Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/fs/nfs/file.c
  4 *
  5 *  Copyright (C) 1992  Rick Sladkey
  6 *
  7 *  Changes Copyright (C) 1994 by Florian La Roche
  8 *   - Do not copy data too often around in the kernel.
  9 *   - In nfs_file_read the return value of kmalloc wasn't checked.
 10 *   - Put in a better version of read look-ahead buffering. Original idea
 11 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 12 *
 13 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 14 *
 15 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 16 *
 17 *  nfs regular file handling functions
 18 */
 19
 20#include <linux/module.h>
 21#include <linux/time.h>
 22#include <linux/kernel.h>
 23#include <linux/errno.h>
 24#include <linux/fcntl.h>
 25#include <linux/stat.h>
 26#include <linux/nfs_fs.h>
 27#include <linux/nfs_mount.h>
 28#include <linux/mm.h>
 29#include <linux/pagemap.h>
 
 30#include <linux/gfp.h>
 31#include <linux/swap.h>
 32
 33#include <linux/uaccess.h>
 34
 35#include "delegation.h"
 36#include "internal.h"
 37#include "iostat.h"
 38#include "fscache.h"
 39#include "pnfs.h"
 40
 41#include "nfstrace.h"
 42
 43#define NFSDBG_FACILITY		NFSDBG_FILE
 44
 45static const struct vm_operations_struct nfs_file_vm_ops;
 46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 47/* Hack for future NFS swap support */
 48#ifndef IS_SWAPFILE
 49# define IS_SWAPFILE(inode)	(0)
 50#endif
 51
 52int nfs_check_flags(int flags)
 53{
 54	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 55		return -EINVAL;
 56
 57	return 0;
 58}
 59EXPORT_SYMBOL_GPL(nfs_check_flags);
 60
 61/*
 62 * Open file
 63 */
 64static int
 65nfs_file_open(struct inode *inode, struct file *filp)
 66{
 67	int res;
 68
 69	dprintk("NFS: open file(%pD2)\n", filp);
 
 
 70
 71	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 72	res = nfs_check_flags(filp->f_flags);
 73	if (res)
 74		return res;
 75
 76	res = nfs_open(inode, filp);
 77	return res;
 78}
 79
 80int
 81nfs_file_release(struct inode *inode, struct file *filp)
 82{
 83	dprintk("NFS: release(%pD2)\n", filp);
 
 
 84
 85	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
 86	nfs_file_clear_open_context(filp);
 87	return 0;
 88}
 89EXPORT_SYMBOL_GPL(nfs_file_release);
 90
 91/**
 92 * nfs_revalidate_size - Revalidate the file size
 93 * @inode: pointer to inode struct
 94 * @filp: pointer to struct file
 95 *
 96 * Revalidates the file length. This is basically a wrapper around
 97 * nfs_revalidate_inode() that takes into account the fact that we may
 98 * have cached writes (in which case we don't care about the server's
 99 * idea of what the file length is), or O_DIRECT (in which case we
100 * shouldn't trust the cache).
101 */
102static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
103{
104	struct nfs_server *server = NFS_SERVER(inode);
 
 
 
 
105
106	if (filp->f_flags & O_DIRECT)
107		goto force_reval;
108	if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE))
 
 
109		goto force_reval;
 
110	return 0;
111force_reval:
112	return __nfs_revalidate_inode(server, inode);
113}
114
115loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
116{
117	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
118			filp, offset, whence);
 
 
119
120	/*
121	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
122	 * the cached file length
123	 */
124	if (whence != SEEK_SET && whence != SEEK_CUR) {
125		struct inode *inode = filp->f_mapping->host;
126
127		int retval = nfs_revalidate_file_size(inode, filp);
128		if (retval < 0)
129			return (loff_t)retval;
130	}
131
132	return generic_file_llseek(filp, offset, whence);
133}
134EXPORT_SYMBOL_GPL(nfs_file_llseek);
135
136/*
137 * Flush all dirty pages, and check for write errors.
138 */
139static int
140nfs_file_flush(struct file *file, fl_owner_t id)
141{
142	struct inode	*inode = file_inode(file);
 
143
144	dprintk("NFS: flush(%pD2)\n", file);
 
 
145
146	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
147	if ((file->f_mode & FMODE_WRITE) == 0)
148		return 0;
149
 
 
 
 
 
 
 
150	/* Flush writes to the server and return any errors */
151	return nfs_wb_all(inode);
152}
153
154ssize_t
155nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
 
156{
157	struct inode *inode = file_inode(iocb->ki_filp);
 
158	ssize_t result;
159
160	if (iocb->ki_flags & IOCB_DIRECT)
161		return nfs_file_direct_read(iocb, to);
162
163	dprintk("NFS: read(%pD2, %zu@%lu)\n",
164		iocb->ki_filp,
165		iov_iter_count(to), (unsigned long) iocb->ki_pos);
166
167	nfs_start_io_read(inode);
168	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
169	if (!result) {
170		result = generic_file_read_iter(iocb, to);
171		if (result > 0)
172			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
173	}
174	nfs_end_io_read(inode);
175	return result;
176}
177EXPORT_SYMBOL_GPL(nfs_file_read);
178
179int
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
181{
182	struct inode *inode = file_inode(file);
 
183	int	status;
184
185	dprintk("NFS: mmap(%pD2)\n", file);
 
186
187	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
188	 *       so we call that before revalidating the mapping
189	 */
190	status = generic_file_mmap(file, vma);
191	if (!status) {
192		vma->vm_ops = &nfs_file_vm_ops;
193		status = nfs_revalidate_mapping(inode, file->f_mapping);
194	}
195	return status;
196}
197EXPORT_SYMBOL_GPL(nfs_file_mmap);
198
199/*
200 * Flush any dirty pages for this process, and check for write errors.
201 * The return status from this call provides a reliable indication of
202 * whether any write errors occurred for this process.
 
 
 
 
 
 
 
203 */
204static int
205nfs_file_fsync_commit(struct file *file, int datasync)
206{
 
207	struct nfs_open_context *ctx = nfs_file_open_context(file);
208	struct inode *inode = file_inode(file);
209	int do_resend, status;
210	int ret = 0;
211
212	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
 
 
 
 
 
213
214	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
215	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
216	status = nfs_commit_inode(inode, FLUSH_SYNC);
217	if (status == 0)
218		status = file_check_and_advance_wb_err(file);
219	if (status < 0) {
 
 
 
