415
 416	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
 417	up_write(&nilfs->ns_segctor_sem);
 418	if (ret < 0)
 419		goto out;
 420
 421	ret = nilfs_construct_segment(sb);
 422	if (ret < 0)
 423		goto out;
 424
 425	down_write(&nilfs->ns_sem);
 426	nilfs_move_2nd_super(sb, sb2off);
 427	ret = -EIO;
 428	sbp = nilfs_prepare_super(sb, 0);
 429	if (likely(sbp)) {
 430		nilfs_set_log_cursor(sbp[0], nilfs);
 431		/*
 432		 * Drop NILFS_RESIZE_FS flag for compatibility with
 433		 * mount-time resize which may be implemented in a
 434		 * future release.
 435		 */
 436		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
 437					      ~NILFS_RESIZE_FS);
 438		sbp[0]->s_dev_size = cpu_to_le64(newsize);
 439		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
 440		if (sbp[1])
 441			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 442		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 443	}
 444	up_write(&nilfs->ns_sem);
 445
 446	/*
 447	 * Reset the range of allocatable segments last.  This order
 448	 * is important in the case of expansion because the secondary
 449	 * superblock must be protected from log write until migration
 450	 * completes.
 451	 */
 452	if (!ret)
 453		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
 454out:
 455	return ret;
 456}
 457
 458static void nilfs_put_super(struct super_block *sb)
 459{
 460	struct the_nilfs *nilfs = sb->s_fs_info;
 461
 462	nilfs_detach_log_writer(sb);
 463
 464	if (!sb_rdonly(sb)) {
 465		down_write(&nilfs->ns_sem);
 466		nilfs_cleanup_super(sb);
 467		up_write(&nilfs->ns_sem);
 468	}
 469
 470	iput(nilfs->ns_sufile);
 471	iput(nilfs->ns_cpfile);
 472	iput(nilfs->ns_dat);
 473
 474	destroy_nilfs(nilfs);
 475	sb->s_fs_info = NULL;
 476}
 477
 478static int nilfs_sync_fs(struct super_block *sb, int wait)
 479{
 480	struct the_nilfs *nilfs = sb->s_fs_info;
 481	struct nilfs_super_block **sbp;
 482	int err = 0;
 483
 484	/* This function is called when super block should be written back */
 485	if (wait)
 486		err = nilfs_construct_segment(sb);
 487
 488	down_write(&nilfs->ns_sem);
 489	if (nilfs_sb_dirty(nilfs)) {
 490		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
 491		if (likely(sbp)) {
 492			nilfs_set_log_cursor(sbp[0], nilfs);
 493			nilfs_commit_super(sb, NILFS_SB_COMMIT);
 494		}
 495	}
 496	up_write(&nilfs->ns_sem);
 497
 498	if (!err)
 499		err = nilfs_flush_device(nilfs);
 500
 501	return err;
 502}
 503
 504int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
 505			    struct nilfs_root **rootp)
 506{
 507	struct the_nilfs *nilfs = sb->s_fs_info;
 508	struct nilfs_root *root;
 509	struct nilfs_checkpoint *raw_cp;
 510	struct buffer_head *bh_cp;
 511	int err = -ENOMEM;
 512
 513	root = nilfs_find_or_create_root(
 514		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
 515	if (!root)
 516		return err;
 517
 518	if (root->ifile)
 519		goto reuse; /* already attached checkpoint */
 520
 521	down_read(&nilfs->ns_segctor_sem);
 522	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
 523					  &bh_cp);
 524	up_read(&nilfs->ns_segctor_sem);
 525	if (unlikely(err)) {
 526		if (err == -ENOENT || err == -EINVAL) {
 527			nilfs_msg(sb, KERN_ERR,
 528				  "Invalid checkpoint (checkpoint number=%llu)",
 529				  (unsigned long long)cno);
 
 530			err = -EINVAL;
 531		}
 532		goto failed;
 533	}
 534
 535	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
 536			       &raw_cp->cp_ifile_inode, &root->ifile);
 537	if (err)
 538		goto failed_bh;
 539
 540	atomic64_set(&root->inodes_count,
 541			le64_to_cpu(raw_cp->cp_inodes_count));
 542	atomic64_set(&root->blocks_count,
 543			le64_to_cpu(raw_cp->cp_blocks_count));
 544
 545	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 546
 547 reuse:
 548	*rootp = root;
 549	return 0;
 550
 551 failed_bh:
 552	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 553 failed:
 554	nilfs_put_root(root);
 555
 556	return err;
 557}
 558
 559static int nilfs_freeze(struct super_block *sb)
 560{
 561	struct the_nilfs *nilfs = sb->s_fs_info;
 562	int err;
 563
 564	if (sb_rdonly(sb))
 565		return 0;
 566
 567	/* Mark super block clean */
 568	down_write(&nilfs->ns_sem);
 569	err = nilfs_cleanup_super(sb);
 570	up_write(&nilfs->ns_sem);
 571	return err;
 572}
 573
 574static int nilfs_unfreeze(struct super_block *sb)
 575{
 576	struct the_nilfs *nilfs = sb->s_fs_info;
 577
 578	if (sb_rdonly(sb))
 579		return 0;
 580
 581	down_write(&nilfs->ns_sem);
 582	nilfs_setup_super(sb, false);
 583	up_write(&nilfs->ns_sem);
 584	return 0;
 585}
 586
 587static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 588{
 589	struct super_block *sb = dentry->d_sb;
 590	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 591	struct the_nilfs *nilfs = root->nilfs;
 592	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 593	unsigned long long blocks;
 594	unsigned long overhead;
 595	unsigned long nrsvblocks;
 596	sector_t nfreeblocks;
 597	u64 nmaxinodes, nfreeinodes;
 598	int err;
 599
 600	/*
 601	 * Compute all of the segment blocks
 602	 *
 603	 * The blocks before first segment and after last segment
 604	 * are excluded.
 605	 */
 606	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
 607		- nilfs->ns_first_data_block;
 608	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
 609
 610	/*
 611	 * Compute the overhead
 612	 *
 613	 * When distributing meta data blocks outside segment structure,
 614	 * We must count them as the overhead.
 615	 */
 616	overhead = 0;
 617
 618	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
 619	if (unlikely(err))
 620		return err;
 621
 622	err = nilfs_ifile_count_free_inodes(root->ifile,
 623					    &nmaxinodes, &nfreeinodes);
 624	if (unlikely(err)) {
 625		nilfs_msg(sb, KERN_WARNING,
 626			  "failed to count free inodes: err=%d", err);
 627		if (err == -ERANGE) {
 628			/*
 629			 * If nilfs_palloc_count_max_entries() returns
 630			 * -ERANGE error code then we simply treat
 631			 * curent inodes count as maximum possible and
 632			 * zero as free inodes value.
 633			 */
 634			nmaxinodes = atomic64_read(&root->inodes_count);
 635			nfreeinodes = 0;
 636			err = 0;
 637		} else
 638			return err;
 639	}
 640
 641	buf->f_type = NILFS_SUPER_MAGIC;
 642	buf->f_bsize = sb->s_blocksize;
 643	buf->f_blocks = blocks - overhead;
 644	buf->f_bfree = nfreeblocks;
 645	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
 646		(buf->f_bfree - nrsvblocks) : 0;
 647	buf->f_files = nmaxinodes;
 648	buf->f_ffree = nfreeinodes;
 649	buf->f_namelen = NILFS_NAME_LEN;
 650	buf->f_fsid.val[0] = (u32)id;
 651	buf->f_fsid.val[1] = (u32)(id >> 32);
 652
 653	return 0;
 654}
 655
 656static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
 657{
 658	struct super_block *sb = dentry->d_sb;
 659	struct the_nilfs *nilfs = sb->s_fs_info;
 660	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 661
 662	if (!nilfs_test_opt(nilfs, BARRIER))
 663		seq_puts(seq, ",nobarrier");
 664	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
 665		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
 666	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 667		seq_puts(seq, ",errors=panic");
 668	if (nilfs_test_opt(nilfs, ERRORS_CONT))
 669		seq_puts(seq, ",errors=continue");
 670	if (nilfs_test_opt(nilfs, STRICT_ORDER))
 671		seq_puts(seq, ",order=strict");
 672	if (nilfs_test_opt(nilfs, NORECOVERY))
 673		seq_puts(seq, ",norecovery");
 674	if (nilfs_test_opt(nilfs, DISCARD))
 675		seq_puts(seq, ",discard");
 676
 677	return 0;
 678}
 679
 680static const struct super_operations nilfs_sops = {
 681	.alloc_inode    = nilfs_alloc_inode,
 682	.free_inode     = nilfs_free_inode,
 683	.dirty_inode    = nilfs_dirty_inode,
 
 
 
 684	.evict_inode    = nilfs_evict_inode,
 685	.put_super      = nilfs_put_super,
 
 686	.sync_fs        = nilfs_sync_fs,
 687	.freeze_fs	= nilfs_freeze,
 688	.unfreeze_fs	= nilfs_unfreeze,
 
