Loading...
1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/**************************************************************************
3 *
4 * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28#include <drm/ttm/ttm_placement.h>
29
30#include "vmwgfx_resource_priv.h"
31#include "vmwgfx_binding.h"
32#include "vmwgfx_drv.h"
33
34#define VMW_RES_EVICT_ERR_COUNT 10
35
36/**
37 * vmw_resource_mob_attach - Mark a resource as attached to its backing mob
38 * @res: The resource
39 */
40void vmw_resource_mob_attach(struct vmw_resource *res)
41{
42 struct vmw_buffer_object *backup = res->backup;
43
44 dma_resv_assert_held(res->backup->base.base.resv);
45 res->used_prio = (res->res_dirty) ? res->func->dirty_prio :
46 res->func->prio;
47 list_add_tail(&res->mob_head, &backup->res_list);
48 vmw_bo_prio_add(backup, res->used_prio);
49}
50
51/**
52 * vmw_resource_mob_detach - Mark a resource as detached from its backing mob
53 * @res: The resource
54 */
55void vmw_resource_mob_detach(struct vmw_resource *res)
56{
57 struct vmw_buffer_object *backup = res->backup;
58
59 dma_resv_assert_held(backup->base.base.resv);
60 if (vmw_resource_mob_attached(res)) {
61 list_del_init(&res->mob_head);
62 vmw_bo_prio_del(backup, res->used_prio);
63 }
64}
65
66struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
67{
68 kref_get(&res->kref);
69 return res;
70}
71
72struct vmw_resource *
73vmw_resource_reference_unless_doomed(struct vmw_resource *res)
74{
75 return kref_get_unless_zero(&res->kref) ? res : NULL;
76}
77
78/**
79 * vmw_resource_release_id - release a resource id to the id manager.
80 *
81 * @res: Pointer to the resource.
82 *
83 * Release the resource id to the resource id manager and set it to -1
84 */
85void vmw_resource_release_id(struct vmw_resource *res)
86{
87 struct vmw_private *dev_priv = res->dev_priv;
88 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
89
90 spin_lock(&dev_priv->resource_lock);
91 if (res->id != -1)
92 idr_remove(idr, res->id);
93 res->id = -1;
94 spin_unlock(&dev_priv->resource_lock);
95}
96
97static void vmw_resource_release(struct kref *kref)
98{
99 struct vmw_resource *res =
100 container_of(kref, struct vmw_resource, kref);
101 struct vmw_private *dev_priv = res->dev_priv;
102 int id;
103 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
104
105 spin_lock(&dev_priv->resource_lock);
106 list_del_init(&res->lru_head);
107 spin_unlock(&dev_priv->resource_lock);
108 if (res->backup) {
109 struct ttm_buffer_object *bo = &res->backup->base;
110
111 ttm_bo_reserve(bo, false, false, NULL);
112 if (vmw_resource_mob_attached(res) &&
113 res->func->unbind != NULL) {
114 struct ttm_validate_buffer val_buf;
115
116 val_buf.bo = bo;
117 val_buf.num_shared = 0;
118 res->func->unbind(res, false, &val_buf);
119 }
120 res->backup_dirty = false;
121 vmw_resource_mob_detach(res);
122 ttm_bo_unreserve(bo);
123 vmw_bo_unreference(&res->backup);
124 }
125
126 if (likely(res->hw_destroy != NULL)) {
127 mutex_lock(&dev_priv->binding_mutex);
128 vmw_binding_res_list_kill(&res->binding_head);
129 mutex_unlock(&dev_priv->binding_mutex);
130 res->hw_destroy(res);
131 }
132
133 id = res->id;
134 if (res->res_free != NULL)
135 res->res_free(res);
136 else
137 kfree(res);
138
139 spin_lock(&dev_priv->resource_lock);
140 if (id != -1)
141 idr_remove(idr, id);
142 spin_unlock(&dev_priv->resource_lock);
143}
144
145void vmw_resource_unreference(struct vmw_resource **p_res)
146{
147 struct vmw_resource *res = *p_res;
148
149 *p_res = NULL;
150 kref_put(&res->kref, vmw_resource_release);
151}
152
153
154/**
155 * vmw_resource_alloc_id - release a resource id to the id manager.
156 *
157 * @res: Pointer to the resource.
158 *
159 * Allocate the lowest free resource from the resource manager, and set
160 * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
161 */
162int vmw_resource_alloc_id(struct vmw_resource *res)
163{
164 struct vmw_private *dev_priv = res->dev_priv;
165 int ret;
166 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
167
168 BUG_ON(res->id != -1);
169
170 idr_preload(GFP_KERNEL);
171 spin_lock(&dev_priv->resource_lock);
172
173 ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
174 if (ret >= 0)
175 res->id = ret;
176
177 spin_unlock(&dev_priv->resource_lock);
178 idr_preload_end();
179 return ret < 0 ? ret : 0;
180}
181
182/**
183 * vmw_resource_init - initialize a struct vmw_resource
184 *
185 * @dev_priv: Pointer to a device private struct.
186 * @res: The struct vmw_resource to initialize.
187 * @obj_type: Resource object type.
188 * @delay_id: Boolean whether to defer device id allocation until
189 * the first validation.
190 * @res_free: Resource destructor.
191 * @func: Resource function table.
192 */
193int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
194 bool delay_id,
195 void (*res_free) (struct vmw_resource *res),
196 const struct vmw_res_func *func)
197{
198 kref_init(&res->kref);
199 res->hw_destroy = NULL;
200 res->res_free = res_free;
201 res->dev_priv = dev_priv;
202 res->func = func;
203 INIT_LIST_HEAD(&res->lru_head);
204 INIT_LIST_HEAD(&res->mob_head);
205 INIT_LIST_HEAD(&res->binding_head);
206 res->id = -1;
207 res->backup = NULL;
208 res->backup_offset = 0;
209 res->backup_dirty = false;
210 res->res_dirty = false;
211 res->used_prio = 3;
212 if (delay_id)
213 return 0;
214 else
215 return vmw_resource_alloc_id(res);
216}
217
218
219/**
220 * vmw_user_resource_lookup_handle - lookup a struct resource from a
221 * TTM user-space handle and perform basic type checks
222 *
223 * @dev_priv: Pointer to a device private struct
224 * @tfile: Pointer to a struct ttm_object_file identifying the caller
225 * @handle: The TTM user-space handle
226 * @converter: Pointer to an object describing the resource type
227 * @p_res: On successful return the location pointed to will contain
228 * a pointer to a refcounted struct vmw_resource.
229 *
230 * If the handle can't be found or is associated with an incorrect resource
231 * type, -EINVAL will be returned.
232 */
233int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
234 struct ttm_object_file *tfile,
235 uint32_t handle,
236 const struct vmw_user_resource_conv
237 *converter,
238 struct vmw_resource **p_res)
239{
240 struct ttm_base_object *base;
241 struct vmw_resource *res;
242 int ret = -EINVAL;
243
244 base = ttm_base_object_lookup(tfile, handle);
245 if (unlikely(base == NULL))
246 return -EINVAL;
247
248 if (unlikely(ttm_base_object_type(base) != converter->object_type))
249 goto out_bad_resource;
250
251 res = converter->base_obj_to_res(base);
252 kref_get(&res->kref);
253
254 *p_res = res;
255 ret = 0;
256
257out_bad_resource:
258 ttm_base_object_unref(&base);
259
260 return ret;
261}
262
263/**
264 * vmw_user_resource_lookup_handle - lookup a struct resource from a
265 * TTM user-space handle and perform basic type checks
266 *
267 * @dev_priv: Pointer to a device private struct
268 * @tfile: Pointer to a struct ttm_object_file identifying the caller
269 * @handle: The TTM user-space handle
270 * @converter: Pointer to an object describing the resource type
271 * @p_res: On successful return the location pointed to will contain
272 * a pointer to a refcounted struct vmw_resource.
273 *
274 * If the handle can't be found or is associated with an incorrect resource
275 * type, -EINVAL will be returned.
276 */
277struct vmw_resource *
278vmw_user_resource_noref_lookup_handle(struct vmw_private *dev_priv,
279 struct ttm_object_file *tfile,
280 uint32_t handle,
281 const struct vmw_user_resource_conv
282 *converter)
283{
284 struct ttm_base_object *base;
285
286 base = ttm_base_object_noref_lookup(tfile, handle);
287 if (!base)
288 return ERR_PTR(-ESRCH);
289
290 if (unlikely(ttm_base_object_type(base) != converter->object_type)) {
291 ttm_base_object_noref_release();
292 return ERR_PTR(-EINVAL);
293 }
294
295 return converter->base_obj_to_res(base);
296}
297
298/**
299 * Helper function that looks either a surface or bo.
300 *
301 * The pointer this pointed at by out_surf and out_buf needs to be null.
302 */
303int vmw_user_lookup_handle(struct vmw_private *dev_priv,
304 struct ttm_object_file *tfile,
305 uint32_t handle,
306 struct vmw_surface **out_surf,
307 struct vmw_buffer_object **out_buf)
308{
309 struct vmw_resource *res;
310 int ret;
311
312 BUG_ON(*out_surf || *out_buf);
313
314 ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
315 user_surface_converter,
316 &res);
317 if (!ret) {
318 *out_surf = vmw_res_to_srf(res);
319 return 0;
320 }
321
322 *out_surf = NULL;
323 ret = vmw_user_bo_lookup(tfile, handle, out_buf, NULL);
324 return ret;
325}
326
327/**
328 * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
329 *
330 * @res: The resource for which to allocate a backup buffer.
331 * @interruptible: Whether any sleeps during allocation should be
332 * performed while interruptible.
333 */
334static int vmw_resource_buf_alloc(struct vmw_resource *res,
335 bool interruptible)
336{
337 unsigned long size =
338 (res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
339 struct vmw_buffer_object *backup;
340 int ret;
341
342 if (likely(res->backup)) {
343 BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
344 return 0;
345 }
346
347 backup = kzalloc(sizeof(*backup), GFP_KERNEL);
348 if (unlikely(!backup))
349 return -ENOMEM;
350
351 ret = vmw_bo_init(res->dev_priv, backup, res->backup_size,
352 res->func->backup_placement,
353 interruptible,
354 &vmw_bo_bo_free);
355 if (unlikely(ret != 0))
356 goto out_no_bo;
357
358 res->backup = backup;
359
360out_no_bo:
361 return ret;
362}
363
364/**
365 * vmw_resource_do_validate - Make a resource up-to-date and visible
366 * to the device.
367 *
368 * @res: The resource to make visible to the device.
369 * @val_buf: Information about a buffer possibly
370 * containing backup data if a bind operation is needed.
371 *
372 * On hardware resource shortage, this function returns -EBUSY and
373 * should be retried once resources have been freed up.
374 */
375static int vmw_resource_do_validate(struct vmw_resource *res,
376 struct ttm_validate_buffer *val_buf)
377{
378 int ret = 0;
379 const struct vmw_res_func *func = res->func;
380
381 if (unlikely(res->id == -1)) {
382 ret = func->create(res);
383 if (unlikely(ret != 0))
384 return ret;
385 }
386
387 if (func->bind &&
388 ((func->needs_backup && !vmw_resource_mob_attached(res) &&
389 val_buf->bo != NULL) ||
390 (!func->needs_backup && val_buf->bo != NULL))) {
391 ret = func->bind(res, val_buf);
392 if (unlikely(ret != 0))
393 goto out_bind_failed;
394 if (func->needs_backup)
395 vmw_resource_mob_attach(res);
396 }
397
398 return 0;
399
400out_bind_failed:
401 func->destroy(res);
402
403 return ret;
404}
405
406/**
407 * vmw_resource_unreserve - Unreserve a resource previously reserved for
408 * command submission.
409 *
410 * @res: Pointer to the struct vmw_resource to unreserve.
411 * @dirty_set: Change dirty status of the resource.
412 * @dirty: When changing dirty status indicates the new status.
413 * @switch_backup: Backup buffer has been switched.
414 * @new_backup: Pointer to new backup buffer if command submission
415 * switched. May be NULL.
416 * @new_backup_offset: New backup offset if @switch_backup is true.
417 *
418 * Currently unreserving a resource means putting it back on the device's
419 * resource lru list, so that it can be evicted if necessary.
