Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * ds2490.c USB to one wire bridge
4 *
5 * Copyright (c) 2004 Evgeniy Polyakov <zbr@ioremap.net>
6 */
7
8#include <linux/module.h>
9#include <linux/kernel.h>
10#include <linux/mod_devicetable.h>
11#include <linux/usb.h>
12#include <linux/slab.h>
13
14#include <linux/w1.h>
15
16/* USB Standard */
17/* USB Control request vendor type */
18#define VENDOR 0x40
19
20/* COMMAND TYPE CODES */
21#define CONTROL_CMD 0x00
22#define COMM_CMD 0x01
23#define MODE_CMD 0x02
24
25/* CONTROL COMMAND CODES */
26#define CTL_RESET_DEVICE 0x0000
27#define CTL_START_EXE 0x0001
28#define CTL_RESUME_EXE 0x0002
29#define CTL_HALT_EXE_IDLE 0x0003
30#define CTL_HALT_EXE_DONE 0x0004
31#define CTL_FLUSH_COMM_CMDS 0x0007
32#define CTL_FLUSH_RCV_BUFFER 0x0008
33#define CTL_FLUSH_XMT_BUFFER 0x0009
34#define CTL_GET_COMM_CMDS 0x000A
35
36/* MODE COMMAND CODES */
37#define MOD_PULSE_EN 0x0000
38#define MOD_SPEED_CHANGE_EN 0x0001
39#define MOD_1WIRE_SPEED 0x0002
40#define MOD_STRONG_PU_DURATION 0x0003
41#define MOD_PULLDOWN_SLEWRATE 0x0004
42#define MOD_PROG_PULSE_DURATION 0x0005
43#define MOD_WRITE1_LOWTIME 0x0006
44#define MOD_DSOW0_TREC 0x0007
45
46/* COMMUNICATION COMMAND CODES */
47#define COMM_ERROR_ESCAPE 0x0601
48#define COMM_SET_DURATION 0x0012
49#define COMM_BIT_IO 0x0020
50#define COMM_PULSE 0x0030
51#define COMM_1_WIRE_RESET 0x0042
52#define COMM_BYTE_IO 0x0052
53#define COMM_MATCH_ACCESS 0x0064
54#define COMM_BLOCK_IO 0x0074
55#define COMM_READ_STRAIGHT 0x0080
56#define COMM_DO_RELEASE 0x6092
57#define COMM_SET_PATH 0x00A2
58#define COMM_WRITE_SRAM_PAGE 0x00B2
59#define COMM_WRITE_EPROM 0x00C4
60#define COMM_READ_CRC_PROT_PAGE 0x00D4
61#define COMM_READ_REDIRECT_PAGE_CRC 0x21E4
62#define COMM_SEARCH_ACCESS 0x00F4
63
64/* Communication command bits */
65#define COMM_TYPE 0x0008
66#define COMM_SE 0x0008
67#define COMM_D 0x0008
68#define COMM_Z 0x0008
69#define COMM_CH 0x0008
70#define COMM_SM 0x0008
71#define COMM_R 0x0008
72#define COMM_IM 0x0001
73
74#define COMM_PS 0x4000
75#define COMM_PST 0x4000
76#define COMM_CIB 0x4000
77#define COMM_RTS 0x4000
78#define COMM_DT 0x2000
79#define COMM_SPU 0x1000
80#define COMM_F 0x0800
81#define COMM_NTF 0x0400
82#define COMM_ICP 0x0200
83#define COMM_RST 0x0100
84
85#define PULSE_PROG 0x01
86#define PULSE_SPUE 0x02
87
88#define BRANCH_MAIN 0xCC
89#define BRANCH_AUX 0x33
90
91/* Status flags */
92#define ST_SPUA 0x01 /* Strong Pull-up is active */
93#define ST_PRGA 0x02 /* 12V programming pulse is being generated */
94#define ST_12VP 0x04 /* external 12V programming voltage is present */
95#define ST_PMOD 0x08 /* DS2490 powered from USB and external sources */
96#define ST_HALT 0x10 /* DS2490 is currently halted */
97#define ST_IDLE 0x20 /* DS2490 is currently idle */
98#define ST_EPOF 0x80
99/* Status transfer size, 16 bytes status, 16 byte result flags */
100#define ST_SIZE 0x20
101
102/* Result Register flags */
103#define RR_DETECT 0xA5 /* New device detected */
104#define RR_NRS 0x01 /* Reset no presence or ... */
105#define RR_SH 0x02 /* short on reset or set path */
106#define RR_APP 0x04 /* alarming presence on reset */
107#define RR_VPP 0x08 /* 12V expected not seen */
108#define RR_CMP 0x10 /* compare error */
109#define RR_CRC 0x20 /* CRC error detected */
110#define RR_RDP 0x40 /* redirected page */
111#define RR_EOS 0x80 /* end of search error */
112
113#define SPEED_NORMAL 0x00
114#define SPEED_FLEXIBLE 0x01
115#define SPEED_OVERDRIVE 0x02
116
117#define NUM_EP 4
118#define EP_CONTROL 0
119#define EP_STATUS 1
120#define EP_DATA_OUT 2
121#define EP_DATA_IN 3
122
123struct ds_device {
124 struct list_head ds_entry;
125
126 struct usb_device *udev;
127 struct usb_interface *intf;
128
129 int ep[NUM_EP];
130
131 /* Strong PullUp
132 * 0: pullup not active, else duration in milliseconds
133 */
134 int spu_sleep;
135 /* spu_bit contains COMM_SPU or 0 depending on if the strong pullup
136 * should be active or not for writes.
