Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *	ds2490.c  USB to one wire bridge
   4 *
   5 * Copyright (c) 2004 Evgeniy Polyakov <zbr@ioremap.net>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/module.h>
   9#include <linux/kernel.h>
  10#include <linux/mod_devicetable.h>
  11#include <linux/usb.h>
  12#include <linux/slab.h>
  13
  14#include <linux/w1.h>
  15
  16/* USB Standard */
  17/* USB Control request vendor type */
  18#define VENDOR				0x40
  19
  20/* COMMAND TYPE CODES */
  21#define CONTROL_CMD			0x00
  22#define COMM_CMD			0x01
  23#define MODE_CMD			0x02
  24
  25/* CONTROL COMMAND CODES */
  26#define CTL_RESET_DEVICE		0x0000
  27#define CTL_START_EXE			0x0001
  28#define CTL_RESUME_EXE			0x0002
  29#define CTL_HALT_EXE_IDLE		0x0003
  30#define CTL_HALT_EXE_DONE		0x0004
  31#define CTL_FLUSH_COMM_CMDS		0x0007
  32#define CTL_FLUSH_RCV_BUFFER		0x0008
  33#define CTL_FLUSH_XMT_BUFFER		0x0009
  34#define CTL_GET_COMM_CMDS		0x000A
  35
  36/* MODE COMMAND CODES */
  37#define MOD_PULSE_EN			0x0000
  38#define MOD_SPEED_CHANGE_EN		0x0001
  39#define MOD_1WIRE_SPEED			0x0002
  40#define MOD_STRONG_PU_DURATION		0x0003
  41#define MOD_PULLDOWN_SLEWRATE		0x0004
  42#define MOD_PROG_PULSE_DURATION		0x0005
  43#define MOD_WRITE1_LOWTIME		0x0006
  44#define MOD_DSOW0_TREC			0x0007
  45
  46/* COMMUNICATION COMMAND CODES */
  47#define COMM_ERROR_ESCAPE		0x0601
  48#define COMM_SET_DURATION		0x0012
  49#define COMM_BIT_IO			0x0020
  50#define COMM_PULSE			0x0030
  51#define COMM_1_WIRE_RESET		0x0042
  52#define COMM_BYTE_IO			0x0052
  53#define COMM_MATCH_ACCESS		0x0064
  54#define COMM_BLOCK_IO			0x0074
  55#define COMM_READ_STRAIGHT		0x0080
  56#define COMM_DO_RELEASE			0x6092
  57#define COMM_SET_PATH			0x00A2
  58#define COMM_WRITE_SRAM_PAGE		0x00B2
  59#define COMM_WRITE_EPROM		0x00C4
  60#define COMM_READ_CRC_PROT_PAGE		0x00D4
  61#define COMM_READ_REDIRECT_PAGE_CRC	0x21E4
  62#define COMM_SEARCH_ACCESS		0x00F4
  63
  64/* Communication command bits */
  65#define COMM_TYPE			0x0008
  66#define COMM_SE				0x0008
  67#define COMM_D				0x0008
  68#define COMM_Z				0x0008
  69#define COMM_CH				0x0008
  70#define COMM_SM				0x0008
  71#define COMM_R				0x0008
  72#define COMM_IM				0x0001
  73
  74#define COMM_PS				0x4000
  75#define COMM_PST			0x4000
  76#define COMM_CIB			0x4000
  77#define COMM_RTS			0x4000
  78#define COMM_DT				0x2000
  79#define COMM_SPU			0x1000
  80#define COMM_F				0x0800
  81#define COMM_NTF			0x0400
  82#define COMM_ICP			0x0200
  83#define COMM_RST			0x0100
  84
  85#define PULSE_PROG			0x01
  86#define PULSE_SPUE			0x02
  87
  88#define BRANCH_MAIN			0xCC
  89#define BRANCH_AUX			0x33
  90
  91/* Status flags */
  92#define ST_SPUA				0x01  /* Strong Pull-up is active */
  93#define ST_PRGA				0x02  /* 12V programming pulse is being generated */
  94#define ST_12VP				0x04  /* external 12V programming voltage is present */
  95#define ST_PMOD				0x08  /* DS2490 powered from USB and external sources */
  96#define ST_HALT				0x10  /* DS2490 is currently halted */
  97#define ST_IDLE				0x20  /* DS2490 is currently idle */
  98#define ST_EPOF				0x80
  99/* Status transfer size, 16 bytes status, 16 byte result flags */
 100#define ST_SIZE				0x20
 101
 102/* Result Register flags */
 103#define RR_DETECT			0xA5 /* New device detected */
 104#define RR_NRS				0x01 /* Reset no presence or ... */
 105#define RR_SH				0x02 /* short on reset or set path */
 106#define RR_APP				0x04 /* alarming presence on reset */
 107#define RR_VPP				0x08 /* 12V expected not seen */
 108#define RR_CMP				0x10 /* compare error */
 109#define RR_CRC				0x20 /* CRC error detected */
 110#define RR_RDP				0x40 /* redirected page */
 111#define RR_EOS				0x80 /* end of search error */
 112
 113#define SPEED_NORMAL			0x00
 114#define SPEED_FLEXIBLE			0x01
 115#define SPEED_OVERDRIVE			0x02
 116
 117#define NUM_EP				4
 118#define EP_CONTROL			0
 119#define EP_STATUS			1
 120#define EP_DATA_OUT			2
 121#define EP_DATA_IN			3
 122
 123struct ds_device {
 
 124	struct list_head	ds_entry;
 125
 126	struct usb_device	*udev;
 127	struct usb_interface	*intf;
 128
 129	int			ep[NUM_EP];
 130
 131	/* Strong PullUp
 132	 * 0: pullup not active, else duration in milliseconds
 133	 */
 134	int			spu_sleep;
 135	/* spu_bit contains COMM_SPU or 0 depending on if the strong pullup
 136	 * should be active or not for writes.
 137	 */
 138	u16			spu_bit;
 139
 140	u8			st_buf[ST_SIZE];
 141	u8			byte_buf;
 142
 143	struct w1_bus_master	master;
 144};
 145
 146struct ds_status {
 
 147	u8			enable;
 148	u8			speed;
 149	u8			pullup_dur;
 150	u8			ppuls_dur;
 151	u8			pulldown_slew;
 152	u8			write1_time;
 153	u8			write0_time;
 154	u8			reserved0;
 155	u8			status;
 156	u8			command0;
 157	u8			command1;
 158	u8			command_buffer_status;
 159	u8			data_out_buffer_status;
 160	u8			data_in_buffer_status;
 161	u8			reserved1;
 162	u8			reserved2;
 
 
 
 
 
 
 163};
 
 
 
 
 
 
 
 164
 165static LIST_HEAD(ds_devices);
 166static DEFINE_MUTEX(ds_mutex);
 167
 
 
 
 
 
 
 