 
 689	.statfs         = nilfs_statfs,
 690	.remount_fs     = nilfs_remount,
 
 691	.show_options = nilfs_show_options
 692};
 693
 694enum {
 695	Opt_err_cont, Opt_err_panic, Opt_err_ro,
 696	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
 697	Opt_discard, Opt_nodiscard, Opt_err,
 698};
 699
 700static match_table_t tokens = {
 701	{Opt_err_cont, "errors=continue"},
 702	{Opt_err_panic, "errors=panic"},
 703	{Opt_err_ro, "errors=remount-ro"},
 704	{Opt_barrier, "barrier"},
 705	{Opt_nobarrier, "nobarrier"},
 706	{Opt_snapshot, "cp=%u"},
 707	{Opt_order, "order=%s"},
 708	{Opt_norecovery, "norecovery"},
 709	{Opt_discard, "discard"},
 710	{Opt_nodiscard, "nodiscard"},
 711	{Opt_err, NULL}
 712};
 713
 714static int parse_options(char *options, struct super_block *sb, int is_remount)
 715{
 716	struct the_nilfs *nilfs = sb->s_fs_info;
 717	char *p;
 718	substring_t args[MAX_OPT_ARGS];
 719
 720	if (!options)
 721		return 1;
 722
 723	while ((p = strsep(&options, ",")) != NULL) {
 724		int token;
 725
 726		if (!*p)
 727			continue;
 728
 729		token = match_token(p, tokens, args);
 730		switch (token) {
 731		case Opt_barrier:
 732			nilfs_set_opt(nilfs, BARRIER);
 733			break;
 734		case Opt_nobarrier:
 735			nilfs_clear_opt(nilfs, BARRIER);
 736			break;
 737		case Opt_order:
 738			if (strcmp(args[0].from, "relaxed") == 0)
 739				/* Ordered data semantics */
 740				nilfs_clear_opt(nilfs, STRICT_ORDER);
 741			else if (strcmp(args[0].from, "strict") == 0)
 742				/* Strict in-order semantics */
 743				nilfs_set_opt(nilfs, STRICT_ORDER);
 744			else
 745				return 0;
 746			break;
 747		case Opt_err_panic:
 748			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
 749			break;
 750		case Opt_err_ro:
 751			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
 752			break;
 753		case Opt_err_cont:
 754			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
 755			break;
 756		case Opt_snapshot:
 757			if (is_remount) {
 758				nilfs_msg(sb, KERN_ERR,
 759					  "\"%s\" option is invalid for remount",
 760					  p);
 761				return 0;
 762			}
 763			break;
 764		case Opt_norecovery:
 765			nilfs_set_opt(nilfs, NORECOVERY);
 766			break;
 767		case Opt_discard:
 768			nilfs_set_opt(nilfs, DISCARD);
 769			break;
 770		case Opt_nodiscard:
 771			nilfs_clear_opt(nilfs, DISCARD);
 772			break;
 773		default:
 774			nilfs_msg(sb, KERN_ERR,
 775				  "unrecognized mount option \"%s\"", p);
 776			return 0;
 777		}
 778	}
 779	return 1;
 780}
 781
 782static inline void
 783nilfs_set_default_options(struct super_block *sb,
 784			  struct nilfs_super_block *sbp)
 785{
 786	struct the_nilfs *nilfs = sb->s_fs_info;
 787
 788	nilfs->ns_mount_opt =
 789		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
 790}
 791
 792static int nilfs_setup_super(struct super_block *sb, int is_mount)
 793{
 794	struct the_nilfs *nilfs = sb->s_fs_info;
 795	struct nilfs_super_block **sbp;
 796	int max_mnt_count;
 797	int mnt_count;
 798
 799	/* nilfs->ns_sem must be locked by the caller. */
 800	sbp = nilfs_prepare_super(sb, 0);
 801	if (!sbp)
 802		return -EIO;
 803
 804	if (!is_mount)
 805		goto skip_mount_setup;
 806
 807	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
 808	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
 809
 810	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
 811		nilfs_msg(sb, KERN_WARNING, "mounting fs with errors");
 
 812#if 0
 813	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
 814		nilfs_msg(sb, KERN_WARNING, "maximal mount count reached");
 
 815#endif
 816	}
 817	if (!max_mnt_count)
 818		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
 819
 820	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
 821	sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
 822
 823skip_mount_setup:
 824	sbp[0]->s_state =
 825		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
 826	/* synchronize sbp[1] with sbp[0] */
 827	if (sbp[1])
 828		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 829	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 830}
 831
 832struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
 833						 u64 pos, int blocksize,
 834						 struct buffer_head **pbh)
 835{
 836	unsigned long long sb_index = pos;
 837	unsigned long offset;
 838
 839	offset = do_div(sb_index, blocksize);
 840	*pbh = sb_bread(sb, sb_index);
 841	if (!*pbh)
 842		return NULL;
 843	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
 844}
 845
 846int nilfs_store_magic_and_option(struct super_block *sb,
 847				 struct nilfs_super_block *sbp,
 848				 char *data)
 849{
 850	struct the_nilfs *nilfs = sb->s_fs_info;
 851
 852	sb->s_magic = le16_to_cpu(sbp->s_magic);
 853
 854	/* FS independent flags */
 855#ifdef NILFS_ATIME_DISABLE
 856	sb->s_flags |= SB_NOATIME;
 857#endif
 858
 859	nilfs_set_default_options(sb, sbp);
 860
 861	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
 862	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
 863	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
 864	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
 865
 866	return !parse_options(data, sb, 0) ? -EINVAL : 0;
 867}
 868
 869int nilfs_check_feature_compatibility(struct super_block *sb,
 870				      struct nilfs_super_block *sbp)
 871{
 872	__u64 features;
 873
 874	features = le64_to_cpu(sbp->s_feature_incompat) &
 875		~NILFS_FEATURE_INCOMPAT_SUPP;
 876	if (features) {
 877		nilfs_msg(sb, KERN_ERR,
 878			  "couldn't mount because of unsupported optional features (%llx)",
 879			  (unsigned long long)features);
 880		return -EINVAL;
 881	}
 882	features = le64_to_cpu(sbp->s_feature_compat_ro) &
 883		~NILFS_FEATURE_COMPAT_RO_SUPP;
 884	if (!sb_rdonly(sb) && features) {
 885		nilfs_msg(sb, KERN_ERR,
 886			  "couldn't mount RDWR because of unsupported optional features (%llx)",
 887			  (unsigned long long)features);
 888		return -EINVAL;
 889	}
 890	return 0;
 891}
 892
 893static int nilfs_get_root_dentry(struct super_block *sb,
 894				 struct nilfs_root *root,
 895				 struct dentry **root_dentry)
 896{
 897	struct inode *inode;
 898	struct dentry *dentry;
 899	int ret = 0;
 900
 901	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
 902	if (IS_ERR(inode)) {
 
 903		ret = PTR_ERR(inode);
 904		nilfs_msg(sb, KERN_ERR, "error %d getting root inode", ret);
 905		goto out;
 906	}
 907	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
 908		iput(inode);
 909		nilfs_msg(sb, KERN_ERR, "corrupt root inode");
 910		ret = -EINVAL;
 911		goto out;
 912	}
 913
 914	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
 915		dentry = d_find_alias(inode);
 916		if (!dentry) {
 917			dentry = d_make_root(inode);
 918			if (!dentry) {
 919				ret = -ENOMEM;
 920				goto failed_dentry;
 921			}
 922		} else {
 923			iput(inode);
 924		}
 925	} else {
 926		dentry = d_obtain_root(inode);
 927		if (IS_ERR(dentry)) {
 928			ret = PTR_ERR(dentry);
 929			goto failed_dentry;
 930		}
 931	}
 932	*root_dentry = dentry;
 933 out:
 934	return ret;
 935
 936 failed_dentry:
 937	nilfs_msg(sb, KERN_ERR, "error %d getting root dentry", ret);
 938	goto out;
 939}
 940
 941static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
 942				 struct dentry **root_dentry)
 943{
 944	struct the_nilfs *nilfs = s->s_fs_info;
 945	struct nilfs_root *root;
 946	int ret;
 947
 948	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
 949
 950	down_read(&nilfs->ns_segctor_sem);
 951	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
 952	up_read(&nilfs->ns_segctor_sem);
 953	if (ret < 0) {
 954		ret = (ret == -ENOENT) ? -EINVAL : ret;
 955		goto out;
 956	} else if (!ret) {
 957		nilfs_msg(s, KERN_ERR,
 958			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
 959			  (unsigned long long)cno);
 960		ret = -EINVAL;
 961		goto out;
 962	}
 963
 964	ret = nilfs_attach_checkpoint(s, cno, false, &root);
 965	if (ret) {
 966		nilfs_msg(s, KERN_ERR,
 967			  "error %d while loading snapshot (checkpoint number=%llu)",
 968			  ret, (unsigned long long)cno);
 969		goto out;
 970	}
 971	ret = nilfs_get_root_dentry(s, root, root_dentry);
 972	nilfs_put_root(root);
 973 out:
 974	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
 975	return ret;
 976}
 977
 
 
 
 
 
 978/**
 979 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
 980 * @root_dentry: root dentry of the tree to be shrunk
 981 *
 982 * This function returns true if the tree was in-use.
 983 */
 984static bool nilfs_tree_is_busy(struct dentry *root_dentry)
 985{
 
 
 986	shrink_dcache_parent(root_dentry);
 987	return d_count(root_dentry) > 1;
 988}
 989
 990int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
 991{
 992	struct the_nilfs *nilfs = sb->s_fs_info;
 993	struct nilfs_root *root;
 994	struct inode *inode;
 995	struct dentry *dentry;
 996	int ret;
 997
 998	if (cno > nilfs->ns_cno)
 999		return false;
1000
1001	if (cno >= nilfs_last_cno(nilfs))
1002		return true;	/* protect recent checkpoints */
1003
1004	ret = false;
1005	root = nilfs_lookup_root(nilfs, cno);
1006	if (root) {
1007		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1008		if (inode) {
1009			dentry = d_find_alias(inode);
1010			if (dentry) {
1011				ret = nilfs_tree_is_busy(dentry);
 
1012				dput(dentry);
1013			}
1014			iput(inode);
1015		}
1016		nilfs_put_root(root);
1017	}
1018	return ret;
1019}
1020
1021/**
1022 * nilfs_fill_super() - initialize a super block instance
1023 * @sb: super_block
1024 * @data: mount options
1025 * @silent: silent mode flag
1026 *
1027 * This function is called exclusively by nilfs->ns_mount_mutex.
1028 * So, the recovery process is protected from other simultaneous mounts.
1029 */
1030static int
1031nilfs_fill_super(struct super_block *sb, void *data, int silent)
1032{
1033	struct the_nilfs *nilfs;
1034	struct nilfs_root *fsroot;
 