137 */
138 u16 spu_bit;
139
140 u8 st_buf[ST_SIZE];
141 u8 byte_buf;
142
143 struct w1_bus_master master;
144};
145
146struct ds_status {
147 u8 enable;
148 u8 speed;
149 u8 pullup_dur;
150 u8 ppuls_dur;
151 u8 pulldown_slew;
152 u8 write1_time;
153 u8 write0_time;
154 u8 reserved0;
155 u8 status;
156 u8 command0;
157 u8 command1;
158 u8 command_buffer_status;
159 u8 data_out_buffer_status;
160 u8 data_in_buffer_status;
161 u8 reserved1;
162 u8 reserved2;
163};
164
165static LIST_HEAD(ds_devices);
166static DEFINE_MUTEX(ds_mutex);
167
168static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
169{
170 int err;
171
172 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
173 CONTROL_CMD, VENDOR, value, index, NULL, 0, 1000);
174 if (err < 0) {
175 pr_err("Failed to send command control message %x.%x: err=%d.\n",
176 value, index, err);
177 return err;
178 }
179
180 return err;
181}
182
183static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
184{
185 int err;
186
187 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
188 MODE_CMD, VENDOR, value, index, NULL, 0, 1000);
189 if (err < 0) {
190 pr_err("Failed to send mode control message %x.%x: err=%d.\n",
191 value, index, err);
192 return err;
193 }
194
195 return err;
196}
197
198static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
199{
200 int err;
201
202 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
203 COMM_CMD, VENDOR, value, index, NULL, 0, 1000);
204 if (err < 0) {
205 pr_err("Failed to send control message %x.%x: err=%d.\n",
206 value, index, err);
207 return err;
208 }
209
210 return err;
211}
212
213static inline void ds_print_msg(unsigned char *buf, unsigned char *str, int off)
214{
215 pr_info("%45s: %8x\n", str, buf[off]);
216}
217
218static void ds_dump_status(struct ds_device *dev, unsigned char *buf, int count)
219{
220 int i;
221
222 pr_info("0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
223 for (i = 0; i < count; ++i)
224 pr_info("%02x ", buf[i]);
225 pr_info("\n");
226
227 if (count >= 16) {
228 ds_print_msg(buf, "enable flag", 0);
229 ds_print_msg(buf, "1-wire speed", 1);
230 ds_print_msg(buf, "strong pullup duration", 2);
231 ds_print_msg(buf, "programming pulse duration", 3);
232 ds_print_msg(buf, "pulldown slew rate control", 4);
233 ds_print_msg(buf, "write-1 low time", 5);
234 ds_print_msg(buf, "data sample offset/write-0 recovery time",
235 6);
236 ds_print_msg(buf, "reserved (test register)", 7);
237 ds_print_msg(buf, "device status flags", 8);
238 ds_print_msg(buf, "communication command byte 1", 9);
239 ds_print_msg(buf, "communication command byte 2", 10);
240 ds_print_msg(buf, "communication command buffer status", 11);
241 ds_print_msg(buf, "1-wire data output buffer status", 12);
242 ds_print_msg(buf, "1-wire data input buffer status", 13);
243 ds_print_msg(buf, "reserved", 14);
244 ds_print_msg(buf, "reserved", 15);
245 }
246 for (i = 16; i < count; ++i) {
247 if (buf[i] == RR_DETECT) {
248 ds_print_msg(buf, "new device detect", i);
249 continue;
250 }
251 ds_print_msg(buf, "Result Register Value: ", i);
252 if (buf[i] & RR_NRS)
253 pr_info("NRS: Reset no presence or ...\n");
254 if (buf[i] & RR_SH)
255 pr_info("SH: short on reset or set path\n");
256 if (buf[i] & RR_APP)
257 pr_info("APP: alarming presence on reset\n");
258 if (buf[i] & RR_VPP)
259 pr_info("VPP: 12V expected not seen\n");
260 if (buf[i] & RR_CMP)
261 pr_info("CMP: compare error\n");
262 if (buf[i] & RR_CRC)
263 pr_info("CRC: CRC error detected\n");
264 if (buf[i] & RR_RDP)
265 pr_info("RDP: redirected page\n");
266 if (buf[i] & RR_EOS)
267 pr_info("EOS: end of search error\n");
268 }
269}
270
271static int ds_recv_status(struct ds_device *dev, struct ds_status *st,
272 bool dump)
273{
274 int count, err;
275
276 if (st)
277 memset(st, 0, sizeof(*st));
278
279 count = 0;
280 err = usb_interrupt_msg(dev->udev,
281 usb_rcvintpipe(dev->udev,
282 dev->ep[EP_STATUS]),
283 dev->st_buf, sizeof(dev->st_buf),
284 &count, 1000);
285 if (err < 0) {
286 pr_err("Failed to read 1-wire data from 0x%x: err=%d.\n",
287 dev->ep[EP_STATUS], err);
288 return err;
289 }
290
291 if (dump)
292 ds_dump_status(dev, dev->st_buf, count);
293
294 if (st && count >= sizeof(*st))
295 memcpy(st, dev->st_buf, sizeof(*st));
296
297 return count;
298}
299
300static void ds_reset_device(struct ds_device *dev)
301{
302 ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
303 /* Always allow strong pullup which allow individual writes to use
304 * the strong pullup.
305 */
306 if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE))
307 pr_err("ds_reset_device: Error allowing strong pullup\n");
308 /* Chip strong pullup time was cleared. */
309 if (dev->spu_sleep) {
310 /* lower 4 bits are 0, see ds_set_pullup */
311 u8 del = dev->spu_sleep>>4;
312 if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del))
313 pr_err("ds_reset_device: Error setting duration\n");
314 }
315}
316
317static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
318{
319 int count, err;
320
321 /* Careful on size. If size is less than what is available in
322 * the input buffer, the device fails the bulk transfer and
323 * clears the input buffer. It could read the maximum size of
324 * the data buffer, but then do you return the first, last, or
325 * some set of the middle size bytes? As long as the rest of
326 * the code is correct there will be size bytes waiting. A
327 * call to ds_wait_status will wait until the device is idle
328 * and any data to be received would have been available.
329 */
330 count = 0;
331 err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
332 buf, size, &count, 1000);
333 if (err < 0) {
334 pr_info("Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
335 usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
336 ds_recv_status(dev, NULL, true);
337 return err;
338 }
339
340#if 0
341 {
342 int i;
343
344 printk("%s: count=%d: ", __func__, count);
345 for (i = 0; i < count; ++i)
346 printk("%02x ", buf[i]);
347 printk("\n");
348 }
349#endif
350 return count;
351}
352
353static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
354{
355 int count, err;
356
357 count = 0;
358 err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
359 if (err < 0) {
360 pr_err("Failed to write 1-wire data to ep0x%x: "
361 "err=%d.\n", dev->ep[EP_DATA_OUT], err);
362 return err;
363 }
364
365 return err;
366}
367
368#if 0
369
370int ds_stop_pulse(struct ds_device *dev, int limit)
371{
372 struct ds_status st;
373 int count = 0, err = 0;
374
375 do {
376 err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
377 if (err)
378 break;
379 err = ds_send_control(dev, CTL_RESUME_EXE, 0);
380 if (err)
381 break;
382 err = ds_recv_status(dev, &st, false);
383 if (err)
384 break;
385
386 if ((st.status & ST_SPUA) == 0) {
387 err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
388 if (err)
389 break;
390 }
391 } while (++count < limit);
392
393 return err;
394}
395
396int ds_detect(struct ds_device *dev, struct ds_status *st)
397{
398 int err;
399
400 err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
401 if (err)
402 return err;
403
404 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
405 if (err)
406 return err;
407
408 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
409 if (err)
410 return err;
411
412 err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
413 if (err)
414 return err;
415
416 err = ds_dump_status(dev, st);
417
418 return err;
419}
420
421#endif /* 0 */
422
423static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
424{
425 int err, count = 0;
426
427 do {
428 st->status = 0;
429 err = ds_recv_status(dev, st, false);
430#if 0
431 if (err >= 0) {
432 int i;
433 printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
434 for (i = 0; i < err; ++i)
435 printk("%02x ", dev->st_buf[i]);
436 printk("\n");
437 }
438#endif
439 } while (!(st->status & ST_IDLE) && !(err < 0) && ++count < 100);
440
441 if (err >= 16 && st->status & ST_EPOF) {
442 pr_info("Resetting device after ST_EPOF.\n");
443 ds_reset_device(dev);
444 /* Always dump the device status. */
445 count = 101;
446 }
447
448 /* Dump the status for errors or if there is extended return data.
449 * The extended status includes new device detection (maybe someone
450 * can do something with it).
451 */
452 if (err > 16 || count >= 100 || err < 0)
453 ds_dump_status(dev, dev->st_buf, err);
454
455 /* Extended data isn't an error. Well, a short is, but the dump
456 * would have already told the user that and we can't do anything
457 * about it in software anyway.
458 */
459 if (count >= 100 || err < 0)
460 return -1;
461 else
462 return 0;
463}
464
465static int ds_reset(struct ds_device *dev)
466{
467 int err;
468
469 /* Other potentionally interesting flags for reset.
470 *
471 * COMM_NTF: Return result register feedback. This could be used to
472 * detect some conditions such as short, alarming presence, or
473 * detect if a new device was detected.
474 *
475 * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE:
476 * Select the data transfer rate.
