Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * PRNG: Pseudo Random Number Generator
  4 *       Based on NIST Recommended PRNG From ANSI X9.31 Appendix A.2.4 using
  5 *       AES 128 cipher
  6 *
  7 *  (C) Neil Horman <nhorman@tuxdriver.com>
 
 
 
 
 
 
 
  8 */
  9
 10#include <crypto/internal/rng.h>
 11#include <linux/err.h>
 12#include <linux/init.h>
 13#include <linux/module.h>
 14#include <linux/moduleparam.h>
 15#include <linux/string.h>
 16
 
 
 17#define DEFAULT_PRNG_KEY "0123456789abcdef"
 18#define DEFAULT_PRNG_KSZ 16
 19#define DEFAULT_BLK_SZ 16
 20#define DEFAULT_V_SEED "zaybxcwdveuftgsh"
 21
 22/*
 23 * Flags for the prng_context flags field
 24 */
 25
 26#define PRNG_FIXED_SIZE 0x1
 27#define PRNG_NEED_RESET 0x2
 28
 29/*
 30 * Note: DT is our counter value
 31 *	 I is our intermediate value
 32 *	 V is our seed vector
 33 * See http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf
 34 * for implementation details
 35 */
 36
 37
 38struct prng_context {
 39	spinlock_t prng_lock;
 40	unsigned char rand_data[DEFAULT_BLK_SZ];
 41	unsigned char last_rand_data[DEFAULT_BLK_SZ];
 42	unsigned char DT[DEFAULT_BLK_SZ];
 43	unsigned char I[DEFAULT_BLK_SZ];
 44	unsigned char V[DEFAULT_BLK_SZ];
 45	u32 rand_data_valid;
 46	struct crypto_cipher *tfm;
 47	u32 flags;
 48};
 49
 50static int dbg;
 51
 52static void hexdump(char *note, unsigned char *buf, unsigned int len)
 53{
 54	if (dbg) {
 55		printk(KERN_CRIT "%s", note);
 56		print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
 57				16, 1,
 58				buf, len, false);
 59	}
 60}
 61
 62#define dbgprint(format, args...) do {\
 63if (dbg)\
 64	printk(format, ##args);\
 65} while (0)
 66
 67static void xor_vectors(unsigned char *in1, unsigned char *in2,
 68			unsigned char *out, unsigned int size)
 69{
 70	int i;
 71
 72	for (i = 0; i < size; i++)
 73		out[i] = in1[i] ^ in2[i];
 74
 75}
 76/*
 77 * Returns DEFAULT_BLK_SZ bytes of random data per call
 78 * returns 0 if generation succeeded, <0 if something went wrong
 79 */
 80static int _get_more_prng_bytes(struct prng_context *ctx, int cont_test)
 81{
 82	int i;
 83	unsigned char tmp[DEFAULT_BLK_SZ];
 84	unsigned char *output = NULL;
 85
 86
 87	dbgprint(KERN_CRIT "Calling _get_more_prng_bytes for context %p\n",
 88		ctx);
 89
 90	hexdump("Input DT: ", ctx->DT, DEFAULT_BLK_SZ);
 91	hexdump("Input I: ", ctx->I, DEFAULT_BLK_SZ);
 92	hexdump("Input V: ", ctx->V, DEFAULT_BLK_SZ);
 93
 94	/*
 95	 * This algorithm is a 3 stage state machine
 96	 */
 97	for (i = 0; i < 3; i++) {
 98
 99		switch (i) {
100		case 0:
101			/*
102			 * Start by encrypting the counter value
103			 * This gives us an intermediate value I
104			 */
105			memcpy(tmp, ctx->DT, DEFAULT_BLK_SZ);
106			output = ctx->I;
107			hexdump("tmp stage 0: ", tmp, DEFAULT_BLK_SZ);
108			break;
109		case 1:
110
111			/*
112			 * Next xor I with our secret vector V
113			 * encrypt that result to obtain our