220		ret = status;
221		goto out;
222	}
223	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
224	if (do_resend)
225		ret = -EAGAIN;
226out:
227	return ret;
228}
229
230int
231nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
232{
233	int ret;
234	struct inode *inode = file_inode(file);
235
236	trace_nfs_fsync_enter(inode);
237
238	do {
239		ret = file_write_and_wait_range(file, start, end);
240		if (ret != 0)
241			break;
242		ret = nfs_file_fsync_commit(file, datasync);
243		if (!ret)
244			ret = pnfs_sync_inode(inode, !!datasync);
245		/*
246		 * If nfs_file_fsync_commit detected a server reboot, then
247		 * resend all dirty pages that might have been covered by
248		 * the NFS_CONTEXT_RESEND_WRITES flag
249		 */
250		start = 0;
251		end = LLONG_MAX;
252	} while (ret == -EAGAIN);
253
254	trace_nfs_fsync_exit(inode, ret);
255	return ret;
256}
257EXPORT_SYMBOL_GPL(nfs_file_fsync);
258
259/*
260 * Decide whether a read/modify/write cycle may be more efficient
261 * then a modify/write/read cycle when writing to a page in the
262 * page cache.
263 *
264 * Some pNFS layout drivers can only read/write at a certain block
265 * granularity like all block devices and therefore we must perform
266 * read/modify/write whenever a page hasn't read yet and the data
267 * to be written there is not aligned to a block boundary and/or
268 * smaller than the block size.
269 *
270 * The modify/write/read cycle may occur if a page is read before
271 * being completely filled by the writer.  In this situation, the
272 * page must be completely written to stable storage on the server
273 * before it can be refilled by reading in the page from the server.
274 * This can lead to expensive, small, FILE_SYNC mode writes being
275 * done.
276 *
277 * It may be more efficient to read the page first if the file is
278 * open for reading in addition to writing, the page is not marked
279 * as Uptodate, it is not dirty or waiting to be committed,
280 * indicating that it was previously allocated and then modified,
281 * that there were valid bytes of data in that range of the file,
282 * and that the new data won't completely replace the old data in
283 * that range of the file.
284 */
285static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len)
 
286{
287	unsigned int pglen = nfs_page_length(page);
288	unsigned int offset = pos & (PAGE_SIZE - 1);
289	unsigned int end = offset + len;
290
291	return !pglen || (end >= pglen && !offset);
292}
293
294static bool nfs_want_read_modify_write(struct file *file, struct page *page,
295			loff_t pos, unsigned int len)
296{
297	/*
298	 * Up-to-date pages, those with ongoing or full-page write
299	 * don't need read/modify/write
300	 */
301	if (PageUptodate(page) || PagePrivate(page) ||
302	    nfs_full_page_write(page, pos, len))
303		return false;
304
305	if (pnfs_ld_read_whole_page(file->f_mapping->host))
306		return true;
307	/* Open for reading too? */
308	if (file->f_mode & FMODE_READ)
309		return true;
310	return false;
311}
312
313/*
314 * This does the "real" work of the write. We must allocate and lock the
315 * page to be sent back to the generic routine, which then copies the
316 * data from user space.
317 *
318 * If the writer ends up delaying the write, the writer needs to
319 * increment the page use counts until he is done with the page.
320 */
321static int nfs_write_begin(struct file *file, struct address_space *mapping,
322			loff_t pos, unsigned len, unsigned flags,
323			struct page **pagep, void **fsdata)
324{
325	int ret;
326	pgoff_t index = pos >> PAGE_SHIFT;
327	struct page *page;
328	int once_thru = 0;
329
330	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
331		file, mapping->host->i_ino, len, (long long) pos);
 
 
332
333start:
 
 
 
 
 
 
 
 
 
334	page = grab_cache_page_write_begin(mapping, index, flags);
335	if (!page)
336		return -ENOMEM;
337	*pagep = page;
338
339	ret = nfs_flush_incompatible(file, page);
340	if (ret) {
341		unlock_page(page);
342		put_page(page);
343	} else if (!once_thru &&
344		   nfs_want_read_modify_write(file, page, pos, len)) {
345		once_thru = 1;
346		ret = nfs_readpage(file, page);
347		put_page(page);
348		if (!ret)
349			goto start;
350	}
351	return ret;
352}
353
354static int nfs_write_end(struct file *file, struct address_space *mapping,
355			loff_t pos, unsigned len, unsigned copied,
356			struct page *page, void *fsdata)
357{
358	unsigned offset = pos & (PAGE_SIZE - 1);
359	struct nfs_open_context *ctx = nfs_file_open_context(file);
360	int status;
361
362	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
363		file, mapping->host->i_ino, len, (long long) pos);
 
 
364
365	/*
366	 * Zero any uninitialised parts of the page, and then mark the page
367	 * as up to date if it turns out that we're extending the file.
368	 */
369	if (!PageUptodate(page)) {
370		unsigned pglen = nfs_page_length(page);
371		unsigned end = offset + copied;
372
373		if (pglen == 0) {
374			zero_user_segments(page, 0, offset,
375					end, PAGE_SIZE);
376			SetPageUptodate(page);
377		} else if (end >= pglen) {
378			zero_user_segment(page, end, PAGE_SIZE);
379			if (offset == 0)
380				SetPageUptodate(page);
381		} else
382			zero_user_segment(page, pglen, PAGE_SIZE);
383	}
384
385	status = nfs_updatepage(file, page, offset, copied);
386
387	unlock_page(page);
388	put_page(page);
389
390	if (status < 0)
391		return status;
392	NFS_I(mapping->host)->write_io += copied;
393
394	if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
395		status = nfs_wb_all(mapping->host);
396		if (status < 0)
397			return status;
398	}
399
400	return copied;
401}
402
403/*
404 * Partially or wholly invalidate a page
405 * - Release the private state associated with a page if undergoing complete
406 *   page invalidation
407 * - Called if either PG_private or PG_fscache is set on the page
408 * - Caller holds page lock
409 */
410static void nfs_invalidate_page(struct page *page, unsigned int offset,
411				unsigned int length)
412{
413	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
414		 page, offset, length);
415
416	if (offset != 0 || length < PAGE_SIZE)
417		return;
418	/* Cancel any unstarted writes on this page */
419	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
420
421	nfs_fscache_invalidate_page(page, page->mapping->host);
422}
423
424/*
425 * Attempt to release the private state associated with a page
426 * - Called if either PG_private or PG_fscache is set on the page
427 * - Caller holds page lock
428 * - Return true (may release page) or false (may not)
429 */
430static int nfs_release_page(struct page *page, gfp_t gfp)
431{
 
 
432	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
433
 
 
 
 
 
 
 
 
 
 
 