1035	__u64 cno;
1036	int err;
1037
1038	nilfs = alloc_nilfs(sb);
1039	if (!nilfs)
1040		return -ENOMEM;
1041
1042	sb->s_fs_info = nilfs;
1043
1044	err = init_nilfs(nilfs, sb, (char *)data);
1045	if (err)
1046		goto failed_nilfs;
1047
1048	sb->s_op = &nilfs_sops;
1049	sb->s_export_op = &nilfs_export_ops;
1050	sb->s_root = NULL;
1051	sb->s_time_gran = 1;
1052	sb->s_max_links = NILFS_LINK_MAX;
1053
1054	sb->s_bdi = bdi_get(sb->s_bdev->bd_bdi);
 
1055
1056	err = load_nilfs(nilfs, sb);
1057	if (err)
1058		goto failed_nilfs;
1059
1060	cno = nilfs_last_cno(nilfs);
1061	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1062	if (err) {
1063		nilfs_msg(sb, KERN_ERR,
1064			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1065			  err, (unsigned long long)cno);
1066		goto failed_unload;
1067	}
1068
1069	if (!sb_rdonly(sb)) {
1070		err = nilfs_attach_log_writer(sb, fsroot);
1071		if (err)
1072			goto failed_checkpoint;
1073	}
1074
1075	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1076	if (err)
1077		goto failed_segctor;
1078
1079	nilfs_put_root(fsroot);
1080
1081	if (!sb_rdonly(sb)) {
1082		down_write(&nilfs->ns_sem);
1083		nilfs_setup_super(sb, true);
1084		up_write(&nilfs->ns_sem);
1085	}
1086
1087	return 0;
1088
1089 failed_segctor:
1090	nilfs_detach_log_writer(sb);
1091
1092 failed_checkpoint:
1093	nilfs_put_root(fsroot);
1094
1095 failed_unload:
1096	iput(nilfs->ns_sufile);
1097	iput(nilfs->ns_cpfile);
1098	iput(nilfs->ns_dat);
1099
1100 failed_nilfs:
1101	destroy_nilfs(nilfs);
1102	return err;
1103}
1104
1105static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1106{
1107	struct the_nilfs *nilfs = sb->s_fs_info;
1108	unsigned long old_sb_flags;
1109	unsigned long old_mount_opt;
1110	int err;
1111
1112	sync_filesystem(sb);
1113	old_sb_flags = sb->s_flags;
1114	old_mount_opt = nilfs->ns_mount_opt;
1115
1116	if (!parse_options(data, sb, 1)) {
1117		err = -EINVAL;
1118		goto restore_opts;
1119	}
1120	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1121
1122	err = -EINVAL;
1123
1124	if (!nilfs_valid_fs(nilfs)) {
1125		nilfs_msg(sb, KERN_WARNING,
1126			  "couldn't remount because the filesystem is in an incomplete recovery state");
 
1127		goto restore_opts;
1128	}
1129
1130	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1131		goto out;
1132	if (*flags & SB_RDONLY) {
1133		/* Shutting down log writer */
1134		nilfs_detach_log_writer(sb);
1135		sb->s_flags |= SB_RDONLY;
1136
1137		/*
1138		 * Remounting a valid RW partition RDONLY, so set
1139		 * the RDONLY flag and then mark the partition as valid again.
1140		 */
1141		down_write(&nilfs->ns_sem);
1142		nilfs_cleanup_super(sb);
1143		up_write(&nilfs->ns_sem);
1144	} else {
1145		__u64 features;
1146		struct nilfs_root *root;
1147
1148		/*
1149		 * Mounting a RDONLY partition read-write, so reread and
1150		 * store the current valid flag.  (It may have been changed
1151		 * by fsck since we originally mounted the partition.)
1152		 */
1153		down_read(&nilfs->ns_sem);
1154		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1155			~NILFS_FEATURE_COMPAT_RO_SUPP;
1156		up_read(&nilfs->ns_sem);
1157		if (features) {
1158			nilfs_msg(sb, KERN_WARNING,
1159				  "couldn't remount RDWR because of unsupported optional features (%llx)",
1160				  (unsigned long long)features);
 
1161			err = -EROFS;
1162			goto restore_opts;
1163		}
1164
1165		sb->s_flags &= ~SB_RDONLY;
1166
1167		root = NILFS_I(d_inode(sb->s_root))->i_root;
1168		err = nilfs_attach_log_writer(sb, root);
1169		if (err)
1170			goto restore_opts;
1171
1172		down_write(&nilfs->ns_sem);
1173		nilfs_setup_super(sb, true);
1174		up_write(&nilfs->ns_sem);
1175	}
1176 out:
1177	return 0;
1178
1179 restore_opts:
1180	sb->s_flags = old_sb_flags;
1181	nilfs->ns_mount_opt = old_mount_opt;
1182	return err;
1183}
1184
1185struct nilfs_super_data {
1186	struct block_device *bdev;
1187	__u64 cno;
1188	int flags;
1189};
1190
1191static int nilfs_parse_snapshot_option(const char *option,
1192				       const substring_t *arg,
1193				       struct nilfs_super_data *sd)
1194{
1195	unsigned long long val;
1196	const char *msg = NULL;
1197	int err;
1198
1199	if (!(sd->flags & SB_RDONLY)) {
1200		msg = "read-only option is not specified";
1201		goto parse_error;
1202	}
1203
1204	err = kstrtoull(arg->from, 0, &val);
1205	if (err) {
1206		if (err == -ERANGE)
1207			msg = "too large checkpoint number";
1208		else
1209			msg = "malformed argument";
1210		goto parse_error;
1211	} else if (val == 0) {
1212		msg = "invalid checkpoint number 0";
1213		goto parse_error;
1214	}
1215	sd->cno = val;
1216	return 0;
1217
1218parse_error:
1219	nilfs_msg(NULL, KERN_ERR, "invalid option \"%s\": %s", option, msg);
1220	return 1;
1221}
1222
1223/**
1224 * nilfs_identify - pre-read mount options needed to identify mount instance
1225 * @data: mount options
1226 * @sd: nilfs_super_data
1227 */
1228static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1229{
1230	char *p, *options = data;
1231	substring_t args[MAX_OPT_ARGS];
1232	int token;
1233	int ret = 0;
1234
1235	do {
1236		p = strsep(&options, ",");
1237		if (p != NULL && *p) {
1238			token = match_token(p, tokens, args);
1239			if (token == Opt_snapshot)
1240				ret = nilfs_parse_snapshot_option(p, &args[0],
1241								  sd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1242		}
1243		if (!options)
1244			break;
1245		BUG_ON(options == data);
1246		*(options - 1) = ',';
1247	} while (!ret);
1248	return ret;
1249}
1250
1251static int nilfs_set_bdev_super(struct super_block *s, void *data)
1252{
1253	s->s_bdev = data;
1254	s->s_dev = s->s_bdev->bd_dev;
1255	return 0;
1256}
1257
1258static int nilfs_test_bdev_super(struct super_block *s, void *data)
1259{
1260	return (void *)s->s_bdev == data;
1261}
1262
1263static struct dentry *
1264nilfs_mount(struct file_system_type *fs_type, int flags,
1265	     const char *dev_name, void *data)
1266{
1267	struct nilfs_super_data sd;
1268	struct super_block *s;
1269	fmode_t mode = FMODE_READ | FMODE_EXCL;
1270	struct dentry *root_dentry;
1271	int err, s_new = false;
1272
1273	if (!(flags & SB_RDONLY))
1274		mode |= FMODE_WRITE;
1275
1276	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1277	if (IS_ERR(sd.bdev))
1278		return ERR_CAST(sd.bdev);
1279
1280	sd.cno = 0;
1281	sd.flags = flags;
1282	if (nilfs_identify((char *)data, &sd)) {
1283		err = -EINVAL;
1284		goto failed;
1285	}
1286
1287	/*
1288	 * once the super is inserted into the list by sget, s_umount
1289	 * will protect the lockfs code from trying to start a snapshot
1290	 * while we are mounting
1291	 */
1292	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1293	if (sd.bdev->bd_fsfreeze_count > 0) {
1294		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1295		err = -EBUSY;
1296		goto failed;
1297	}
1298	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1299		 sd.bdev);
1300	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1301	if (IS_ERR(s)) {
1302		err = PTR_ERR(s);
1303		goto failed;
1304	}
1305
1306	if (!s->s_root) {
 
 
1307		s_new = true;
1308
1309		/* New superblock instance created */
 
1310		s->s_mode = mode;
1311		snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1312		sb_set_blocksize(s, block_size(sd.bdev));
1313
1314		err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1315		if (err)
1316			goto failed_super;
1317
1318		s->s_flags |= SB_ACTIVE;
1319	} else if (!sd.cno) {
1320		if (nilfs_tree_is_busy(s->s_root)) {
1321			if ((flags ^ s->s_flags) & SB_RDONLY) {
1322				nilfs_msg(s, KERN_ERR,
1323					  "the device already has a %s mount.",
1324					  sb_rdonly(s) ? "read-only" : "read/write");
 
 
 