114			 * pseudo random data which we output
115			 */
116			xor_vectors(ctx->I, ctx->V, tmp, DEFAULT_BLK_SZ);
117			hexdump("tmp stage 1: ", tmp, DEFAULT_BLK_SZ);
118			output = ctx->rand_data;
119			break;
120		case 2:
121			/*
122			 * First check that we didn't produce the same
123			 * random data that we did last time around through this
124			 */
125			if (!memcmp(ctx->rand_data, ctx->last_rand_data,
126					DEFAULT_BLK_SZ)) {
127				if (cont_test) {
128					panic("cprng %p Failed repetition check!\n",
129						ctx);
130				}
131
132				printk(KERN_ERR
133					"ctx %p Failed repetition check!\n",
134					ctx);
135
136				ctx->flags |= PRNG_NEED_RESET;
137				return -EINVAL;
138			}
139			memcpy(ctx->last_rand_data, ctx->rand_data,
140				DEFAULT_BLK_SZ);
141
142			/*
143			 * Lastly xor the random data with I
144			 * and encrypt that to obtain a new secret vector V
145			 */
146			xor_vectors(ctx->rand_data, ctx->I, tmp,
147				DEFAULT_BLK_SZ);
148			output = ctx->V;
149			hexdump("tmp stage 2: ", tmp, DEFAULT_BLK_SZ);
150			break;
151		}
152
153
154		/* do the encryption */
155		crypto_cipher_encrypt_one(ctx->tfm, output, tmp);
156
157	}
158
159	/*
160	 * Now update our DT value
161	 */
162	for (i = DEFAULT_BLK_SZ - 1; i >= 0; i--) {
163		ctx->DT[i] += 1;
164		if (ctx->DT[i] != 0)
165			break;
166	}
167
168	dbgprint("Returning new block for context %p\n", ctx);
169	ctx->rand_data_valid = 0;
170
171	hexdump("Output DT: ", ctx->DT, DEFAULT_BLK_SZ);
172	hexdump("Output I: ", ctx->I, DEFAULT_BLK_SZ);
173	hexdump("Output V: ", ctx->V, DEFAULT_BLK_SZ);
174	hexdump("New Random Data: ", ctx->rand_data, DEFAULT_BLK_SZ);
175
176	return 0;
177}
178
179/* Our exported functions */
180static int get_prng_bytes(char *buf, size_t nbytes, struct prng_context *ctx,
181				int do_cont_test)
182{
183	unsigned char *ptr = buf;
184	unsigned int byte_count = (unsigned int)nbytes;
185	int err;
186
187
188	spin_lock_bh(&ctx->prng_lock);
189
190	err = -EINVAL;
191	if (ctx->flags & PRNG_NEED_RESET)
192		goto done;
193
194	/*
195	 * If the FIXED_SIZE flag is on, only return whole blocks of
196	 * pseudo random data
197	 */
198	err = -EINVAL;
199	if (ctx->flags & PRNG_FIXED_SIZE) {
200		if (nbytes < DEFAULT_BLK_SZ)
201			goto done;
202		byte_count = DEFAULT_BLK_SZ;
203	}
204
205	/*
206	 * Return 0 in case of success as mandated by the kernel
207	 * crypto API interface definition.
208	 */
209	err = 0;
210
211	dbgprint(KERN_CRIT "getting %d random bytes for context %p\n",
212		byte_count, ctx);
213
214
215remainder:
216	if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
217		if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
218			memset(buf, 0, nbytes);
219			err = -EINVAL;
220			goto done;
221		}
222	}
223
224	/*
225	 * Copy any data less than an entire block
226	 */
227	if (byte_count < DEFAULT_BLK_SZ) {
228empty_rbuf:
229		while (ctx->rand_data_valid < DEFAULT_BLK_SZ) {
 