 
434	/* If PagePrivate() is set, then the page is not freeable */
435	if (PagePrivate(page))
436		return 0;
437	return nfs_fscache_release_page(page, gfp);
438}
439
440static void nfs_check_dirty_writeback(struct page *page,
441				bool *dirty, bool *writeback)
442{
443	struct nfs_inode *nfsi;
444	struct address_space *mapping = page_file_mapping(page);
445
446	if (!mapping || PageSwapCache(page))
447		return;
448
449	/*
450	 * Check if an unstable page is currently being committed and
451	 * if so, have the VM treat it as if the page is under writeback
452	 * so it will not block due to pages that will shortly be freeable.
453	 */
454	nfsi = NFS_I(mapping->host);
455	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
456		*writeback = true;
457		return;
458	}
459
460	/*
461	 * If PagePrivate() is set, then the page is not freeable and as the
462	 * inode is not being committed, it's not going to be cleaned in the
463	 * near future so treat it as dirty
464	 */
465	if (PagePrivate(page))
466		*dirty = true;
467}
468
469/*
470 * Attempt to clear the private state associated with a page when an error
471 * occurs that requires the cached contents of an inode to be written back or
472 * destroyed
473 * - Called if either PG_private or fscache is set on the page
474 * - Caller holds page lock
475 * - Return 0 if successful, -error otherwise
476 */
477static int nfs_launder_page(struct page *page)
478{
479	struct inode *inode = page_file_mapping(page)->host;
480	struct nfs_inode *nfsi = NFS_I(inode);
481
482	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
483		inode->i_ino, (long long)page_offset(page));
484
485	nfs_fscache_wait_on_page_write(nfsi, page);
486	return nfs_wb_page(inode, page);
487}
488
489static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
490						sector_t *span)
491{
492	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
493
494	*span = sis->pages;
495
496	return rpc_clnt_swap_activate(clnt);
497}
498
499static void nfs_swap_deactivate(struct file *file)
500{
501	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
502
503	rpc_clnt_swap_deactivate(clnt);
504}
505
506const struct address_space_operations nfs_file_aops = {
507	.readpage = nfs_readpage,
508	.readpages = nfs_readpages,
509	.set_page_dirty = __set_page_dirty_nobuffers,
510	.writepage = nfs_writepage,
511	.writepages = nfs_writepages,
512	.write_begin = nfs_write_begin,
513	.write_end = nfs_write_end,
514	.invalidatepage = nfs_invalidate_page,
515	.releasepage = nfs_release_page,
516	.direct_IO = nfs_direct_IO,
517#ifdef CONFIG_MIGRATION
518	.migratepage = nfs_migrate_page,
519#endif
520	.launder_page = nfs_launder_page,
521	.is_dirty_writeback = nfs_check_dirty_writeback,
522	.error_remove_page = generic_error_remove_page,
523	.swap_activate = nfs_swap_activate,
524	.swap_deactivate = nfs_swap_deactivate,
525};
526
527/*
528 * Notification that a PTE pointing to an NFS page is about to be made
529 * writable, implying that someone is about to modify the page through a
530 * shared-writable mapping
531 */
532static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
533{
534	struct page *page = vmf->page;
535	struct file *filp = vmf->vma->vm_file;
536	struct inode *inode = file_inode(filp);
537	unsigned pagelen;
538	vm_fault_t ret = VM_FAULT_NOPAGE;
539	struct address_space *mapping;
540
541	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
542		filp, filp->f_mapping->host->i_ino,
 
543		(long long)page_offset(page));
544
545	sb_start_pagefault(inode->i_sb);
546
547	/* make sure the cache has finished storing the page */
548	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
549
550	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
551			nfs_wait_bit_killable, TASK_KILLABLE);
552
553	lock_page(page);
554	mapping = page_file_mapping(page);
555	if (mapping != inode->i_mapping)
556		goto out_unlock;
557
558	wait_on_page_writeback(page);
559
560	pagelen = nfs_page_length(page);
561	if (pagelen == 0)
562		goto out_unlock;
563
564	ret = VM_FAULT_LOCKED;
565	if (nfs_flush_incompatible(filp, page) == 0 &&
566	    nfs_updatepage(filp, page, 0, pagelen) == 0)
567		goto out;
568
569	ret = VM_FAULT_SIGBUS;
570out_unlock:
571	unlock_page(page);
572out:
573	sb_end_pagefault(inode->i_sb);
574	return ret;
575}
576
577static const struct vm_operations_struct nfs_file_vm_ops = {
578	.fault = filemap_fault,
579	.map_pages = filemap_map_pages,
580	.page_mkwrite = nfs_vm_page_mkwrite,
581};
582
583static int nfs_need_check_write(struct file *filp, struct inode *inode)
584{
585	struct nfs_open_context *ctx;
586
 
 
587	ctx = nfs_file_open_context(filp);
588	if (nfs_ctx_key_to_expire(ctx, inode))
589		return 1;
590	return 0;
591}
592
593ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
 
594{
595	struct file *file = iocb->ki_filp;
596	struct inode *inode = file_inode(file);
597	unsigned long written = 0;
598	ssize_t result;
 
599
600	result = nfs_key_timeout_notify(file, inode);
601	if (result)
602		return result;
603
604	if (iocb->ki_flags & IOCB_DIRECT)
605		return nfs_file_direct_write(iocb, from);
606
607	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
608		file, iov_iter_count(from), (long long) iocb->ki_pos);
609
 
610	if (IS_SWAPFILE(inode))
611		goto out_swapfile;
612	/*
613	 * O_APPEND implies that we must revalidate the file length.
614	 */
615	if (iocb->ki_flags & IOCB_APPEND) {
616		result = nfs_revalidate_file_size(inode, file);
617		if (result)
618			goto out;
619	}
620	if (iocb->ki_pos > i_size_read(inode))
621		nfs_revalidate_mapping(inode, file->f_mapping);
622
623	nfs_start_io_write(inode);
624	result = generic_write_checks(iocb, from);
625	if (result > 0) {
626		current->backing_dev_info = inode_to_bdi(inode);
627		result = generic_perform_write(file, from, iocb->ki_pos);
628		current->backing_dev_info = NULL;
629	}
630	nfs_end_io_write(inode);
631	if (result <= 0)
632		goto out;
633
634	written = result;
635	iocb->ki_pos += written;
636	result = generic_write_sync(iocb, written);
637	if (result < 0)
638		goto out;
639
640	/* Return error values */
641	if (nfs_need_check_write(file, inode)) {
642		int err = nfs_wb_all(inode);
643		if (err < 0)
644			result = err;
645	}
646	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
 
647out:
648	return result;
649
650out_swapfile:
651	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
652	return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
653}
654EXPORT_SYMBOL_GPL(nfs_file_write);
655
656static int
657do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
658{
659	struct inode *inode = filp->f_mapping->host;
660	int status = 0;
661	unsigned int saved_type = fl->fl_type;
662
663	/* Try local locking first */
664	posix_test_lock(filp, fl);
665	if (fl->fl_type != F_UNLCK) {
666		/* found a conflict */
667		goto out;
668	}
669	fl->fl_type = saved_type;
670
671	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
672		goto out_noconflict;
673
674	if (is_local)
675		goto out_noconflict;
676
677	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
678out:
679	return status;
680out_noconflict:
681	fl->fl_type = F_UNLCK;
682	goto out;
683}
684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
685static int
686do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
687{
688	struct inode *inode = filp->f_mapping->host;
689	struct nfs_lock_context *l_ctx;
690	int status;
691
692	/*
693	 * Flush all pending writes before doing anything
694	 * with locks..
695	 */
696	nfs_wb_all(inode);
697
698	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
699	if (!IS_ERR(l_ctx)) {
700		status = nfs_iocounter_wait(l_ctx);
701		nfs_put_lock_context(l_ctx);
702		/*  NOTE: special case
703		 * 	If we're signalled while cleaning up locks on process exit, we
704		 * 	still need to complete the unlock.
705		 */
706		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
707			return status;
708	}
709
 
 
 