 168static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
 169{
 170	int err;
 171
 172	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
 173			CONTROL_CMD, VENDOR, value, index, NULL, 0, 1000);
 174	if (err < 0) {
 175		pr_err("Failed to send command control message %x.%x: err=%d.\n",
 176				value, index, err);
 177		return err;
 178	}
 179
 180	return err;
 181}
 182
 183static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
 184{
 185	int err;
 186
 187	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
 188			MODE_CMD, VENDOR, value, index, NULL, 0, 1000);
 189	if (err < 0) {
 190		pr_err("Failed to send mode control message %x.%x: err=%d.\n",
 191				value, index, err);
 192		return err;
 193	}
 194
 195	return err;
 196}
 197
 198static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
 199{
 200	int err;
 201
 202	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
 203			COMM_CMD, VENDOR, value, index, NULL, 0, 1000);
 204	if (err < 0) {
 205		pr_err("Failed to send control message %x.%x: err=%d.\n",
 206				value, index, err);
 207		return err;
 208	}
 209
 210	return err;
 211}
 212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213static inline void ds_print_msg(unsigned char *buf, unsigned char *str, int off)
 214{
 215	pr_info("%45s: %8x\n", str, buf[off]);
 216}
 217
 218static void ds_dump_status(struct ds_device *dev, unsigned char *buf, int count)
 219{
 220	int i;
 221
 222	pr_info("0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
 223	for (i = 0; i < count; ++i)
 224		pr_info("%02x ", buf[i]);
 225	pr_info("\n");
 226
 227	if (count >= 16) {
 228		ds_print_msg(buf, "enable flag", 0);
 229		ds_print_msg(buf, "1-wire speed", 1);
 230		ds_print_msg(buf, "strong pullup duration", 2);
 231		ds_print_msg(buf, "programming pulse duration", 3);
 232		ds_print_msg(buf, "pulldown slew rate control", 4);
 233		ds_print_msg(buf, "write-1 low time", 5);
 234		ds_print_msg(buf, "data sample offset/write-0 recovery time",
 235			6);
 236		ds_print_msg(buf, "reserved (test register)", 7);
 237		ds_print_msg(buf, "device status flags", 8);
 238		ds_print_msg(buf, "communication command byte 1", 9);
 239		ds_print_msg(buf, "communication command byte 2", 10);
 240		ds_print_msg(buf, "communication command buffer status", 11);
 241		ds_print_msg(buf, "1-wire data output buffer status", 12);
 242		ds_print_msg(buf, "1-wire data input buffer status", 13);
 243		ds_print_msg(buf, "reserved", 14);
 244		ds_print_msg(buf, "reserved", 15);
 245	}
 246	for (i = 16; i < count; ++i) {
 247		if (buf[i] == RR_DETECT) {
 248			ds_print_msg(buf, "new device detect", i);
 249			continue;
 250		}
 251		ds_print_msg(buf, "Result Register Value: ", i);
 252		if (buf[i] & RR_NRS)
 253			pr_info("NRS: Reset no presence or ...\n");
 254		if (buf[i] & RR_SH)
 255			pr_info("SH: short on reset or set path\n");
 256		if (buf[i] & RR_APP)
 257			pr_info("APP: alarming presence on reset\n");
 258		if (buf[i] & RR_VPP)
 259			pr_info("VPP: 12V expected not seen\n");
 260		if (buf[i] & RR_CMP)
 261			pr_info("CMP: compare error\n");
 262		if (buf[i] & RR_CRC)
 263			pr_info("CRC: CRC error detected\n");
 264		if (buf[i] & RR_RDP)
 265			pr_info("RDP: redirected page\n");
 266		if (buf[i] & RR_EOS)
 267			pr_info("EOS: end of search error\n");
 268	}
 269}
 270
 271static int ds_recv_status(struct ds_device *dev, struct ds_status *st,
 272			  bool dump)
 273{
 274	int count, err;
 275
 276	if (st)
 277		memset(st, 0, sizeof(*st));
 278
 279	count = 0;
 280	err = usb_interrupt_msg(dev->udev,
 281				usb_rcvintpipe(dev->udev,
 282					       dev->ep[EP_STATUS]),
 283				dev->st_buf, sizeof(dev->st_buf),
 284				&count, 1000);
 285	if (err < 0) {
 286		pr_err("Failed to read 1-wire data from 0x%x: err=%d.\n",
 287		       dev->ep[EP_STATUS], err);
 288		return err;
 289	}
 290
 291	if (dump)
 292		ds_dump_status(dev, dev->st_buf, count);
 293
 294	if (st && count >= sizeof(*st))
 295		memcpy(st, dev->st_buf, sizeof(*st));
 296
 297	return count;
 298}
 299
 300static void ds_reset_device(struct ds_device *dev)
 301{
 302	ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
 303	/* Always allow strong pullup which allow individual writes to use
 304	 * the strong pullup.
 305	 */
 306	if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE))
 307		pr_err("ds_reset_device: Error allowing strong pullup\n");
 
 308	/* Chip strong pullup time was cleared. */
 309	if (dev->spu_sleep) {
 310		/* lower 4 bits are 0, see ds_set_pullup */
 311		u8 del = dev->spu_sleep>>4;
 312		if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del))
 313			pr_err("ds_reset_device: Error setting duration\n");
 
 314	}
 315}
 316
 317static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
 318{
 319	int count, err;
 
 320
 321	/* Careful on size.  If size is less than what is available in
 322	 * the input buffer, the device fails the bulk transfer and
 323	 * clears the input buffer.  It could read the maximum size of
 324	 * the data buffer, but then do you return the first, last, or
 325	 * some set of the middle size bytes?  As long as the rest of
 326	 * the code is correct there will be size bytes waiting.  A
 327	 * call to ds_wait_status will wait until the device is idle
 328	 * and any data to be received would have been available.
 329	 */
 330	count = 0;
 331	err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
 332				buf, size, &count, 1000);
 333	if (err < 0) {
 334		pr_info("Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
 
 
 
 335		usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
 336		ds_recv_status(dev, NULL, true);
 
 
 337		return err;
 338	}
 339
 340#if 0
 341	{
 342		int i;
 343
 344		printk("%s: count=%d: ", __func__, count);
 345		for (i = 0; i < count; ++i)
 346			printk("%02x ", buf[i]);
 347		printk("\n");
 348	}
 349#endif
 350	return count;
 351}
 352
 353static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
 354{
 355	int count, err;
 356
 357	count = 0;
 358	err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
 359	if (err < 0) {
 360		pr_err("Failed to write 1-wire data to ep0x%x: "
 361			"err=%d.\n", dev->ep[EP_DATA_OUT], err);
 362		return err;
 363	}
 364
 365	return err;
 366}
 367
 368#if 0
 369
 370int ds_stop_pulse(struct ds_device *dev, int limit)
 371{
 372	struct ds_status st;
 373	int count = 0, err = 0;
 
 374
 375	do {
 376		err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
 377		if (err)
 378			break;
 379		err = ds_send_control(dev, CTL_RESUME_EXE, 0);
 380		if (err)
 381			break;
 382		err = ds_recv_status(dev, &st, false);
 383		if (err)
 384			break;
 385
 386		if ((st.status & ST_SPUA) == 0) {
 387			err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
 388			if (err)
 389				break;
 390		}
 391	} while (++count < limit);
 392
 393	return err;
 394}
 395
 396int ds_detect(struct ds_device *dev, struct ds_status *st)
 397{
 398	int err;
 399
 400	err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
 401	if (err)
 402		return err;
 403
 404	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
 405	if (err)
 406		return err;
 407
 408	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
 409	if (err)
 410		return err;
 411
 412	err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
 413	if (err)
 414		return err;
 415
 416	err = ds_dump_status(dev, st);
 417
 418	return err;
 419}
 420
 421#endif  /*  0  */
 422
 423static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
 424{
 