230			*ptr = ctx->rand_data[ctx->rand_data_valid];
231			ptr++;
232			byte_count--;
233			ctx->rand_data_valid++;
234			if (byte_count == 0)
235				goto done;
236		}
237	}
238
239	/*
240	 * Now copy whole blocks
241	 */
242	for (; byte_count >= DEFAULT_BLK_SZ; byte_count -= DEFAULT_BLK_SZ) {
243		if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
244			if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
245				memset(buf, 0, nbytes);
246				err = -EINVAL;
247				goto done;
248			}
249		}
250		if (ctx->rand_data_valid > 0)
251			goto empty_rbuf;
252		memcpy(ptr, ctx->rand_data, DEFAULT_BLK_SZ);
253		ctx->rand_data_valid += DEFAULT_BLK_SZ;
254		ptr += DEFAULT_BLK_SZ;
255	}
256
257	/*
258	 * Now go back and get any remaining partial block
259	 */
260	if (byte_count)
261		goto remainder;
262
263done:
264	spin_unlock_bh(&ctx->prng_lock);
265	dbgprint(KERN_CRIT "returning %d from get_prng_bytes in context %p\n",
266		err, ctx);
267	return err;
268}
269
270static void free_prng_context(struct prng_context *ctx)
271{
272	crypto_free_cipher(ctx->tfm);
273}
274
275static int reset_prng_context(struct prng_context *ctx,
276			      const unsigned char *key, size_t klen,
277			      const unsigned char *V, const unsigned char *DT)
278{
279	int ret;
280	const unsigned char *prng_key;
281
282	spin_lock_bh(&ctx->prng_lock);
283	ctx->flags |= PRNG_NEED_RESET;
284
285	prng_key = (key != NULL) ? key : (unsigned char *)DEFAULT_PRNG_KEY;
286
287	if (!key)
288		klen = DEFAULT_PRNG_KSZ;
289
290	if (V)
291		memcpy(ctx->V, V, DEFAULT_BLK_SZ);
292	else
293		memcpy(ctx->V, DEFAULT_V_SEED, DEFAULT_BLK_SZ);
294
295	if (DT)
296		memcpy(ctx->DT, DT, DEFAULT_BLK_SZ);
297	else
298		memset(ctx->DT, 0, DEFAULT_BLK_SZ);
299
300	memset(ctx->rand_data, 0, DEFAULT_BLK_SZ);
301	memset(ctx->last_rand_data, 0, DEFAULT_BLK_SZ);
302
303	ctx->rand_data_valid = DEFAULT_BLK_SZ;
304
305	ret = crypto_cipher_setkey(ctx->tfm, prng_key, klen);
306	if (ret) {
307		dbgprint(KERN_CRIT "PRNG: setkey() failed flags=%x\n",
308			crypto_cipher_get_flags(ctx->tfm));
309		goto out;
310	}
311
312	ret = 0;
313	ctx->flags &= ~PRNG_NEED_RESET;
314out:
315	spin_unlock_bh(&ctx->prng_lock);
316	return ret;
317}
318
319static int cprng_init(struct crypto_tfm *tfm)
320{
321	struct prng_context *ctx = crypto_tfm_ctx(tfm);
322
323	spin_lock_init(&ctx->prng_lock);
324	ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
325	if (IS_ERR(ctx->tfm)) {
326		dbgprint(KERN_CRIT "Failed to alloc tfm for context %p\n",
327				ctx);
328		return PTR_ERR(ctx->tfm);
329	}
330
331	if (reset_prng_context(ctx, NULL, DEFAULT_PRNG_KSZ, NULL, NULL) < 0)
332		return -EINVAL;
333
334	/*
335	 * after allocation, we should always force the user to reset
336	 * so they don't inadvertently use the insecure default values
337	 * without specifying them intentially
338	 */
339	ctx->flags |= PRNG_NEED_RESET;
340	return 0;
341}
342
343static void cprng_exit(struct crypto_tfm *tfm)
344{
345	free_prng_context(crypto_tfm_ctx(tfm));