420 */
421void vmw_resource_unreserve(struct vmw_resource *res,
422 bool dirty_set,
423 bool dirty,
424 bool switch_backup,
425 struct vmw_buffer_object *new_backup,
426 unsigned long new_backup_offset)
427{
428 struct vmw_private *dev_priv = res->dev_priv;
429
430 if (!list_empty(&res->lru_head))
431 return;
432
433 if (switch_backup && new_backup != res->backup) {
434 if (res->backup) {
435 vmw_resource_mob_detach(res);
436 vmw_bo_unreference(&res->backup);
437 }
438
439 if (new_backup) {
440 res->backup = vmw_bo_reference(new_backup);
441 vmw_resource_mob_attach(res);
442 } else {
443 res->backup = NULL;
444 }
445 }
446 if (switch_backup)
447 res->backup_offset = new_backup_offset;
448
449 if (dirty_set)
450 res->res_dirty = dirty;
451
452 if (!res->func->may_evict || res->id == -1 || res->pin_count)
453 return;
454
455 spin_lock(&dev_priv->resource_lock);
456 list_add_tail(&res->lru_head,
457 &res->dev_priv->res_lru[res->func->res_type]);
458 spin_unlock(&dev_priv->resource_lock);
459}
460
461/**
462 * vmw_resource_check_buffer - Check whether a backup buffer is needed
463 * for a resource and in that case, allocate
464 * one, reserve and validate it.
465 *
466 * @ticket: The ww aqcquire context to use, or NULL if trylocking.
467 * @res: The resource for which to allocate a backup buffer.
468 * @interruptible: Whether any sleeps during allocation should be
469 * performed while interruptible.
470 * @val_buf: On successful return contains data about the
471 * reserved and validated backup buffer.
472 */
473static int
474vmw_resource_check_buffer(struct ww_acquire_ctx *ticket,
475 struct vmw_resource *res,
476 bool interruptible,
477 struct ttm_validate_buffer *val_buf)
478{
479 struct ttm_operation_ctx ctx = { true, false };
480 struct list_head val_list;
481 bool backup_dirty = false;
482 int ret;
483
484 if (unlikely(res->backup == NULL)) {
485 ret = vmw_resource_buf_alloc(res, interruptible);
486 if (unlikely(ret != 0))
487 return ret;
488 }
489
490 INIT_LIST_HEAD(&val_list);
491 ttm_bo_get(&res->backup->base);
492 val_buf->bo = &res->backup->base;
493 val_buf->num_shared = 0;
494 list_add_tail(&val_buf->head, &val_list);
495 ret = ttm_eu_reserve_buffers(ticket, &val_list, interruptible, NULL,
496 true);
497 if (unlikely(ret != 0))
498 goto out_no_reserve;
499
500 if (res->func->needs_backup && !vmw_resource_mob_attached(res))
501 return 0;
502
503 backup_dirty = res->backup_dirty;
504 ret = ttm_bo_validate(&res->backup->base,
505 res->func->backup_placement,
506 &ctx);
507
508 if (unlikely(ret != 0))
509 goto out_no_validate;
510
511 return 0;
512
513out_no_validate:
514 ttm_eu_backoff_reservation(ticket, &val_list);
515out_no_reserve:
516 ttm_bo_put(val_buf->bo);
517 val_buf->bo = NULL;
518 if (backup_dirty)
519 vmw_bo_unreference(&res->backup);
520
521 return ret;
522}
523
524/**
525 * vmw_resource_reserve - Reserve a resource for command submission
526 *
527 * @res: The resource to reserve.
528 *
529 * This function takes the resource off the LRU list and make sure
530 * a backup buffer is present for guest-backed resources. However,
531 * the buffer may not be bound to the resource at this point.
532 *
533 */
534int vmw_resource_reserve(struct vmw_resource *res, bool interruptible,
535 bool no_backup)
536{
537 struct vmw_private *dev_priv = res->dev_priv;
538 int ret;
539
540 spin_lock(&dev_priv->resource_lock);
541 list_del_init(&res->lru_head);
542 spin_unlock(&dev_priv->resource_lock);
543
544 if (res->func->needs_backup && res->backup == NULL &&
545 !no_backup) {
546 ret = vmw_resource_buf_alloc(res, interruptible);
547 if (unlikely(ret != 0)) {
548 DRM_ERROR("Failed to allocate a backup buffer "
549 "of size %lu. bytes\n",
550 (unsigned long) res->backup_size);
551 return ret;
552 }
553 }
554
555 return 0;
556}
557
558/**
559 * vmw_resource_backoff_reservation - Unreserve and unreference a
560 * backup buffer
561 *.
562 * @ticket: The ww acquire ctx used for reservation.
563 * @val_buf: Backup buffer information.
564 */
565static void
566vmw_resource_backoff_reservation(struct ww_acquire_ctx *ticket,
567 struct ttm_validate_buffer *val_buf)
568{
569 struct list_head val_list;
570
571 if (likely(val_buf->bo == NULL))
572 return;
573
574 INIT_LIST_HEAD(&val_list);
575 list_add_tail(&val_buf->head, &val_list);
576 ttm_eu_backoff_reservation(ticket, &val_list);
577 ttm_bo_put(val_buf->bo);
578 val_buf->bo = NULL;
579}
580
581/**
582 * vmw_resource_do_evict - Evict a resource, and transfer its data
583 * to a backup buffer.
584 *
585 * @ticket: The ww acquire ticket to use, or NULL if trylocking.
586 * @res: The resource to evict.
587 * @interruptible: Whether to wait interruptible.
588 */
589static int vmw_resource_do_evict(struct ww_acquire_ctx *ticket,
590 struct vmw_resource *res, bool interruptible)
591{
592 struct ttm_validate_buffer val_buf;
593 const struct vmw_res_func *func = res->func;
594 int ret;
595
596 BUG_ON(!func->may_evict);
597
598 val_buf.bo = NULL;
599 val_buf.num_shared = 0;
600 ret = vmw_resource_check_buffer(ticket, res, interruptible, &val_buf);
601 if (unlikely(ret != 0))
602 return ret;
603
604 if (unlikely(func->unbind != NULL &&
605 (!func->needs_backup || vmw_resource_mob_attached(res)))) {
606 ret = func->unbind(res, res->res_dirty, &val_buf);
607 if (unlikely(ret != 0))
608 goto out_no_unbind;
609 vmw_resource_mob_detach(res);
610 }
611 ret = func->destroy(res);
612 res->backup_dirty = true;
613 res->res_dirty = false;
614out_no_unbind:
615 vmw_resource_backoff_reservation(ticket, &val_buf);
616
617 return ret;
618}
619
620
621/**
622 * vmw_resource_validate - Make a resource up-to-date and visible
623 * to the device.
624 * @res: The resource to make visible to the device.
625 * @intr: Perform waits interruptible if possible.
626 *
627 * On succesful return, any backup DMA buffer pointed to by @res->backup will
628 * be reserved and validated.
629 * On hardware resource shortage, this function will repeatedly evict
630 * resources of the same type until the validation succeeds.
631 *
632 * Return: Zero on success, -ERESTARTSYS if interrupted, negative error code
633 * on failure.
634 */
635int vmw_resource_validate(struct vmw_resource *res, bool intr)
636{
637 int ret;
638 struct vmw_resource *evict_res;
639 struct vmw_private *dev_priv = res->dev_priv;
640 struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
641 struct ttm_validate_buffer val_buf;
642 unsigned err_count = 0;
643
644 if (!res->func->create)
645 return 0;
646
647 val_buf.bo = NULL;
648 val_buf.num_shared = 0;
649 if (res->backup)
650 val_buf.bo = &res->backup->base;
651 do {
652 ret = vmw_resource_do_validate(res, &val_buf);
653 if (likely(ret != -EBUSY))
654 break;
655
656 spin_lock(&dev_priv->resource_lock);
657 if (list_empty(lru_list) || !res->func->may_evict) {
658 DRM_ERROR("Out of device device resources "
659 "for %s.\n", res->func->type_name);
660 ret = -EBUSY;
661 spin_unlock(&dev_priv->resource_lock);
662 break;
663 }
664
665 evict_res = vmw_resource_reference
666 (list_first_entry(lru_list, struct vmw_resource,
667 lru_head));
668 list_del_init(&evict_res->lru_head);
669
670 spin_unlock(&dev_priv->resource_lock);
671
672 /* Trylock backup buffers with a NULL ticket. */
673 ret = vmw_resource_do_evict(NULL, evict_res, intr);
674 if (unlikely(ret != 0)) {
675 spin_lock(&dev_priv->resource_lock);
676 list_add_tail(&evict_res->lru_head, lru_list);
677 spin_unlock(&dev_priv->resource_lock);
678 if (ret == -ERESTARTSYS ||
679 ++err_count > VMW_RES_EVICT_ERR_COUNT) {
680 vmw_resource_unreference(&evict_res);
681 goto out_no_validate;
682 }
683 }
684
685 vmw_resource_unreference(&evict_res);
686 } while (1);
687
688 if (unlikely(ret != 0))
689 goto out_no_validate;
690 else if (!res->func->needs_backup && res->backup) {
691 WARN_ON_ONCE(vmw_resource_mob_attached(res));
692 vmw_bo_unreference(&res->backup);
693 }
694
695 return 0;
696
697out_no_validate:
698 return ret;
699}
700
701
702/**
703 * vmw_resource_unbind_list
704 *
705 * @vbo: Pointer to the current backing MOB.
706 *
707 * Evicts the Guest Backed hardware resource if the backup
708 * buffer is being moved out of MOB memory.
709 * Note that this function will not race with the resource
710 * validation code, since resource validation and eviction
711 * both require the backup buffer to be reserved.
712 */
713void vmw_resource_unbind_list(struct vmw_buffer_object *vbo)
714{
715
716 struct vmw_resource *res, *next;
717 struct ttm_validate_buffer val_buf = {
718 .bo = &vbo->base,
719 .num_shared = 0
720 };
721
722 dma_resv_assert_held(vbo->base.base.resv);
723 list_for_each_entry_safe(res, next, &vbo->res_list, mob_head) {
724 if (!res->func->unbind)
725 continue;
726
727 (void) res->func->unbind(res, res->res_dirty, &val_buf);
728 res->backup_dirty = true;
729 res->res_dirty = false;
730 vmw_resource_mob_detach(res);
731 }
732
733 (void) ttm_bo_wait(&vbo->base, false, false);
734}
735
736
737/**
738 * vmw_query_readback_all - Read back cached query states
739 *
740 * @dx_query_mob: Buffer containing the DX query MOB
741 *
742 * Read back cached states from the device if they exist. This function
743 * assumings binding_mutex is held.
744 */
745int vmw_query_readback_all(struct vmw_buffer_object *dx_query_mob)
746{
747 struct vmw_resource *dx_query_ctx;
748 struct vmw_private *dev_priv;
749 struct {
750 SVGA3dCmdHeader header;
751 SVGA3dCmdDXReadbackAllQuery body;
752 } *cmd;
753
754
755 /* No query bound, so do nothing */
756 if (!dx_query_mob || !dx_query_mob->dx_query_ctx)
757 return 0;
758
759 dx_query_ctx = dx_query_mob->dx_query_ctx;
760 dev_priv = dx_query_ctx->dev_priv;
761
762 cmd = VMW_FIFO_RESERVE_DX(dev_priv, sizeof(*cmd), dx_query_ctx->id);
763 if (unlikely(cmd == NULL))
764 return -ENOMEM;
765
766 cmd->header.id = SVGA_3D_CMD_DX_READBACK_ALL_QUERY;
767 cmd->header.size = sizeof(cmd->body);
768 cmd->body.cid = dx_query_ctx->id;
769
770 vmw_fifo_commit(dev_priv, sizeof(*cmd));
771
772 /* Triggers a rebind the next time affected context is bound */
773 dx_query_mob->dx_query_ctx = NULL;
774
775 return 0;
776}
777
778
779
780/**
781 * vmw_query_move_notify - Read back cached query states
782 *
783 * @bo: The TTM buffer object about to move.
784 * @mem: The memory region @bo is moving to.
785 *
786 * Called before the query MOB is swapped out to read back cached query
787 * states from the device.