 
710	/*
711	 * Use local locking if mounted with "-onolock" or with appropriate
712	 * "-olocal_lock="
713	 */
714	if (!is_local)
715		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
716	else
717		status = locks_lock_file_wait(filp, fl);
718	return status;
719}
720
721static int
 
 
 
 
 
722do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
723{
724	struct inode *inode = filp->f_mapping->host;
725	int status;
726
727	/*
728	 * Flush all pending writes before doing anything
729	 * with locks..
730	 */
731	status = nfs_sync_mapping(filp->f_mapping);
732	if (status != 0)
733		goto out;
734
735	/*
736	 * Use local locking if mounted with "-onolock" or with appropriate
737	 * "-olocal_lock="
738	 */
739	if (!is_local)
740		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
741	else
742		status = locks_lock_file_wait(filp, fl);
743	if (status < 0)
744		goto out;
745
746	/*
747	 * Invalidate cache to prevent missing any changes.  If
748	 * the file is mapped, clear the page cache as well so
749	 * those mappings will be loaded.
750	 *
751	 * This makes locking act as a cache coherency point.
752	 */
753	nfs_sync_mapping(filp->f_mapping);
754	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
755		nfs_zap_caches(inode);
756		if (mapping_mapped(filp->f_mapping))
757			nfs_revalidate_mapping(inode, filp->f_mapping);
 
758	}
759out:
760	return status;
761}
762
763/*
764 * Lock a (portion of) a file
765 */
766int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
767{
768	struct inode *inode = filp->f_mapping->host;
769	int ret = -ENOLCK;
770	int is_local = 0;
771
772	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
773			filp, fl->fl_type, fl->fl_flags,
 
 
774			(long long)fl->fl_start, (long long)fl->fl_end);
775
776	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
777
778	/* No mandatory locks over NFS */
779	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
780		goto out_err;
781
782	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
783		is_local = 1;
784
785	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
786		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
787		if (ret < 0)
788			goto out_err;
789	}
790
791	if (IS_GETLK(cmd))
792		ret = do_getlk(filp, cmd, fl, is_local);
793	else if (fl->fl_type == F_UNLCK)
794		ret = do_unlk(filp, cmd, fl, is_local);
795	else
796		ret = do_setlk(filp, cmd, fl, is_local);
797out_err:
798	return ret;
799}
800EXPORT_SYMBOL_GPL(nfs_lock);
801
802/*
803 * Lock a (portion of) a file
804 */
805int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
806{
807	struct inode *inode = filp->f_mapping->host;
808	int is_local = 0;
809
810	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
811			filp, fl->fl_type, fl->fl_flags);
 
 
812
813	if (!(fl->fl_flags & FL_FLOCK))
814		return -ENOLCK;
815
816	/*
817	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
818	 * any standard. In principle we might be able to support LOCK_MAND
819	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
820	 * NFS code is not set up for it.
821	 */
822	if (fl->fl_type & LOCK_MAND)
823		return -EINVAL;
824
825	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
826		is_local = 1;
827
828	/* We're simulating flock() locks using posix locks on the server */
 
 
 
 
829	if (fl->fl_type == F_UNLCK)
830		return do_unlk(filp, cmd, fl, is_local);
831	return do_setlk(filp, cmd, fl, is_local);
832}
833EXPORT_SYMBOL_GPL(nfs_flock);
 
 
 
 
 
 
 
 
 
 
 
834
835const struct file_operations nfs_file_operations = {
836	.llseek		= nfs_file_llseek,
837	.read_iter	= nfs_file_read,
838	.write_iter	= nfs_file_write,
 
 
839	.mmap		= nfs_file_mmap,
840	.open		= nfs_file_open,
841	.flush		= nfs_file_flush,
842	.release	= nfs_file_release,
843	.fsync		= nfs_file_fsync,
844	.lock		= nfs_lock,
845	.flock		= nfs_flock,
846	.splice_read	= generic_file_splice_read,
847	.splice_write	= iter_file_splice_write,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
848	.check_flags	= nfs_check_flags,
849	.setlease	= simple_nosetlease,
850};
851EXPORT_SYMBOL_GPL(nfs_file_operations);
v3.5.6
 
  1/*
  2 *  linux/fs/nfs/file.c
  3 *
  4 *  Copyright (C) 1992  Rick Sladkey
  5 *
  6 *  Changes Copyright (C) 1994 by Florian La Roche
  7 *   - Do not copy data too often around in the kernel.
  8 *   - In nfs_file_read the return value of kmalloc wasn't checked.
  9 *   - Put in a better version of read look-ahead buffering. Original idea
 10 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 11 *
 12 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 13 *
 14 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 15 *
 16 *  nfs regular file handling functions
 17 */
 18
 
 19#include <linux/time.h>
 20#include <linux/kernel.h>
 21#include <linux/errno.h>
 22#include <linux/fcntl.h>
 23#include <linux/stat.h>
 24#include <linux/nfs_fs.h>
 25#include <linux/nfs_mount.h>
 26#include <linux/mm.h>
 27#include <linux/pagemap.h>
 28#include <linux/aio.h>
 29#include <linux/gfp.h>
 30#include <linux/swap.h>
 31
 32#include <asm/uaccess.h>
 33
 34#include "delegation.h"
 35#include "internal.h"
 36#include "iostat.h"
 37#include "fscache.h"
 38#include "pnfs.h"
 39
 
 
 40#define NFSDBG_FACILITY		NFSDBG_FILE
 41
 42static const struct vm_operations_struct nfs_file_vm_ops;
 43
 44const struct inode_operations nfs_file_inode_operations = {
 45	.permission	= nfs_permission,
 46	.getattr	= nfs_getattr,
 47	.setattr	= nfs_setattr,
 48};
 49
 50#ifdef CONFIG_NFS_V3
 51const struct inode_operations nfs3_file_inode_operations = {
 52	.permission	= nfs_permission,
 53	.getattr	= nfs_getattr,
 54	.setattr	= nfs_setattr,
 55	.listxattr	= nfs3_listxattr,
 56	.getxattr	= nfs3_getxattr,
 57	.setxattr	= nfs3_setxattr,
 58	.removexattr	= nfs3_removexattr,
 59};
 60#endif  /* CONFIG_NFS_v3 */
 61
 62/* Hack for future NFS swap support */
 63#ifndef IS_SWAPFILE
 64# define IS_SWAPFILE(inode)	(0)
 65#endif
 66
 67static int nfs_check_flags(int flags)
 68{
 69	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 70		return -EINVAL;
 71
 72	return 0;
 73}
 
 74
 75/*
 76 * Open file
 77 */
 78static int
 79nfs_file_open(struct inode *inode, struct file *filp)
 80{
 81	int res;
 82
 83	dprintk("NFS: open file(%s/%s)\n",
 84			filp->f_path.dentry->d_parent->d_name.name,
 85			filp->f_path.dentry->d_name.name);
 86
 87	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 88	res = nfs_check_flags(filp->f_flags);
 89	if (res)
 90		return res;
 91
 92	res = nfs_open(inode, filp);
 93	return res;
 94}
 95
 96static int
 97nfs_file_release(struct inode *inode, struct file *filp)
 98{
 99	dprintk("NFS: release(%s/%s)\n",
100			filp->f_path.dentry->d_parent->d_name.name,
101			filp->f_path.dentry->d_name.name);
102
103	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
104	return nfs_release(inode, filp);
 