346}
347
348static int cprng_get_random(struct crypto_rng *tfm,
349			    const u8 *src, unsigned int slen,
350			    u8 *rdata, unsigned int dlen)
351{
352	struct prng_context *prng = crypto_rng_ctx(tfm);
353
354	return get_prng_bytes(rdata, dlen, prng, 0);
355}
356
357/*
358 *  This is the cprng_registered reset method the seed value is
359 *  interpreted as the tuple { V KEY DT}
360 *  V and KEY are required during reset, and DT is optional, detected
361 *  as being present by testing the length of the seed
362 */
363static int cprng_reset(struct crypto_rng *tfm,
364		       const u8 *seed, unsigned int slen)
365{
366	struct prng_context *prng = crypto_rng_ctx(tfm);
367	const u8 *key = seed + DEFAULT_BLK_SZ;
368	const u8 *dt = NULL;
369
370	if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
371		return -EINVAL;
372
373	if (slen >= (2 * DEFAULT_BLK_SZ + DEFAULT_PRNG_KSZ))
374		dt = key + DEFAULT_PRNG_KSZ;
375
376	reset_prng_context(prng, key, DEFAULT_PRNG_KSZ, seed, dt);
377
378	if (prng->flags & PRNG_NEED_RESET)
379		return -EINVAL;
380	return 0;
381}
382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
383#ifdef CONFIG_CRYPTO_FIPS
384static int fips_cprng_get_random(struct crypto_rng *tfm,
385				 const u8 *src, unsigned int slen,
386				 u8 *rdata, unsigned int dlen)
387{
388	struct prng_context *prng = crypto_rng_ctx(tfm);
389
390	return get_prng_bytes(rdata, dlen, prng, 1);
391}
392
393static int fips_cprng_reset(struct crypto_rng *tfm,
394			    const u8 *seed, unsigned int slen)
395{
396	u8 rdata[DEFAULT_BLK_SZ];
397	const u8 *key = seed + DEFAULT_BLK_SZ;
398	int rc;
399
400	struct prng_context *prng = crypto_rng_ctx(tfm);
401
402	if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
403		return -EINVAL;
404
405	/* fips strictly requires seed != key */
406	if (!memcmp(seed, key, DEFAULT_PRNG_KSZ))
407		return -EINVAL;
408
409	rc = cprng_reset(tfm, seed, slen);
410
411	if (!rc)
412		goto out;
413
414	/* this primes our continuity test */
415	rc = get_prng_bytes(rdata, DEFAULT_BLK_SZ, prng, 0);
416	prng->rand_data_valid = DEFAULT_BLK_SZ;
417
418out:
419	return rc;
420}
421#endif
422
423static struct rng_alg rng_algs[] = { {
424	.generate		= cprng_get_random,
425	.seed			= cprng_reset,
426	.seedsize		= DEFAULT_PRNG_KSZ + 2 * DEFAULT_BLK_SZ,
427	.base			=	{
428		.cra_name		= "stdrng",
429		.cra_driver_name	= "ansi_cprng",
430		.cra_priority		= 100,
431		.cra_ctxsize		= sizeof(struct prng_context),
432		.cra_module		= THIS_MODULE,
433		.cra_init		= cprng_init,
434		.cra_exit		= cprng_exit,
435	}
436#ifdef CONFIG_CRYPTO_FIPS
437}, {
438	.generate		= fips_cprng_get_random,
439	.seed			= fips_cprng_reset,
440	.seedsize		= DEFAULT_PRNG_KSZ + 2 * DEFAULT_BLK_SZ,
441	.base			=	{
442		.cra_name		= "fips(ansi_cprng)",
443		.cra_driver_name	= "fips_ansi_cprng",
444		.cra_priority		= 300,
445		.cra_ctxsize		= sizeof(struct prng_context),
446		.cra_module		= THIS_MODULE,
447		.cra_init		= cprng_init,
448		.cra_exit		= cprng_exit,
449	}
 