788 */
789void vmw_query_move_notify(struct ttm_buffer_object *bo,
790 struct ttm_mem_reg *mem)
791{
792 struct vmw_buffer_object *dx_query_mob;
793 struct ttm_bo_device *bdev = bo->bdev;
794 struct vmw_private *dev_priv;
795
796
797 dev_priv = container_of(bdev, struct vmw_private, bdev);
798
799 mutex_lock(&dev_priv->binding_mutex);
800
801 dx_query_mob = container_of(bo, struct vmw_buffer_object, base);
802 if (mem == NULL || !dx_query_mob || !dx_query_mob->dx_query_ctx) {
803 mutex_unlock(&dev_priv->binding_mutex);
804 return;
805 }
806
807 /* If BO is being moved from MOB to system memory */
808 if (mem->mem_type == TTM_PL_SYSTEM && bo->mem.mem_type == VMW_PL_MOB) {
809 struct vmw_fence_obj *fence;
810
811 (void) vmw_query_readback_all(dx_query_mob);
812 mutex_unlock(&dev_priv->binding_mutex);
813
814 /* Create a fence and attach the BO to it */
815 (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
816 vmw_bo_fence_single(bo, fence);
817
818 if (fence != NULL)
819 vmw_fence_obj_unreference(&fence);
820
821 (void) ttm_bo_wait(bo, false, false);
822 } else
823 mutex_unlock(&dev_priv->binding_mutex);
824
825}
826
827/**
828 * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
829 *
830 * @res: The resource being queried.
831 */
832bool vmw_resource_needs_backup(const struct vmw_resource *res)
833{
834 return res->func->needs_backup;
835}
836
837/**
838 * vmw_resource_evict_type - Evict all resources of a specific type
839 *
840 * @dev_priv: Pointer to a device private struct
841 * @type: The resource type to evict
842 *
843 * To avoid thrashing starvation or as part of the hibernation sequence,
844 * try to evict all evictable resources of a specific type.
845 */
846static void vmw_resource_evict_type(struct vmw_private *dev_priv,
847 enum vmw_res_type type)
848{
849 struct list_head *lru_list = &dev_priv->res_lru[type];
850 struct vmw_resource *evict_res;
851 unsigned err_count = 0;
852 int ret;
853 struct ww_acquire_ctx ticket;
854
855 do {
856 spin_lock(&dev_priv->resource_lock);
857
858 if (list_empty(lru_list))
859 goto out_unlock;
860
861 evict_res = vmw_resource_reference(
862 list_first_entry(lru_list, struct vmw_resource,
863 lru_head));
864 list_del_init(&evict_res->lru_head);
865 spin_unlock(&dev_priv->resource_lock);
866
867 /* Wait lock backup buffers with a ticket. */
868 ret = vmw_resource_do_evict(&ticket, evict_res, false);
869 if (unlikely(ret != 0)) {
870 spin_lock(&dev_priv->resource_lock);
871 list_add_tail(&evict_res->lru_head, lru_list);
872 spin_unlock(&dev_priv->resource_lock);
873 if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
874 vmw_resource_unreference(&evict_res);
875 return;
876 }
877 }
878
879 vmw_resource_unreference(&evict_res);
880 } while (1);
881
882out_unlock:
883 spin_unlock(&dev_priv->resource_lock);
884}
885
886/**
887 * vmw_resource_evict_all - Evict all evictable resources
888 *
889 * @dev_priv: Pointer to a device private struct
890 *
891 * To avoid thrashing starvation or as part of the hibernation sequence,
892 * evict all evictable resources. In particular this means that all
893 * guest-backed resources that are registered with the device are
894 * evicted and the OTable becomes clean.
895 */
896void vmw_resource_evict_all(struct vmw_private *dev_priv)
897{
898 enum vmw_res_type type;
899
900 mutex_lock(&dev_priv->cmdbuf_mutex);
901
902 for (type = 0; type < vmw_res_max; ++type)
903 vmw_resource_evict_type(dev_priv, type);
904
905 mutex_unlock(&dev_priv->cmdbuf_mutex);
906}
907
908/**
909 * vmw_resource_pin - Add a pin reference on a resource
910 *
911 * @res: The resource to add a pin reference on
912 *
913 * This function adds a pin reference, and if needed validates the resource.
914 * Having a pin reference means that the resource can never be evicted, and
915 * its id will never change as long as there is a pin reference.
916 * This function returns 0 on success and a negative error code on failure.
917 */
918int vmw_resource_pin(struct vmw_resource *res, bool interruptible)
919{
920 struct ttm_operation_ctx ctx = { interruptible, false };
921 struct vmw_private *dev_priv = res->dev_priv;
922 int ret;
923
924 ttm_write_lock(&dev_priv->reservation_sem, interruptible);
925 mutex_lock(&dev_priv->cmdbuf_mutex);
926 ret = vmw_resource_reserve(res, interruptible, false);
927 if (ret)
928 goto out_no_reserve;
929
930 if (res->pin_count == 0) {
931 struct vmw_buffer_object *vbo = NULL;
932
933 if (res->backup) {
934 vbo = res->backup;
935
936 ttm_bo_reserve(&vbo->base, interruptible, false, NULL);
937 if (!vbo->pin_count) {
938 ret = ttm_bo_validate
939 (&vbo->base,
940 res->func->backup_placement,
941 &ctx);
942 if (ret) {
943 ttm_bo_unreserve(&vbo->base);
944 goto out_no_validate;
945 }
946 }
947
948 /* Do we really need to pin the MOB as well? */
949 vmw_bo_pin_reserved(vbo, true);
950 }
951 ret = vmw_resource_validate(res, interruptible);
952 if (vbo)
953 ttm_bo_unreserve(&vbo->base);
954 if (ret)
955 goto out_no_validate;
956 }
957 res->pin_count++;
958
959out_no_validate:
960 vmw_resource_unreserve(res, false, false, false, NULL, 0UL);
961out_no_reserve:
962 mutex_unlock(&dev_priv->cmdbuf_mutex);
963 ttm_write_unlock(&dev_priv->reservation_sem);
964
965 return ret;
966}
967
968/**
969 * vmw_resource_unpin - Remove a pin reference from a resource
970 *
971 * @res: The resource to remove a pin reference from
972 *
973 * Having a pin reference means that the resource can never be evicted, and
974 * its id will never change as long as there is a pin reference.
975 */
976void vmw_resource_unpin(struct vmw_resource *res)
977{
978 struct vmw_private *dev_priv = res->dev_priv;
979 int ret;
980
981 (void) ttm_read_lock(&dev_priv->reservation_sem, false);
982 mutex_lock(&dev_priv->cmdbuf_mutex);
983
984 ret = vmw_resource_reserve(res, false, true);
985 WARN_ON(ret);
986
987 WARN_ON(res->pin_count == 0);
988 if (--res->pin_count == 0 && res->backup) {
989 struct vmw_buffer_object *vbo = res->backup;
990
991 (void) ttm_bo_reserve(&vbo->base, false, false, NULL);
992 vmw_bo_pin_reserved(vbo, false);
993 ttm_bo_unreserve(&vbo->base);
994 }
995
996 vmw_resource_unreserve(res, false, false, false, NULL, 0UL);
997
998 mutex_unlock(&dev_priv->cmdbuf_mutex);
999 ttm_read_unlock(&dev_priv->reservation_sem);
1000}
1001
1002/**
1003 * vmw_res_type - Return the resource type
1004 *
1005 * @res: Pointer to the resource
1006 */
1007enum vmw_res_type vmw_res_type(const struct vmw_resource *res)
1008{
1009 return res->func->res_type;
1010}
1/**************************************************************************
2 *
3 * Copyright © 2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28#include "vmwgfx_drv.h"
29#include "vmwgfx_drm.h"
30#include "ttm/ttm_object.h"
31#include "ttm/ttm_placement.h"
32#include "drmP.h"
33
34struct vmw_user_context {
35 struct ttm_base_object base;
36 struct vmw_resource res;
37};
38
39struct vmw_user_surface {
40 struct ttm_base_object base;
41 struct vmw_surface srf;
42 uint32_t size;
43};
44
45struct vmw_user_dma_buffer {
46 struct ttm_base_object base;
47 struct vmw_dma_buffer dma;
48};
49
50struct vmw_bo_user_rep {
51 uint32_t handle;
52 uint64_t map_handle;
53};
54
55struct vmw_stream {
56 struct vmw_resource res;
57 uint32_t stream_id;
58};
59
60struct vmw_user_stream {
61 struct ttm_base_object base;
62 struct vmw_stream stream;
63};
64
65struct vmw_surface_offset {
66 uint32_t face;
67 uint32_t mip;
68 uint32_t bo_offset;
69};
70
71
72static uint64_t vmw_user_context_size;
73static uint64_t vmw_user_surface_size;
74static uint64_t vmw_user_stream_size;
75
76static inline struct vmw_dma_buffer *
77vmw_dma_buffer(struct ttm_buffer_object *bo)
78{
79 return container_of(bo, struct vmw_dma_buffer, base);
80}
81
82static inline struct vmw_user_dma_buffer *
83vmw_user_dma_buffer(struct ttm_buffer_object *bo)
84{
85 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
86 return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
87}
88
89struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
90{
91 kref_get(&res->kref);
92 return res;
93}
94
95
96/**
97 * vmw_resource_release_id - release a resource id to the id manager.
98 *
99 * @res: Pointer to the resource.
100 *
101 * Release the resource id to the resource id manager and set it to -1
102 */
103static void vmw_resource_release_id(struct vmw_resource *res)
104{
105 struct vmw_private *dev_priv = res->dev_priv;
106
107 write_lock(&dev_priv->resource_lock);
108 if (res->id != -1)
109 idr_remove(res->idr, res->id);
110 res->id = -1;
111 write_unlock(&dev_priv->resource_lock);
112}
113
114static void vmw_resource_release(struct kref *kref)
115{
116 struct vmw_resource *res =
117 container_of(kref, struct vmw_resource, kref);
118 struct vmw_private *dev_priv = res->dev_priv;
119 int id = res->id;
120 struct idr *idr = res->idr;
121
122 res->avail = false;
123 if (res->remove_from_lists != NULL)
124 res->remove_from_lists(res);
125 write_unlock(&dev_priv->resource_lock);
126
127 if (likely(res->hw_destroy != NULL))
128 res->hw_destroy(res);
129
130 if (res->res_free != NULL)
131 res->res_free(res);
132 else
133 kfree(res);
134
135 write_lock(&dev_priv->resource_lock);
136
137 if (id != -1)
138 idr_remove(idr, id);
139}
140
141void vmw_resource_unreference(struct vmw_resource **p_res)
142{
143 struct vmw_resource *res = *p_res;
144 struct vmw_private *dev_priv = res->dev_priv;
145
146 *p_res = NULL;
147 write_lock(&dev_priv->resource_lock);
148 kref_put(&res->kref, vmw_resource_release);
149 write_unlock(&dev_priv->resource_lock);
150}
151
152
153/**
154 * vmw_resource_alloc_id - release a resource id to the id manager.
155 *
156 * @dev_priv: Pointer to the device private structure.
157 * @res: Pointer to the resource.
158 *
159 * Allocate the lowest free resource from the resource manager, and set
160 * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
161 */
162static int vmw_resource_alloc_id(struct vmw_private *dev_priv,
163 struct vmw_resource *res)
164{
165 int ret;
166
167 BUG_ON(res->id != -1);
168
169 do {
170 if (unlikely(idr_pre_get(res->idr, GFP_KERNEL) == 0))
171 return -ENOMEM;
172
173 write_lock(&dev_priv->resource_lock);
174 ret = idr_get_new_above(res->idr, res, 1, &res->id);
175 write_unlock(&dev_priv->resource_lock);
176
177 } while (ret == -EAGAIN);
178
179 return ret;
180}
181
182
183static int vmw_resource_init(struct vmw_private *dev_priv,
184 struct vmw_resource *res,
185 struct idr *idr,
186 enum ttm_object_type obj_type,
187 bool delay_id,
188 void (*res_free) (struct vmw_resource *res),
189 void (*remove_from_lists)
190 (struct vmw_resource *res))
191{
192 kref_init(&res->kref);
193 res->hw_destroy = NULL;
194 res->res_free = res_free;
195 res->remove_from_lists = remove_from_lists;
196 res->res_type = obj_type;
197 res->idr = idr;
198 res->avail = false;
199 res->dev_priv = dev_priv;
200 INIT_LIST_HEAD(&res->query_head);
201 INIT_LIST_HEAD(&res->validate_head);
202 res->id = -1;
203 if (delay_id)
204 return 0;
205 else
206 return vmw_resource_alloc_id(dev_priv, res);
207}
208
209/**
210 * vmw_resource_activate
211 *
212 * @res: Pointer to the newly created resource
213 * @hw_destroy: Destroy function. NULL if none.
214 *
215 * Activate a resource after the hardware has been made aware of it.