 425	int err, count = 0;
 426
 427	do {
 428		st->status = 0;
 429		err = ds_recv_status(dev, st, false);
 430#if 0
 431		if (err >= 0) {
 432			int i;
 433			printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
 434			for (i = 0; i < err; ++i)
 435				printk("%02x ", dev->st_buf[i]);
 436			printk("\n");
 437		}
 438#endif
 439	} while (!(st->status & ST_IDLE) && !(err < 0) && ++count < 100);
 440
 441	if (err >= 16 && st->status & ST_EPOF) {
 442		pr_info("Resetting device after ST_EPOF.\n");
 443		ds_reset_device(dev);
 444		/* Always dump the device status. */
 445		count = 101;
 446	}
 447
 448	/* Dump the status for errors or if there is extended return data.
 449	 * The extended status includes new device detection (maybe someone
 450	 * can do something with it).
 451	 */
 452	if (err > 16 || count >= 100 || err < 0)
 453		ds_dump_status(dev, dev->st_buf, err);
 454
 455	/* Extended data isn't an error.  Well, a short is, but the dump
 456	 * would have already told the user that and we can't do anything
 457	 * about it in software anyway.
 458	 */
 459	if (count >= 100 || err < 0)
 460		return -1;
 461	else
 462		return 0;
 463}
 464
 465static int ds_reset(struct ds_device *dev)
 466{
 467	int err;
 468
 469	/* Other potentionally interesting flags for reset.
 470	 *
 471	 * COMM_NTF: Return result register feedback.  This could be used to
 472	 * detect some conditions such as short, alarming presence, or
 473	 * detect if a new device was detected.
 474	 *
 475	 * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE:
 476	 * Select the data transfer rate.
 477	 */
 478	err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL);
 479	if (err)
 480		return err;
 481
 482	return 0;
 483}
 484
 485#if 0
 486static int ds_set_speed(struct ds_device *dev, int speed)
 487{
 488	int err;
 489
 490	if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
 491		return -EINVAL;
 492
 493	if (speed != SPEED_OVERDRIVE)
 494		speed = SPEED_FLEXIBLE;
 495
 496	speed &= 0xff;
 497
 498	err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
 499	if (err)
 500		return err;
 501
 502	return err;
 503}
 504#endif  /*  0  */
 505
 506static int ds_set_pullup(struct ds_device *dev, int delay)
 507{
 508	int err = 0;
 509	u8 del = 1 + (u8)(delay >> 4);
 510	/* Just storing delay would not get the trunication and roundup. */
 511	int ms = del<<4;
 512
 513	/* Enable spu_bit if a delay is set. */
 514	dev->spu_bit = delay ? COMM_SPU : 0;
 515	/* If delay is zero, it has already been disabled, if the time is
 516	 * the same as the hardware was last programmed to, there is also
 517	 * nothing more to do.  Compare with the recalculated value ms
 518	 * rather than del or delay which can have a different value.
 519	 */
 520	if (delay == 0 || ms == dev->spu_sleep)
 521		return err;
 522
 523	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
 524	if (err)
 525		return err;
 526
 527	dev->spu_sleep = ms;
 528
 529	return err;
 530}
 531
 532static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
 533{
 534	int err;
 535	struct ds_status st;
 536
 537	err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
 538		0);
 539	if (err)
 540		return err;
 541
 542	ds_wait_status(dev, &st);
 543
 544	err = ds_recv_data(dev, tbit, sizeof(*tbit));
 545	if (err < 0)
 546		return err;
 547
 548	return 0;
 549}
 550
 551#if 0
 552static int ds_write_bit(struct ds_device *dev, u8 bit)
 553{
 554	int err;
 555	struct ds_status st;
 556
 557	/* Set COMM_ICP to write without a readback.  Note, this will
 558	 * produce one time slot, a down followed by an up with COMM_D
 559	 * only determing the timing.
 560	 */
 561	err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
 562		(bit ? COMM_D : 0), 0);
 563	if (err)
 564		return err;
 565
 566	ds_wait_status(dev, &st);
 567
 568	return 0;
 569}
 570#endif
 571
 572static int ds_write_byte(struct ds_device *dev, u8 byte)
 573{
 574	int err;
 575	struct ds_status st;
 
 576
 577	err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte);
 578	if (err)
 579		return err;
 580
 581	if (dev->spu_bit)
 582		msleep(dev->spu_sleep);
 583
 584	err = ds_wait_status(dev, &st);
 585	if (err)
 586		return err;
 587
 588	err = ds_recv_data(dev, &dev->byte_buf, 1);
 589	if (err < 0)
 590		return err;
 591
 592	return !(byte == dev->byte_buf);
 593}
 594
 595static int ds_read_byte(struct ds_device *dev, u8 *byte)
 596{
 597	int err;
 598	struct ds_status st;
 599
 600	err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM, 0xff);
 601	if (err)
 602		return err;
 603
 604	ds_wait_status(dev, &st);
 605
 606	err = ds_recv_data(dev, byte, sizeof(*byte));
 607	if (err < 0)
 608		return err;
 609
 610	return 0;
 611}
 612
 613static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
 614{
 615	struct ds_status st;
 616	int err;
 617
 618	if (len > 64*1024)
 619		return -E2BIG;
 620
 621	memset(buf, 0xFF, len);
 622
 623	err = ds_send_data(dev, buf, len);
 624	if (err < 0)
 625		return err;
 626
 627	err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
 628	if (err)
 629		return err;
 630
 631	ds_wait_status(dev, &st);
 632
 633	memset(buf, 0x00, len);
 634	err = ds_recv_data(dev, buf, len);
 635
 636	return err;
 637}
 638
 639static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
 640{
 641	int err;
 642	struct ds_status st;
 643
 644	err = ds_send_data(dev, buf, len);
 645	if (err < 0)
 646		return err;
 647
 648	err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len);
 649	if (err)
 650		return err;
 651
 652	if (dev->spu_bit)
 653		msleep(dev->spu_sleep);
 654
 655	ds_wait_status(dev, &st);
 656
 657	err = ds_recv_data(dev, buf, len);
 658	if (err < 0)
 659		return err;
 660
 661	return !(err == len);
 662}
 663
 664static void ds9490r_search(void *data, struct w1_master *master,
 665	u8 search_type, w1_slave_found_callback callback)
 
 666{
 667	/* When starting with an existing id, the first id returned will
 668	 * be that device (if it is still on the bus most likely).
 669	 *
 670	 * If the number of devices found is less than or equal to the
 671	 * search_limit, that number of IDs will be returned.  If there are
 672	 * more, search_limit IDs will be returned followed by a non-zero
 673	 * discrepency value.
 674	 */
 675	struct ds_device *dev = data;
 676	int err;
 677	u16 value, index;
 678	struct ds_status st;
 679	int search_limit;
 680	int found = 0;
 681	int i;
 682
 683	/* DS18b20 spec, 13.16 ms per device, 75 per second, sleep for
 684	 * discovering 8 devices (1 bulk transfer and 1/2 FIFO size) at a time.
 685	 */
 686	const unsigned long jtime = msecs_to_jiffies(1000*8/75);
 687	/* FIFO 128 bytes, bulk packet size 64, read a multiple of the
 688	 * packet size.
 689	 */
 690	const size_t bufsize = 2 * 64;
 691	u64 *buf;
 692
 693	buf = kmalloc(bufsize, GFP_KERNEL);
 694	if (!buf)
 695		return;
 696
 697	mutex_lock(&master->bus_mutex);
 698
 699	/* address to start searching at */
 700	if (ds_send_data(dev, (u8 *)&master->search_id, 8) < 0)
 701		goto search_out;
 702	master->search_id = 0;
 703
 704	value = COMM_SEARCH_ACCESS | COMM_IM | COMM_RST | COMM_SM | COMM_F |
 705		COMM_RTS;
 706	search_limit = master->max_slave_count;
 707	if (search_limit > 255)
 708		search_limit = 0;
 709	index = search_type | (search_limit << 8);
 710	if (ds_send_control(dev, value, index) < 0)
 711		goto search_out;
 712
 713	do {
 714		schedule_timeout(jtime);
 715
 716		err = ds_recv_status(dev, &st, false);
 717		if (err < 0 || err < sizeof(st))
 718			break;
 
 
 719
 720		if (st.data_in_buffer_status) {
 721			/* Bulk in can receive partial ids, but when it does
 722			 * they fail crc and will be discarded anyway.
 723			 * That has only been seen when status in buffer
 724			 * is 0 and bulk is read anyway, so don't read
 725			 * bulk without first checking if status says there
 726			 * is data to read.
 727			 */
 728			err = ds_recv_data(dev, (u8 *)buf, bufsize);
 729			if (err < 0)
 730				break;
 731			for (i = 0; i < err/8; ++i) {
 732				++found;
 733				if (found <= search_limit)
 734					callback(master, buf[i]);
 735				/* can't know if there will be a discrepancy
 736				 * value after until the next id */
 737				if (found == search_limit)
 738					master->search_id = buf[i];
 739			}
 740		}
 741
 742		if (test_bit(W1_ABORT_SEARCH, &master->flags))
 743			break;
 744	} while (!(st.status & (ST_IDLE | ST_HALT)));
 745
 746	/* only continue the search if some weren't found */
 747	if (found <= search_limit) {
 748		master->search_id = 0;
 749	} else if (!test_bit(W1_WARN_MAX_COUNT, &master->flags)) {
 750		/* Only max_slave_count will be scanned in a search,
 751		 * but it will start where it left off next search
 752		 * until all ids are identified and then it will start
 753		 * over.  A continued search will report the previous
 754		 * last id as the first id (provided it is still on the
 755		 * bus).
 756		 */
 757		dev_info(&dev->udev->dev, "%s: max_slave_count %d reached, "
 758			"will continue next search.\n", __func__,
 759			master->max_slave_count);
 760		set_bit(W1_WARN_MAX_COUNT, &master->flags);
 761	}
 762search_out:
 763	mutex_unlock(&master->bus_mutex);
 764	kfree(buf);
 765}
 766
 767#if 0
 768/*
 769 * FIXME: if this disabled code is ever used in the future all ds_send_data()
 770 * calls must be changed to use a DMAable buffer.
 771 */
 772static int ds_match_access(struct ds_device *dev, u64 init)
 773{
 774	int err;
 775	struct ds_status st;
 776
 777	err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
 778	if (err)
 779		return err;
 780
 781	ds_wait_status(dev, &st);
 782
 783	err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
 784	if (err)
 785		return err;
 786
 787	ds_wait_status(dev, &st);
 788
 789	return 0;
 790}
 791
 792static int ds_set_path(struct ds_device *dev, u64 init)
 793{
 794	int err;
 795	struct ds_status st;
 796	u8 buf[9];
 797
 798	memcpy(buf, &init, 8);
 799	buf[8] = BRANCH_MAIN;
 800
 801	err = ds_send_data(dev, buf, sizeof(buf));
 802	if (err)
 803		return err;
 804
 805	ds_wait_status(dev, &st);
 806
 807	err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
 808	if (err)
 809		return err;
 810
 811	ds_wait_status(dev, &st);
 812
 813	return 0;
 814}
 815
 816#endif  /*  0  */
 817
 818static u8 ds9490r_touch_bit(void *data, u8 bit)
 819{
 