 
1325				err = -EBUSY;
1326				goto failed_super;
1327			}
1328		} else {
 
1329			/*
1330			 * Try remount to setup mount states if the current
1331			 * tree is not mounted and only snapshots use this sb.
1332			 */
1333			err = nilfs_remount(s, &flags, data);
1334			if (err)
1335				goto failed_super;
1336		}
1337	}
1338
1339	if (sd.cno) {
1340		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1341		if (err)
1342			goto failed_super;
1343	} else {
1344		root_dentry = dget(s->s_root);
1345	}
1346
1347	if (!s_new)
1348		blkdev_put(sd.bdev, mode);
1349
1350	return root_dentry;
1351
1352 failed_super:
1353	deactivate_locked_super(s);
1354
1355 failed:
1356	if (!s_new)
1357		blkdev_put(sd.bdev, mode);
1358	return ERR_PTR(err);
1359}
1360
1361struct file_system_type nilfs_fs_type = {
1362	.owner    = THIS_MODULE,
1363	.name     = "nilfs2",
1364	.mount    = nilfs_mount,
1365	.kill_sb  = kill_block_super,
1366	.fs_flags = FS_REQUIRES_DEV,
1367};
1368MODULE_ALIAS_FS("nilfs2");
1369
1370static void nilfs_inode_init_once(void *obj)
1371{
1372	struct nilfs_inode_info *ii = obj;
1373
1374	INIT_LIST_HEAD(&ii->i_dirty);
1375#ifdef CONFIG_NILFS_XATTR
1376	init_rwsem(&ii->xattr_sem);
1377#endif
1378	address_space_init_once(&ii->i_btnode_cache);
1379	ii->i_bmap = &ii->i_bmap_data;
1380	inode_init_once(&ii->vfs_inode);
1381}
1382
1383static void nilfs_segbuf_init_once(void *obj)
1384{
1385	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1386}
1387
1388static void nilfs_destroy_cachep(void)
1389{
1390	/*
1391	 * Make sure all delayed rcu free inodes are flushed before we
1392	 * destroy cache.
1393	 */
1394	rcu_barrier();
1395
1396	kmem_cache_destroy(nilfs_inode_cachep);
1397	kmem_cache_destroy(nilfs_transaction_cachep);
1398	kmem_cache_destroy(nilfs_segbuf_cachep);
1399	kmem_cache_destroy(nilfs_btree_path_cache);
1400}
1401
1402static int __init nilfs_init_cachep(void)
1403{
1404	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1405			sizeof(struct nilfs_inode_info), 0,
1406			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1407			nilfs_inode_init_once);
1408	if (!nilfs_inode_cachep)
1409		goto fail;
1410
1411	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1412			sizeof(struct nilfs_transaction_info), 0,
1413			SLAB_RECLAIM_ACCOUNT, NULL);
1414	if (!nilfs_transaction_cachep)
1415		goto fail;
1416
1417	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1418			sizeof(struct nilfs_segment_buffer), 0,
1419			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1420	if (!nilfs_segbuf_cachep)
1421		goto fail;
1422
1423	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1424			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1425			0, 0, NULL);
1426	if (!nilfs_btree_path_cache)
1427		goto fail;
1428
1429	return 0;
1430
1431fail:
1432	nilfs_destroy_cachep();
1433	return -ENOMEM;
1434}
1435
1436static int __init init_nilfs_fs(void)
1437{
1438	int err;
1439
1440	err = nilfs_init_cachep();
1441	if (err)
1442		goto fail;
1443
1444	err = nilfs_sysfs_init();
1445	if (err)
1446		goto free_cachep;
1447
1448	err = register_filesystem(&nilfs_fs_type);
1449	if (err)
1450		goto deinit_sysfs_entry;
1451
1452	printk(KERN_INFO "NILFS version 2 loaded\n");
1453	return 0;
1454
1455deinit_sysfs_entry:
1456	nilfs_sysfs_exit();
1457free_cachep:
1458	nilfs_destroy_cachep();
1459fail:
1460	return err;
1461}
1462
1463static void __exit exit_nilfs_fs(void)
1464{
1465	nilfs_destroy_cachep();
1466	nilfs_sysfs_exit();
1467	unregister_filesystem(&nilfs_fs_type);
1468}
1469
1470module_init(init_nilfs_fs)
1471module_exit(exit_nilfs_fs)
v3.5.6
 
   1/*
   2 * super.c - NILFS module and super block management.
   3 *
   4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  19 *
  20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
  21 */
  22/*
  23 *  linux/fs/ext2/super.c
  24 *
  25 * Copyright (C) 1992, 1993, 1994, 1995
  26 * Remy Card (card@masi.ibp.fr)
  27 * Laboratoire MASI - Institut Blaise Pascal
  28 * Universite Pierre et Marie Curie (Paris VI)
  29 *
  30 *  from
  31 *
  32 *  linux/fs/minix/inode.c
  33 *
  34 *  Copyright (C) 1991, 1992  Linus Torvalds
  35 *
  36 *  Big-endian to little-endian byte-swapping/bitmaps by
  37 *        David S. Miller (davem@caip.rutgers.edu), 1995
  38 */
  39
  40#include <linux/module.h>
  41#include <linux/string.h>
  42#include <linux/slab.h>
  43#include <linux/init.h>
  44#include <linux/blkdev.h>
  45#include <linux/parser.h>
  46#include <linux/crc32.h>
  47#include <linux/vfs.h>
  48#include <linux/writeback.h>
  49#include <linux/seq_file.h>
  50#include <linux/mount.h>
  51#include "nilfs.h"
  52#include "export.h"
  53#include "mdt.h"
  54#include "alloc.h"
  55#include "btree.h"
  56#include "btnode.h"
  57#include "page.h"
  58#include "cpfile.h"
  59#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
  60#include "ifile.h"
  61#include "dat.h"
  62#include "segment.h"
  63#include "segbuf.h"
  64
  65MODULE_AUTHOR("NTT Corp.");
  66MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  67		   "(NILFS)");
  68MODULE_LICENSE("GPL");
  69
  70static struct kmem_cache *nilfs_inode_cachep;
  71struct kmem_cache *nilfs_transaction_cachep;
  72struct kmem_cache *nilfs_segbuf_cachep;
  73struct kmem_cache *nilfs_btree_path_cache;
  74
  75static int nilfs_setup_super(struct super_block *sb, int is_mount);
  76static int nilfs_remount(struct super_block *sb, int *flags, char *data);
  77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  78static void nilfs_set_error(struct super_block *sb)
  79{
  80	struct the_nilfs *nilfs = sb->s_fs_info;
  81	struct nilfs_super_block **sbp;
  82
  83	down_write(&nilfs->ns_sem);
  84	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  85		nilfs->ns_mount_state |= NILFS_ERROR_FS;
  86		sbp = nilfs_prepare_super(sb, 0);
  87		if (likely(sbp)) {
  88			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  89			if (sbp[1])
  90				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  91			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
  92		}
  93	}
  94	up_write(&nilfs->ns_sem);
  95}
  96
  97/**
  98 * nilfs_error() - report failure condition on a filesystem
 
 
 
 
  99 *
 100 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
 101 * reporting an error message.  It should be called when NILFS detects
 102 * incoherences or defects of meta data on disk.  As for sustainable
 103 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
 104 * function should be used instead.
 105 *
 106 * The segment constructor must not call this function because it can
 107 * kill itself.
 108 */
 109void nilfs_error(struct super_block *sb, const char *function,
 110		 const char *fmt, ...)
 111{
 112	struct the_nilfs *nilfs = sb->s_fs_info;
 113	struct va_format vaf;
 114	va_list args;
 115
 116	va_start(args, fmt);
 117
 118	vaf.fmt = fmt;
 119	vaf.va = &args;
 120
 121	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
 122	       sb->s_id, function, &vaf);
 123
 124	va_end(args);
 125
 126	if (!(sb->s_flags & MS_RDONLY)) {
 127		nilfs_set_error(sb);
 128
 129		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
 130			printk(KERN_CRIT "Remounting filesystem read-only\n");
 131			sb->s_flags |= MS_RDONLY;
 132		}
 133	}
 134
 135	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 136		panic("NILFS (device %s): panic forced after error\n",
 137		      sb->s_id);
 138}
 139
 140void nilfs_warning(struct super_block *sb, const char *function,
 141		   const char *fmt, ...)
 142{
 143	struct va_format vaf;
 144	va_list args;
 145
 146	va_start(args, fmt);
 147
 148	vaf.fmt = fmt;
 149	vaf.va = &args;
 150
 151	printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n",
 152	       sb->s_id, function, &vaf);
 153
 154	va_end(args);
 155}
 156
 157
 158struct inode *nilfs_alloc_inode(struct super_block *sb)
 159{
 160	struct nilfs_inode_info *ii;
 161
 162	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
 163	if (!ii)
 164		return NULL;
 165	ii->i_bh = NULL;
 166	ii->i_state = 0;
 167	ii->i_cno = 0;
 168	ii->vfs_inode.i_version = 1;
 169	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode, sb->s_bdi);
 170	return &ii->vfs_inode;
 171}
 172
 173static void nilfs_i_callback(struct rcu_head *head)
 174{
 175	struct inode *inode = container_of(head, struct inode, i_rcu);
 176	struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
 177
 178	if (mdi) {
 179		kfree(mdi->mi_bgl); /* kfree(NULL) is safe */
 180		kfree(mdi);
 181	}
 182	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
 183}
 184
 185void nilfs_destroy_inode(struct inode *inode)
 186{
 187	call_rcu(&inode->i_rcu, nilfs_i_callback);
 188}
 189
 190static int nilfs_sync_super(struct super_block *sb, int flag)
 191{
 192	struct the_nilfs *nilfs = sb->s_fs_info;
 193	int err;
 194
 195 retry:
 196	set_buffer_dirty(nilfs->ns_sbh[0]);
 197	if (nilfs_test_opt(nilfs, BARRIER)) {
 198		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
 199					  WRITE_SYNC | WRITE_FLUSH_FUA);
 200	} else {
 201		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
 202	}
 203
 204	if (unlikely(err)) {
 205		printk(KERN_ERR
 206		       "NILFS: unable to write superblock (err=%d)\n", err);
 207		if (err == -EIO && nilfs->ns_sbh[1]) {
 208			/*
 209			 * sbp[0] points to newer log than sbp[1],
 210			 * so copy sbp[0] to sbp[1] to take over sbp[0].
 211			 */
 212			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
 213			       nilfs->ns_sbsize);
 214			nilfs_fall_back_super_block(nilfs);
 215			goto retry;
 216		}
 217	} else {
 218		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
 219
 220		nilfs->ns_sbwcount++;
 221
 222		/*
 223		 * The latest segment becomes trailable from the position
 224		 * written in superblock.
 225		 */
 226		clear_nilfs_discontinued(nilfs);
 227
 228		/* update GC protection for recent segments */
 229		if (nilfs->ns_sbh[1]) {
 230			if (flag == NILFS_SB_COMMIT_ALL) {
 231				set_buffer_dirty(nilfs->ns_sbh[1]);
 232				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
 233					goto out;
 234			}
 235			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
 236			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
 237				sbp = nilfs->ns_sbp[1];
 238		}
 239
 240		spin_lock(&nilfs->ns_last_segment_lock);
 241		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
 242		spin_unlock(&nilfs->ns_last_segment_lock);
 243	}
 244 out:
 245	return err;
 246}
 247
 248void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
 249			  struct the_nilfs *nilfs)
 250{
 251	sector_t nfreeblocks;
 252
 253	/* nilfs->ns_sem must be locked by the caller. */
 254	nilfs_count_free_blocks(nilfs, &nfreeblocks);
 255	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
 256
 257	spin_lock(&nilfs->ns_last_segment_lock);
 258	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
 259	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
 260	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
 261	spin_unlock(&nilfs->ns_last_segment_lock);
 262}
 263
 264struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
 265					       int flip)
 266{
 267	struct the_nilfs *nilfs = sb->s_fs_info;
 268	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 269
 270	/* nilfs->ns_sem must be locked by the caller. */
 271	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 272		if (sbp[1] &&
 273		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
 274			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
 275		} else {
 276			printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
 277			       sb->s_id);
 278			return NULL;
 279		}
 280	} else if (sbp[1] &&
 281		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 282			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 283	}
 284
 285	if (flip && sbp[1])
 286		nilfs_swap_super_block(nilfs);
 287
 288	return sbp;
 289}
 290
 291int nilfs_commit_super(struct super_block *sb, int flag)
 292{
 293	struct the_nilfs *nilfs = sb->s_fs_info;
 294	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 295	time_t t;
 296
 297	/* nilfs->ns_sem must be locked by the caller. */
 298	t = get_seconds();
 299	nilfs->ns_sbwtime = t;
 300	sbp[0]->s_wtime = cpu_to_le64(t);
 301	sbp[0]->s_sum = 0;
 302	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 303					     (unsigned char *)sbp[0],
 304					     nilfs->ns_sbsize));
 305	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
 306		sbp[1]->s_wtime = sbp[0]->s_wtime;
 307		sbp[1]->s_sum = 0;
 308		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 309					    (unsigned char *)sbp[1],
 310					    nilfs->ns_sbsize));
 311	}
 312	clear_nilfs_sb_dirty(nilfs);
 