477 */
478 err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL);
479 if (err)
480 return err;
481
482 return 0;
483}
484
485#if 0
486static int ds_set_speed(struct ds_device *dev, int speed)
487{
488 int err;
489
490 if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
491 return -EINVAL;
492
493 if (speed != SPEED_OVERDRIVE)
494 speed = SPEED_FLEXIBLE;
495
496 speed &= 0xff;
497
498 err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
499 if (err)
500 return err;
501
502 return err;
503}
504#endif /* 0 */
505
506static int ds_set_pullup(struct ds_device *dev, int delay)
507{
508 int err = 0;
509 u8 del = 1 + (u8)(delay >> 4);
510 /* Just storing delay would not get the trunication and roundup. */
511 int ms = del<<4;
512
513 /* Enable spu_bit if a delay is set. */
514 dev->spu_bit = delay ? COMM_SPU : 0;
515 /* If delay is zero, it has already been disabled, if the time is
516 * the same as the hardware was last programmed to, there is also
517 * nothing more to do. Compare with the recalculated value ms
518 * rather than del or delay which can have a different value.
519 */
520 if (delay == 0 || ms == dev->spu_sleep)
521 return err;
522
523 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
524 if (err)
525 return err;
526
527 dev->spu_sleep = ms;
528
529 return err;
530}
531
532static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
533{
534 int err;
535 struct ds_status st;
536
537 err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
538 0);
539 if (err)
540 return err;
541
542 ds_wait_status(dev, &st);
543
544 err = ds_recv_data(dev, tbit, sizeof(*tbit));
545 if (err < 0)
546 return err;
547
548 return 0;
549}
550
551#if 0
552static int ds_write_bit(struct ds_device *dev, u8 bit)
553{
554 int err;
555 struct ds_status st;
556
557 /* Set COMM_ICP to write without a readback. Note, this will
558 * produce one time slot, a down followed by an up with COMM_D
559 * only determing the timing.
560 */
561 err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
562 (bit ? COMM_D : 0), 0);
563 if (err)
564 return err;
565
566 ds_wait_status(dev, &st);
567
568 return 0;
569}
570#endif
571
572static int ds_write_byte(struct ds_device *dev, u8 byte)
573{
574 int err;
575 struct ds_status st;
576
577 err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte);
578 if (err)
579 return err;
580
581 if (dev->spu_bit)
582 msleep(dev->spu_sleep);
583
584 err = ds_wait_status(dev, &st);
585 if (err)
586 return err;
587
588 err = ds_recv_data(dev, &dev->byte_buf, 1);
589 if (err < 0)
590 return err;
591
592 return !(byte == dev->byte_buf);
593}
594
595static int ds_read_byte(struct ds_device *dev, u8 *byte)
596{
597 int err;
598 struct ds_status st;
599
600 err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM, 0xff);
601 if (err)
602 return err;
603
604 ds_wait_status(dev, &st);
605
606 err = ds_recv_data(dev, byte, sizeof(*byte));
607 if (err < 0)
608 return err;
609
610 return 0;
611}
612
613static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
614{
615 struct ds_status st;
616 int err;
617
618 if (len > 64*1024)
619 return -E2BIG;
620
621 memset(buf, 0xFF, len);
622
623 err = ds_send_data(dev, buf, len);
624 if (err < 0)
625 return err;
626
627 err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
628 if (err)
629 return err;
630
631 ds_wait_status(dev, &st);
632
633 memset(buf, 0x00, len);
634 err = ds_recv_data(dev, buf, len);
635
636 return err;
637}
638
639static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
640{
641 int err;
642 struct ds_status st;
643
644 err = ds_send_data(dev, buf, len);
645 if (err < 0)
646 return err;
647
648 err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len);
649 if (err)
650 return err;
651
652 if (dev->spu_bit)
653 msleep(dev->spu_sleep);
654
655 ds_wait_status(dev, &st);
656
657 err = ds_recv_data(dev, buf, len);
658 if (err < 0)
659 return err;
660
661 return !(err == len);
662}
663
664static void ds9490r_search(void *data, struct w1_master *master,
665 u8 search_type, w1_slave_found_callback callback)
666{
667 /* When starting with an existing id, the first id returned will
668 * be that device (if it is still on the bus most likely).
669 *
670 * If the number of devices found is less than or equal to the
671 * search_limit, that number of IDs will be returned. If there are
672 * more, search_limit IDs will be returned followed by a non-zero
673 * discrepency value.
674 */
675 struct ds_device *dev = data;
676 int err;
677 u16 value, index;
678 struct ds_status st;
679 int search_limit;
680 int found = 0;
681 int i;
682
683 /* DS18b20 spec, 13.16 ms per device, 75 per second, sleep for
684 * discovering 8 devices (1 bulk transfer and 1/2 FIFO size) at a time.
685 */
686 const unsigned long jtime = msecs_to_jiffies(1000*8/75);
687 /* FIFO 128 bytes, bulk packet size 64, read a multiple of the
688 * packet size.
689 */
690 const size_t bufsize = 2 * 64;
691 u64 *buf;
692
693 buf = kmalloc(bufsize, GFP_KERNEL);
694 if (!buf)
695 return;
696
697 mutex_lock(&master->bus_mutex);
698
699 /* address to start searching at */
700 if (ds_send_data(dev, (u8 *)&master->search_id, 8) < 0)
701 goto search_out;
702 master->search_id = 0;
703
704 value = COMM_SEARCH_ACCESS | COMM_IM | COMM_RST | COMM_SM | COMM_F |
705 COMM_RTS;
706 search_limit = master->max_slave_count;
707 if (search_limit > 255)
708 search_limit = 0;
709 index = search_type | (search_limit << 8);
710 if (ds_send_control(dev, value, index) < 0)
711 goto search_out;
712
713 do {
714 schedule_timeout(jtime);
715
716 err = ds_recv_status(dev, &st, false);
717 if (err < 0 || err < sizeof(st))
718 break;
719
720 if (st.data_in_buffer_status) {
721 /* Bulk in can receive partial ids, but when it does
722 * they fail crc and will be discarded anyway.
723 * That has only been seen when status in buffer
724 * is 0 and bulk is read anyway, so don't read
725 * bulk without first checking if status says there
726 * is data to read.
727 */
728 err = ds_recv_data(dev, (u8 *)buf, bufsize);
729 if (err < 0)
730 break;
731 for (i = 0; i < err/8; ++i) {
732 ++found;
733 if (found <= search_limit)
734 callback(master, buf[i]);
735 /* can't know if there will be a discrepancy
736 * value after until the next id */
737 if (found == search_limit)
738 master->search_id = buf[i];
739 }
740 }
741
742 if (test_bit(W1_ABORT_SEARCH, &master->flags))
743 break;
744 } while (!(st.status & (ST_IDLE | ST_HALT)));
745
746 /* only continue the search if some weren't found */
747 if (found <= search_limit) {
748 master->search_id = 0;
749 } else if (!test_bit(W1_WARN_MAX_COUNT, &master->flags)) {
750 /* Only max_slave_count will be scanned in a search,
751 * but it will start where it left off next search
752 * until all ids are identified and then it will start
753 * over. A continued search will report the previous
754 * last id as the first id (provided it is still on the
755 * bus).
756 */
757 dev_info(&dev->udev->dev, "%s: max_slave_count %d reached, "
758 "will continue next search.\n", __func__,
759 master->max_slave_count);
760 set_bit(W1_WARN_MAX_COUNT, &master->flags);
761 }
762search_out:
763 mutex_unlock(&master->bus_mutex);
764 kfree(buf);
765}
766
767#if 0
768/*
769 * FIXME: if this disabled code is ever used in the future all ds_send_data()
770 * calls must be changed to use a DMAable buffer.