 820	struct ds_device *dev = data;
 821
 822	if (ds_touch_bit(dev, bit, &dev->byte_buf))
 823		return 0;
 824
 825	return dev->byte_buf;
 826}
 827
 828#if 0
 829static void ds9490r_write_bit(void *data, u8 bit)
 830{
 831	struct ds_device *dev = data;
 832
 833	ds_write_bit(dev, bit);
 834}
 835
 836static u8 ds9490r_read_bit(void *data)
 837{
 838	struct ds_device *dev = data;
 839	int err;
 
 840
 841	err = ds_touch_bit(dev, 1, &dev->byte_buf);
 842	if (err)
 843		return 0;
 844
 845	return dev->byte_buf & 1;
 846}
 847#endif
 848
 849static void ds9490r_write_byte(void *data, u8 byte)
 850{
 851	struct ds_device *dev = data;
 852
 853	ds_write_byte(dev, byte);
 854}
 855
 856static u8 ds9490r_read_byte(void *data)
 857{
 858	struct ds_device *dev = data;
 859	int err;
 
 860
 861	err = ds_read_byte(dev, &dev->byte_buf);
 862	if (err)
 863		return 0;
 864
 865	return dev->byte_buf;
 866}
 867
 868static void ds9490r_write_block(void *data, const u8 *buf, int len)
 869{
 870	struct ds_device *dev = data;
 871	u8 *tbuf;
 872
 873	if (len <= 0)
 874		return;
 875
 876	tbuf = kmemdup(buf, len, GFP_KERNEL);
 877	if (!tbuf)
 878		return;
 879
 880	ds_write_block(dev, tbuf, len);
 881
 882	kfree(tbuf);
 883}
 884
 885static u8 ds9490r_read_block(void *data, u8 *buf, int len)
 886{
 887	struct ds_device *dev = data;
 888	int err;
 889	u8 *tbuf;
 890
 891	if (len <= 0)
 892		return 0;
 893
 894	tbuf = kmalloc(len, GFP_KERNEL);
 895	if (!tbuf)
 896		return 0;
 897
 898	err = ds_read_block(dev, tbuf, len);
 899	if (err >= 0)
 900		memcpy(buf, tbuf, len);
 901
 902	kfree(tbuf);
 903
 904	return err >= 0 ? len : 0;
 905}
 906
 907static u8 ds9490r_reset(void *data)
 908{
 909	struct ds_device *dev = data;
 910	int err;
 911
 912	err = ds_reset(dev);
 913	if (err)
 914		return 1;
 915
 916	return 0;
 917}
 918
 919static u8 ds9490r_set_pullup(void *data, int delay)
 920{
 921	struct ds_device *dev = data;
 922
 923	if (ds_set_pullup(dev, delay))
 924		return 1;
 925
 926	return 0;
 927}
 928
 929static int ds_w1_init(struct ds_device *dev)
 930{
 931	memset(&dev->master, 0, sizeof(struct w1_bus_master));
 932
 933	/* Reset the device as it can be in a bad state.
 934	 * This is necessary because a block write will wait for data
 935	 * to be placed in the output buffer and block any later
 936	 * commands which will keep accumulating and the device will
 937	 * not be idle.  Another case is removing the ds2490 module
 938	 * while a bus search is in progress, somehow a few commands
 939	 * get through, but the input transfers fail leaving data in
 940	 * the input buffer.  This will cause the next read to fail
 941	 * see the note in ds_recv_data.
 942	 */
 943	ds_reset_device(dev);
 944
 945	dev->master.data	= dev;
 946	dev->master.touch_bit	= &ds9490r_touch_bit;
 947	/* read_bit and write_bit in w1_bus_master are expected to set and
 948	 * sample the line level.  For write_bit that means it is expected to
 949	 * set it to that value and leave it there.  ds2490 only supports an
 950	 * individual time slot at the lowest level.  The requirement from
 951	 * pulling the bus state down to reading the state is 15us, something
 952	 * that isn't realistic on the USB bus anyway.
 953	dev->master.read_bit	= &ds9490r_read_bit;
 954	dev->master.write_bit	= &ds9490r_write_bit;
 955	*/
 956	dev->master.read_byte	= &ds9490r_read_byte;
 957	dev->master.write_byte	= &ds9490r_write_byte;
 958	dev->master.read_block	= &ds9490r_read_block;
 959	dev->master.write_block	= &ds9490r_write_block;
 960	dev->master.reset_bus	= &ds9490r_reset;
 961	dev->master.set_pullup	= &ds9490r_set_pullup;
 962	dev->master.search	= &ds9490r_search;
 963
 964	return w1_add_master_device(&dev->master);
 965}
 966
 967static void ds_w1_fini(struct ds_device *dev)
 968{
 969	w1_remove_master_device(&dev->master);
 970}
 971
 972static int ds_probe(struct usb_interface *intf,
 973		    const struct usb_device_id *udev_id)
 974{
 975	struct usb_device *udev = interface_to_usbdev(intf);
 976	struct usb_endpoint_descriptor *endpoint;
 977	struct usb_host_interface *iface_desc;
 978	struct ds_device *dev;
 979	int i, err, alt;
 980
 981	dev = kzalloc(sizeof(struct ds_device), GFP_KERNEL);
 982	if (!dev) {
 983		pr_info("Failed to allocate new DS9490R structure.\n");
 984		return -ENOMEM;
 985	}
 
 
 986	dev->udev = usb_get_dev(udev);
 987	if (!dev->udev) {
 988		err = -ENOMEM;
 989		goto err_out_free;
 990	}
 991	memset(dev->ep, 0, sizeof(dev->ep));
 992
 993	usb_set_intfdata(intf, dev);
 994
 995	err = usb_reset_configuration(dev->udev);
 996	if (err) {
 997		dev_err(&dev->udev->dev,
 998			"Failed to reset configuration: err=%d.\n", err);
 999		goto err_out_clear;
1000	}
1001
1002	/* alternative 3, 1ms interrupt (greatly speeds search), 64 byte bulk */
1003	alt = 3;
1004	err = usb_set_interface(dev->udev,
1005		intf->cur_altsetting->desc.bInterfaceNumber, alt);
1006	if (err) {
1007		dev_err(&dev->udev->dev, "Failed to set alternative setting %d "
1008			"for %d interface: err=%d.\n", alt,
1009			intf->cur_altsetting->desc.bInterfaceNumber, err);
1010		goto err_out_clear;
1011	}
1012
1013	iface_desc = intf->cur_altsetting;
1014	if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
1015		pr_info("Num endpoints=%d. It is not DS9490R.\n",
1016			iface_desc->desc.bNumEndpoints);
1017		err = -EINVAL;
1018		goto err_out_clear;
1019	}
1020
1021	/*
1022	 * This loop doesn'd show control 0 endpoint,
1023	 * so we will fill only 1-3 endpoints entry.
1024	 */
1025	for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
1026		endpoint = &iface_desc->endpoint[i].desc;
1027
1028		dev->ep[i+1] = endpoint->bEndpointAddress;
1029#if 0
1030		printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
1031			i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
1032			(endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
1033			endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
1034#endif
1035	}
1036
1037	err = ds_w1_init(dev);
1038	if (err)
1039		goto err_out_clear;
1040
1041	mutex_lock(&ds_mutex);
1042	list_add_tail(&dev->ds_entry, &ds_devices);
1043	mutex_unlock(&ds_mutex);
1044
1045	return 0;
1046
1047err_out_clear:
1048	usb_set_intfdata(intf, NULL);
1049	usb_put_dev(dev->udev);
1050err_out_free:
1051	kfree(dev);
1052	return err;
1053}
1054
1055static void ds_disconnect(struct usb_interface *intf)
1056{
1057	struct ds_device *dev;
1058
1059	dev = usb_get_intfdata(intf);
1060	if (!dev)
1061		return;
1062
1063	mutex_lock(&ds_mutex);
1064	list_del(&dev->ds_entry);
1065	mutex_unlock(&ds_mutex);
1066
1067	ds_w1_fini(dev);
1068
1069	usb_set_intfdata(intf, NULL);
1070
1071	usb_put_dev(dev->udev);
1072	kfree(dev);
1073}
1074
1075static const struct usb_device_id ds_id_table[] = {
1076	{ USB_DEVICE(0x04fa, 0x2490) },
1077	{ },
1078};
1079MODULE_DEVICE_TABLE(usb, ds_id_table);
1080
1081static struct usb_driver ds_driver = {
1082	.name =		"DS9490R",
1083	.probe =	ds_probe,
1084	.disconnect =	ds_disconnect,
1085	.id_table =	ds_id_table,
1086};
1087module_usb_driver(ds_driver);
1088
 