105}
 
106
107/**
108 * nfs_revalidate_size - Revalidate the file size
109 * @inode - pointer to inode struct
110 * @file - pointer to struct file
111 *
112 * Revalidates the file length. This is basically a wrapper around
113 * nfs_revalidate_inode() that takes into account the fact that we may
114 * have cached writes (in which case we don't care about the server's
115 * idea of what the file length is), or O_DIRECT (in which case we
116 * shouldn't trust the cache).
117 */
118static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
119{
120	struct nfs_server *server = NFS_SERVER(inode);
121	struct nfs_inode *nfsi = NFS_I(inode);
122
123	if (nfs_have_delegated_attributes(inode))
124		goto out_noreval;
125
126	if (filp->f_flags & O_DIRECT)
127		goto force_reval;
128	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
129		goto force_reval;
130	if (nfs_attribute_timeout(inode))
131		goto force_reval;
132out_noreval:
133	return 0;
134force_reval:
135	return __nfs_revalidate_inode(server, inode);
136}
137
138static loff_t nfs_file_llseek(struct file *filp, loff_t offset, int origin)
139{
140	dprintk("NFS: llseek file(%s/%s, %lld, %d)\n",
141			filp->f_path.dentry->d_parent->d_name.name,
142			filp->f_path.dentry->d_name.name,
143			offset, origin);
144
145	/*
146	 * origin == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
147	 * the cached file length
148	 */
149	if (origin != SEEK_SET && origin != SEEK_CUR) {
150		struct inode *inode = filp->f_mapping->host;
151
152		int retval = nfs_revalidate_file_size(inode, filp);
153		if (retval < 0)
154			return (loff_t)retval;
155	}
156
157	return generic_file_llseek(filp, offset, origin);
158}
 
159
160/*
161 * Flush all dirty pages, and check for write errors.
162 */
163static int
164nfs_file_flush(struct file *file, fl_owner_t id)
165{
166	struct dentry	*dentry = file->f_path.dentry;
167	struct inode	*inode = dentry->d_inode;
168
169	dprintk("NFS: flush(%s/%s)\n",
170			dentry->d_parent->d_name.name,
171			dentry->d_name.name);
172
173	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
174	if ((file->f_mode & FMODE_WRITE) == 0)
175		return 0;
176
177	/*
178	 * If we're holding a write delegation, then just start the i/o
179	 * but don't wait for completion (or send a commit).
180	 */
181	if (nfs_have_delegation(inode, FMODE_WRITE))
182		return filemap_fdatawrite(file->f_mapping);
183
184	/* Flush writes to the server and return any errors */
185	return vfs_fsync(file, 0);
186}
187
188static ssize_t
189nfs_file_read(struct kiocb *iocb, const struct iovec *iov,
190		unsigned long nr_segs, loff_t pos)
191{
192	struct dentry * dentry = iocb->ki_filp->f_path.dentry;
193	struct inode * inode = dentry->d_inode;
194	ssize_t result;
195
196	if (iocb->ki_filp->f_flags & O_DIRECT)
197		return nfs_file_direct_read(iocb, iov, nr_segs, pos);
198
199	dprintk("NFS: read(%s/%s, %lu@%lu)\n",
200		dentry->d_parent->d_name.name, dentry->d_name.name,
201		(unsigned long) iov_length(iov, nr_segs), (unsigned long) pos);
202
 
203	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
204	if (!result) {
205		result = generic_file_aio_read(iocb, iov, nr_segs, pos);
206		if (result > 0)
207			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
208	}
 
209	return result;
210}
 
211
212static ssize_t
213nfs_file_splice_read(struct file *filp, loff_t *ppos,
214		     struct pipe_inode_info *pipe, size_t count,
215		     unsigned int flags)
216{
217	struct dentry *dentry = filp->f_path.dentry;
218	struct inode *inode = dentry->d_inode;
219	ssize_t res;
220
221	dprintk("NFS: splice_read(%s/%s, %lu@%Lu)\n",
222		dentry->d_parent->d_name.name, dentry->d_name.name,
223		(unsigned long) count, (unsigned long long) *ppos);
224
225	res = nfs_revalidate_mapping(inode, filp->f_mapping);
226	if (!res) {
227		res = generic_file_splice_read(filp, ppos, pipe, count, flags);
228		if (res > 0)
229			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
230	}
231	return res;
232}
233
234static int
235nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
236{
237	struct dentry *dentry = file->f_path.dentry;
238	struct inode *inode = dentry->d_inode;
239	int	status;
240
241	dprintk("NFS: mmap(%s/%s)\n",
242		dentry->d_parent->d_name.name, dentry->d_name.name);
243
244	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
245	 *       so we call that before revalidating the mapping
246	 */
247	status = generic_file_mmap(file, vma);
248	if (!status) {
249		vma->vm_ops = &nfs_file_vm_ops;
250		status = nfs_revalidate_mapping(inode, file->f_mapping);
251	}
252	return status;
253}
 
254
255/*
256 * Flush any dirty pages for this process, and check for write errors.
257 * The return status from this call provides a reliable indication of
258 * whether any write errors occurred for this process.
259 *
260 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
261 * disk, but it retrieves and clears ctx->error after synching, despite
262 * the two being set at the same time in nfs_context_set_write_error().
263 * This is because the former is used to notify the _next_ call to
264 * nfs_file_write() that a write error occurred, and hence cause it to
265 * fall back to doing a synchronous write.
266 */
267static int
268nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
269{
270	struct dentry *dentry = file->f_path.dentry;
271	struct nfs_open_context *ctx = nfs_file_open_context(file);
272	struct inode *inode = dentry->d_inode;
273	int have_error, status;
274	int ret = 0;
275
276	dprintk("NFS: fsync file(%s/%s) datasync %d\n",
277			dentry->d_parent->d_name.name, dentry->d_name.name,
278			datasync);
279
280	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
281	mutex_lock(&inode->i_mutex);
282
283	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
284	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
285	status = nfs_commit_inode(inode, FLUSH_SYNC);
286	if (status >= 0 && ret < 0)
287		status = ret;
288	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
289	if (have_error)
290		ret = xchg(&ctx->error, 0);
291	if (!ret && status < 0)
292		ret = status;
293	if (!ret && !datasync)
294		/* application has asked for meta-data sync */
295		ret = pnfs_layoutcommit_inode(inode, true);
296	mutex_unlock(&inode->i_mutex);
 
 
297	return ret;
298}
299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300/*
301 * Decide whether a read/modify/write cycle may be more efficient
302 * then a modify/write/read cycle when writing to a page in the
303 * page cache.
304 *
 
 
 
 
 