771 */
772static int ds_match_access(struct ds_device *dev, u64 init)
773{
774 int err;
775 struct ds_status st;
776
777 err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
778 if (err)
779 return err;
780
781 ds_wait_status(dev, &st);
782
783 err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
784 if (err)
785 return err;
786
787 ds_wait_status(dev, &st);
788
789 return 0;
790}
791
792static int ds_set_path(struct ds_device *dev, u64 init)
793{
794 int err;
795 struct ds_status st;
796 u8 buf[9];
797
798 memcpy(buf, &init, 8);
799 buf[8] = BRANCH_MAIN;
800
801 err = ds_send_data(dev, buf, sizeof(buf));
802 if (err)
803 return err;
804
805 ds_wait_status(dev, &st);
806
807 err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
808 if (err)
809 return err;
810
811 ds_wait_status(dev, &st);
812
813 return 0;
814}
815
816#endif /* 0 */
817
818static u8 ds9490r_touch_bit(void *data, u8 bit)
819{
820 struct ds_device *dev = data;
821
822 if (ds_touch_bit(dev, bit, &dev->byte_buf))
823 return 0;
824
825 return dev->byte_buf;
826}
827
828#if 0
829static void ds9490r_write_bit(void *data, u8 bit)
830{
831 struct ds_device *dev = data;
832
833 ds_write_bit(dev, bit);
834}
835
836static u8 ds9490r_read_bit(void *data)
837{
838 struct ds_device *dev = data;
839 int err;
840
841 err = ds_touch_bit(dev, 1, &dev->byte_buf);
842 if (err)
843 return 0;
844
845 return dev->byte_buf & 1;
846}
847#endif
848
849static void ds9490r_write_byte(void *data, u8 byte)
850{
851 struct ds_device *dev = data;
852
853 ds_write_byte(dev, byte);
854}
855
856static u8 ds9490r_read_byte(void *data)
857{
858 struct ds_device *dev = data;
859 int err;
860
861 err = ds_read_byte(dev, &dev->byte_buf);
862 if (err)
863 return 0;
864
865 return dev->byte_buf;
866}
867
868static void ds9490r_write_block(void *data, const u8 *buf, int len)
869{
870 struct ds_device *dev = data;
871 u8 *tbuf;
872
873 if (len <= 0)
874 return;
875
876 tbuf = kmemdup(buf, len, GFP_KERNEL);
877 if (!tbuf)
878 return;
879
880 ds_write_block(dev, tbuf, len);
881
882 kfree(tbuf);
883}
884
885static u8 ds9490r_read_block(void *data, u8 *buf, int len)
886{
887 struct ds_device *dev = data;
888 int err;
889 u8 *tbuf;
890
891 if (len <= 0)
892 return 0;
893
894 tbuf = kmalloc(len, GFP_KERNEL);
895 if (!tbuf)
896 return 0;
897
898 err = ds_read_block(dev, tbuf, len);
899 if (err >= 0)
900 memcpy(buf, tbuf, len);
901
902 kfree(tbuf);
903
904 return err >= 0 ? len : 0;
905}
906
907static u8 ds9490r_reset(void *data)
908{
909 struct ds_device *dev = data;
910 int err;
911
912 err = ds_reset(dev);
913 if (err)
914 return 1;
915
916 return 0;
917}
918
919static u8 ds9490r_set_pullup(void *data, int delay)
920{
921 struct ds_device *dev = data;
922
923 if (ds_set_pullup(dev, delay))
924 return 1;
925
926 return 0;
927}
928
929static int ds_w1_init(struct ds_device *dev)
930{
931 memset(&dev->master, 0, sizeof(struct w1_bus_master));
932
933 /* Reset the device as it can be in a bad state.
934 * This is necessary because a block write will wait for data
935 * to be placed in the output buffer and block any later
936 * commands which will keep accumulating and the device will
937 * not be idle. Another case is removing the ds2490 module
938 * while a bus search is in progress, somehow a few commands
939 * get through, but the input transfers fail leaving data in
940 * the input buffer. This will cause the next read to fail
941 * see the note in ds_recv_data.
942 */
943 ds_reset_device(dev);
944
945 dev->master.data = dev;
946 dev->master.touch_bit = &ds9490r_touch_bit;
947 /* read_bit and write_bit in w1_bus_master are expected to set and
948 * sample the line level. For write_bit that means it is expected to
949 * set it to that value and leave it there. ds2490 only supports an
950 * individual time slot at the lowest level. The requirement from
951 * pulling the bus state down to reading the state is 15us, something
952 * that isn't realistic on the USB bus anyway.
953 dev->master.read_bit = &ds9490r_read_bit;
954 dev->master.write_bit = &ds9490r_write_bit;
955 */
956 dev->master.read_byte = &ds9490r_read_byte;
957 dev->master.write_byte = &ds9490r_write_byte;
958 dev->master.read_block = &ds9490r_read_block;
959 dev->master.write_block = &ds9490r_write_block;
960 dev->master.reset_bus = &ds9490r_reset;
961 dev->master.set_pullup = &ds9490r_set_pullup;
962 dev->master.search = &ds9490r_search;
963
964 return w1_add_master_device(&dev->master);
965}
966
967static void ds_w1_fini(struct ds_device *dev)
968{
969 w1_remove_master_device(&dev->master);
970}
971
972static int ds_probe(struct usb_interface *intf,
973 const struct usb_device_id *udev_id)
974{
975 struct usb_device *udev = interface_to_usbdev(intf);
976 struct usb_endpoint_descriptor *endpoint;
977 struct usb_host_interface *iface_desc;
978 struct ds_device *dev;
979 int i, err, alt;
980
981 dev = kzalloc(sizeof(struct ds_device), GFP_KERNEL);
982 if (!dev) {
983 pr_info("Failed to allocate new DS9490R structure.\n");
984 return -ENOMEM;
985 }
986 dev->udev = usb_get_dev(udev);
987 if (!dev->udev) {
988 err = -ENOMEM;
989 goto err_out_free;
990 }
991 memset(dev->ep, 0, sizeof(dev->ep));
992
993 usb_set_intfdata(intf, dev);
994
995 err = usb_reset_configuration(dev->udev);
996 if (err) {
997 dev_err(&dev->udev->dev,
998 "Failed to reset configuration: err=%d.\n", err);
999 goto err_out_clear;
1000 }
1001
1002 /* alternative 3, 1ms interrupt (greatly speeds search), 64 byte bulk */
1003 alt = 3;
1004 err = usb_set_interface(dev->udev,
1005 intf->cur_altsetting->desc.bInterfaceNumber, alt);
1006 if (err) {
1007 dev_err(&dev->udev->dev, "Failed to set alternative setting %d "
1008 "for %d interface: err=%d.\n", alt,
1009 intf->cur_altsetting->desc.bInterfaceNumber, err);
1010 goto err_out_clear;
1011 }
1012
1013 iface_desc = intf->cur_altsetting;
1014 if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
1015 pr_info("Num endpoints=%d. It is not DS9490R.\n",
1016 iface_desc->desc.bNumEndpoints);
1017 err = -EINVAL;
1018 goto err_out_clear;
1019 }
1020
1021 /*
1022 * This loop doesn'd show control 0 endpoint,
1023 * so we will fill only 1-3 endpoints entry.