1089MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>");
1090MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");
1091MODULE_LICENSE("GPL");
v3.5.6
 
   1/*
   2 *	dscore.c
   3 *
   4 * Copyright (c) 2004 Evgeniy Polyakov <zbr@ioremap.net>
   5 *
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/kernel.h>
  24#include <linux/mod_devicetable.h>
  25#include <linux/usb.h>
  26#include <linux/slab.h>
  27
  28#include "../w1_int.h"
  29#include "../w1.h"
 
 
 
  30
  31/* COMMAND TYPE CODES */
  32#define CONTROL_CMD			0x00
  33#define COMM_CMD			0x01
  34#define MODE_CMD			0x02
  35
  36/* CONTROL COMMAND CODES */
  37#define CTL_RESET_DEVICE		0x0000
  38#define CTL_START_EXE			0x0001
  39#define CTL_RESUME_EXE			0x0002
  40#define CTL_HALT_EXE_IDLE		0x0003
  41#define CTL_HALT_EXE_DONE		0x0004
  42#define CTL_FLUSH_COMM_CMDS		0x0007
  43#define CTL_FLUSH_RCV_BUFFER		0x0008
  44#define CTL_FLUSH_XMT_BUFFER		0x0009
  45#define CTL_GET_COMM_CMDS		0x000A
  46
  47/* MODE COMMAND CODES */
  48#define MOD_PULSE_EN			0x0000
  49#define MOD_SPEED_CHANGE_EN		0x0001
  50#define MOD_1WIRE_SPEED			0x0002
  51#define MOD_STRONG_PU_DURATION		0x0003
  52#define MOD_PULLDOWN_SLEWRATE		0x0004
  53#define MOD_PROG_PULSE_DURATION		0x0005
  54#define MOD_WRITE1_LOWTIME		0x0006
  55#define MOD_DSOW0_TREC			0x0007
  56
  57/* COMMUNICATION COMMAND CODES */
  58#define COMM_ERROR_ESCAPE		0x0601
  59#define COMM_SET_DURATION		0x0012
  60#define COMM_BIT_IO			0x0020
  61#define COMM_PULSE			0x0030
  62#define COMM_1_WIRE_RESET		0x0042
  63#define COMM_BYTE_IO			0x0052
  64#define COMM_MATCH_ACCESS		0x0064
  65#define COMM_BLOCK_IO			0x0074
  66#define COMM_READ_STRAIGHT		0x0080
  67#define COMM_DO_RELEASE			0x6092
  68#define COMM_SET_PATH			0x00A2
  69#define COMM_WRITE_SRAM_PAGE		0x00B2
  70#define COMM_WRITE_EPROM		0x00C4
  71#define COMM_READ_CRC_PROT_PAGE		0x00D4
  72#define COMM_READ_REDIRECT_PAGE_CRC	0x21E4
  73#define COMM_SEARCH_ACCESS		0x00F4
  74
  75/* Communication command bits */
  76#define COMM_TYPE			0x0008
  77#define COMM_SE				0x0008
  78#define COMM_D				0x0008
  79#define COMM_Z				0x0008
  80#define COMM_CH				0x0008
  81#define COMM_SM				0x0008
  82#define COMM_R				0x0008
  83#define COMM_IM				0x0001
  84
  85#define COMM_PS				0x4000
  86#define COMM_PST			0x4000
  87#define COMM_CIB			0x4000
  88#define COMM_RTS			0x4000
  89#define COMM_DT				0x2000
  90#define COMM_SPU			0x1000
  91#define COMM_F				0x0800
  92#define COMM_NTF			0x0400
  93#define COMM_ICP			0x0200
  94#define COMM_RST			0x0100
  95
  96#define PULSE_PROG			0x01
  97#define PULSE_SPUE			0x02
  98
  99#define BRANCH_MAIN			0xCC
 100#define BRANCH_AUX			0x33
 101
 102/* Status flags */
 103#define ST_SPUA				0x01  /* Strong Pull-up is active */
 104#define ST_PRGA				0x02  /* 12V programming pulse is being generated */
 105#define ST_12VP				0x04  /* external 12V programming voltage is present */
 106#define ST_PMOD				0x08  /* DS2490 powered from USB and external sources */
 107#define ST_HALT				0x10  /* DS2490 is currently halted */
 108#define ST_IDLE				0x20  /* DS2490 is currently idle */
 109#define ST_EPOF				0x80
 
 
 110
 111/* Result Register flags */
 112#define RR_DETECT			0xA5 /* New device detected */
 113#define RR_NRS				0x01 /* Reset no presence or ... */
 114#define RR_SH				0x02 /* short on reset or set path */
 115#define RR_APP				0x04 /* alarming presence on reset */
 116#define RR_VPP				0x08 /* 12V expected not seen */
 117#define RR_CMP				0x10 /* compare error */
 118#define RR_CRC				0x20 /* CRC error detected */
 119#define RR_RDP				0x40 /* redirected page */
 120#define RR_EOS				0x80 /* end of search error */
 121
 122#define SPEED_NORMAL			0x00
 123#define SPEED_FLEXIBLE			0x01
 124#define SPEED_OVERDRIVE			0x02
 125
 126#define NUM_EP				4
 127#define EP_CONTROL			0
 128#define EP_STATUS			1
 129#define EP_DATA_OUT			2
 130#define EP_DATA_IN			3
 131
 132struct ds_device
 133{
 134	struct list_head	ds_entry;
 135
 136	struct usb_device	*udev;
 137	struct usb_interface	*intf;
 138
 139	int			ep[NUM_EP];
 140
 141	/* Strong PullUp
 142	 * 0: pullup not active, else duration in milliseconds
 143	 */
 144	int			spu_sleep;
 145	/* spu_bit contains COMM_SPU or 0 depending on if the strong pullup
 146	 * should be active or not for writes.
 147	 */
 148	u16			spu_bit;
 149
 
 
 