 
 
 313	return nilfs_sync_super(sb, flag);
 314}
 315
 316/**
 317 * nilfs_cleanup_super() - write filesystem state for cleanup
 318 * @sb: super block instance to be unmounted or degraded to read-only
 319 *
 320 * This function restores state flags in the on-disk super block.
 321 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
 322 * filesystem was not clean previously.
 323 */
 324int nilfs_cleanup_super(struct super_block *sb)
 325{
 326	struct the_nilfs *nilfs = sb->s_fs_info;
 327	struct nilfs_super_block **sbp;
 328	int flag = NILFS_SB_COMMIT;
 329	int ret = -EIO;
 330
 331	sbp = nilfs_prepare_super(sb, 0);
 332	if (sbp) {
 333		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
 334		nilfs_set_log_cursor(sbp[0], nilfs);
 335		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
 336			/*
 337			 * make the "clean" flag also to the opposite
 338			 * super block if both super blocks point to
 339			 * the same checkpoint.
 340			 */
 341			sbp[1]->s_state = sbp[0]->s_state;
 342			flag = NILFS_SB_COMMIT_ALL;
 343		}
 344		ret = nilfs_commit_super(sb, flag);
 345	}
 346	return ret;
 347}
 348
 349/**
 350 * nilfs_move_2nd_super - relocate secondary super block
 351 * @sb: super block instance
 352 * @sb2off: new offset of the secondary super block (in bytes)
 353 */
 354static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
 355{
 356	struct the_nilfs *nilfs = sb->s_fs_info;
 357	struct buffer_head *nsbh;
 358	struct nilfs_super_block *nsbp;
 359	sector_t blocknr, newblocknr;
 360	unsigned long offset;
 361	int sb2i = -1;  /* array index of the secondary superblock */
 362	int ret = 0;
 363
 364	/* nilfs->ns_sem must be locked by the caller. */
 365	if (nilfs->ns_sbh[1] &&
 366	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
 367		sb2i = 1;
 368		blocknr = nilfs->ns_sbh[1]->b_blocknr;
 369	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
 370		sb2i = 0;
 371		blocknr = nilfs->ns_sbh[0]->b_blocknr;
 
 
 
 372	}
 373	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
 374		goto out;  /* super block location is unchanged */
 375
 376	/* Get new super block buffer */
 377	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
 378	offset = sb2off & (nilfs->ns_blocksize - 1);
 379	nsbh = sb_getblk(sb, newblocknr);
 380	if (!nsbh) {
 381		printk(KERN_WARNING
 382		       "NILFS warning: unable to move secondary superblock "
 383		       "to block %llu\n", (unsigned long long)newblocknr);
 384		ret = -EIO;
 385		goto out;
 386	}
 387	nsbp = (void *)nsbh->b_data + offset;
 388	memset(nsbp, 0, nilfs->ns_blocksize);
 389
 390	if (sb2i >= 0) {
 391		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
 392		brelse(nilfs->ns_sbh[sb2i]);
 393		nilfs->ns_sbh[sb2i] = nsbh;
 394		nilfs->ns_sbp[sb2i] = nsbp;
 395	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
 396		/* secondary super block will be restored to index 1 */
 397		nilfs->ns_sbh[1] = nsbh;
 398		nilfs->ns_sbp[1] = nsbp;
 399	} else {
 400		brelse(nsbh);
 401	}
 402out:
 403	return ret;
 404}
 405
 406/**
 407 * nilfs_resize_fs - resize the filesystem
 408 * @sb: super block instance
 409 * @newsize: new size of the filesystem (in bytes)
 410 */
 411int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
 412{
 413	struct the_nilfs *nilfs = sb->s_fs_info;
 414	struct nilfs_super_block **sbp;
 415	__u64 devsize, newnsegs;
 416	loff_t sb2off;
 417	int ret;
 418
 419	ret = -ERANGE;
 420	devsize = i_size_read(sb->s_bdev->bd_inode);
 421	if (newsize > devsize)
 422		goto out;
 423
 424	/*
 425	 * Write lock is required to protect some functions depending
 426	 * on the number of segments, the number of reserved segments,
 427	 * and so forth.
 428	 */
 429	down_write(&nilfs->ns_segctor_sem);
 430
 431	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
 432	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
 433	do_div(newnsegs, nilfs->ns_blocks_per_segment);
 434
 435	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
 436	up_write(&nilfs->ns_segctor_sem);
 437	if (ret < 0)
 438		goto out;
 439
 440	ret = nilfs_construct_segment(sb);
 441	if (ret < 0)
 442		goto out;
 443
 444	down_write(&nilfs->ns_sem);
 445	nilfs_move_2nd_super(sb, sb2off);
 446	ret = -EIO;
 447	sbp = nilfs_prepare_super(sb, 0);
 448	if (likely(sbp)) {
 449		nilfs_set_log_cursor(sbp[0], nilfs);
 450		/*
 451		 * Drop NILFS_RESIZE_FS flag for compatibility with
 452		 * mount-time resize which may be implemented in a
 453		 * future release.
 454		 */
 455		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
 456					      ~NILFS_RESIZE_FS);
 457		sbp[0]->s_dev_size = cpu_to_le64(newsize);
 458		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
 459		if (sbp[1])
 460			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 461		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 462	}
 463	up_write(&nilfs->ns_sem);
 464
 465	/*
 466	 * Reset the range of allocatable segments last.  This order
 467	 * is important in the case of expansion because the secondary
 468	 * superblock must be protected from log write until migration
 469	 * completes.
 470	 */
 471	if (!ret)
 472		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
 473out:
 474	return ret;
 475}
 476
 477static void nilfs_put_super(struct super_block *sb)
 478{
 479	struct the_nilfs *nilfs = sb->s_fs_info;
 480
 481	nilfs_detach_log_writer(sb);
 482
 483	if (!(sb->s_flags & MS_RDONLY)) {
 484		down_write(&nilfs->ns_sem);
 485		nilfs_cleanup_super(sb);
 486		up_write(&nilfs->ns_sem);
 487	}
 488
 489	iput(nilfs->ns_sufile);
 490	iput(nilfs->ns_cpfile);
 491	iput(nilfs->ns_dat);
 492
 493	destroy_nilfs(nilfs);
 494	sb->s_fs_info = NULL;
 495}
 496
 497static int nilfs_sync_fs(struct super_block *sb, int wait)
 498{
 499	struct the_nilfs *nilfs = sb->s_fs_info;
 500	struct nilfs_super_block **sbp;
 501	int err = 0;
 502
 503	/* This function is called when super block should be written back */
 504	if (wait)
 505		err = nilfs_construct_segment(sb);
 506
 507	down_write(&nilfs->ns_sem);
 508	if (nilfs_sb_dirty(nilfs)) {
 509		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
 510		if (likely(sbp)) {
 511			nilfs_set_log_cursor(sbp[0], nilfs);
 512			nilfs_commit_super(sb, NILFS_SB_COMMIT);
 513		}
 514	}
 515	up_write(&nilfs->ns_sem);
 516
 
 
 