216 * Set tye destroy function to @destroy. Typically this frees the
217 * resource and destroys the hardware resources associated with it.
218 * Activate basically means that the function vmw_resource_lookup will
219 * find it.
220 */
221
222static void vmw_resource_activate(struct vmw_resource *res,
223 void (*hw_destroy) (struct vmw_resource *))
224{
225 struct vmw_private *dev_priv = res->dev_priv;
226
227 write_lock(&dev_priv->resource_lock);
228 res->avail = true;
229 res->hw_destroy = hw_destroy;
230 write_unlock(&dev_priv->resource_lock);
231}
232
233struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
234 struct idr *idr, int id)
235{
236 struct vmw_resource *res;
237
238 read_lock(&dev_priv->resource_lock);
239 res = idr_find(idr, id);
240 if (res && res->avail)
241 kref_get(&res->kref);
242 else
243 res = NULL;
244 read_unlock(&dev_priv->resource_lock);
245
246 if (unlikely(res == NULL))
247 return NULL;
248
249 return res;
250}
251
252/**
253 * Context management:
254 */
255
256static void vmw_hw_context_destroy(struct vmw_resource *res)
257{
258
259 struct vmw_private *dev_priv = res->dev_priv;
260 struct {
261 SVGA3dCmdHeader header;
262 SVGA3dCmdDestroyContext body;
263 } *cmd;
264
265
266 vmw_execbuf_release_pinned_bo(dev_priv, true, res->id);
267
268 cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd));
269 if (unlikely(cmd == NULL)) {
270 DRM_ERROR("Failed reserving FIFO space for surface "
271 "destruction.\n");
272 return;
273 }
274
275 cmd->header.id = cpu_to_le32(SVGA_3D_CMD_CONTEXT_DESTROY);
276 cmd->header.size = cpu_to_le32(sizeof(cmd->body));
277 cmd->body.cid = cpu_to_le32(res->id);
278
279 vmw_fifo_commit(dev_priv, sizeof(*cmd));
280 vmw_3d_resource_dec(dev_priv, false);
281}
282
283static int vmw_context_init(struct vmw_private *dev_priv,
284 struct vmw_resource *res,
285 void (*res_free) (struct vmw_resource *res))
286{
287 int ret;
288
289 struct {
290 SVGA3dCmdHeader header;
291 SVGA3dCmdDefineContext body;
292 } *cmd;
293
294 ret = vmw_resource_init(dev_priv, res, &dev_priv->context_idr,
295 VMW_RES_CONTEXT, false, res_free, NULL);
296
297 if (unlikely(ret != 0)) {
298 DRM_ERROR("Failed to allocate a resource id.\n");
299 goto out_early;
300 }
301
302 if (unlikely(res->id >= SVGA3D_MAX_CONTEXT_IDS)) {
303 DRM_ERROR("Out of hw context ids.\n");
304 vmw_resource_unreference(&res);
305 return -ENOMEM;
306 }
307
308 cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd));
309 if (unlikely(cmd == NULL)) {
310 DRM_ERROR("Fifo reserve failed.\n");
311 vmw_resource_unreference(&res);
312 return -ENOMEM;
313 }
314
315 cmd->header.id = cpu_to_le32(SVGA_3D_CMD_CONTEXT_DEFINE);
316 cmd->header.size = cpu_to_le32(sizeof(cmd->body));
317 cmd->body.cid = cpu_to_le32(res->id);
318
319 vmw_fifo_commit(dev_priv, sizeof(*cmd));
320 (void) vmw_3d_resource_inc(dev_priv, false);
321 vmw_resource_activate(res, vmw_hw_context_destroy);
322 return 0;
323
324out_early:
325 if (res_free == NULL)
326 kfree(res);
327 else
328 res_free(res);
329 return ret;
330}
331
332struct vmw_resource *vmw_context_alloc(struct vmw_private *dev_priv)
333{
334 struct vmw_resource *res = kmalloc(sizeof(*res), GFP_KERNEL);
335 int ret;
336
337 if (unlikely(res == NULL))
338 return NULL;
339
340 ret = vmw_context_init(dev_priv, res, NULL);
341 return (ret == 0) ? res : NULL;
342}
343
344/**
345 * User-space context management:
346 */
347
348static void vmw_user_context_free(struct vmw_resource *res)
349{
350 struct vmw_user_context *ctx =
351 container_of(res, struct vmw_user_context, res);
352 struct vmw_private *dev_priv = res->dev_priv;
353
354 kfree(ctx);
355 ttm_mem_global_free(vmw_mem_glob(dev_priv),
356 vmw_user_context_size);
357}
358
359/**
360 * This function is called when user space has no more references on the
361 * base object. It releases the base-object's reference on the resource object.
362 */
363
364static void vmw_user_context_base_release(struct ttm_base_object **p_base)
365{
366 struct ttm_base_object *base = *p_base;
367 struct vmw_user_context *ctx =
368 container_of(base, struct vmw_user_context, base);
369 struct vmw_resource *res = &ctx->res;
370
371 *p_base = NULL;
372 vmw_resource_unreference(&res);
373}
374
375int vmw_context_destroy_ioctl(struct drm_device *dev, void *data,
376 struct drm_file *file_priv)
377{
378 struct vmw_private *dev_priv = vmw_priv(dev);
379 struct vmw_resource *res;
380 struct vmw_user_context *ctx;
381 struct drm_vmw_context_arg *arg = (struct drm_vmw_context_arg *)data;
382 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
383 int ret = 0;
384
385 res = vmw_resource_lookup(dev_priv, &dev_priv->context_idr, arg->cid);
386 if (unlikely(res == NULL))
387 return -EINVAL;
388
389 if (res->res_free != &vmw_user_context_free) {
390 ret = -EINVAL;
391 goto out;
392 }
393
394 ctx = container_of(res, struct vmw_user_context, res);
395 if (ctx->base.tfile != tfile && !ctx->base.shareable) {
396 ret = -EPERM;
397 goto out;
398 }
399
400 ttm_ref_object_base_unref(tfile, ctx->base.hash.key, TTM_REF_USAGE);
401out:
402 vmw_resource_unreference(&res);
403 return ret;
404}
405
406int vmw_context_define_ioctl(struct drm_device *dev, void *data,
407 struct drm_file *file_priv)
408{
409 struct vmw_private *dev_priv = vmw_priv(dev);
410 struct vmw_user_context *ctx;
411 struct vmw_resource *res;
412 struct vmw_resource *tmp;
413 struct drm_vmw_context_arg *arg = (struct drm_vmw_context_arg *)data;
414 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
415 struct vmw_master *vmaster = vmw_master(file_priv->master);
416 int ret;
417
418
419 /*
420 * Approximate idr memory usage with 128 bytes. It will be limited
421 * by maximum number_of contexts anyway.
422 */
423
424 if (unlikely(vmw_user_context_size == 0))
425 vmw_user_context_size = ttm_round_pot(sizeof(*ctx)) + 128;
426
427 ret = ttm_read_lock(&vmaster->lock, true);
428 if (unlikely(ret != 0))
429 return ret;
430
431 ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
432 vmw_user_context_size,
433 false, true);
434 if (unlikely(ret != 0)) {
435 if (ret != -ERESTARTSYS)
436 DRM_ERROR("Out of graphics memory for context"
437 " creation.\n");
438 goto out_unlock;
439 }
440
441 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
442 if (unlikely(ctx == NULL)) {
443 ttm_mem_global_free(vmw_mem_glob(dev_priv),
444 vmw_user_context_size);
445 ret = -ENOMEM;
446 goto out_unlock;
447 }
448
449 res = &ctx->res;
450 ctx->base.shareable = false;
451 ctx->base.tfile = NULL;
452
453 /*
454 * From here on, the destructor takes over resource freeing.
455 */
456
457 ret = vmw_context_init(dev_priv, res, vmw_user_context_free);
458 if (unlikely(ret != 0))
459 goto out_unlock;
460
461 tmp = vmw_resource_reference(&ctx->res);
462 ret = ttm_base_object_init(tfile, &ctx->base, false, VMW_RES_CONTEXT,
463 &vmw_user_context_base_release, NULL);
464
465 if (unlikely(ret != 0)) {
466 vmw_resource_unreference(&tmp);
467 goto out_err;
468 }
469
470 arg->cid = res->id;
471out_err:
472 vmw_resource_unreference(&res);
473out_unlock:
474 ttm_read_unlock(&vmaster->lock);
475 return ret;
476
477}
478
479int vmw_context_check(struct vmw_private *dev_priv,
480 struct ttm_object_file *tfile,
481 int id,
482 struct vmw_resource **p_res)
483{
484 struct vmw_resource *res;
485 int ret = 0;
486
487 read_lock(&dev_priv->resource_lock);
488 res = idr_find(&dev_priv->context_idr, id);
489 if (res && res->avail) {
490 struct vmw_user_context *ctx =
491 container_of(res, struct vmw_user_context, res);
492 if (ctx->base.tfile != tfile && !ctx->base.shareable)
493 ret = -EPERM;
494 if (p_res)
495 *p_res = vmw_resource_reference(res);
496 } else
497 ret = -EINVAL;
498 read_unlock(&dev_priv->resource_lock);
499
500 return ret;
501}
502
503struct vmw_bpp {
504 uint8_t bpp;
505 uint8_t s_bpp;
506};
507
508/*
509 * Size table for the supported SVGA3D surface formats. It consists of
510 * two values. The bpp value and the s_bpp value which is short for
511 * "stride bits per pixel" The values are given in such a way that the
512 * minimum stride for the image is calculated using
513 *
514 * min_stride = w*s_bpp
515 *
516 * and the total memory requirement for the image is
517 *
518 * h*min_stride*bpp/s_bpp
519 *
520 */
521static const struct vmw_bpp vmw_sf_bpp[] = {
522 [SVGA3D_FORMAT_INVALID] = {0, 0},
523 [SVGA3D_X8R8G8B8] = {32, 32},
524 [SVGA3D_A8R8G8B8] = {32, 32},
525 [SVGA3D_R5G6B5] = {16, 16},
526 [SVGA3D_X1R5G5B5] = {16, 16},
527 [SVGA3D_A1R5G5B5] = {16, 16},
528 [SVGA3D_A4R4G4B4] = {16, 16},
529 [SVGA3D_Z_D32] = {32, 32},
530 [SVGA3D_Z_D16] = {16, 16},
531 [SVGA3D_Z_D24S8] = {32, 32},
532 [SVGA3D_Z_D15S1] = {16, 16},
533 [SVGA3D_LUMINANCE8] = {8, 8},
534 [SVGA3D_LUMINANCE4_ALPHA4] = {8, 8},
535 [SVGA3D_LUMINANCE16] = {16, 16},
536 [SVGA3D_LUMINANCE8_ALPHA8] = {16, 16},
537 [SVGA3D_DXT1] = {4, 16},
538 [SVGA3D_DXT2] = {8, 32},
539 [SVGA3D_DXT3] = {8, 32},
540 [SVGA3D_DXT4] = {8, 32},
541 [SVGA3D_DXT5] = {8, 32},
542 [SVGA3D_BUMPU8V8] = {16, 16},
543 [SVGA3D_BUMPL6V5U5] = {16, 16},
544 [SVGA3D_BUMPX8L8V8U8] = {32, 32},
545 [SVGA3D_ARGB_S10E5] = {16, 16},
546 [SVGA3D_ARGB_S23E8] = {32, 32},
547 [SVGA3D_A2R10G10B10] = {32, 32},
548 [SVGA3D_V8U8] = {16, 16},
549 [SVGA3D_Q8W8V8U8] = {32, 32},
550 [SVGA3D_CxV8U8] = {16, 16},
551 [SVGA3D_X8L8V8U8] = {32, 32},
552 [SVGA3D_A2W10V10U10] = {32, 32},
553 [SVGA3D_ALPHA8] = {8, 8},
554 [SVGA3D_R_S10E5] = {16, 16},
555 [SVGA3D_R_S23E8] = {32, 32},
556 [SVGA3D_RG_S10E5] = {16, 16},
557 [SVGA3D_RG_S23E8] = {32, 32},
558 [SVGA3D_BUFFER] = {8, 8},
559 [SVGA3D_Z_D24X8] = {32, 32},
560 [SVGA3D_V16U16] = {32, 32},
561 [SVGA3D_G16R16] = {32, 32},
562 [SVGA3D_A16B16G16R16] = {64, 64},
563 [SVGA3D_UYVY] = {12, 12},
564 [SVGA3D_YUY2] = {12, 12},
565 [SVGA3D_NV12] = {12, 8},
566 [SVGA3D_AYUV] = {32, 32},
567 [SVGA3D_BC4_UNORM] = {4, 16},
568 [SVGA3D_BC5_UNORM] = {8, 32},
569 [SVGA3D_Z_DF16] = {16, 16},
570 [SVGA3D_Z_DF24] = {24, 24},
571 [SVGA3D_Z_D24S8_INT] = {32, 32}
572};
573
574
575/**
576 * Surface management.