450#endif
451} };
452
453/* Module initalization */
454static int __init prng_mod_init(void)
455{
456	return crypto_register_rngs(rng_algs, ARRAY_SIZE(rng_algs));
 
 
 
 
 
 
 
 
 
 
 
457}
458
459static void __exit prng_mod_fini(void)
460{
461	crypto_unregister_rngs(rng_algs, ARRAY_SIZE(rng_algs));
 
 
 
 
462}
463
464MODULE_LICENSE("GPL");
465MODULE_DESCRIPTION("Software Pseudo Random Number Generator");
466MODULE_AUTHOR("Neil Horman <nhorman@tuxdriver.com>");
467module_param(dbg, int, 0);
468MODULE_PARM_DESC(dbg, "Boolean to enable debugging (0/1 == off/on)");
469subsys_initcall(prng_mod_init);
470module_exit(prng_mod_fini);
471MODULE_ALIAS_CRYPTO("stdrng");
472MODULE_ALIAS_CRYPTO("ansi_cprng");
v3.5.6
 
  1/*
  2 * PRNG: Pseudo Random Number Generator
  3 *       Based on NIST Recommended PRNG From ANSI X9.31 Appendix A.2.4 using
  4 *       AES 128 cipher
  5 *
  6 *  (C) Neil Horman <nhorman@tuxdriver.com>
  7 *
  8 *  This program is free software; you can redistribute it and/or modify it
  9 *  under the terms of the GNU General Public License as published by the
 10 *  Free Software Foundation; either version 2 of the License, or (at your
 11 *  any later version.
 12 *
 13 *
 14 */
 15
 16#include <crypto/internal/rng.h>
 17#include <linux/err.h>
 18#include <linux/init.h>
 19#include <linux/module.h>
 20#include <linux/moduleparam.h>
 21#include <linux/string.h>
 22
 23#include "internal.h"
 24
 25#define DEFAULT_PRNG_KEY "0123456789abcdef"
 26#define DEFAULT_PRNG_KSZ 16
 27#define DEFAULT_BLK_SZ 16
 28#define DEFAULT_V_SEED "zaybxcwdveuftgsh"
 29
 30/*
 31 * Flags for the prng_context flags field
 32 */
 33
 34#define PRNG_FIXED_SIZE 0x1
 35#define PRNG_NEED_RESET 0x2
 36
 37/*
 38 * Note: DT is our counter value
 39 *	 I is our intermediate value
 40 *	 V is our seed vector
 41 * See http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf
 42 * for implementation details
 43 */
 44
 45
 46struct prng_context {
 47	spinlock_t prng_lock;
 48	unsigned char rand_data[DEFAULT_BLK_SZ];
 49	unsigned char last_rand_data[DEFAULT_BLK_SZ];
 50	unsigned char DT[DEFAULT_BLK_SZ];
 51	unsigned char I[DEFAULT_BLK_SZ];
 52	unsigned char V[DEFAULT_BLK_SZ];
 53	u32 rand_data_valid;
 54	struct crypto_cipher *tfm;
 55	u32 flags;
 56};
 57
 58static int dbg;
 59
 60static void hexdump(char *note, unsigned char *buf, unsigned int len)
 61{
 62	if (dbg) {
 63		printk(KERN_CRIT "%s", note);
 64		print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
 65				16, 1,
 66				buf, len, false);
 67	}
 68}
 69
 70#define dbgprint(format, args...) do {\
 71if (dbg)\
 72	printk(format, ##args);\
 73} while (0)
 74
 75static void xor_vectors(unsigned char *in1, unsigned char *in2,
 76			unsigned char *out, unsigned int size)
 77{
 78	int i;
 79
 80	for (i = 0; i < size; i++)
 81		out[i] = in1[i] ^ in2[i];
 82
 83}
 84/*
 85 * Returns DEFAULT_BLK_SZ bytes of random data per call
 86 * returns 0 if generation succeeded, <0 if something went wrong
 87 */
 88static int _get_more_prng_bytes(struct prng_context *ctx, int cont_test)
 89{
 90	int i;
 91	unsigned char tmp[DEFAULT_BLK_SZ];