1024 */
1025 for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
1026 endpoint = &iface_desc->endpoint[i].desc;
1027
1028 dev->ep[i+1] = endpoint->bEndpointAddress;
1029#if 0
1030 printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
1031 i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
1032 (endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
1033 endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
1034#endif
1035 }
1036
1037 err = ds_w1_init(dev);
1038 if (err)
1039 goto err_out_clear;
1040
1041 mutex_lock(&ds_mutex);
1042 list_add_tail(&dev->ds_entry, &ds_devices);
1043 mutex_unlock(&ds_mutex);
1044
1045 return 0;
1046
1047err_out_clear:
1048 usb_set_intfdata(intf, NULL);
1049 usb_put_dev(dev->udev);
1050err_out_free:
1051 kfree(dev);
1052 return err;
1053}
1054
1055static void ds_disconnect(struct usb_interface *intf)
1056{
1057 struct ds_device *dev;
1058
1059 dev = usb_get_intfdata(intf);
1060 if (!dev)
1061 return;
1062
1063 mutex_lock(&ds_mutex);
1064 list_del(&dev->ds_entry);
1065 mutex_unlock(&ds_mutex);
1066
1067 ds_w1_fini(dev);
1068
1069 usb_set_intfdata(intf, NULL);
1070
1071 usb_put_dev(dev->udev);
1072 kfree(dev);
1073}
1074
1075static const struct usb_device_id ds_id_table[] = {
1076 { USB_DEVICE(0x04fa, 0x2490) },
1077 { },
1078};
1079MODULE_DEVICE_TABLE(usb, ds_id_table);
1080
1081static struct usb_driver ds_driver = {
1082 .name = "DS9490R",
1083 .probe = ds_probe,
1084 .disconnect = ds_disconnect,
1085 .id_table = ds_id_table,
1086};
1087module_usb_driver(ds_driver);
1088
1089MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>");
1090MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");
1091MODULE_LICENSE("GPL");
1/*
2 * dscore.c
3 *
4 * Copyright (c) 2004 Evgeniy Polyakov <zbr@ioremap.net>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/mod_devicetable.h>
25#include <linux/usb.h>
26#include <linux/slab.h>
27
28#include "../w1_int.h"
29#include "../w1.h"
30
31/* COMMAND TYPE CODES */
32#define CONTROL_CMD 0x00
33#define COMM_CMD 0x01
34#define MODE_CMD 0x02
35
36/* CONTROL COMMAND CODES */
37#define CTL_RESET_DEVICE 0x0000
38#define CTL_START_EXE 0x0001
39#define CTL_RESUME_EXE 0x0002
40#define CTL_HALT_EXE_IDLE 0x0003
41#define CTL_HALT_EXE_DONE 0x0004
42#define CTL_FLUSH_COMM_CMDS 0x0007
43#define CTL_FLUSH_RCV_BUFFER 0x0008
44#define CTL_FLUSH_XMT_BUFFER 0x0009
45#define CTL_GET_COMM_CMDS 0x000A
46
47/* MODE COMMAND CODES */
48#define MOD_PULSE_EN 0x0000
49#define MOD_SPEED_CHANGE_EN 0x0001
50#define MOD_1WIRE_SPEED 0x0002
51#define MOD_STRONG_PU_DURATION 0x0003
52#define MOD_PULLDOWN_SLEWRATE 0x0004
53#define MOD_PROG_PULSE_DURATION 0x0005
54#define MOD_WRITE1_LOWTIME 0x0006
55#define MOD_DSOW0_TREC 0x0007
56
57/* COMMUNICATION COMMAND CODES */
58#define COMM_ERROR_ESCAPE 0x0601
59#define COMM_SET_DURATION 0x0012
60#define COMM_BIT_IO 0x0020
61#define COMM_PULSE 0x0030
62#define COMM_1_WIRE_RESET 0x0042
63#define COMM_BYTE_IO 0x0052
64#define COMM_MATCH_ACCESS 0x0064
65#define COMM_BLOCK_IO 0x0074
66#define COMM_READ_STRAIGHT 0x0080
67#define COMM_DO_RELEASE 0x6092
68#define COMM_SET_PATH 0x00A2
69#define COMM_WRITE_SRAM_PAGE 0x00B2
70#define COMM_WRITE_EPROM 0x00C4
71#define COMM_READ_CRC_PROT_PAGE 0x00D4
72#define COMM_READ_REDIRECT_PAGE_CRC 0x21E4
73#define COMM_SEARCH_ACCESS 0x00F4
74
75/* Communication command bits */
76#define COMM_TYPE 0x0008
77#define COMM_SE 0x0008
78#define COMM_D 0x0008
79#define COMM_Z 0x0008
80#define COMM_CH 0x0008
81#define COMM_SM 0x0008
82#define COMM_R 0x0008
83#define COMM_IM 0x0001
84
85#define COMM_PS 0x4000
86#define COMM_PST 0x4000
87#define COMM_CIB 0x4000
88#define COMM_RTS 0x4000
89#define COMM_DT 0x2000
90#define COMM_SPU 0x1000
91#define COMM_F 0x0800
92#define COMM_NTF 0x0400
93#define COMM_ICP 0x0200
94#define COMM_RST 0x0100
95
96#define PULSE_PROG 0x01
97#define PULSE_SPUE 0x02
98
99#define BRANCH_MAIN 0xCC
100#define BRANCH_AUX 0x33
101
102/* Status flags */
103#define ST_SPUA 0x01 /* Strong Pull-up is active */
104#define ST_PRGA 0x02 /* 12V programming pulse is being generated */
105#define ST_12VP 0x04 /* external 12V programming voltage is present */
106#define ST_PMOD 0x08 /* DS2490 powered from USB and external sources */
107#define ST_HALT 0x10 /* DS2490 is currently halted */
108#define ST_IDLE 0x20 /* DS2490 is currently idle */
109#define ST_EPOF 0x80
110
111/* Result Register flags */
112#define RR_DETECT 0xA5 /* New device detected */
113#define RR_NRS 0x01 /* Reset no presence or ... */
114#define RR_SH 0x02 /* short on reset or set path */
115#define RR_APP 0x04 /* alarming presence on reset */
116#define RR_VPP 0x08 /* 12V expected not seen */
117#define RR_CMP 0x10 /* compare error */
118#define RR_CRC 0x20 /* CRC error detected */
119#define RR_RDP 0x40 /* redirected page */
120#define RR_EOS 0x80 /* end of search error */
121
122#define SPEED_NORMAL 0x00
123#define SPEED_FLEXIBLE 0x01
124#define SPEED_OVERDRIVE 0x02
125
126#define NUM_EP 4
127#define EP_CONTROL 0
128#define EP_STATUS 1
129#define EP_DATA_OUT 2
130#define EP_DATA_IN 3
131
132struct ds_device
133{
134 struct list_head ds_entry;
135
136 struct usb_device *udev;
137 struct usb_interface *intf;
138
139 int ep[NUM_EP];
140
141 /* Strong PullUp
142 * 0: pullup not active, else duration in milliseconds
143 */
144 int spu_sleep;
145 /* spu_bit contains COMM_SPU or 0 depending on if the strong pullup
146 * should be active or not for writes.