577 */
578
579struct vmw_surface_dma {
580 SVGA3dCmdHeader header;
581 SVGA3dCmdSurfaceDMA body;
582 SVGA3dCopyBox cb;
583 SVGA3dCmdSurfaceDMASuffix suffix;
584};
585
586struct vmw_surface_define {
587 SVGA3dCmdHeader header;
588 SVGA3dCmdDefineSurface body;
589};
590
591struct vmw_surface_destroy {
592 SVGA3dCmdHeader header;
593 SVGA3dCmdDestroySurface body;
594};
595
596
597/**
598 * vmw_surface_dma_size - Compute fifo size for a dma command.
599 *
600 * @srf: Pointer to a struct vmw_surface
601 *
602 * Computes the required size for a surface dma command for backup or
603 * restoration of the surface represented by @srf.
604 */
605static inline uint32_t vmw_surface_dma_size(const struct vmw_surface *srf)
606{
607 return srf->num_sizes * sizeof(struct vmw_surface_dma);
608}
609
610
611/**
612 * vmw_surface_define_size - Compute fifo size for a surface define command.
613 *
614 * @srf: Pointer to a struct vmw_surface
615 *
616 * Computes the required size for a surface define command for the definition
617 * of the surface represented by @srf.
618 */
619static inline uint32_t vmw_surface_define_size(const struct vmw_surface *srf)
620{
621 return sizeof(struct vmw_surface_define) + srf->num_sizes *
622 sizeof(SVGA3dSize);
623}
624
625
626/**
627 * vmw_surface_destroy_size - Compute fifo size for a surface destroy command.
628 *
629 * Computes the required size for a surface destroy command for the destruction
630 * of a hw surface.
631 */
632static inline uint32_t vmw_surface_destroy_size(void)
633{
634 return sizeof(struct vmw_surface_destroy);
635}
636
637/**
638 * vmw_surface_destroy_encode - Encode a surface_destroy command.
639 *
640 * @id: The surface id
641 * @cmd_space: Pointer to memory area in which the commands should be encoded.
642 */
643static void vmw_surface_destroy_encode(uint32_t id,
644 void *cmd_space)
645{
646 struct vmw_surface_destroy *cmd = (struct vmw_surface_destroy *)
647 cmd_space;
648
649 cmd->header.id = SVGA_3D_CMD_SURFACE_DESTROY;
650 cmd->header.size = sizeof(cmd->body);
651 cmd->body.sid = id;
652}
653
654/**
655 * vmw_surface_define_encode - Encode a surface_define command.
656 *
657 * @srf: Pointer to a struct vmw_surface object.
658 * @cmd_space: Pointer to memory area in which the commands should be encoded.
659 */
660static void vmw_surface_define_encode(const struct vmw_surface *srf,
661 void *cmd_space)
662{
663 struct vmw_surface_define *cmd = (struct vmw_surface_define *)
664 cmd_space;
665 struct drm_vmw_size *src_size;
666 SVGA3dSize *cmd_size;
667 uint32_t cmd_len;
668 int i;
669
670 cmd_len = sizeof(cmd->body) + srf->num_sizes * sizeof(SVGA3dSize);
671
672 cmd->header.id = SVGA_3D_CMD_SURFACE_DEFINE;
673 cmd->header.size = cmd_len;
674 cmd->body.sid = srf->res.id;
675 cmd->body.surfaceFlags = srf->flags;
676 cmd->body.format = cpu_to_le32(srf->format);
677 for (i = 0; i < DRM_VMW_MAX_SURFACE_FACES; ++i)
678 cmd->body.face[i].numMipLevels = srf->mip_levels[i];
679
680 cmd += 1;
681 cmd_size = (SVGA3dSize *) cmd;
682 src_size = srf->sizes;
683
684 for (i = 0; i < srf->num_sizes; ++i, cmd_size++, src_size++) {
685 cmd_size->width = src_size->width;
686 cmd_size->height = src_size->height;
687 cmd_size->depth = src_size->depth;
688 }
689}
690
691
692/**
693 * vmw_surface_dma_encode - Encode a surface_dma command.
694 *
695 * @srf: Pointer to a struct vmw_surface object.
696 * @cmd_space: Pointer to memory area in which the commands should be encoded.
697 * @ptr: Pointer to an SVGAGuestPtr indicating where the surface contents
698 * should be placed or read from.
699 * @to_surface: Boolean whether to DMA to the surface or from the surface.
700 */
701static void vmw_surface_dma_encode(struct vmw_surface *srf,
702 void *cmd_space,
703 const SVGAGuestPtr *ptr,
704 bool to_surface)
705{
706 uint32_t i;
707 uint32_t bpp = vmw_sf_bpp[srf->format].bpp;
708 uint32_t stride_bpp = vmw_sf_bpp[srf->format].s_bpp;
709 struct vmw_surface_dma *cmd = (struct vmw_surface_dma *)cmd_space;
710
711 for (i = 0; i < srf->num_sizes; ++i) {
712 SVGA3dCmdHeader *header = &cmd->header;
713 SVGA3dCmdSurfaceDMA *body = &cmd->body;
714 SVGA3dCopyBox *cb = &cmd->cb;
715 SVGA3dCmdSurfaceDMASuffix *suffix = &cmd->suffix;
716 const struct vmw_surface_offset *cur_offset = &srf->offsets[i];
717 const struct drm_vmw_size *cur_size = &srf->sizes[i];
718
719 header->id = SVGA_3D_CMD_SURFACE_DMA;
720 header->size = sizeof(*body) + sizeof(*cb) + sizeof(*suffix);
721
722 body->guest.ptr = *ptr;
723 body->guest.ptr.offset += cur_offset->bo_offset;
724 body->guest.pitch = (cur_size->width * stride_bpp + 7) >> 3;
725 body->host.sid = srf->res.id;
726 body->host.face = cur_offset->face;
727 body->host.mipmap = cur_offset->mip;
728 body->transfer = ((to_surface) ? SVGA3D_WRITE_HOST_VRAM :
729 SVGA3D_READ_HOST_VRAM);
730 cb->x = 0;
731 cb->y = 0;
732 cb->z = 0;
733 cb->srcx = 0;
734 cb->srcy = 0;
735 cb->srcz = 0;
736 cb->w = cur_size->width;
737 cb->h = cur_size->height;
738 cb->d = cur_size->depth;
739
740 suffix->suffixSize = sizeof(*suffix);
741 suffix->maximumOffset = body->guest.pitch*cur_size->height*
742 cur_size->depth*bpp / stride_bpp;
743 suffix->flags.discard = 0;
744 suffix->flags.unsynchronized = 0;
745 suffix->flags.reserved = 0;
746 ++cmd;
747 }
748};
749
750
751static void vmw_hw_surface_destroy(struct vmw_resource *res)
752{
753
754 struct vmw_private *dev_priv = res->dev_priv;
755 struct vmw_surface *srf;
756 void *cmd;
757
758 if (res->id != -1) {
759
760 cmd = vmw_fifo_reserve(dev_priv, vmw_surface_destroy_size());
761 if (unlikely(cmd == NULL)) {
762 DRM_ERROR("Failed reserving FIFO space for surface "
763 "destruction.\n");
764 return;
765 }
766
767 vmw_surface_destroy_encode(res->id, cmd);
768 vmw_fifo_commit(dev_priv, vmw_surface_destroy_size());
769
770 /*
771 * used_memory_size_atomic, or separate lock
772 * to avoid taking dev_priv::cmdbuf_mutex in
773 * the destroy path.
774 */
775
776 mutex_lock(&dev_priv->cmdbuf_mutex);
777 srf = container_of(res, struct vmw_surface, res);
778 dev_priv->used_memory_size -= srf->backup_size;
779 mutex_unlock(&dev_priv->cmdbuf_mutex);
780
781 }
782 vmw_3d_resource_dec(dev_priv, false);
783}
784
785void vmw_surface_res_free(struct vmw_resource *res)
786{
787 struct vmw_surface *srf = container_of(res, struct vmw_surface, res);
788
789 if (srf->backup)
790 ttm_bo_unref(&srf->backup);
791 kfree(srf->offsets);
792 kfree(srf->sizes);
793 kfree(srf->snooper.image);
794 kfree(srf);
795}
796
797
798/**
799 * vmw_surface_do_validate - make a surface available to the device.
800 *
801 * @dev_priv: Pointer to a device private struct.
802 * @srf: Pointer to a struct vmw_surface.
803 *
804 * If the surface doesn't have a hw id, allocate one, and optionally
805 * DMA the backed up surface contents to the device.
806 *
807 * Returns -EBUSY if there wasn't sufficient device resources to
808 * complete the validation. Retry after freeing up resources.
809 *
810 * May return other errors if the kernel is out of guest resources.
811 */
812int vmw_surface_do_validate(struct vmw_private *dev_priv,
813 struct vmw_surface *srf)
814{
815 struct vmw_resource *res = &srf->res;
816 struct list_head val_list;
817 struct ttm_validate_buffer val_buf;
818 uint32_t submit_size;
819 uint8_t *cmd;
820 int ret;
821
822 if (likely(res->id != -1))
823 return 0;
824
825 if (unlikely(dev_priv->used_memory_size + srf->backup_size >=
826 dev_priv->memory_size))
827 return -EBUSY;
828
829 /*
830 * Reserve- and validate the backup DMA bo.
831 */
832
833 if (srf->backup) {
834 INIT_LIST_HEAD(&val_list);
835 val_buf.bo = ttm_bo_reference(srf->backup);
836 val_buf.new_sync_obj_arg = (void *)((unsigned long)
837 DRM_VMW_FENCE_FLAG_EXEC);
838 list_add_tail(&val_buf.head, &val_list);
839 ret = ttm_eu_reserve_buffers(&val_list);
840 if (unlikely(ret != 0))
841 goto out_no_reserve;
842
843 ret = ttm_bo_validate(srf->backup, &vmw_srf_placement,
844 true, false, false);
845 if (unlikely(ret != 0))
846 goto out_no_validate;
847 }
848
849 /*
850 * Alloc id for the resource.
851 */
852
853 ret = vmw_resource_alloc_id(dev_priv, res);
854 if (unlikely(ret != 0)) {
855 DRM_ERROR("Failed to allocate a surface id.\n");
856 goto out_no_id;
857 }
858 if (unlikely(res->id >= SVGA3D_MAX_SURFACE_IDS)) {
859 ret = -EBUSY;
860 goto out_no_fifo;
861 }
862
863
864 /*
865 * Encode surface define- and dma commands.
866 */
867
868 submit_size = vmw_surface_define_size(srf);
869 if (srf->backup)
870 submit_size += vmw_surface_dma_size(srf);
871
872 cmd = vmw_fifo_reserve(dev_priv, submit_size);
873 if (unlikely(cmd == NULL)) {
874 DRM_ERROR("Failed reserving FIFO space for surface "
875 "validation.\n");
876 ret = -ENOMEM;
877 goto out_no_fifo;
878 }
879
880 vmw_surface_define_encode(srf, cmd);
881 if (srf->backup) {
882 SVGAGuestPtr ptr;
883
884 cmd += vmw_surface_define_size(srf);
885 vmw_bo_get_guest_ptr(srf->backup, &ptr);
886 vmw_surface_dma_encode(srf, cmd, &ptr, true);
887 }
888
889 vmw_fifo_commit(dev_priv, submit_size);
890
891 /*
892 * Create a fence object and fence the backup buffer.
893 */
894
895 if (srf->backup) {
896 struct vmw_fence_obj *fence;
897
898 (void) vmw_execbuf_fence_commands(NULL, dev_priv,
899 &fence, NULL);
900 ttm_eu_fence_buffer_objects(&val_list, fence);
901 if (likely(fence != NULL))
902 vmw_fence_obj_unreference(&fence);
903 ttm_bo_unref(&val_buf.bo);
904 ttm_bo_unref(&srf->backup);
905 }
906
907 /*
908 * Surface memory usage accounting.