 92	unsigned char *output = NULL;
 93
 94
 95	dbgprint(KERN_CRIT "Calling _get_more_prng_bytes for context %p\n",
 96		ctx);
 97
 98	hexdump("Input DT: ", ctx->DT, DEFAULT_BLK_SZ);
 99	hexdump("Input I: ", ctx->I, DEFAULT_BLK_SZ);
100	hexdump("Input V: ", ctx->V, DEFAULT_BLK_SZ);
101
102	/*
103	 * This algorithm is a 3 stage state machine
104	 */
105	for (i = 0; i < 3; i++) {
106
107		switch (i) {
108		case 0:
109			/*
110			 * Start by encrypting the counter value
111			 * This gives us an intermediate value I
112			 */
113			memcpy(tmp, ctx->DT, DEFAULT_BLK_SZ);
114			output = ctx->I;
115			hexdump("tmp stage 0: ", tmp, DEFAULT_BLK_SZ);
116			break;
117		case 1:
118
119			/*
120			 * Next xor I with our secret vector V
121			 * encrypt that result to obtain our
122			 * pseudo random data which we output
123			 */
124			xor_vectors(ctx->I, ctx->V, tmp, DEFAULT_BLK_SZ);
125			hexdump("tmp stage 1: ", tmp, DEFAULT_BLK_SZ);
126			output = ctx->rand_data;
127			break;
128		case 2:
129			/*
130			 * First check that we didn't produce the same
131			 * random data that we did last time around through this
132			 */
133			if (!memcmp(ctx->rand_data, ctx->last_rand_data,
134					DEFAULT_BLK_SZ)) {
135				if (cont_test) {
136					panic("cprng %p Failed repetition check!\n",
137						ctx);
138				}
139
140				printk(KERN_ERR
141					"ctx %p Failed repetition check!\n",
142					ctx);
143
144				ctx->flags |= PRNG_NEED_RESET;
145				return -EINVAL;
146			}
147			memcpy(ctx->last_rand_data, ctx->rand_data,
148				DEFAULT_BLK_SZ);
149
150			/*
151			 * Lastly xor the random data with I
152			 * and encrypt that to obtain a new secret vector V
153			 */
154			xor_vectors(ctx->rand_data, ctx->I, tmp,
155				DEFAULT_BLK_SZ);
156			output = ctx->V;
157			hexdump("tmp stage 2: ", tmp, DEFAULT_BLK_SZ);
158			break;
159		}
160
161
162		/* do the encryption */
163		crypto_cipher_encrypt_one(ctx->tfm, output, tmp);
164
165	}
166
167	/*
168	 * Now update our DT value
169	 */
170	for (i = DEFAULT_BLK_SZ - 1; i >= 0; i--) {
171		ctx->DT[i] += 1;
172		if (ctx->DT[i] != 0)
173			break;
174	}
175
176	dbgprint("Returning new block for context %p\n", ctx);
177	ctx->rand_data_valid = 0;
178
179	hexdump("Output DT: ", ctx->DT, DEFAULT_BLK_SZ);
180	hexdump("Output I: ", ctx->I, DEFAULT_BLK_SZ);
181	hexdump("Output V: ", ctx->V, DEFAULT_BLK_SZ);
182	hexdump("New Random Data: ", ctx->rand_data, DEFAULT_BLK_SZ);
183
184	return 0;
185}
186
187/* Our exported functions */
188static int get_prng_bytes(char *buf, size_t nbytes, struct prng_context *ctx,
189				int do_cont_test)
190{
191	unsigned char *ptr = buf;
192	unsigned int byte_count = (unsigned int)nbytes;
193	int err;
194
195
196	spin_lock_bh(&ctx->prng_lock);
197
198	err = -EINVAL;
199	if (ctx->flags & PRNG_NEED_RESET)
200		goto done;
201
202	/*
203	 * If the FIXED_SIZE flag is on, only return whole blocks of
204	 * pseudo random data
205	 */
206	err = -EINVAL;
207	if (ctx->flags & PRNG_FIXED_SIZE) {
208		if (nbytes < DEFAULT_BLK_SZ)
209			goto done;
210		byte_count = DEFAULT_BLK_SZ;
211	}
212
213	err = byte_count;
 