147 */
148 u16 spu_bit;
149
150 struct w1_bus_master master;
151};
152
153struct ds_status
154{
155 u8 enable;
156 u8 speed;
157 u8 pullup_dur;
158 u8 ppuls_dur;
159 u8 pulldown_slew;
160 u8 write1_time;
161 u8 write0_time;
162 u8 reserved0;
163 u8 status;
164 u8 command0;
165 u8 command1;
166 u8 command_buffer_status;
167 u8 data_out_buffer_status;
168 u8 data_in_buffer_status;
169 u8 reserved1;
170 u8 reserved2;
171
172};
173
174static struct usb_device_id ds_id_table [] = {
175 { USB_DEVICE(0x04fa, 0x2490) },
176 { },
177};
178MODULE_DEVICE_TABLE(usb, ds_id_table);
179
180static int ds_probe(struct usb_interface *, const struct usb_device_id *);
181static void ds_disconnect(struct usb_interface *);
182
183static int ds_send_control(struct ds_device *, u16, u16);
184static int ds_send_control_cmd(struct ds_device *, u16, u16);
185
186static LIST_HEAD(ds_devices);
187static DEFINE_MUTEX(ds_mutex);
188
189static struct usb_driver ds_driver = {
190 .name = "DS9490R",
191 .probe = ds_probe,
192 .disconnect = ds_disconnect,
193 .id_table = ds_id_table,
194};
195
196static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
197{
198 int err;
199
200 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
201 CONTROL_CMD, 0x40, value, index, NULL, 0, 1000);
202 if (err < 0) {
203 printk(KERN_ERR "Failed to send command control message %x.%x: err=%d.\n",
204 value, index, err);
205 return err;
206 }
207
208 return err;
209}
210
211static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
212{
213 int err;
214
215 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
216 MODE_CMD, 0x40, value, index, NULL, 0, 1000);
217 if (err < 0) {
218 printk(KERN_ERR "Failed to send mode control message %x.%x: err=%d.\n",
219 value, index, err);
220 return err;
221 }
222
223 return err;
224}
225
226static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
227{
228 int err;
229
230 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
231 COMM_CMD, 0x40, value, index, NULL, 0, 1000);
232 if (err < 0) {
233 printk(KERN_ERR "Failed to send control message %x.%x: err=%d.\n",
234 value, index, err);
235 return err;
236 }
237
238 return err;
239}
240
241static int ds_recv_status_nodump(struct ds_device *dev, struct ds_status *st,
242 unsigned char *buf, int size)
243{
244 int count, err;
245
246 memset(st, 0, sizeof(*st));
247
248 count = 0;
249 err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_STATUS]), buf, size, &count, 100);
250 if (err < 0) {
251 printk(KERN_ERR "Failed to read 1-wire data from 0x%x: err=%d.\n", dev->ep[EP_STATUS], err);
252 return err;
253 }
254
255 if (count >= sizeof(*st))
256 memcpy(st, buf, sizeof(*st));
257
258 return count;
259}
260
261static inline void ds_print_msg(unsigned char *buf, unsigned char *str, int off)
262{
263 printk(KERN_INFO "%45s: %8x\n", str, buf[off]);
264}
265
266static void ds_dump_status(struct ds_device *dev, unsigned char *buf, int count)
267{
268 int i;
269
270 printk(KERN_INFO "0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
271 for (i=0; i<count; ++i)
272 printk("%02x ", buf[i]);
273 printk(KERN_INFO "\n");
274
275 if (count >= 16) {
276 ds_print_msg(buf, "enable flag", 0);
277 ds_print_msg(buf, "1-wire speed", 1);
278 ds_print_msg(buf, "strong pullup duration", 2);
279 ds_print_msg(buf, "programming pulse duration", 3);
280 ds_print_msg(buf, "pulldown slew rate control", 4);
281 ds_print_msg(buf, "write-1 low time", 5);
282 ds_print_msg(buf, "data sample offset/write-0 recovery time",
283 6);
284 ds_print_msg(buf, "reserved (test register)", 7);
285 ds_print_msg(buf, "device status flags", 8);
286 ds_print_msg(buf, "communication command byte 1", 9);
287 ds_print_msg(buf, "communication command byte 2", 10);
288 ds_print_msg(buf, "communication command buffer status", 11);
289 ds_print_msg(buf, "1-wire data output buffer status", 12);
290 ds_print_msg(buf, "1-wire data input buffer status", 13);
291 ds_print_msg(buf, "reserved", 14);
292 ds_print_msg(buf, "reserved", 15);
293 }
294 for (i = 16; i < count; ++i) {
295 if (buf[i] == RR_DETECT) {
296 ds_print_msg(buf, "new device detect", i);
297 continue;
298 }
299 ds_print_msg(buf, "Result Register Value: ", i);
300 if (buf[i] & RR_NRS)
301 printk(KERN_INFO "NRS: Reset no presence or ...\n");
302 if (buf[i] & RR_SH)
303 printk(KERN_INFO "SH: short on reset or set path\n");
304 if (buf[i] & RR_APP)
305 printk(KERN_INFO "APP: alarming presence on reset\n");
306 if (buf[i] & RR_VPP)
307 printk(KERN_INFO "VPP: 12V expected not seen\n");
308 if (buf[i] & RR_CMP)
309 printk(KERN_INFO "CMP: compare error\n");
310 if (buf[i] & RR_CRC)
311 printk(KERN_INFO "CRC: CRC error detected\n");
312 if (buf[i] & RR_RDP)
313 printk(KERN_INFO "RDP: redirected page\n");
314 if (buf[i] & RR_EOS)
315 printk(KERN_INFO "EOS: end of search error\n");
316 }
317}
318
319static void ds_reset_device(struct ds_device *dev)
320{
321 ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
322 /* Always allow strong pullup which allow individual writes to use
323 * the strong pullup.
324 */
325 if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE))
326 printk(KERN_ERR "ds_reset_device: "
327 "Error allowing strong pullup\n");
328 /* Chip strong pullup time was cleared. */
329 if (dev->spu_sleep) {
330 /* lower 4 bits are 0, see ds_set_pullup */
331 u8 del = dev->spu_sleep>>4;
332 if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del))
333 printk(KERN_ERR "ds_reset_device: "
334 "Error setting duration\n");
335 }
336}
337
338static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
339{
340 int count, err;
341 struct ds_status st;
342
343 /* Careful on size. If size is less than what is available in
344 * the input buffer, the device fails the bulk transfer and
345 * clears the input buffer. It could read the maximum size of
346 * the data buffer, but then do you return the first, last, or
347 * some set of the middle size bytes? As long as the rest of
348 * the code is correct there will be size bytes waiting. A
349 * call to ds_wait_status will wait until the device is idle
350 * and any data to be received would have been available.
