Linux Audio

Check our new training course

Loading...
v5.4
 1// SPDX-License-Identifier: GPL-2.0
 2#include <asm/cpu_device_id.h>
 3#include <asm/cpufeature.h>
 4#include <linux/cpu.h>
 5#include <linux/export.h>
 6#include <linux/slab.h>
 7
 8/**
 9 * x86_match_cpu - match current CPU again an array of x86_cpu_ids
10 * @match: Pointer to array of x86_cpu_ids. Last entry terminated with
11 *         {}.
12 *
13 * Return the entry if the current CPU matches the entries in the
14 * passed x86_cpu_id match table. Otherwise NULL.  The match table
15 * contains vendor (X86_VENDOR_*), family, model and feature bits or
16 * respective wildcard entries.
17 *
18 * A typical table entry would be to match a specific CPU
19 * { X86_VENDOR_INTEL, 6, 0x12 }
20 * or to match a specific CPU feature
21 * { X86_FEATURE_MATCH(X86_FEATURE_FOOBAR) }
22 *
23 * Fields can be wildcarded with %X86_VENDOR_ANY, %X86_FAMILY_ANY,
24 * %X86_MODEL_ANY, %X86_FEATURE_ANY or 0 (except for vendor)
25 *
26 * Arrays used to match for this should also be declared using
27 * MODULE_DEVICE_TABLE(x86cpu, ...)
28 *
29 * This always matches against the boot cpu, assuming models and features are
30 * consistent over all CPUs.
31 */
32const struct x86_cpu_id *x86_match_cpu(const struct x86_cpu_id *match)
33{
34	const struct x86_cpu_id *m;
35	struct cpuinfo_x86 *c = &boot_cpu_data;
36
37	for (m = match; m->vendor | m->family | m->model | m->feature; m++) {
38		if (m->vendor != X86_VENDOR_ANY && c->x86_vendor != m->vendor)
39			continue;
40		if (m->family != X86_FAMILY_ANY && c->x86 != m->family)
41			continue;
42		if (m->model != X86_MODEL_ANY && c->x86_model != m->model)
43			continue;
44		if (m->feature != X86_FEATURE_ANY && !cpu_has(c, m->feature))
45			continue;
46		return m;
47	}
48	return NULL;
49}
50EXPORT_SYMBOL(x86_match_cpu);
51
52static const struct x86_cpu_desc *
53x86_match_cpu_with_stepping(const struct x86_cpu_desc *match)
 
54{
55	struct cpuinfo_x86 *c = &boot_cpu_data;
56	const struct x86_cpu_desc *m;
57
58	for (m = match; m->x86_family | m->x86_model; m++) {
59		if (c->x86_vendor != m->x86_vendor)
60			continue;
61		if (c->x86 != m->x86_family)
62			continue;
63		if (c->x86_model != m->x86_model)
64			continue;
65		if (c->x86_stepping != m->x86_stepping)
66			continue;
67		return m;
 
 
 
 
 
 
 
 
 
68	}
69	return NULL;
 
70}
71
72bool x86_cpu_has_min_microcode_rev(const struct x86_cpu_desc *table)
73{
74	const struct x86_cpu_desc *res = x86_match_cpu_with_stepping(table);
75
76	if (!res || res->x86_microcode_rev > boot_cpu_data.microcode)
77		return false;
78
79	return true;
 
80}
81EXPORT_SYMBOL_GPL(x86_cpu_has_min_microcode_rev);
v3.5.6
 
 1#include <asm/cpu_device_id.h>
 2#include <asm/processor.h>
 3#include <linux/cpu.h>
 4#include <linux/module.h>
 5#include <linux/slab.h>
 6
 7/**
 8 * x86_match_cpu - match current CPU again an array of x86_cpu_ids
 9 * @match: Pointer to array of x86_cpu_ids. Last entry terminated with
10 *         {}.
11 *
12 * Return the entry if the current CPU matches the entries in the
13 * passed x86_cpu_id match table. Otherwise NULL.  The match table
14 * contains vendor (X86_VENDOR_*), family, model and feature bits or
15 * respective wildcard entries.
16 *
17 * A typical table entry would be to match a specific CPU
18 * { X86_VENDOR_INTEL, 6, 0x12 }
19 * or to match a specific CPU feature
20 * { X86_FEATURE_MATCH(X86_FEATURE_FOOBAR) }
21 *
22 * Fields can be wildcarded with %X86_VENDOR_ANY, %X86_FAMILY_ANY,
23 * %X86_MODEL_ANY, %X86_FEATURE_ANY or 0 (except for vendor)
24 *
25 * Arrays used to match for this should also be declared using
26 * MODULE_DEVICE_TABLE(x86cpu, ...)
27 *
28 * This always matches against the boot cpu, assuming models and features are
29 * consistent over all CPUs.
30 */
31const struct x86_cpu_id *x86_match_cpu(const struct x86_cpu_id *match)
32{
33	const struct x86_cpu_id *m;
34	struct cpuinfo_x86 *c = &boot_cpu_data;
35
36	for (m = match; m->vendor | m->family | m->model | m->feature; m++) {
37		if (m->vendor != X86_VENDOR_ANY && c->x86_vendor != m->vendor)
38			continue;
39		if (m->family != X86_FAMILY_ANY && c->x86 != m->family)
40			continue;
41		if (m->model != X86_MODEL_ANY && c->x86_model != m->model)
42			continue;
43		if (m->feature != X86_FEATURE_ANY && !cpu_has(c, m->feature))
44			continue;
45		return m;
46	}
47	return NULL;
48}
49EXPORT_SYMBOL(x86_match_cpu);
50
51ssize_t arch_print_cpu_modalias(struct device *dev,
52				struct device_attribute *attr,
53				char *bufptr)
54{
55	int size = PAGE_SIZE;
56	int i, n;
57	char *buf = bufptr;
58
59	n = snprintf(buf, size, "x86cpu:vendor:%04X:family:%04X:"
60		     "model:%04X:feature:",
61		boot_cpu_data.x86_vendor,
62		boot_cpu_data.x86,
63		boot_cpu_data.x86_model);
64	size -= n;
65	buf += n;
66	size -= 1;
67	for (i = 0; i < NCAPINTS*32; i++) {
68		if (boot_cpu_has(i)) {
69			n = snprintf(buf, size, ",%04X", i);
70			if (n >= size) {
71				WARN(1, "x86 features overflow page\n");
72				break;
73			}
74			size -= n;
75			buf += n;
76		}
77	}
78	*buf++ = '\n';
79	return buf - bufptr;
80}
81
82int arch_cpu_uevent(struct device *dev, struct kobj_uevent_env *env)
83{
84	char *buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
85	if (buf) {
86		arch_print_cpu_modalias(NULL, NULL, buf);
87		add_uevent_var(env, "MODALIAS=%s", buf);
88		kfree(buf);
89	}
90	return 0;
91}