909 */
910
911 dev_priv->used_memory_size += srf->backup_size;
912
913 return 0;
914
915out_no_fifo:
916 vmw_resource_release_id(res);
917out_no_id:
918out_no_validate:
919 if (srf->backup)
920 ttm_eu_backoff_reservation(&val_list);
921out_no_reserve:
922 if (srf->backup)
923 ttm_bo_unref(&val_buf.bo);
924 return ret;
925}
926
927/**
928 * vmw_surface_evict - Evict a hw surface.
929 *
930 * @dev_priv: Pointer to a device private struct.
931 * @srf: Pointer to a struct vmw_surface
932 *
933 * DMA the contents of a hw surface to a backup guest buffer object,
934 * and destroy the hw surface, releasing its id.
935 */
936int vmw_surface_evict(struct vmw_private *dev_priv,
937 struct vmw_surface *srf)
938{
939 struct vmw_resource *res = &srf->res;
940 struct list_head val_list;
941 struct ttm_validate_buffer val_buf;
942 uint32_t submit_size;
943 uint8_t *cmd;
944 int ret;
945 struct vmw_fence_obj *fence;
946 SVGAGuestPtr ptr;
947
948 BUG_ON(res->id == -1);
949
950 /*
951 * Create a surface backup buffer object.
952 */
953
954 if (!srf->backup) {
955 ret = ttm_bo_create(&dev_priv->bdev, srf->backup_size,
956 ttm_bo_type_device,
957 &vmw_srf_placement, 0, 0, true,
958 NULL, &srf->backup);
959 if (unlikely(ret != 0))
960 return ret;
961 }
962
963 /*
964 * Reserve- and validate the backup DMA bo.
965 */
966
967 INIT_LIST_HEAD(&val_list);
968 val_buf.bo = ttm_bo_reference(srf->backup);
969 val_buf.new_sync_obj_arg = (void *)(unsigned long)
970 DRM_VMW_FENCE_FLAG_EXEC;
971 list_add_tail(&val_buf.head, &val_list);
972 ret = ttm_eu_reserve_buffers(&val_list);
973 if (unlikely(ret != 0))
974 goto out_no_reserve;
975
976 ret = ttm_bo_validate(srf->backup, &vmw_srf_placement,
977 true, false, false);
978 if (unlikely(ret != 0))
979 goto out_no_validate;
980
981
982 /*
983 * Encode the dma- and surface destroy commands.
984 */
985
986 submit_size = vmw_surface_dma_size(srf) + vmw_surface_destroy_size();
987 cmd = vmw_fifo_reserve(dev_priv, submit_size);
988 if (unlikely(cmd == NULL)) {
989 DRM_ERROR("Failed reserving FIFO space for surface "
990 "eviction.\n");
991 ret = -ENOMEM;
992 goto out_no_fifo;
993 }
994
995 vmw_bo_get_guest_ptr(srf->backup, &ptr);
996 vmw_surface_dma_encode(srf, cmd, &ptr, false);
997 cmd += vmw_surface_dma_size(srf);
998 vmw_surface_destroy_encode(res->id, cmd);
999 vmw_fifo_commit(dev_priv, submit_size);
1000
1001 /*
1002 * Surface memory usage accounting.
1003 */
1004
1005 dev_priv->used_memory_size -= srf->backup_size;
1006
1007 /*
1008 * Create a fence object and fence the DMA buffer.
1009 */
1010
1011 (void) vmw_execbuf_fence_commands(NULL, dev_priv,
1012 &fence, NULL);
1013 ttm_eu_fence_buffer_objects(&val_list, fence);
1014 if (likely(fence != NULL))
1015 vmw_fence_obj_unreference(&fence);
1016 ttm_bo_unref(&val_buf.bo);
1017
1018 /*
1019 * Release the surface ID.
1020 */
1021
1022 vmw_resource_release_id(res);
1023
1024 return 0;
1025
1026out_no_fifo:
1027out_no_validate:
1028 if (srf->backup)
1029 ttm_eu_backoff_reservation(&val_list);
1030out_no_reserve:
1031 ttm_bo_unref(&val_buf.bo);
1032 ttm_bo_unref(&srf->backup);
1033 return ret;
1034}
1035
1036
1037/**
1038 * vmw_surface_validate - make a surface available to the device, evicting
1039 * other surfaces if needed.
1040 *
1041 * @dev_priv: Pointer to a device private struct.
1042 * @srf: Pointer to a struct vmw_surface.
1043 *
1044 * Try to validate a surface and if it fails due to limited device resources,
1045 * repeatedly try to evict other surfaces until the request can be
1046 * acommodated.
1047 *
1048 * May return errors if out of resources.
1049 */
1050int vmw_surface_validate(struct vmw_private *dev_priv,
1051 struct vmw_surface *srf)
1052{
1053 int ret;
1054 struct vmw_surface *evict_srf;
1055
1056 do {
1057 write_lock(&dev_priv->resource_lock);
1058 list_del_init(&srf->lru_head);
1059 write_unlock(&dev_priv->resource_lock);
1060
1061 ret = vmw_surface_do_validate(dev_priv, srf);
1062 if (likely(ret != -EBUSY))
1063 break;
1064
1065 write_lock(&dev_priv->resource_lock);
1066 if (list_empty(&dev_priv->surface_lru)) {
1067 DRM_ERROR("Out of device memory for surfaces.\n");
1068 ret = -EBUSY;
1069 write_unlock(&dev_priv->resource_lock);
1070 break;
1071 }
1072
1073 evict_srf = vmw_surface_reference
1074 (list_first_entry(&dev_priv->surface_lru,
1075 struct vmw_surface,
1076 lru_head));
1077 list_del_init(&evict_srf->lru_head);
1078
1079 write_unlock(&dev_priv->resource_lock);
1080 (void) vmw_surface_evict(dev_priv, evict_srf);
1081
1082 vmw_surface_unreference(&evict_srf);
1083
1084 } while (1);
1085
1086 if (unlikely(ret != 0 && srf->res.id != -1)) {
1087 write_lock(&dev_priv->resource_lock);
1088 list_add_tail(&srf->lru_head, &dev_priv->surface_lru);
1089 write_unlock(&dev_priv->resource_lock);
1090 }
1091
1092 return ret;
1093}
1094
1095
1096/**
1097 * vmw_surface_remove_from_lists - Remove surface resources from lookup lists
1098 *
1099 * @res: Pointer to a struct vmw_resource embedded in a struct vmw_surface
1100 *
1101 * As part of the resource destruction, remove the surface from any
1102 * lookup lists.
1103 */
1104static void vmw_surface_remove_from_lists(struct vmw_resource *res)
1105{
1106 struct vmw_surface *srf = container_of(res, struct vmw_surface, res);
1107
1108 list_del_init(&srf->lru_head);
1109}
1110
1111int vmw_surface_init(struct vmw_private *dev_priv,
1112 struct vmw_surface *srf,
1113 void (*res_free) (struct vmw_resource *res))
1114{
1115 int ret;
1116 struct vmw_resource *res = &srf->res;
1117
1118 BUG_ON(res_free == NULL);
1119 INIT_LIST_HEAD(&srf->lru_head);
1120 ret = vmw_resource_init(dev_priv, res, &dev_priv->surface_idr,
1121 VMW_RES_SURFACE, true, res_free,
1122 vmw_surface_remove_from_lists);
1123
1124 if (unlikely(ret != 0))
1125 res_free(res);
1126
1127 /*
1128 * The surface won't be visible to hardware until a
1129 * surface validate.
1130 */
1131
1132 (void) vmw_3d_resource_inc(dev_priv, false);
1133 vmw_resource_activate(res, vmw_hw_surface_destroy);
1134 return ret;
1135}
1136
1137static void vmw_user_surface_free(struct vmw_resource *res)
1138{
1139 struct vmw_surface *srf = container_of(res, struct vmw_surface, res);
1140 struct vmw_user_surface *user_srf =
1141 container_of(srf, struct vmw_user_surface, srf);
1142 struct vmw_private *dev_priv = srf->res.dev_priv;
1143 uint32_t size = user_srf->size;
1144
1145 if (srf->backup)
1146 ttm_bo_unref(&srf->backup);
1147 kfree(srf->offsets);
1148 kfree(srf->sizes);
1149 kfree(srf->snooper.image);
1150 kfree(user_srf);
1151 ttm_mem_global_free(vmw_mem_glob(dev_priv), size);
1152}
1153
1154/**
1155 * vmw_resource_unreserve - unreserve resources previously reserved for
1156 * command submission.
1157 *
1158 * @list_head: list of resources to unreserve.
1159 *
1160 * Currently only surfaces are considered, and unreserving a surface
1161 * means putting it back on the device's surface lru list,
1162 * so that it can be evicted if necessary.
1163 * This function traverses the resource list and
1164 * checks whether resources are surfaces, and in that case puts them back
1165 * on the device's surface LRU list.
1166 */
1167void vmw_resource_unreserve(struct list_head *list)
1168{
1169 struct vmw_resource *res;
1170 struct vmw_surface *srf;
1171 rwlock_t *lock = NULL;
1172
1173 list_for_each_entry(res, list, validate_head) {
1174
1175 if (res->res_free != &vmw_surface_res_free &&
1176 res->res_free != &vmw_user_surface_free)
1177 continue;
1178
1179 if (unlikely(lock == NULL)) {
1180 lock = &res->dev_priv->resource_lock;
1181 write_lock(lock);
1182 }
1183
1184 srf = container_of(res, struct vmw_surface, res);
1185 list_del_init(&srf->lru_head);
1186 list_add_tail(&srf->lru_head, &res->dev_priv->surface_lru);
1187 }
1188
1189 if (lock != NULL)
1190 write_unlock(lock);
1191}
1192
1193/**
1194 * Helper function that looks either a surface or dmabuf.
1195 *
1196 * The pointer this pointed at by out_surf and out_buf needs to be null.