351 */
352 count = 0;
353 err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
354 buf, size, &count, 1000);
355 if (err < 0) {
356 u8 buf[0x20];
357 int count;
358
359 printk(KERN_INFO "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
360 usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
361
362 count = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
363 ds_dump_status(dev, buf, count);
364 return err;
365 }
366
367#if 0
368 {
369 int i;
370
371 printk("%s: count=%d: ", __func__, count);
372 for (i=0; i<count; ++i)
373 printk("%02x ", buf[i]);
374 printk("\n");
375 }
376#endif
377 return count;
378}
379
380static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
381{
382 int count, err;
383
384 count = 0;
385 err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
386 if (err < 0) {
387 printk(KERN_ERR "Failed to write 1-wire data to ep0x%x: "
388 "err=%d.\n", dev->ep[EP_DATA_OUT], err);
389 return err;
390 }
391
392 return err;
393}
394
395#if 0
396
397int ds_stop_pulse(struct ds_device *dev, int limit)
398{
399 struct ds_status st;
400 int count = 0, err = 0;
401 u8 buf[0x20];
402
403 do {
404 err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
405 if (err)
406 break;
407 err = ds_send_control(dev, CTL_RESUME_EXE, 0);
408 if (err)
409 break;
410 err = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
411 if (err)
412 break;
413
414 if ((st.status & ST_SPUA) == 0) {
415 err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
416 if (err)
417 break;
418 }
419 } while(++count < limit);
420
421 return err;
422}
423
424int ds_detect(struct ds_device *dev, struct ds_status *st)
425{
426 int err;
427
428 err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
429 if (err)
430 return err;
431
432 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
433 if (err)
434 return err;
435
436 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
437 if (err)
438 return err;
439
440 err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
441 if (err)
442 return err;
443
444 err = ds_dump_status(dev, st);
445
446 return err;
447}
448
449#endif /* 0 */
450
451static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
452{
453 u8 buf[0x20];
454 int err, count = 0;
455
456 do {
457 err = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
458#if 0
459 if (err >= 0) {
460 int i;
461 printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
462 for (i=0; i<err; ++i)
463 printk("%02x ", buf[i]);
464 printk("\n");
465 }
466#endif
467 } while (!(buf[0x08] & ST_IDLE) && !(err < 0) && ++count < 100);
468
469 if (err >= 16 && st->status & ST_EPOF) {
470 printk(KERN_INFO "Resetting device after ST_EPOF.\n");
471 ds_reset_device(dev);
472 /* Always dump the device status. */
473 count = 101;
474 }
475
476 /* Dump the status for errors or if there is extended return data.
477 * The extended status includes new device detection (maybe someone
478 * can do something with it).
479 */
480 if (err > 16 || count >= 100 || err < 0)
481 ds_dump_status(dev, buf, err);
482
483 /* Extended data isn't an error. Well, a short is, but the dump
484 * would have already told the user that and we can't do anything
485 * about it in software anyway.
486 */
487 if (count >= 100 || err < 0)
488 return -1;
489 else
490 return 0;
491}
492
493static int ds_reset(struct ds_device *dev)
494{
495 int err;
496
497 /* Other potentionally interesting flags for reset.
498 *
499 * COMM_NTF: Return result register feedback. This could be used to
500 * detect some conditions such as short, alarming presence, or
501 * detect if a new device was detected.
502 *
503 * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE:
504 * Select the data transfer rate.
505 */
506 err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL);
507 if (err)
508 return err;
509
510 return 0;
511}
512
513#if 0
514static int ds_set_speed(struct ds_device *dev, int speed)
515{
516 int err;
517
518 if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
519 return -EINVAL;
520
521 if (speed != SPEED_OVERDRIVE)
522 speed = SPEED_FLEXIBLE;
523
524 speed &= 0xff;
525
526 err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
527 if (err)
528 return err;
529
530 return err;
531}
532#endif /* 0 */
533
534static int ds_set_pullup(struct ds_device *dev, int delay)
535{
536 int err = 0;
537 u8 del = 1 + (u8)(delay >> 4);
538 /* Just storing delay would not get the trunication and roundup. */
539 int ms = del<<4;
540
541 /* Enable spu_bit if a delay is set. */
542 dev->spu_bit = delay ? COMM_SPU : 0;
543 /* If delay is zero, it has already been disabled, if the time is
544 * the same as the hardware was last programmed to, there is also
545 * nothing more to do. Compare with the recalculated value ms
546 * rather than del or delay which can have a different value.
547 */
548 if (delay == 0 || ms == dev->spu_sleep)
549 return err;
550
551 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
552 if (err)
553 return err;
554
555 dev->spu_sleep = ms;
556
557 return err;
558}
559
560static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
561{
562 int err;
563 struct ds_status st;
564
565 err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
566 0);
567 if (err)
568 return err;
569
570 ds_wait_status(dev, &st);
571
572 err = ds_recv_data(dev, tbit, sizeof(*tbit));
573 if (err < 0)
574 return err;
575
576 return 0;
577}
578
579#if 0
580static int ds_write_bit(struct ds_device *dev, u8 bit)
581{
582 int err;
583 struct ds_status st;
584
585 /* Set COMM_ICP to write without a readback. Note, this will
586 * produce one time slot, a down followed by an up with COMM_D
587 * only determing the timing.
588 */
589 err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
590 (bit ? COMM_D : 0), 0);
591 if (err)
592 return err;
593
594 ds_wait_status(dev, &st);
595
596 return 0;
597}
598#endif
599
600static int ds_write_byte(struct ds_device *dev, u8 byte)
601{
602 int err;
603 struct ds_status st;
604 u8 rbyte;
605
606 err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte);
607 if (err)
608 return err;
609
610 if (dev->spu_bit)
611 msleep(dev->spu_sleep);
612
613 err = ds_wait_status(dev, &st);
614 if (err)
615 return err;
616
617 err = ds_recv_data(dev, &rbyte, sizeof(rbyte));
618 if (err < 0)
619 return err;
620
621 return !(byte == rbyte);
622}
623
624static int ds_read_byte(struct ds_device *dev, u8 *byte)
625{
626 int err;
627 struct ds_status st;
628
629 err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff);
630 if (err)
631 return err;
632
633 ds_wait_status(dev, &st);
634
635 err = ds_recv_data(dev, byte, sizeof(*byte));
636 if (err < 0)
637 return err;
638
639 return 0;
640}
641
642static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
643{
644 struct ds_status st;
645 int err;
646
647 if (len > 64*1024)
648 return -E2BIG;
649
650 memset(buf, 0xFF, len);
651
652 err = ds_send_data(dev, buf, len);
653 if (err < 0)
654 return err;
655
656 err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
657 if (err)
658 return err;
659
660 ds_wait_status(dev, &st);
661
662 memset(buf, 0x00, len);
663 err = ds_recv_data(dev, buf, len);
664
665 return err;
666}
667
668static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
669{
670 int err;
671 struct ds_status st;
672
673 err = ds_send_data(dev, buf, len);
674 if (err < 0)
675 return err;
676
677 err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len);
678 if (err)
679 return err;
680
681 if (dev->spu_bit)
682 msleep(dev->spu_sleep);
683
684 ds_wait_status(dev, &st);
685
686 err = ds_recv_data(dev, buf, len);
687 if (err < 0)
688 return err;
689
690 return !(err == len);
691}
692
693#if 0
694