 
 
 
214
215	dbgprint(KERN_CRIT "getting %d random bytes for context %p\n",
216		byte_count, ctx);
217
218
219remainder:
220	if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
221		if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
222			memset(buf, 0, nbytes);
223			err = -EINVAL;
224			goto done;
225		}
226	}
227
228	/*
229	 * Copy any data less than an entire block
230	 */
231	if (byte_count < DEFAULT_BLK_SZ) {
232empty_rbuf:
233		for (; ctx->rand_data_valid < DEFAULT_BLK_SZ;
234			ctx->rand_data_valid++) {
235			*ptr = ctx->rand_data[ctx->rand_data_valid];
236			ptr++;
237			byte_count--;
 
238			if (byte_count == 0)
239				goto done;
240		}
241	}
242
243	/*
244	 * Now copy whole blocks
245	 */
246	for (; byte_count >= DEFAULT_BLK_SZ; byte_count -= DEFAULT_BLK_SZ) {
247		if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
248			if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
249				memset(buf, 0, nbytes);
250				err = -EINVAL;
251				goto done;
252			}
253		}
254		if (ctx->rand_data_valid > 0)
255			goto empty_rbuf;
256		memcpy(ptr, ctx->rand_data, DEFAULT_BLK_SZ);
257		ctx->rand_data_valid += DEFAULT_BLK_SZ;
258		ptr += DEFAULT_BLK_SZ;
259	}
260
261	/*
262	 * Now go back and get any remaining partial block
263	 */
264	if (byte_count)
265		goto remainder;
266
267done:
268	spin_unlock_bh(&ctx->prng_lock);
269	dbgprint(KERN_CRIT "returning %d from get_prng_bytes in context %p\n",
270		err, ctx);
271	return err;
272}
273
274static void free_prng_context(struct prng_context *ctx)
275{
276	crypto_free_cipher(ctx->tfm);
277}
278
279static int reset_prng_context(struct prng_context *ctx,
280			      unsigned char *key, size_t klen,
281			      unsigned char *V, unsigned char *DT)
282{
283	int ret;
284	unsigned char *prng_key;
285
286	spin_lock_bh(&ctx->prng_lock);
287	ctx->flags |= PRNG_NEED_RESET;
288
289	prng_key = (key != NULL) ? key : (unsigned char *)DEFAULT_PRNG_KEY;
290
291	if (!key)
292		klen = DEFAULT_PRNG_KSZ;
293
294	if (V)
295		memcpy(ctx->V, V, DEFAULT_BLK_SZ);
296	else
297		memcpy(ctx->V, DEFAULT_V_SEED, DEFAULT_BLK_SZ);
298
299	if (DT)
300		memcpy(ctx->DT, DT, DEFAULT_BLK_SZ);
301	else
302		memset(ctx->DT, 0, DEFAULT_BLK_SZ);
303
304	memset(ctx->rand_data, 0, DEFAULT_BLK_SZ);
305	memset(ctx->last_rand_data, 0, DEFAULT_BLK_SZ);
306
307	ctx->rand_data_valid = DEFAULT_BLK_SZ;
308
309	ret = crypto_cipher_setkey(ctx->tfm, prng_key, klen);
310	if (ret) {
311		dbgprint(KERN_CRIT "PRNG: setkey() failed flags=%x\n",
312			crypto_cipher_get_flags(ctx->tfm));
313		goto out;
314	}
315
316	ret = 0;
317	ctx->flags &= ~PRNG_NEED_RESET;
318out:
319	spin_unlock_bh(&ctx->prng_lock);
320	return ret;
321}
322
323static int cprng_init(struct crypto_tfm *tfm)
324{
325	struct prng_context *ctx = crypto_tfm_ctx(tfm);
326
327	spin_lock_init(&ctx->prng_lock);
328	ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
329	if (IS_ERR(ctx->tfm)) {
330		dbgprint(KERN_CRIT "Failed to alloc tfm for context %p\n",
331				ctx);
332		return PTR_ERR(ctx->tfm);
333	}
334
335	if (reset_prng_context(ctx, NULL, DEFAULT_PRNG_KSZ, NULL, NULL) < 0)
336		return -EINVAL;
337
338	/*
339	 * after allocation, we should always force the user to reset
340	 * so they don't inadvertently use the insecure default values
341	 * without specifying them intentially
342	 */
343	ctx->flags |= PRNG_NEED_RESET;
344	return 0;
345}
346
347static void cprng_exit(struct crypto_tfm *tfm)
348{
349	free_prng_context(crypto_tfm_ctx(tfm));
350}
351
352static int cprng_get_random(struct crypto_rng *tfm, u8 *rdata,
353			    unsigned int dlen)
 
354{
355	struct prng_context *prng = crypto_rng_ctx(tfm);
356
357	return get_prng_bytes(rdata, dlen, prng, 0);
358}
359
360/*
361 *  This is the cprng_registered reset method the seed value is
362 *  interpreted as the tuple { V KEY DT}
363 *  V and KEY are required during reset, and DT is optional, detected
364 *  as being present by testing the length of the seed
365 */
366static int cprng_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen)
 