 150	struct w1_bus_master	master;
 151};
 152
 153struct ds_status
 154{
 155	u8			enable;
 156	u8			speed;
 157	u8			pullup_dur;
 158	u8			ppuls_dur;
 159	u8			pulldown_slew;
 160	u8			write1_time;
 161	u8			write0_time;
 162	u8			reserved0;
 163	u8			status;
 164	u8			command0;
 165	u8			command1;
 166	u8			command_buffer_status;
 167	u8			data_out_buffer_status;
 168	u8			data_in_buffer_status;
 169	u8			reserved1;
 170	u8			reserved2;
 171
 172};
 173
 174static struct usb_device_id ds_id_table [] = {
 175	{ USB_DEVICE(0x04fa, 0x2490) },
 176	{ },
 177};
 178MODULE_DEVICE_TABLE(usb, ds_id_table);
 179
 180static int ds_probe(struct usb_interface *, const struct usb_device_id *);
 181static void ds_disconnect(struct usb_interface *);
 182
 183static int ds_send_control(struct ds_device *, u16, u16);
 184static int ds_send_control_cmd(struct ds_device *, u16, u16);
 185
 186static LIST_HEAD(ds_devices);
 187static DEFINE_MUTEX(ds_mutex);
 188
 189static struct usb_driver ds_driver = {
 190	.name =		"DS9490R",
 191	.probe =	ds_probe,
 192	.disconnect =	ds_disconnect,
 193	.id_table =	ds_id_table,
 194};
 195
 196static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
 197{
 198	int err;
 199
 200	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
 201			CONTROL_CMD, 0x40, value, index, NULL, 0, 1000);
 202	if (err < 0) {
 203		printk(KERN_ERR "Failed to send command control message %x.%x: err=%d.\n",
 204				value, index, err);
 205		return err;
 206	}
 207
 208	return err;
 209}
 210
 211static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
 212{
 213	int err;
 214
 215	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
 216			MODE_CMD, 0x40, value, index, NULL, 0, 1000);
 217	if (err < 0) {
 218		printk(KERN_ERR "Failed to send mode control message %x.%x: err=%d.\n",
 219				value, index, err);
 220		return err;
 221	}
 222
 223	return err;
 224}
 225
 226static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
 227{
 228	int err;
 229
 230	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
 231			COMM_CMD, 0x40, value, index, NULL, 0, 1000);
 232	if (err < 0) {
 233		printk(KERN_ERR "Failed to send control message %x.%x: err=%d.\n",
 234				value, index, err);
 235		return err;
 236	}
 237
 238	return err;
 239}
 240
 241static int ds_recv_status_nodump(struct ds_device *dev, struct ds_status *st,
 242				 unsigned char *buf, int size)
 243{
 244	int count, err;
 245
 246	memset(st, 0, sizeof(*st));
 247
 248	count = 0;
 249	err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_STATUS]), buf, size, &count, 100);
 250	if (err < 0) {
 251		printk(KERN_ERR "Failed to read 1-wire data from 0x%x: err=%d.\n", dev->ep[EP_STATUS], err);
 252		return err;
 253	}
 254
 255	if (count >= sizeof(*st))
 256		memcpy(st, buf, sizeof(*st));
 257
 258	return count;
 259}
 260
 261static inline void ds_print_msg(unsigned char *buf, unsigned char *str, int off)
 262{
 263	printk(KERN_INFO "%45s: %8x\n", str, buf[off]);
 264}
 265
 266static void ds_dump_status(struct ds_device *dev, unsigned char *buf, int count)
 267{
 268	int i;
 269
 270	printk(KERN_INFO "0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
 271	for (i=0; i<count; ++i)
 272		printk("%02x ", buf[i]);
 273	printk(KERN_INFO "\n");
 274
 275	if (count >= 16) {
 276		ds_print_msg(buf, "enable flag", 0);
 277		ds_print_msg(buf, "1-wire speed", 1);
 278		ds_print_msg(buf, "strong pullup duration", 2);
 279		ds_print_msg(buf, "programming pulse duration", 3);
 280		ds_print_msg(buf, "pulldown slew rate control", 4);
 281		ds_print_msg(buf, "write-1 low time", 5);
 282		ds_print_msg(buf, "data sample offset/write-0 recovery time",
 283			6);
 284		ds_print_msg(buf, "reserved (test register)", 7);
 285		ds_print_msg(buf, "device status flags", 8);
 286		ds_print_msg(buf, "communication command byte 1", 9);
 287		ds_print_msg(buf, "communication command byte 2", 10);
 288		ds_print_msg(buf, "communication command buffer status", 11);
 289		ds_print_msg(buf, "1-wire data output buffer status", 12);
 290		ds_print_msg(buf, "1-wire data input buffer status", 13);
 291		ds_print_msg(buf, "reserved", 14);
 292		ds_print_msg(buf, "reserved", 15);
 293	}
 294	for (i = 16; i < count; ++i) {
 295		if (buf[i] == RR_DETECT) {
 296			ds_print_msg(buf, "new device detect", i);
 297			continue;
 298		}
 299		ds_print_msg(buf, "Result Register Value: ", i);
 300		if (buf[i] & RR_NRS)
 301			printk(KERN_INFO "NRS: Reset no presence or ...\n");
 302		if (buf[i] & RR_SH)
 303			printk(KERN_INFO "SH: short on reset or set path\n");
 304		if (buf[i] & RR_APP)
 305			printk(KERN_INFO "APP: alarming presence on reset\n");
 306		if (buf[i] & RR_VPP)
 307			printk(KERN_INFO "VPP: 12V expected not seen\n");
 308		if (buf[i] & RR_CMP)
 309			printk(KERN_INFO "CMP: compare error\n");
 310		if (buf[i] & RR_CRC)
 311			printk(KERN_INFO "CRC: CRC error detected\n");
 312		if (buf[i] & RR_RDP)
 313			printk(KERN_INFO "RDP: redirected page\n");
 314		if (buf[i] & RR_EOS)
 315			printk(KERN_INFO "EOS: end of search error\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 316	}
 
 
 
 
 
 
 
 
 317}
 318
 319static void ds_reset_device(struct ds_device *dev)
 320{
 321	ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
 322	/* Always allow strong pullup which allow individual writes to use
 323	 * the strong pullup.
 324	 */
 325	if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE))
 326		printk(KERN_ERR "ds_reset_device: "
 327			"Error allowing strong pullup\n");
 328	/* Chip strong pullup time was cleared. */
 329	if (dev->spu_sleep) {
 330		/* lower 4 bits are 0, see ds_set_pullup */
 331		u8 del = dev->spu_sleep>>4;
 332		if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del))
 333			printk(KERN_ERR "ds_reset_device: "
 334				"Error setting duration\n");
 335	}
 336}
 337
 338static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
 339{
 340	int count, err;
 341	struct ds_status st;
 342
 343	/* Careful on size.  If size is less than what is available in
 344	 * the input buffer, the device fails the bulk transfer and
 345	 * clears the input buffer.  It could read the maximum size of
 346	 * the data buffer, but then do you return the first, last, or
 347	 * some set of the middle size bytes?  As long as the rest of
 348	 * the code is correct there will be size bytes waiting.  A
 349	 * call to ds_wait_status will wait until the device is idle
 350	 * and any data to be received would have been available.
 351	 */
 352	count = 0;
 353	err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
 354				buf, size, &count, 1000);
 355	if (err < 0) {
 356		u8 buf[0x20];
 357		int count;
 358
 359		printk(KERN_INFO "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
 360		usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
 361
 362		count = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
 363		ds_dump_status(dev, buf, count);
 364		return err;
 365	}
 366
 367#if 0
 368	{
 369		int i;
 370
 371		printk("%s: count=%d: ", __func__, count);
 372		for (i=0; i<count; ++i)
 373			printk("%02x ", buf[i]);
 374		printk("\n");
 375	}
 376#endif
 377	return count;
 378}
 379
 380static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
 381{
 382	int count, err;
 383
 384	count = 0;
 385	err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
 386	if (err < 0) {
 387		printk(KERN_ERR "Failed to write 1-wire data to ep0x%x: "
 388			"err=%d.\n", dev->ep[EP_DATA_OUT], err);
 389		return err;
 390	}
 391
 392	return err;
 393}
 394
 395#if 0
 396
 397int ds_stop_pulse(struct ds_device *dev, int limit)
 398{
 399	struct ds_status st;
 400	int count = 0, err = 0;
 401	u8 buf[0x20];
 402
 403	do {
 404		err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
 405		if (err)
 406			break;
 407		err = ds_send_control(dev, CTL_RESUME_EXE, 0);
 408		if (err)
 409			break;
 410		err = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
 411		if (err)
 412			break;
 413
 414		if ((st.status & ST_SPUA) == 0) {
 415			err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
 416			if (err)
 417				break;
 418		}
 419	} while(++count < limit);
 420
 421	return err;
 422}
 423
 424int ds_detect(struct ds_device *dev, struct ds_status *st)
 425{
 426	int err;
 427
 428	err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
 429	if (err)
 430		return err;
 431
 432	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
 433	if (err)
 434		return err;
 435
 436	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
 437	if (err)
 438		return err;
 439
 440	err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
 441	if (err)
 442		return err;
 443
 444	err = ds_dump_status(dev, st);
 445
 446	return err;
 447}
 448
 449#endif  /*  0  */
 450
 451static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
 452{
 453	u8 buf[0x20];
 454	int err, count = 0;
 455
 456	do {
 457		err = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
 