1197 */
1198int vmw_user_lookup_handle(struct vmw_private *dev_priv,
1199 struct ttm_object_file *tfile,
1200 uint32_t handle,
1201 struct vmw_surface **out_surf,
1202 struct vmw_dma_buffer **out_buf)
1203{
1204 int ret;
1205
1206 BUG_ON(*out_surf || *out_buf);
1207
1208 ret = vmw_user_surface_lookup_handle(dev_priv, tfile, handle, out_surf);
1209 if (!ret)
1210 return 0;
1211
1212 ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf);
1213 return ret;
1214}
1215
1216
1217int vmw_user_surface_lookup_handle(struct vmw_private *dev_priv,
1218 struct ttm_object_file *tfile,
1219 uint32_t handle, struct vmw_surface **out)
1220{
1221 struct vmw_resource *res;
1222 struct vmw_surface *srf;
1223 struct vmw_user_surface *user_srf;
1224 struct ttm_base_object *base;
1225 int ret = -EINVAL;
1226
1227 base = ttm_base_object_lookup(tfile, handle);
1228 if (unlikely(base == NULL))
1229 return -EINVAL;
1230
1231 if (unlikely(base->object_type != VMW_RES_SURFACE))
1232 goto out_bad_resource;
1233
1234 user_srf = container_of(base, struct vmw_user_surface, base);
1235 srf = &user_srf->srf;
1236 res = &srf->res;
1237
1238 read_lock(&dev_priv->resource_lock);
1239
1240 if (!res->avail || res->res_free != &vmw_user_surface_free) {
1241 read_unlock(&dev_priv->resource_lock);
1242 goto out_bad_resource;
1243 }
1244
1245 kref_get(&res->kref);
1246 read_unlock(&dev_priv->resource_lock);
1247
1248 *out = srf;
1249 ret = 0;
1250
1251out_bad_resource:
1252 ttm_base_object_unref(&base);
1253
1254 return ret;
1255}
1256
1257static void vmw_user_surface_base_release(struct ttm_base_object **p_base)
1258{
1259 struct ttm_base_object *base = *p_base;
1260 struct vmw_user_surface *user_srf =
1261 container_of(base, struct vmw_user_surface, base);
1262 struct vmw_resource *res = &user_srf->srf.res;
1263
1264 *p_base = NULL;
1265 vmw_resource_unreference(&res);
1266}
1267
1268int vmw_surface_destroy_ioctl(struct drm_device *dev, void *data,
1269 struct drm_file *file_priv)
1270{
1271 struct drm_vmw_surface_arg *arg = (struct drm_vmw_surface_arg *)data;
1272 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1273
1274 return ttm_ref_object_base_unref(tfile, arg->sid, TTM_REF_USAGE);
1275}
1276
1277int vmw_surface_define_ioctl(struct drm_device *dev, void *data,
1278 struct drm_file *file_priv)
1279{
1280 struct vmw_private *dev_priv = vmw_priv(dev);
1281 struct vmw_user_surface *user_srf;
1282 struct vmw_surface *srf;
1283 struct vmw_resource *res;
1284 struct vmw_resource *tmp;
1285 union drm_vmw_surface_create_arg *arg =
1286 (union drm_vmw_surface_create_arg *)data;
1287 struct drm_vmw_surface_create_req *req = &arg->req;
1288 struct drm_vmw_surface_arg *rep = &arg->rep;
1289 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1290 struct drm_vmw_size __user *user_sizes;
1291 int ret;
1292 int i, j;
1293 uint32_t cur_bo_offset;
1294 struct drm_vmw_size *cur_size;
1295 struct vmw_surface_offset *cur_offset;
1296 uint32_t stride_bpp;
1297 uint32_t bpp;
1298 uint32_t num_sizes;
1299 uint32_t size;
1300 struct vmw_master *vmaster = vmw_master(file_priv->master);
1301
1302 if (unlikely(vmw_user_surface_size == 0))
1303 vmw_user_surface_size = ttm_round_pot(sizeof(*user_srf)) +
1304 128;
1305
1306 num_sizes = 0;
1307 for (i = 0; i < DRM_VMW_MAX_SURFACE_FACES; ++i)
1308 num_sizes += req->mip_levels[i];
1309
1310 if (num_sizes > DRM_VMW_MAX_SURFACE_FACES *
1311 DRM_VMW_MAX_MIP_LEVELS)
1312 return -EINVAL;
1313
1314 size = vmw_user_surface_size + 128 +
1315 ttm_round_pot(num_sizes * sizeof(struct drm_vmw_size)) +
1316 ttm_round_pot(num_sizes * sizeof(struct vmw_surface_offset));
1317
1318
1319 ret = ttm_read_lock(&vmaster->lock, true);
1320 if (unlikely(ret != 0))
1321 return ret;
1322
1323 ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
1324 size, false, true);
1325 if (unlikely(ret != 0)) {
1326 if (ret != -ERESTARTSYS)
1327 DRM_ERROR("Out of graphics memory for surface"
1328 " creation.\n");
1329 goto out_unlock;
1330 }
1331
1332 user_srf = kmalloc(sizeof(*user_srf), GFP_KERNEL);
1333 if (unlikely(user_srf == NULL)) {
1334 ret = -ENOMEM;
1335 goto out_no_user_srf;
1336 }
1337
1338 srf = &user_srf->srf;
1339 res = &srf->res;
1340
1341 srf->flags = req->flags;
1342 srf->format = req->format;
1343 srf->scanout = req->scanout;
1344 srf->backup = NULL;
1345
1346 memcpy(srf->mip_levels, req->mip_levels, sizeof(srf->mip_levels));
1347 srf->num_sizes = num_sizes;
1348 user_srf->size = size;
1349
1350 srf->sizes = kmalloc(srf->num_sizes * sizeof(*srf->sizes), GFP_KERNEL);
1351 if (unlikely(srf->sizes == NULL)) {
1352 ret = -ENOMEM;
1353 goto out_no_sizes;
1354 }
1355 srf->offsets = kmalloc(srf->num_sizes * sizeof(*srf->offsets),
1356 GFP_KERNEL);
1357 if (unlikely(srf->sizes == NULL)) {
1358 ret = -ENOMEM;
1359 goto out_no_offsets;
1360 }
1361
1362 user_sizes = (struct drm_vmw_size __user *)(unsigned long)
1363 req->size_addr;
1364
1365 ret = copy_from_user(srf->sizes, user_sizes,
1366 srf->num_sizes * sizeof(*srf->sizes));
1367 if (unlikely(ret != 0)) {
1368 ret = -EFAULT;
1369 goto out_no_copy;
1370 }
1371
1372 cur_bo_offset = 0;
1373 cur_offset = srf->offsets;
1374 cur_size = srf->sizes;
1375
1376 bpp = vmw_sf_bpp[srf->format].bpp;
1377 stride_bpp = vmw_sf_bpp[srf->format].s_bpp;
1378
1379 for (i = 0; i < DRM_VMW_MAX_SURFACE_FACES; ++i) {
1380 for (j = 0; j < srf->mip_levels[i]; ++j) {
1381 uint32_t stride =
1382 (cur_size->width * stride_bpp + 7) >> 3;
1383
1384 cur_offset->face = i;
1385 cur_offset->mip = j;
1386 cur_offset->bo_offset = cur_bo_offset;
1387 cur_bo_offset += stride * cur_size->height *
1388 cur_size->depth * bpp / stride_bpp;
1389 ++cur_offset;
1390 ++cur_size;
1391 }
1392 }
1393 srf->backup_size = cur_bo_offset;
1394
1395 if (srf->scanout &&
1396 srf->num_sizes == 1 &&
1397 srf->sizes[0].width == 64 &&
1398 srf->sizes[0].height == 64 &&
1399 srf->format == SVGA3D_A8R8G8B8) {
1400
1401 /* allocate image area and clear it */
1402 srf->snooper.image = kzalloc(64 * 64 * 4, GFP_KERNEL);
1403 if (!srf->snooper.image) {
1404 DRM_ERROR("Failed to allocate cursor_image\n");
1405 ret = -ENOMEM;
1406 goto out_no_copy;
1407 }
1408 } else {
1409 srf->snooper.image = NULL;
1410 }
1411 srf->snooper.crtc = NULL;
1412
1413 user_srf->base.shareable = false;
1414 user_srf->base.tfile = NULL;
1415
1416 /**
1417 * From this point, the generic resource management functions
1418 * destroy the object on failure.
1419 */
1420
1421 ret = vmw_surface_init(dev_priv, srf, vmw_user_surface_free);
1422 if (unlikely(ret != 0))
1423 goto out_unlock;
1424
1425 tmp = vmw_resource_reference(&srf->res);
1426 ret = ttm_base_object_init(tfile, &user_srf->base,
1427 req->shareable, VMW_RES_SURFACE,
1428 &vmw_user_surface_base_release, NULL);
1429
1430 if (unlikely(ret != 0)) {
1431 vmw_resource_unreference(&tmp);
1432 vmw_resource_unreference(&res);
1433 goto out_unlock;
1434 }
1435
1436 rep->sid = user_srf->base.hash.key;
1437 if (rep->sid == SVGA3D_INVALID_ID)
1438 DRM_ERROR("Created bad Surface ID.\n");
1439
1440 vmw_resource_unreference(&res);
1441
1442 ttm_read_unlock(&vmaster->lock);
1443 return 0;
1444out_no_copy:
1445 kfree(srf->offsets);
1446out_no_offsets:
1447 kfree(srf->sizes);
1448out_no_sizes:
1449 kfree(user_srf);
1450out_no_user_srf:
1451 ttm_mem_global_free(vmw_mem_glob(dev_priv), size);
1452out_unlock:
1453 ttm_read_unlock(&vmaster->lock);
1454 return ret;
1455}
1456
1457int vmw_surface_reference_ioctl(struct drm_device *dev, void *data,
1458 struct drm_file *file_priv)
1459{
1460 union drm_vmw_surface_reference_arg *arg =
1461 (union drm_vmw_surface_reference_arg *)data;
1462 struct drm_vmw_surface_arg *req = &arg->req;
1463 struct drm_vmw_surface_create_req *rep = &arg->rep;
1464 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1465 struct vmw_surface *srf;
1466 struct vmw_user_surface *user_srf;
1467 struct drm_vmw_size __user *user_sizes;
1468 struct ttm_base_object *base;
1469 int ret = -EINVAL;
1470
1471 base = ttm_base_object_lookup(tfile, req->sid);
1472 if (unlikely(base == NULL)) {
1473 DRM_ERROR("Could not find surface to reference.\n");
1474 return -EINVAL;
1475 }
1476
1477 if (unlikely(base->object_type != VMW_RES_SURFACE))
1478 goto out_bad_resource;
1479
1480 user_srf = container_of(base, struct vmw_user_surface, base);
1481 srf = &user_srf->srf;
1482
1483 ret = ttm_ref_object_add(tfile, &user_srf->base, TTM_REF_USAGE, NULL);
1484 if (unlikely(ret != 0)) {
1485 DRM_ERROR("Could not add a reference to a surface.\n");
1486 goto out_no_reference;
1487 }
1488
1489 rep->flags = srf->flags;
1490 rep->format = srf->format;
1491 memcpy(rep->mip_levels, srf->mip_levels, sizeof(srf->mip_levels));
1492 user_sizes = (struct drm_vmw_size __user *)(unsigned long)
1493 rep->size_addr;
1494
1495 if (user_sizes)
1496 ret = copy_to_user(user_sizes, srf->sizes,
1497 srf->num_sizes * sizeof(*srf->sizes));
1498 if (unlikely(ret != 0)) {
1499 DRM_ERROR("copy_to_user failed %p %u\n",
1500 user_sizes, srf->num_sizes);
1501 ret = -EFAULT;
1502 }
1503out_bad_resource:
1504out_no_reference:
1505 ttm_base_object_unref(&base);
1506
1507 return ret;
1508}
1509
1510int vmw_surface_check(struct vmw_private *dev_priv,
1511 struct ttm_object_file *tfile,
1512 uint32_t handle, int *id)
1513{
1514 struct ttm_base_object *base;
1515 struct vmw_user_surface *user_srf;
1516
1517 int ret = -EPERM;
1518
1519 base = ttm_base_object_lookup(tfile, handle);
1520 if (unlikely(base == NULL))
1521 return -EINVAL;
1522
1523 if (unlikely(base->object_type != VMW_RES_SURFACE))
1524 goto out_bad_surface;
1525
1526 user_srf = container_of(base, struct vmw_user_surface, base);
1527 *id = user_srf->srf.res.id;
1528 ret = 0;
1529
1530out_bad_surface:
1531 /**
1532 * FIXME: May deadlock here when called from the
1533 * command parsing code.
1534 */
1535
1536 ttm_base_object_unref(&base);
1537 return ret;
1538}
1539
1540/**
1541 * Buffer management.