367{
368	struct prng_context *prng = crypto_rng_ctx(tfm);
369	u8 *key = seed + DEFAULT_BLK_SZ;
370	u8 *dt = NULL;
371
372	if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
373		return -EINVAL;
374
375	if (slen >= (2 * DEFAULT_BLK_SZ + DEFAULT_PRNG_KSZ))
376		dt = key + DEFAULT_PRNG_KSZ;
377
378	reset_prng_context(prng, key, DEFAULT_PRNG_KSZ, seed, dt);
379
380	if (prng->flags & PRNG_NEED_RESET)
381		return -EINVAL;
382	return 0;
383}
384
385static struct crypto_alg rng_alg = {
386	.cra_name		= "stdrng",
387	.cra_driver_name	= "ansi_cprng",
388	.cra_priority		= 100,
389	.cra_flags		= CRYPTO_ALG_TYPE_RNG,
390	.cra_ctxsize		= sizeof(struct prng_context),
391	.cra_type		= &crypto_rng_type,
392	.cra_module		= THIS_MODULE,
393	.cra_list		= LIST_HEAD_INIT(rng_alg.cra_list),
394	.cra_init		= cprng_init,
395	.cra_exit		= cprng_exit,
396	.cra_u			= {
397		.rng = {
398			.rng_make_random	= cprng_get_random,
399			.rng_reset		= cprng_reset,
400			.seedsize = DEFAULT_PRNG_KSZ + 2*DEFAULT_BLK_SZ,
401		}
402	}
403};
404
405#ifdef CONFIG_CRYPTO_FIPS
406static int fips_cprng_get_random(struct crypto_rng *tfm, u8 *rdata,
407			    unsigned int dlen)
 
408{
409	struct prng_context *prng = crypto_rng_ctx(tfm);
410
411	return get_prng_bytes(rdata, dlen, prng, 1);
412}
413
414static int fips_cprng_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen)
 
415{
416	u8 rdata[DEFAULT_BLK_SZ];
417	u8 *key = seed + DEFAULT_BLK_SZ;
418	int rc;
419
420	struct prng_context *prng = crypto_rng_ctx(tfm);
421
422	if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
423		return -EINVAL;
424
425	/* fips strictly requires seed != key */
426	if (!memcmp(seed, key, DEFAULT_PRNG_KSZ))
427		return -EINVAL;
428
429	rc = cprng_reset(tfm, seed, slen);
430
431	if (!rc)
432		goto out;
433
434	/* this primes our continuity test */
435	rc = get_prng_bytes(rdata, DEFAULT_BLK_SZ, prng, 0);
436	prng->rand_data_valid = DEFAULT_BLK_SZ;
437
438out:
439	return rc;
440}
 
441
442static struct crypto_alg fips_rng_alg = {
443	.cra_name		= "fips(ansi_cprng)",
444	.cra_driver_name	= "fips_ansi_cprng",
445	.cra_priority		= 300,
446	.cra_flags		= CRYPTO_ALG_TYPE_RNG,
447	.cra_ctxsize		= sizeof(struct prng_context),
448	.cra_type		= &crypto_rng_type,
449	.cra_module		= THIS_MODULE,
450	.cra_list		= LIST_HEAD_INIT(rng_alg.cra_list),
451	.cra_init		= cprng_init,
452	.cra_exit		= cprng_exit,
453	.cra_u			= {
454		.rng = {
455			.rng_make_random	= fips_cprng_get_random,
456			.rng_reset		= fips_cprng_reset,
457			.seedsize = DEFAULT_PRNG_KSZ + 2*DEFAULT_BLK_SZ,
458		}
 
 
 
 
 
 
 
 
 
459	}
460};
461#endif
 
462
463/* Module initalization */
464static int __init prng_mod_init(void)
465{
466	int rc = 0;
467
468	rc = crypto_register_alg(&rng_alg);
469#ifdef CONFIG_CRYPTO_FIPS
470	if (rc)
471		goto out;
472
473	rc = crypto_register_alg(&fips_rng_alg);
474
475out:
476#endif
477	return rc;
478}
479
480static void __exit prng_mod_fini(void)
481{
482	crypto_unregister_alg(&rng_alg);
483#ifdef CONFIG_CRYPTO_FIPS
484	crypto_unregister_alg(&fips_rng_alg);
485#endif
486	return;
487}
488
489MODULE_LICENSE("GPL");
490MODULE_DESCRIPTION("Software Pseudo Random Number Generator");
491MODULE_AUTHOR("Neil Horman <nhorman@tuxdriver.com>");
492module_param(dbg, int, 0);
493MODULE_PARM_DESC(dbg, "Boolean to enable debugging (0/1 == off/on)");
494module_init(prng_mod_init);
495module_exit(prng_mod_fini);
496MODULE_ALIAS("stdrng");