 517	return err;
 518}
 519
 520int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
 521			    struct nilfs_root **rootp)
 522{
 523	struct the_nilfs *nilfs = sb->s_fs_info;
 524	struct nilfs_root *root;
 525	struct nilfs_checkpoint *raw_cp;
 526	struct buffer_head *bh_cp;
 527	int err = -ENOMEM;
 528
 529	root = nilfs_find_or_create_root(
 530		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
 531	if (!root)
 532		return err;
 533
 534	if (root->ifile)
 535		goto reuse; /* already attached checkpoint */
 536
 537	down_read(&nilfs->ns_segctor_sem);
 538	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
 539					  &bh_cp);
 540	up_read(&nilfs->ns_segctor_sem);
 541	if (unlikely(err)) {
 542		if (err == -ENOENT || err == -EINVAL) {
 543			printk(KERN_ERR
 544			       "NILFS: Invalid checkpoint "
 545			       "(checkpoint number=%llu)\n",
 546			       (unsigned long long)cno);
 547			err = -EINVAL;
 548		}
 549		goto failed;
 550	}
 551
 552	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
 553			       &raw_cp->cp_ifile_inode, &root->ifile);
 554	if (err)
 555		goto failed_bh;
 556
 557	atomic_set(&root->inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
 558	atomic_set(&root->blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
 
 
 559
 560	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 561
 562 reuse:
 563	*rootp = root;
 564	return 0;
 565
 566 failed_bh:
 567	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 568 failed:
 569	nilfs_put_root(root);
 570
 571	return err;
 572}
 573
 574static int nilfs_freeze(struct super_block *sb)
 575{
 576	struct the_nilfs *nilfs = sb->s_fs_info;
 577	int err;
 578
 579	if (sb->s_flags & MS_RDONLY)
 580		return 0;
 581
 582	/* Mark super block clean */
 583	down_write(&nilfs->ns_sem);
 584	err = nilfs_cleanup_super(sb);
 585	up_write(&nilfs->ns_sem);
 586	return err;
 587}
 588
 589static int nilfs_unfreeze(struct super_block *sb)
 590{
 591	struct the_nilfs *nilfs = sb->s_fs_info;
 592
 593	if (sb->s_flags & MS_RDONLY)
 594		return 0;
 595
 596	down_write(&nilfs->ns_sem);
 597	nilfs_setup_super(sb, false);
 598	up_write(&nilfs->ns_sem);
 599	return 0;
 600}
 601
 602static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 603{
 604	struct super_block *sb = dentry->d_sb;
 605	struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root;
 606	struct the_nilfs *nilfs = root->nilfs;
 607	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 608	unsigned long long blocks;
 609	unsigned long overhead;
 610	unsigned long nrsvblocks;
 611	sector_t nfreeblocks;
 
 612	int err;
 613
 614	/*
 615	 * Compute all of the segment blocks
 616	 *
 617	 * The blocks before first segment and after last segment
 618	 * are excluded.
 619	 */
 620	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
 621		- nilfs->ns_first_data_block;
 622	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
 623
 624	/*
 625	 * Compute the overhead
 626	 *
 627	 * When distributing meta data blocks outside segment structure,
 628	 * We must count them as the overhead.
 629	 */
 630	overhead = 0;
 631
 632	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
 633	if (unlikely(err))
 634		return err;
 635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636	buf->f_type = NILFS_SUPER_MAGIC;
 637	buf->f_bsize = sb->s_blocksize;
 638	buf->f_blocks = blocks - overhead;
 639	buf->f_bfree = nfreeblocks;
 640	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
 641		(buf->f_bfree - nrsvblocks) : 0;
 642	buf->f_files = atomic_read(&root->inodes_count);
 643	buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
 644	buf->f_namelen = NILFS_NAME_LEN;
 645	buf->f_fsid.val[0] = (u32)id;
 646	buf->f_fsid.val[1] = (u32)(id >> 32);
 647
 648	return 0;
 649}
 650
 651static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
 652{
 653	struct super_block *sb = dentry->d_sb;
 654	struct the_nilfs *nilfs = sb->s_fs_info;
 655	struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root;
 656
 657	if (!nilfs_test_opt(nilfs, BARRIER))
 658		seq_puts(seq, ",nobarrier");
 659	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
 660		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
 661	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 662		seq_puts(seq, ",errors=panic");
 663	if (nilfs_test_opt(nilfs, ERRORS_CONT))
 664		seq_puts(seq, ",errors=continue");
 665	if (nilfs_test_opt(nilfs, STRICT_ORDER))
 666		seq_puts(seq, ",order=strict");
 667	if (nilfs_test_opt(nilfs, NORECOVERY))
 668		seq_puts(seq, ",norecovery");
 669	if (nilfs_test_opt(nilfs, DISCARD))
 670		seq_puts(seq, ",discard");
 671
 672	return 0;
 673}
 674
 675static const struct super_operations nilfs_sops = {
 676	.alloc_inode    = nilfs_alloc_inode,
 677	.destroy_inode  = nilfs_destroy_inode,
 678	.dirty_inode    = nilfs_dirty_inode,
 679	/* .write_inode    = nilfs_write_inode, */
 680	/* .put_inode      = nilfs_put_inode, */
 681	/* .drop_inode	  = nilfs_drop_inode, */
 682	.evict_inode    = nilfs_evict_inode,
 683	.put_super      = nilfs_put_super,
 684	/* .write_super    = nilfs_write_super, */
 685	.sync_fs        = nilfs_sync_fs,
 686	.freeze_fs	= nilfs_freeze,
 687	.unfreeze_fs	= nilfs_unfreeze,
 688	/* .write_super_lockfs */
 689	/* .unlockfs */
 690	.statfs         = nilfs_statfs,
 691	.remount_fs     = nilfs_remount,
 692	/* .umount_begin */
 693	.show_options = nilfs_show_options
 694};
 695
 696enum {
 697	Opt_err_cont, Opt_err_panic, Opt_err_ro,
 698	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
 699	Opt_discard, Opt_nodiscard, Opt_err,
 700};
 701
 702static match_table_t tokens = {
 703	{Opt_err_cont, "errors=continue"},
 704	{Opt_err_panic, "errors=panic"},
 705	{Opt_err_ro, "errors=remount-ro"},
 706	{Opt_barrier, "barrier"},
 707	{Opt_nobarrier, "nobarrier"},
 708	{Opt_snapshot, "cp=%u"},
 709	{Opt_order, "order=%s"},
 710	{Opt_norecovery, "norecovery"},
 711	{Opt_discard, "discard"},
 712	{Opt_nodiscard, "nodiscard"},
 713	{Opt_err, NULL}
 714};
 715
 716static int parse_options(char *options, struct super_block *sb, int is_remount)
 717{
 718	struct the_nilfs *nilfs = sb->s_fs_info;
 719	char *p;
 720	substring_t args[MAX_OPT_ARGS];
 721
 722	if (!options)
 723		return 1;
 724
 725	while ((p = strsep(&options, ",")) != NULL) {
 726		int token;
 
 727		if (!*p)
 728			continue;
 729
 730		token = match_token(p, tokens, args);
 731		switch (token) {
 732		case Opt_barrier:
 733			nilfs_set_opt(nilfs, BARRIER);
 734			break;
 735		case Opt_nobarrier:
 736			nilfs_clear_opt(nilfs, BARRIER);
 737			break;
 738		case Opt_order:
 739			if (strcmp(args[0].from, "relaxed") == 0)
 740				/* Ordered data semantics */
 741				nilfs_clear_opt(nilfs, STRICT_ORDER);
 742			else if (strcmp(args[0].from, "strict") == 0)
 743				/* Strict in-order semantics */
 744				nilfs_set_opt(nilfs, STRICT_ORDER);
 745			else
 746				return 0;
 747			break;
 748		case Opt_err_panic:
 749			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
 750			break;
 751		case Opt_err_ro:
 752			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
 753			break;
 754		case Opt_err_cont:
 755			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
 756			break;
 757		case Opt_snapshot:
 758			if (is_remount) {
 759				printk(KERN_ERR
 760				       "NILFS: \"%s\" option is invalid "
 761				       "for remount.\n", p);
 762				return 0;
 763			}
 764			break;
 765		case Opt_norecovery:
 766			nilfs_set_opt(nilfs, NORECOVERY);
 767			break;
 768		case Opt_discard:
 769			nilfs_set_opt(nilfs, DISCARD);
 770			break;
 771		case Opt_nodiscard:
 772			nilfs_clear_opt(nilfs, DISCARD);
 773			break;
 774		default:
 775			printk(KERN_ERR
 776			       "NILFS: Unrecognized mount option \"%s\"\n", p);
 777			return 0;
 778		}
 779	}
 780	return 1;
 781}
 782
 783static inline void
 784nilfs_set_default_options(struct super_block *sb,
 785			  struct nilfs_super_block *sbp)
 786{
 787	struct the_nilfs *nilfs = sb->s_fs_info;
 788
 789	nilfs->ns_mount_opt =
 790		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
 791}
 792
 793static int nilfs_setup_super(struct super_block *sb, int is_mount)
 794{
 795	struct the_nilfs *nilfs = sb->s_fs_info;
 796	struct nilfs_super_block **sbp;
 797	int max_mnt_count;
 798	int mnt_count;
 799
 800	/* nilfs->ns_sem must be locked by the caller. */
 801	sbp = nilfs_prepare_super(sb, 0);
 802	if (!sbp)
 803		return -EIO;
 804
 805	if (!is_mount)
 806		goto skip_mount_setup;
 807
 808	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
 809	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
 810
 811	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
 812		printk(KERN_WARNING
 813		       "NILFS warning: mounting fs with errors\n");
 814#if 0
 815	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
 816		printk(KERN_WARNING
 817		       "NILFS warning: maximal mount count reached\n");
 818#endif
 819	}
 820	if (!max_mnt_count)
 821		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
 822
 823	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
 824	sbp[0]->s_mtime = cpu_to_le64(get_seconds());
 825
 826skip_mount_setup:
 827	sbp[0]->s_state =
 828		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
 829	/* synchronize sbp[1] with sbp[0] */
 830	if (sbp[1])
 831		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 832	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 833}
 834
 835struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
 836						 u64 pos, int blocksize,
 837						 struct buffer_head **pbh)
 838{
 839	unsigned long long sb_index = pos;
 840	unsigned long offset;
 841
 842	offset = do_div(sb_index, blocksize);
 843	*pbh = sb_bread(sb, sb_index);
 844	if (!*pbh)
 845		return NULL;
 846	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
 847}
 848
 849int nilfs_store_magic_and_option(struct super_block *sb,
 850				 struct nilfs_super_block *sbp,
 851				 char *data)
 852{
 853	struct the_nilfs *nilfs = sb->s_fs_info;
 854
 855	sb->s_magic = le16_to_cpu(sbp->s_magic);
 856
 857	/* FS independent flags */
 858#ifdef NILFS_ATIME_DISABLE
 859	sb->s_flags |= MS_NOATIME;
 860#endif
 861
 862	nilfs_set_default_options(sb, sbp);
 863
 864	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
 865	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
 866	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
 867	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
 868
 869	return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
 870}
 871
 872int nilfs_check_feature_compatibility(struct super_block *sb,
 873				      struct nilfs_super_block *sbp)
 874{
 875	__u64 features;
 876
 877	features = le64_to_cpu(sbp->s_feature_incompat) &
 878		~NILFS_FEATURE_INCOMPAT_SUPP;
 879	if (features) {
 880		printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
 881		       "optional features (%llx)\n",
 882		       (unsigned long long)features);
 883		return -EINVAL;
 884	}
 885	features = le64_to_cpu(sbp->s_feature_compat_ro) &
 886		~NILFS_FEATURE_COMPAT_RO_SUPP;
 887	if (!(sb->s_flags & MS_RDONLY) && features) {
 888		printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
 889		       "unsupported optional features (%llx)\n",
 890		       (unsigned long long)features);
 891		return -EINVAL;
 892	}
 893	return 0;
 894}
 895
 896static int nilfs_get_root_dentry(struct super_block *sb,
 897				 struct nilfs_root *root,
 898				 struct dentry **root_dentry)
 899{
 900	struct inode *inode;
 901	struct dentry *dentry;
 902	int ret = 0;
 903
 904	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
 905	if (IS_ERR(inode)) {
 906		printk(KERN_ERR "NILFS: get root inode failed\n");
 907		ret = PTR_ERR(inode);
 