1542 */
1543void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
1544{
1545 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
1546
1547 kfree(vmw_bo);
1548}
1549
1550int vmw_dmabuf_init(struct vmw_private *dev_priv,
1551 struct vmw_dma_buffer *vmw_bo,
1552 size_t size, struct ttm_placement *placement,
1553 bool interruptible,
1554 void (*bo_free) (struct ttm_buffer_object *bo))
1555{
1556 struct ttm_bo_device *bdev = &dev_priv->bdev;
1557 size_t acc_size;
1558 int ret;
1559
1560 BUG_ON(!bo_free);
1561
1562 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct vmw_dma_buffer));
1563 memset(vmw_bo, 0, sizeof(*vmw_bo));
1564
1565 INIT_LIST_HEAD(&vmw_bo->validate_list);
1566
1567 ret = ttm_bo_init(bdev, &vmw_bo->base, size,
1568 ttm_bo_type_device, placement,
1569 0, 0, interruptible,
1570 NULL, acc_size, NULL, bo_free);
1571 return ret;
1572}
1573
1574static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
1575{
1576 struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
1577
1578 kfree(vmw_user_bo);
1579}
1580
1581static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
1582{
1583 struct vmw_user_dma_buffer *vmw_user_bo;
1584 struct ttm_base_object *base = *p_base;
1585 struct ttm_buffer_object *bo;
1586
1587 *p_base = NULL;
1588
1589 if (unlikely(base == NULL))
1590 return;
1591
1592 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer, base);
1593 bo = &vmw_user_bo->dma.base;
1594 ttm_bo_unref(&bo);
1595}
1596
1597int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
1598 struct drm_file *file_priv)
1599{
1600 struct vmw_private *dev_priv = vmw_priv(dev);
1601 union drm_vmw_alloc_dmabuf_arg *arg =
1602 (union drm_vmw_alloc_dmabuf_arg *)data;
1603 struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
1604 struct drm_vmw_dmabuf_rep *rep = &arg->rep;
1605 struct vmw_user_dma_buffer *vmw_user_bo;
1606 struct ttm_buffer_object *tmp;
1607 struct vmw_master *vmaster = vmw_master(file_priv->master);
1608 int ret;
1609
1610 vmw_user_bo = kzalloc(sizeof(*vmw_user_bo), GFP_KERNEL);
1611 if (unlikely(vmw_user_bo == NULL))
1612 return -ENOMEM;
1613
1614 ret = ttm_read_lock(&vmaster->lock, true);
1615 if (unlikely(ret != 0)) {
1616 kfree(vmw_user_bo);
1617 return ret;
1618 }
1619
1620 ret = vmw_dmabuf_init(dev_priv, &vmw_user_bo->dma, req->size,
1621 &vmw_vram_sys_placement, true,
1622 &vmw_user_dmabuf_destroy);
1623 if (unlikely(ret != 0))
1624 goto out_no_dmabuf;
1625
1626 tmp = ttm_bo_reference(&vmw_user_bo->dma.base);
1627 ret = ttm_base_object_init(vmw_fpriv(file_priv)->tfile,
1628 &vmw_user_bo->base,
1629 false,
1630 ttm_buffer_type,
1631 &vmw_user_dmabuf_release, NULL);
1632 if (unlikely(ret != 0))
1633 goto out_no_base_object;
1634 else {
1635 rep->handle = vmw_user_bo->base.hash.key;
1636 rep->map_handle = vmw_user_bo->dma.base.addr_space_offset;
1637 rep->cur_gmr_id = vmw_user_bo->base.hash.key;
1638 rep->cur_gmr_offset = 0;
1639 }
1640
1641out_no_base_object:
1642 ttm_bo_unref(&tmp);
1643out_no_dmabuf:
1644 ttm_read_unlock(&vmaster->lock);
1645
1646 return ret;
1647}
1648
1649int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
1650 struct drm_file *file_priv)
1651{
1652 struct drm_vmw_unref_dmabuf_arg *arg =
1653 (struct drm_vmw_unref_dmabuf_arg *)data;
1654
1655 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
1656 arg->handle,
1657 TTM_REF_USAGE);
1658}
1659
1660uint32_t vmw_dmabuf_validate_node(struct ttm_buffer_object *bo,
1661 uint32_t cur_validate_node)
1662{
1663 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
1664
1665 if (likely(vmw_bo->on_validate_list))
1666 return vmw_bo->cur_validate_node;
1667
1668 vmw_bo->cur_validate_node = cur_validate_node;
1669 vmw_bo->on_validate_list = true;
1670
1671 return cur_validate_node;
1672}
1673
1674void vmw_dmabuf_validate_clear(struct ttm_buffer_object *bo)
1675{
1676 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
1677
1678 vmw_bo->on_validate_list = false;
1679}
1680
1681int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
1682 uint32_t handle, struct vmw_dma_buffer **out)
1683{
1684 struct vmw_user_dma_buffer *vmw_user_bo;
1685 struct ttm_base_object *base;
1686
1687 base = ttm_base_object_lookup(tfile, handle);
1688 if (unlikely(base == NULL)) {
1689 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
1690 (unsigned long)handle);
1691 return -ESRCH;
1692 }
1693
1694 if (unlikely(base->object_type != ttm_buffer_type)) {
1695 ttm_base_object_unref(&base);
1696 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
1697 (unsigned long)handle);
1698 return -EINVAL;
1699 }
1700
1701 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer, base);
1702 (void)ttm_bo_reference(&vmw_user_bo->dma.base);
1703 ttm_base_object_unref(&base);
1704 *out = &vmw_user_bo->dma;
1705
1706 return 0;
1707}
1708
1709/*
1710 * Stream management
1711 */
1712
1713static void vmw_stream_destroy(struct vmw_resource *res)
1714{
1715 struct vmw_private *dev_priv = res->dev_priv;
1716 struct vmw_stream *stream;
1717 int ret;
1718
1719 DRM_INFO("%s: unref\n", __func__);
1720 stream = container_of(res, struct vmw_stream, res);
1721
1722 ret = vmw_overlay_unref(dev_priv, stream->stream_id);
1723 WARN_ON(ret != 0);
1724}
1725
1726static int vmw_stream_init(struct vmw_private *dev_priv,
1727 struct vmw_stream *stream,
1728 void (*res_free) (struct vmw_resource *res))
1729{
1730 struct vmw_resource *res = &stream->res;
1731 int ret;
1732
1733 ret = vmw_resource_init(dev_priv, res, &dev_priv->stream_idr,
1734 VMW_RES_STREAM, false, res_free, NULL);
1735
1736 if (unlikely(ret != 0)) {
1737 if (res_free == NULL)
1738 kfree(stream);
1739 else
1740 res_free(&stream->res);
1741 return ret;
1742 }
1743
1744 ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
1745 if (ret) {
1746 vmw_resource_unreference(&res);
1747 return ret;
1748 }
1749
1750 DRM_INFO("%s: claimed\n", __func__);
1751
1752 vmw_resource_activate(&stream->res, vmw_stream_destroy);
1753 return 0;
1754}
1755
1756/**
1757 * User-space context management:
1758 */
1759
1760static void vmw_user_stream_free(struct vmw_resource *res)
1761{
1762 struct vmw_user_stream *stream =
1763 container_of(res, struct vmw_user_stream, stream.res);
1764 struct vmw_private *dev_priv = res->dev_priv;
1765
1766 kfree(stream);
1767 ttm_mem_global_free(vmw_mem_glob(dev_priv),
1768 vmw_user_stream_size);
1769}
1770
1771/**
1772 * This function is called when user space has no more references on the
1773 * base object. It releases the base-object's reference on the resource object.
1774 */
1775
1776static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
1777{
1778 struct ttm_base_object *base = *p_base;
1779 struct vmw_user_stream *stream =
1780 container_of(base, struct vmw_user_stream, base);
1781 struct vmw_resource *res = &stream->stream.res;
1782
1783 *p_base = NULL;
1784 vmw_resource_unreference(&res);
1785}
1786
1787int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
1788 struct drm_file *file_priv)
1789{
1790 struct vmw_private *dev_priv = vmw_priv(dev);
1791 struct vmw_resource *res;
1792 struct vmw_user_stream *stream;
1793 struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
1794 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1795 int ret = 0;
1796
1797 res = vmw_resource_lookup(dev_priv, &dev_priv->stream_idr, arg->stream_id);
1798 if (unlikely(res == NULL))
1799 return -EINVAL;
1800
1801 if (res->res_free != &vmw_user_stream_free) {
1802 ret = -EINVAL;
1803 goto out;
1804 }
1805
1806 stream = container_of(res, struct vmw_user_stream, stream.res);
1807 if (stream->base.tfile != tfile) {
1808 ret = -EINVAL;
1809 goto out;
1810 }
1811
1812 ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
1813out:
1814 vmw_resource_unreference(&res);
1815 return ret;
1816}
1817
1818int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
1819 struct drm_file *file_priv)
1820{
1821 struct vmw_private *dev_priv = vmw_priv(dev);
1822 struct vmw_user_stream *stream;
1823 struct vmw_resource *res;
1824 struct vmw_resource *tmp;
1825 struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
1826 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1827 struct vmw_master *vmaster = vmw_master(file_priv->master);
1828 int ret;
1829
1830 /*
1831 * Approximate idr memory usage with 128 bytes. It will be limited
1832 * by maximum number_of streams anyway?
1833 */
1834
1835 if (unlikely(vmw_user_stream_size == 0))
1836 vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128;
1837
1838 ret = ttm_read_lock(&vmaster->lock, true);
1839 if (unlikely(ret != 0))
1840 return ret;
1841
1842 ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
1843 vmw_user_stream_size,
1844 false, true);
1845 if (unlikely(ret != 0)) {
1846 if (ret != -ERESTARTSYS)
1847 DRM_ERROR("Out of graphics memory for stream"
1848 " creation.\n");
1849 goto out_unlock;
1850 }
1851
1852
1853 stream = kmalloc(sizeof(*stream), GFP_KERNEL);
1854 if (unlikely(stream == NULL)) {
1855 ttm_mem_global_free(vmw_mem_glob(dev_priv),
1856 vmw_user_stream_size);
1857 ret = -ENOMEM;
1858 goto out_unlock;
1859 }
1860
1861 res = &stream->stream.res;
1862 stream->base.shareable = false;
1863 stream->base.tfile = NULL;
1864
1865 /*
1866 * From here on, the destructor takes over resource freeing.
1867 */
1868
1869 ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
1870 if (unlikely(ret != 0))
1871 goto out_unlock;
1872
1873 tmp = vmw_resource_reference(res);
1874 ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
1875 &vmw_user_stream_base_release, NULL);
1876
1877 if (unlikely(ret != 0)) {
1878 vmw_resource_unreference(&tmp);
1879 goto out_err;
1880 }
1881
1882 arg->stream_id = res->id;
1883out_err:
1884 vmw_resource_unreference(&res);
1885out_unlock:
1886 ttm_read_unlock(&vmaster->lock);
1887 return ret;
1888}
1889
1890int vmw_user_stream_lookup(struct vmw_private *dev_priv,
1891 struct ttm_object_file *tfile,
1892 uint32_t *inout_id, struct vmw_resource **out)
1893{
1894 struct vmw_user_stream *stream;
1895 struct vmw_resource *res;
1896 int ret;
1897
1898 res = vmw_resource_lookup(dev_priv, &dev_priv->stream_idr, *inout_id);
1899 if (unlikely(res == NULL))
1900 return -EINVAL;
1901
1902 if (res->res_free != &vmw_user_stream_free) {
1903 ret = -EINVAL;
1904 goto err_ref;
1905 }
1906
1907 stream = container_of(res, struct vmw_user_stream, stream.res);
1908 if (stream->base.tfile != tfile) {
1909 ret = -EPERM;
1910 goto err_ref;
1911 }
1912
1913 *inout_id = stream->stream.stream_id;
1914 *out = res;
1915 return 0;
1916err_ref:
1917 vmw_resource_unreference(&res);
1918 return ret;
1919}
1920
1921
1922int vmw_dumb_create(struct drm_file *file_priv,
1923 struct drm_device *dev,
1924 struct drm_mode_create_dumb *args)
1925{
1926 struct vmw_private *dev_priv = vmw_priv(dev);
1927 struct vmw_master *vmaster = vmw_master(file_priv->master);
1928 struct vmw_user_dma_buffer *vmw_user_bo;
1929 struct ttm_buffer_object *tmp;
1930 int ret;
1931
1932 args->pitch = args->width * ((args->bpp + 7) / 8);
1933 args->size = args->pitch * args->height;
1934
1935 vmw_user_bo = kzalloc(sizeof(*vmw_user_bo), GFP_KERNEL);
1936 if (vmw_user_bo == NULL)
1937 return -ENOMEM;
1938
1939 ret = ttm_read_lock(&vmaster->lock, true);
1940 if (ret != 0) {
1941 kfree(vmw_user_bo);
1942 return ret;
1943 }
1944
1945 ret = vmw_dmabuf_init(dev_priv, &vmw_user_bo->dma, args->size,
1946 &vmw_vram_sys_placement, true,
1947 &vmw_user_dmabuf_destroy);
1948 if (ret != 0)
1949 goto out_no_dmabuf;
1950
1951 tmp = ttm_bo_reference(&vmw_user_bo->dma.base);
1952 ret = ttm_base_object_init(vmw_fpriv(file_priv)->tfile,
1953 &vmw_user_bo->base,
1954 false,
1955 ttm_buffer_type,
1956 &vmw_user_dmabuf_release, NULL);
1957 if (unlikely(ret != 0))
1958 goto out_no_base_object;
1959
1960 args->handle = vmw_user_bo->base.hash.key;
1961
1962out_no_base_object:
1963 ttm_bo_unref(&tmp);
1964out_no_dmabuf:
1965 ttm_read_unlock(&vmaster->lock);
1966 return ret;
1967}
1968
1969int vmw_dumb_map_offset(struct drm_file *file_priv,
1970 struct drm_device *dev, uint32_t handle,
1971 uint64_t *offset)
1972{
1973 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1974 struct vmw_dma_buffer *out_buf;
1975 int ret;
1976
1977 ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf);
1978 if (ret != 0)
1979 return -EINVAL;
1980
1981 *offset = out_buf->base.addr_space_offset;
1982 vmw_dmabuf_unreference(&out_buf);
1983 return 0;
1984}
1985
1986int vmw_dumb_destroy(struct drm_file *file_priv,
1987 struct drm_device *dev,
1988 uint32_t handle)
1989{
1990 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
1991 handle, TTM_REF_USAGE);
1992}