695static int ds_search(struct ds_device *dev, u64 init, u64 *buf, u8 id_number, int conditional_search)
696{
697 int err;
698 u16 value, index;
699 struct ds_status st;
700
701 memset(buf, 0, sizeof(buf));
702
703 err = ds_send_data(ds_dev, (unsigned char *)&init, 8);
704 if (err)
705 return err;
706
707 ds_wait_status(ds_dev, &st);
708
709 value = COMM_SEARCH_ACCESS | COMM_IM | COMM_SM | COMM_F | COMM_RTS;
710 index = (conditional_search ? 0xEC : 0xF0) | (id_number << 8);
711 err = ds_send_control(ds_dev, value, index);
712 if (err)
713 return err;
714
715 ds_wait_status(ds_dev, &st);
716
717 err = ds_recv_data(ds_dev, (unsigned char *)buf, 8*id_number);
718 if (err < 0)
719 return err;
720
721 return err/8;
722}
723
724static int ds_match_access(struct ds_device *dev, u64 init)
725{
726 int err;
727 struct ds_status st;
728
729 err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
730 if (err)
731 return err;
732
733 ds_wait_status(dev, &st);
734
735 err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
736 if (err)
737 return err;
738
739 ds_wait_status(dev, &st);
740
741 return 0;
742}
743
744static int ds_set_path(struct ds_device *dev, u64 init)
745{
746 int err;
747 struct ds_status st;
748 u8 buf[9];
749
750 memcpy(buf, &init, 8);
751 buf[8] = BRANCH_MAIN;
752
753 err = ds_send_data(dev, buf, sizeof(buf));
754 if (err)
755 return err;
756
757 ds_wait_status(dev, &st);
758
759 err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
760 if (err)
761 return err;
762
763 ds_wait_status(dev, &st);
764
765 return 0;
766}
767
768#endif /* 0 */
769
770static u8 ds9490r_touch_bit(void *data, u8 bit)
771{
772 u8 ret;
773 struct ds_device *dev = data;
774
775 if (ds_touch_bit(dev, bit, &ret))
776 return 0;
777
778 return ret;
779}
780
781#if 0
782static void ds9490r_write_bit(void *data, u8 bit)
783{
784 struct ds_device *dev = data;
785
786 ds_write_bit(dev, bit);
787}
788
789static u8 ds9490r_read_bit(void *data)
790{
791 struct ds_device *dev = data;
792 int err;
793 u8 bit = 0;
794
795 err = ds_touch_bit(dev, 1, &bit);
796 if (err)
797 return 0;
798
799 return bit & 1;
800}
801#endif
802
803static void ds9490r_write_byte(void *data, u8 byte)
804{
805 struct ds_device *dev = data;
806
807 ds_write_byte(dev, byte);
808}
809
810static u8 ds9490r_read_byte(void *data)
811{
812 struct ds_device *dev = data;
813 int err;
814 u8 byte = 0;
815
816 err = ds_read_byte(dev, &byte);
817 if (err)
818 return 0;
819
820 return byte;
821}
822
823static void ds9490r_write_block(void *data, const u8 *buf, int len)
824{
825 struct ds_device *dev = data;
826
827 ds_write_block(dev, (u8 *)buf, len);
828}
829
830static u8 ds9490r_read_block(void *data, u8 *buf, int len)
831{
832 struct ds_device *dev = data;
833 int err;
834
835 err = ds_read_block(dev, buf, len);
836 if (err < 0)
837 return 0;
838
839 return len;
840}
841
842static u8 ds9490r_reset(void *data)
843{
844 struct ds_device *dev = data;
845 int err;
846
847 err = ds_reset(dev);
848 if (err)
849 return 1;
850
851 return 0;
852}
853
854static u8 ds9490r_set_pullup(void *data, int delay)
855{
856 struct ds_device *dev = data;
857
858 if (ds_set_pullup(dev, delay))
859 return 1;
860
861 return 0;
862}
863
864static int ds_w1_init(struct ds_device *dev)
865{
866 memset(&dev->master, 0, sizeof(struct w1_bus_master));
867
868 /* Reset the device as it can be in a bad state.
869 * This is necessary because a block write will wait for data
870 * to be placed in the output buffer and block any later
871 * commands which will keep accumulating and the device will
872 * not be idle. Another case is removing the ds2490 module
873 * while a bus search is in progress, somehow a few commands
874 * get through, but the input transfers fail leaving data in
875 * the input buffer. This will cause the next read to fail
876 * see the note in ds_recv_data.
877 */
878 ds_reset_device(dev);
879
880 dev->master.data = dev;
881 dev->master.touch_bit = &ds9490r_touch_bit;
882 /* read_bit and write_bit in w1_bus_master are expected to set and
883 * sample the line level. For write_bit that means it is expected to
884 * set it to that value and leave it there. ds2490 only supports an
885 * individual time slot at the lowest level. The requirement from
886 * pulling the bus state down to reading the state is 15us, something
887 * that isn't realistic on the USB bus anyway.
888 dev->master.read_bit = &ds9490r_read_bit;
889 dev->master.write_bit = &ds9490r_write_bit;
890 */
891 dev->master.read_byte = &ds9490r_read_byte;
892 dev->master.write_byte = &ds9490r_write_byte;
893 dev->master.read_block = &ds9490r_read_block;
894 dev->master.write_block = &ds9490r_write_block;
895 dev->master.reset_bus = &ds9490r_reset;
896 dev->master.set_pullup = &ds9490r_set_pullup;
897
898 return w1_add_master_device(&dev->master);
899}
900
901static void ds_w1_fini(struct ds_device *dev)
902{
903 w1_remove_master_device(&dev->master);
904}
905
906static int ds_probe(struct usb_interface *intf,
907 const struct usb_device_id *udev_id)
908{
909 struct usb_device *udev = interface_to_usbdev(intf);
910 struct usb_endpoint_descriptor *endpoint;
911 struct usb_host_interface *iface_desc;
912 struct ds_device *dev;
913 int i, err;
914
915 dev = kmalloc(sizeof(struct ds_device), GFP_KERNEL);
916 if (!dev) {
917 printk(KERN_INFO "Failed to allocate new DS9490R structure.\n");
918 return -ENOMEM;
919 }
920 dev->spu_sleep = 0;
921 dev->spu_bit = 0;
922 dev->udev = usb_get_dev(udev);
923 if (!dev->udev) {
924 err = -ENOMEM;
925 goto err_out_free;
926 }
927 memset(dev->ep, 0, sizeof(dev->ep));
928
929 usb_set_intfdata(intf, dev);
930
931 err = usb_set_interface(dev->udev, intf->altsetting[0].desc.bInterfaceNumber, 3);
932 if (err) {
933 printk(KERN_ERR "Failed to set alternative setting 3 for %d interface: err=%d.\n",
934 intf->altsetting[0].desc.bInterfaceNumber, err);
935 goto err_out_clear;
936 }
937
938 err = usb_reset_configuration(dev->udev);
939 if (err) {
940 printk(KERN_ERR "Failed to reset configuration: err=%d.\n", err);
941 goto err_out_clear;
942 }
943
944 iface_desc = &intf->altsetting[0];
945 if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
946 printk(KERN_INFO "Num endpoints=%d. It is not DS9490R.\n", iface_desc->desc.bNumEndpoints);
947 err = -EINVAL;
948 goto err_out_clear;
949 }
950
951 /*
952 * This loop doesn'd show control 0 endpoint,
953 * so we will fill only 1-3 endpoints entry.
954 */
955 for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
956 endpoint = &iface_desc->endpoint[i].desc;
957
958 dev->ep[i+1] = endpoint->bEndpointAddress;
959#if 0
960 printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
961 i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
962 (endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
963 endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
964#endif
965 }
966
967 err = ds_w1_init(dev);
968 if (err)
969 goto err_out_clear;
970
971 mutex_lock(&ds_mutex);
972 list_add_tail(&dev->ds_entry, &ds_devices);
973 mutex_unlock(&ds_mutex);
974
975 return 0;
976
977err_out_clear:
978 usb_set_intfdata(intf, NULL);
979 usb_put_dev(dev->udev);
980err_out_free:
981 kfree(dev);
982 return err;
983}
984
985static void ds_disconnect(struct usb_interface *intf)
986{
987 struct ds_device *dev;
988
989 dev = usb_get_intfdata(intf);
990 if (!dev)
991 return;
992
993 mutex_lock(&ds_mutex);
994 list_del(&dev->ds_entry);
995 mutex_unlock(&ds_mutex);
996
997 ds_w1_fini(dev);
998
999 usb_set_intfdata(intf, NULL);
1000
1001 usb_put_dev(dev->udev);
1002 kfree(dev);
1003}
1004
1005module_usb_driver(ds_driver);
1006
1007MODULE_LICENSE("GPL");
1008MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>");
1009MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");