 
305 * The modify/write/read cycle may occur if a page is read before
306 * being completely filled by the writer.  In this situation, the
307 * page must be completely written to stable storage on the server
308 * before it can be refilled by reading in the page from the server.
309 * This can lead to expensive, small, FILE_SYNC mode writes being
310 * done.
311 *
312 * It may be more efficient to read the page first if the file is
313 * open for reading in addition to writing, the page is not marked
314 * as Uptodate, it is not dirty or waiting to be committed,
315 * indicating that it was previously allocated and then modified,
316 * that there were valid bytes of data in that range of the file,
317 * and that the new data won't completely replace the old data in
318 * that range of the file.
319 */
320static int nfs_want_read_modify_write(struct file *file, struct page *page,
321			loff_t pos, unsigned len)
322{
323	unsigned int pglen = nfs_page_length(page);
324	unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
325	unsigned int end = offset + len;
326
327	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
328	    !PageUptodate(page) &&		/* Uptodate? */
329	    !PagePrivate(page) &&		/* i/o request already? */
330	    pglen &&				/* valid bytes of file? */
331	    (end < pglen || offset))		/* replace all valid bytes? */
332		return 1;
333	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
334}
335
336/*
337 * This does the "real" work of the write. We must allocate and lock the
338 * page to be sent back to the generic routine, which then copies the
339 * data from user space.
340 *
341 * If the writer ends up delaying the write, the writer needs to
342 * increment the page use counts until he is done with the page.
343 */
344static int nfs_write_begin(struct file *file, struct address_space *mapping,
345			loff_t pos, unsigned len, unsigned flags,
346			struct page **pagep, void **fsdata)
347{
348	int ret;
349	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
350	struct page *page;
351	int once_thru = 0;
352
353	dfprintk(PAGECACHE, "NFS: write_begin(%s/%s(%ld), %u@%lld)\n",
354		file->f_path.dentry->d_parent->d_name.name,
355		file->f_path.dentry->d_name.name,
356		mapping->host->i_ino, len, (long long) pos);
357
358start:
359	/*
360	 * Prevent starvation issues if someone is doing a consistency
361	 * sync-to-disk
362	 */
363	ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
364			nfs_wait_bit_killable, TASK_KILLABLE);
365	if (ret)
366		return ret;
367
368	page = grab_cache_page_write_begin(mapping, index, flags);
369	if (!page)
370		return -ENOMEM;
371	*pagep = page;
372
373	ret = nfs_flush_incompatible(file, page);
374	if (ret) {
375		unlock_page(page);
376		page_cache_release(page);
377	} else if (!once_thru &&
378		   nfs_want_read_modify_write(file, page, pos, len)) {
379		once_thru = 1;
380		ret = nfs_readpage(file, page);
381		page_cache_release(page);
382		if (!ret)
383			goto start;
384	}
385	return ret;
386}
387
388static int nfs_write_end(struct file *file, struct address_space *mapping,
389			loff_t pos, unsigned len, unsigned copied,
390			struct page *page, void *fsdata)
391{
392	unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
 
393	int status;
394
395	dfprintk(PAGECACHE, "NFS: write_end(%s/%s(%ld), %u@%lld)\n",
396		file->f_path.dentry->d_parent->d_name.name,
397		file->f_path.dentry->d_name.name,
398		mapping->host->i_ino, len, (long long) pos);
399
400	/*
401	 * Zero any uninitialised parts of the page, and then mark the page
402	 * as up to date if it turns out that we're extending the file.
403	 */
404	if (!PageUptodate(page)) {
405		unsigned pglen = nfs_page_length(page);
406		unsigned end = offset + len;
407
408		if (pglen == 0) {
409			zero_user_segments(page, 0, offset,
410					end, PAGE_CACHE_SIZE);
411			SetPageUptodate(page);
412		} else if (end >= pglen) {
413			zero_user_segment(page, end, PAGE_CACHE_SIZE);
414			if (offset == 0)
415				SetPageUptodate(page);
416		} else
417			zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
418	}
419
420	status = nfs_updatepage(file, page, offset, copied);
421
422	unlock_page(page);
423	page_cache_release(page);
424
425	if (status < 0)
426		return status;
427	NFS_I(mapping->host)->write_io += copied;
 
 
 
 
 
 
 
428	return copied;
429}
430
431/*
432 * Partially or wholly invalidate a page
433 * - Release the private state associated with a page if undergoing complete
434 *   page invalidation
435 * - Called if either PG_private or PG_fscache is set on the page
436 * - Caller holds page lock
437 */
438static void nfs_invalidate_page(struct page *page, unsigned long offset)
 
439{
440	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %lu)\n", page, offset);
 
441
442	if (offset != 0)
443		return;
444	/* Cancel any unstarted writes on this page */
445	nfs_wb_page_cancel(page->mapping->host, page);
446
447	nfs_fscache_invalidate_page(page, page->mapping->host);
448}
449
450/*
451 * Attempt to release the private state associated with a page
452 * - Called if either PG_private or PG_fscache is set on the page
453 * - Caller holds page lock
454 * - Return true (may release page) or false (may not)
455 */
456static int nfs_release_page(struct page *page, gfp_t gfp)
457{
458	struct address_space *mapping = page->mapping;
459
460	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
461
462	/* Only do I/O if gfp is a superset of GFP_KERNEL, and we're not
463	 * doing this memory reclaim for a fs-related allocation.
464	 */
465	if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL &&
466	    !(current->flags & PF_FSTRANS)) {
467		int how = FLUSH_SYNC;
468
469		/* Don't let kswapd deadlock waiting for OOM RPC calls */
470		if (current_is_kswapd())
471			how = 0;
472		nfs_commit_inode(mapping->host, how);
473	}
474	/* If PagePrivate() is set, then the page is not freeable */
475	if (PagePrivate(page))
476		return 0;
477	return nfs_fscache_release_page(page, gfp);
478}
479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
480/*
481 * Attempt to clear the private state associated with a page when an error
482 * occurs that requires the cached contents of an inode to be written back or
483 * destroyed
484 * - Called if either PG_private or fscache is set on the page
485 * - Caller holds page lock
486 * - Return 0 if successful, -error otherwise
487 */
488static int nfs_launder_page(struct page *page)
489{
490	struct inode *inode = page->mapping->host;
491	struct nfs_inode *nfsi = NFS_I(inode);
492
493	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
494		inode->i_ino, (long long)page_offset(page));
495
496	nfs_fscache_wait_on_page_write(nfsi, page);
497	return nfs_wb_page(inode, page);
498}
499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500const struct address_space_operations nfs_file_aops = {
501	.readpage = nfs_readpage,
502	.readpages = nfs_readpages,
503	.set_page_dirty = __set_page_dirty_nobuffers,
504	.writepage = nfs_writepage,
505	.writepages = nfs_writepages,
506	.write_begin = nfs_write_begin,
507	.write_end = nfs_write_end,
508	.invalidatepage = nfs_invalidate_page,
509	.releasepage = nfs_release_page,
510	.direct_IO = nfs_direct_IO,
 