 458#if 0
 459		if (err >= 0) {
 460			int i;
 461			printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
 462			for (i=0; i<err; ++i)
 463				printk("%02x ", buf[i]);
 464			printk("\n");
 465		}
 466#endif
 467	} while (!(buf[0x08] & ST_IDLE) && !(err < 0) && ++count < 100);
 468
 469	if (err >= 16 && st->status & ST_EPOF) {
 470		printk(KERN_INFO "Resetting device after ST_EPOF.\n");
 471		ds_reset_device(dev);
 472		/* Always dump the device status. */
 473		count = 101;
 474	}
 475
 476	/* Dump the status for errors or if there is extended return data.
 477	 * The extended status includes new device detection (maybe someone
 478	 * can do something with it).
 479	 */
 480	if (err > 16 || count >= 100 || err < 0)
 481		ds_dump_status(dev, buf, err);
 482
 483	/* Extended data isn't an error.  Well, a short is, but the dump
 484	 * would have already told the user that and we can't do anything
 485	 * about it in software anyway.
 486	 */
 487	if (count >= 100 || err < 0)
 488		return -1;
 489	else
 490		return 0;
 491}
 492
 493static int ds_reset(struct ds_device *dev)
 494{
 495	int err;
 496
 497	/* Other potentionally interesting flags for reset.
 498	 *
 499	 * COMM_NTF: Return result register feedback.  This could be used to
 500	 * detect some conditions such as short, alarming presence, or
 501	 * detect if a new device was detected.
 502	 *
 503	 * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE:
 504	 * Select the data transfer rate.
 505	 */
 506	err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL);
 507	if (err)
 508		return err;
 509
 510	return 0;
 511}
 512
 513#if 0
 514static int ds_set_speed(struct ds_device *dev, int speed)
 515{
 516	int err;
 517
 518	if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
 519		return -EINVAL;
 520
 521	if (speed != SPEED_OVERDRIVE)
 522		speed = SPEED_FLEXIBLE;
 523
 524	speed &= 0xff;
 525
 526	err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
 527	if (err)
 528		return err;
 529
 530	return err;
 531}
 532#endif  /*  0  */
 533
 534static int ds_set_pullup(struct ds_device *dev, int delay)
 535{
 536	int err = 0;
 537	u8 del = 1 + (u8)(delay >> 4);
 538	/* Just storing delay would not get the trunication and roundup. */
 539	int ms = del<<4;
 540
 541	/* Enable spu_bit if a delay is set. */
 542	dev->spu_bit = delay ? COMM_SPU : 0;
 543	/* If delay is zero, it has already been disabled, if the time is
 544	 * the same as the hardware was last programmed to, there is also
 545	 * nothing more to do.  Compare with the recalculated value ms
 546	 * rather than del or delay which can have a different value.
 547	 */
 548	if (delay == 0 || ms == dev->spu_sleep)
 549		return err;
 550
 551	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
 552	if (err)
 553		return err;
 554
 555	dev->spu_sleep = ms;
 556
 557	return err;
 558}
 559
 560static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
 561{
 562	int err;
 563	struct ds_status st;
 564
 565	err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
 566		0);
 567	if (err)
 568		return err;
 569
 570	ds_wait_status(dev, &st);
 571
 572	err = ds_recv_data(dev, tbit, sizeof(*tbit));
 573	if (err < 0)
 574		return err;
 575
 576	return 0;
 577}
 578
 579#if 0
 580static int ds_write_bit(struct ds_device *dev, u8 bit)
 581{
 582	int err;
 583	struct ds_status st;
 584
 585	/* Set COMM_ICP to write without a readback.  Note, this will
 586	 * produce one time slot, a down followed by an up with COMM_D
 587	 * only determing the timing.
 588	 */
 589	err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
 590		(bit ? COMM_D : 0), 0);
 591	if (err)
 592		return err;
 593
 594	ds_wait_status(dev, &st);
 595
 596	return 0;
 597}
 598#endif
 599
 600static int ds_write_byte(struct ds_device *dev, u8 byte)
 601{
 602	int err;
 603	struct ds_status st;
 604	u8 rbyte;
 605
 606	err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte);
 607	if (err)
 608		return err;
 609
 610	if (dev->spu_bit)
 611		msleep(dev->spu_sleep);
 612
 613	err = ds_wait_status(dev, &st);
 614	if (err)
 615		return err;
 616
 617	err = ds_recv_data(dev, &rbyte, sizeof(rbyte));
 618	if (err < 0)
 619		return err;
 620
 621	return !(byte == rbyte);
 622}
 623
 624static int ds_read_byte(struct ds_device *dev, u8 *byte)
 625{
 626	int err;
 627	struct ds_status st;
 628
 629	err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff);
 630	if (err)
 631		return err;
 632
 633	ds_wait_status(dev, &st);
 634
 635	err = ds_recv_data(dev, byte, sizeof(*byte));
 636	if (err < 0)
 637		return err;
 638
 639	return 0;
 640}
 641
 642static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
 643{
 644	struct ds_status st;
 645	int err;
 646
 647	if (len > 64*1024)
 648		return -E2BIG;
 649
 650	memset(buf, 0xFF, len);
 651
 652	err = ds_send_data(dev, buf, len);
 653	if (err < 0)
 654		return err;
 655
 656	err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
 657	if (err)
 658		return err;
 659
 660	ds_wait_status(dev, &st);
 661
 662	memset(buf, 0x00, len);
 663	err = ds_recv_data(dev, buf, len);
 664
 665	return err;
 666}
 667
 668static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
 669{
 670	int err;
 671	struct ds_status st;
 672
 673	err = ds_send_data(dev, buf, len);
 674	if (err < 0)
 675		return err;
 676
 677	err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len);
 678	if (err)
 679		return err;
 680
 681	if (dev->spu_bit)
 682		msleep(dev->spu_sleep);
 683
 684	ds_wait_status(dev, &st);
 685
 686	err = ds_recv_data(dev, buf, len);
 687	if (err < 0)
 688		return err;
 689
 690	return !(err == len);
 691}
 692
 693#if 0
 694
 695static int ds_search(struct ds_device *dev, u64 init, u64 *buf, u8 id_number, int conditional_search)
 696{
 
 
 
 
 
 
 
 
 
 697	int err;
 698	u16 value, index;
 699	struct ds_status st;
 
 
 
 700
 701	memset(buf, 0, sizeof(buf));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 702
 703	err = ds_send_data(ds_dev, (unsigned char *)&init, 8);
 704	if (err)
 705		return err;
 
 
 
 
 
 
 
 
 
 
 706
 707	ds_wait_status(ds_dev, &st);
 
 708
 709	value = COMM_SEARCH_ACCESS | COMM_IM | COMM_SM | COMM_F | COMM_RTS;
 710	index = (conditional_search ? 0xEC : 0xF0) | (id_number << 8);
 711	err = ds_send_control(ds_dev, value, index);
 712	if (err)
 713		return err;
 714
 715	ds_wait_status(ds_dev, &st);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 716
 717	err = ds_recv_data(ds_dev, (unsigned char *)buf, 8*id_number);
 718	if (err < 0)
 719		return err;
 720
 721	return err/8;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 722}
 723
 
 
 
 
 