 908		goto out;
 909	}
 910	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
 911		iput(inode);
 912		printk(KERN_ERR "NILFS: corrupt root inode.\n");
 913		ret = -EINVAL;
 914		goto out;
 915	}
 916
 917	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
 918		dentry = d_find_alias(inode);
 919		if (!dentry) {
 920			dentry = d_make_root(inode);
 921			if (!dentry) {
 922				ret = -ENOMEM;
 923				goto failed_dentry;
 924			}
 925		} else {
 926			iput(inode);
 927		}
 928	} else {
 929		dentry = d_obtain_alias(inode);
 930		if (IS_ERR(dentry)) {
 931			ret = PTR_ERR(dentry);
 932			goto failed_dentry;
 933		}
 934	}
 935	*root_dentry = dentry;
 936 out:
 937	return ret;
 938
 939 failed_dentry:
 940	printk(KERN_ERR "NILFS: get root dentry failed\n");
 941	goto out;
 942}
 943
 944static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
 945				 struct dentry **root_dentry)
 946{
 947	struct the_nilfs *nilfs = s->s_fs_info;
 948	struct nilfs_root *root;
 949	int ret;
 950
 951	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
 952
 953	down_read(&nilfs->ns_segctor_sem);
 954	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
 955	up_read(&nilfs->ns_segctor_sem);
 956	if (ret < 0) {
 957		ret = (ret == -ENOENT) ? -EINVAL : ret;
 958		goto out;
 959	} else if (!ret) {
 960		printk(KERN_ERR "NILFS: The specified checkpoint is "
 961		       "not a snapshot (checkpoint number=%llu).\n",
 962		       (unsigned long long)cno);
 963		ret = -EINVAL;
 964		goto out;
 965	}
 966
 967	ret = nilfs_attach_checkpoint(s, cno, false, &root);
 968	if (ret) {
 969		printk(KERN_ERR "NILFS: error loading snapshot "
 970		       "(checkpoint number=%llu).\n",
 971	       (unsigned long long)cno);
 972		goto out;
 973	}
 974	ret = nilfs_get_root_dentry(s, root, root_dentry);
 975	nilfs_put_root(root);
 976 out:
 977	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
 978	return ret;
 979}
 980
 981static int nilfs_tree_was_touched(struct dentry *root_dentry)
 982{
 983	return root_dentry->d_count > 1;
 984}
 985
 986/**
 987 * nilfs_try_to_shrink_tree() - try to shrink dentries of a checkpoint
 988 * @root_dentry: root dentry of the tree to be shrunk
 989 *
 990 * This function returns true if the tree was in-use.
 991 */
 992static int nilfs_try_to_shrink_tree(struct dentry *root_dentry)
 993{
 994	if (have_submounts(root_dentry))
 995		return true;
 996	shrink_dcache_parent(root_dentry);
 997	return nilfs_tree_was_touched(root_dentry);
 998}
 999
1000int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1001{
1002	struct the_nilfs *nilfs = sb->s_fs_info;
1003	struct nilfs_root *root;
1004	struct inode *inode;
1005	struct dentry *dentry;
1006	int ret;
1007
1008	if (cno < 0 || cno > nilfs->ns_cno)
1009		return false;
1010
1011	if (cno >= nilfs_last_cno(nilfs))
1012		return true;	/* protect recent checkpoints */
1013
1014	ret = false;
1015	root = nilfs_lookup_root(nilfs, cno);
1016	if (root) {
1017		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1018		if (inode) {
1019			dentry = d_find_alias(inode);
1020			if (dentry) {
1021				if (nilfs_tree_was_touched(dentry))
1022					ret = nilfs_try_to_shrink_tree(dentry);
1023				dput(dentry);
1024			}
1025			iput(inode);
1026		}
1027		nilfs_put_root(root);
1028	}
1029	return ret;
1030}
1031
1032/**
1033 * nilfs_fill_super() - initialize a super block instance
1034 * @sb: super_block
1035 * @data: mount options
1036 * @silent: silent mode flag
1037 *
1038 * This function is called exclusively by nilfs->ns_mount_mutex.
1039 * So, the recovery process is protected from other simultaneous mounts.
1040 */
1041static int
1042nilfs_fill_super(struct super_block *sb, void *data, int silent)
1043{
1044	struct the_nilfs *nilfs;
1045	struct nilfs_root *fsroot;
1046	struct backing_dev_info *bdi;
1047	__u64 cno;
1048	int err;
1049
1050	nilfs = alloc_nilfs(sb->s_bdev);
1051	if (!nilfs)
1052		return -ENOMEM;
1053
1054	sb->s_fs_info = nilfs;
1055
1056	err = init_nilfs(nilfs, sb, (char *)data);
1057	if (err)
1058		goto failed_nilfs;
1059
1060	sb->s_op = &nilfs_sops;
1061	sb->s_export_op = &nilfs_export_ops;
1062	sb->s_root = NULL;
1063	sb->s_time_gran = 1;
1064	sb->s_max_links = NILFS_LINK_MAX;
1065
1066	bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
1067	sb->s_bdi = bdi ? : &default_backing_dev_info;
1068
1069	err = load_nilfs(nilfs, sb);
1070	if (err)
1071		goto failed_nilfs;
1072
1073	cno = nilfs_last_cno(nilfs);
1074	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1075	if (err) {
1076		printk(KERN_ERR "NILFS: error loading last checkpoint "
1077		       "(checkpoint number=%llu).\n", (unsigned long long)cno);
 
1078		goto failed_unload;
1079	}
1080
1081	if (!(sb->s_flags & MS_RDONLY)) {
1082		err = nilfs_attach_log_writer(sb, fsroot);
1083		if (err)
1084			goto failed_checkpoint;
1085	}
1086
1087	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1088	if (err)
1089		goto failed_segctor;
1090
1091	nilfs_put_root(fsroot);
1092
1093	if (!(sb->s_flags & MS_RDONLY)) {
1094		down_write(&nilfs->ns_sem);
1095		nilfs_setup_super(sb, true);
1096		up_write(&nilfs->ns_sem);
1097	}
1098
1099	return 0;
1100
1101 failed_segctor:
1102	nilfs_detach_log_writer(sb);
1103
1104 failed_checkpoint:
1105	nilfs_put_root(fsroot);
1106
1107 failed_unload:
1108	iput(nilfs->ns_sufile);
1109	iput(nilfs->ns_cpfile);
1110	iput(nilfs->ns_dat);
1111
1112 failed_nilfs:
1113	destroy_nilfs(nilfs);
1114	return err;
1115}
1116
1117static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1118{
1119	struct the_nilfs *nilfs = sb->s_fs_info;
1120	unsigned long old_sb_flags;
1121	unsigned long old_mount_opt;
1122	int err;
1123
 