511	.migratepage = nfs_migrate_page,
 
512	.launder_page = nfs_launder_page,
 
513	.error_remove_page = generic_error_remove_page,
 
 
514};
515
516/*
517 * Notification that a PTE pointing to an NFS page is about to be made
518 * writable, implying that someone is about to modify the page through a
519 * shared-writable mapping
520 */
521static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
522{
523	struct page *page = vmf->page;
524	struct file *filp = vma->vm_file;
525	struct dentry *dentry = filp->f_path.dentry;
526	unsigned pagelen;
527	int ret = VM_FAULT_NOPAGE;
528	struct address_space *mapping;
529
530	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%s/%s(%ld), offset %lld)\n",
531		dentry->d_parent->d_name.name, dentry->d_name.name,
532		filp->f_mapping->host->i_ino,
533		(long long)page_offset(page));
534
 
 
535	/* make sure the cache has finished storing the page */
536	nfs_fscache_wait_on_page_write(NFS_I(dentry->d_inode), page);
 
 
 
537
538	lock_page(page);
539	mapping = page->mapping;
540	if (mapping != dentry->d_inode->i_mapping)
541		goto out_unlock;
542
543	wait_on_page_writeback(page);
544
545	pagelen = nfs_page_length(page);
546	if (pagelen == 0)
547		goto out_unlock;
548
549	ret = VM_FAULT_LOCKED;
550	if (nfs_flush_incompatible(filp, page) == 0 &&
551	    nfs_updatepage(filp, page, 0, pagelen) == 0)
552		goto out;
553
554	ret = VM_FAULT_SIGBUS;
555out_unlock:
556	unlock_page(page);
557out:
 
558	return ret;
559}
560
561static const struct vm_operations_struct nfs_file_vm_ops = {
562	.fault = filemap_fault,
 
563	.page_mkwrite = nfs_vm_page_mkwrite,
564};
565
566static int nfs_need_sync_write(struct file *filp, struct inode *inode)
567{
568	struct nfs_open_context *ctx;
569
570	if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
571		return 1;
572	ctx = nfs_file_open_context(filp);
573	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags))
574		return 1;
575	return 0;
576}
577
578static ssize_t nfs_file_write(struct kiocb *iocb, const struct iovec *iov,
579				unsigned long nr_segs, loff_t pos)
580{
581	struct dentry * dentry = iocb->ki_filp->f_path.dentry;
582	struct inode * inode = dentry->d_inode;
583	unsigned long written = 0;
584	ssize_t result;
585	size_t count = iov_length(iov, nr_segs);
586
587	if (iocb->ki_filp->f_flags & O_DIRECT)
588		return nfs_file_direct_write(iocb, iov, nr_segs, pos);
 
589
590	dprintk("NFS: write(%s/%s, %lu@%Ld)\n",
591		dentry->d_parent->d_name.name, dentry->d_name.name,
592		(unsigned long) count, (long long) pos);
 
 
593
594	result = -EBUSY;
595	if (IS_SWAPFILE(inode))
596		goto out_swapfile;
597	/*
598	 * O_APPEND implies that we must revalidate the file length.
599	 */
600	if (iocb->ki_filp->f_flags & O_APPEND) {
601		result = nfs_revalidate_file_size(inode, iocb->ki_filp);
602		if (result)
603			goto out;
604	}
 
 
605
606	result = count;
607	if (!count)
 
 
 
 
 
 
 
608		goto out;
609
610	result = generic_file_aio_write(iocb, iov, nr_segs, pos);
611	if (result > 0)
612		written = result;
613
614	/* Return error values for O_DSYNC and IS_SYNC() */
615	if (result >= 0 && nfs_need_sync_write(iocb->ki_filp, inode)) {
616		int err = vfs_fsync(iocb->ki_filp, 0);
 
 
617		if (err < 0)
618			result = err;
619	}
620	if (result > 0)
621		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
622out:
623	return result;
624
625out_swapfile:
626	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
627	goto out;
628}
629
630static ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe,
631				     struct file *filp, loff_t *ppos,
632				     size_t count, unsigned int flags)
633{
634	struct dentry *dentry = filp->f_path.dentry;
635	struct inode *inode = dentry->d_inode;
636	unsigned long written = 0;
637	ssize_t ret;
638
639	dprintk("NFS splice_write(%s/%s, %lu@%llu)\n",
640		dentry->d_parent->d_name.name, dentry->d_name.name,
641		(unsigned long) count, (unsigned long long) *ppos);
642
643	/*
644	 * The combination of splice and an O_APPEND destination is disallowed.
645	 */
646
647	ret = generic_file_splice_write(pipe, filp, ppos, count, flags);
648	if (ret > 0)
649		written = ret;
650
651	if (ret >= 0 && nfs_need_sync_write(filp, inode)) {
652		int err = vfs_fsync(filp, 0);
653		if (err < 0)
654			ret = err;
655	}
656	if (ret > 0)
657		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
658	return ret;
659}
 
660
661static int
662do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
663{
664	struct inode *inode = filp->f_mapping->host;
665	int status = 0;
666	unsigned int saved_type = fl->fl_type;
667
668	/* Try local locking first */
669	posix_test_lock(filp, fl);
670	if (fl->fl_type != F_UNLCK) {
671		/* found a conflict */
672		goto out;
673	}
674	fl->fl_type = saved_type;
675
676	if (nfs_have_delegation(inode, FMODE_READ))
677		goto out_noconflict;
678
679	if (is_local)
680		goto out_noconflict;
681
682	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
683out:
684	return status;
685out_noconflict:
686	fl->fl_type = F_UNLCK;
687	goto out;
688}
689
690static int do_vfs_lock(struct file *file, struct file_lock *fl)
691{
692	int res = 0;
693	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
694		case FL_POSIX:
695			res = posix_lock_file_wait(file, fl);
696			break;
697		case FL_FLOCK:
698			res = flock_lock_file_wait(file, fl);
699			break;
700		default:
701			BUG();
702	}
703	return res;
704}
705
706static int
707do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
708{
709	struct inode *inode = filp->f_mapping->host;
 
710	int status;
711
712	/*
713	 * Flush all pending writes before doing anything
714	 * with locks..
715	 */
716	nfs_sync_mapping(filp->f_mapping);
 
 
 
 
 
 
 
 
 
 
 