 724static int ds_match_access(struct ds_device *dev, u64 init)
 725{
 726	int err;
 727	struct ds_status st;
 728
 729	err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
 730	if (err)
 731		return err;
 732
 733	ds_wait_status(dev, &st);
 734
 735	err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
 736	if (err)
 737		return err;
 738
 739	ds_wait_status(dev, &st);
 740
 741	return 0;
 742}
 743
 744static int ds_set_path(struct ds_device *dev, u64 init)
 745{
 746	int err;
 747	struct ds_status st;
 748	u8 buf[9];
 749
 750	memcpy(buf, &init, 8);
 751	buf[8] = BRANCH_MAIN;
 752
 753	err = ds_send_data(dev, buf, sizeof(buf));
 754	if (err)
 755		return err;
 756
 757	ds_wait_status(dev, &st);
 758
 759	err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
 760	if (err)
 761		return err;
 762
 763	ds_wait_status(dev, &st);
 764
 765	return 0;
 766}
 767
 768#endif  /*  0  */
 769
 770static u8 ds9490r_touch_bit(void *data, u8 bit)
 771{
 772	u8 ret;
 773	struct ds_device *dev = data;
 774
 775	if (ds_touch_bit(dev, bit, &ret))
 776		return 0;
 777
 778	return ret;
 779}
 780
 781#if 0
 782static void ds9490r_write_bit(void *data, u8 bit)
 783{
 784	struct ds_device *dev = data;
 785
 786	ds_write_bit(dev, bit);
 787}
 788
 789static u8 ds9490r_read_bit(void *data)
 790{
 791	struct ds_device *dev = data;
 792	int err;
 793	u8 bit = 0;
 794
 795	err = ds_touch_bit(dev, 1, &bit);
 796	if (err)
 797		return 0;
 798
 799	return bit & 1;
 800}
 801#endif
 802
 803static void ds9490r_write_byte(void *data, u8 byte)
 804{
 805	struct ds_device *dev = data;
 806
 807	ds_write_byte(dev, byte);
 808}
 809
 810static u8 ds9490r_read_byte(void *data)
 811{
 812	struct ds_device *dev = data;
 813	int err;
 814	u8 byte = 0;
 815
 816	err = ds_read_byte(dev, &byte);
 817	if (err)
 818		return 0;
 819
 820	return byte;
 821}
 822
 823static void ds9490r_write_block(void *data, const u8 *buf, int len)
 824{
 825	struct ds_device *dev = data;
 
 
 
 
 826
 827	ds_write_block(dev, (u8 *)buf, len);
 
 
 
 
 
 
 828}
 829
 830static u8 ds9490r_read_block(void *data, u8 *buf, int len)
 831{
 832	struct ds_device *dev = data;
 833	int err;
 
 834
 835	err = ds_read_block(dev, buf, len);
 836	if (err < 0)
 
 
 
 837		return 0;
 838
 839	return len;
 
 
 
 
 
 
 840}
 841
 842static u8 ds9490r_reset(void *data)
 843{
 844	struct ds_device *dev = data;
 845	int err;
 846
 847	err = ds_reset(dev);
 848	if (err)
 849		return 1;
 850
 851	return 0;
 852}
 853
 854static u8 ds9490r_set_pullup(void *data, int delay)
 855{
 856	struct ds_device *dev = data;
 857
 858	if (ds_set_pullup(dev, delay))
 859		return 1;
 860
 861	return 0;
 862}
 863
 864static int ds_w1_init(struct ds_device *dev)
 865{
 866	memset(&dev->master, 0, sizeof(struct w1_bus_master));
 867
 868	/* Reset the device as it can be in a bad state.
 869	 * This is necessary because a block write will wait for data
 870	 * to be placed in the output buffer and block any later
 871	 * commands which will keep accumulating and the device will
 872	 * not be idle.  Another case is removing the ds2490 module
 873	 * while a bus search is in progress, somehow a few commands
 874	 * get through, but the input transfers fail leaving data in
 875	 * the input buffer.  This will cause the next read to fail
 876	 * see the note in ds_recv_data.
 877	 */
 878	ds_reset_device(dev);
 879
 880	dev->master.data	= dev;
 881	dev->master.touch_bit	= &ds9490r_touch_bit;
 882	/* read_bit and write_bit in w1_bus_master are expected to set and
 883	 * sample the line level.  For write_bit that means it is expected to
 884	 * set it to that value and leave it there.  ds2490 only supports an
 885	 * individual time slot at the lowest level.  The requirement from
 886	 * pulling the bus state down to reading the state is 15us, something
 887	 * that isn't realistic on the USB bus anyway.
 888	dev->master.read_bit	= &ds9490r_read_bit;
 889	dev->master.write_bit	= &ds9490r_write_bit;
 890	*/
 891	dev->master.read_byte	= &ds9490r_read_byte;
 892	dev->master.write_byte	= &ds9490r_write_byte;
 893	dev->master.read_block	= &ds9490r_read_block;
 894	dev->master.write_block	= &ds9490r_write_block;
 895	dev->master.reset_bus	= &ds9490r_reset;
 896	dev->master.set_pullup	= &ds9490r_set_pullup;
 
 897
 898	return w1_add_master_device(&dev->master);
 899}
 900
 901static void ds_w1_fini(struct ds_device *dev)
 902{
 903	w1_remove_master_device(&dev->master);
 904}
 905
 906static int ds_probe(struct usb_interface *intf,
 907		    const struct usb_device_id *udev_id)
 908{
 909	struct usb_device *udev = interface_to_usbdev(intf);
 910	struct usb_endpoint_descriptor *endpoint;
 911	struct usb_host_interface *iface_desc;
 912	struct ds_device *dev;
 913	int i, err;
 914
 915	dev = kmalloc(sizeof(struct ds_device), GFP_KERNEL);
 916	if (!dev) {
 917		printk(KERN_INFO "Failed to allocate new DS9490R structure.\n");
 918		return -ENOMEM;
 919	}
 920	dev->spu_sleep = 0;
 921	dev->spu_bit = 0;
 922	dev->udev = usb_get_dev(udev);
 923	if (!dev->udev) {
 924		err = -ENOMEM;
 925		goto err_out_free;
 926	}
 927	memset(dev->ep, 0, sizeof(dev->ep));
 928
 929	usb_set_intfdata(intf, dev);
 930
 931	err = usb_set_interface(dev->udev, intf->altsetting[0].desc.bInterfaceNumber, 3);
 932	if (err) {
 933		printk(KERN_ERR "Failed to set alternative setting 3 for %d interface: err=%d.\n",
 934				intf->altsetting[0].desc.bInterfaceNumber, err);
 935		goto err_out_clear;
 936	}
 937
 938	err = usb_reset_configuration(dev->udev);
 
 
 
 939	if (err) {
 940		printk(KERN_ERR "Failed to reset configuration: err=%d.\n", err);
 
 
 941		goto err_out_clear;
 942	}
 943
 944	iface_desc = &intf->altsetting[0];
 945	if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
 946		printk(KERN_INFO "Num endpoints=%d. It is not DS9490R.\n", iface_desc->desc.bNumEndpoints);
 
 947		err = -EINVAL;
 948		goto err_out_clear;
 949	}
 950
 951	/*
 952	 * This loop doesn'd show control 0 endpoint,
 953	 * so we will fill only 1-3 endpoints entry.
 954	 */
 955	for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
 956		endpoint = &iface_desc->endpoint[i].desc;
 957
 958		dev->ep[i+1] = endpoint->bEndpointAddress;
 959#if 0
 960		printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
 961			i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
 962			(endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
 963			endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
 964#endif
 965	}
 966
 967	err = ds_w1_init(dev);
 968	if (err)
 969		goto err_out_clear;
 970
 971	mutex_lock(&ds_mutex);
 972	list_add_tail(&dev->ds_entry, &ds_devices);
 973	mutex_unlock(&ds_mutex);
 974
 975	return 0;
 976
 977err_out_clear:
 978	usb_set_intfdata(intf, NULL);
 979	usb_put_dev(dev->udev);
 980err_out_free:
 981	kfree(dev);
 982	return err;
 983}
 984
 985static void ds_disconnect(struct usb_interface *intf)
 986{
 987	struct ds_device *dev;
 988
 989	dev = usb_get_intfdata(intf);
 990	if (!dev)
 991		return;
 992
 993	mutex_lock(&ds_mutex);
 994	list_del(&dev->ds_entry);
 995	mutex_unlock(&ds_mutex);
 996
 997	ds_w1_fini(dev);
 998
 999	usb_set_intfdata(intf, NULL);
1000
1001	usb_put_dev(dev->udev);
1002	kfree(dev);
1003}
1004
 
 
 
 
 
 
 
 
 
 
 
 
1005module_usb_driver(ds_driver);
1006
1007MODULE_LICENSE("GPL");
1008MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>");
1009MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");