1124	old_sb_flags = sb->s_flags;
1125	old_mount_opt = nilfs->ns_mount_opt;
1126
1127	if (!parse_options(data, sb, 1)) {
1128		err = -EINVAL;
1129		goto restore_opts;
1130	}
1131	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1132
1133	err = -EINVAL;
1134
1135	if (!nilfs_valid_fs(nilfs)) {
1136		printk(KERN_WARNING "NILFS (device %s): couldn't "
1137		       "remount because the filesystem is in an "
1138		       "incomplete recovery state.\n", sb->s_id);
1139		goto restore_opts;
1140	}
1141
1142	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1143		goto out;
1144	if (*flags & MS_RDONLY) {
1145		/* Shutting down log writer */
1146		nilfs_detach_log_writer(sb);
1147		sb->s_flags |= MS_RDONLY;
1148
1149		/*
1150		 * Remounting a valid RW partition RDONLY, so set
1151		 * the RDONLY flag and then mark the partition as valid again.
1152		 */
1153		down_write(&nilfs->ns_sem);
1154		nilfs_cleanup_super(sb);
1155		up_write(&nilfs->ns_sem);
1156	} else {
1157		__u64 features;
1158		struct nilfs_root *root;
1159
1160		/*
1161		 * Mounting a RDONLY partition read-write, so reread and
1162		 * store the current valid flag.  (It may have been changed
1163		 * by fsck since we originally mounted the partition.)
1164		 */
1165		down_read(&nilfs->ns_sem);
1166		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1167			~NILFS_FEATURE_COMPAT_RO_SUPP;
1168		up_read(&nilfs->ns_sem);
1169		if (features) {
1170			printk(KERN_WARNING "NILFS (device %s): couldn't "
1171			       "remount RDWR because of unsupported optional "
1172			       "features (%llx)\n",
1173			       sb->s_id, (unsigned long long)features);
1174			err = -EROFS;
1175			goto restore_opts;
1176		}
1177
1178		sb->s_flags &= ~MS_RDONLY;
1179
1180		root = NILFS_I(sb->s_root->d_inode)->i_root;
1181		err = nilfs_attach_log_writer(sb, root);
1182		if (err)
1183			goto restore_opts;
1184
1185		down_write(&nilfs->ns_sem);
1186		nilfs_setup_super(sb, true);
1187		up_write(&nilfs->ns_sem);
1188	}
1189 out:
1190	return 0;
1191
1192 restore_opts:
1193	sb->s_flags = old_sb_flags;
1194	nilfs->ns_mount_opt = old_mount_opt;
1195	return err;
1196}
1197
1198struct nilfs_super_data {
1199	struct block_device *bdev;
1200	__u64 cno;
1201	int flags;
1202};
1203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1204/**
1205 * nilfs_identify - pre-read mount options needed to identify mount instance
1206 * @data: mount options
1207 * @sd: nilfs_super_data
1208 */
1209static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1210{
1211	char *p, *options = data;
1212	substring_t args[MAX_OPT_ARGS];
1213	int token;
1214	int ret = 0;
1215
1216	do {
1217		p = strsep(&options, ",");
1218		if (p != NULL && *p) {
1219			token = match_token(p, tokens, args);
1220			if (token == Opt_snapshot) {
1221				if (!(sd->flags & MS_RDONLY)) {
1222					ret++;
1223				} else {
1224					sd->cno = simple_strtoull(args[0].from,
1225								  NULL, 0);
1226					/*
1227					 * No need to see the end pointer;
1228					 * match_token() has done syntax
1229					 * checking.
1230					 */
1231					if (sd->cno == 0)
1232						ret++;
1233				}
1234			}
1235			if (ret)
1236				printk(KERN_ERR
1237				       "NILFS: invalid mount option: %s\n", p);
1238		}
1239		if (!options)
1240			break;
1241		BUG_ON(options == data);
1242		*(options - 1) = ',';
1243	} while (!ret);
1244	return ret;
1245}
1246
1247static int nilfs_set_bdev_super(struct super_block *s, void *data)
1248{
1249	s->s_bdev = data;
1250	s->s_dev = s->s_bdev->bd_dev;
1251	return 0;
1252}
1253
1254static int nilfs_test_bdev_super(struct super_block *s, void *data)
1255{
1256	return (void *)s->s_bdev == data;
1257}
1258
1259static struct dentry *
1260nilfs_mount(struct file_system_type *fs_type, int flags,
1261	     const char *dev_name, void *data)
1262{
1263	struct nilfs_super_data sd;
1264	struct super_block *s;
1265	fmode_t mode = FMODE_READ | FMODE_EXCL;
1266	struct dentry *root_dentry;
1267	int err, s_new = false;
1268
1269	if (!(flags & MS_RDONLY))
1270		mode |= FMODE_WRITE;
1271
1272	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1273	if (IS_ERR(sd.bdev))
1274		return ERR_CAST(sd.bdev);
1275
1276	sd.cno = 0;
1277	sd.flags = flags;
1278	if (nilfs_identify((char *)data, &sd)) {
1279		err = -EINVAL;
1280		goto failed;
1281	}
1282
1283	/*
1284	 * once the super is inserted into the list by sget, s_umount
1285	 * will protect the lockfs code from trying to start a snapshot
1286	 * while we are mounting
1287	 */
1288	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1289	if (sd.bdev->bd_fsfreeze_count > 0) {
1290		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1291		err = -EBUSY;
1292		goto failed;
1293	}
1294	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, sd.bdev);
 
1295	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1296	if (IS_ERR(s)) {
1297		err = PTR_ERR(s);
1298		goto failed;
1299	}
1300
1301	if (!s->s_root) {
1302		char b[BDEVNAME_SIZE];
1303
1304		s_new = true;
1305
1306		/* New superblock instance created */
1307		s->s_flags = flags;
1308		s->s_mode = mode;
1309		strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1310		sb_set_blocksize(s, block_size(sd.bdev));
1311
1312		err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1313		if (err)
1314			goto failed_super;
1315
1316		s->s_flags |= MS_ACTIVE;
1317	} else if (!sd.cno) {
1318		int busy = false;
1319
1320		if (nilfs_tree_was_touched(s->s_root)) {
1321			busy = nilfs_try_to_shrink_tree(s->s_root);
1322			if (busy && (flags ^ s->s_flags) & MS_RDONLY) {
1323				printk(KERN_ERR "NILFS: the device already "
1324				       "has a %s mount.\n",
1325				       (s->s_flags & MS_RDONLY) ?
1326				       "read-only" : "read/write");
1327				err = -EBUSY;
1328				goto failed_super;
1329			}
1330		}
1331		if (!busy) {
1332			/*
1333			 * Try remount to setup mount states if the current
1334			 * tree is not mounted and only snapshots use this sb.
1335			 */
1336			err = nilfs_remount(s, &flags, data);
1337			if (err)
1338				goto failed_super;
1339		}
1340	}
1341
1342	if (sd.cno) {
1343		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1344		if (err)
1345			goto failed_super;
1346	} else {
1347		root_dentry = dget(s->s_root);
1348	}
1349
1350	if (!s_new)
1351		blkdev_put(sd.bdev, mode);
1352
1353	return root_dentry;
1354
1355 failed_super:
1356	deactivate_locked_super(s);
1357
1358 failed:
1359	if (!s_new)
1360		blkdev_put(sd.bdev, mode);
1361	return ERR_PTR(err);
1362}
1363
1364struct file_system_type nilfs_fs_type = {
1365	.owner    = THIS_MODULE,
1366	.name     = "nilfs2",
1367	.mount    = nilfs_mount,
1368	.kill_sb  = kill_block_super,
1369	.fs_flags = FS_REQUIRES_DEV,
1370};
 
1371
1372static void nilfs_inode_init_once(void *obj)
1373{
1374	struct nilfs_inode_info *ii = obj;
1375
1376	INIT_LIST_HEAD(&ii->i_dirty);
1377#ifdef CONFIG_NILFS_XATTR
1378	init_rwsem(&ii->xattr_sem);
1379#endif
1380	address_space_init_once(&ii->i_btnode_cache);
1381	ii->i_bmap = &ii->i_bmap_data;
1382	inode_init_once(&ii->vfs_inode);
1383}
1384
1385static void nilfs_segbuf_init_once(void *obj)
1386{
1387	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1388}
1389
1390static void nilfs_destroy_cachep(void)
1391{
1392	if (nilfs_inode_cachep)
1393		kmem_cache_destroy(nilfs_inode_cachep);
1394	if (nilfs_transaction_cachep)
1395		kmem_cache_destroy(nilfs_transaction_cachep);
1396	if (nilfs_segbuf_cachep)
1397		kmem_cache_destroy(nilfs_segbuf_cachep);
1398	if (nilfs_btree_path_cache)
1399		kmem_cache_destroy(nilfs_btree_path_cache);
 
 
1400}
1401
1402static int __init nilfs_init_cachep(void)
1403{
1404	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1405			sizeof(struct nilfs_inode_info), 0,
1406			SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
 
1407	if (!nilfs_inode_cachep)
1408		goto fail;
1409
1410	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1411			sizeof(struct nilfs_transaction_info), 0,
1412			SLAB_RECLAIM_ACCOUNT, NULL);
1413	if (!nilfs_transaction_cachep)
1414		goto fail;
1415
1416	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1417			sizeof(struct nilfs_segment_buffer), 0,
1418			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1419	if (!nilfs_segbuf_cachep)
1420		goto fail;
1421
1422	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1423			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1424			0, 0, NULL);
1425	if (!nilfs_btree_path_cache)
1426		goto fail;
1427
1428	return 0;
1429
1430fail:
1431	nilfs_destroy_cachep();
1432	return -ENOMEM;
1433}
1434
1435static int __init init_nilfs_fs(void)
1436{
1437	int err;
1438
1439	err = nilfs_init_cachep();
1440	if (err)
1441		goto fail;
1442
 
 
 
 
1443	err = register_filesystem(&nilfs_fs_type);
1444	if (err)
1445		goto free_cachep;
1446
1447	printk(KERN_INFO "NILFS version 2 loaded\n");
1448	return 0;
1449
 
 
1450free_cachep:
1451	nilfs_destroy_cachep();
1452fail:
1453	return err;
1454}
1455
1456static void __exit exit_nilfs_fs(void)
1457{
1458	nilfs_destroy_cachep();
 
1459	unregister_filesystem(&nilfs_fs_type);
1460}
1461
1462module_init(init_nilfs_fs)
1463module_exit(exit_nilfs_fs)