 
717
718	/* NOTE: special case
719	 * 	If we're signalled while cleaning up locks on process exit, we
720	 * 	still need to complete the unlock.
721	 */
722	/*
723	 * Use local locking if mounted with "-onolock" or with appropriate
724	 * "-olocal_lock="
725	 */
726	if (!is_local)
727		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
728	else
729		status = do_vfs_lock(filp, fl);
730	return status;
731}
732
733static int
734is_time_granular(struct timespec *ts) {
735	return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
736}
737
738static int
739do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
740{
741	struct inode *inode = filp->f_mapping->host;
742	int status;
743
744	/*
745	 * Flush all pending writes before doing anything
746	 * with locks..
747	 */
748	status = nfs_sync_mapping(filp->f_mapping);
749	if (status != 0)
750		goto out;
751
752	/*
753	 * Use local locking if mounted with "-onolock" or with appropriate
754	 * "-olocal_lock="
755	 */
756	if (!is_local)
757		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
758	else
759		status = do_vfs_lock(filp, fl);
760	if (status < 0)
761		goto out;
762
763	/*
764	 * Revalidate the cache if the server has time stamps granular
765	 * enough to detect subsecond changes.  Otherwise, clear the
766	 * cache to prevent missing any changes.
767	 *
768	 * This makes locking act as a cache coherency point.
769	 */
770	nfs_sync_mapping(filp->f_mapping);
771	if (!nfs_have_delegation(inode, FMODE_READ)) {
772		if (is_time_granular(&NFS_SERVER(inode)->time_delta))
773			__nfs_revalidate_inode(NFS_SERVER(inode), inode);
774		else
775			nfs_zap_caches(inode);
776	}
777out:
778	return status;
779}
780
781/*
782 * Lock a (portion of) a file
783 */
784static int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
785{
786	struct inode *inode = filp->f_mapping->host;
787	int ret = -ENOLCK;
788	int is_local = 0;
789
790	dprintk("NFS: lock(%s/%s, t=%x, fl=%x, r=%lld:%lld)\n",
791			filp->f_path.dentry->d_parent->d_name.name,
792			filp->f_path.dentry->d_name.name,
793			fl->fl_type, fl->fl_flags,
794			(long long)fl->fl_start, (long long)fl->fl_end);
795
796	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
797
798	/* No mandatory locks over NFS */
799	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
800		goto out_err;
801
802	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
803		is_local = 1;
804
805	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
806		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
807		if (ret < 0)
808			goto out_err;
809	}
810
811	if (IS_GETLK(cmd))
812		ret = do_getlk(filp, cmd, fl, is_local);
813	else if (fl->fl_type == F_UNLCK)
814		ret = do_unlk(filp, cmd, fl, is_local);
815	else
816		ret = do_setlk(filp, cmd, fl, is_local);
817out_err:
818	return ret;
819}
 
820
821/*
822 * Lock a (portion of) a file
823 */
824static int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
825{
826	struct inode *inode = filp->f_mapping->host;
827	int is_local = 0;
828
829	dprintk("NFS: flock(%s/%s, t=%x, fl=%x)\n",
830			filp->f_path.dentry->d_parent->d_name.name,
831			filp->f_path.dentry->d_name.name,
832			fl->fl_type, fl->fl_flags);
833
834	if (!(fl->fl_flags & FL_FLOCK))
835		return -ENOLCK;
836
 
 
 
 
 
 
 
 
 
837	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
838		is_local = 1;
839
840	/* We're simulating flock() locks using posix locks on the server */
841	fl->fl_owner = (fl_owner_t)filp;
842	fl->fl_start = 0;
843	fl->fl_end = OFFSET_MAX;
844
845	if (fl->fl_type == F_UNLCK)
846		return do_unlk(filp, cmd, fl, is_local);
847	return do_setlk(filp, cmd, fl, is_local);
848}
849
850/*
851 * There is no protocol support for leases, so we have no way to implement
852 * them correctly in the face of opens by other clients.
853 */
854static int nfs_setlease(struct file *file, long arg, struct file_lock **fl)
855{
856	dprintk("NFS: setlease(%s/%s, arg=%ld)\n",
857			file->f_path.dentry->d_parent->d_name.name,
858			file->f_path.dentry->d_name.name, arg);
859	return -EINVAL;
860}
861
862const struct file_operations nfs_file_operations = {
863	.llseek		= nfs_file_llseek,
864	.read		= do_sync_read,
865	.write		= do_sync_write,
866	.aio_read	= nfs_file_read,
867	.aio_write	= nfs_file_write,
868	.mmap		= nfs_file_mmap,
869	.open		= nfs_file_open,
870	.flush		= nfs_file_flush,
871	.release	= nfs_file_release,
872	.fsync		= nfs_file_fsync,
873	.lock		= nfs_lock,
874	.flock		= nfs_flock,
875	.splice_read	= nfs_file_splice_read,
876	.splice_write	= nfs_file_splice_write,
877	.check_flags	= nfs_check_flags,
878	.setlease	= nfs_setlease,
879};
880
881#ifdef CONFIG_NFS_V4
882static int
883nfs4_file_open(struct inode *inode, struct file *filp)
884{
885	struct nfs_open_context *ctx;
886	struct dentry *dentry = filp->f_path.dentry;
887	struct dentry *parent = NULL;
888	struct inode *dir;
889	unsigned openflags = filp->f_flags;
890	struct iattr attr;
891	int err;
892
893	BUG_ON(inode != dentry->d_inode);
894	/*
895	 * If no cached dentry exists or if it's negative, NFSv4 handled the
896	 * opens in ->lookup() or ->create().
897	 *
898	 * We only get this far for a cached positive dentry.  We skipped
899	 * revalidation, so handle it here by dropping the dentry and returning
900	 * -EOPENSTALE.  The VFS will retry the lookup/create/open.
901	 */
902
903	dprintk("NFS: open file(%s/%s)\n",
904		dentry->d_parent->d_name.name,
905		dentry->d_name.name);
906
907	if ((openflags & O_ACCMODE) == 3)
908		openflags--;
909
910	/* We can't create new files here */
911	openflags &= ~(O_CREAT|O_EXCL);
912
913	parent = dget_parent(dentry);
914	dir = parent->d_inode;
915
916	ctx = alloc_nfs_open_context(filp->f_path.dentry, filp->f_mode);
917	err = PTR_ERR(ctx);
918	if (IS_ERR(ctx))
919		goto out;
920
921	attr.ia_valid = ATTR_OPEN;
922	if (openflags & O_TRUNC) {
923		attr.ia_valid |= ATTR_SIZE;
924		attr.ia_size = 0;
925		nfs_wb_all(inode);
926	}
927
928	inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, &attr);
929	if (IS_ERR(inode)) {
930		err = PTR_ERR(inode);
931		switch (err) {
932		case -EPERM:
933		case -EACCES:
934		case -EDQUOT:
935		case -ENOSPC:
936		case -EROFS:
937			goto out_put_ctx;
938		default:
939			goto out_drop;
940		}
941	}
942	iput(inode);
943	if (inode != dentry->d_inode)
944		goto out_drop;
945
946	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
947	nfs_file_set_open_context(filp, ctx);
948	err = 0;
949
950out_put_ctx:
951	put_nfs_open_context(ctx);
952out:
953	dput(parent);
954	return err;
955
956out_drop:
957	d_drop(dentry);
958	err = -EOPENSTALE;
959	goto out_put_ctx;
960}
961
962const struct file_operations nfs4_file_operations = {
963	.llseek		= nfs_file_llseek,
964	.read		= do_sync_read,
965	.write		= do_sync_write,
966	.aio_read	= nfs_file_read,
967	.aio_write	= nfs_file_write,
968	.mmap		= nfs_file_mmap,
969	.open		= nfs4_file_open,
970	.flush		= nfs_file_flush,
971	.release	= nfs_file_release,
972	.fsync		= nfs_file_fsync,
973	.lock		= nfs_lock,
974	.flock		= nfs_flock,
975	.splice_read	= nfs_file_splice_read,
976	.splice_write	= nfs_file_splice_write,
977	.check_flags	= nfs_check_flags,
978	.setlease	= nfs_setlease,
979};
980#endif /* CONFIG_NFS_V4 */